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Earthquake location programs employ diverse approaches to address the challenges
posed by incomplete knowledge and simplified representation of complex Earth struc-
tures. Assessing their reliability in location and uncertainty characterization remains
challenging as benchmark datasets with known event locations are rare, and usually
confined to particular sources, such as quarry blasts. This study evaluates eight earth-
quake location methods (GrowClust, HypoDD, Hypoinverse, HypoSVI, NonLinLoc,
NonLinLoc_SSST, VELEST, and XCORLOC) through a controlled synthetic computational
experiment on 1000 clustered earthquakes based on the setting of the 2019 Ridgecrest,
California, earthquake sequence. We construct a travel-time dataset using the fast-
marching method and a 3D velocity model extracted from the Community Velocity
Model, supplemented with a von Karman perturbation to represent small-scale hetero-
geneity, and including elevation effects. Picking errors, phase availability, and outliers
are introduced to mimic difficulties encountered in seismic network monitoring. We
compare the location results from eight programs applied to the same travel-time data-
set and 1D velocity structure against the ground-truth locations. For this aftershock
sequence, our results reveal the superior accuracy and precision of differential time-
based location methods compared to single-event location methods. The results vali-
date the significance of compensating for deviations from assumed 1D velocity struc-
ture either by path or site correction modeling or by cancellation of unmodeled
structure using differential arrival times. We also evaluate the uncertainty quantifica-
tion of each program and find that most of the programs underestimate the errors.

Introduction
Accurate earthquake locations, normally provided in the for-
mat of earthquake catalogs are essential for most seismological
applications such as characterizing seismic hazards (Park et al.,
2020; Tan et al., 2021), exploring failure processes (Ross et al.,
2019), and illuminating subsurface structures (Wilding et al.,
2023). The earthquake location problem uses observed arrival
times of direct P and S phases to estimate the hypocentral
parameters of earthquake location and origin time. The rela-
tionship between arrival times and hypocentral parameters is
nonlinear (Thurber, 1985), and is usually solved iteratively as a
linearized problem. Earthquake location results can be strongly
influenced by the complexities of solving an inverse problem
together with limited knowledge and simplified representation
of Earth's structure (Billings et al., 1994). Despite continuous
improvements, our understanding of the Earth’s 3D seismic
velocity structure is often low resolution at large spatial scales
and incomplete or absent at small spatial scales, especially in
geologically complex regions, such as near active faults where

earthquakes occur (Thurber et al., 1997). Faults commonly
juxtapose dissimilar lithologies creating complicated 3D veloc-
ity structures that can result in large location errors (Wesson,
1971). Moreover, the varying elevations of seismic stations can
introduce errors related to the underlying geology (Wesson
et al., 1973). Even though several location programs accept
3D velocity models (e.g., GrowClust3D, Trugman et al.,
2022), empirical 1D velocity profiles are most commonly used
in earthquake location workflows. In operational seismic mon-
itoring, sparse station distributions and suboptimal network
geometry can lead to instability in the inverse problem
(Gomberg et al., 1990; Kraft et al., 2013). In addition, errors
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in waveform processing compromise the reliability of arrival-
time measurements (Schaff et al., 2004).

Numerous earthquake location algorithms have been devel-
oped to meet the challenges of accurate hypocenter estimation.
Most of these methods focus on novel approaches to solving
the nonlinear inverse problem and strategies to suppress the
effect of unmodeled velocity structure. The original linearized
location algorithm (Geiger, 1910) was developed over a century
ago. An important subsequent development was the develop-
ment of joint hypocentral location algorithms in which multi-
ple earthquakes were located simultaneously (Douglas, 1967).
That enabled the subsequent development of simultaneous
estimation of hypocentral parameters and seismic velocity
structure (Kissling et al., 1994). Improvements in algorithms
and computation eventually allowed the development of non-
linear approaches (Tarantola and Valette, 1981).

More recent advances tend to highlight computational
capability. Grid search and stochastic direct search have gained
popularity as alternatives to linearization, such as, HypoSVI
(Smith et al., 2022), NonLinLoc (Lomax et al., 2000, 2009),
and NonLinLoc_SSST (Lomax and Savvaidis, 2022). Differential
time-based location programs are designed to suppress path
effects by pairing nearby events rather than treating them indi-
vidually (Jordan and Sverdrup, 1981; Got et al., 1994;
Waldhauser and Ellsworth, 2000; Lin and Shearer, 2006) (e.g.,
GrowClust, Trugman and Shearer, 2017; HypoDD,Waldhauser,
2001; and XCORLOC, Lin, 2018). Additional strategies, such as
adaptive weighting, static station terms, and source-specific sta-
tion terms (SSST) have been introduced to accommodate sys-
tematic unmodeled geological structure, either along the path or
at the station, and potential instrumental errors (Frohlich, 1979;
Richards-Dinger and Shearer, 2000; Lin, 2018). Although these
programs have been used to locate earthquakes to great effect,
there are differences in their outputs that motivate a comprehen-
sive evaluation of how best to use them, how accurate their
hypocentral estimates are, and how well they characterize error.

To address this need, we developed a realistic benchmark
dataset with known event locations that can be used to assess
the performance of different algorithms for estimating location
and quantifying uncertainty. Some work has been done in this
area already. Lin and Shearer (2005) compare three relative
earthquake location techniques on a simple synthetic experi-
ment, and Wuestefeld et al. (2018) test different objective func-
tions for earthquake location in a simplified downhole
acquisition scenario. Pyle et al. (2023) evaluate accuracy and
precision for locating nine shallow earthquakes in the Rock
Valley fault zone, southern Nevada. To understand perfor-
mance of location programs more generally, however, requires
a test that replicates real-world seismic monitoring of an earth-
quake dataset with a substantial number of events over a
spatially extended region. Given the prohibitive costs and incon-
venience of conducting controlled explosion experiments, which
are rarely conducted at sufficient depth near-fault zones and do

not fully replicate earthquake processes (Thurber et al., 1997,
2004), we take the approach of a computational experiment.
This study assesses the effectiveness of eight widely used
earthquake location programs (GrowClust, HypoDD,
HYPOINVERSE, HypoSVI, NonLinLoc, NonLinLoc_SSST,
VELEST, and XCORLOC) for accurate hypocenter estimation
and reliable uncertainty quantification using a realistic con-
trolled synthetic experiment based on the setting of the 2019
Ridgecrest earthquake sequence.

We construct a realistic 3D velocity model that incorporates
the complex effects of elevation variations observed in the
Ridgecrest region, where elevated granitic mountains have
higher seismic velocities and sedimentary basins have lower seis-
mic velocities (Fig. 1). This model is used to generate a travel-
time dataset using an eikonal-function-based fast marching
method travel-time calculator (White et al., 2020). We also
introduce realistic variations in phase availability, picking errors,
and arrival-time outliers in the dataset. As described in below
(Fig. 2), we first set up the forward problem to construct the
travel-time dataset. We then run eight earthquake location pro-
grams on the same dataset with the same 1D velocity profile.
The outputs are compared with the ground-truth (GT) locations
to analyze their performance in terms of accuracy and precision.

The accuracy error quantifies the discrepancy between each
event location in the program’s output and the GT location.
Precision error, on the other hand, measures the average differ-
ence in distances between event pairs formed by each hypocen-
ter and its neighboring events within 2 km distance. The
precision error assesses the preservation of relative structures
such as fault-plane geometry. We use the Chamfer distance, a
standard metric for evaluating shape dissimilarity between two
point clouds, to assess each program’s ability to recover struc-
tures. The Chamfer distance (d�S1,S2�) is defined as

d�S1,S2� �
X

x∈S1

min
y∈S2

∥x − y∥22 �
X

y∈S2

min
x∈S1

∥x − y∥22, �1�

in which S1, S2 are two point clouds, and here refers to the
hypocenter from GT dataset and each program’s output.

Our results demonstrate that differential time-based earth-
quake location programs achieve higher accuracy and precision
than single-event location programs. Single-event location pro-
grams with various forms of station corrections implemented,
and differential time-based programs, excel in hypocenter deter-
mination. This validates the importance of compensating for 1D
velocity structure approximations through either direct model-
ing of path or site contributions or by suppressing it through
pairwise cancellation of these effects.

We compare the uncertainty quantification for each pro-
gram with GT using the 95% confidence ellipse. The results
suggest a need to revisit location error estimates as most of the
programs underestimate the errors. In the Discussion, we
argue that a 1D velocity profile approximation will introduce
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a bias that fundamentally limits the accuracy of depth deter-
minations. We also note that our computational synthetic test
experiment can be easily extended to other regions or scenarios
at local-to-regional distance scales.

Overview of Eight Earthquake Location
Programs
In this section, we review algorithms used to estimate hypocen-
tral locations and uncertainty, implemented in both single-event
location programs (Hypoinverse, HypoSVI, NonLinLoc,
NonLinLoc_SSST, and VELEST) and differential time-based
location programs (GrowClust, HypoDD, and XCORLOC).
Although some single-event location programs utilize informa-
tion across multiple events to model station corrections or per-
form simultaneous inversion, for clarity and convenience, we
categorize these eight programs into these two groups.

Single-event location programs
Similar to earlier linearized earthquake location products built
by U.S. Geological Survey (HYPOLAYR, Eaton, 1970; HYPO71,

Figure 1. (a) Distribution of seismic stations and seismicity in the
QTM catalog from the Southern California Earthquake Data
Center (SCEDC) during the 2019 Ridgecrest earthquake sequence
(Ross et al., 2019; Hauksson et al., 2020). (b) Seismic velocity map
of the modeled area, with shaded elevation data. Both velocity
and elevation data are extracted from the Statewide California
Earthquake Center (SCEC) Community Velocity Model (CVM)
(Small et al., 2017). The correlation between low seismic P-wave
velocity and low elevation in the sedimentary basin is highlighted.
(c) Seismic velocity and elevation along the A–A′ profile, with black
dots indicating seismicity from the SCEDC QTM catalog. The color
version of this figure is available only in the electronic edition.
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Lee and Lahr, 1972; and HYPOELLIPSE, Lahr, 1979),
HYPOINVERSE-2000 iteratively solves a set of linearized equa-
tions to minimize the root mean square (rms) travel-time
residual, utilizing adaptive damping and cutoff criteria. Because
of its simplicity and long-standing use, HYPOINVERSE plays a
key role in seismic network monitoring (e.g., Southern
California Earthquake Data Center [SCEDC], Hutton et al.,
2006). VELEST (version 3.2, Kissling et al., 1994) simultane-
ously determines hypocenters, 1D velocity structure, and station
terms by incorporating linearized updates to all unknowns into
the Geiger equations. Rather than linearize the nonlinear prob-
lem, NonLinLoc uses a probabilistic, global-search method to
estimate the locations. The algorithm’s efficiency is enhanced
by the equal-differential time (EDT) likelihood function and
the directed OctTree sampling method (Lomax et al., 2000).
It is adopted in some regional seismic network operations
(e.g., TexNet, Savvaidis et al., 2019). By incorporating the cor-
rections from the SSST method, which smoothly vary through-
out the space to provide source-position-dependent corrections
for each station, NLL_SSST, and NLL_SSST_Coherence, which
further uses the coherence measurements from the event pairs
provide better location estimates (Lomax and Savvaidis, 2022).
We include both NonLinLoc and NonLinLoc_SSST in this
study. Following a Bayesian inference approach for the multi-
modal posterior distributions in hypocentral inverse problems,
HypoSVI implements Stein variational inference (Smith et al.,
2022). To accelerate the extensive travel-time computation,
HypoSVI uses EikoNet, an efficient machine learning-based
travel-time calculator (Smith et al., 2021).

For error estimation,
HYPOINVERSE and VELEST
calculate error ellipses based on
the covariance matrix from
reading error-weighted travel-
time residuals. Single-event
mode with no iteration per-
formed can be used to assess
error statistics in VELEST
(Kissling, 1995). NonLinLoc and
its extended programs obtain
the covariance matrix from
normalized samples, extracting
uncertainty estimates based on
the distribution of sampled loca-
tions using a Gaussian estima-
tor. HypoSVI obtains
uncertainty estimates by analyz-
ing the 95th percentile of
sampled locations along each
dimension (Smith et al., 2022).
We note that covariance esti-
mates for nonlinear problems
are only valid in a linear
approximation.

Differential time-based location programs
The other three location methods we assess in this study lev-
erage differential travel times between nearby event pairs to
reduce path effects, thereby achieving high precision (Jordan
and Sverdrup, 1981; Got et al., 1994; Waldhauser and
Ellsworth, 2000). HypoDD minimizes the L2 norm of differ-
ential travel-time misfits using either SVD or least-squares
(LSQR) algorithms. It groups events based on interevent dis-
tances and the number of observations (Waldhauser, 2001).
GrowClust was developed to overcome the instability and
computational limits posed by ill-conditioned matrices from
large datasets. It features the minimization of the L1 norm
and the use of travel-time table searches. GrowClust clusters
events based on a linkage selection criterion, such as waveform
similarity (Trugman and Shearer, 2017). Recent updates to
GrowClust include accepting 3D velocity models and imple-
menting parallel computing to further enhance its capabilities
(Trugman et al., 2022). Likewise, XCORLOCminimizes hybrid
misfits (a combination of L1 and L2 norms) through travel-
time table searches. In addition, the package includes the inver-
sion for static station corrections and SSST; however, it
requires additional information on the mean epicentral distan-
ces to model the SSST (Lin, 2018).

HypoDD estimates error through the covariance matrix,
with the SVD mode recommended to avoid underestimation
due to the damping effects inherent in LSQR mode
(Waldhauser, 2001). Given computational limitations, this is

Figure 2. Workflow for evaluating eight earthquake location programs. The process begins by using
PyKonal (White et al., 2020) to calculate travel times on a realistic 3D velocity model (Fig. 3) for
randomly sampled event locations. After introducing phase-picking errors and outliers, the dataset,
along with the 1D velocity model for the 2019 Ridgecrest earthquake sequence (Shelly, 2020) is
input into VELEST (station terms disabled), serving as a phase association step, to estimate the
starting locations and to determine a suitable 1D velocity structure to be used for all eight pro-
grams.
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typically done by running small datasets in SVD mode. Both
GrowClust and XCORLOC use bootstrapping to quantify
uncertainty.

Evaluating the Programs
In this section, we outline the workflow designed to assess the
performance of each earthquake location program. As depicted
in Figure 2, the workflow consists of three parts: (1) constructing
the synthetic travel-time dataset, (2) running eight location pro-
grams, and (3) comparing the output with GT. We begin this
section with a detailed description of the synthetic dataset setup,
followed by an overview of each program’s configuration.
Although the parameters vary across programs, we attempt
to adhere to the recommendations in their respective manuals

and report any adjustments we
make. The running scripts were
also shared with the program
authors for their review.
Finally, we present the methods
used to assess the performance
of earthquake location pro-
grams by measuring accuracy,
precision, and uncertainty
against GT. We introduce met-
rics for evaluating the accuracy,
precision, and reliability of
uncertainty estimates, provid-
ing a comprehensive compari-
son of each program’s output.

Forward problem setup
To simulate a realistic seismic
monitoring scenario, we con-
sider stations at the same loca-
tion as the available stations
covering the Ridgecrest region
from those listed at the
SCEDC (Hauksson et al., 2020)
(Fig. 1). Our GT hypocenter
dataset consists of 1000 events
randomly sampled from the
2019 Ridgecrest Earthquake
QTM catalog (Ross et al.,
2019). We first select clusters
containing more than 400
events in the QTM catalog,
and then sample from these
well-populated clusters.
Because we do not calculate
the waveforms, this filtering
process is required for applying
those methods that use addi-
tional information, such as

waveform similarity, to form clusters. Leveraging the informa-
tion inherited from the QTM catalog, which is constructed using
GrowClust, the valid waveform similarities (cross-correlation
values) are retained and used for those differential time-based
location programs. We note that using the waveform similarities
based on the real data in this synthetic experiment has the
potential to introduce some unknown bias into the results.

To construct a geologically accurate 3D velocity model,
we first obtain a base model from the Southern California
Earthquake Center (SCEC) Community Velocity Model
(CVMS5) (Lee et al., 2014; Small et al., 2017), spanning 70 km
in easting, 100 km in northing, and 20 km in depth, with a grid
resolution of 100 m in the east and north directions, and 50 m
vertically (Fig. 3). The model contains only large-scale variations

Figure 3. (a) The A–A′ profile of the 3D P-wave velocity model used in this study, corresponding to
the profile shown in Figure 1. (b) The 3D P-wave seismic velocity model used in this study, with a
von Karman perturbation superimposed on the SCEC CVMS5 to represent realistic small-scale
heterogeneity. The model grid dimensions are 70 km × 100 km horizontally and 20 km in depth,
plus realistic elevation variations (up to 2 km). The grid resolution is 100m × 100m horizontally and
50 m vertically. The color version of this figure is available only in the electronic edition.
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due to the smoothing effect in the full waveform inversion used
to develop the base model, so we introduce realistic small-scale
heterogeneity into the model using the von Karman perturbation
model. The von Karman correlation function is as follows:

PvK�kx,ky ,kz� �
2dπd=2ε2axayazΓ�κ� d=2�

Γ�jκj��1� a2xk2x � a2yk2y � a2zk2z�κ�d=2 , �2�

in which d is the Euclidean dimension (d = 3); Γ is the Gamma
function; κ is the Hurst exponent (κ � 0:04); a is the correlation
length for each direction (ax � ay � 100 m, az � 50 m); and ε

is the fractional magnitude of the fluctuation (ε � 0:05) (Nakata
and Beroza, 2015).

To represent elevation effects (Fig. 1), we classify each grid
as either granitic (VP > 4 km=s) or sedimentary rock
(VP ≤ 4 km=s) based on the seismic P-wave velocity at the sea
level datum. The seismic velocity is then adjusted to decrease
with elevation, following different slopes determined by rock
type in Brocher (2008). The elevation data are obtained from
the SCEC CVM.

We use the PyKonal package (White et al., 2020) to com-
pute the travel-time dataset. For each station, we set the prob-
ability of recording P phases at 67% and for S phases at 50%.
This results in an average of 18 P phases and 14 S phases per
event across 27 stations. We add reading errors using a
Laplacian distribution with a location parameter of 0 ms and
scale parameters of 20 ms for P phases and 40 ms for S phases.
In addition, we include 1% P and 4% S phase outliers, both
positive and negative, with deviations uniformly distributed
between 0.4 and 1.0 s for P and between 0.4 and 1.4 s for
S. We round off the dataset to a precision of 10 ms to represent
a 100 Hz sampling rate. The travel-time dataset and the empir-
ical 1D velocity profile in the Ridgecrest region (Shelly, 2020)
are input to VELEST (station term disabled), which serves as a
phase association tool to prepare the starting locations from
travel times and to determine a revised 1D velocity profile that
better fits our 3D velocity model.

To accommodate the other programs (GrowClust,
HypoDD, and XCORLOC), we need a differential travel-time
dataset. We use the ph2dt function in HypoDD to pair the
neighboring events, allowing for a maximum of 65 neighbors
within 15 km for each event. For the value of differential times,
smaller phase errors in Laplacian distribution (location param-
eter: 0 ms, scale parameter: 11 ms for both phases), along with
fewer outliers (0.5% for P phases and 2% for S phases) are
added to the results from PyKonal calculation, as Schaff and
Waldhauser (2005) show that the differential times are more
accurate. We fit the Laplacian distribution to rms residuals of P
and S phases from the QTM catalog, yielding location param-
eters of 0 ms and scale parameters of 22 and 20 ms, respec-
tively. Based on other potential misfit sources, we adopted a
scale parameter of 11 ms for both phases. In addition, they
are rounded to 1 ms precision because the differential time

is able to achieve subsample precision from spectral coherence
weighted cross-correlation measurements (Poupinet et al.,
1984). Exploiting the information inherited from the QTM
catalog, the value of waveform similarity is assigned to 1.0
if two events are in the same cluster, 0.3 otherwise. Finally,
we calculate the distances between event-pair midpoints and
stations to fulfill the mean epicentral distance requirements
of XCORLOC.

Running the location programs
For single-event location programs, we use the same travel-
time dataset and revised 1D velocity model as inputs. For
the differential time-based location programs, we use the dif-
ferential time dataset only, and the same revised 1D velocity
model as inputs. Although HypoDD and XCORLOC can
use both absolute and differential travel time as input, we only
consider the differential times. We set station elevations to zero
for a fair comparison as some of the programs treat all stations
at zero elevation, the results of using real station elevations are
shown in Table A1.

Starting with a trial depth of 8 km, HYPOINVERSE con-
verges to a final solution employing default updating rms
and distance weighting strategies per iteration, with an
assumed reading and timing error of 0.04 s. VELEST runs
in the simultaneous mode to estimate the location with station
terms enabled. After 30 iterations, we execute VELEST in sin-
gle-event mode only to compute uncertainty statistics with
locations from the simultaneous mode fixed and no inversion
iteration performed. After building a travel-time grid of the
study area with a grid size of 0.1 km using azimuthal equidis-
tant projection, NonLinLoc calculates final solutions by
OctTree sampling to maximize the equal differential time like-
lihood function weighted by the variance of origin-time esti-
mates over all pairs of readings (EDT_OT_WT). After four
iterations of generating the SSST correction grid, NonLinLoc_
SSST performs location in a similar configuration with
NonLinLoc but exploits the SSST corrections. When running
HypoSVI, we first train EikoNet on the velocity profile using a
batch size of 64, with 1,000,000 training and 100,000 testing
data for 100 epochs at a learning rate of 1 × 10−3. For HypoSVI,
we retain the recommended parameters in the example files
and allow one iteration of static station terms and 10 iterations
of SSST.

For HypoDD we cluster all events into a single cluster,
requiring a minimum of eight observations per pair. After
three sets of damped LSQR iterations, the relocated output
of hypoDD is divided into small sets for input into SVD mode
for error calculation because error estimation in LSQR mode is
restricted to the diagonal variances and is dominated by the
damping factor (Waldhauser, 2001). We use the “trace” mode
in GrowClust to calculate the travel-time table with a 0.5 km
horizontal and 0.2 km depth resolution, utilizing a 1D velocity
profile. By setting the minimal coefficient of event-pair
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similarity to 0.75, GrowClust keeps events in the same cluster
as the QTM catalog from which we derived GT locations. The
program conducts 100 bootstrapping iterations for uncertainty
analysis. Employing the same grid dimension of the travel-time
table, XCORLOC executes 10 iterations of SSST, 5 iterations of
waveform cross-correlation location, as well as 100 bootstrap-
ping iterations.

Postprocessing and metrics
After measuring the horizontal and vertical distances between
each program’s output and the GT dataset, we compute the
average distances to determine the horizontal and vertical
mean accuracy errors. We then calculate the interevent dis-
tance misfits, defined as the distances between each event
and its neighboring event, between the output and the GT.
We average these misfits to obtain the mean precision errors
in both the horizontal and vertical directions. We evaluate the
Chamfer distance to quantify the dissimilarity between pre-
dicted and GT locations comprehensively in the form of point
clouds.

Beyond assessing the accuracy and precision of the pro-
grams, we also evaluate the uncertainty output. The uncer-
tainty outputs vary in form in the different algorithms, so
we first convert them to 95% confidence intervals. Although
the earthquake location problem is 4D (i.e., solving for four
unknowns of origin time and three spatial coordinates), some
programs exclude origin time from the error analysis.
Therefore, our focus is on error output in spatial coordinates.
For programs that analyze errors based on the covariance
matrix, we convert the output by multiplying by a factor
derived from the assumption of a chi-square distribution
with three degrees of freedom. We note that in VELEST,
the default output error is the unit covariance matrix, so
we first multiply it by the data variance. For bootstrapping-
based programs, we assume the bootstrapping results follow
a Gaussian distribution, convert the median error to the
mean, and then apply a similar factor based on the chi-square
distribution. For NonLinLoc and NonLinLoc_SST, the error
distribution is assumed to follow the Δχ2 distribution with
three degrees of freedom, as described in the program’s
manual. To evaluate the effectiveness of the calculated 95%
confidence interval in characterizing the uncertainty, we define
two metrics: the inclusion rate of hypocenters and the inclu-
sion rate of event pairs. The inclusion rate of hypocenters
represents the percentage of outputs where the true location
falls within the estimated location plus the 95% confidence
ellipse. It provides a measure of the accuracy of the location
uncertainty estimates. The inclusion rate of event pairs assesses
the relative precision of event pair locations. For each event,
we identify neighboring events within a 2 km radius. We then
count the ratio of pairs where the true interevent distance
is within the estimated distance plus the combined error
interval.

Results
Figure 4 compares the results of single-event location programs
with the GT. In map view, all programs capture the overall trend
of the orthogonal fault system; however, differences in resolving
the fine details of fault structures are apparent, particularly the
linear alignments at the southeastern end of the main fault.
Although these trends are visible in the GT locations, the results
from both Hypoinverse and NonLinLoc appear more diffuse. In
contrast, NonLinLoc_SSST, HypoSVI, and Velest produce
results that are more concentrated around these features. In a
similar manner, the southwestern orthogonal branch is better
resolved by NonLinLoc_SSST. This comparison indicates that
while NonLinLoc and HYPOINVERSE can recover the basic
epicentral distribution, further refinement is possible for detailed
seismicity studies. This is supported by the error histograms.
NonLinLoc_SSST exhibits significantly lower errors. The
locations from VELEST show improved resolution of GT com-
pared to NonLinLoc and HYPOINVERSE, which have similar
horizontal errors of less than 3–4 km. Interestingly, despite
HypoSVI’s effectiveness in resolving seismic structures, as evi-
denced by the large number of events with errors less than 1 km,
there is still a small number of events with larger errors. In the
depth profile (Fig. 5), distinctions are more pronounced. None
of the programs successfully recovered the outlier event located
around 8 km distance and 10 km depth. Most programs struggle
to constrain the distribution of GT seismicity around 8 km dis-
tance and 4 km depth, with HypoSVI and HYPOINVERSE pro-
ducing particularly diffuse results. The histograms demonstrate
that VELEST and NonLinLoc_SSST have the most consistent
performance in depth accuracy. Although HypoSVI shows min-
imal errors for the majority of events, it produces some outliers.
Even though the programs use the same dataset, the strategies
employed by NonLinLoc_SSST, HypoSVI, and VELEST, such as
averaging station terms across all events, gain more information
from the travel time to recover better hypocenter locations.

Figure 6 compares the results of differential time-based
location programs with GT. The structures manifest strong
coherence with the true locations, which aligns with the empir-
ical findings that additional relocation using waveform cross-
correlation can better delineate seismicity and highlight geo-
logical structures. The results from the three programs closely
match the GT, with histograms indicating horizontal errors of
less than 1 km; however, a few events from GrowClust exhibit
larger errors, which is particularly evident in the depth profile.
HypoDD and XCORLOC successfully recover the outlier event
at ∼8 km distance and 10 km depth, while GrowClust fails to
do so. In addition, GrowClust tends to locate some events
slightly deeper, as reflected in the error histograms. This issue
is likely due to the small number of events in the clusters these
events and the outliers belong to that lack sufficient constraints
to recover locations. HypoDD and XCORLOC handle all
events within a single cluster. Because of the design of this
experiment, GrowClust inherits the cluster information from
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the QTM catalog, so there are some clusters with few events.
Our results suggest that ensuring a sufficient number of events
per cluster is important for GrowClust’s performance. Overall,
histograms of accuracy and precision errors indicate that rel-
ative structure exhibits lower error than absolute location and
horizontal errors are less than depth errors. The accurate and
precise results from differential time-based location programs
suggest that by suppressing path effects, the biases from the 1D
velocity structure are successfully corrected.

Table 1 summarizes the performance of eight programs
based on the metrics introduced earlier. The table reports mean
accuracy and precision errors for both horizontal and depth
directions. Results considering correct elevation are presented

in Table A1. Generally, the location errors are on the order
of hundreds of meters, with depth errors larger than horizontal
errors. HypoDD achieves the highest accuracy in the horizontal

Figure 4. (a–f) Map view of the epicentral locations of ground truth
(GT) and the outputs of each single-event location programThe
inset map in (a) shows the focused region and the B–B′ profile
used for the depth analysis. (g–k) Histograms of horizontal error
distributions for each program. In each histogram, the x-axis
represents error magnitude in kilometers, and the y-axis shows the
number of events on a logarithmic scale. Red bars indicate
accuracy errors, while blue bars represent precision errors. The
color version of this figure is available only in the electronic edition.

Volume 96 • Number 3 • May 2025 • www.srl-online.org Seismological Research Letters 1867

Downloaded from http://pubs.geoscienceworld.org/ssa/srl/article-pdf/96/3/1860/7068578/srl-2024354.1.pdf
by University of Southern California user
on 27 June 2025



direction, whereas HypoDD, VELEST, NonLinLoc_SSST, and
HypoSVI perform similarly in-depth estimation. As expected,
programs using differential time data with additional informa-
tion embedded, HypoDD, GrowClust, and XCORLOC demon-
strate superior mean precision. The large Chamfer distance
observed in GrowClust is likely due to the presence of larger
errors for events that fall within small clusters.

Table 2 summarizes the performance of eight programs in
uncertainty quantification. Inclusion rates of hypocenters,
which measure the fraction of events that the true location falls
within the estimated location plus the 95% confidence ellipse
are not reported for differential time-based programs, as those
programs are primarily designed to estimate interevent dis-
tance uncertainty. This difference is evident in the scale of their
uncertainty outputs: differential time-based programs yield
uncertainties on the order of hundreds of meters, whereas sin-
gle-event programs yield uncertainties on the order of kilo-
meters. Among the programs, NonLinLoc, NonLinLoc_
SSST, and VELEST exhibit robust error estimation capabilities
for hypocenters. In contrast, HYPOINVERSE shows lower
performance, highlighting the inherent complexity and chal-
lenges of error analysis in earthquake locations. Despite con-
sidering the 95% confidence interval, all programs report an
inclusion rate of hypocenters significantly below 95%, indicat-
ing that these algorithms tend to underestimate location uncer-
tainties. This should motivate improvements in uncertainty

analysis. For event pairs, the high inclusion rates of single-
event programs are due to their generally larger uncertainty
outputs. The comparison between event pairs and hypocenters
also suggests the effect of regional systematic shift increasing
location uncertainty while interevent error is less affected.
HypoDD’s covariance matrix-based uncertainty functionality
proves effective, whereas the bootstrapping-based approaches
of GrowClust and XCORLOC show limitations in error
quantification.

Discussion
Systematic shifts in hypocentral locations have been widely
documented from regional to teleseismic monitoring scales
(Engdahl et al., 1998; Syracuse and Abers, 2009). These shifts
can stem from factors such as station geometry, the presence of
high-velocity layers, or the simplification inherent in assuming
a 1D velocity structure. In our analysis, we observed such
inconsistent systematic depth shifts across the study region
in the results (Fig. 7a). The controlled synthetic experiment

Figure 5. (a–f) Depth profiles along the B–B′ line for the GT and
each single-event location program’s output. (g–k) Histograms of
depth error distributions with red bars for accuracy errors and
blue bar for precision errors. The x-axis represents error magni-
tude, and the y-axis indicates event occurrence. The color version
of this figure is available only in the electronic edition.
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framework allows us to investigate directly the relationship
between the 3D velocity model and the 1D velocity profile used
by the location programs. By comparing the 1D velocity profile
with randomly sampled velocity cross-sections from the 3D
model, we observed that velocity cross sections from areas
of accurate locations align more closely with the 1D velocity
profile (Fig. 7b,c). This unsurprising result highlights the lim-
ited capability of 1D velocity profiles to recover precise earth-
quake hypocenters. To enhance seismic monitoring accuracy,
the biases introduced by neglecting 3D velocity variations must
be reduced. The advances in computational capabilities have

Figure 6. (a) Map view of the epicentral locations of GT and the
output of each differential time-based location program, with
histograms detailing the distribution of errors. In the histograms,
the x-axis represents error magnitude in kilometers, and the y-
axis shows the number of events on a logarithmic scale. The red
bars indicate accuracy errors, and the blue bars represent pre-
cision errors. (b) Depth profiles along the B–B′ line for the GT and
each program’s output. The accompanying histograms follow the
same format, with the x-axis showing error magnitude and the y-
axis indicating event occurrence, with red for accuracy and blue
for precision. The x-axis range in these histograms is smaller than
in Figures 4 and 5. The color version of this figure is available only
in the electronic edition.
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enabled the integration of 3D velocity structures into location
algorithms offering a promising approach to reduce location
error. Trugman et al. (2022) demonstrated that using a 3D
velocity model can resolve seismicity patterns that remain
obscured in a 1D model.

To understand the relative contributions of different error
sources, we compare the residuals returned by the location
programs with assigned picking errors and 1D approximation
deviations. The median residual from HYPOINVERSE’s out-
put is 130 ms, reflecting the combined effects of multiple
potential factors. In our synthetic tests, the assigned picking
errors follow a Laplacian distribution (location parameter =
0 ms, scale parameter = 20 ms) for P arrivals. For a source
located at the center in our model and 8 km depth, calculating
travel times at zero elevation using the 1D velocity model yields
a median error of 79 ms compared to the 3D model. This
analysis reveals that the simplified velocity model contributes
significantly more to the total location misfits than the assigned

picking errors. The large observed residuals (130 ms) suggest
additional complexity in the location problem that introduces
more uncertainties other than these two factors.

Standard network operations typically use single-event
location methods, relying on automated or manual measure-
ments; however, outliers in phase arrival times due to path
effects or low signal-to-noise ratios can affect the accuracy
and precision of the results (Rowe et al., 2002). Our results
suggest that single-event location programs may fail to correct
outlier events, and that differential time-based location pro-
grams hold promise for recovering them. In doing so, it is
essential to have an appropriate cluster size to ensure the reli-
ability of location results in differential time-based location
programs. Although differential time measurements are often
associated with cross-correlation calculations, they can be
effectively derived from arrival-time data that are routinely
available for all seismic events. This broader applicability has
been demonstrated through the successful implementation of
differential location catalogs in near-real-time monitoring,
particularly with the double-difference real-time (DDRT) cata-
log system operated by the Northern California Seismic
Network. The DDRT system dynamically locates new events
relative to previously determined locations in the catalog by
utilizing both arrival-time differences and cross-correlation
measurements (Waldhauser, 2009). The system’s successful
deployment in various monitoring contexts, from regional net-
works to submarine volcano monitoring (Waldhauser et al.,
2020) illustrates that differential location methods can be effec-
tively integrated into routine network operations. Beyond dif-
ferential methods, our work also demonstrates how single-
event location procedures in network monitoring can be
enhanced through the integration of station corrections. By
inputting station corrections derived from VELEST into
HYPOINVERSE, the results show promising improvements
in location accuracy: the mean horizontal error decreased from

TABLE 1
Summary of Performance Metrics for Eight Earthquake Location Programs Using Zero Station Elevation

Mean Accuracy
Error (km)

Median Accuracy
Error (km) Chamfer

Mean Precision
Error (km)

Program Horizontal Depth Horizontal Depth Distance Horizontal Depth

HYPOINVERSE 0.824 1.118 0.768 1.034 1.617 0.571 0.684

VELEST 0.694 0.560 0.576 0.380 1.172 0.379 0.663

NonLinLoc 0.953 0.969 0.788 1.075 1.626 0.581 0.694

NonLinLoc_SSST 0.542 0.583 0.533 0.475 1.219 0.163 0.298

HypoSVI 0.498 0.580 0.390 0.332 1.092 0.316 0.452

HypoDD 0.315 0.571 0.356 0.526 0.974 0.080 0.141

XCORLOC 0.746 0.818 0.756 0.808 1.507 0.101 0.256

GrowClust 0.846 1.069 0.848 1.097 1.694 0.148 0.310

TABLE 2
Inclusion Rates of Hypocenters and Event Pairs for
Each Earthquake Location Program

Program Hypocenters Event Pairs

HYPOINVERSE 13.1% 85.7%

VELEST 80.3% 97.0%

NonLinLoc 85.0% 99.7%

NonLinLoc_SSST 82.3% 99.9%

HypoSVI 75.0% 98.2%

HypoDD n/a 99.5%

XCORLOC n/a 40.8%

GrowClust n/a 84.4%
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0.824 to 0.534 km, and the depth error reduced from 1.118 to
0.650 km. Incorporating advanced statistical optimization
methods to identify and mitigate outliers during the inversion
process could also improve results, for example, events are
deleted or downweighted during iterations if they lose connec-
tion to other events or exceed the maximum expected delay
time (Waldhauser, 2001).

Quantifying uncertainties in location results is challenging
due to a combination of measurement inaccuracy, computa-
tional complexity, and nonlinearity (Hardebeck and Husen,
2010). Our findings indicate that most programs tend to under-
estimate uncertainties, highlighting the need for improved
uncertainty analysis. Although uncertainties are often assessed
based on phase-picking quality and travel-time misfits, it is
essential to integrate epistemic factors such as velocity biases,
as well as station coverage and geometry into the analysis
(Garcia-Aristizabal et al., 2020). Practically, users should rely
on the output of the error from the programs when interpreting
results and use other aspects like azimuthal gap and the ratio of

hypocentral depth to station distance together for comprehen-
sive error analysis (Hardebeck and Husen, 2010). In addition,
probabilistic analyses, particularly incorporating prior knowl-
edge of seismic sources could provide valuable insight into
reducing location uncertainty (Lomax and Savvaidis, 2019).

Figure 7. (a) Depth profile comparing the results of HypoDD with
the GT. There is a minimal systematic shift in the denoted
accurate area, whereas the misfit area shows a significant
upward shift. (b) The plot of the 1D velocity structure used by the
program, including randomly selected velocity cross sections
from the 3D velocity model in the misfit area, along with the
mean of these cross sections. (c) The plot of the 1D velocity
structure used by the program, including randomly selected
velocity cross sections from the 3D velocity model in the accurate
area, along with the mean of these cross sections. The 1D velocity
profile fits the accurate area better, which leads to negligible
shifts. The discrepancy of velocity in the misfit area leads to
systematic shifts. The color version of this figure is available only
in the electronic edition.
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Although we endeavored to develop a geologically plausible
model, our experiment does not fully capture the complexity of
Earth's structure. Several commonly observed geological fea-
tures that complicate seismic wave propagation will hinder
the determination of earthquake locations, including vertical
and horizontal velocity discontinuities, low-velocity layers,
and fault damage zones, all of which are omitted from our syn-
thetic test. Moreover, although our model introduces short and
long-wavelength heterogeneities from the von Karman and
CVMs, it may neglect intermediate wavelength heterogeneity.
Anisotropy, as well as nonstationary velocity structure hetero-
geneity, could both be included and might be more realistically
assessed through waveform modeling.

Conclusions
This study systematically evaluates the performance of eight
earthquake location programs in estimating hypocenters and
quantifying uncertainty. Through a realistic controlled synthetic
experiment based on the 2019 Ridgecrest earthquake sequence,
we show the superiority of differential time-based location
methods over single-event location methods in terms of accu-
racy and precision. Single-event programs, NonLinLoc_SSST,
VELEST, and HypoSVI, which account for station corrections
by exploiting the information across all events stand out. This
demonstrates the effectiveness of programs that account for the
influence of velocity heterogeneity, either by direct modeling or
through cancellation. Our analysis reveals the tendency for each
program to underestimate uncertainty, which motivates a re-
evaluation of earthquake location uncertainty characterization.
We also find systematic biases in-depth estimation when using a
locally unrepresentative 1D velocity profile.

By elucidating the performance of different earthquake loca-
tionmethodologies, we aim for this study to help guide research-
ers in the use of earthquake location programs, and to help
developers of those programs make improvements. Toward that
end, we provide usage instructions and test dataset for these
eight programs in Data and Resources, where we documented,
for example, our usage of HypoDD: we first include all events in
one cluster a run in LSQR mode, then separately run subsets in
SVD mode for uncertainty. Although our study focuses on a
selected set of programs, we acknowledge that there are other
earthquake location tools that we did not evaluate. We encour-
age others to use the provided test data to assess additional pro-
grams of their choice and contribute further to the advancement
of accuracy and precision of earthquake locations.

Although this work focuses on a well-monitored earthquake
sequence, diverse monitoring scenarios such as offshore events
and sparse network distributions further complicate the loca-
tion problems. The testing framework developed in this study
provides a systematic approach to evaluate location methods
across these challenging scenarios. We encourage future stud-
ies to apply this framework to quantitatively assess the perfor-
mance of different location algorithms under various

monitoring conditions. The synthetic testing framework estab-
lished in this study offers a platform to test other earthquake
location programs and builds a potential foundation for other
research efforts. Most obviously, it can be readily applied to
other regions and extended to broader scenarios, including
regional and teleseismic scales, offering a solid basis for
the exploration and refinement of earthquake location
techniques.

Data and Resources
All eight earthquake location programs came from published sources
listed in the references and can be accessed publicly at their host web-
sites. The Southern California Earthquake Center (SCEC) Community
velocity model (SVM) can be obtained at https://github.com/
SCECcode/ucvm, the QTM catalog and stations are hosted in the
Southern California Earthquake Data Center (SCEDC) at https://
scedc.caltech.edu. The codes and data used in this study are hosted at
https://github.com/YuYifan2000/comparison_hypoDD_GrowClust/.
All websites were last accessed in November 2024.
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Appendix
Appendix provides additional materials supporting this
study. Table A1 presents the additional results from running
location programs while incorporating the correct station
elevations.
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TABLE A1
Summary of Performance Metrics for Eight Earthquake Location Programs Under Correct Station Elevation

Mean Accuracy Error (km) Chamfer Mean Precision Error (km)

Method Horizontal Depth Distance Horizontal Depth

HYPOINVERSE 0.824 1.118 1.617 0.571 0.684

VELEST 0.696 0.559 1.170 0.380 0.656

NonLinLoc 0.953 0.969 1.626 0.580 0.694

NonLinLoc_SSST 0.440 0.538 1.071 0.158 0.307

HypoSVI 0.429 0.338 0.828 0.317 0.383

HypoDD 0.315 0.571 0.974 0.080 0.141

XCORLOC 0.746 0.818 1.507 0.101 0.256

GrowClust 0.846 1.066 1.701 0.148 0.304
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