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Abstract

We consider causal inference for observational studies with data spread over two files. One file
includes the treatment, outcome, and some covariates measured on a set of individuals, and the
other file includes additional causally-relevant covariates measured on a partially overlapping

set of individuals. By linking records in the two databases, the analyst can control for more
covariates, thereby reducing the risk of bias compared to using only one file alone. When

analysts do not have access to a unique identifier that enables perfect, error-free linkages, they
typically rely on probabilistic record linkage to construct a single linked data set, and estimate
causal effects using these linked data. This typical practice does not propagate uncertainty from
imperfect linkages to the causal inferences. Further, it does not take advantage of relationships
among the variables to improve the linkage quality. We address these shortcomings by fusing
regression-assisted, Bayesian probabilistic record linkage with causal inference. The Markov chain
Monte Carlo sampler generates multiple plausible linked data files as byproducts that analysts can
use for multiple imputation inferences. Here, we show results for two causal estimators based on
propensity score overlap weights. Using simulations and data from the Italy Survey on Household
Income and Wealth, we show that our approach can improve the accuracy of estimated treatment
effects.
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Introduction

In many settings, researchers may be able to enhance the validity of causal inferences

by using covariate information that is available across two databases. For example, in a
causal study of a health intervention, a researcher with access to study subjects’ health
records may seek to account for additional causally-relevant covariates by linking subjects

to their records in educational or financial databases. Similarly, in a causal study of a policy
intervention, a researcher may seek to link study subjects from some survey to their records
in administrative databases. These examples illustrate the scenario of interest in this article:
one file contains the outcome variable, the treatment status and some causally-relevant
covariates for a set of study subjects, and a different file contains additional causally-relevant
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covariates on some subset of the study subjects and other individuals. Analysts seek to link
the two databases to control for more causally-relevant covariates and thereby reduce the
risk of bias from unmeasured confounding, relative to using only one file alone.

When perfectly measured unique identifiers like social security numbers or patient IDs are
available in both files, it is reasonably straightforward to link individuals across the files.
Often, however, researchers do not have access to such direct identifiers. They may be
missing from one or both files, or they may not be available due to privacy restrictions. In
such situations, researchers have to link the files based on indirect identifiers, such as names,
birth dates and address information. To do so, many researchers turn to probabilistic record
linkage methods based on variants of the framework developed by Fellegi and Sunter [1].

Typically, researchers perform causal inference with linked files in a two-stage process.
They use probabilistic record linkage to construct a single file comprising linked records,
and then carry out causal inference on the linked file [e.g., 2]. This two-stage approach has
two main drawbacks. First, the record linkage step does not take advantage of relationships
among the variables in the two files. Several authors [e.g., 3, 4, 5, 6] have shown that
leveraging these relationships in fact can improve the quality of the linkages. Second,
estimation with a single linked file does not propagate uncertainty arising from imperfect
linkages to the causal inferences.

In this article, we address these shortcomings by proposing regression-assisted, Bayesian
probabilistic record linkage with causal inference, henceforth abbreviated as RegBRLC.

To fix ideas, let File B contain the outcome variable, treatment status and some causally-
relevant covariates on a set of individuals. Let File A contain an additional set of causally-
relevant covariates measured on a different set of individuals, some of whom are in File B
and some of whom are not. We specify models for (i) the conditional distribution of the
outcome variable given the treatment status and all covariates, which we refer to as the
outcome model, (ii) the conditional distribution of the treatment status given all covariates,
which we refer to as the propensity score model, and (iii) the conditional distribution of the
covariates in File B given the covariates in File A, which we refer to as the covariate model.
We couple these with a probabilistic model for the unknown linkage statuses, i.e., which
record pairs are links and which are not. We estimate the model using a Markov chain Monte
Carlo (MCMC) sampler, which results in many draws of plausibly linked data files. In each
plausibly linked dataset, we estimate the treatment effect using some causal estimator and
combine the results using multiple imputation [7]. For the sake of illustrating our modeling
approach, we estimate a weighted average treatment effect [WATE, 8] using the propensity
score overlap weights of [9]. Analysts could replace the overlap weights estimators with any
other causal estimator.

Our work contributes to existing methods for statistical inference with probabilistic record
linkage [e.g., 3,4, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18], though none of these works
consider causal inference as the analysis goal. A version of simultaneous causal inference
and record linkage is presented in [19]. They use point estimates of average causal effects
from propensity score stratification to determine the thresholds at which record pairs are
declared links in a Fellegi-Sunter [1] algorithm. They do not use relationships among the

J Stat Plan Inference. Author manuscript; available in PMC 2024 September 01.



1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Guha and Reiter

Page 3

variables to determine the record pairs to consider as possible links in the first place, nor do
they propagate uncertainty from imperfect linkages; our approach does both. A model for
Bayesian causal inference and record linkage was proposed by [20] for when the treatment
and all covariates reside in one file and the outcome in another. Because our data setting
differs—the causally-relevant covariates are spread over two files rather than all in one
file—we estimate a propensity score model and a covariate model simultaneously with

the outcome and linkage models. Additionally, [20] relies on a fully Bayesian approach

to causal inference, estimating an average treatment effect by imputing counterfactual
outcomes from the outcome model. Thus, both the causal inference and record linkage
quality are highly dependent on the quality of the fit of the outcome model. In contrast,

we do not impute counterfactual outcomes. Instead, we estimate causal effects based on
balancing scores like the overlap weights, which reduces sensitivity to the fit of the outcome
model. To our knowledge, embedding outcome, propensity score, and covariate models in
a Bayesian probabilistic record linkage model while enabling causal inference based on
balancing scores has not been implemented previously.

The remainder of this article is organized as follows. In Section 2, we review the

causal inference and probabilistic record linkage procedures that form the basis of our
methodology. In Section 3, we present an illustrative specification of the RegBRLC model.
We also describe a regression-adjusted causal estimator exploiting overlap weights. We
believe this estimator has not appeared previously in the literature, even for settings where
probabilistic record linkage is not needed, e.g., all the data are in one file. In Section 4,

we present results of simulation studies comparing the illustrative RegBRLC model to a
corresponding two-stage approach. Results from additional simulation studies are included
in the supplementary material. In Section 5, we illustrate the methodology using partially
simulated data based on an Italian household survey to assess the effect of debit card
possession on household spending. The sets of simulation results demonstrate the potential
of RegBRLC models to improve on the two-stage approach in terms of both record linkage
quality and causal inference accuracy. Finally, in Section 6, we conclude with a discussion.

2. Causal Inference and Record Linkage: An Overview

We first review a few key concepts and assumptions related to causal inference in Section
2.1. For ease of exposition, we review causal inference for data where record linkage is not
needed, i.e., all relevant outcomes, covariates, and treatments are in the same file. We then
review the Bayesian probabilistic record linkage model that we utilize in Section 2.2.

2.1. Causal Inference

For causal inference, we work in the potential outcomes framework [21]. Let z =1 and

z = 0 indicate assignment to the treatment and control conditions, respectively. Each unit
has an outcome under treatment, y(1), and an outcome under control, y(0). For any unit,
we observe only one of y(1) and y(0). The observed outcome for any unit can be written
as y = zy(1) + (1 — 2)y(0). In this article, we work with binary outcomes y(0), y(1) € {0, 1}.
Typical of causal studies, we assume the stable unit treatment value assumption [SUTVA,
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21] and strong ignorability [22]; that is, for some p x 1 vector of covariates x, we have
0<P(z=1]x)<1and (¥0),y(1) L z|x.

Many causal inference procedures utilize propensity scores, defined as e(x) = P(z =1 | x),
i.e., the probability of being assigned a treatment given x. As shown in [22], the treatment
assignment is independent of x given e(x) under SUTVA and strong ignorability. Propensity
scores are used in a variety of causal estimators, including matching, stratification, inverse
probability weighting, and overlap weighting, as we do here.

To compare outcomes under treatment and control, define the conditional average controlled
difference for a given x, 7(x) = E[y | z = 1,x] — E[y | z = 0, x]. Under strong ignorability,
E[y(z) | x] = E[y | x, z], so that z(x) becomes the average treatment effect conditional on x,
i.e., 7(x) = E[y(1) — y(0) | x]. To complete the definition of the causal estimand, one averages
7(x) over some distribution of x. The choice of distribution corresponds to the region of
covariate space for the target population of interest. For example, to estimate the effect of the
treatment on the treated, the relevant covariate distribution is for treated cases.

Let f(x) be the marginal density of x, defined with respect to a base measure 4A(x). For many
populations typically of interest in causal inference, the distribution of the covariates in the
target population can be represented as g(x) = f(x)#(x). For example, #(x) = e(x) when the
target population comprises the treated subjects, and 7(x) = 1 when the target population is
the entire study. Using this expression, causal estimands for different target populations can
be expressed as special cases of the WATE,

_ [70)1(x) f(x)A(dx)
[1(x) f(x)A(dx)
(1)

For any unit i in a study with » units, let w,, = #(x,)/e(x;), and let wy, = #(x))/(1 — e(x.)). A
consistent estimator of = for any target population is
E:’:[w]iziyi Z:L 1 Wo,'(l - zi)yi

7= -

X Wiz Yo we(l = z) .

()]

In our example of RegBRLC, we estimate 7 for the overlap population, described in [9] as
the target population with the most overlap in covariate values for the treatment and control
groups. Formally, the overlap population is implicitly defined by the overlap weights [9],
which set 7(x) = e(x)(1 — e(x)) for the covariate distribution defined by g(x). The resulting
estimator for the WATE for the overlap population, which we write as z,, is

L Zim(—e(x)zy Xl e(x)(1 - z)y,

0= —

Tlo(l-ex)z Xl jex)(1-z)

3
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The overlap weights have appealing features for causal inference. They are bounded, as

0 < e(x;) < 1, and thus 7, is not affected by extreme weights. Unlike truncating or setting
some weights to zero, the overlap weights are continuously defined and avoid arbitrary
choices of cutoffs. Under mild conditions, the overlap weights leading to 7, minimize the
asymptotic variance of the estimators of the form in (2) within the class of balancing weights

[91.
A closed form variance estimator of 7, is provided in [23]. Let
L i (I =e(x)zy; L e -z
ToN = o 00= "Gn :
2o (1 —e(x)z Yioe(x)(1 - z)
@
The variance estimator is given by (né)_zzi"= NG ;, where § = > e(x)(1 — e(x;))/n and

= z(y — 2o1)(1 — e(x)) = (1 = 2)(y, — To,0)e(x) — (z: — e(x))H' E~ L

(5)
H= 21 (23— To.1) + (1 = 2) (31 — Fo.0)]e(x)(1 — e(x,))x/n
(6)
E= .21 e(x)(1 — e(x)xx:/n.
@

2.2. Record Linkage

We develop methodology for bipartite record linkage scenarios [1, 24]. Under this setting,
each individual is recorded at most once within each file. Let File B comprise n;, records, for
which we measure the outcome, treatment status and p, causally-relevant covariates. Let File
A comprise n, > ng records, for which we measure a set of p, additional causally-relevant
covariates not in File B. Some of the same individuals are in File A and File B. Both files
include a set of imperfect linking variables that can be used to link records from File A and
File B. Finally, let p = p, + p,.

For any individual i, let x{* = (x{7, ..., x{},)" and x{” = (x{7, ..., x",)" be the values of the
covariates present in File A and File B, respectively; and, let y, be the outcome and z, be

the treatment status. We directly observe x for all records in File A, but not (x”, y, z).

Likewise, we directly observe (x.”, y, z,) for all records in File B, but not x*.

J Stat Plan Inference. Author manuscript; available in PMC 2024 September 01.
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Following [24], we introduce d = (d,, ..., d,,)’ for the records in File B to encode a particular
linkage of the two files. For any record j in File B, let d, = i if record i in File A and record j
in File B is a match, and d; = n, + j if record j in File B has no match in File A. We enforce
d; # d; for any j # j'.

Suppose we have F imperfect linking variables, also referred to as fields. For now, assume
that none of the covariates in x(4) or x(®) are used as linking variables. We discuss using

a set of variables as both covariates and linking variables in Section 5 and Section 6. For
each pair of records (i, j) in File AxFile B, we define a vector y;, = (y..5j» ..., vr.;;)’, Where y,.;
is the score reflecting the similarity in the field f for the record pair. Here, we use binary
comparisons, i.e., y,,; = 1 when records i and j have the same value of field f, and y, ;=0
otherwise. One also can use ordered comparisons with multiple levels to capture the strength
of agreement in the fields, which can be especially useful for string fields like names.

Following [1] and related work, we assume that y,; is a realization from a mixture of two
distributions, one for true links and one for nonlinks. We have
\\ did
yi/(dj= l) ~ g(em)’ Yij (d #* ) ~ g(eu)

®

where 0, = (0., --.,0r,) and 6, = (0, ,, ..., ;) are parameters specific to each mixture
component. Following common practice in probabilistic record linkage, for computational
convenience we posit conditional independence across fields. With binary fields, we
compute

2(6,) = Py, | d;= i) H Pyl dy=1i)= H 0= 0,,) T

®

80) =Py, | d #i)= H Pyl dy# i) = H 0 ~ Y,

(10)

This model implies that the linking fields are independent of the outcomes, treatments, and
covariates. This is commonly assumed in record linkage settings, although it is possible to
make the distributions depend on some variables [25].

To specify a prior distribution on d with the constraint d; # d, for any j # j’, we follow

an approach described in, for example, [24, 26, 27]. Let I(&) represent the indicator

for an event &. We assume I(d; < n,) ~ Bernoulli(x), where z represents the proportion of
matches expected a priori as a fraction of the smaller file. We assume r ~ Beta(a,, $,). The

hyperparameters a, and g, provide prior information on the number of intersecting records in

J Stat Plan Inference. Author manuscript; available in PMC 2024 September 01.
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the two files. Finally, the parameters 6, and 0, follow i.i.d. Beta(a, b) distributions for all
f=1,..., F. We discuss specific choices of «,, f,, a and b in Section 3.1.

3. The RegBRLC Model

RegBRLC requires models relating the outcomes, treatment indicator, and covariates in File
B to the covariates in File A. The contribution to the likelihood of a record in File B depends
on whether it is linked to a record in File A, or not. For any record j in File B linked

to a record i in File A, we specify the joint distribution of (y, z, x{” | x;*’), whereas for a
record j in File B not linked to any record in File A, we specify the joint distribution of

(v 2, x;”). More precisely, when any record j in File B is linked to record i in File A,

we specify the conditional distribution of the outcome denoted as f(y, | x;*, z,, x;”, 6,,,), the

propensity score denoted as g,(z, | x;*, x*, 6.,,), and the covariates denoted as i,(x;" | x*, 6,,,).

For any record j in File B that does not have a link in File A and hence is missing x”, we
specify an outcome model f,(y, | x;”, z;, 6,,), a propensity score model g,(z, | x;”,6.,), and and
a marginal distribution h,(x{” | 6,,). Throughout, we assume that the covariates in File A are

fixed quantities and thus do not require specified probability distributions.

Lety=(y,....»;) and z =(z, ..., z,;)’ be the vectors of outcomes and treatment indicators
for the records in File B. Let X4) = [xiV:-:x)] be a n, x p, matrix of covariates in File A,

and xB = [xi”":+:x1,' | be a np X p, matrix of covariates in File B. For any record j in File

B, the contribution to the likelihood function is given by

£ 1 2,682, 2, 0,,)81(z | %, %P, 0.,) (xS | %2, 0,,,), for d;=1i < n,

LA% =
L 1 %P, 2,0,z | X2, 0,)m(xP | 0,,),  for d;=ns+j.

J

(1)

The likelihood including the contributions from (11) and the linkage model in (8)—(10) is

L(Gy,,,, Oumns O 0,00, 0 00 0 | {101 < i <1 < j <) ynz XA, X(B)) x
F I(d;=i) F I(d; # i)
IT = T1 =TT T o7 - 0, "1 IT o770 - 0,)! 1y
((Wk Jrd;#i Ljlf=1 f=1
d=i Vi
X I(d; # dy, whenever j # j').

(12)

This modeling strategy is sufficiently general to incorporate many choices of f,, f>, g, &,

hy, and h,. To illustrate and to facilitate simulation studies, we present a specific choice of
these distributions in Section 3.1. We use outcome and covariate models based on normal
distributions, and a propensity score model based on a logistic regression. In Section 3.3, we
discuss some strategies for simplifying model specifications and for model checking.

Before we present the illustrative model specification, it is worth emphasizing the purpose of
the outcome and covariate models: they are intended to improve the quality of the linkages.

J Stat Plan Inference. Author manuscript; available in PMC 2024 September 01.
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By leveraging relationships among variables across the files, we hope to find more reliable
links. Once we have plausibly linked records, we use a causal estimator that can be specified
independently of the models used in (12), as discussed in Section 3.2.

3.1. lllustrative Specification

For the illustrative outcome model, we use linear regressions for f, and f, so that

¥ = o+ zan + xVal + xPal + ¢, ¢~ N(0,07)
(13)
for records with links, and
0 1 e 2
yi =+ zay + x5 al) + e, e~ N(0,0,)
(14

for records without links. As noted previously, we do not have the x{* for the non-links.

For the illustrative propensity score model, we use logistic regressions for g, and g, with

0 A (1) BY (2)
exp(ai + x" ) + %" o)

1+ exp(aly + xVal,) + x¥'al)

Pr(z;=1]x",x",0.,) =

(15)
for records with links, where 6., = (a5, &), &) )'. We use
(0) (B)' (1)
Prizy = 1] x7.0,) = exp(al) + x” aly)
- bl zu) — g
J / 1+ exp(aﬁ’ +xP a;l,))
(16)

for records without links, where 6., = (a5, a2.) .

Finally, for the illustrative covariate model, we use a multivariate normal regression for the

conditional distribution of x{* | x*’ when d, = i < n,, so that

By ' Ay
x; ) = Mew + xf )me + €, €5~ N(O, Z)s

an

where B,, is a p, X p, matrix, 7,, 1S a p, X 1 vector and X,,, is a p, X p, covariance matrix. For
records without links, we assume x!” follows a multivariate normal distribution with mean

u,, and covariance matrix X.,.

In this illustrative model specification and in our simulation studies, we assign all regression
coefficients in the outcome model and in the propensity score model i.i.d. N(0,1) prior
distributions. We assign o2, and o3, 1.i.d. Inverse-Gamma (a,, b,) priors. For the covariate

J Stat Plan Inference. Author manuscript; available in PMC 2024 September 01.
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model, we set I1(B,,, X.,) = I1,(B,, | Z..,)[L(Z,,), where B,, | Z,,, follows a matrix normal
distribution & 4, ,,(0,1,%,,) and X,,, follows an IW(v, I) prior, where IW (v, I) denotes an
Inverse-Wishart prior with parameters v and the identity matrix. The prior specification is
completed by assigning an IW(v, I) prioron X,,. Weseta=b=1,a,=b,=1,a, =, =1,

v = 10. The choice of a, = b, = 1 leads to Inverse-Gamma prior distributions which are
sufficiently non-informative, while a, = , = 1 ensures equal prior probabilities for a pair of
records being a link or a non-link. The value of v = 10 implies that the prior distributions on
X, and X, are sufficiently concentrated around the identity matrix. Moderate perturbations
of these hyperparameters lead to practically indistinguishable results in our simulation
studies.

Summaries of the posterior distribution cannot be computed in closed form. However,
the full conditional distributions for all the parameters are available. Thus, posterior
computation can proceed through a MCMC algorithm. Details of the full conditional
distributions for the illustrative model are provided in the supplementary material.

The MCMC sampling also offers inferences on the record linkages. For
j=1,...nplet(d",...,d") be the L post burn-in MCMC iterates of d,. For

each j, we empirically estimate P(d, = q | — ) using the proportion of samples

where d, = g, i.e., P(d;=q| —)= # {l:d}” =q}/L,forqe 7,={1,...,n,ni+ j}. When

1 < ¢* = arg max,. ,/f’(d, =gq| —) < n4, we conclude that the record ¢* in File A is the most
likely match for the record j in File B; denote this d ;= ¢*. On the other hand, when

q* = n, + j, we conclude that most likely record ; in File B does not match to any record in
File A. In addition to posterior modes, one can estimate the posterior probability of linkage

between any record pair. See Sadinle [24] for further discussion of using the posterior
probabilities to determine links.

3.2. Defining the Causal Estimand and Overlap Weights Estimator

The plausibly linked files also provide means to estimate a WATE. Let m; = 1 when the
identity of record j in File B with values (y, z;, x\”) matches the identity of some record
in File A, and let m; = 0 when record j does not have a true match in File A. Thus,

when m; = 1, the record’s full data vector (y,, z;, x”

, x;) is potentially observable with
accurate record linkage. To define the WATE, we assume SUTVA and a version of strong
ignorability for all records in File B, namely (3(0), (1)) L z | x4, x(B), m for any generic
record in File B with a link in File A. Under SUTVA and this version of strong ignorability,
we have E[y(z) | x(AD, xB) = 1] = E[y | xA) xB) 7 m = 1], so that 7(x(4), x(B)) becomes
the average treatment effect conditional on the covariates (x(4), x(B)) for linked records,

ie., T(x(A), x(B)) = E[y(l) —3(0) | xA, x(B) 1y = 1]. In actuality, we require strong ignorability
only for records with true links (m = 1). However, in practical settings it seems a stretch to
claim that strong ignorability holds only for the subset of linkable records but not for others.

Following Section 2.1, to define the WATE we need to average over a target population.
We use the overlap population among records that can be linked, and denote the WATE

J Stat Plan Inference. Author manuscript; available in PMC 2024 September 01.
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for this target population as 7, ;... When each record in File B has a link in File A,

To.imea 18 defined over the full study population in File B. When some records in File B

do not have links in File A, 7, .. 1S defined over a subset of the study population in

File B. This can be a reasonable target population for causal inferences based on File

A and File B, as it is the only set of individuals for which we could observe their full

set of outcomes, treatments, and covariates. The expression for 7, ;.. can be obtained by
letting #(x) = e(x(4), x(B))(1 = (x4, xB)))m(x(B)) in (1), where m(x(B)) = 1 when the record
corresponding to covariate x(® in File B is linkable and m(x(B)) = 0 when it is not linkable.

Substituting this new 7(x) into (2), we estimate 7, jiu.s by

(Sap el - e (g e ares 1)1 -2y
O, linked Z(I’J) e ‘ﬂ(l _ e(x,(A)’ x;B)))zj Z([, J) c ﬂe(x}A), x;B))(l _ Zj) i

(18)

where 4 is the set of all linked records in File A and File B.

An important question is when we can generalize 7, ;... to treatment effects for broader
populations. Here, we focus on generalizing to z,. As described in Section 2.1, 7, is defined
on the overlap population among the records in File B and computed with the complete x for
all individuals. Of course, in our setting we do not observe this full overlap population, as
we can know x only for linkable records. However, we can generalize 7, .. = 7o When

the distribution of x is the same for linkable and non-linkable records; that is, when

g(x | m(x) = 1) = g(x) for the full overlap population. A special case of this scenario arises
when all records in the full overlap population are linkable. Another arises when true linkage
status is independent of covariates. This can arise, for example, when the linking variables
comprise string metrics (like names) that are erroneously recorded at random. We also can
generalize 7, 4.a = 7o in the case where 7(x) = r for all x in File B. Of course, as with

any observational study, generalizing treatment effects beyond the study population requires
additional assumptions, such as constant treatment effects for all individuals [28].

In practice we do not know and must estimate which records have links. We consider
MCMC iterations (suitably thinned) as draws of plausible linkages and therefore providing

estimates of 7, .. FOr the I-th MCMC iterate after burn-in, let O indicate the indices of
record pairs in File A and File B that are linked, i.e., 4 o) {G,j):d) =i,i <ny}. Let (65,
0., 6%, 6) be the I-th post burn-in iterate of (8,,, 6.,, 0,., .,). For the I — th iteration, we first
compute an estimate of the propensity score for all observations in File B that are matched

with some observation in File A. Specifically, if (i, j). is a matched pair, then the estimated
()

propensity score for the (i, j)th pair is given by ¢;; = e(x/", x;”, 6,) Following (3), define the

I-th post burn-in iterate of 7 ;s as

Z(i,j) e m(l)(l - 5?.’})21)’/' _ E(i,j) € ‘/yg(l)éff}(l - z)y;
. e a1 ~30)z | | S0, e D1 - 2)

~() _
T0,linked = l

19)
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We compute (70 umeds - - -» To inkea) A0 USE To imed = 21— 1 To.umea! L as the point estimator of

T0, linked-

Draws of 7, 4. Vary only because of different linkages across MCMC iterations; the
variation in these drawn values does not reflect inherent sampling variability. For example,
even if all true links were known perfectly, we still have uncertainty in the estimated WATE.
We account for this sampling variability and the variability from estimating the missing true
links using multiple imputation. More specifically, to estimate the variance of 7, .., We use

multiple imputation formulae with all L iterates [29], computing

@(’E [o Iinked) =

. A~ - 2
Z,': L UB inkea + (1 + 1) Z/L= 1 (Tg),[inked — 7o, linked)
L L) L-1 :

(20)

Each Uy is computed using (5), plugging in the values from the linked data in the I-th
iterate. Assuming large L, inferences are based on a normal distribution with mean 7, e

and variance Var(Zo_jmed)

The modeling framework allows analysts to use other causal estimators with the plausibly
linked data files. To illustrate this flexibility in the simulation studies, we now present

a regression-adjusted estimator of 7, ...« based on the overlap weights. As a regression-
adjusted, overlap weights estimator has not been discussed previously in the literature, we
discuss some of its properties with perfectly linked data in the supplementary material.

Suppose we have a model for the outcome; for illustrative purposes, we use the model in
(13). Let the mean function of the outcome under the model, evaluated at the /-th MCMC
iterate of the parameters, be i/(¢) = u(z; = ¢, x", x{”, 6, where ¢ = 0, 1, represent control
and treatment, respectively. For example, with a linear regression as the outcome model, the
mean function is the predicted value of the outcome using the linked data and parameter

estimates in iteration /. For any linked record pair (i, j) at the /-th iteration, the residual for
the fitted outcome model is ﬁ([), =y, — iz, x*, x%, 6)). The regression-adjusted estimator

for the I/-th iteration is defined as

N0 ~ ~0
Yopea(1=E)z R, _ Zupeavei(l-z)Ri;

Z(w) € vﬂ(”(l - af“/)zj Z(w) e é\fbj(l - Zj)
| D e (D) = ALO)e(1 = &)

N Yineaver1-¢)

2~ —
T0, linked, reg —

@n

A ~(L) = L A0 :
We compute (ro,,m,m, regs -+ > TO linked, ,eg) and USE To jinked,reg = Doy 1 T otinkea,re! L s the new estimator

of %0, tikea-

To estimate the variance of 7o jieq. .., W€ Use multiple imputation and compute
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A _ 2
—_ Z,L= 1 Ug,)linked.mg 1 \Z;L: 1 (T((Qlinked, reg — TO.linked,reg)
Var(Zo,tinked, res) = I +|1+ ) -1 .

(22

We present the expression for US)..... and its derivation in the supplementary material. We

use normal-based inferences for 7, ;.. With the mean from (21) and variance from (22).

3.3. Useful Modeling Simplifications

Using all the conditional distributions in (11) offers a path to take advantage of as much
information as possible from File A. However, it may be convenient to assume that variables
in File B are independent of subsets of variables in File A to simplify model specification
and reduce computational overhead. The goal of modeling the relationships among the study
variables in File B and File A is to enhance the quality of the probabilistic record linkage.
Once we obtain links, these models are largely irrelevant, as we apply a causal estimator

on each plausibly linked file. Thus, it is possible for the conditional distributions to be
mis-specified yet still useful, as we now describe.

One simplification is to set the outcome y to be conditionally independent of x(4).
Effectively, this eliminates the contribution of the model for y | x from (11). Thus, analysts
who make this assumption need not specify a model for y when obtaining draws of
(d",....d"), for j = 1,..., np. This accords with the “design-first” philosophy of causal
inference [30], which argues that one should avoid using the outcomes when manipulating
the covariates, such as when computing propensity scores or linking records. Using the
framework with this simplification still can improve linkage quality. For example, if one can
find covariates in File B that are highly correlated with some function of the covariates in
File A, the proposed model will be able to use that information to improve linkage accuracy.

Another simplification is to assume x(8 is independent of x(4). This eliminates the
contribution from the model for x(® | x(4) from (11) and hence eliminates the need to
model this conditional distribution. When p, or p, is large, or when the covariates in File B
have complicated distributions, this simplification can reduce modeling and computational
effort substantially. Alternatively, analysts may be able to posit covariate models for fewer
than p, and p, variables. Again, as the goal of the covariate model is solely to augment

the probabilistic record linkage model with information to assist in linking records, such
simplifications still can provide benefits, even if they are based on faulty assumptions.

As with any model specification, it is good practice to check the quality of model fit.

This can be challenging, particularly for relationships of variables across the two files. One
possibility is to use pairs known to be certain links, when such pairs are available. For
example, one can estimate the posited outcome, propensity score, and covariate models
using these certain links, and perform the usual model checking procedures to arrive at
reasonable models. These certain links also could be used to identify variables across the
two files with strong relationships, so as to suitably discard variables in File A that offer
little information about the variables in File B. When an adequate number of certain links
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are not available, one can use record pairs that have high probability of being links according
to off-the-shelf probabilistic record linkage algorithms like implementations of [1].

Another model checking tool is to generate replicate datasets from the posited RegBRLC
model using draws of model parameters [31]. Analysts can compare results from these
replicates to those in the observed data, akin to posterior predictive model checking. For
example, one could examine the replicated and observed distributions of the outcome
variable; if they are dissimilar in appearance, the outcome model might be improved.

4. Simulation Studies

We illustrate the performance of RegBRLC modeling using repeated sampling simulations
with the model in Section 3.1. For simplicity, we assume that both File A and File B have
the same number of covariates and that all covariates are important in the outcome and the
propensity score models. We present additional simulations in the supplementary material
in which p, # p, and both the propensity score and outcome models include unimportant
predictors, as well as a simulation where the fitted outcome model is poorly specified,
including an illustrative comparison with the approach from [20].

4.1. Simulated Data Generation

We work with the RLdatal0000 data from the R package RecordLinkage [32]. These data
comprise an artificial population of 10000 records with birth years, birth months, birth dates,
first names and last names. Among these are 1000 individuals for whom the values of these
variables have been duplicated and then randomly perturbed, introducing errors into these
potential linking variables.

The RLdatal0000 data do not include covariates, treatments, or outcomes. We generate
values of these for each of the 9000 unique individuals in the RLdatal0000 file. For

each individual k, we generate p = 4 covariates, (X, s, X,.4, Xs.4» X4.1), aS follows. We sample
(%14, X2.4) from a bivariate normal distribution with mean zero, marginal variance 1 for each
component, and covariance equal to 0.2. We generate (x,, x, )’ from a bivariate normal
distribution with mean (x, ,, x, ), marginal variance 1 for each component, and covariance
also equal to 0.2. This represents a modest amount of correlation among the predictors. We
note that this generates covariates independently of the linkage variables.

We simulate each z, from a Bernoulli distribution such that

(0) P 0)
%+ X

P(zy=1]x)= ,
(1 4o+ XI- laf(mxﬁk)

(23)

© O O _©0) _(0)

where (ao L, 0, o, Oty ) =(1,1.5, — 1,2, — 3). The superscript 0 emphasizes that the

parameter value is from the true data generating mechanism. We generate each y, from
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p .
Ji.d
=8+ Z BOx i+ Bz + €1, €k e N(O, 0'(0)2>,
=1

24

where (8", ", 8", B, B”) = (1, = 1,2, = 3, — 2). We consider 6(02 € {1,4,16}. These

correspond to R? values of (.95, .82, .55), respectively. Thus, we can evaluate the
performance of the methods under differing strength of association among the outcomes and
the remaining variables. Since (24) implies 7(x; 1, X 1> X3, X4..) = P’y WE hAVE 75 jisea = 7o = 5.

We construct File A and File B by putting subsets of records into two files. Every record

in File A has measured (x,, x,), and every record in File B has measured the outcome,
treatment, and (x, x,). Both files include three imperfect linking variables: birth year, birth
month and birth date. We do not use the first names and last names in these simulations,
reflecting the common setting where names are unavailable. When string fields like names
are used for linking, one can construct comparison vectors from metrics like the Jaro-
Winkler or the Levenshtein similarity measure [33]. For ease of simulation, we set the sizes
of File A and File B to be n, = n; = 1000, although RegBRLC in general does not require

ny = ng.

In any simulation, we randomly sample a subset of the 1000 individuals with duplicates. We
put these records in File A and their duplicates in File B. The number of these intersecting
individuals is denoted by n,;, which is varied to be 200, 500, or 800. In this way, we can
evaluate the performance of the methods under different amounts of intersecting records.
For the remaining (n, — n,) records in File A, we randomly choose (n, — n,5) records from
the 8000 individuals without duplicates, discarding their treatments, outcomes, and x(8), and
keeping only x(4) and the linking variables. To ensure that the non-intersecting records of
File A and File B correspond to different individuals, we set aside these (n, — n,5) records
from the 8000 records. To add the remaining (n; — n4s) records to File B, we randomly
choose (n; — n4;) records from the remaining (8000 — n, + n,,) records, discarding x(4) and

keeping the treatments, outcomes and x(B), along with the linking variables.

We let the MCMC chains run for 2000 iterations. We discard the first 1500 as burn-in, and
make inferences on both the causal effects and record linkages based on the post burn-in
iterates. We assess convergence of the Markov chains by observing the trace-plots of 10
randomly chosen parameters from the outcome models and the propensity score models
for the linked and unlinked data, which suggest satisfactory mixing. The average effective
sample size for all parameters of the outcome model is 307 (out of 500 iterates).

We compare the performance of RegBRLC with estimators from a two-stage approach as
follows. First, we fit the bipartite Bayesian record linkage model from Section 2.2 without
using the covariates, treatments, or outcomes. Each of the L post burn-in samples of d
corresponds to a plausibly linked database. In each plausibly linked database, we compute
the maximum likelihood estimates (MLEs) of the coefficients in the outcome and propensity
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score models, which we substitute into (19) and (21). As the point estimates, we compute
To.tinked AN To, 1imeea. e USING the L linked databases. We also estimate their variances based on
(20) and (22). Since this model links the files without using information on the outcomes,
treatments, and covariates, comparisons, it can reveal if the sharing of information between
the record linkage and study variable models offers benefits. We refer to this model as
BRLC.

We use 100 independent simulations runs to compare the performances of RegBRLC and
BRLC in terms of both causal inference and record linkage. For linkage quality, we compute
the precision and the recall in each of the 100 replications. Following the notation in

Section 2.2 and Section 3, in any replication, let d be the point estimate of d = (d.. ....d,,)".

The precision is the proportion of links that are actual matches. Let of; = {3 ,=d.d, < nA}.
The precision is defined as Y2 I(<#))/ X,% 1 (3] < nA). The recall is the proportion of actual
matches that are determined as links, Y2, I(«))/ )%, I(d; < n,). A perfect record linkage

procedure would result in precision and recall equal to one.

To assess the quality of the causal inferences, we report the averages and empirical
standard deviations of 7 e A0d o jinkea. e OVET the 100 replications for both RegBRLC
and BRLC. We also present the empirical coverage rates of multiple imputation 95%
confidence intervals (based on 100 replications) for 7, ... Finally, we present the results
for the causal estimators applied to the subsets of records that are true links, i.e., when
we have perfect record linkage. This provides a baseline to assess the accuracy lost due
to imperfect linkages. As a side benefit, it also allows us to assess the properties of the
regression-adjusted overlap weights estimator and its variance estimator in settings where
record linkage is not needed.

4.2. Simulation Results

Figure 1 displays averages of the precision and recall for various simulation scenarios. For
the three scenarios with (92 = 1, we observe a modest increase in precision and a sharp
increase in recall as the number of intersecting records increases for both RegBRLC and
BRLC. In all three scenarios, RegBRLC dominates BRLC, with higher average precision
and recall. The differences in average recall are substantial and grow with the number of
intersecting records in the two files. Evidently, RegBRLC uses the relationships among the
variables in the two files to learn more accurately which records should be paired, as the
linkage variables are not sufficient by themselves to identify pairs as accurately.

The improved performance of RegBRLC over BRLC in terms of record linkage has a
positive impact on the estimation of the causal effect. The first three rows of Table 1
display properties of 7o s A0 To jikea. e @S applied for RegBRLC, BRLC, and the perfectly
linked records when 6(02 = 1. For both estimators, RegBRLC accurately estimates the

true 7o e = 5 in all scenarios, with greatest deviation for the scenario with only 20%
intersection between two files. In contrast, BRLC significantly underestimates 7o ;s in

all three scenarios. RegBRLC has smaller empirical standard deviations than BRLC. The
empirical standard deviations also reveal the cost of imperfect linkages. They are higher
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for RegBRLC and BRLC than for the analysis with the perfectly linked data. As expected,
the empirical standard deviations decrease as the percentage of intersection between two
files increases. Finally, the empirical standard deviations are consistently higher for 7y ;.
compared t0 To e e, SUZEESting benefits to using the regression-adjusted estimator.

We next vary the signal to noise ratios for the outcome model. Specifically, we consider
02 ¢ {4, 16} in (24). Here, we perform simulation studies only for the 80% intersecting
records scenario, as this scenario gives each model its best chance to perform effectively.
Comparing all 80% intersection scenarios in Figure 1, we find that the precision and
recall values decline for RegBRLC as (92 increases. As the predictive power of the
covariates weakens, the outcome model offers increasingly less information about the
correct linkages. For BRLC, the average precision and recall values are unchanged (other
than by small Monte Carlo errors) when changing o(%)2. This is expected, since the record
linkage in BRLC is done independently of the outcomes, treatments, and covariates. Overall,
RegBRLC exhibits better performance than BRLC on recall and similar performance on
precision.

The last two rows of Table 1 display the simulation results for 7, s a0d T inkea, s 10 these
scenarios with larger 6(?2. RegBRLC continues to estimate the causal effect accurately,
although with increased standard deviations, as expected. In comparison, BRLC continues to
underestimate the causal effect. For these two larger values of 6?2, the empirical standard
deviations for 7o, jimes.s tend to be smaller than those for 7y e

We next turn to the coverage rates for the multiple imputation 95% confidence intervals.
For RegBRLC, in all but the 20% intersection scenario, the intervals based on 7, ;.. cover
in 100% of the replications; the 20% intersection scenario has a coverage rate of 99%.

The consistent over-coverage occurs because, in these simulations, the distribution of 7o .
is platykurtic rather than normally distributed. The coverage rates for the intervals based

ON T, inked.reg 1€ (91%, 96%, 98%, 99%, 99%) for the scenarios with, respectively, 20%
intersection, 50% intersection, 80% intersection and ¢(®2 = 1,80% intersection and ¢(92 = 4,
and 80% intersection and ¢(®2 = 16. In contrast, the intervals for BRLC demonstrate
substantial under-coverage, never rising above 41%. For both models, the intervals based
0N 7o, ieq tend to be wider than those based on 7, e .- The lengths of the intervals
decrease steadily as overlap between the two files increases, reflecting reduced uncertainty
in linkages.

The simulation results for the perfectly linked data also offer insight into the accuracy of the
variance estimators. Let 7, and 7, .., be the unadjusted and regression-adjusted estimators
of 7, based on perfectly linked data. For the five scenarios, the coverage rates when using

7, based on the perfectly linked data are (97%, 96%, 96%, 98%, 98%), respectively. And,
the coverage rates when using 7,, ., based on the perfectly linked data are (95%, 96%, 96%,
98%, 98%), respectively. For the perfectly linked data, the intervals based on 7, again tend

to be wider than those based on 7, .
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5. lllustration with Causal Study of Debit Cards

To illustrate regression-assisted Bayesian record linkage with causal inference further, we
follow Guha et al. [20] and generate a record linkage scenario for an observational study of
the causal effect of possession of debit cards on household consumption. As we use the same
survey as [20], our description of the data follows theirs.

We use data from the Italy Survey on Household Income and Wealth (SHIW), which is a
nationally representative survey run by the Bank of Italy once in every two years since 1965,
with the only exception being that the 1997 survey was delayed to 1998. The SHIW collects
information on Italian households’ economic and financial behavior. We link two files with
data collected during 1995 and 1998. Some households participated in both years and some
did not. Our study population is the set of households possessing at least one current bank
account but no debit cards before 1995. The treatment z = 1 if the household (all members
combined) possesses one and only one debit card at 1998, and z = 0 if the household does
not possess any debit cards at 1998. Households with more than one debit card are excluded
from our sample. As the SHIW data have information on debit card ownership only at the
household level, we assume that the owner of the debit card is the household head.

The outcome is the monthly average spending of the household on all consumer goods,
measured in the 1998 survey. For data quality control, we delete the observations that have
negative values of the outcome, or unusually high values of monthly income or ratios of
monthly spending to monthly income. The final data file corresponding to 1998 contains
3088 observations with information on the outcome, the treatment, and several covariates,
and the final data file corresponding to 1995 contains 582 observations with additional
covariates.

Both files contain a common set of variables that we can use as imperfect linking variables.
For this illustration, we use the household head’s gender, birth year, marital status, and
highest educational qualification, the geographical area of residence of the household, the
region and the province in which the household is located, and the number of inhabitants in
the town in which the household is located. The data values for these variables are collected
in each survey year from questionnaires completed by the participants. Hence, linking on
these variables is imperfect, as participants can and do enter different values in the two
surveys. Fortunately, we also have a unique identifier (ID) that we can use to perfectly link
households across years. We use this ID to assess how well the models link observations

in the two files based on the imperfect linking variables described above. Based on the
unique ID, among the intersecting individuals in the two files, there are 190 individuals in
the treatment group (who possess a debit card) and 392 individuals in the control group.

We consider covariates in this study measured in the 1995 survey and the 1998 survey. The
covariates in the 1995 data consist of the monthly average spending of the household on
consumer goods, the net wealth of the household, the household net disposable income, the
monthly average cash inventory held by the household, the average interest rate and the
number of banks in the municipality where the household is located; all values are measured
in 1995. Guha et al. [20] provide a detailed justification for inclusion of the covariates in

J Stat Plan Inference. Author manuscript; available in PMC 2024 September 01.



1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Guha and Reiter

Page 18

the 1995 survey. The covariates in the 1998 data consist of the number of household income
earners and the age of the head of the household, measured in 1998.

We implement RegBRLC using a simplification from Section 3.3, namely that x(B) is
independent of x(4). In fitting the model, we let the data from 1995 comprise File B and the
data from 1998 comprise File A, as the data file from 1995 has smaller sample size. This
means that the outcome and treatment are in File A. Although this allocation of variables
differs from the presentation in Section 3, practically it makes no difference to the model
specification. We include both covariates in 1998 in x(4) and all six covariates in 1995 in
xB)_ In addition, because gender, marital status and highest educational qualification of the
head of the household could be important predictors of the outcome, we also include their
1995 values in x(B).

For the outcome model, we use a linear regression of 1998 monthly average spending of the
household on all consumer goods on linear functions of (x(4), x(®). For the propensity score
model, we use a logistic regression of z on linear functions of (x(4), x(B)). We do not specify
a covariate model. We use the prior hyperparameter values described in the simulation
studies; moderate perturbations of them lead to practically indistinguishable results. We let
the MCMC chains run for 2000 iterations and discard the first 1500 as burn-in. We also
examine results for BRLC and results using the perfectly linked data for comparisons.

Table 2 presents the precision and recall values, along with the multiple imputation means
and 95% confidence intervals using 7o jimes a0d 7o jinkea.re (i thousand Italian Liras) for

all methods. Consistent with the simulation results, RegBRLC offers better precision and
recall than BRLC. Using results from the perfect-links model as a benchmark, we find that
RegBRLC more closely tracks the mean treatment effect estimates from the perfectlinks
model than BRLC does. This also holds for the 95% confidence intervals, particularly for
To.mkea.reg> Although the differences arguably are modest. The estimated variance of 7o, imed.res 1S
smaller than the estimated variance of 7, ... across all three methods, reflecting the benefits
of using the regression-adjusted estimator. It should be noted that the point estimates from
both RegBRLC and BRLC models differ from those for the perfect-links model, reflecting
the effects of inevitably imperfect linkages.

These results suggest that, on average, possession of a single debit card for a household
leads to more monthly consumption than not possessing any debit card, during the study
period. Similar findings are presented by [34].

6. Conclusion and Future Work

The empirical studies suggest that regression-assisted Bayesian record linkage with causal
inference modeling strategies can improve the quality of the linkages and the accuracy

of the causal inferences. They also suggest potential benefits of using a regression-

adjusted estimator when applying overlap weights approaches to propensity score inference.
Although we assumed n, > nz, we conjecture that these findings will hold when n, < n,,

albeit with a different joint likelihood function tailored to the data setting.
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The RegBRLC modeling framework has other advantages. First, it can accommodate
missing outcomes, treatment status or linking variables in the two files. These values

can be imputed from predictive distributions as part of the MCMC sampling. In such

cases, using the full modeling strategy can be preferable to using a simplification, so as to
preserve relationships across variables during imputation. Second, the modeling framework
accommodates any causal estimator, such as those based on inverse probability weighting
or matching using propensity scores. Third, it can accommodate prior information, such

as estimates of relationships among the study variables from other studies or domain
knowledge, via specification of informative prior distributions.

RegBRLC models can be computationally intensive, as is generally the case with Bayesian
versions of bipartite probabilistic record linkage in general. In addition to simplifying

the models as discussed in Section 3.3, it may be possible to speed computation by
modifying the estimation algorithms. For example, in large samples, one can approximate
the distributions of coefficients of binary or other categorical regression models using
normal distributions, thereby simplifying some MCMC steps. Another approach is not to
enforce bipartite matching in the Bayesian record linkage model [25]. By allowing duplicate
matchings, the linkage steps can be done for each observation in parallel, thereby speeding
computation significantly.

In some contexts, analysts may desire to use some variables as linkage variables and as
covariates, as we do in the SHIW analysis. When these variables are recorded identically
across files, this presents no issue for the RegBRLC framework. In such cases it may

make sense to view these as blocking variables—the analyst requires record pairs to match
exactly on the blocking variables [35, 36]—rather than use them as linkage variables.

When these variables are not recorded identically across files, the path forward to using
RegBRLC models is less clear, as the true value of the covariate is unobserved. In the SHIW
application, we used the values in one of the files, File A, as the covariates while using the
values in both files as linking variables. Evaluating this approach as a general strategy in
probabilistic record linkage is a topic for future research.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1:
Simulated average precision and recall values for RegBRLC and BRLC over 100

replications of each scenario. Scenarios vary the number of intersecting records in the two
files or the outcome model variance (02, The dotted blue vertical lines separate scenarios
where 602 = 1 and 6(?2 > 1. All Monte Carlo standard errors are 0.008 or less.

J Stat Plan Inference. Author manuscript; available in PMC 2024 September 01.



1duosnuey Joyiny 1duosnuelp Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Guha and Reiter

Table 1:

Page 23

Simulated averages and standard deviations (in parentheses) of 7o s A0 76 jinkea.ree fOr RegBRLC and BRLC,

as well as estimates based on the perfectly linked data. Scenarios vary the numbers of intersecting records in

the files or the outcome model variance (2. All scenarios have 7, ... = 5. Results in each scenario based on

100 replications. Monte Carlo standard errors are all less than .08.

To, linked T0, linked, reg
Percentage of Intersection O 02 RegBRLC BRLC Perfect RegBRLC BRLC Perfect
20 1 4.58(0.58) 3.42(0.61) 4.94(0.36) 4.78(0.36) 3.51(0.48) 4.94(0.23)
50 1 4.92(0.43) 3.84(0.49) 4.98(0.27) 4.92(0.20) 3.81(0.28) 4.99(0.08)
80 1 4.93(0.23)  3.97(0.29) 5.01(0.16) 4.96(0.17)  3.99(0.24) 5.02(0.03)
80 4 4.89(0.36) 3.91(0.40) 4.98(0.23) 4.88(0.30) 3.88(0.35) 4.99(0.11)
80 16 4.64(0.39)  3.64(0.48) 4.94(0.29) 4.68(0.35) 3.67(0.40) 4.96(0.24)
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Table 2:

Results of the analysis of the SHIW data. Entries include the precision and recall for linking the 1995 and
1998 files, and the means and multiple imputation 95% confidence intervals USing 7o jiues A0 7o sinked. e (IiN
thousand Italian Liras) for all methods. In the parentheses are the standard deviations (SDs) corresponding to

To,tinkea AN To, linked, reg-

Precision Recall 7'_-0, linked 7’_-0, linked, reg
Method Mean (SD) 2.5% 97.5% Mean (SD) 25% 97.5%
Perfect - - 140.38 (3.36) 7447 17484 181.61 (2.81) 165.87 198.33
RegBRLC 0.897 0.876  184.34 (4.66) 50.05 34031 192.44 (3.67) 16234 246.19
BRLC 0.849 0.842  201.18(4.82) 101.87 364.67 221.36(3.96) 183.29 272.06
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