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Abstract
We consider causal inference for observational studies with data spread over two files. One file 
includes the treatment, outcome, and some covariates measured on a set of individuals, and the 
other file includes additional causally-relevant covariates measured on a partially overlapping 
set of individuals. By linking records in the two databases, the analyst can control for more 
covariates, thereby reducing the risk of bias compared to using only one file alone. When 
analysts do not have access to a unique identifier that enables perfect, error-free linkages, they 
typically rely on probabilistic record linkage to construct a single linked data set, and estimate 
causal effects using these linked data. This typical practice does not propagate uncertainty from 
imperfect linkages to the causal inferences. Further, it does not take advantage of relationships 
among the variables to improve the linkage quality. We address these shortcomings by fusing 
regression-assisted, Bayesian probabilistic record linkage with causal inference. The Markov chain 
Monte Carlo sampler generates multiple plausible linked data files as byproducts that analysts can 
use for multiple imputation inferences. Here, we show results for two causal estimators based on 
propensity score overlap weights. Using simulations and data from the Italy Survey on Household 
Income and Wealth, we show that our approach can improve the accuracy of estimated treatment 
effects.
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1. Introduction
In many settings, researchers may be able to enhance the validity of causal inferences 
by using covariate information that is available across two databases. For example, in a 
causal study of a health intervention, a researcher with access to study subjects’ health 
records may seek to account for additional causally-relevant covariates by linking subjects 
to their records in educational or financial databases. Similarly, in a causal study of a policy 
intervention, a researcher may seek to link study subjects from some survey to their records 
in administrative databases. These examples illustrate the scenario of interest in this article: 
one file contains the outcome variable, the treatment status and some causally-relevant 
covariates for a set of study subjects, and a different file contains additional causally-relevant 
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covariates on some subset of the study subjects and other individuals. Analysts seek to link 
the two databases to control for more causally-relevant covariates and thereby reduce the 
risk of bias from unmeasured confounding, relative to using only one file alone.

When perfectly measured unique identifiers like social security numbers or patient IDs are 
available in both files, it is reasonably straightforward to link individuals across the files. 
Often, however, researchers do not have access to such direct identifiers. They may be 
missing from one or both files, or they may not be available due to privacy restrictions. In 
such situations, researchers have to link the files based on indirect identifiers, such as names, 
birth dates and address information. To do so, many researchers turn to probabilistic record 
linkage methods based on variants of the framework developed by Fellegi and Sunter [1].

Typically, researchers perform causal inference with linked files in a two-stage process. 
They use probabilistic record linkage to construct a single file comprising linked records, 
and then carry out causal inference on the linked file [e.g., 2]. This two-stage approach has 
two main drawbacks. First, the record linkage step does not take advantage of relationships 
among the variables in the two files. Several authors [e.g., 3, 4, 5, 6] have shown that 
leveraging these relationships in fact can improve the quality of the linkages. Second, 
estimation with a single linked file does not propagate uncertainty arising from imperfect 
linkages to the causal inferences.

In this article, we address these shortcomings by proposing regression-assisted, Bayesian 
probabilistic record linkage with causal inference, henceforth abbreviated as RegBRLC. 
To fix ideas, let File B contain the outcome variable, treatment status and some causally-
relevant covariates on a set of individuals. Let File A contain an additional set of causally-
relevant covariates measured on a different set of individuals, some of whom are in File B 
and some of whom are not. We specify models for (i) the conditional distribution of the 
outcome variable given the treatment status and all covariates, which we refer to as the 
outcome model, (ii) the conditional distribution of the treatment status given all covariates, 
which we refer to as the propensity score model, and (iii) the conditional distribution of the 
covariates in File B given the covariates in File A, which we refer to as the covariate model. 
We couple these with a probabilistic model for the unknown linkage statuses, i.e., which 
record pairs are links and which are not. We estimate the model using a Markov chain Monte 
Carlo (MCMC) sampler, which results in many draws of plausibly linked data files. In each 
plausibly linked dataset, we estimate the treatment effect using some causal estimator and 
combine the results using multiple imputation [7]. For the sake of illustrating our modeling 
approach, we estimate a weighted average treatment effect [WATE, 8] using the propensity 
score overlap weights of [9]. Analysts could replace the overlap weights estimators with any 
other causal estimator.

Our work contributes to existing methods for statistical inference with probabilistic record 
linkage [e.g., 3, 4, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18], though none of these works 
consider causal inference as the analysis goal. A version of simultaneous causal inference 
and record linkage is presented in [19]. They use point estimates of average causal effects 
from propensity score stratification to determine the thresholds at which record pairs are 
declared links in a Fellegi-Sunter [1] algorithm. They do not use relationships among the 
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variables to determine the record pairs to consider as possible links in the first place, nor do 
they propagate uncertainty from imperfect linkages; our approach does both. A model for 
Bayesian causal inference and record linkage was proposed by [20] for when the treatment 
and all covariates reside in one file and the outcome in another. Because our data setting 
differs—the causally-relevant covariates are spread over two files rather than all in one 
file—we estimate a propensity score model and a covariate model simultaneously with 
the outcome and linkage models. Additionally, [20] relies on a fully Bayesian approach 
to causal inference, estimating an average treatment effect by imputing counterfactual 
outcomes from the outcome model. Thus, both the causal inference and record linkage 
quality are highly dependent on the quality of the fit of the outcome model. In contrast, 
we do not impute counterfactual outcomes. Instead, we estimate causal effects based on 
balancing scores like the overlap weights, which reduces sensitivity to the fit of the outcome 
model. To our knowledge, embedding outcome, propensity score, and covariate models in 
a Bayesian probabilistic record linkage model while enabling causal inference based on 
balancing scores has not been implemented previously.

The remainder of this article is organized as follows. In Section 2, we review the 
causal inference and probabilistic record linkage procedures that form the basis of our 
methodology. In Section 3, we present an illustrative specification of the RegBRLC model. 
We also describe a regression-adjusted causal estimator exploiting overlap weights. We 
believe this estimator has not appeared previously in the literature, even for settings where 
probabilistic record linkage is not needed, e.g., all the data are in one file. In Section 4, 
we present results of simulation studies comparing the illustrative RegBRLC model to a 
corresponding two-stage approach. Results from additional simulation studies are included 
in the supplementary material. In Section 5, we illustrate the methodology using partially 
simulated data based on an Italian household survey to assess the effect of debit card 
possession on household spending. The sets of simulation results demonstrate the potential 
of RegBRLC models to improve on the two-stage approach in terms of both record linkage 
quality and causal inference accuracy. Finally, in Section 6, we conclude with a discussion.

2. Causal Inference and Record Linkage: An Overview
We first review a few key concepts and assumptions related to causal inference in Section 
2.1. For ease of exposition, we review causal inference for data where record linkage is not 
needed, i.e., all relevant outcomes, covariates, and treatments are in the same file. We then 
review the Bayesian probabilistic record linkage model that we utilize in Section 2.2.

2.1. Causal Inference

For causal inference, we work in the potential outcomes framework [21]. Let z = 1 and 
z = 0 indicate assignment to the treatment and control conditions, respectively. Each unit 
has an outcome under treatment, y(1), and an outcome under control, y(0). For any unit, 
we observe only one of y(1) and y(0). The observed outcome for any unit can be written 
as y = zy(1) + (1 − z)y(0). In this article, we work with binary outcomes y(0), y(1) ∈ 0, 1 . 
Typical of causal studies, we assume the stable unit treatment value assumption [SUTVA, 
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21] and strong ignorability [22]; that is, for some p × 1 vector of covariates x, we have 
0 < P (z = 1 ∣ x) < 1 and (y(0), y(1)) ⊥ z ∣ x.

Many causal inference procedures utilize propensity scores, defined as e(x) = P (z = 1 ∣ x), 
i.e., the probability of being assigned a treatment given x. As shown in [22], the treatment 
assignment is independent of x given e x  under SUTVA and strong ignorability. Propensity 
scores are used in a variety of causal estimators, including matching, stratification, inverse 
probability weighting, and overlap weighting, as we do here.

To compare outcomes under treatment and control, define the conditional average controlled 
difference for a given x, τ(x) = E[y ∣ z = 1,x] − E[y ∣ z = 0,x]. Under strong ignorability, 
E[y(z) ∣ x] = E[y ∣ x, z], so that τ(x) becomes the average treatment effect conditional on x, 
i.e., τ(x) = E[y(1) − y(0) ∣ x]. To complete the definition of the causal estimand, one averages 
τ(x) over some distribution of x. The choice of distribution corresponds to the region of 
covariate space for the target population of interest. For example, to estimate the effect of the 
treatment on the treated, the relevant covariate distribution is for treated cases.

Let f(x) be the marginal density of x, defined with respect to a base measure Δ(x). For many 
populations typically of interest in causal inference, the distribution of the covariates in the 
target population can be represented as g(x) = f(x)t(x). For example, t(x) = e(x) when the 
target population comprises the treated subjects, and t(x) = 1 when the target population is 
the entire study. Using this expression, causal estimands for different target populations can 
be expressed as special cases of the WATE,

τ = ∫ τ(x)t(x)f(x)Δ(dx)
∫ t(x)f(x)Δ(dx) .

(1)

For any unit i in a study with n units, let w1i = t xi /e xi , and let w0i = t xi / 1 − e xi . A 
consistent estimator of τ for any target population is

τ = ∑i = 1
n w1iziyi

∑i = 1
n w1izi

− ∑i = 1
n w0i 1 − zi yi

∑i = 1
n w0i 1 − zi

.

(2)

In our example of RegBRLC, we estimate τ for the overlap population, described in [9] as 
the target population with the most overlap in covariate values for the treatment and control 
groups. Formally, the overlap population is implicitly defined by the overlap weights [9], 
which set t(x) = e(x)(1 − e(x)) for the covariate distribution defined by g(x). The resulting 
estimator for the WATE for the overlap population, which we write as τO, is

τO = ∑i = 1
n 1 − e xi ziyi

∑i = 1
n 1 − e xi zi

− ∑i = 1
n e xi 1 − zi yi

∑i = 1
n e xi 1 − zi

.

(3)
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The overlap weights have appealing features for causal inference. They are bounded, as 
0 < e xi < 1, and thus τO is not affected by extreme weights. Unlike truncating or setting 
some weights to zero, the overlap weights are continuously defined and avoid arbitrary 
choices of cutoffs. Under mild conditions, the overlap weights leading to τO minimize the 
asymptotic variance of the estimators of the form in (2) within the class of balancing weights 
[9].

A closed form variance estimator of τO is provided in [23]. Let

τO, 1 =
∑i = 1

n 1 − e xi ziyi
∑i = 1

n 1 − e xi zi
, τO, 0 =

∑i = 1
n e xi 1 − zi yi

∑i = 1
n e xi 1 − zi

.

(4)

The variance estimator is given by (nθ )−2∑i = 1
n I i

2, where θ = ∑i = 1
n e xi 1 − e xi /n and

I i = zi yi − τO, 1 1 − e xi − 1 − zi yi − τO, 0 e xi − zi − e xi H′E−1xi

(5)

H = ∑
i = 1

n
zi yi − τO, 1 + 1 − zi yi − τO, 0 e xi 1 − e xi xi/n

(6)

E = ∑
i = 1

n
e xi 1 − e xi xixi

′/n .

(7)

2.2. Record Linkage

We develop methodology for bipartite record linkage scenarios [1, 24]. Under this setting, 
each individual is recorded at most once within each file. Let File B comprise nB records, for 
which we measure the outcome, treatment status and pB causally-relevant covariates. Let File 
A comprise nA ≥ nB records, for which we measure a set of pA additional causally-relevant 
covariates not in File B. Some of the same individuals are in File A and File B. Both files 
include a set of imperfect linking variables that can be used to link records from File A and 
File B. Finally, let p = pA + pB.

For any individual i, let xi
(A) = xi, 1

(A),…, xi, pA
(A) ′ and xi

(B) = xi, 1
(B),…, xi, pB

(B) ′ be the values of the 
covariates present in File A and File B, respectively; and, let yi be the outcome and zi be 
the treatment status. We directly observe xi

(A) for all records in File A, but not (xi
(B), yi, zi). 

Likewise, we directly observe (xi
(B), yi, zi) for all records in File B, but not xi

(A).
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Following [24], we introduce d = d1,…, dnB ′ for the records in File B to encode a particular 
linkage of the two files. For any record j in File B, let dj = i if record i in File A and record j
in File B is a match, and dj = nA + j if record j in File B has no match in File A. We enforce 
dj ≠ dj′ for any j ≠ j′.

Suppose we have F  imperfect linking variables, also referred to as fields. For now, assume 
that none of the covariates in x(A) or x(B) are used as linking variables. We discuss using 
a set of variables as both covariates and linking variables in Section 5 and Section 6. For 
each pair of records (i, j) in File A×File B, we define a vector γij = γ1, ij,…, γF , ij ′, where γf, ij
is the score reflecting the similarity in the field f for the record pair. Here, we use binary 
comparisons, i.e., γf, ij = 1 when records i and j have the same value of field f, and γf, ij = 0
otherwise. One also can use ordered comparisons with multiple levels to capture the strength 
of agreement in the fields, which can be especially useful for string fields like names.

Following [1] and related work, we assume that γij is a realization from a mixture of two 
distributions, one for true links and one for nonlinks. We have

γij dj = i ∼iid g θm , γij dj ≠ i ∼iid g θu ,

(8)

where θm = θ1,m,…, θF ,m ′ and θu = θ1, u,…, θF , u ′ are parameters specific to each mixture 
component. Following common practice in probabilistic record linkage, for computational 
convenience we posit conditional independence across fields. With binary fields, we 
compute

g θm = P γij ∣ dj = i = ∏
f = 1

F
P γf, ij ∣ dj = i = ∏

f = 1

F
θf,m
γf, ij 1 − θf,m 1 − γf, ij

(9)

g θu = P γij ∣ dj ≠ i = ∏
f = 1

F
P γf, ij ∣ dj ≠ i = ∏

f = 1

F
θf, u
γf, ij 1 − θf, u 1 − γf, ij .

(10)

This model implies that the linking fields are independent of the outcomes, treatments, and 
covariates. This is commonly assumed in record linkage settings, although it is possible to 
make the distributions depend on some variables [25].

To specify a prior distribution on d with the constraint dj ≠ dj′ for any j ≠ j′, we follow 
an approach described in, for example, [24, 26, 27]. Let I(E) represent the indicator 
for an event E. We assume I dj ≤ nA ∼ Bernoulli(π), where π represents the proportion of 
matches expected a priori as a fraction of the smaller file. We assume π ∼ Beta απ, βπ . The 
hyperparameters απ and βπ provide prior information on the number of intersecting records in 
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the two files. Finally, the parameters θf,m and θf, u follow i.i.d. Beta(a, b) distributions for all 
f = 1,…,F . We discuss specific choices of απ, βπ, a and b in Section 3.1.

3. The RegBRLC Model
RegBRLC requires models relating the outcomes, treatment indicator, and covariates in File 
B to the covariates in File A. The contribution to the likelihood of a record in File B depends 
on whether it is linked to a record in File A, or not. For any record j in File B linked 
to a record i in File A, we specify the joint distribution of yj, zj,xj

(B) ∣ xi
(A) , whereas for a 

record j in File B not linked to any record in File A, we specify the joint distribution of 
yj, zj,xj

(B) . More precisely, when any record j in File B is linked to record i in File A, 
we specify the conditional distribution of the outcome denoted as f1 yj ∣ xi

(A), zj,xj
(B),θym , the 

propensity score denoted as g1 zj ∣ xj
(B),xi

(A),θzm , and the covariates denoted as ℎ1 xj
(B) ∣ xi

(A),θxm . 
For any record j in File B that does not have a link in File A and hence is missing xi

(A), we 
specify an outcome model f2 yj ∣ xj

(B), zj,θyu , a propensity score model g2 zj ∣ xj
(B),θzu , and and 

a marginal distribution ℎ2 xj
(B) ∣ θxu . Throughout, we assume that the covariates in File A are 

fixed quantities and thus do not require specified probability distributions.

Let y = y1,…, ynB ′ and z = z1,…, znB ′ be the vectors of outcomes and treatment indicators 

for the records in File B. Let X(A) = x1
(A)′:⋯:xnA

(A)′ ′ be a nA × pA matrix of covariates in File A, 

and X(B) = x1
(B)′:⋯:xnB

(B)′ ′ be a nB × pB matrix of covariates in File B. For any record j in File 
B, the contribution to the likelihood function is given by

Lj
AB =

f1 yj ∣ xi
(A),xj

(B), zj,θym g1 zj ∣ xi
(A),xj

(B),θzm ℎ1 xj
(B) ∣ xi

(A),θxm , for dj = i ≤ nA
f2 yj ∣ xj

(B), zj,θyu g2 zj ∣ xj
(B),θzu ℎ2 xj

(B) ∣ θxu , for dj = nA + j .

(11)

The likelihood including the contributions from (11) and the linkage model in (8)–(10) is

L θym,θzm,θxm,θyu,θzu,θxu,θm,θu,d ∣ γij:1 ≤ i ≤ nA, 1 ≤ j ≤ nA , y, z,X(A),X(B) ∝

∏
(i, j):
dj = i

Lj
AB ∏
j:dj ≠ i

∀i

Ljj
AB∏

i, j
∏
f = 1

F
θf,mγf, ij 1 − θf,m 1 − γf, ij

I dj = i
∏
f = 1

F
θf, uγf, ij 1 − θf, u 1 − γf, ij

I dj ≠ i

× I dj ≠ dj′, whenever j ≠ j′ .

(12)

This modeling strategy is sufficiently general to incorporate many choices of f1, f2, g1, g2, 
ℎ1, and ℎ2. To illustrate and to facilitate simulation studies, we present a specific choice of 
these distributions in Section 3.1. We use outcome and covariate models based on normal 
distributions, and a propensity score model based on a logistic regression. In Section 3.3, we 
discuss some strategies for simplifying model specifications and for model checking.

Before we present the illustrative model specification, it is worth emphasizing the purpose of 
the outcome and covariate models: they are intended to improve the quality of the linkages. 
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By leveraging relationships among variables across the files, we hope to find more reliable 
links. Once we have plausibly linked records, we use a causal estimator that can be specified 
independently of the models used in (12), as discussed in Section 3.2.

3.1. Illustrative Specification

For the illustrative outcome model, we use linear regressions for f1 and f2 so that

yj = αym(0) + zjαym(1) + xi
(A)′αym

(2) + xj
(B)′αym

(3) + ϵj, ϵj ∼ N 0, σm2

(13)

for records with links, and

yj = αyu(0) + zjαyu(1) + xj
(B)′αyu

(2) + ϵj, ϵj ∼ N 0, σu2

(14)

for records without links. As noted previously, we do not have the xi
(A) for the non-links.

For the illustrative propensity score model, we use logistic regressions for g1 and g2 with

Pr zj = 1 ∣ xi
(A),xj

(B),θzm = exp αzm(0) + xi
(A)′αzm

(1) + xj
(B)′αzm

(2)

1 + exp αzm
(0) + xi

(A)′αzm(1) + xj
(B)′αzm

(2)

(15)

for records with links, where θzm = αzm
(0),αzm

(1)′,αzm
(2)′ ′. We use

Pr zj = 1 ∣ xj
(B),θzu = exp αzu(0) + xj

(B)′αzu
(1)

1 + exp αzu(0) + xj
(B)′αzu

(1)

(16)

for records without links, where θzu = αzu
(0),αzu

(1)′ ′.

Finally, for the illustrative covariate model, we use a multivariate normal regression for the 
conditional distribution of xj

(B) ∣ xi
(A) when dj = i ≤ nA, so that

xj
(B)′ = ηxm′ + xi

(A)′Bxm + ϵij, ϵij ∼ N 0,Σxm ,

(17)

where Bxm is a pA × pB matrix, ηxm is a pB × 1 vector and Σxm is a pB × pB covariance matrix. For 
records without links, we assume xj

(B) follows a multivariate normal distribution with mean 
μxu and covariance matrix Σxu.

In this illustrative model specification and in our simulation studies, we assign all regression 
coefficients in the outcome model and in the propensity score model i.i.d. N(0,1) prior 
distributions. We assign σxm

2  and σxu
2  i.i.d. Inverse-Gamma (aσ, bσ) priors. For the covariate 

Guha and Reiter Page 8

J Stat Plan Inference. Author manuscript; available in PMC 2024 September 01.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



model, we set Π Bxm,Σxm = Π1 Bxm ∣ Σxm Π2 Σxm , where Bxm ∣ Σxm follows a matrix normal 
distribution MNpA, pB 0, I,Σxm  and Σxm follows an IW(ν, I) prior, where IW(ν, I) denotes an 
Inverse-Wishart prior with parameters ν and the identity matrix. The prior specification is 
completed by assigning an IW(ν, I) prior on Σxu. We set a = b = 1, aσ = bσ = 1, απ = βπ = 1, 
ν = 10. The choice of aσ = bσ = 1 leads to Inverse-Gamma prior distributions which are 
sufficiently non-informative, while απ = βπ = 1 ensures equal prior probabilities for a pair of 
records being a link or a non-link. The value of ν = 10 implies that the prior distributions on 
Σxm and Σxu are sufficiently concentrated around the identity matrix. Moderate perturbations 
of these hyperparameters lead to practically indistinguishable results in our simulation 
studies.

Summaries of the posterior distribution cannot be computed in closed form. However, 
the full conditional distributions for all the parameters are available. Thus, posterior 
computation can proceed through a MCMC algorithm. Details of the full conditional 
distributions for the illustrative model are provided in the supplementary material.

The MCMC sampling also offers inferences on the record linkages. For 
j = 1,…, nB, let dj

(1),…, dj
(L)  be the L post burn-in MCMC iterates of dj. For 

each j, we empirically estimate P dj = q ∣ −  using the proportion of samples 
where dj = q, i.e., P dj = q ∣ − = # l:dj

(l) = q /L, for q ∈ Jj = 1,…, nA, nA + j . When 

1 ≤ q∗ = arg maxq ∈ JjP dj = q ∣ − ≤ nA, we conclude that the record q∗ in File A is the most 

likely match for the record j in File B; denote this d j = q∗. On the other hand, when 
q∗ = nA + j, we conclude that most likely record j in File B does not match to any record in 
File A. In addition to posterior modes, one can estimate the posterior probability of linkage 
between any record pair. See Sadinle [24] for further discussion of using the posterior 
probabilities to determine links.

3.2. Defining the Causal Estimand and Overlap Weights Estimator

The plausibly linked files also provide means to estimate a WATE. Let mj = 1 when the 
identity of record j in File B with values (yj, zj, xj

(B)) matches the identity of some record 
in File A, and let mj = 0 when record j does not have a true match in File A. Thus, 
when mj = 1, the record’s full data vector (yj, zj, xj

(B), xj
(A)) is potentially observable with 

accurate record linkage. To define the WATE, we assume SUTVA and a version of strong 
ignorability for all records in File B, namely (y(0), y(1)) ⊥ z ∣ x(A),x(B), m for any generic 
record in File B with a link in File A. Under SUTVA and this version of strong ignorability, 
we have E y(z) ∣ x(A),x(B),m = 1 = E y ∣ x(A),x(B), z,m = 1 , so that τ x(A),x(B)  becomes 

the average treatment effect conditional on the covariates (x(A), x(B)) for linked records, 
i.e., τ x(A),x(B) = E y(1) − y(0) ∣ x(A),x(B),m = 1 . In actuality, we require strong ignorability 

only for records with true links (m = 1). However, in practical settings it seems a stretch to 
claim that strong ignorability holds only for the subset of linkable records but not for others.

Following Section 2.1, to define the WATE we need to average over a target population. 
We use the overlap population among records that can be linked, and denote the WATE 
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for this target population as τO, linked. When each record in File B has a link in File A, 
τO, linked is defined over the full study population in File B. When some records in File B 
do not have links in File A, τO, linked is defined over a subset of the study population in 
File B. This can be a reasonable target population for causal inferences based on File 
A and File B, as it is the only set of individuals for which we could observe their full 
set of outcomes, treatments, and covariates. The expression for τO, linked can be obtained by 
letting t(x) = e x(A),x(B) 1 − e x(A),x(B) m x(B)  in (1), where m x(B) = 1 when the record 

corresponding to covariate x(B) in File B is linkable and m x(B) = 0 when it is not linkable. 

Substituting this new t(x) into (2), we estimate τO, linked by

τO, linked =
∑(i, j) ∈ M 1 − e xi

(A),xj
(B) zjyj

∑(i, j) ∈ M 1 − e xi
(A),xj

(B) zj
−

∑(i, j) ∈ Me xi
(A),xj

(B) 1 − zj yj
∑(i, j) ∈ Me xi

(A),xj
(B) 1 − zj

,

(18)

where M is the set of all linked records in File A and File B.

An important question is when we can generalize τO, linked to treatment effects for broader 
populations. Here, we focus on generalizing to τO. As described in Section 2.1, τO is defined 
on the overlap population among the records in File B and computed with the complete x for 
all individuals. Of course, in our setting we do not observe this full overlap population, as 
we can know x only for linkable records. However, we can generalize τO, linked = τO when 
the distribution of x is the same for linkable and non-linkable records; that is, when 
g(x ∣ m(x) = 1) = g(x) for the full overlap population. A special case of this scenario arises 
when all records in the full overlap population are linkable. Another arises when true linkage 
status is independent of covariates. This can arise, for example, when the linking variables 
comprise string metrics (like names) that are erroneously recorded at random. We also can 
generalize τO, linked = τO in the case where τ(x) = τ for all x in File B. Of course, as with 
any observational study, generalizing treatment effects beyond the study population requires 
additional assumptions, such as constant treatment effects for all individuals [28].

In practice we do not know and must estimate which records have links. We consider 
MCMC iterations (suitably thinned) as draws of plausible linkages and therefore providing 
estimates of τO, linked. For the l-th MCMC iterate after burn-in, let M(l) indicate the indices of 

record pairs in File A and File B that are linked, i.e., M(l) = (i, j):dj
(l) = i, i ≤ nA . Let (θym

(l) , 
θzm

(l) , θyu
(l), θzu

(l)) be the l-th post burn-in iterate of (θym, θzm, θyu, θzu). For the l − tℎ iteration, we first 
compute an estimate of the propensity score for all observations in File B that are matched 
with some observation in File A. Specifically, if (i, j). is a matched pair, then the estimated 
propensity score for the (i, j)th pair is given by e i, j

(l) = e xi
(A),xj

(B),θzm
(l)  Following (3), define the 

l-th post burn-in iterate of τO, linked as

τO, linked
(l) =

∑(i, j) ∈ M(l) 1 − e i, j
(l) zjyj

∑(i, j) ∈ M(l) 1 − e i, j
(l) zj

−
∑(i, j) ∈ M(l)e i, j

(l) 1 − zj yj
∑(i, j) ∈ M(l)e i, j

(l) 1 − zj
.

(19)
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We compute τO, linked
(1) ,…, τO, linked

(L)  and use τO, linked = ∑l = 1
L τO, linked

(l) /L as the point estimator of 
τO, linked.

Draws of τO, linked vary only because of different linkages across MCMC iterations; the 
variation in these drawn values does not reflect inherent sampling variability. For example, 
even if all true links were known perfectly, we still have uncertainty in the estimated WATE. 
We account for this sampling variability and the variability from estimating the missing true 
links using multiple imputation. More specifically, to estimate the variance of τO, linked, we use 
multiple imputation formulae with all L iterates [29], computing

Var τO, linked = ∑l = 1
L UO, linked

(l)

L + 1 + 1
L

∑l = 1
L τO, linked

(l) − τO, linked 2

L − 1 .

(20)

Each UO, linked
(l)  is computed using (5), plugging in the values from the linked data in the l-th 

iterate. Assuming large L, inferences are based on a normal distribution with mean τO, linked
and variance Var τO, linked

The modeling framework allows analysts to use other causal estimators with the plausibly 
linked data files. To illustrate this flexibility in the simulation studies, we now present 
a regression-adjusted estimator of τO, linked based on the overlap weights. As a regression-
adjusted, overlap weights estimator has not been discussed previously in the literature, we 
discuss some of its properties with perfectly linked data in the supplementary material.

Suppose we have a model for the outcome; for illustrative purposes, we use the model in 
(13). Let the mean function of the outcome under the model, evaluated at the l-th MCMC 
iterate of the parameters, be μi, j

(l)(ζ) = μ zj = ζ,xi
(A),xj

(B),θym
(l) , where ζ = 0, 1, represent control 

and treatment, respectively. For example, with a linear regression as the outcome model, the 
mean function is the predicted value of the outcome using the linked data and parameter 
estimates in iteration l. For any linked record pair (i, j) at the l-th iteration, the residual for 
the fitted outcome model is Ri, j

(l) = yj − μi, j
(l) zj,xi

(A),xj
(B),θym

(l) . The regression-adjusted estimator 
for the l-th iteration is defined as

τO, linked, reg
(l) =

∑(i, j) ∈ M(l) 1 − e i, j
(l) zjRl, j

(l)

∑(i, j) ∈ M(l) 1 − e i, j
(l) zj

− ∑(i, j) ∈ M(l)e l, j
(l) 1 − zj Ri, j

(l)

∑(i, j) ∈ M(l)e i, j
(l) 1 − zj

+
∑(i, j) ∈ M(l) μi, j

(l)(1) − μi, j
(l)(0) e i, j

(l) 1 − e i, j
(l)

∑(i, j) ∈ M(l)e i, j
(l) 1 − e i, j

(l) .

(21)

We compute τO, linked, reg
(1) ,…, τO, linked, reg

(L)  and use τO, linked, reg = ∑l = 1
L τO, linked, reg

(l) /L as the new estimator 
of τO, linked.

To estimate the variance of τO, linked, reg, we use multiple imputation and compute
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Var τO, linked, reg = ∑l = 1
L UO, linked, reg

(l)

L + 1 + 1
L

∑l = 1
L τO, linked, reg

(l) − τO, linked, reg 2

L − 1 .

(22)

We present the expression for UO, linked, reg
(l)  and its derivation in the supplementary material. We 

use normal-based inferences for τO, linked with the mean from (21) and variance from (22).

3.3. Useful Modeling Simplifications

Using all the conditional distributions in (11) offers a path to take advantage of as much 
information as possible from File A. However, it may be convenient to assume that variables 
in File B are independent of subsets of variables in File A to simplify model specification 
and reduce computational overhead. The goal of modeling the relationships among the study 
variables in File B and File A is to enhance the quality of the probabilistic record linkage. 
Once we obtain links, these models are largely irrelevant, as we apply a causal estimator 
on each plausibly linked file. Thus, it is possible for the conditional distributions to be 
mis-specified yet still useful, as we now describe.

One simplification is to set the outcome y to be conditionally independent of x(A). 
Effectively, this eliminates the contribution of the model for y ∣ x from (11). Thus, analysts 
who make this assumption need not specify a model for y when obtaining draws of 
dj
(1),…, dj

(L) , for j = 1,…, nB. This accords with the “design-first” philosophy of causal 
inference [30], which argues that one should avoid using the outcomes when manipulating 
the covariates, such as when computing propensity scores or linking records. Using the 
framework with this simplification still can improve linkage quality. For example, if one can 
find covariates in File B that are highly correlated with some function of the covariates in 
File A, the proposed model will be able to use that information to improve linkage accuracy.

Another simplification is to assume x(B) is independent of x(A). This eliminates the 
contribution from the model for x(B) ∣ x(A) from (11) and hence eliminates the need to 
model this conditional distribution. When pB or pA is large, or when the covariates in File B 
have complicated distributions, this simplification can reduce modeling and computational 
effort substantially. Alternatively, analysts may be able to posit covariate models for fewer 
than pB and pA variables. Again, as the goal of the covariate model is solely to augment 
the probabilistic record linkage model with information to assist in linking records, such 
simplifications still can provide benefits, even if they are based on faulty assumptions.

As with any model specification, it is good practice to check the quality of model fit. 
This can be challenging, particularly for relationships of variables across the two files. One 
possibility is to use pairs known to be certain links, when such pairs are available. For 
example, one can estimate the posited outcome, propensity score, and covariate models 
using these certain links, and perform the usual model checking procedures to arrive at 
reasonable models. These certain links also could be used to identify variables across the 
two files with strong relationships, so as to suitably discard variables in File A that offer 
little information about the variables in File B. When an adequate number of certain links 
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are not available, one can use record pairs that have high probability of being links according 
to off-the-shelf probabilistic record linkage algorithms like implementations of [1].

Another model checking tool is to generate replicate datasets from the posited RegBRLC 
model using draws of model parameters [31]. Analysts can compare results from these 
replicates to those in the observed data, akin to posterior predictive model checking. For 
example, one could examine the replicated and observed distributions of the outcome 
variable; if they are dissimilar in appearance, the outcome model might be improved.

4. Simulation Studies
We illustrate the performance of RegBRLC modeling using repeated sampling simulations 
with the model in Section 3.1. For simplicity, we assume that both File A and File B have 
the same number of covariates and that all covariates are important in the outcome and the 
propensity score models. We present additional simulations in the supplementary material 
in which pA ≠ pB and both the propensity score and outcome models include unimportant 
predictors, as well as a simulation where the fitted outcome model is poorly specified, 
including an illustrative comparison with the approach from [20].

4.1. Simulated Data Generation

We work with the RLdata10000 data from the R package RecordLinkage [32]. These data 
comprise an artificial population of 10000 records with birth years, birth months, birth dates, 
first names and last names. Among these are 1000 individuals for whom the values of these 
variables have been duplicated and then randomly perturbed, introducing errors into these 
potential linking variables.

The RLdata10000 data do not include covariates, treatments, or outcomes. We generate 
values of these for each of the 9000 unique individuals in the RLdata10000 file. For 
each individual k, we generate p = 4 covariates, (x1, k, x2, k, x3, k, x4, k), as follows. We sample 
x1, k, x2, k ′ from a bivariate normal distribution with mean zero, marginal variance 1 for each 

component, and covariance equal to 0.2. We generate x3, k, x4, k ′ from a bivariate normal 
distribution with mean (x1, k, x2, k), marginal variance 1 for each component, and covariance 
also equal to 0.2. This represents a modest amount of correlation among the predictors. We 
note that this generates covariates independently of the linkage variables.

We simulate each zk from a Bernoulli distribution such that

P zk = 1 ∣ xk = eα0
(0) + ∑l = 1

p αl(0)xl, k

1 + eα0
(0) + ∑l = 1

p αl(0)xl, k
,

(23)

where α0
(0), α1

(0), α2
(0), α3

(0), α4
(0) = (1, 1.5, − 1, 2, − 3). The superscript 0 emphasizes that the 

parameter value is from the true data generating mechanism. We generate each yk from
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yk = β0(0) + ∑
l = 1

p
βl(0)xl, k + βC(0)zk + ϵk, ϵk ∼i . i . d N 0, σ(0)2 ,

(24)

where β0
(0), β1

(0), β2
(0), β3

(0), β4
(0) = (1, − 1, 2, − 3, − 2). We consider σ(0)2 ∈ 1, 4, 16 . These 

correspond to R2 values of (.95, .82, .55), respectively. Thus, we can evaluate the 
performance of the methods under differing strength of association among the outcomes and 
the remaining variables. Since (24) implies τ x1, k, x2, k, x3, k, x4, k = βC

(0), we have τO, linked = τO = 5.

We construct File A and File B by putting subsets of records into two files. Every record 
in File A has measured (x1, x2), and every record in File B has measured the outcome, 
treatment, and (x3, x4). Both files include three imperfect linking variables: birth year, birth 
month and birth date. We do not use the first names and last names in these simulations, 
reflecting the common setting where names are unavailable. When string fields like names 
are used for linking, one can construct comparison vectors from metrics like the Jaro-
Winkler or the Levenshtein similarity measure [33]. For ease of simulation, we set the sizes 
of File A and File B to be nA = nB = 1000, although RegBRLC in general does not require 
nA = nB.

In any simulation, we randomly sample a subset of the 1000 individuals with duplicates. We 
put these records in File A and their duplicates in File B. The number of these intersecting 
individuals is denoted by nAB, which is varied to be 200, 500, or 800. In this way, we can 
evaluate the performance of the methods under different amounts of intersecting records. 
For the remaining nA − nAB  records in File A, we randomly choose nA − nAB  records from 
the 8000 individuals without duplicates, discarding their treatments, outcomes, and x(B), and 
keeping only x(A) and the linking variables. To ensure that the non-intersecting records of 
File A and File B correspond to different individuals, we set aside these nA − nAB  records 
from the 8000 records. To add the remaining nB − nAB  records to File B, we randomly 
choose nB − nAB  records from the remaining 8000 − nA + nAB  records, discarding x(A) and 
keeping the treatments, outcomes and x(B), along with the linking variables.

We let the MCMC chains run for 2000 iterations. We discard the first 1500 as burn-in, and 
make inferences on both the causal effects and record linkages based on the post burn-in 
iterates. We assess convergence of the Markov chains by observing the trace-plots of 10 
randomly chosen parameters from the outcome models and the propensity score models 
for the linked and unlinked data, which suggest satisfactory mixing. The average effective 
sample size for all parameters of the outcome model is 307 (out of 500 iterates).

We compare the performance of RegBRLC with estimators from a two-stage approach as 
follows. First, we fit the bipartite Bayesian record linkage model from Section 2.2 without 
using the covariates, treatments, or outcomes. Each of the L post burn-in samples of d
corresponds to a plausibly linked database. In each plausibly linked database, we compute 
the maximum likelihood estimates (MLEs) of the coefficients in the outcome and propensity 
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score models, which we substitute into (19) and (21). As the point estimates, we compute 
τO, linked and τO, linked, reg using the L linked databases. We also estimate their variances based on 
(20) and (22). Since this model links the files without using information on the outcomes, 
treatments, and covariates, comparisons, it can reveal if the sharing of information between 
the record linkage and study variable models offers benefits. We refer to this model as 
BRLC.

We use 100 independent simulations runs to compare the performances of RegBRLC and 
BRLC in terms of both causal inference and record linkage. For linkage quality, we compute 
the precision and the recall in each of the 100 replications. Following the notation in 
Section 2.2 and Section 3, in any replication, let d be the point estimate of d = d1,…, dnB ′. 
The precision is the proportion of links that are actual matches. Let Aj = d j = dj, d j ≤ nA . 

The precision is defined as ∑j = 1
nB I Aj /∑j = 1

nB I d j ≤ nA . The recall is the proportion of actual 

matches that are determined as links, ∑j = 1
nB I Aj /∑j = 1

nB I dj ≤ nA . A perfect record linkage 
procedure would result in precision and recall equal to one.

To assess the quality of the causal inferences, we report the averages and empirical 
standard deviations of τO, linked and τO, linked, reg over the 100 replications for both RegBRLC 
and BRLC. We also present the empirical coverage rates of multiple imputation 95% 
confidence intervals (based on 100 replications) for τO, linked. Finally, we present the results 
for the causal estimators applied to the subsets of records that are true links, i.e., when 
we have perfect record linkage. This provides a baseline to assess the accuracy lost due 
to imperfect linkages. As a side benefit, it also allows us to assess the properties of the 
regression-adjusted overlap weights estimator and its variance estimator in settings where 
record linkage is not needed.

4.2. Simulation Results

Figure 1 displays averages of the precision and recall for various simulation scenarios. For 
the three scenarios with σ(0)2 = 1, we observe a modest increase in precision and a sharp 
increase in recall as the number of intersecting records increases for both RegBRLC and 
BRLC. In all three scenarios, RegBRLC dominates BRLC, with higher average precision 
and recall. The differences in average recall are substantial and grow with the number of 
intersecting records in the two files. Evidently, RegBRLC uses the relationships among the 
variables in the two files to learn more accurately which records should be paired, as the 
linkage variables are not sufficient by themselves to identify pairs as accurately.

The improved performance of RegBRLC over BRLC in terms of record linkage has a 
positive impact on the estimation of the causal effect. The first three rows of Table 1 
display properties of τO, linked and τO, linked, reg as applied for RegBRLC, BRLC, and the perfectly 
linked records when σ(0)2 = 1. For both estimators, RegBRLC accurately estimates the 
true τO, linked = 5 in all scenarios, with greatest deviation for the scenario with only 20% 
intersection between two files. In contrast, BRLC significantly underestimates τO, linked in 
all three scenarios. RegBRLC has smaller empirical standard deviations than BRLC. The 
empirical standard deviations also reveal the cost of imperfect linkages. They are higher 
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for RegBRLC and BRLC than for the analysis with the perfectly linked data. As expected, 
the empirical standard deviations decrease as the percentage of intersection between two 
files increases. Finally, the empirical standard deviations are consistently higher for τO, linked
compared to τO, linked, reg, suggesting benefits to using the regression-adjusted estimator.

We next vary the signal to noise ratios for the outcome model. Specifically, we consider 
σ(0)2 ∈ 4, 16  in (24). Here, we perform simulation studies only for the 80% intersecting 
records scenario, as this scenario gives each model its best chance to perform effectively. 
Comparing all 80% intersection scenarios in Figure 1, we find that the precision and 
recall values decline for RegBRLC as σ(0)2 increases. As the predictive power of the 
covariates weakens, the outcome model offers increasingly less information about the 
correct linkages. For BRLC, the average precision and recall values are unchanged (other 
than by small Monte Carlo errors) when changing σ(0)2. This is expected, since the record 
linkage in BRLC is done independently of the outcomes, treatments, and covariates. Overall, 
RegBRLC exhibits better performance than BRLC on recall and similar performance on 
precision.

The last two rows of Table 1 display the simulation results for τO, linked and τO, linked, reg in these 
scenarios with larger σ(0)2. RegBRLC continues to estimate the causal effect accurately, 
although with increased standard deviations, as expected. In comparison, BRLC continues to 
underestimate the causal effect. For these two larger values of σ(0)2, the empirical standard 
deviations for τO, linked, reg tend to be smaller than those for τO, linked.

We next turn to the coverage rates for the multiple imputation 95% confidence intervals. 
For RegBRLC, in all but the 20% intersection scenario, the intervals based on τO, linked cover 
in 100% of the replications; the 20% intersection scenario has a coverage rate of 99%. 
The consistent over-coverage occurs because, in these simulations, the distribution of τO, linked

is platykurtic rather than normally distributed. The coverage rates for the intervals based 
on τO, linked, reg are (91%, 96%, 98%, 99%, 99%) for the scenarios with, respectively, 20% 
intersection, 50% intersection, 80% intersection and σ(0)2 = 1, 80% intersection and σ(0)2 = 4, 
and 80% intersection and σ(0)2 = 16. In contrast, the intervals for BRLC demonstrate 
substantial under-coverage, never rising above 41%. For both models, the intervals based 
on τO, linked tend to be wider than those based on τO, linked, reg. The lengths of the intervals 
decrease steadily as overlap between the two files increases, reflecting reduced uncertainty 
in linkages.

The simulation results for the perfectly linked data also offer insight into the accuracy of the 
variance estimators. Let τO and τO, reg be the unadjusted and regression-adjusted estimators 
of τO based on perfectly linked data. For the five scenarios, the coverage rates when using 
τO based on the perfectly linked data are (97%, 96%, 96%, 98%, 98%), respectively. And, 
the coverage rates when using τO, reg based on the perfectly linked data are (95%, 96%, 96%, 
98%, 98%), respectively. For the perfectly linked data, the intervals based on τO again tend 
to be wider than those based on τO, reg.

Guha and Reiter Page 16

J Stat Plan Inference. Author manuscript; available in PMC 2024 September 01.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



5. Illustration with Causal Study of Debit Cards
To illustrate regression-assisted Bayesian record linkage with causal inference further, we 
follow Guha et al. [20] and generate a record linkage scenario for an observational study of 
the causal effect of possession of debit cards on household consumption. As we use the same 
survey as [20], our description of the data follows theirs.

We use data from the Italy Survey on Household Income and Wealth (SHIW), which is a 
nationally representative survey run by the Bank of Italy once in every two years since 1965, 
with the only exception being that the 1997 survey was delayed to 1998. The SHIW collects 
information on Italian households’ economic and financial behavior. We link two files with 
data collected during 1995 and 1998. Some households participated in both years and some 
did not. Our study population is the set of households possessing at least one current bank 
account but no debit cards before 1995. The treatment z = 1 if the household (all members 
combined) possesses one and only one debit card at 1998, and z = 0 if the household does 
not possess any debit cards at 1998. Households with more than one debit card are excluded 
from our sample. As the SHIW data have information on debit card ownership only at the 
household level, we assume that the owner of the debit card is the household head.

The outcome is the monthly average spending of the household on all consumer goods, 
measured in the 1998 survey. For data quality control, we delete the observations that have 
negative values of the outcome, or unusually high values of monthly income or ratios of 
monthly spending to monthly income. The final data file corresponding to 1998 contains 
3088 observations with information on the outcome, the treatment, and several covariates, 
and the final data file corresponding to 1995 contains 582 observations with additional 
covariates.

Both files contain a common set of variables that we can use as imperfect linking variables. 
For this illustration, we use the household head’s gender, birth year, marital status, and 
highest educational qualification, the geographical area of residence of the household, the 
region and the province in which the household is located, and the number of inhabitants in 
the town in which the household is located. The data values for these variables are collected 
in each survey year from questionnaires completed by the participants. Hence, linking on 
these variables is imperfect, as participants can and do enter different values in the two 
surveys. Fortunately, we also have a unique identifier (ID) that we can use to perfectly link 
households across years. We use this ID to assess how well the models link observations 
in the two files based on the imperfect linking variables described above. Based on the 
unique ID, among the intersecting individuals in the two files, there are 190 individuals in 
the treatment group (who possess a debit card) and 392 individuals in the control group.

We consider covariates in this study measured in the 1995 survey and the 1998 survey. The 
covariates in the 1995 data consist of the monthly average spending of the household on 
consumer goods, the net wealth of the household, the household net disposable income, the 
monthly average cash inventory held by the household, the average interest rate and the 
number of banks in the municipality where the household is located; all values are measured 
in 1995. Guha et al. [20] provide a detailed justification for inclusion of the covariates in 
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the 1995 survey. The covariates in the 1998 data consist of the number of household income 
earners and the age of the head of the household, measured in 1998.

We implement RegBRLC using a simplification from Section 3.3, namely that x(B) is 
independent of x(A). In fitting the model, we let the data from 1995 comprise File B and the 
data from 1998 comprise File A, as the data file from 1995 has smaller sample size. This 
means that the outcome and treatment are in File A. Although this allocation of variables 
differs from the presentation in Section 3, practically it makes no difference to the model 
specification. We include both covariates in 1998 in x(A) and all six covariates in 1995 in 
x(B). In addition, because gender, marital status and highest educational qualification of the 
head of the household could be important predictors of the outcome, we also include their 
1995 values in x(B).

For the outcome model, we use a linear regression of 1998 monthly average spending of the 
household on all consumer goods on linear functions of (x(A), x(B)). For the propensity score 
model, we use a logistic regression of z on linear functions of (x(A), x(B)). We do not specify 
a covariate model. We use the prior hyperparameter values described in the simulation 
studies; moderate perturbations of them lead to practically indistinguishable results. We let 
the MCMC chains run for 2000 iterations and discard the first 1500 as burn-in. We also 
examine results for BRLC and results using the perfectly linked data for comparisons.

Table 2 presents the precision and recall values, along with the multiple imputation means 
and 95% confidence intervals using τO, linked and τO, linked, reg (in thousand Italian Liras) for 
all methods. Consistent with the simulation results, RegBRLC offers better precision and 
recall than BRLC. Using results from the perfect-links model as a benchmark, we find that 
RegBRLC more closely tracks the mean treatment effect estimates from the perfectlinks 
model than BRLC does. This also holds for the 95% confidence intervals, particularly for 
τO, linked, reg, although the differences arguably are modest. The estimated variance of τO, linked, reg is 
smaller than the estimated variance of τO, linked across all three methods, reflecting the benefits 
of using the regression-adjusted estimator. It should be noted that the point estimates from 
both RegBRLC and BRLC models differ from those for the perfect-links model, reflecting 
the effects of inevitably imperfect linkages.

These results suggest that, on average, possession of a single debit card for a household 
leads to more monthly consumption than not possessing any debit card, during the study 
period. Similar findings are presented by [34].

6. Conclusion and Future Work
The empirical studies suggest that regression-assisted Bayesian record linkage with causal 
inference modeling strategies can improve the quality of the linkages and the accuracy 
of the causal inferences. They also suggest potential benefits of using a regression-
adjusted estimator when applying overlap weights approaches to propensity score inference. 
Although we assumed nA ≥ nB, we conjecture that these findings will hold when nA < nB, 
albeit with a different joint likelihood function tailored to the data setting.

Guha and Reiter Page 18

J Stat Plan Inference. Author manuscript; available in PMC 2024 September 01.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



The RegBRLC modeling framework has other advantages. First, it can accommodate 
missing outcomes, treatment status or linking variables in the two files. These values 
can be imputed from predictive distributions as part of the MCMC sampling. In such 
cases, using the full modeling strategy can be preferable to using a simplification, so as to 
preserve relationships across variables during imputation. Second, the modeling framework 
accommodates any causal estimator, such as those based on inverse probability weighting 
or matching using propensity scores. Third, it can accommodate prior information, such 
as estimates of relationships among the study variables from other studies or domain 
knowledge, via specification of informative prior distributions.

RegBRLC models can be computationally intensive, as is generally the case with Bayesian 
versions of bipartite probabilistic record linkage in general. In addition to simplifying 
the models as discussed in Section 3.3, it may be possible to speed computation by 
modifying the estimation algorithms. For example, in large samples, one can approximate 
the distributions of coefficients of binary or other categorical regression models using 
normal distributions, thereby simplifying some MCMC steps. Another approach is not to 
enforce bipartite matching in the Bayesian record linkage model [25]. By allowing duplicate 
matchings, the linkage steps can be done for each observation in parallel, thereby speeding 
computation significantly.

In some contexts, analysts may desire to use some variables as linkage variables and as 
covariates, as we do in the SHIW analysis. When these variables are recorded identically 
across files, this presents no issue for the RegBRLC framework. In such cases it may 
make sense to view these as blocking variables—the analyst requires record pairs to match 
exactly on the blocking variables [35, 36]—rather than use them as linkage variables. 
When these variables are not recorded identically across files, the path forward to using 
RegBRLC models is less clear, as the true value of the covariate is unobserved. In the SHIW 
application, we used the values in one of the files, File A, as the covariates while using the 
values in both files as linking variables. Evaluating this approach as a general strategy in 
probabilistic record linkage is a topic for future research.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Simulated average precision and recall values for RegBRLC and BRLC over 100 
replications of each scenario. Scenarios vary the number of intersecting records in the two 
files or the outcome model variance σ(0)2. The dotted blue vertical lines separate scenarios 
where σ(0)2 = 1 and σ(0)2 > 1. All Monte Carlo standard errors are 0.008 or less.
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Table 1:

Simulated averages and standard deviations (in parentheses) of τO, linked and τO, linked, reg for RegBRLC and BRLC, 
as well as estimates based on the perfectly linked data. Scenarios vary the numbers of intersecting records in 
the files or the outcome model variance σ(0)2. All scenarios have τO, inked = 5. Results in each scenario based on 
100 replications. Monte Carlo standard errors are all less than .08.

Percentage of Intersection σ(0)2

τO, linked τO, linked, reg

RegBRLC BRLC Perfect RegBRLC BRLC Perfect

20 1 4.58(0.58) 3.42(0.61) 4.94(0.36) 4.78(0.36) 3.51(0.48) 4.94(0.23)

50 1 4.92(0.43) 3.84(0.49) 4.98(0.27) 4.92(0.20) 3.81(0.28) 4.99(0.08)

80 1 4.93(0.23) 3.97(0.29) 5.01(0.16) 4.96(0.17) 3.99(0.24) 5.02(0.03)

80 4 4.89(0.36) 3.91(0.40) 4.98(0.23) 4.88(0.30) 3.88(0.35) 4.99(0.11)

80 16 4.64(0.39) 3.64(0.48) 4.94(0.29) 4.68(0.35) 3.67(0.40) 4.96(0.24)
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Table 2:

Results of the analysis of the SHIW data. Entries include the precision and recall for linking the 1995 and 
1998 files, and the means and multiple imputation 95% confidence intervals using τO, linked and τO, linked, reg (in 
thousand Italian Liras) for all methods. In the parentheses are the standard deviations (SDs) corresponding to 
τO, linked and τO, linked, reg.

Method

Precision Recall τO, linked τO, linked, reg

Mean (SD) 2.5% 97.5% Mean (SD) 2.5% 97.5%

Perfect - - 140.38 (3.36) 74.47 174.84 181.61 (2.81) 165.87 198.33

RegBRLC 0.897 0.876 184.34 (4.66) 50.05 340.31 192.44 (3.67) 162.34 246.19

BRLC 0.849 0.842 201.18 (4.82) 101.87 364.67 221.36 (3.96) 183.29 272.06
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