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1 INTRODUCTION

SUMMARY

Atmospheric pressure changes on Earth’s surface can deform the solid Earth. Sorrells derived
analytical formulae for displacement in a homogeneous, elastic half-space, generated by a
moving surface pressure source with speed ¢. Ben-Menahem and Singh derived formulae
when an atmospheric P wave impinges on Earth’s surface. For a P wave with an incident angle
close to the grazing angle, which essentially meant a slow apparent velocity ¢, in comparison to
P- (&) and S-wave velocities () in the Earth (¢, < B’ < '), they showed that their formulae
for solid-Earth deformations become identical with Sorrells’ formulae if ¢, is replaced by c.
But this agreement was only for the asymptotic cases (¢, < B’). The first point of this paper
is that the agreement of the two solutions extends to non-asymptotic cases, or when c¢,/f’
is not small. The second point is that the angle of incidence in Ben-Menahem and Singh’s
problem does not have to be the grazing angle. As long as the incident angle exceeds the
critical angle of refraction from the P wave in the atmosphere to the S wave in the solid Earth,
the formulae for Ben-Menahem and Singh’s solution become identical to Sorrell’s formulae.
The third point is that this solution has two different domains depending on the speed ¢ (or
¢,) on the surface. When ¢/f’ is small, deformations consist of the evanescent waves. When ¢
approaches Rayleigh-wave phase velocity, the driven oscillation in the solid Earth turns into a
free oscillation due to resonance and dominates the wavefield. The non-asymptotic analytical
solutions may be useful for the initial modelling of seismic deformations by fast-moving
sources, such as those generated by shock waves from meteoroids and volcanic eruptions
because the condition ¢/’ <« 1 may be violated for such fast-moving sources.

Key words: Seismic noise; Surface waves and free oscillations; Theoretical seismology;
Wave scattering and diffraction.

Many of these studies relied on the theory of Ben-Menahem &
Singh (1981) for the modelling of seismic signals (Fig. la). We

Deformations in the solid Earth, caused by an incident atmospheric
P wave on Earth’s surface can be observed commonly now because
of the availability of seismic stations with co-located pressure and
seismic sensors. An example is the EarthScope network after 2011
(e.g. Tytell et al. 2016). However, such a solid-Earth deformation by
atmospheric pressure has been analysed since the 1960s. For exam-
ple, Sorrells (1971), Sorrells et al. (1971) and Sorrells & Goforth
(1973) analysed co-located pressure and seismic data and demon-
strated the existence of wind-related seismic noise.

Other recent examples include volcano monitoring from infra-
sound signals and ground deformation (Ichihara ef al. 2012; Nishida
& Ichihara 2016), ground deformation caused by shock waves from
Space Shuttles (Kanamori ef al. 1991, 1992) and meteoroid falls
(Langston 2004; Edwards et al. 2007, 2008), seismic deformations
caused by thunder (Lin & Langston 2007), and seismic noise gen-
erated by airplanes and helicopters (Meng & Ben-Zion 2018).

refer to this book as BS81, hereafter. More specifically, we refer
to section 9.4.3. in BS81. In their problem, the atmosphere was
a homogeneous half-space with P-wave velocity «, and the solid
Earth was also a homogenous half-space with P-wave velocity o’
and S-wave velocity ’. We use a prime to indicate a parameter in
the solid Earth.

When an incident atmospheric P wave impinges on the surface
(Fig. 1a), the solid Earth deforms. For the grazing incidence of
atmospheric P waves, Ben-Menahem & Singh (1981) showed that
the formulae for a plane-wave solution can be written
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Figure 1. (a) The problem posed by Ben-Menahem and Singh (1981). The illustration is for a case of the post-critical incident angle e. Ray-theoretically, the
total reflection occurs and the evanescent waves are generated in the solid Earth. Our sign convention for displacement is upwardly positive. (b) The problem
posed by Sorrells (1971). The wind-related pressure source moves on the Earth’s surface with speed ¢, generating decaying motion from the surface in the

negative z-direction. There is no decay in the x-direction.

where U, and U, are vertical and horizontal displacements, @
is an angular frequency, ¢ is time, ¢, is phase velocity along the
surface (the x-axis in Fig. 1), A’ and p’ are Lame’s constant and
shear modulus in the solid Earth and Py(w) is the Fourier amplitude
of surface pressure at an angular frequency w. Eqgs (1) and (2)
are the same as (9.187) in BS81 and are asymptotic solutions,
derived under the condition ¢, < B’ < «’. Since B’ < o’ always
holds, we simply refer to this asymptotic condition as ¢, < g’ or
calB < 1.

Sorrells (1971) derived formulae for deformation in the solid
Earth generated by a moving pressure source on the Earth’s surface
(Fig. 1b). He also assumed a homogeneous half-space for the solid
Earth. Denoting the velocity of this pressure source by c, surface
displacements are given by
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where we use the convention that vertical displacement is positive
upward. Sorrells (1971) used the opposite sign convention. Sorrells
(1971) derived these formulae (eqs 23 and 24 in Sorrells, 1971)
under the asymptotic condition ¢/’ <« 1. In his problem, since
surface pressure is related to wind, ¢ was close to wind speed. Wind
speed is typically in the range of 0-20 ms™' (e.g. Tanimoto & Wang
2019) and is much smaller than P- (') and S-wave velocities (8)
in the solid Earth.

If we put ¢, = ¢, eqs (1) and (2) are the same with eqs (3) and
(4). This equality was pointed out in BS81.

The first point of this paper is that this equality holds, even
when ¢/f’ is not small. The agreement of solutions extends to
non-asymptotic cases whose ¢ can be any value within the range
0 <c<p'. We will sketch the derivation steps in Section 2.
The upper limit arises because of the condition that the inci-
dent angle of P waves has to be larger than the critical angle of
refraction.

The second point is that this agreement is not limited to the case of
grazing-angle incidence for the P-wave incidence problem (BS81).
The formulae for an incident angle larger than the critical angle are
the same as with Sorrells’ solutions.

In Section 3, we will show that this identical solution has
two principal domains, depending on the speed ¢ (or ¢,). When
c/B’ is small, deformations in solid Earth consist of the evanes-
cent waves. When ¢ becomes large and approaches the Rayleigh-
wave phase velocity, the evanescent waves turn into a free os-
cillation due to resonance and Rayleigh waves become dominant
in the wavefield. This is the third point of this paper. However,
most phenomena that have been reported (e.g. Ichihara er al
2012; Kanamori et al. 1991, 1992) were in the evanescent-wave
domain.

In Section 4, we will discuss three points. The first point is on
the validity of non-asymptotic solutions. If the P-wave velocity
in the atmosphere is higher than the S wave in the solid Earth, the
agreement of solutions cannot occur. Also, in such a medium there is
a possibility of the emergence of air-coupled Rayleigh waves (Press
& Ewing 1951; Ewing et al. 1957). The simple two-homogeneous
half-space model of this paper cannot model such signals, although
observations of air-coupled Rayleigh waves are real at stations in
a sedimentary region (Langston 2004; Edwards et al. 2007, 2008).
The second point of discussion is the misuse of the term ‘pressure-
induced surface waves’ in BS81 for the evanescent waves. These
evanescent waves are not surface waves because their phase velocity
(c,) 1s determined by the apparent velocity of the incoming P wave
and is not equal to the Rayleigh-wave phase velocity. The third point
is on the extension of the solutions to the range ¢/B" > 1, the super-
shear case of ¢. This problem is complicated due to the possibility
of the development of shock fronts.

In Section 5, we summarize our conclusions. Despite some defi-
ciencies, the non-asymptotic formulae in this paper may be useful
for the initial study of shock-wave-induced deformations, as the
formulae remain valid for fast-moving pressure sources.

2 DERIVATION OF NON-ASYMPTOTIC
SOLUTIONS

In this section, we summarize the main steps of derivation for the
non-asymptotic solutions. The main point is that the formulae for a
post-critical-angle case for the P-wave incidence problem in BS81
have the same form as the formulae for the moving pressure prob-
lem by Sorrells (1971), even when ¢/f’ is not small. These non-
asymptotic formulae are eqs (18) and (21).
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2.1 Formulae for the case of incident P waves

In the problem of BS81, an incident P wave from the atmosphere
makes an angle e when it reaches the Earth’s surface (Fig. 2). This
incident wave creates a reflected P wave, a refracted P wave (P’)
and a refracted S wave (S”). The angles associated with these waves
e, e and f” are defined in the figure. These notations, as introduced
by BS81, may differ from standard seismological conventions but
we follow their notations closely and build on their derivation steps.
We seek a plane-wave solution and assume that each term is
proportional to €'~ where k is a wavenumber. This wave prop-
agates with phase velocity ¢, in the x-direction given by ¢, = w/k.
A solution for a more complicated time-dependent case can be
obtained by taking a linear superposition of Fourier components.
By Snell’s law, we have

B o B a/ B ﬁ/
" sin(e)  sin(e’)  sin(f7)’
where phase velocity ¢, in the x-direction remains constant through

the reflection and refraction at the boundary. From eq. (5), we can
write

)

sine’) = =, 6)

™)

When e is smaller than the critical angle of reflection, we can
write

cos(e) = /1 — (&' /ca)?, (8)
cos(f) = /1 — (B'/ca)?, )

but when it is larger than the critical angle, they become (eq. 9.182
in BS81)

cos(e) = —iv/(a'Jc)? — 1, (10)
cos(f") = —i/(B'/ca)? — 1, (11)

they become purely complex numbers. The minus signs on the right-
hand side arise because of the regularity condition as z — —oo.
Using eqs (10) and (11) is essential to include the diffraction effects.
The agreement of solutions between BS81 and Sorrells occurs when
eqs (10) and (11) are used.

Because of the large contrast between the atmospheric P-wave
velocity and the seismic-wave velocities in solid Earth, the critical
angles for refraction are generally quite small. Table 1 shows two
examples; the first case is when atmospheric P waves are incident
on a hard-rock site (case 1: &’ = 6 kms™' and 8’ = 3.5kms~") and
the second case is when P waves are incident on a sedimentary rock
site (case 2: o’ = 2kms~'and 8/ = 1 kms™"). The table shows that
even with a slower S-wave speed (1 kms™') in case 2, the critical
angle of refraction to §" wave is about 20° (19.88°). For a hard-rock
site (8" = 3.5kms™"), the critical angle to S'-wave refraction occurs
at 5.57°. Therefore, it is common to encounter a situation where the
incident angle exceeds the critical angle.

We note that having an incident P wave is equivalent to having
the surface pressure (BS81)

P(w) = Py(w)exp' /), (12)
where

2
Po(w) = 2L (13)

my + my

with
N\ 2
m, = cos(e) [(g) sin(2e’) sin(2 1) + cos(2 f’)} , (14)
my = 2% cos(e). (15)
pa

Using this pressure formula, a formula for the ratio between
vertical displacement and surface pressure becomes (BS81)

U.(@) _ macos(e)

= , (16)
P(w) wpom
where U, (w) is the Fourier spectra of vertical displacement. Here, we
modified their eq. (9.181) for the vertical component from velocity
to displacement.
Substituting eqs (14) and (15) into eq. (16), we get

Ux) _ ( i )
P(w) wp'e! (%)2 sin(2¢’) sin(2 ") + cos*(2 /")

cos(e’)

)
Using eqs (6), (7), (10) and (11) and noting that

. o ’ o[/25/2 Cg Cg
sin(2¢’)sin(2 f") = —4 = 1— o 1 — ﬁ’

2 2
cos’(2f") = (1 —2’1) )
[&

a

we get

U= )

, ; P(w). (18)
M (14+8) — ety

where we defined

[\ <
b= 1= (19)

£y = [1— -2, (20)

Similarly, by starting from the horizontal formula (9.181) in
BS81, we obtain the horizontal displacement in the direction of
propagation (the x-axis)

ie, (148) —2%4

Ur(w) = o (1 n $§/>2 — 4 Ep

P(w). Q1)

There is an important feature to be noted in the non-asymptotic
formulae (18) and (21). That is, they are valid as long as eqs (10) and
(11) are used. It means that they are valid when the P-wave incident
angle is larger than the critical angle of refraction from the P wave
in the atmosphere to the S wave in the solid Earth. Also, because
the incident angle is required to be larger than the critical angle, the
range of ¢, is 0 < ¢, < B’ for the non-asymptotic solutions.

It may also be noted that eqs (18) and (21) will not be realized
if B is smaller than the P-wave velocity in the atmosphere because
the critical angle does not exist in such a case. Such a situation
may occur in a region with low-velocity sediment where 8’ may
become as low as 100-200 ms~! (Langston 2004; Edwards et al.
2007, 2008).
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Figure 2. Definition of angles. The z-axis is upwardly positive.

Table 1. Examples of critical angles. P-wave velocity in the atmosphere is 340 (ms~!). Case 1 (hard-rock
site) and case 2 (sedimentary rock site) have different P- and S-wave velocities in the solid Earth.

P wave S wave
Case (ms~ 1) (ms™ 1) P’ critical angle S’ critical angle
1 6000 3500 3.25¢ 5.57°
2 2000 1000 9.79° 19.88°
2.2 Formula for the case of moving surface pressure source which can be expressed by 0,, = 0 and 0., = — P. For this problem,

Sorrells (1971) derived formulae for deformation in the solid Earth,
generated by a moving pressure source on the surface with speed
¢ (Fig. 1b). Extension to a multilayered case is straightforward
(Tanimoto & Wang, 2019) but in this paper, we stick to a case
of homogeneous elastic half-space. The derivation in this paper is
essentially the same not only with Sorrells (1971) but also with
Lamb (1904), although Lamb (1904) examined the case of a point
pressure source. Here, we are concerned about a loading pressure
source that is spread out on the surface and moving in time.

The solution can be obtained by starting with the displacement
potentials for the P waves (¢) and S waves (V) as

u=Vep+VxVx(0,0,W), (22)
where ¢ and W satisfy the equations

82¢ 12552

=5 ="V, (23)
ERV 5

— = BV 24
=B (24)

One of the boundary conditions is that a solution must decay as z —
—o0o. We also have the stress boundary conditions at the surface,

we seek a plane-wave solution.

Regularity of displacements as z — —oo requires us to choose
a solution which has the form ¢ = Ae'«’? and W = Be"s'* where
Vo = k2 — @?/a’? and vy = /K2 — w?/B’*. The coefficients A
and B are determined from the two boundary conditions at the
surface. This leads to two equations given by

w2
Qg A+ <2k2 - ﬂ,z) B =0, (25)
/wz ’ 2 0.)2 17,2
[—A?—kzu (k —P)]A—i—zljvkvﬂ/B:—P. (26)

Solving for 4 and B, we get

2

2k* — ;’7
A= —"P, 27
5 @7)
21)0,/
B=——P, 28
5 (28)
where

? ?
D = 4K vyvp + |:()J +21)—5 — Z,u'kz] <2k2 - p) . (29)
o I
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and the characteristic equation of Rayleigh waves for a homoge-
neous half-space is given by D = 0.
Formulae for the vertical and horizontal displacements become

Vo 07
ﬁ/ZD

2vgrvy — k (2k2 P //3/2)
UX =—ikA—ikU/3fB=i D

Substituting k = w/c, vy = k&, and vy = k&p into this for-
mula, we get

o a@(1-8)
(1) ety
ie (1+8) - 2%8
o (148 — ety

where they are the same as eqs (18) and (21) if we put ¢ = ¢,. Under
the asymptotic condition ¢/’ <« 1, eqs (32) and (33) become eqs
(3) and (4).

U =vy A+ KB =—

P, (30)

P. (31

U () = P, (32)

U (w) = P, (33)

3 TWO DOMAINS IN SOLUTION:
EVANESCENT WAVES VERSUS
RAYLEIGH WAVES

We have shown that the formulae for the post-critical incidence of
atmospheric P waves (apparent velocity ¢, ) are the same with those
for the moving-pressure source on the surface (velocity ¢) if we put
¢, = c. In this section, we examine how this horizontal speed ¢ (or
¢,) influences the deformation in the solid Earth by computing the
ratio of vertical seismic amplitude to surface pressure as a function
of ¢. The parameter range of this inquiry is wider than what was
considered in BS81 and Sorrells (1971). BS81 considered the case
of the grazing-angle incidence of P waves on Earth’s surface and
thus the speed was restricted to about ¢, = 340 ms~'. Sorrells
(1971) considered wind as the excitation source of seismic noise
and thus the speed of pressure source ¢ was approximately equal
to wind speed, typically in the range 0 < ¢ < 20 ms~'. Both are
special cases of non-asymptotic solutions as the non-asymptotic
solutions are valid for the range 0 < ¢ < p'.

We compute the ratio wU. (w)/ P because the explicit dependence
on frequency (w) can be removed from the formulae. The non-
asymptotic and the asymptotic formulae are given by

U, _ e E(1-8) )
P T W (1807 — desky’

and

wU, __c A+ 2,u/' (35)
P 2u N+

An example case was calculated for the solid medium with a
P-wave velocity of 6 kms™! and an S-wave velocity of 3.5 kms™!,
respectively, and the atmospheric P-wave velocity of 340 ms™!
(Fig. 3). The ratio is zero when ¢ = 0. For ¢ > 0, it is slightly
negative but appears to be running along the zero line on the scale
of the plot in Fig. 3(a).

The non-asymptotic case shows a dominant peak at about
3200 ms~! which is close to the Rayleigh-wave phase velocity for
the structure, 3213.7 ms~!. The emergence of the dominant peak
near Rayleigh-wave phase velocity means that Rayleigh waves get

excited if the speed ¢ becomes close to the phase velocity. Rayleigh
waves then become dominant in the wavefields.

For the range 0 < ¢ < 3000 ms~' (Fig. 3b), the deviations of
the asymptotic solution from the non-asymptotic solution can be
confirmed to start at about 1000 (ms~') and become very large for
¢ > 2500 ms~!. This behaviour suggests that the non-asymptotic
formulae should be used if ¢ exceeds about 1500 ms~!. Use of the
asymptotic solution for seismic data from Space Shuttle Columbia
(Kanamori et al. 1991, 1992) is justified because ¢ ~ 1000 ms~!.
On the other hand, Qamar (1995) reported faster shock-wave speeds
of about 5-7 kms~!, measured for Space Shuttle Discovery and
Endeavor. However, he did not show any quantitative analysis of
seismic data. The analysis of his cases would have required the use
of non-asymptotic solutions. Furthermore, the range of 5-7 kms~!
suggests that analysis for shock waves in solid Earth may be required
as this velocity likely exceeds P-wave velocity at shallow depths.

For an even smaller range 0 < ¢ < 500 ms~' (Fig. 3c), the
asymptotic solution becomes almost exact. The non-asymptotic so-
lution becomes almost linear in ¢. Two processes within this range
are indicated, the deformations caused by wind-related pressure
changes (e.g. Sorrells 1971) and the infrasound velocity (340 m s™").

4 DISCUSSION

4.1 Validity of the non-asymptotic equations

Because of the differences in the posed questions between BS81 and
Sorrells (1971), the equivalence of the asymptotic formulae between
the grazing-angle-incident case of BS81 and Sorrell’s problem was
a surprise when it was pointed out in BS81. In hindsight, this equiv-
alence may not be surprising for the grazing-angle incidence of
atmospheric P waves. Since P waves have pressure changes along
their paths, the grazing-angle incidence case could be treated as
a surface boundary-value problem instead of a wave reflection—
refraction problem.

The validity of the non-asymptotic formulae for the P-wave in-
cidence problem is not limited to the grazing-angle case. As we
discussed in Section 2.1, when the incident angle e is between the
critical angle 0, (= sin"'(a/B’)) and 90°, the formulae have the
same forms. The range of angles is indicated by stripes in Fig. 4. It
also means that the formal solution for the P-wave incident problem
(BS81) includes the solution for a moving surface pressure problem
(Sorrells 1971) as its end-member case when e = 90°, although the
pressure-source speed was different in each problem (340 ms™!
versus 1-20 ms™!).

The non-asymptotic solutions may be useful for the initial mod-
elling of seismic signals caused by fast-moving pressure sources,
such as shock waves from meteoroids from outer space (e.g.
Langston 2004; Edwards et al. 2007, 2008) and volcanic eruptions
(Ichihara et al. 2012) because ¢ may not be a small perturbation
of S-wave velocity in the solid half-space. The speed of pressure
sources can be beyond the linear range covered by the asymptotic
solutions.

However, there are some sites with very slow near-surface S-wave
velocity that is lower than 340 ms~' (e.g. Langston 2004), espe-
cially in an area of thick sedimentary layers. The application of a
simple two-half-space model of this paper fails in such a case. Fur-
thermore, there may be an emergence of air-coupled Rayleigh waves
in such a low-velocity medium. Press & Ewing (1951) showed that
air-coupled Rayleigh waves can exist if the Rayleigh-wave phase ve-
locity in the solid medium is close to the P waves in the atmosphere.
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solutions for a moving pressure source on the surface.

In addition, some complex wave phenomena in a thick sedimentary
basin, such as reverberations of seismic waves in shallow layers
were reported by Langston (2004) and Edwards et al. (2007, 2008).
For such phenomena, the solutions in this paper are not useful as
the assumed medium is too simple.

Nonetheless, the non-asymptotic solutions may be useful at sta-
tions in hard-rock sites. They can allow us to quickly estimate
the speed of pressure sources from meteoroids and volcanic erup-
tions.

4.2 Evanescent waves are not surface waves

We believe that the term ‘pressure-induced surface waves’ in BS81
(the title of section 9.4.3) is not consistent with the conventional
seismological use of the term ‘surface waves’. As the analysis in
Section 3 showed, when the pressure source speed c¢ is small, de-
formations in solid Earth consist of evanescent waves. They are not
surface waves because their phase velocity c is equal to the apparent
velocity of the incoming atmospheric P waves and is different from
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the phase velocity of Rayleigh waves. Generally, the amplitudes of
evanescent waves are small because they are related to diffraction
effects. Only when the pressure-source speed ¢ becomes close to
the Rayleigh-wave phase velocity, does the excitation of Rayleigh
waves occur as the results in Fig. 3(a) show.

4.3 Super-shear case

We have not discussed a case when the surface pressure speed ¢ ex-
ceeds S-wave velocity 8’ in the solid Earth. In such a case, there is a
possibility of generating the cone-shaped shock front as the pressure
source moves with a super-shear speed c. The formulae in this paper
may still be a good approximation when the shock front is weak.
But when the shock front becomes large, the analysis must include
the advection term p(v - V)v which makes the problem non-linear
(e.g. Whitham 1974). Because of this complexity, an extension of
the solutions to the super-shear case is not straightforward. The
question is left for the future.

5 CONCLUSION

Ben-Menahem & Singh (1981) pointed out that the formulae for
deformations in the solid Earth caused by an incoming P wave
from the atmosphere are the same as those generated by a moving
pressure source on the surface. They showed this agreement for
the case of grazing-angle incidence and also under the asymptotic
condition (¢ < ).

In this paper, we derived the non-asymptotic formulae for the
two problems and showed that they are equivalent in the range
0 < ¢ < B’. We also showed that this equality was not limited to the
grazing-angle case. For an incident angle beyond the critical angle,
the formulae become identical to those for the moving surface-
pressure source (Sorrells 1971). This identical solution has two
main domains of deformation in the solid Earth. When ¢ (or ¢,) is
small, the evanescent waves are generated in the solid Earth. When ¢
becomes close to the Rayleigh-wave phase velocity, Rayleigh waves
get excited and dominate the wavefield.

The asymptotic solution of Ben-Menahem and Singh has been
used in many studies. Comparison of the non-asymptotic and the
asymptotic solutions (linear in ¢) shows that the valid range of
asymptotic solution is ¢ < 1500 ms~'. We found that most appli-
cations were within this valid range; for example, ¢ < 20 ms™!
for wind-related seismic noise (Wang & Tanimoto 2020, 2022),
¢ =340 ms™! for the infrasound signals from volcanic erup-
tions (Ichihara ef al. 2012), and ¢ ~ 1000 ms~' for shock-wave
caused deformations from Space Shuttles (Kanamori e al. 1991,
1992).
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