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S U M M A R Y 

Atmospheric pressure changes on Earth’s surface can deform the solid Earth. Sorrells derived 

analytical formulae for displacement in a homogeneous, elastic half-space, generated by a 
moving surface pressure source with speed c. Ben-Menahem and Singh derived formulae 
when an atmospheric P wave impinges on Earth’s surface. For a P wave with an incident angle 
close to the grazing angle, which essentially meant a slow apparent velocity c a in comparison to 

P - ( α′ ) and S -wav e v elocities ( β ′ ) in the Earth ( c a � β ′ < α′ ), they showed that their formulae 
for solid-Ear th defor mations become identical with Sorrells’ formulae if c a is replaced by c. 
But this agreement was only for the asymptotic cases ( c a � β ′ ). The first point of this paper 
is that the agreement of the two solutions extends to non-asymptotic cases, or when c a /β ′ 

is not small. The second point is that the angle of incidence in Ben-Menahem and Singh’s 
problem does not have to be the grazing angle. As long as the incident angle exceeds the 
critical angle of refraction from the P wave in the atmosphere to the S wave in the solid Earth, 
the formulae for Ben-Menahem and Singh’s solution become identical to Sorrell’s formulae. 
The third point is that this solution has two different domains depending on the speed c (or 
c a ) on the surface. When c/β ′ is small, deformations consist of the e v anescent w aves. When c
approaches Ra yleigh-wa v e phase v elocity, the driv en oscillation in the solid Ear th tur ns into a 
free oscillation due to resonance and dominates the wavefield. The non-asymptotic analytical 
solutions may be useful for the initial modelling of seismic deformations by fast-moving 

sources, such as those generated by shock waves from meteoroids and volcanic eruptions 
because the condition c/β ′ � 1 may be violated for such fast-moving sources. 

Key words: Seismic noise; Surface waves and free oscillations; Theoretical seismology; 
Wave scattering and diffraction. 
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1  INTRODUCTION  

Deformations in the solid Earth, caused by an incident atmospheric 
P wave on Earth’s surface can be observed commonly now because 
of the availability of seismic stations with co-located pressure and 
seismic sensors. An example is the EarthScope network after 2011 
(e.g. Tytell et al. 2016 ). Ho wever , such a solid-Earth deformation by 
atmospheric pressure has been analysed since the 1960s. For exam- 
ple, Sorrells ( 1971 ), Sorrells et al. ( 1971 ) and Sorrells & Goforth 
( 1973 ) analysed co-located pressure and seismic data and demon- 
strated the existence of wind-related seismic noise. 

Other recent examples include volcano monitoring from infra- 
sound signals and ground deformation (Ichihara et al. 2012 ; Nishida 
& Ichihara 2016 ), ground deformation caused by shock waves from 

Space Shuttles (Kanamori et al. 1991 , 1992 ) and meteoroid falls 
(Langston 2004 ; Edwards et al. 2007 , 2008 ), seismic deformations 
caused by thunder (Lin & Langston 2007 ), and seismic noise gen- 
erated by airplanes and helicopters (Meng & Ben-Zion 2018 ). 
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Many of these studies relied on the theory of Ben-Menahem & 

Singh ( 1981 ) for the modelling of seismic signals (Fig. 1 a). We 
refer to this book as BS81, hereafter. More specifically, we refer 
to section 9.4.3. in BS81. In their problem, the atmosphere was 
a homogeneous half-space with P -wav e v elocity α, and the solid 
Earth was also a homogenous half-space with P -wave velocity α′ 

and S -wave velocity β ′ . We use a prime to indicate a parameter in 
the solid Earth. 

When an incident atmospheric P wave impinges on the surface 
(Fig. 1 a), the solid Earth deforms. For the grazing incidence of 
atmospheric P waves, Ben-Menahem & Singh ( 1981 ) showed that 
the formulae for a plane-wave solution can be written 

U z = − c a 
2 ωμ′ 

λ′ + 2 μ′ 

λ′ + μ′ P 0 ( ω ) e i ω( t−x /c a ) , (1) 

U x = − ic a 
2 ω( λ′ + μ′ ) 

P 0 ( ω ) e i ω( t−x /c a ) , (2) 
ress on behalf of The Royal Astronomical Society. This is an Open Access 
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Figure 1. (a) The problem posed by Ben-Menahem and Singh ( 1981 ). The illustration is for a case of the post-critical incident angle e. Ray-theoretically, the 
total reflection occurs and the e v anescent w aves are generated in the solid Earth. Our sign convention for displacement is upw ardl y positi ve. (b) The problem 

posed by Sorrells ( 1971 ). The wind-related pressure source moves on the Earth’s surface with speed c, generating decaying motion from the surface in the 
ne gativ e z-direction. There is no decay in the x-direction. 
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where U z and U x are vertical and horizontal displacements, ω
s an angular frequency, t is time, c a is phase velocity along the
urface (the x -axis in Fig. 1 ), λ′ and μ′ are Lame’s constant and
hear modulus in the solid Earth and P 0 ( ω) is the Fourier amplitude
f surface pressure at an angular frequency ω. Eqs ( 1 ) and ( 2 )
re the same as (9.187) in BS81 and are asymptotic solutions,
erived under the condition c a � β ′ < α′ . Since β ′ < α′ al wa ys
olds, we simply refer to this asymptotic condition as c a � β ′ or
 a /β

′ � 1 . 
Sorrells ( 1971 ) derived formulae for deformation in the solid

arth generated by a moving pressure source on the Earth’s surface
Fig. 1 b). He also assumed a homogeneous half-space for the solid
arth. Denoting the velocity of this pressure source by c, surface
isplacements are given by 

 z = − c 

2 ωμ′ 
λ′ + 2 μ′ 

λ′ + μ′ P 0 ( ω ) e i ω( t−x /c) , (3) 

 x = − ic 

2 ω( λ′ + μ′ ) 
P 0 ( ω ) e i ω( t−x /c) , (4) 

here we use the convention that vertical displacement is positive
pward. Sorrells ( 1971 ) used the opposite sign convention. Sorrells
 1971 ) derived these formulae (eqs 23 and 24 in Sorrells, 1971 )
nder the asymptotic condition c/β ′ � 1 . In his problem, since
urface pressure is related to wind, c was close to wind speed. Wind
peed is typically in the range of 0–20 m s −1 (e.g. Tanimoto & Wang
019 ) and is much smaller than P - ( α′ ) and S -wav e v elocities ( β ′ )
n the solid Earth. 

If we put c a = c, eqs ( 1 ) and ( 2 ) are the same with eqs ( 3 ) and
 4 ). This equality was pointed out in BS81. 

The first point of this paper is that this equality holds, even
hen c/β ′ is not small. The agreement of solutions extends to
on-asymptotic cases whose c can be any value within the range
 ≤ c < β ′ . We will sketch the deri v ation steps in Section 2 .
he upper limit arises because of the condition that the inci-
ent angle of P waves has to be larger than the critical angle of
efraction. 

The second point is that this agreement is not limited to the case of
razing-angle incidence for the P -wave incidence problem (BS81).
he formulae for an incident angle larger than the critical angle are
he same as with Sorrells’ solutions. a
In Section 3 , we will show that this identical solution has
wo principal domains, depending on the speed c (or c a ). When
 /β ′ is small, defor mations in solid Ear th consist of the e v anes-
ent waves. When c becomes large and approaches the Rayleigh-
ave phase velocity, the e v anescent w aves turn into a free os-

illation due to resonance and Rayleigh waves become dominant
n the wavefield. This is the third point of this paper. Ho wever ,

ost phenomena that have been reported (e.g. Ichihara et al.
012 ; Kanamori et al. 1991 , 1992 ) were in the e v anescent-w ave
omain. 

In Section 4 , we will discuss three points. The first point is on
he validity of non-asymptotic solutions. If the P -wave velocity
n the atmosphere is higher than the S wave in the solid Earth, the
greement of solutions cannot occur. Also, in such a medium there is
 possibility of the emergence of air-coupled Ra yleigh wa ves (Press
 Ewing 1951 ; Ewing et al. 1957 ). The simple two-homogeneous

alf-space model of this paper cannot model such signals, although
bservations of air-coupled Rayleigh waves are real at stations in
 sedimentary region (Langston 2004 ; Edwards et al. 2007 , 2008 ).
he second point of discussion is the misuse of the term ‘pressure-

nduced surface waves’ in BS81 for the e v anescent w aves. These
 v anescent w aves are not surface waves because their phase velocity
 c a ) is determined by the apparent velocity of the incoming P wave
nd is not equal to the Ra yleigh-wa v e phase v elocity. The third point
s on the extension of the solutions to the range c/β ′ > 1 , the super-
hear case of c. This problem is complicated due to the possibility
f the development of shock fronts. 

In Section 5 , we summarize our conclusions. Despite some defi-
iencies, the non-asymptotic formulae in this paper may be useful
or the initial study of shock-wave-induced deformations, as the
ormulae remain valid for fast-moving pressure sources. 

 DERIVATION  OF  NON-ASYMPTOTIC  

OLUTIONS  

n this section, we summarize the main steps of deri v ation for the
on-asymptotic solutions. The main point is that the formulae for a
ost-critical-angle case for the P -wave incidence problem in BS81
ave the same form as the formulae for the moving pressure prob-
em by Sorrells ( 1971 ), even when c/β ′ is not small. These non-
symptotic formulae are eqs ( 18 ) and ( 21 ). 

art/ggae185_f1.eps
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2.1 Form ulae f or the case of incident P w av es 

In the problem of BS81, an incident P wave from the atmosphere 
makes an angle e when it reaches the Earth’s surface (Fig. 2 ). This 
incident wave creates a reflected P wave, a refracted P wave ( P ′ ) 
and a refracted S wave ( S ′ ). The angles associated with these waves 
e , e ′ and f ′ are defined in the figure. These notations, as introduced 
b y BS81, may dif fer from standard seismolo gical conventions but 
we follow their notations closely and build on their deri v ation steps. 

We seek a plane-wave solution and assume that each term is 
propor tional to e i ( ωt−kx ) , where k is a wavenumber. This wave prop- 
agates with phase velocity c a in the x -direction given by c a = ω/k. 
A solution for a more complicated time-dependent case can be 
obtained by taking a linear superposition of Fourier components. 

By Snell’s law, we have 

c a = 

α

sin ( e) 
= 

α′ 

sin ( e ′ ) 
= 

β ′ 

sin ( f ′ ) 
, (5) 

where phase velocity c a in the x -direction remains constant through 
the reflection and refraction at the boundary. From eq. (5), we can 
write 

sin ( e ′ ) = 

α′ 

c a 
, (6) 

sin ( f ′ ) = 

β ′ 

c a 
. (7) 

When e is smaller than the critical angle of reflection, we can 
write 

cos ( e ′ ) = 

√ 

1 − ( α′ /c a ) 2 , (8) 

cos ( f ′ ) = 

√ 

1 − ( β ′ /c a ) 2 , (9) 

but when it is larger than the critical angle, they become (eq. 9.182 
in BS81) 

cos ( e ′ ) = −i 
√ 

( α′ /c a ) 2 − 1 , (10) 

cos ( f ′ ) = −i 
√ 

( β ′ /c a ) 2 − 1 , (11) 

they become purely complex numbers. The minus signs on the right- 
hand side arise because of the regularity condition as z → −∞ . 
Using eqs (10) and (11) is essential to include the diffraction effects. 
The agreement of solutions between BS81 and Sorrells occurs when 
eqs (10) and (11) are used. 

Because of the large contrast between the atmospheric P -wave 
velocity and the seismic-wave velocities in solid Earth, the critical 
angles for refraction are generally quite small. Table 1 shows two 
examples; the first case is when atmospheric P waves are incident 
on a hard-rock site (case 1: α′ = 6 km s −1 and β ′ = 3 . 5 km s −1 ) and
the second case is when P waves are incident on a sedimentary rock 
site (case 2: α′ = 2 km s −1 and β ′ = 1 km s −1 ). The table shows that 
even with a slower S -wave speed (1 km s −1 ) in case 2, the critical 
angle of refraction to S ′ wave is about 20 ◦ (19.88 ◦). For a hard-rock 
site ( β ′ = 3 . 5 km s −1 ), the critical angle to S ′ -wave refraction occurs 
at 5.57 ◦. Therefore, it is common to encounter a situation where the 
incident angle exceeds the critical angle. 

We note that having an incident P wave is equi v alent to having 
the surface pressure (BS81) 

P ( ω) = P 0 ( ω) exp i ω( t−x /c a ) , (12) 

where 

P 0 ( ω) = 

2 ραm 1 

m 1 + m 2 
(13) 
with 

m 1 = cos ( e ) 

[ (
β ′ 

α′ 

)2 

sin (2 e ′ ) sin (2 f ′ ) + cos 2 (2 f ′ ) 

] 

, (14) 

m 2 = 

ρα

ρ ′ α′ cos ( e ′ ) . (15) 

Using this pressure for mula, a for mula for the ratio between 
vertical displacement and surface pressure becomes (BS81) 

U z ( ω) 

P ( ω) 
= i 

m 2 cos ( e) 

ωραm 1 
, (16) 

where U z ( ω) is the Fourier spectra of vertical displacement. Here, we 
modified their eq. (9.181) for the vertical component from velocity 
to displacement. 

Substituting eqs (14) and (15) into eq. (16), we get 

U z ( ω) 

P ( ω) 
= 

(
i 

ωρ ′ α′ 

)
cos ( e ′ ) (

β ′ 
α′ 

)2 
sin (2 e ′ ) sin (2 f ′ ) + cos 2 (2 f ′ ) 

. (17) 

Using eqs (6), (7), (10) and (11) and noting that 

sin (2 e ′ ) sin (2 f ′ ) = −4 
α′ 2 β ′ 2 

c 4 a 

√ 

1 − c 2 a 
α′ 2 

√ 

1 − c 2 a 
β ′ 2 , 

cos 2 (2 f ′ ) = 

( 

1 − 2 
β ′ 2 

c 2 a 

) 2 

. 

we get 

U z ( ω ) = 

c a 
ω μ′ 

ξα′ 
(

1 − ξ 2 
β ′ 

)
(

1 + ξ 2 
β ′ 

)2 
− 4 ξα′ ξβ ′ 

P ( ω ) , (18) 

where we defined 

ξα′ = 

√ 

1 − c 2 a 
α′ 2 , (19) 

ξβ ′ = 

√ 

1 − c 2 a 
β ′ 2 . (20) 

Similarl y, b y starting from the horizontal formula (9.181) in 
BS81, we obtain the horizontal displacement in the direction of 
propagation (the x -axis) 

U x ( ω ) = 

ic a 
ω μ′ 

(
1 + ξ 2 

β ′ 

)
− 2 ξα′ ξβ ′ (

1 + ξ 2 
β ′ 

)2 
− 4 ξα′ ξβ ′ 

P ( ω ) . (21) 

There is an important feature to be noted in the non-asymptotic 
formulae (18) and (21). That is, they are valid as long as eqs (10) and 
(11) are used. It means that they are valid when the P -wave incident 
angle is larger than the critical angle of refraction from the P wave 
in the atmosphere to the S wave in the solid Earth. Also, because 
the incident angle is required to be larger than the critical angle, the 
range of c a is 0 < c a ≤ β ′ for the non-asymptotic solutions. 

It may also be noted that eqs (18) and (21) will not be realized 
if β ′ is smaller than the P -wave velocity in the atmosphere because 
the critical angle does not exist in such a case. Such a situation 
may occur in a region with low-velocity sediment where β ′ may 
become as low as 100–200 m s −1 (Langston 2004 ; Edwards et al. 
2007 , 2008 ). 
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Table 1. Examples of critical angles. P -wave velocity in the atmosphere is 340 (m s −1 ). Case 1 (hard-rock 
site) and case 2 (sedimentary rock site) have different P - and S -wave velocities in the solid Earth. 

Case 
P wave 
(m s −1 ) 

S wave 
(m s −1 ) P ′ critical angle S ′ critical angle 

1 6000 3500 3 . 25 o 5 . 57 o 

2 2000 1000 9 . 79 o 19 . 88 o 
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.2 Form ula f or the case of moving surface pr essur e sour ce

orrells ( 1971 ) derived formulae for deformation in the solid Earth,
enerated by a moving pressure source on the surface with speed
(Fig. 1 b). Extension to a multilayered case is straightforward

T animoto & W ang, 2019 ) but in this paper, we stick to a case
f homogeneous elastic half-space. The deri v ation in this paper is
ssentially the same not only with Sorrells ( 1971 ) but also with
amb ( 1904 ), although Lamb ( 1904 ) examined the case of a point
ressure source. Here, we are concerned about a loading pressure
ource that is spread out on the surface and moving in time. 

The solution can be obtained by starting with the displacement
otentials for the P waves ( φ) and S waves ( 	) as 

 = ∇φ + ∇ × ∇ × (0 , 0 , 	) , (22) 

here φ and 	 satisfy the equations 

∂ 2 φ

∂t 2 
= α′ 2 ∇ 

2 φ, (23) 

∂ 2 	 

∂t 2 
= β ′ 2 ∇ 

2 	. (24) 

ne of the boundary conditions is that a solution must decay as z →
∞ . We also have the stress boundary conditions at the surface,
hich can be expressed by σxz = 0 and σzz = −P . For this problem,
e seek a plane-wave solution. 
Regularity of displacements as z → −∞ requires us to choose

 solution which has the for m φ = Ae να′ z and 	 = Be νβ′ z where

α′ = 

√ 

k 2 − ω 
2 / α′ 2 and νβ ′ = 

√ 

k 2 − ω 
2 / β ′ 2 . The coefficients A

nd B are determined from the two boundary conditions at the
urface. This leads to two equations given by 

 να′ A + 

(
2 k 2 − ω 

2 

β ′ 2 

)
B = 0 , (25) [

−λ′ ω 
2 

α′ 2 + 2 μ′ 
(
k 2 − ω 

2 

α′ 2 

)]
A + 2 μ′ k 2 νβ ′ B = −P . (26) 

olving for A and B , we get 

A = 

2 k 2 − ω 2 

β ′ 2 

D 

P , (27) 

B = −2 να′ 

D 

P , (28) 

here 

D = 4 μ′ k 2 να′ νβ ′ + 

[
( λ′ + 2 μ′ ) 

ω 
2 

α′ 2 − 2 μ′ k 2 
](

2 k 2 − ω 
2 

β ′ 2 

)
, (29) 

art/ggae185_f2.eps


824 T. Tanimoto 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/238/2/820/7689223 by U

niv of Southern C
alifornia user on 27 June 2025
and the characteristic equation of Rayleigh waves for a homoge- 
neous half-space is given by D = 0 . 

Formulae for the vertical and horizontal displacements become 

U z = να′ A + k 2 B = −να′ ω 
2 

β ′ 2 D 

P , (30) 

U x = −ik A − ik νβ ′ B = i 
2 k να′ νβ ′ − k 

(
2 k 2 − ω 

2 / β ′ 2 
)

D 

P . (31) 

Substituting k = ω/c, να′ = kξα′ , and νβ ′ = kξβ ′ into this for- 
mula, we get 

U z ( ω ) = 

c 

ωμ′ 

ξα′ 
(

1 − ξ 2 
β ′ 

)
(

1 + ξ 2 
β ′ 

)2 
− 4 ξα′ ξβ ′ 

P , (32) 

U x ( ω ) = 

ic 

ωμ′ 

(
1 + ξ 2 

β ′ 

)
− 2 ξα′ ξβ ′ (

1 + ξ 2 
β ′ 

)2 
− 4 ξα′ ξβ ′ 

P , (33) 

where they are the same as eqs (18) and (21) if we put c = c a . Under 
the asymptotic condition c/β ′ � 1 , eqs (32) and (33) become eqs 
(3) and (4). 

3  TWO  DOMAINS  IN  SOLUTION :  
EVANESCENT  WAVES  VERSUS  

RAYLEIGH  WAVES  

We have shown that the formulae for the post-critical incidence of 
atmospheric P waves (apparent velocity c a ) are the same with those 
for the moving-pressure source on the surface (velocity c) if we put 
c a = c. In this section, we examine how this horizontal speed c (or 
c a ) influences the deformation in the solid Earth by computing the 
ratio of vertical seismic amplitude to surface pressure as a function 
of c. The parameter range of this inquiry is wider than what was 
considered in BS81 and Sorrells ( 1971 ). BS81 considered the case 
of the grazing-angle incidence of P waves on Earth’s surface and 
thus the speed was restricted to about c a = 340 m s −1 . Sorrells 
( 1971 ) considered wind as the excitation source of seismic noise 
and thus the speed of pressure source c was approximately equal 
to wind speed, typically in the range 0 < c < 20 m s −1 . Both are 
special cases of non-asymptotic solutions as the non-asymptotic 
solutions are valid for the range 0 ≤ c ≤ β ′ . 

We compute the ratio ω U z ( ω ) /P because the explicit dependence 
on frequency ( ω) can be removed from the formulae. The non- 
asymptotic and the asymptotic formulae are given by 

ωU z 

P 
= 

c 

μ′ 
ξα′ (1 − ξ 2 

β ′ ) 

(1 + ξ 2 
β ′ ) 2 − 4 ξα′ ξβ ′ 

, (34) 

and 

ωU z 

P 
= − c 

2 μ′ 
λ′ + 2 μ′ 

λ′ + μ′ . (35) 

An example case was calculated for the solid medium with a 
P -wav e v elocity of 6 km s −1 and an S -wave velocity of 3.5 km s −1 ,
respecti vel y, and the atmospheric P -wave velocity of 340 m s −1 

(Fig. 3 ). The ratio is zero when c = 0 . For c > 0 , it is slightly
ne gativ e but appears to be running along the zero line on the scale 
of the plot in Fig. 3 (a). 

The non-asymptotic case shows a dominant peak at about 
3200 m s −1 which is close to the Ra yleigh-wa v e phase v elocity for 
the structure, 3213.7 m s −1 . The emergence of the dominant peak 
near Ra yleigh-wa v e phase v elocity means that Rayleigh waves get 
excited if the speed c becomes close to the phase velocity. Rayleigh 
waves then become dominant in the wavefields. 

For the range 0 ≤ c ≤ 3000 m s −1 (Fig. 3 b), the deviations of 
the asymptotic solution from the non-asymptotic solution can be 
confirmed to start at about 1000 (m s −1 ) and become very large for 
c > 2500 m s −1 . This behaviour suggests that the non-asymptotic 
formulae should be used if c exceeds about 1500 m s −1 . Use of the 
asymptotic solution for seismic data from Space Shuttle Columbia 
(Kanamori et al. 1991 , 1992 ) is justified because c ≈ 1000 m s −1 . 
On the other hand, Qamar ( 1995 ) reported faster shock-wave speeds 
of about 5–7 km s −1 , measured for Space Shuttle Discovery and 
Endea vor. How ever, he did not show an y quantitati ve anal ysis of 
seismic data. The analysis of his cases would have required the use 
of non-asymptotic solutions. Fur ther more, the range of 5–7 km s −1 

suggests that analysis for shock waves in solid Earth may be required 
as this velocity likely exceeds P -wave velocity at shallow depths. 

For an even smaller range 0 ≤ c ≤ 500 m s −1 (Fig. 3 c), the 
asymptotic solution becomes almost exact. The non-asymptotic so- 
lution becomes almost linear in c. Two processes within this range 
are indicated, the deformations caused by wind-related pressure 
changes (e.g. Sorrells 1971 ) and the infrasound velocity (340 m s −1 ). 

4  DISCUSS ION  

4.1 Validity of the non-asymptotic equations 

Because of the differences in the posed questions between BS81 and 
Sorrells ( 1971 ), the equi v alence of the asymptotic formulae between 
the grazing-angle-incident case of BS81 and Sorrell’s problem was 
a surprise when it was pointed out in BS81. In hindsight, this equiv- 
alence may not be surprising for the grazing-angle incidence of 
atmospheric P waves. Since P wa ves ha ve pressure changes along 
their paths, the grazing-angle incidence case could be treated as 
a surface boundary-value problem instead of a wave reflection–
refraction problem. 

The validity of the non-asymptotic formulae for the P -wave in- 
cidence problem is not limited to the grazing-angle case. As we 
discussed in Section 2.1, when the incident angle e is between the 
critical angle θc ( = sin −1 ( α/β ′ ) ) and 90 ◦, the formulae have the 
same forms. The range of angles is indicated by stripes in Fig. 4 . It 
also means that the formal solution for the P -wave incident problem 

(BS81) includes the solution for a moving surface pressure problem 

(Sorrells 1971 ) as its end-member case when e = 90 ◦, although the 
pressure-source speed w as dif ferent in each problem (340 m s −1 

versus 1–20 m s −1 ). 
The non-asymptotic solutions may be useful for the initial mod- 

elling of seismic signals caused by fast-moving pressure sources, 
such as shock waves from meteoroids from outer space (e.g. 
Langston 2004 ; Edwards et al. 2007 , 2008 ) and volcanic eruptions 
(Ichihara et al. 2012 ) because c may not be a small perturbation 
of S -wav e v elocity in the solid half-space. The speed of pressure 
sources can be beyond the linear range covered by the asymptotic 
solutions. 

Ho wever , there are some sites with very slow near-surface S -wave 
velocity that is lower than 340 m s −1 (e.g. Langston 2004 ), espe- 
cially in an area of thick sedimentary layers. The application of a 
simple two-half-space model of this paper fails in such a case. Fur- 
thermore, there may be an emergence of air-coupled Rayleigh waves 
in such a low-velocity medium. Press & Ewing ( 1951 ) showed that 
air-coupled Ra yleigh wa v es can e xist if the Ra yleigh-wa v e phase v e- 
locity in the solid medium is close to the P waves in the atmosphere. 
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n addition, some complex wave phenomena in a thick sedimentary
asin, such as reverberations of seismic waves in shallow layers
ere reported by Langston ( 2004 ) and Edwards et al. ( 2007 , 2008 ).
or such phenomena, the solutions in this paper are not useful as
he assumed medium is too simple. 

Nonetheless, the non-asymptotic solutions may be useful at sta-
ions in hard-rock sites. They can allow us to quickly estimate
he speed of pressure sources from meteoroids and volcanic erup-
ions. 

.2 Evanescent w av es are not surface w av es 

e believe that the term ‘pressure-induced surface waves’ in BS81
the title of section 9.4.3) is not consistent with the conventional
eismological use of the term ‘surface waves’. As the analysis in
ection 3 showed, when the pressure source speed c is small, de-
ormations in solid Earth consist of e v anescent w av es. The y are not
urface waves because their phase velocity c is equal to the apparent
elocity of the incoming atmospheric P waves and is different from
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the phase velocity of Rayleigh w aves. Generall y, the amplitudes of 
e v anescent w av es are small because the y are related to diffraction 
ef fects. Onl y when the pressure-source speed c becomes close to 
the Ra yleigh-wa v e phase v elocity, does the e xcitation of Rayleigh 
waves occur as the results in Fig. 3 (a) show. 

4.3 Super-shear case 

We have not discussed a case when the surface pressure speed c ex- 
ceeds S-wav e v elocity β ′ in the solid Earth. In such a case, there is a 
possibility of generating the cone-shaped shock front as the pressure 
source moves with a super-shear speed c . The for mulae in this paper 
may still be a good approximation when the shock front is weak. 
But when the shock front becomes large, the analysis must include 
the advection term ρ( v · ∇ ) v which makes the problem non-linear 
(e.g. Whitham 1974 ). Because of this comple xity, an e xtension of 
the solutions to the super-shear case is not straightforward. The 
question is left for the future. 

5  CONCLUS ION  

Ben-Menahem & Singh ( 1981 ) pointed out that the formulae for 
deformations in the solid Earth caused by an incoming P wave 
from the atmosphere are the same as those generated by a moving 
pressure source on the surface. They showed this agreement for 
the case of grazing-angle incidence and also under the asymptotic 
condition ( c � β ′ ). 

In this paper, we derived the non-asymptotic formulae for the 
two problems and showed that they are equi v alent in the range 
0 ≤ c < β ′ . We also showed that this equality was not limited to the 
grazing-angle case. For an incident angle beyond the critical angle, 
the formulae become identical to those for the moving surface- 
pressure source (Sorrells 1971 ). This identical solution has two 
main domains of deformation in the solid Earth. When c (or c a ) is 
small, the e v anescent w aves are generated in the solid Ear th. When c 
becomes close to the Ra yleigh-wa v e phase v elocity, Ra yleigh wa ves 
get excited and dominate the wavefield. 

The asymptotic solution of Ben-Menahem and Singh has been 
used in many studies. Comparison of the non-asymptotic and the 
asymptotic solutions (linear in c) shows that the valid range of 
asymptotic solution is c < 1500 m s −1 . We found that most appli- 
cations were within this valid range; for example, c < 20 m s −1 

for wind-related seismic noise (Wang & Tanimoto 2020 , 2022 ), 
c = 340 m s −1 for the infrasound signals from volcanic erup- 
tions (Ichihara et al. 2012 ), and c ≈ 1000 m s −1 for shock-wave 
caused deformations from Space Shuttles (Kanamori et al. 1991 , 
1992 ). 
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