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Hurricane Ida’s blackout-heatwave
compound risk in a changing climate

Kairui Feng 1,2,3, Ning Lin 1 , Avantika Gori 1,4, Dazhi Xi 1,5,
Min Ouyang 6 & Michael Oppenheimer 7,8,9

The emerging tropical cyclone (TC)-blackout-heatwave compound risk under
climate change is not well understood. In this study, we employ projections of
TCs, sea level rise, and heatwaves, in conjunction with power system resilience
modeling, to evaluate historical and future TC-blackout-heatwave compound
risk in Louisiana, US. We find that the return period for a compound event
comparable to Hurricane Ida (2021), with approximately 35 million customer
hours of simultaneous power outage and heatwave exposure in Louisiana, is
around 278 years in the historical climate of 1980–2005. Under the SSP5-8.5
emissions scenario, this return period is projected to decrease to 16.2 years by
2070–2100, a ~17 times reduction. Under the SSP2-4.5 scenario, it decreases to
23.1 years, representing a ~12 times reduction. Heatwave intensification is the
primary driver of this increased risk, reducing the return period by approxi-
mately 5 times under SSP5-8.5 and 3 times under SSP2-4.5. Increased TC
activity is the second driver, reducing the return period by 40% and 34% under
the respective scenarios. These findings enhance our understanding of com-
pound climate hazards and inform climate adaptation strategies.

InAugust 2021,Hurricane Ida, aCategory4 storm, struck Louisianawith
intense winds, heavy rainfall, and storm surges, resulting in widespread
flooding and damage to the state’s infrastructure systems. Subsequent
to the hurricane’s landfall, the state experienced a loss of ~200 million
customer hours of electricity, affecting roughly 2.15 million customers
for an average power outage duration of 96 h. Data from the United
States (U.S.) Department of Energy reveals that Hurricane Ida caused
the most extensive power outage in Louisiana’s history, largely sur-
passing Hurricane Katrina (Category 5; 2005) and Hurricane Laura
(Category 4; 2020), which led to losses of approximately 140 million
and 100 million customer hours of electricity, respectively1–3.

Furthermore, a prolonged heatwave occurred in the aftermath of
Hurricane Ida, particularly affecting households that lost power and
thus had no air conditioning (3; 93% of Louisiana households used air

conditioning in 2020 corresponding to ref. 4). Consequently, Louisi-
ana residents experienced a total of 35 million customer hours of
compound blackout-heatwave risk (with a heat index surpassing
37.8 °C/100 °F; 5). Customers exposed to the compound hazard
endured an average of approximately 98 h of heatwave conditions5.
Prolonged heat exposure can cause hospitalization and mortality
risks6, especially among vulnerable populations7. Understanding how
often Ida-like compound blackout-heatwave events may occur is cri-
tical for the development of risk mitigation strategies for populations
vulnerable to hurricanes.

A “compound climate event” can result in large impacts due to the
combination of climate drivers and hazards such as floods, wildfires,
heatwaves, and droughts8. Traditional risk assessment methods typi-
cally consider one hazard at a time, potentially leading to an
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underestimation of risk, since the physical drivers causing extreme
events may exhibit spatial and/or temporal dependencies and interact
to exacerbate the overall impact. Hurricanes ormoregenerally tropical
cyclones (TCs), as drivers of extreme wind, rainfall, and storm surge,
inherently lead to compound impacts on coastal regions9 and are
responsible for nine of the ten largest power outages in the United
States over a recent two-decade period10. While extremewinds are the
primary source of damage to power systems, the presence of storm
surges and heavy rainfall resulted in extensive flood inundation during
Hurricane Ida, which caused additional physical damage and hindered
power system resilience as repair crewswere unable to access affected
areas2. In addition, sea-level rise (SLR) may intensify coastal flood
inundation by extending and prolonging the flood coverage, further
exacerbating power systemdamage anddelaying recovery operations.

Due to the seasonal peak of intense heat being ahead of that of
major TCs, TC-heatwave compound events have so far been rare
worldwide11. However, a previous study12 found that for Harris County
(a portion of Houston situated on higher ground and affected by
hurricanewinds), Texas (TX), the percentage of residents experiencing
5-day TC-blackout-heatwave compound hazard conditions could
increase by a factor as large as 23 over the course of the 21st century
under the high emissions scenario RCP8.5. Also, in recent years, TC-
heatwave compound events have happened in the Gulf Coast region.
Hurricane Ida may represent the first hurricane landfall on the main-
land United States associatedwith a long-lasting (i.e., multi-day), large-
scale blackout-heatwave compound hazard (during Hurricane Laura
the state-average heat index was also high but did not reach the
threshold of 37.8 °C/100 °F). During Hurricane Ida and Laura, at least
eleven and eight Louisianans, respectively, died of heat-related
illnesses1,13. Investigating this emerging compound threat, enhanced
by climate change, will contribute to our knowledge of and adaptation
to compound climate hazards.

In this study, we integrate hazard projection and power system
analysis to examine TC-blackout-heatwave compound risk for Louisi-
ana over the 21st century under the combined influence of SLR and
changes in heatwave and storm climatology. We highlight the change
in the return period/recurrence interval of Ida-like compound events
from the historical to future climates. We further quantify the relative
importance of the change in various climatological variables (i.e., heat
stress, sea level, storm frequency, storm intensity) in driving the
changes in the compound risk.

Our framework is an extension of the previous study in ref. 12 to
incorporate multiple hazards, including storm surge, rainfall, and SLR,
in addition towind andheatwave, tomore comprehensivelymodel TC-
blackout-heatwave compound risk, for the entire State of Louisiana
under various climate conditions. Specifically, we combine projections
of heatwaves14, TChazards (includingwind, stormsurge, and rainfall15),
and SLR16–18, driven by CMIP6 GCMs14 under a moderate (Shared
Socioeconomic Pathway 2–4.5) and a high (SSP5-8.5) emissions sce-
narios, to assess both a likely scenario and an upper bound of the risk.
We generate a large number of compound hazard events
(~30,000 stochastic sequences) based on the projections for historical
(1980–2005) and future (2081–2100) climates to estimate how hazard
probabilities may change over the 21st century (Methods). Then we
utilize a physics-based power outage and restoration model for
Louisiana to simulate wind/surge/rainfall-induced power system fail-
ure and recovery for each hazard event, to estimate the TC-blackout-
heatwave compound risk. In doing so, we extend the existing wind-
impact-only simulation method (county level12,19) to a wind-rainfall-
surge coupled framework for power damage and recovery process
modeling to consider a larger study area including coastal regions
(state level; Methods). Considering the uncertainty surrounding the
impact of climate change on the frequency of TCs making landfall
along the Gulf Coast, we assume a constant TC frequency but also
assess the sensitivity of the compound risk to TC frequencyprojection.

To focus on the impact of climate change, we assume that the power
system, populationdistribution, and recovery plans in the study region
will remain unchanged. However, we assume that the coastal levees
will be elevated following design guidance, as this enhancement may
be considered necessary to prevent the region from frequent inun-
dation due to SLR (“Methods”).

Results
Historical cases
We first examine power outage simulations of the historical cases of
Hurricanes Ida and Laura, which are the twomajor events over the last
decade that caused widespread power disruptions in Louisiana1. Ida
devastated the eastern half of Louisiana, which is more densely
populated (including the city of New Orleans), whereas Laura grazed
the western side. Ida destroyed 31,000 poles (reported by local utility
company Entergy20) that carry lower-voltage distribution lines in the
neighborhoods, twice as many as those in Hurricane Laura (14,000
poles) and Katrina (2005; 17,000 poles).

As shown in Fig. 1a and b, the model’s estimates for the overall
impact of Hurricanes Ida and Laura on Louisiana compare relatively
well with the observation. Hurricane Ida led to 47% (48% in simulation)
of customers being out of power within the first 24 h, and it took
~10 days (11 days in simulation) for 90% of customers to restore power.
Meanwhile, up to 60% of Louisiana customers were under heatwave
conditions within 6 days after Hurricane Ida’s landfall. About 42%
independent customers experienced compound power outage and
heatwave hazards for at least one day after the hurricane’s landfall, and
the percentage of customers experiencing the compound hazard
surpassed 15% during a period of time (see Supplementary Fig. 1).
Hurricane Laura led to 27% (29% in simulation) of customers being out
of electricity initially and it took ~6 days (8 days in simulation) for 90%
of customers to restore power (see Supplementary Fig. 2 for spatial
distribution).

To measure the overall severity of the blackout associated with
each TC, we compute the cumulative interruption hours throughout
Louisiana (the total of all customers’ power outage duration), a com-
monly used metric in evaluating power system reliability21. The model
simulation estimates in total 189 (156–242; ±3 standard deviations)
million power interruption hours for Ida, which is consistent with the
observed 206 million hours, and 110 (77–153) million power interrup-
tion hours for Laura, which compares relatively well with the observed
99 million interruption hours. As a comparison, Hurricane Katrina led
to ~140million power interruption hours. Themodel estimation for the
spatial and temporal distribution of power outage also correlates well
with observations (the average relative error is <10% between the
modeled and observed county-level power outage), as illustrated in
Fig. 1c for the power outages at 24 h, 5 days, and 8 days after landfall at
the county level for Hurricane Ida.

Blackout and compound hazards
Integrating power outage and recovery modeling with projections of
future TC, SLR, and heatwaves, we examine the TC-induced blackout-
heatwave compound risk in Louisiana. We generate 10,000 simula-
tions of synthetic hazard events for each of the historical (1980–2005)
and future (2081–2100) SSP5-8.5 and SSP2-4.5 scenarios. Each sto-
chastic simulation includes a continuous 20-year sequence of TC
occurrences, along with the physical simulation of TC tracks, wind
speeds, rainfall amounts, storm surge levels, and heatwaves. We track
each customer’s exposure (i.e., duration) to blackout or compound
blackout-heatwave hazard in the power outage and recoverymodeling
process for each synthetic hazard event. Then, we integrate the
customer-level results to obtain state-level statistics and estimate the
return periods (i.e., reciprocal of annual exceedance probability) of
event total interruption hours for the historical and future climates. As
demonstrated by the substantial shift of the return period curves
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(Fig. 2), the power outage risk will increase dramatically from the his-
torical to the future climate. Specifically, the historical returnperiodof
a power outage of 206 million customer hours, as in Hurricane Ida, is
64 years (Table 1). The return period of a power outage like Hurricane
Ida’s total outage is projected to be 35.8 years in the future under the
SSP5-8.5 emissions scenario, compared to 38.2 years under SSP2-4.5.
The total power outage for an event with Ida’s historical return period
of 64 years is approximately 413 million customer hours under SSP5-
8.5 and 265 million customer hours under SSP2-4.5. The return period
of a TC-blackout-heatwave compound hazard of 35 million customer
hours, as in Hurricane Ida, is 278 years in the historical climate. This
return period is expected to decrease in the future climate to 16.2 years
under SSP5-8.5 (~17× reduction) and 23.1 years under SSP2-4.5 (~12×
reduction). A compound hazard event with Ida’s historical return
period of 278 years is projected to cause about 435 million customer
hours of impact under SSP5-8.5 and 138 million under SSP2-4.5. Such
an event would induce an average blackout-heatwave compound
hazarddurationof approximately 8.8 days (SSP5-8.5) or 2.8 days (SSP2-
4.5) for each of Louisiana’s 2.13 million customers.

The power outage level under SSP2-4.5 is similar to that under
SSP5-8.5 at Ida’s return period or shorter, although the power outage
level becomes higher in SSP5-8.5 at longer return periods (Fig. 2a), due
to higher extreme TC hazards and SLR in SSP5-8.5. The difference
between the two emissions scenarios is larger for the compound risk.
Specifically, the return period of the compound hazard impact at Ida’s
level under SSP5-8.5 is slightly shorter than that under SSP2-4.5, and
the return period of larger compound impacts becomes dramatically
shorter under SSP5 8.5 (Fig. 2b), due to combined effects of larger
increases in extreme heatwaves, TC hazards, and the sea level under
SSP5-8.5. For example, the return period of extremely severe com-
pound events, such as those with triple the impact of Hurricane Ida
(i.e., 100million customer-hours of compoundhazards), is expected to
be 2.5 times longer under SSP2-4.5 compared to SSP5-8.5.However, for

less severe events, such as those with a third of Ida’s impact (i.e.,
10 million customer-hours of compound hazards), we do not find a
statistically significant difference in the event return period/frequency
between the two emissions scenarios. These findings suggest that the
combined effects of globalwarming and increasing hurricane intensity
amplify the risk of the most extreme compound events. Nonetheless,
the moderate emission scenario may still lead to a similar increase of
frequency for events of Ida’s impactmagnitude, compared to the high
emissions scenario.

Spatial pattern of compound risk
To investigate the spatial distribution of the compound risk, we esti-
mate the county-average compound hazard interruption days for each
synthetic hazard event. Figure 3 shows the compound hazard inter-
ruption days with Ida’s historical return period of 278 years for each
county in Louisiana in the historical and future climates. The coastal
counties face a greater compound risk than inland counties for both
historical and future climates (Fig. 3a–c). For example, the counties
with an average compound hazard impact larger than 20 days in the
future climates aremostly coastal counties. Coastal counties often face
a greater compound risk since hurricane winds reach peak strength
before the storm makes landfall, and storms weaken as they move
inland, causing less damage to the inland power infrastructure.
Moreover, the floods induced by storm surge and heavy rainfall can
severely damage coastal power sectors. The flooding also hampers the
recovery efforts of local contractors by submerging electrical com-
ponents in water and obstructing local traffic and logistics with debris.

The general spatial disparities in compound risks are also sub-
stantial and will increase with climate change. For example, in the
historical climate, themost impacted countymay faceon average a 1.8-
day compound hazard with the return period of 278 years, and the
least impacted county does not face any compound risk (Fig. 3a). In the
future, under the SSP5-8.5 scenario, the county with the greatest

Fig. 1 | Simulated and observed total power outage and recovery process in
Louisiana for Hurricanes. a Ida and b Laura. The red curve shows median values,
with 5% to 95% quantile range shown by shade and the blue curve shows the
observation. The yellow curve in (a) shows the percent of customers impacted by

heatwaves (value reads the right axis). c Comparison of observed and simulated
spatial distribution of power outage for Hurricane Ida. Source data are provided as
a Source Data file.
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impactmay faceanaverageof 12.7 days of compoundhazard exposure
for an event with the return period of 278 years. Under the SSP2-
4.5 scenario, this average is 3.1 days. Conversely, the least impacted
area is projected to experience only 1.1 days under SSP5-8.5 and
0.1 days under SSP2-4.5 (Fig. 3b–c). To assess the spatial disparity in
the compound risk, we use the Gini coefficient22, a statistical measure
of inequality commonly applied to income, wealth, or consumption
distribution. The coefficient ranges from 0 (perfect equality, where all
counties face the same average compound hazard duration) to 1 (full
inequality, where only one county faces the hazard). In the historical
climate, the Gini coefficient is approximately 0.312. However, under
future scenarios, it increases to 0.632 for SSP5-8.5 and 0.411 for SSP2-
4.5. These results suggest that intensifying hurricane hazards dis-
proportionally impact coastal regions and vulnerable communities
distant from substations, and thus, climate change is likely to exacer-
bate existing disparities and inequalities in TC-blackout-heatwave
compound risks across Louisiana.

We also examine the distribution of compound hazard durations
for residents in densely populated counties. Figure 3d illustrates the
distribution of compound hazard interruption days for affected cus-
tomers in Orleans Parish, for a 278-year compound event. In the his-
torical climate, only 3% of affected customers may experience a
compoundhazard lastingmore than 120 h (5days). In the future, under
the SSP5-8.5 scenario, nearly 60% of affected customers are projected
to face a compound hazard exceeding 120 h, with nearly 30% experi-
encing durations longer than 240h (10 days) and 10% encountering
durations exceeding 360h (15 days). Under SSP2-4.5, 20% of affected
customers may face compound hazards exceeding 120 h, 3% may
experience durations longer than 240h, and no customers are
expected to encounter durations beyond 360 hours. Hence, climate
change not only increases the average compound hazard impact but
also intensifies the tail risk that vulnerable residents may encounter,
especially under the high emissions scenario.

Drivers of changes in compound risk
The change in the compound risk is driven by the change in three
climate factors: 1) heatwaves (heat index) 2) TC climatology, and 3) the
sea level. As we assume that TC frequency remains unchanged in the
future, the changes in TC climatology include changes in TC char-
acteristics, particularly intensity (which drives changes in wind, storm
tide, and rainfall). To determine the relative effect of the changes in
these factors, we estimate the changes in the compound risk due to
changes in temperature, SLR, and TC climatology, respectively, by
adjusting each variable to its future value or distribution and calcu-
lating the resulting return period of Ida’s compound hazard (i.e., 35
million customer hours of simultaneous power outage and heatwave
impact), as shown in Fig. 4a.

As discussed earlier, when all climate change factors are con-
sidered, Ida’s return period is projected to decrease from 278 years in
the historical climate to 16.2 years under SSP5-8.5 and 23.1 years under
SSP2-4.5 in the future climate. Among these factors, changes in heat-
waves are the largest contributors to this reduction. Due to heatwave
changes alone, Ida’s return period would drop to 47.6 years under
SSP5-8.5 and 84.3 years under SSP2-4.5, representing approximately a
five-fold and three-fold decrease, respectively. This substantial impact
is driven by dramatic increases in temperature and humidity: the
annual number of heatwave days (above 37.8 °C) is expected to rise
eightfold from thehistorical climate to the future climate, basedon the
ensemble average of the six GCMs for the study region.

Changes in TC characteristics, especially intensity also contribute
to the reduction, decreasing Ida’s return period to 167.8 years under
SSP5-8.5 and 185.2 years under SSP2-4.5. By comparison, the impact of
SLR is relatively small, reducing Ida’s return period to 251.2 years under
SSP5-8.5 and 263.3 years under SSP2-4.5. SLR appears to have a rela-
tively low impact because we assume the levees along the coast will be
elevated. Also, the impact of SLR is limited to coastal regions, and it is
averaged out when the compound hazard impact is calculated for the
entire state. The contribution of the various climatological drivers to
future compound risk is consistent across the two different emission
scenarios.

Considering that the projection of TC frequency is subject to
considerable uncertainty23,24, we assumed a constant TC frequency

Fig. 2 | The return period of hurricane events by various metrics for Louisiana.
a interruption hours under power outage, b interruption hours under blackout-
heatwave compound hazard. The red curve shows median values for SSP5-8.5 for
the future climate, with the 5–95% quantile range shown by shade, the yellow curve
represents SSP2-4.5 for the future, and the blue for the historical climate. The
dashed lines highlight Hurricane Ida’s power outage and compound risk levels.
Source data are provided as a Source Data file.

Table 1 | Summary statistics for the return period and impact of Ida-level events under different climate conditions (data shown
as the mean value and 34–66% quantile)

Historical SSP2-4.5 SSP5-8.5

Return Period of Ida’s Power Outage (Years) 64 (40–78) 38 (26–60) 36 (24–56)

Return Period of Ida’s Compound Hazard (Years) 278 (170–395) 23 (17–38) 16 (10–23)

Power Outage under Ida’s Return Period (Million Hours) 206 (188–320) 265 (243–651) 413 (245–541)

Compound Hazard under Ida’s Return Period (Million Hours) 35 (23–88) 138 (122–152) 435 (343–491)
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in above analyses. Here, we investigate the sensitivity of the esti-
mated compound risk to the projection of TC frequency change. In
one scenario, we apply the TC frequency in the applied TC model15,
which projects relatively high increases in TC frequency in the
future climates. Under SSP5-8.5, Ida’s return period decreases to 7.9
years, and under SSP2-4.5, it decreases to 15.2 years, compared to
16.2 years (SSP5-8.5) and 23.1 years (SSP2-4.5) when accounting for
all climate change factors except TC frequency changes. In another
scenario, we consider a 30% decrease in TC frequency, the lower
bound of TC frequency projections ensembled in ref. 24. In this
case, Ida’s return period becomes 28.4 years under SSP5-8.5 and
40.6 years under SSP2-4.5. While longer than the projections with
increased or constant TC frequency, these return periods represent
a similarly dramatic decrease from 278 years in the historical cli-
mate. This sensitivity test indicates the relatively small impact of TC
frequency change compared to the combined effects of other cli-
mate change factors.

Discussion
This analysis highlights the substantial increase in the frequencyof Ida-
level extreme power outage-heatwave compound hazards over time,
resulting from the combined effect of temperature increase, SLR, and

storm climatology change under climate change. Linear interpolation
suggests that Hurricane Ida’s return period has decreased from 278
years around the end of the last century to 225.6 years under SSP5-8.5
and 227.0 years under SSP2-4.5 in the 2020 s, representing approxi-
mately a 19% reduction over the past two decades. This real-life
observation of an emerging climate compound hazard motivates fur-
ther research on projecting future compound climate risks and
developing strategies to mitigate climate risks for various regions
around the world.

When examining the impact of various climate scenarios, such as
the high emission scenario SSP5-8.5 and the moderate emission sce-
nario SSP2-4.5, it appears that the risk associated with Ida-scale com-
poundhazard eventsmaynot exhibit substantial difference. This result
indicates that utility companies urgently need to prepare for the
compound events to prevent major impacts, regardless of whether a
moderate or high emissions scenario is considered. On the other hand,
the frequency of larger compound impacts is expected to be sig-
nificantly lower under themoderate emissions scenario.Moreover, the
duration of interruptions caused by compound hazards will also be
reduced with moderate emissions. This result highlights the impor-
tance of strengthening climate change mitigation policy to reduce the
impact of extreme climate hazards.

Fig. 3 | Estimated average interruption days of blackout-heatwave compound
hazard. a Historical average interruption, b future SSP5-8.5 average interruption,
and c future SSP2-4.5 average interruption, for each county in Louisiana for a
compound hazard event with a 278-year return period. d Distribution of affected

Orleans Parish customers’ compound hazard duration under a 278-year event. The
solid lines show the percentage of affected customers experiencing compound
hazard up to a certain temporal length in the historical and future climates. Source
data are provided as a Source Data file.
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We do not consider the potential change in the power grid or its
operation in the future. In the future, localized solutions, including
backup generators and solar panels, can provide temporary support to
residents who lose power from the main grid, thus mitigating the
impacts of compound hazards25. These solutions can help reduce the
exposure of vulnerable populations to the effects of power outages
and extreme heat, thereby lessening the overall impact of compound
hazard events. However, backup generators and solar panels may be
cost-prohibitive, limiting their effectiveness in reducing heat stress.
Proactive policy measures, such as subsidies or tax breaks, may be
needed to make these interventions accessible and effective for vul-
nerable populations. Also, equipping relief centers with reliable cool-
ing and backup power systems can further enhance emergency
response capacity. Prioritizing these interventions based on estimated
compound risk can guide effective resource allocations. From the
main power grid design perspective, adopting effective strategies like
burying distribution networks and developing distributed power
systems25 can bolster the resilience of power infrastructure against
extreme weather events.

We also do not consider the potential changes in demographics
and human habitat. As extreme climate events becomemore frequent,
coastal megacities are also expected to develop rapidly26,27. Encoura-
ging climate-resilient urban design principles that prioritize green
spaces, water management systems, and heat-resistant building
materials can enhance cities’ resilience against compound risks28. Also,

the implementation of advanced early warning systems and pre-
parednessmeasures, combined with public awareness campaigns, can
help minimize potential impacts on vulnerable communities29,30.
Moreover, changes in population patterns, such asurbanization in low-
elevation coastal zones and the concentration of populations in areas
vulnerable to climate hazards, can influence the impact of compound
hazards, emphasizing the need to account for these demographic
shifts when devising adaptation strategies26,31.

Quantifying the reliability and resilience of infrastructure systems
under the impact of future compound hazards is essential for climate
change adaptation. Developing an integrated risk assessment frame-
work that combines climatology, civil and electric engineering, urban
planning, and social sciences is crucial for comprehensively under-
standing the interconnected nature of compound risks and their
societal impacts, and the formulation of effective mitigation
strategies32,33. For example, conventional statistical methods may fail
to detect significant changes in compound risk, especially for themost
extremes. Our analysis shows that the intensity of relatively frequent
hazards may not change significantly in the future, especially under
moderate emissions scenarios. However, if such a conclusion for fre-
quent, observable events is statistically extrapolated to that for
extreme events, we may transform events like Ida, which could have
been foreseen and prepared for, into “black swan” events—unpre-
dictable extreme disasters with unimaginable losses. Only physics-
based modeling integrating climate and hazards projection and

Fig. 4 | Relative impacts of climate change factors on Ida’s compound hazard
return period. a. Relative impact of each climate change factor assuming a con-
sistent TC frequency.b Sensitivity to TC frequency change. Note that the combined
impact of all climate factors on Ida’s compound hazard return period is highly non-

linear, and thus, the sum of the relative impact of individual factors does not equal
the total impact. Data are presented as the mean value with 10–90% quantile.
10,000 stochastic samples of storm sequences for each climate case are used to
derive the statistics. Source data are provided as a Source Data file.
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infrastructure/social system analysis may provide reliable estimates of
future risks. This multidisciplinary perspective is essential for captur-
ing the complex interactions between different hazards and their
cascading effects on infrastructure systems and society as a whole,
ultimately enabling the development of robust and resilient strategies
to mitigate the impacts of compound hazards. Also, given various
uncertainties in the projections of climate change and social devel-
opment, there is a need for continuous refinement andupdating of risk
analysis techniques as improved modeling approaches and new data
become available. By adopting a comprehensive approach that inte-
grates various disciplines and continuously enhances our under-
standing of compound risks, we can work towards developing
effective adaptation strategies for a sustainable future in the face of a
changing climate.

Methods
Synthetic TC, storm surge, tide, and rainfall modeling
We use the synthetic TC hazard dataset generated in ref. 15 for the
North Atlantic basin and select the TC tracks passing within 300 km of
Louisiana, with a maximum wind speed of at least 22m/s. The dataset
contains synthetic TC tracks generated with the statistical-
deterministic TC model34, which has been applied to TC hazard
assessment9,35,36. The synthetic TC tracks for the historical period
(between 1980 and 2005) were generated based on the National
Centers for Environmental Prediction (NCEP) reanalysis. The
dataset also contains bias-corrected and weighted-average climate
projections of TCs for the future period (2070 to 2100) under Shared
Socioeconomic Pathway (SSP) emissions scenarios, SSP5 8.5 and SSP2
4.5. The dataset was generated based on projections from six CIMP6
models (selected given data availability and following previous stu-
dies): Canadian Earth System Model (CanESM5), Centre National de
Recherches Météorologiques Climate Model (CNRM-CM6-1), UK Earth
System Model (UKESM1-0-LL), EC-Earth3, IPSL-CM6A-LR (Institut
Pierre-Simon Laplace Climate Model), and Model for Interdisciplinary
Research on Climate (MIROC6). The TC storm tides were modeled in
ref. 15 using the Advanced Circulation (ADCIRC) hydrodynamic
model37,38. We extract peak storm tides at nodes (~1 km resolution)
along the coastline of Louisiana for each TC and match these to the
county level. The rain fields were simulated in ref. 15 for each synthetic
TC using the physics-based Tropical Cyclone Rainfall (TCR) model39.
We apply area-averaged TCR estimates at the county level, and we
employ the maximum 24 h rainfall accumulation from each storm
event, since the 24-hour stormduration is often utilized for rainfall risk
assessment39,40.

To perform sequential risk analysis, we generate 10,000 sto-
chastic samples of storm sequences for each of the historical and
future climate conditions. These samples were derived by sampling
storms (according to a Poisson process with a rate as the TC annual
frequency) and their associated hazards from the TC hazard data-
sets described above. Each stochastic sequence consists of 20
consecutive years of TC activity. For the primary analysis in this
study, we maintain a constant TC frequency in the future climate.
For the sensitivity analysis, we consider the increased TC frequency
projected by the statistical-deterministic TCmodel in ref. 15 and the
decreased TC frequency by up to 30% projected by a range of cli-
mate models ensembled in ref. 24.

For each sampled storm, we generate the spatial-temporal wind
field, employing the classical Hollandwind profile41 and accounting for
the effects of surface friction and large-scale background wind fol-
lowing ref. 42, and converting one-minute mean winds to 3 s wind
gusts using gust factors43. We estimate the coastal flood area by
comparing the height of peak storm tide (if over levee height) to the
ground surface elevation specified by the USGS 30mDEM44, assuming
that areas would be inundated when the storm tide exceeds the
ground elevation.

In Louisiana, the actual seawall heights vary largely along the
coastline, ranging from 2 to 5 meters and often changing over short
distances. Due to the difficulty in acquiring the precise data, our
simulations do not incorporate partially available measurements45–47.
We assigned the current seawall level based on estimated 100-year
flood level (estimated in ref. 15) for each coastal county in Louisiana,
according to the typical design guidance. For example, the 100-year
flood level for New Orleans is approximately 3.4 meters above the
North American Vertical Datum of 1988 (NAVD 88)9. This approxima-
tion introduces a degree of inaccuracy into our flood modeling.
Acknowledging this limitation, we subsequently focused on binary
flood data—whether a flood occurs or not—when developing our
power system damage and recovery models. We observe that the
occurrence of flooding is a critical factor that largely hinders the
restoration efforts of the power system in coastal counties. However,
the inundation depth of the flooding appears to have a less substantial
impact. When compared to the areas affected by the TC’s wind and
rainfall, the storm surge flooded regions are generally smaller. There-
fore, the majority of the structural damage to the power system may
not be caused by coastal flooding.

The future coastal levee plan is uncertain. In the future climate
simulations, we assume the coastal levee will be elevated by ~ 2m,
based on the historical 100-year return level plus one percentile SLR.
This design strategy is commonly used by governmental agencies to
plan the seawall height, and it is within the frameworkproposed by the
U.S. Army Corps of Engineers for the New Orleans Region, Lafayette,
and Lake Charles47. A sensitivity test was performed on future com-
pound risks given different elevations of the coastal levee from
0-3 meters above the current level. If the levee were not elevated, the
surge impact on the compound riskwouldbe substantially higher than
estimated in this study. On the other hand, when the levee is elevated
by higher than 2m, the estimated compound risk is not sensitive to the
variation of the assumed levee increment up to the test case
of 3 meters (see Supplementary Fig. 3). The generated wind, rainfall,
and coastalflood conditions fromeach sampled stormdrive the power
grid outage and recovery analysis.

Heatwave projections
Following ref. 11, the daily HI is determined as a function of daily
maximum near-surface (2 m) air temperature, daily mean specific
humidity, and daily mean surface pressure. To maintain consistency
with the TC simulation, we obtain these data for Louisiana from the
NCEP reanalysis and the six GCMs stated above during and after
landfall for each sampled synthetic storm (each synthetic storm is
associatedwith a climatological timeof occurrence anddevelopment).
The future HI projected by the GCM is bias-corrected12 by adding the
difference between the NCEP reanalysis and the GCM-estimated his-
torical HI. According to the historical analysis in ref. 11, the HI will drop
uponTC landfall andwill recover to the ambient averagewithin around
ten days. To account for this dependence between TCs and heatwaves,
we add the composite of the impact of TC passage to the meteor-
ological variables used to calculate theHI, where the composite impact
is estimated based on historical data (Fig. 3a in ref. 11).

Sea level rise projections
We employ sea-level projections produced by the Intergovernmental
Panel on Climate Change Sixth Assessment Report16,18 (AR6) using the
Framework for Assessing Changes To Sea-level17 (FACTS). Localized
probabilistic SLRprojections under the SSP5-8.5 and SSP2-4.5 emission
scenarios with “medium confidence” are incorporated in this analysis
(there are two confidence levels in the datasets, which are low and
medium levels). The local sea level projection takes into account
ground uplift or subsidence, oceanographic effects, and spatially
variable responses of the geoid and the lithosphere to shrinking land
ice. The projection of SLR was developed for tide-gauge stations. For
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eachTC sequence realization, we first sample a near-by SLR time series
(a realization) from the projection for each county. Then, we add the
SLR to the storm tide level at each time point for each county.

Power outage and recovery model
We apply a physics-based power system model, which explicitly
simulates component-level damage to predict the total power outage,
accounting for the effects of future evolving factors, e.g., climate
change, infrastructure upgrade, and utility maintenance. The physics-
driven modeling of the power system allows us to better understand
the impact of climate change and effectiveness of risk mitigation
measures compared to if we used purely data-driven models48,49.

Specifically, we extend the power grid outage and recoverymodel
developed by refs. 12,19 to simulate TC impact on the electric power
system in Louisiana (see the methodology diagram in Supplementary
Fig. 4, power topology in Louisiana in Supplementary Figs. 5, 6, and
electric utility service areas in Louisiana in Louisiana Public Service
Commission50). The power grid failuremodel first applies probabilistic
fragility functions to estimate the damage states of five main vulner-
able component types of the power network: transmission substa-
tions, transmission lines, distribution nodes, distribution lines, and
local distribution circuits. Component failures alter the power grid
topology and may separate the power grid into disconnected sub-
grids. A direct-current (DC) flow simulation is then performed to
capture the power availability in each sub-grid (similar to approaches
in refs. 51–54). The power system is open and connects with systems
outside the study area via transmission lines; the performance of the
power grid outside the study area is assumed to be under normal
operation.

The fragility curves in refs. 12,19 only considered the wind
damage. Here we extend the fragility functions to consider the effects
of coastal floods and rainfall. For example, the probability of failure of
a substation given specific wind, rainfall, and coastal flood levels is
estimated based on a log-normal fragility function as Eq. (1):

PðD≥dijH =h=w+α � r +β � f Þ=
Z h

0

1ffiffiffiffiffiffi
2π

p
σix

exp ��ðlnx � μiÞ2
2σ2

i

 !
dx

ð1Þ
where hazard (H/h) is considered as a linear combination of wind
speed (w), rainfall amount (r), and flood condition (f, flooded or not;
Boolean variable) with twoparameters α and β. With the shape (σi) and
location (μi) parameters, the log-normal distribution describes the
probability of potential damage (D) in each of four states (di), i.e.,
i = {low, moderate, severe, complete} damage. Fragility function refers
to the latent distribution of a component’s ability to withstand outer
forces (hazard). Some components may not withstand any force at all,
while others canwithstand very large outer force. Given a certain outer
force, the probability of damage to the component is equal to the
integral of fragility from 0 to that force level, i.e., the probability that
the strength of the component is lower than outer force. The fragility
functions for other components (support structures, distribution
nodes, poles, conductors, and circuits) are similarly modeled with
exponential, logistic, or uniform distributions. These fragility func-
tions are similar to those in refs. 12,19 except that the effects of rainfall
and flood are incorporated. The parameters are estimated by the
Markov chain Monte Carlo (MCMC) method to minimize the mean
squared error between simulated and observed county-level power
outages1 under Hurricanes Laura and Ida with equal weight.

The recovery model, developed based on emergency response
plans and operational data, applies estimated recovery resources
based on a priority-oriented strategy to repair damaged transmission
substations, transmission lines, and critical facilities vital to public
safety, health, and welfare before local distribution networks12,19.
Debris should be removed before utilities become able to reinstate the

power system. This debris-cleaning time is sampled from a uniform
distribution between 48 and 72 h (estimated from utility reports)2. We
also account for that, without structural failure of the distribution
system, residents may turn on the main power switch themselves
24–48 h after being flooded55.

There is a chance that TCs will make landfall in sequence, and the
second TC comes before the damage caused by the first TC is fully
recovered56. We account for this temporal compounding effect in our
power system outage and recovery analysis. For each sampled
sequential hazard time series, the initial state of the power system
when a TC arrives is set based on the condition of the restoration state
from theprevious TC. If thepower system is indeednot fully recovered
from the previous TC impact, the emergency response plans following
the second TC are also adjusted considering the recovery process for
the first TC. Specifically, the response plans will re-evaluate and
prioritize the restoration tasks and redirect the repair efforts based on
this updated priority list.

The power grid outage and recovery models were calibrated (to
determine the model parameters) for the study area using observed
power outage data for Hurricane Ida and Laura using simulated wind
and observed rainfall57 and flood58. The same wind field modeling
method applied to the synthetic storms is used for these two historical
storms with storm characteristics (i.e., track, intensity, and size) taken
from the extended best track data59.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The transmission network data is from Homeland Infrastructure
Foundation Level Database (HIFLD). The distribution network data is
from Louisiana Public Service Commission (LPSC). The hurricane
hazard data were obtained from Ref. 15. The generated power system
failure statistics are deposited to Github and Zenodo (https://doi.org/
10.5281/zenodo.15012708). Source Data for figures are provided with
this paper. Source data are provided with this paper.

Code availability
The codes for simulating power system failures are deposited to
Github and Zenodo (https://doi.org/10.5281/zenodo.15012708).
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