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The ability to repeat research is vital in confirming the validity of scientific discovery and is relevant to ubiquitous sensor research.
Investigation of novel sensors and sensing mechanisms intersect several Federal and non-Federal agencies. Despite numerous
studies on sensors at different stages of development, the absence of new field-ready or commercial sensors seems limited by
reproducibility. Current research practices in sensors needs sustainable transformations. The scientific community seeks ways to
incorporate reproducibility and repeatability to validate published results. A case study on the reproducibility of low-cost air quality
sensors is presented. In this context, the article discusses (a) open source data management frameworks in alignment with
findability, accessibility, interoperability, and reuse (FAIR) principles to facilitate sensor reproducibility; (b) suggestions for
journals focused on sensors to incorporate a reproducibility editorial board and incentivization for data sharing; (c) practice of
reproducibility by targeted focus issues; and (d) education of current and the next generation of diverse student and faculty
community on FAIR principles. The existence of different types of sensors such as physical, chemical, biological, and magnetic (to
name a few) and the fact that the sensing field spans multiple disciplines (electrical engineering, mechanical engineering, physics,
chemistry, and electrochemistry) call for a generic model for reproducibility. Considering the available metrics, the authors propose
eight FAIR metric standards to that transcend disciplines: citation standards, design and analysis transparency, data transparency,
analytical methods transparency, research materials transparency, hardware transparency, preregistration of studies, and
replication.
© 2024 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.. This is an open access
article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI:
10.1149/2754-2726/ad9936]
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Ubiquitous sensors are integral to Internet of Things (IoT)
applications.1,2 The promise that everyone and everything will be
connected wirelessly and services like healthcare will be brought to
everyone, everywhere, anytime, for virtually any need highlights the
omnipresence of sensors.3–5 These devices sense the environment
and provide applications for home automation, safety, comfort,
personal healthcare, etc.6–8 At a macro level, they provide data for
smart cities, smart agriculture, water conservation, energy efficiency,
environment management, industry 4.0, and society 5.0, to name a
few complex microcosms.9–12

In addition, the latest review articles indicate the surge in sensor
research for monitoring pathogens, sustainability, and in quantum
devices.13–16 The design and operation of these complex systems
require methods for policymakers to evaluate the relative merit of
alternative options and the implications that choosing one of those
options will have. For a decision maker to make an informed
choice, accurate data, and meaningful metrics are essential for
understanding and assessing the state of the system. Technological
improvements in sensors have enabled facile integration into a
wide range of systems to provide quantitative feedback about the
state of the system. The field of sensors is a common thread that
connects many engineering and science disciplines. Further,
various Federal agencies have specific programs and call for
sensor-related research.17–19

Despite the diverse application space, reproducibility is
a long-standing challenge plaguing the field of sensors.20,21

“Reproducibility” refers to independent researchers using the
original researcher’s data to regenerate the results. “Replicability”
refers to when a researcher collects new data to arrive at the same
scientific findings as a previous study. “Interoperability” indicates
data and metadata are conceptualized, expressed, and structured

using common published standards. Figure 1 shows a schematic
highlighting the above concepts. Despite innovations and the breadth
of research in sensors, extremely limited devices have come into use
in the field, and commercialization is primarily attributed to
reproducibility issues.

Inappropriate research practices such as HARKing (Hypothesizing
After the Results are Known),23 p-hacking,24 selective reporting of
positive results, and poor research design25–28 have been proposed to
be a cause of irreproducibility. Other factors contributing to the
irreproducibility are inadequate training of researchers in experimental
design and methodology, such as randomization, bias, replication,
statistical analysis, variations in sophisticated techniques, and varia-
bility in instrumentation and materials. Additionally, the insufficient
time used for research, the bureaucracy and pressure to publish in
high-impact journals to compete for research grants and positions, and
the lack of proper supervision and mentorship further exacerbate the
reproducibility crisis.29–43 Figure 2 shows critical factors influencing
barriers in reproducing results.

The facts mentioned above may lead to researchers taking
shortcuts, not transparently reporting their work, or even indulging
in questionable research practices. Factors related to costs, lack of
infrastructure, disciplinary culture, and weak incentives are barriers
to reproducing research.44,45 Over-reliance on publication in high-
impact journals to grant tenure or promotion to researchers makes
the crisis even worse. Likewise, publishing novel results rapidly
increases the impact factor of journals while ignoring negative or
unimpressive results is a worrying factor. Compounding this
problem, different researchers in resource-constrained institutions
(minority institutions) may not have equal access to the use of the
same level of repositories or the skills to share their data properly.
These institutions also need more training and teaching resources on
the scientific research process, including the experimental design
and methods. Initiatives from Federal agencies, institutions, pub-
lishing venues, funding agencies, and professional societies are
underway to overcome the technological, structural, and infrastruc-
ture barriers hindering reproducibility.46–48 Figure 3 shows thezE-mail: praveen.sekhar@wsu.edu; tsoundappan@navajotech.edu
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results of a survey from an open data source regarding reproduci-
bility in remote sensing.

FAIR Background

Federal agencies like the National Science Foundation (NSF)
have funded open science efforts in specific disciplines. In Earth
sciences, The Magnetics Information Consortium (MagIC) provides
a data archive that allows the discovery and reuse of data for the
broader Earth sciences community.50 NSF has also supported the

Paleo Perspectives on Climate Change (P2C2) Program,51 which
provides comprehensive paleoclimate data sets that can serve as
model test data sets analogous to instrumental observations. Further,
the Galaxy Project funded by NSF52 provides a web-based platform
for “data-intensive” biomedical research, including biosensors. For
managing bioinformatics and phylogenetic research on plants, NSF
has funded the iPlant Collaborative.53 Further, NSF is partnering
with Amazon54 to support FAIRness in Artificial Intelligence (AI)
projects by understanding how AI systems designed on fairness,
transparency, and trustworthiness will advance the boundaries of AI
applications.

The Office of Data Science Strategy (ODSS) has hosted multiple
workshops to ensure National Institutes of Health (NIH) funded
research data follows FAIR principles. These workshops bring

Figure 1. A classification of Repeatability, Reproducibility, Replicability, and Reusability according to the characteristics of a project or experiment.22

Figure 2. Factors affecting sensors reproducibility.

Figure 3. A survey on the state of reproducibility in remote sensing. This
survey was conducted as an online survey from 230 investigators involved in
remote sensing.49
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together stakeholders to discuss ways to enhance a FAIR biomedical
data ecosystem. To help researchers find, use, and share data more
efficiently, the ODSS is working with technical leaders across the
NIH’s 27 institutes and centers to modernize the data repository
ecosystem, support the storage and sharing of data, and standardize
data and adopt common data elements.55,56 The NIH provided the
“Rigor and Reproducibility” guidelines to support reproducibility in
biomedical research. Knudtson et al.57 surveyed the factors to
perform rigorous and reproducible research. Sandve et al.58 provided
ten simple rules to conduct reproducible computational research.
Many approaches have been reported to ensure the quality of
research data for reproducibility.59–62

Apart from Federal agencies, the scientific community has
suggested several guidelines and recommendations to conduct
reproducible research.63–66 Journals like Nature ask the authors to
provide the data used for experiments mentioned in the publications
as a mandatory requirement. Nature introduced a reporting checklist
in 2014 requiring the authors to make materials, data, code, and
associated protocols promptly available to readers without undue
qualifications. Cambridge University Press has launched a new
open-access journal to help address science’s reproducibility issues
and glacial peer-review timelines. The journal titled “Experimental
Results” gives researchers a place to publish valid, standalone
experimental results, regardless of whether those results are novel,
inconclusive, negative, or supplementary to other published work.67

The journal also publishes work about attempts to reproduce
previously published experiments.

In addition to publishing venues, the public data repositories like
Figshare (2021), Zenodo (2021), Dryad (2021), re3data (2021), etc,
are used by the scientists to deposit their datasets, results and
code.68–72 The Digital Biomarker Discovery Pipeline (DBDP)73

computes feature and provides statistical and machine learning
analysis modules to predict health outcomes from wearable and
mobile devices. The “Health Outcomes through Positive
Engagement and Self-Empowerment” (HOPES) platform extended
the Beiwe ecosystem.74 It can process Android, iOS, and Fitbit data
collected with their platform, but it is not publicly available yet.
Further, the Ripeta Framework75 uses over 100 variables to
characterize research publications in bibliography, databases and
data collection, data mining and cleaning, data analysis, and data
sharing and documentation.

Other FAIR initiatives across the world include the Global and
Open FAIR (http://go-fair.org), the European Open Science Cloud
(EOSC; https://eoscpilot.eu), working groups of the Research Data
Alliance (RDA; https://www.rd-alliance.org) and Force11 (https://
www.force11.org), the Data Seal of Approval, Nodes of the
European ELIXIR infrastructure (https://www.elixir-europe.org),
projects under NIH’s Big Data to Knowledge Initiative (BD2K)
and its new Data Commons Pilots.76 In addition, the FAIRsharing
network and advisory board (https://fairsharing.org) connects open
standards-developing communities and data policy leaders, and
editors and publishers such as Springer Nature’s Scientific Data,
Nature Genetics, and BioMedCentral, PloS Biology, The BMJ,
Oxford University Press’s GigaScience, F1000Research, Wellcome
Open Research, Elsevier, EMBO Press and Ubiquity Press.

Hardware and software framework as it relates to sensors
research have different creation pipelines. Further, fabrication
requires standardization. The challenge that unifies software and
hardware as it pertains to reproducibility is the lack of intricate
details and nuances though variations in hardware or fabrication
quality could be corrected for via error analysis. Recording work-
flow details, adequately commenting code, containerizing, preser-
ving, and sharing research artifacts, and running internal reproduci-
bility checks all take time, but are often met with little direct reward.
In the context of sensors research, the FAIR datasets differ from
other investigations due to the data quality, data unavailability, data
non-uniformity, and data semantics.77

Knowledge Gap

While progress is being made on the incorporation of FAIR
principles across the scientific enterprise, as inferred from the
previous section, there are yet to be widely adopted standards of
FAIR practices prevalent in the sensor community. Further, early
and budding engineers need to gain awareness of making their data
findable, reproducible, interoperable, and reusable. Moreover, not
every institution has the capacity, know-how and infrastructure to
support FAIR practices, especially relevant in minority institutions.
The current knowledge gap presents an opportunity to develop an
ecosystem centered on reproducibility and interoperability in the
field of sensors by (a) establishing community standards and
standardizing disciplinary practice by achieving consensus and
implementation of recommendations of reproducibility across en-
gineering disciplines, (b) deriving a generic metrics reproducibility
model that be extended and applied to other disciplines as sensors
research spans broad disciplines, (c) training student and experi-
enced researchers via exploring FAIR curriculum and subsequent
course integration, and (d) arming minority institutions with
adequate resources and knowledge for hindrance free practice of
FAIR principles, in particular, reproducibility and interoperability.

Potential Solutions

Conduct a workshop for the sensor reproducibility chal-
lenges.—The objective of the workshop is to bring researchers
together from diverse fields of science and engineering and related
disciplines at all levels (BS, MS/PhD, students, post-docs, early
career, mid-career, and senior researchers) to participate, discuss,
and formulate action items and frame a roadmap to address sensor
reproducibility and interoperability challenges from multiple per-
spectives. The overarching goal of the workshop would be to
standardize research practice and establish a community standard
to augment the reproducibility and interoperability of sensor data
within the disciplinary framework. In particular, the workshop could
emphasize (a) the participation of students and faculty from
minority-serving institutions to build capacity and have agency in
the roadmap exercise, (b) ingraining students in a sense of FAIR
practices at the early stages of their professional career, (c)
derivation of a generic reproducibility and interoperability model
that can be adopted in other disciplines, and (d) community building
through formal and informal alliances. The workshop could be
advertised through the Electrochemical Society, American Chemical
Society, IEEE Sensors Council, National Society for Black
Engineers, Society of Hispanic Professional Engineers, Society of
Women Engineers, Materials Research Society, American Ceramic
Society, IEEE Women in Engineering, Biomedical Engineering
Society, American Society for Civil Engineers, National Postdoc
Association, and NSF ASSIST Center. Workshop pre- and post-
survey will be designed based on the ten rules to assess the impact of
workshops by Sufi et al.78

Structured virtual teleconference meetings: journal leader-
ship.—The structured teleconference could happen for one hour every
quarter of the year. The participants must be editors and associate
editors from various sensor-related journals. The teleconference
meeting could be conducted via Zoom. Registration will be required
for the teleconference and completion of the meeting pre-survey.
Editors and Associate Editors of the Journal of Electrochemical
Society, IEEE Sensors and IEEE Sensor Letters, Sensors and
Actuators A and B, American Chemical Society Publications,
Biosensors and Bioelectronics, Biomedical Microdevices, and Nature
Publishing group, to name a few, could find a common time to meet.
The topics of discussion could include but are not limited to Author
Incentive Mechanism, Reproducibility Badges, Reproducibility Board,
Credit to Data Producers, Waiver of Open Access Fees, Pre-publication
Reproducibility Check, External Reproducibility Board, Publication of
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Negative Results, Reproducibility Editorial Board and Establishment of
Community Standards.

Effective use of data management systems.—Significant varia-
bility in sensor data generation across teams, individuals, institu-
tions, infrastructure, methodologies, and time results in reproduci-
bility challenges. Further, varying data formats in low-cost sensors
compound this problem. However, several data management sys-
tems exist to facilitate data reuse and reproducibility. Many of the
current ones tend to be tied to specific scientific domains, are often
challenging to deploy, and use non-scalable technologies that limit
the pervasiveness and widespread acceptance of such services
resulting in disjoint data silos. For reproducing sensor data,
federating heterogeneous scientific frameworks into a shared data
network that enables the data access needs of complex cross-facility
collaborations and workflows is vital.

Individual facilities or institutions may house one or more local
data repositories or rely on remote data repositories. Data manage-
ment systems that can be integrated into experimental facilities or
data pipelines across institutions to automate data management will
increase the use of data sharing. Features such as unique data
identification and tracking, abstraction of physical data storage,
metadata, and provenance capture, data organization and search
capabilities, and data sharing with fine-grained access controls will
facilitate ease of reproducibility.

Existing and developing portals like Figshare, Dataverse,
Zenodo, Dryad, re3data, RAPIDS,79 and DataFed80 can be explored.
Sensor reproducibility can be examined using these data manage-
ment systems across different institutions and investigators. The data
management systems facilitating sensor reproducibility can be
evaluated against various metrics such as ease of submission, ease
of use, integration with existing institutional repositories and
experimental infrastructure/facilities, dynamic views of data,
query-able structured metadata, extent of workflow support, data
analytics, data tagging, schema support and availability of common
standards such as number of downloads, subscribers, ratings, and
documentation support. The results of the metrics comparison of the
various data management systems could be disseminated to a
broader audience. The expected outcomes of this solution are (a)
awareness of different data management platforms for depositing
and retrieving data of different formats, (b) knowledge of metrics
and assessment of various data repositories enabling establishment
of community standards for reproducibility, (c) advancement in
reproducibility by increasing the amount of information available on
a scientific topic and reducing the bias favoring the publication of
positive effects, and (d) confidence enhancement in authors to
practice openness and sharing raw data.

Exploring FAIR framework in teaching.—The implementation
of the FAIR principles entails a wide range of skillset that need to be
employed by individuals working in many different roles and
disciplines. Training will need to be delivered to individuals,
referred to as data stewards, who are involved in making data
FAIR and keeping it FAIR. Data stewards may be researchers,
students, data scientists, data curators, librarians, and data and
repository managers, to name a few. Various educational frame-
works are developing to teach and train data stewards in these areas.
A more recently developed educational framework, the FAIR4S
framework (Framework for FAIR Data Stewardship Skills in
Science and Scholarship), targets data stewards wishing to acquire
FAIR skills.81 In addition, there exist isolated FAIR training
resources such as the Belmont Forum Data Management Toolkit,
the DataONE Skillbuilding Hub, ELIXIR (European data infra-
structure for the life sciences), FOSTER (Facilitate Open Science
Training for European Research) portal, EOSC training portal, and
FAIRplus framework.82–84 The articles recommend seamlessly
integrating the training sources on FAIR and mapping them to
existing educational curriculum that meets accreditation standards

and, in turn, applying the curriculum or curricular materials in
existing courses.

Investigating closed loop automation.—An alternative
approach85 recommended by Miles and Lee would be to establish
a system where protocols are encoded and shared as open-source
software that could be modified collaboratively by scientific peers
and run on automated laboratory platforms. Such a system would
minimize sources of irreproducibility, allow protocols to be com-
pared, and create an authority chain between a protocol and the data
it collects. Cloud computing combined with the Internet of Things
(IoT) offers an opportunity to leapfrog the standards-setting debate
and create more precise and reproducible research without adding
human capital or increasing process time. An automated, program-
matic laboratory eliminates much of the risk of error by relying on
hands-free experiments that follow coded research protocols. As
experiments become more complex, datasets larger, and phenotypes
more nuanced, transformative technologies like a programmatic
robotic cloud lab will be necessary to ensure that these high-value
experiments are reproducible, the results can be trusted, and the
protocols producing these experiments can be compared.

Deriving a generic reproducibility model and model adapt-
ability to other disciplines.—The authors recommend creating a
generic FAIR metrics model that can be utilized across disciplines.
Rather than imposing a “tick box” exercise with which researchers
reluctantly comply to the minimum level required, it is preferred to
encourage genuine progress towards all the FAIR principles with a
model that recognizes and rewards different degrees of FAIR
compliance. It is critical that the assessment frameworks for FAIR
data suit differences in disciplinary practice. While Open data are
preferable, FAIR does not necessarily mean open. Openness is not a
requirement of FAIRness since data cannot be made public for
privacy or confidentiality reasons. A one-size-fits-all approach that
ignores differences between research communities will be counter-
productive and unhelpful. Further, what is considered FAIR in one
scientific community may differ from the FAIRness requirements or
expectations in another community due to norms, standards, and
practice.

Hence, the proposed metric FAIR model could address the multi-
dimensionality of the FAIR principles and accommodate all dis-
ciplines. The FAIR data metric model should contain (across all
research areas) a basic minimum standard of FAIR, such as
discoverable metadata, persistent identifiers, and access to the data
or metadata. FAIR metrics are available for public discussion at the
FAIR Metrics GitHub, with suggestions and comments made
through the GitHub comment submission system (https://github.
com/FAIRMetrics). Considering the above facts and available
metrics, the authors propose eight FAIR metric standards that
transcend disciplines: Citation Standards, Design and Analysis
transparency, Data Transparency, Analytical Methods Transparency,
Research Materials Transparency, Hardware Transparency,
Preregistration of Studies, and Replication. The metric model
encompassing these standards will be assessed through numeric levels
(from 0 to 5), “0” indicating no compliance and “5” indicating the
maximum level of FAIR compliance.

Building capacity at diverse institutions.—The authors strongly
advocate for enhancing the FAIR (Findability, Accessibility,
Interoperability, and Reusability) capabilities at minority-serving
institutions (MSIs). This enhancement is crucial for advancing FAIR
principles and building human and infrastructural capacities at
institutions often facing significant resource constraints. The success
of the STEM research enterprise in the USA hinges on the ability to
draw from a diverse pool of scientists and engineers who are well-
trained and capable of addressing the complex research challenges of
the 21st century. By providing the necessary knowledge, oversight,
and infrastructure, MSIs can be empowered to adopt FAIR
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principles, ensuring that their contributions to scientific research are
transparent, rigorous, and reproducible.

The workshop, strategically designed to foster diversity among
participants, will play a pivotal role in this endeavor. It aims to
establish a synergistic community of researchers, educators, and
administrators who share a common vision to address scientific
challenges. This approach goes beyond impacting individual re-
searchers; it aspires to catalyze institutional and organizational
changes that embed rigorous research practices across these uni-
versities, ultimately leading to sustainable improvements in trans-
parency and reproducibility.

One of the critical aspects of promoting FAIR capabilities at
MSIs is addressing the training and management of responsibilities
in work, education, and time allocation within their academic
environments. These institutions often face unique challenges,
including limited financial resources, infrastructure, and access to
advanced scientific tools and methodologies. Consequently, students
and researchers at MSIs may need more exposure to informal and
formal training opportunities, creating uncertainties in research
processes and standards. This lack of exposure hinders the transition
from theoretical knowledge to practical applications, such as sensor
fabrication, a vital component of STEM education and research.

Sensor fabrication and testing at MSIs often encounter specific
challenges due to limited access to cutting-edge scientific practices
and advanced instrumentation. Many students and researchers come
from core science and educational backgrounds, with less emphasis
on interdisciplinary approaches essential for sensor development.
These inconsistencies impede progress and highlight the need for
more comprehensive training and infrastructural support to enhance
technical skills and methodological rigor. Moreover, the time
required to produce testable sensors is another limiting factor
hindering the advancement of research. Often, fabricating a batch
of testable sensors takes an entire day, slowing down the research
cycle and limiting the number of experiments that can be conducted.
This time-consuming process, combined with the limited laboratory
space and equipment, underscores the importance of improving
infrastructure and training to enable more efficient research practices
at MSIs.

Despite these challenges, researchers at minority-serving uni-
versities have demonstrated remarkable success in sensor research.
These successes testify to these institutions’ resilience, creativity,
and innovation potential. They showcase that, with a suitable
investment in human capital and infrastructure, MSIs can signifi-
cantly contribute to scientific knowledge and practical solutions to
societal challenges, instilling a sense of hope and optimism in the
audience.

Enhancing FAIR principles at these institutions fosters a culture
of transparent, rigorous, and reproducible research. It ensures that
researchers’ diverse perspectives and talents from underrepresented
communities are effectively integrated into the broader STEM
enterprise. By developing comprehensive training programs, work-
shops, and infrastructure improvements, MSIs can better prepare
their students and researchers to meet the demands of modern
scientific challenges. This holistic approach will ensure that these
minority universities become integral contributors to the scientific
community, driving innovation and diversity in research essential for
tackling the complex and multifaceted problems of the 21st century.

Increasing the FAIR capabilities of minority-serving institutions
is essential for building a more inclusive, equitable, and effective
STEM research ecosystem. Through deliberate efforts to provide
training, resources, and infrastructure, these institutions can over-
come existing barriers and contribute to high-quality, impactful
research. The successes already achieved in sensor fabrication are
just the beginning of what is possible when MSIs are empowered to
reach their full potential. As they continue to build capacity and
expertise, minority-serving universities will play an increasingly
prominent role in advancing scientific research and addressing
critical challenges nationally and globally.

Future Outlook

Furthermore, reproducibility is the cornerstone of science, so it is
critical to improve the quality and reliability of publications by going
beyond disseminating results by providing raw data. Incorporating
these changes in a competitive scientific enterprise requires broad
cultural shifts that extend beyond disciplinary boundaries. The
article addresses this complexity by organically nudging scientific
practices toward greater openness via complementary and coordi-
nated efforts from all stakeholders. Solving the reproducibility
challenge will benefit scientific advancement by promoting transpar-
ency, encouraging collaboration, accelerating research, and driving
better decision-making. Achieving sensor reproducibility impacts
many disciplines and applications, ranging from healthcare to
aerospace. For example, air quality sensors for pollutant measure-
ment across urban and industrial areas entail numerous benefits as
they provide policymakers and air quality researchers with sound
solutions to fill knowledge gaps that are impossible by regulatory
monitors and satellite data. Consensus via achieving reproducibility
establishes a sense of reliability for policymakers and the public, as
these sensors can overestimate or underestimate pollutant concen-
trations, which can hamper meaningful interventions. Policy deci-
sions based on inaccurate sensor data can be devastating, especially
to minority populations facing environmental and health disparities.
The authors present a case study on sensor reproducibility using air
quality sensors.

Case study.—The goal of this article is to describe reproduci-
bility challenges in sensors research in a generic way that resonates
with a wider audience. Subsequent submissions are planned that will
focus on chemical sensors, biosensors, and physical sensors.

A low-cost air pollution monitor is a device that uses one or more
than one sensor and other components to detect, monitor and report
on specific air pollutants. They provide policymakers and air quality
researchers with sound solutions to fill knowledge gaps. Sensor data
reproducibility is used to quantify the data quality achieved by low-
cost gas sensors as part of the monitoring system. Typically, the
consensus for sensor data reproducibility is achieved by close
examination of the device. For example, on exposure to a target
gas with zero concentration, the sensor should provide the same
reading with multiple measurements. These measurements recorded
in the laboratory, as well as the site of the final installation, ensure
robust calibration along with higher accuracy. The sensor perfor-
mance is influenced by several factors such as where the monitor is
placed in the indoor space, time in use, methods of processing the
data, data collection procedure, sensor fabrication, hardware, and
external environmental factors. The use of multiple identical devices
provides reliable insights into the extent of repeatability and
variability. A critical test of sensor reproducibility is collocation.

Collocation refers to the process of operating a regulatory grade
reference monitor (FRM/FEM)/commercial sensor and a non-refer-
ence device (air quality sensor) at the same time and location under
real-world conditions for a defined evaluation period. Collocating air
sensors with regulatory monitors can help users evaluate the
accuracy of their sensors by comparison of the two data sets.
Using such a technique, the sensor performance can be bench-
marked, and data accuracy improved by data comparison. At least 3
units of the same sensor (from different batch of fabrication) can be
used for this exercise. For accurate measurements, the sensor or the
array and reference monitor will be placed within 10 meters of each
other, and the gas inlet/outlet will be maintained at about the same
height. The data collection frequency of the sensor and the reference
will be matched by averaging the readings. Apart from the sensing
parameters, three important characteristics are also recorded. They
are intra-model variability, data recovery, and linear correlation
coefficient. Intra-model variability estimates the closeness of mea-
surement values from three units of the same sensor type. Data
recovery is calculated using a percentage ratio of the number of valid
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sensor data points over the total number of data points collected
during the testing period. Linear correlation coefficient expresses the
strength of the linear relationship between the average measurements
from the three-sensor tested and the reference values.

While many variety of gas sensors or sensing mechanisms are
investigated for a multitude of applications for air quality, one of the
barriers to field testing and subsequent sensor commercialization is
reproducibility. Through this article, the authors intend to advocate
collocation as one of the studies that need to report in manuscripts
via recommendation to the different journal board with sensors as
the technical interest area. The following checklist serves as a tool to
help researchers think about the reproducibility of the experiment
and data analysis. Many of the questions can be thought of as having
a yes/no answer or open ended for improvement. (Derived from
Neon, The National Ecological Observatory Network is a major
facility fully funded by the U.S. National Science Foundation)

Documentation

1. Is there a README file that indicates the purpose of the project,
who to contact with questions, a map of the directory structure,
and a description of what software and hardware is needed to
reproduce your experiment/workflow?

2. Are there README files in each folder describing the contents
of the folder, how they were acquired/generated?

3. Is there a CITATION file that tells users how to site the project,
data, and code?

4. Are there instructions on how to obtain the raw data and
citations for those data?

5. Is there a list of dependencies with the exact version number of
every external application used in the process?

6. Are there appropriate LICENSE files that specify the license under
which you are distributing your content, data, and code? Have you
edited them to include information pertinent to your project?

7. Have you noted the license(s) for other peoples’ content, data,
and code used in your analysis?

8. For analyses that utilize a random number generator, have you
noted the underlying random seed(s)? Do you state the other
seeds that you have tested the results with?

9. Is your code well documented?
10. Is there data on experiment repetitions?
11. Do each of your scripts have a header indicating the inputs,

outputs, and dependencies?
12. Is it documented how files relate to each other?

Organization

1. Are all data, code, results, and documentation housed within a
monophyletic folder structure?

2. Is this folder structure under version control?
3. Is the project’s repository publicly available?
4. Are there assurances that this repository will remain accessible?
5. Is your project folder structured to separate your data, code,

documentation, and results?
6. Are your raw and processed data files separated?
7. Is your raw data truly raw or has it been manipulated?
8. Are files that store manually entered data structured to be easily

read by a computer?
9. Do files use a consistent naming scheme that indicates what they

contain?
10. Is there a mechanism in place to archive large files?

Automation

1. Does data processing make use of open software code?
2. Is code written to be flexible enough to the addition of new

data?
3. Does your repository make use of continuous integration tools

to ensure internal reproducibility?

Publication

1. Are papers and reports from the project generated using literate
programming tools so that results are not hard-coded?

2. Did you include a reproducibility statement or declaration at the
end of your paper(s)?

3. Did you archive preprints of resulting papers in a public
repository?

4. Did you release the underlying code and new data at the time of
submitting a paper?

5. What mechanisms are in place to ensure your project remains
accessible and reproducible in 5 years?

Conclusions

To progress and improve public trust, science needs innovation
and self-correction. Reproducibility and replication offer opportu-
nities for self-correction. In an alternate sense, the article views
reproducibility as a measure to examine a research result from the
perspective of one’s confidence in the components of the study by
acknowledging sources of uncertainty in a research study.
Establishing community standards for open data practices aiding
reproducibility nationwide will translate scientific norms and values
into concrete actions and change the current incentive structures to
drive researchers’ behavior towards more transparency. Intentional
focus journal “focus issues” validating existing sensor data is poised
to transform the current practices in external verification and sensor
commercialization. The article recommendations aim to facilitate the
gradual adoption of best practices and standardize reward system for
academics irrespective of discipline practicing openness in sensors
research. The article suggests centralizing means of aligning
individual and communal incentives to practice openness via
acceptable scientific policies and procedures. Further, the article
recommends increasing FAIR capabilities at minority-serving in-
stitutions while providing the required knowledge and oversight to
advance FAIR. The knowledge transfer of FAIR principles through
the communities of practice approach will prepare buddy scientists
for a systemic culture of a transparent research enterprise.
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