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We study neutrino flavor evolution in the quantum many-body approach using the full neutrino-neutrino

Hamiltonian, including the usually neglected terms that mediate nonforward scattering processes. Working

in the occupation number representation with plane waves as single-particle states, we explore the time

evolution of simple initial states with up to N ¼ 10 neutrinos. We discuss the time evolution of the

Loschmidt echo, one body flavor and kinetic observables, and the one-body entanglement entropy. For the

small systems considered, we observe “thermalization” of both flavor and momentum degrees of freedom

on comparable time scales, with results converging towards expectation values computed within a

microcanonical ensemble. We also observe that the inclusion of nonforward processes generates a faster

flavor evolution compared to the one induced by the truncated (forward) Hamiltonian.
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I. INTRODUCTION

The evolution of neutrino flavor in hot and dense media

provides key input to our understanding of the synthesis of

light nuclei in the early Universe and heavy nuclei in the

collapse or merger of compact astrophysical objects, and

affects the neutrino signal from a future galactic supernova.

Astrophysical neutrinos are usually studied through so-

called quantum kinetic equations (QKEs), which are

evolution equations for the one-body reduced neutrino

density matrix, accounting for both momentum and flavor

degrees of freedom [1–5]. The QKEs have been derived

from quantum field theory using various methods, includ-

ing the two-particle-irreducible (2PI) effective action [6]

truncated to three loops [3,7]. The QKEs involve both

coherent forward scattering and collisional kernel and lead

to a rich phenomenology of collective phenomena and

flavor instabilities (see the review [8] and references

therein).

While the computational implementation of the full

QKEs and their interface with compact objects evolution

codes is an arduous task, understanding the limits of

applicability of the one-body approach underlying the

QKEs remains an active area of research. The question

whether the one-body analysis leaves out important many-

body correlations and entanglement effects goes back to the

early days of the field [9,10] and has received attention over

the years [11–16].

More recently, the validity of the QKE treatment of the

neutrino gas has come under scrutiny in the context of

quantum many-body approaches to this problem (see [17]

and references therein). As far as we are aware, all existing

quantum many-body studies of the neutrino system use a

truncated Hamiltonian H
ðTÞ
νν [18] that only couples pairs of

momentum-space neutrino operators satisfying forward

kinematics. In other words, H
ðTÞ
νν contains terms that either

preserve or exchange the momenta of interacting neutrino

pairs (forward and exchange terms). As argued in

Ref. [19], the use of the truncated Hamiltonian is not

justified in a first-principles many-body approach. On the

other hand, the truncated ν-ν Hamiltonian has the virtue of

mapping onto a spin-spin Hamiltonian with all-to-all

couplings [18], which is amenable to many-body analyses

[20–31] and implementation on quantum computers [32–

36]. In certain regimes, the many-body results are at

variance with the QKE expectations (see for example

Refs. [17,29,30]), and there is an ongoing debate on

whether these calculations can indeed challenge the

validity of the QKEs’ approach [19,37,38].

The path towards more realistic many-body studies

requires several developments, which include: (i) assessing

the impact of using the full many-body Hamiltonian rather

than its truncated version, (ii) exploring more general initial

pure states (not product states of plane waves), and possibly

admixtures of pure states, that more realistically describe

the physical system, and (iii) studying the dynamics of

larger systems and systematically studying the scaling of

relevant observables with the number of neutrinos, includ-

ing neutrino interactions with other particles. In this work,
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we address point (i) above: first, we work out the full

neutrino-neutrino Hamiltonian Hνν and set up the frame-

work to implement the time evolution using the occupation

number representation. Then we explore the evolution of

simple initial states. In this simplified setting, we study the

time scales for evolution of flavor and momentum degrees

of freedom and their interplay. While we use a plane wave

single-particle basis, we emphasize that, in principle, any

initial state can be built within this formalism, thus allowing

one to study point (ii) above.

This paper is organized as follows: in Sec. II we set up

the basic formalism, present the full Hamiltonian and give

its matrix elements in the occupation number basis. In

Sec. III we introduce the one-body density matrix and the

corresponding entanglement entropy, emphasizing the

interplay between flavor and momentum degrees of free-

dom. In Sec. IV we discuss the relevant energy scales in the

problems of astrophysical interest. In Sec. V we study the

time evolution in a toy model with N ¼ 2, illustrating some

features that generalize to larger systems. In Sec. VI we

study the time evolution of neutrino systems withN ¼ 6, 8,

10 in a two-dimensional setup and investigate qualitative

and quantitative differences that emerge when using the full

and truncated Hamiltonian. We summarize our results in

Sec. VII and provide some more technical details in

Appendixes A and B.

II. FORMALISM

In order to write down the Hamiltonian we describe

neutrino fields ναðxÞ as four-component spinors (α∈ fe;
μ; τg denoting the flavor). At energies much smaller than

the electroweak scale the Hamiltonian takes the form

(repeated flavor indices are summed over)

H ¼ Hkin þHνν þHν−m ð1Þ

with

Hkin ¼
Z

d3x ν̄αðxÞð−iδα³γ · ∇þmα³Þν³ðxÞ;

Hνν ¼
GF
ffiffiffi

2
p
Z

d3x ν̄αðxÞ´μPLναðxÞν̄³ðxÞ´μPLν³ðxÞ; ð2Þ

where we will use the following gamma matrices:

´0 ¼
�

0 σ0

σ0 0

�

; ´i ¼
�

0 σi

−σi 0

�

´5 ¼ i´0´1´2´3 ð3Þ

with σ0 being the two-dimensional identity matrix and σi

the ith Pauli matrix. PL ¼ ð1 − ´5Þ=2, and m is a complex

mass matrix for Dirac neutrinos (for Majorana neutrino the

kinetic term acquires an overall factor of 1=2 and the mass

matrix becomes symmetric). Hν−m denotes the interaction

of neutrinos with quarks and charged leptons. For a

complete description of neutrino-matter interaction see,

for example, [7]. In this work we do not consider the effects

of Hν−m. In what follows we expand the neutrino fields in

creation and annihilation operators and derive a represen-

tation of the Hamiltonian in Fock space.

A. Neutrino fields and spinors

We expand the free Dirac neutrino fields as follows:

νiðxÞ ¼
X

h¼�

Z

d3p

ð2πÞ3
�

uðp; hÞaiðp; hÞe−ipx

þ vðp; hÞb†i ðp; hÞeipx
�

ð4Þ

in terms of helicity spinors uðp; hÞ, vðp; hÞ and creation/

annihilation operators for neutrinos [aiðp; hÞ] and antineu-

trinos [biðp; hÞ]. The h∈ fþ;−g label refers to helicity and
i∈ f1; 2g refers to the mass eigenstate. With the normal-

izations adopted here, the creation and annihilation oper-

ators carry mass dimension −3=2 and satisfy the following

anticommutation relations:

faαðp; hÞ; a†³ðp0; h0Þg ¼ ð2πÞ3δð3Þðp − p0Þδhh0δα³: ð5Þ

In our conventions the spinors are dimensionless and

normalized such that

u†ðp; hÞuðp; h0Þ ¼ v†ðp; hÞvðp; h0Þ ¼ δhh0 : ð6Þ

The helicity 4-spinors are given by

uðp;þÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eþ jpj
2E

r

�

rðpÞξþðp̂Þ
ξþðp̂Þ

�

; ð7Þ

uðp;−Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eþ jpj
2E

r

�

ξ−ðp̂Þ
rðpÞξ−ðp̂Þ

�

; ð8Þ

vðp;þÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eþ jpj
2E

r

�

ξ−ðp̂Þ
−rðpÞξ−ðp̂Þ

�

; ð9Þ

vðp;−Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eþ jpj
2E

r

�

−rðpÞξþðp̂Þ
ξþðp̂Þ

�

; ð10Þ

with E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
p

and rðpÞ ¼ m=ðEþ jpjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðE − jpjÞ=ðEþ jpjÞ
p

. Denoting by θp;ϕp (the polar

and azimuthal angles of p̂≡ p=jpj), the helicity Pauli

spinors are
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ξþðp̂Þ¼
 

cos
θp
2

eiϕp sin
θp
2

!

ξ−ðp̂Þ¼
 

−e−iϕp sin
θp
2

cos
θp
2

!

ð11Þ

and satisfy ðσ⃗ · p̂Þξ�ðp̂Þ ¼ �ξ�ðp̂Þ.
Throughout, we treat neutrino masses as perturbations

and neglect terms of higher order in mi=jpj. As is well

known, in this approximation the left-handed neutrino field

appearing in the weak Hamiltonian only involves left-

helicity neutrinos and right-helicity antineutrinos,

PLνiðxÞ ¼
Z

d3p

ð2πÞ3
�

uðp;−Þaiðp;−Þe−ipx

þ vðp;þÞb†i ðp;þÞeipx
�

: ð12Þ

Further focusing on the many-body dynamics of neutrinos

(ignoring antineutrinos for simplicity) we only need to

consider terms involving left-helicity neutrino mode oper-

ators. To simplify the notation, we thus suppress the

redundant helicity label: aiðp;−Þ → aiðpÞ.
Finally, since the interaction Hamiltonian is most nat-

urally expressed in terms of flavor fields, we introduce the

flavor basis mode operators and express the Hamiltonian in

terms of these. In the two-flavor case, the relation between

mass and flavor operators is given by

aeðpÞ ¼ cos θ a1ðpÞ þ sin θ a2ðpÞ
aμðpÞ ¼ − sin θ a1ðpÞ þ cos θ a2ðpÞ: ð13Þ

B. Hamiltonian

In what follows we focus on the many-body dynamics of

neutrinos, ignoring antineutrinos for simplicity. For com-

pleteness, the terms in Hνν involving antineutrinos are

reported in Appendix B. As discussed above, we quantize

the fields in the mass basis and work in the ultrarelativistic

limit mi=jpj ≪ 1. We then express the Hamiltonian in

terms of creation and annihilation operators of left-helicity

neutrinos, for which we use the flavor basis: aαðpÞ,
α∈ fe; μ; τg. From now on, we restrict our discussion to

the case of two flavors, e and μ. The generalization to three
flavors is straightforward.

Defining δm2 ¼ m2
2 −m2

1, the kinetic term of the

Hamiltonian reads

Hkin ¼
Z

dp

ð2πÞ3
��

jpj þm2
1 þm2

2 − δm2 × cos 2θ

4jpj

�

a†eðpÞaeðpÞ þ
�

jpj þm2
1 þm2

2 þ δm2 × cos 2θ

4jpj

�

a†μðpÞaμðpÞ

þ δm2 × sin 2θ

4jpj

�

a†eðpÞaμðpÞ þ a†μðpÞaeðpÞ
��

; ð14Þ

with the last term representing the usual vacuum mixing term.

The neutrino-neutrino terms in the interaction Hamiltonian Hνν take the form

Hνν ¼
GF
ffiffiffi

2
p

X

α;α0;³;³0

Z

dq

ð2πÞ3
dq0

ð2πÞ3
dp

ð2πÞ3
dp0

ð2πÞ3 ð2πÞ
3δðpþ q − p0 − q0Þ

×

�

a†
α0ðp0ÞaαðpÞa†³0ðq0Þa³ðqÞ

ðδα0αδ³0³ þ δα0³δ³0αÞ
2

gðp0;p;q0;qÞ þ � � �
�

; ð15Þ

with

gðp0;p;q0;qÞ≡ ūðp0;−Þ´μPLuðp;−Þ ūðq0;−Þ´μPLuðq;−Þ ¼ f†ðp0;q0Þfðp;qÞ ð16Þ

fðp;qÞ ¼
ffiffiffi

2
p �

e−iϕp sin

�

θp

2

�

cos

�

θq

2

�

− e−iϕq cos

�

θp

2

�

sin

�

θq

2

��

: ð17Þ

From Eq. (15) we see thatHνν takes each pair of occupied states with momenta p, q to states with momenta p0, q0, subject
to the condition pþ q ¼ p0 þ q0, and acts on the flavors by either leaving them unchanged or by swapping them. The

weight for each set of momenta considered is given by the function gðp0;p;q0;qÞ in Eq. (16).

Note that gðp0;p;q0;qÞ ¼ gðq0;q;p0;pÞ ¼ −gðp0;q;q0;pÞ, where the last equality follows from the Fierz identities. In

the forward scattering kinematics (p0 ¼ p or p0 ¼ q), this expression reproduces the familiar factors encountered in the

literature [10],

gðp;p;q;qÞ ¼ −gðq;p;p;qÞ ¼ 1 − p̂ · q̂: ð18Þ
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As an illustration, we consider the two-dimensional case

with py ¼ 0 and px > 0 (corresponding to ϕp ¼ 0,

ϕq ¼ 0), which leads to

gðp0;p;q0;qÞ → 2 sin

�

θp − θq

2

�

sin

�

θp0 − θq0

2

�

: ð19Þ

The one-dimensional case (all momenta along the z axis)

corresponds to θp;p0;q;q0 ¼ 0; π, depending on the sign of the

z-component of the momenta. Equation (19) shows that in

this case a nonzero amplitude is only obtained when

the initial and final state momenta are “head on” [i.e.

when the momenta satisfy momentum conservation pz þ
qz ¼ p0

z þ q0
z and both conditions signðqzÞ ¼ −signðpzÞ

and signðq0
zÞ ¼ −signðp0

zÞ hold].
When working in finite volume, the formulae presented

above need to be modified in the usual way. Assuming the

box has linear size L and volume V ¼ L3, the 3-momenta p

are uniquely identified by triplets of integers ðzpÞx;y;z
through ðpÞx;y;z ¼ ½ð2πÞ=L�ðzpÞx;y;z. As a consequence,

the integrals over 3-momenta are replaced by finite sums

over triplets of integers through the usual relation,

Z

d3p

ð2πÞ3 →
1

V

X

zp

; ð20Þ

and the Dirac delta functions of momentum conservation

become Kroeneker deltas according to

ð2πÞ3δð3Þðpþ q − p0 − q0Þ → Vδzpþzq−zp0−zq0 ;0
: ð21Þ

C. Fock space

We consider for simplicity only two neutrino flavors

(denoted by e and μ) and work in Fock space. A single-

particle state is identified by the three-momentum pi

(i∈ f1;…:; kg) and a flavor label α (α∈ fe; μg). We

consider only neutrinos with negative helicity, so we do

not have to specify any other quantum numbers. There are

2k single particle states and a basis vector in Fock space is

specified by the set of occupation numbers niα ∈ f0; 1g.
The dimension of this space is 22k.

1

We set out to study the problem in which the initial state

has total number of neutrinos N < k:

N ¼
X

i ¼ 1;…; k
α ¼ e; μ

niα: ð22Þ

SinceHνν conserves the total number of neutrinos, we need

to evolve the state in the space of fixed N, which has

dimension

dN;k ¼
�

2k

N

�

: ð23Þ

The dN;k basis vectors are labeled by

n ¼ fn1e; n1μ;…; nke; nkμg; ð24Þ

the 2k-dimensional array of occupation numbers obeying

the condition (22), and represent antisymmetrized products

of N single-particle states:

jni ¼ S:D:

�

Y

iα∶ niα¼1

jpi; αi
�

; ð25Þ

where “S.D.” stands for Slater determinant. A generic state

is specified by dN;k complex amplitudes cn as follows:

jΨi ¼
X

n

cnjni: ð26Þ

Finally, to take into account the anticommutation of the

creation and annihilation operators correctly, we need to

introduce the ordering rule for the operators in defining the

basis vectors jni in Eq. (25). The basis vectors jni are

defined via the application of a sequence of creation

operators ordered in an increasing order of flavor and

momenta, i.e. momenta with a smaller label are on the left,

and within a given momentum label the electron flavor goes

to the left of the muon flavor. For example, the normalized

basis state of three neutrinos with flavor and momenta

ðp1; eÞ; ðp1; μÞ; ðp2; eÞ (labeled by n with n1μ ¼ n2e ¼
n1μ ¼ 1 and all other occupation numbers nj³ ¼ 0) is

given by

jni ¼ a†eðp1Þ
ffiffiffiffi

V
p a†μðp1Þ

ffiffiffiffi

V
p a†eðp2Þ

ffiffiffiffi

V
p j0i: ð27Þ

Its complex conjugate is defined as

hnj ¼ h0j aeðp2Þ
ffiffiffiffi

V
p aμðp1Þ

ffiffiffiffi

V
p aeðp1Þ

ffiffiffiffi

V
p : ð28Þ

This defines an orthonormal basis, i.e. hnjmi ¼ δn;m. The

application of an annihilation operator aαðpiÞ to a basis

vector jni results in

aαðpiÞjni ¼ V1=2fn;i;αδni;α;1jn½iα�i ð29Þ

where

n½iα� ¼ n with ni;α → 0 ð30Þ

and

1
When considering nf flavors, one simply makes the replace-

ment 2k → nf × k.
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fn;i;α ¼ ð−1Þ
P

ðj;³Þ<ði;αÞ nj;³ : ð31Þ

The volume factor in Eq. (29) arises due to the normali-

zation adopted for the creation and annihilation operators

[see Eq. (5) and its finite volume version]. The summation
P

ðj;³Þ<ði;αÞ nj;³ in the exponent of the anticommutation

factor ffng;i;α means that we sum nj;³ for all ðj; ³Þ that are
on the left of ði; αÞ in the ordering rule introduced above.

D. Matrix elements of the Hamiltonian

We next discuss in some detail the matrix elements of the

Hamiltonian HKin and Hνν in the occupation number basis.

With the notation introduced in the previous subsection, the

matrix element of quadratic operators of the form

a†αðpiÞa³ðpjÞ is

1

V
hmja†αðpiÞa³ðpjÞjni

¼
�

fm;i;α δmi;α;1

��

fn;j;³ δnj;³ ;1

�

hm½iα�jn½j³�i

≡A2ðm;n; fi; αg; fj; ³gÞ: ð32Þ

The matrix elements of quartic operators of the form

a†αðpiÞa†³ðpjÞaϵðpkÞaζðplÞ are

1

V2
hmja†αðpiÞa†³ðpjÞaϵðpkÞaζðplÞjni ¼ ðfm;i;αδmi;α;1

Þðfm½iα�;j;³δðm½iα�Þj;³ ;1Þðfn½lζ�;k;ϵδðn½lζ�Þk;ϵ;1Þðfn;l;ζδnl;ζ ;1Þhm
½iα�½j³�jn½lζ�½kϵ�i

≡A4ðm;n; fi; αg; fj; ³g; fk; ϵg; fl; ζgÞ; ð33Þ

where

n½iα�½j³� ¼ n½iα� with nj;³ → 0: ð34Þ

With Eqs. (32) and (33), the Hamiltonian’s matrix elements can be written in the following way. First, the kinetic energy,

including the vacuum mixing terms, reads

hmjHKinjni ¼
X

i

��

jpij þ
m2

1 þm2
2 − δm2 × cos 2θ

4jpij

�

A2ðm;n; fi; eg; fi; egÞ

þ
�

jpij þ
m2

1 þm2
2 þ δm2 × cos 2θ

4jpij

�

A2ðm;n; fi; μg; fi; μgÞ

þ δm2 × sin 2θ

4jpij

�

A2ðm;n; fi; eg; fi; μgÞ þA2ðm;n; fi; μg; fi; egÞ
��

: ð35Þ

The matrix elements of the normal-ordered interaction Hamiltonian can be written using Eq. (33). For the full

Hamiltonian including nonforward terms, one finds

hmjHðFÞ
νν jni ¼ −

1

V

GF

2
ffiffiffi

2
p

X

α;³¼e;μ

X

i;j;k;l

δzpiþzpj−zpk−zpl ;0
gðpi;pk;pj;plÞ

×
h

A4ðm;n; fi; αg; fj; ³g; fk; αg; fl; ³gÞ þA4ðm;n; fi; αg; fj; ³g; fk; ³g; fl; αgÞ
i

: ð36Þ

Finally, restricting summation over k, l in Eq. (36) to the forward limit (k ¼ i or l ¼ i), we obtain the usual truncated

(“forward scattering”) Hamiltonian,

hmjHðTÞ
νν jni¼−

1

V

GF
ffiffiffi

2
p

X

α;³¼e;μ

X

i;j

ð1− p̂i · p̂jÞ
h

A4ðm;n;fi;αg;fj;³g;fi;αg;fj;³gÞþA4ðm;n;fi;αg;fj;³g;fi;³g;fj;αgÞ
i

ð37Þ

where the summations of i, j run over all momentum modes.
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III. REDUCED DENSITY MATRICES AND

ENTANGLEMENT ENTROPY

The full many-body system described by the state jΨi in
Eq. (26) can be partitioned into two subsystems in various

ways, and the corresponding entanglement can be studied.

In this context, the key object is the reduced density matrix,

obtained by tracing over one of the two subsystems,

starting from the full description of the state given by

the density operator

ρ ¼ jΨihΨj ¼
X

n;m

cnc
�
mjnihmj: ð38Þ

A central object in our study is the one-body reduced

density matrix that corresponds to partitioning the system

into one particle versus N − 1 particles and tracing over

N − 1 particle states. This object is of great interest because

(i) neutrino measurements involve interactions of single

neutrinos, hence knowledge of the one-body density matrix

allows one to predict all observables of interest; (ii) the von

Neumann entropy computed in terms of the one-body

density matrix quantifies the degree of entanglement of a

single neutrino with the other N − 1; and (iii) the QKEs are

evolution equations for the one-body reduced density

matrix. Therefore, the one-body reduced density matrix

provides the common ground on which one can study and

compare QKEs and many-body approaches.

Denoting the single-particle states by jË ii ¼ jpki
; αfii

(with αfi ∈ fe; μg), using the notation introduced in Sec. II
C the one-body reduced density matrix takes the form

ρð1Þ ¼
X

i;j

jË iihË jjρð1Þij ; ð39Þ

ρ
ð1Þ
ij ¼ 1

N

X

n;m

cnc
�
mδni1δmj1

fn;ifm;jδn½i�;m½j� : ð40Þ

An alternative and very useful expression for the elements

of the one-body reduced density matrix in terms of

expectation values of creation and annihilation operators

of single-particle states is given by

ρ
ð1Þ
ij ¼ 1

N
hΨj

a†j
ffiffiffiffi

V
p ai

ffiffiffiffi

V
p jΨi: ð41Þ

The von Neumann entropy computed with ρð1Þ,

Sðρð1ÞÞ ¼ −Trðρð1Þ log ρð1ÞÞ; ð42Þ

provides a measure of the entanglement between a single

particle and the rest of the system [39].

Invariance under translations and orthogonality of

single-particle momentum eigenstates implies that ρð1Þ

has a block structure on orthogonal single-particle sub-

spaces labeled by three-momentum:

ρð1Þ ¼
X

k

i¼1

X

α;³∈ fe;μg
jpi; αihpi; ³jρð1Þα³ ðpiÞ; ð43Þ

ρ
ð1Þ
α³ ðpÞ ¼

1

N
hΨj

a†³ðpÞ
ffiffiffiffi

V
p aαðpÞ

ffiffiffiffi

V
p jΨi: ð44Þ

Up to a normalization, ρ
ð1Þ
α³ ðpÞ is the dynamical quantity

appearing in the QKEs. The diagonal entries are positive

definite and represent the occupation numbers of electron

and muon neutrinos in momentum p, normalized to N. For

each momentum pi, it is convenient to define

N�
i ¼ ρ

ð1Þ
ee ðpiÞ � ρ

ð1Þ
μμ ðpiÞ: ð45Þ

Nþ
i is the total occupation number in momentum pi

(normalized to N), and it is very useful to study the kinetic

properties of the state. On the other hand, N−
i characterizes

the flavor content of the state in momentum pi. In what

follows, among other things, we will use the time depend-

ence of N�
i to identify the time scales of flavor and kinetic

evolution.

Note that ρ
ð1Þ
α³ ðpiÞ is not a density matrix: its trace over

flavor indices is Nþ
i =N, where Nþ

i is the total occupation

number of momentum bin pi, irrespective of flavor [see

Eq. (45)]. WhenNþ
i ≠ 0, rescaling byNþ

i =N, we can define

density matrices in flavor space for each momentum bin,

ρ̄ðiÞ ¼
X

α;³∈ fe;μg
jpi; αihpi; ³jρ̄ðiÞα³ðpiÞ; ð46Þ

ρ̄
ðiÞ
α³ðpiÞ ¼

N

Nþ
i

ρ
ð1Þ
α³ ðpÞ; ð47Þ

in terms of which the full one-body density matrix reads
2
:

ρð1Þ ¼
X

k

i¼1

Nþ
i

N
ρ̄ðiÞ: ð48Þ

Finally, the vonNeumann entropy of ρð1Þ can bewritten as

Sðρð1ÞÞ ¼ −
X

i

Nþ
i

N
log

Nþ
i

N
þ
X

i

Nþ
i

N
Sðρ̄ðiÞÞ: ð49Þ

This expression shows that the entanglement entropy of a

single neutrino with the rest of the system can arise from

2
Note that when Nþ

i → 0, all entries of ρ
ðiÞ
α³ðpiÞ vanish, so that

there is no singularity in the definition of ρ̄ðiÞ. Moreover, in the

limit Nþ
i → 0 one also has Nþ

i ρ̄
ðiÞ
→ 0, hence no contribution to

ρð1Þ from momentum bin pi.
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entanglement in both momentum (first term above) and

flavor (second term above).

To make the above statements more precise, we can

further trace the one-body density matrix over flavor or

momentum degrees of freedom. Tracing over flavor,

we get

ρð1Þ;K ¼
X

k

i¼1

Nþ
i

N
jpiihpij; ð50Þ

Sðρð1Þ;KÞ ¼ −
X

i

Nþ
i

N
log

Nþ
i

N
: ð51Þ

Similarly, tracing over momenta gives

ρ
ð1Þ;F
α³ ¼

X

k

i¼1

ρ
ð1Þ
α³ ðpiÞ; ð52Þ

with ρ
ð1Þ
α³ ðpiÞ defined in Eq. (44). For an initial state

containing Ne electron neutrinos and Nμ muon neutrinos

across all momentum modes, one finds ρð1Þ;F ¼
diagðNe=N;Nμ=NÞ.
The time over which Sðρð1ÞÞ, Sðρð1Þ;KÞ, Sðρð1Þ;FÞ, Sðρ̄ðiÞÞ

reach the first maximum are proxy timescales for global,

kinetic, and flavor equilibration. We will illustrate these

points in Sec. VI.

IV. SETUP FOR HOT AND DENSE MEDIA

In this section, we discuss the energy scales characterizing

the dynamics of neutrinos in situations of astrophysical

interest and define a rescaled dimensionless Hamiltonian

suitable for computational implementation. In situations of

astrophysical interest, such as just below the decoupling

region in a supernova, the initial state of the neutrinos is not

too far from equilibrium. Therefore, it makes sense to

introduce a notion of near-equilibrium distribution and

temperature, which characterizes the typical scale of the

neutrino’s momenta. In equilibrium, N, T, and V are related

by N=V ¼ ð3ζð3ÞT3Þ=ð4π2Þ. In our near-equilibrium sit-

uation, we assume that the above relation is approximately

valid and assume the scaling 1=V ∼ T3=N to estimate the

relative size of the various contributions to the Hamiltonian.
3

When the temperature of the system is order MeV,

widely separated energy scales enter the Hamiltonian,

that is,

jpj ∼ T ≫ GFT
3 ≫ δm2=T: ð53Þ

The scales T and GFT
3 differ by about 10 orders of

magnitude. As discussed below, this wide separation

effectively removes the effect of self-interactions connect-

ing neutrino pairs with different kinetic energy, i.e. with

jpij þ jpjj ≠ jp0
ij þ jp0

jj. On the other hand, GFT
3 and

δm2=T differ by 2 to 3 orders of magnitude depending

on the magnitude of the mass splitting used. These two

scales together control the flavor evolution of the system.

To make the interplay between the three parameters more

explicit, we rescale the Hamiltonian for the rest of the

discussion. We take as the unit of energy (and inverse time)

the quantity E ≡GF=ð
ffiffiffi

2
p

VÞ and introduce the dimension-

less parameters,

T̄ ¼ T

E
∼ 1010 ð54Þ

Ì̄ ¼ δm2

4TE
∼ 10−3 − 10−2 ð55Þ

jp̃j ¼ jpj
T

∼Oð1Þ: ð56Þ

The Hamiltonian of the neutrinos can now be written in

terms of dimensionless operators in the following way:

HðF=TÞ ¼ EðH̄Kin þ H̄
ðF=TÞ
νν Þ

H̄Kin ¼
1

V

X

k

i¼1

�

T̄jp̃ij −
Ì̄ cos 2θ

jp̃ij

�

a†eðpiÞaeðpiÞ þ
�

T̄jp̃ij þ
Ì̄ cos 2θ

jp̃ij

�

a†μðpiÞaμðpiÞ

þ Ì̄ sin 2θ

jp̃ij
½a†eðpiÞaμðpiÞ þ a†μðpiÞaeðpiÞ�

H̄
ðF=TÞ
νν ¼ −

1

V2

X

ði;j;k;lÞ
gðpi;pk;pj;plÞa†αðpiÞa†³ðpjÞaαðpkÞa³ðplÞ: ð57Þ

3
For a temperature of 1 MeV, we obtain V ∼ 108N fm3.
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Note that we have dropped the terms proportional to ðm2
1 þ

m2
2Þ=jpij in the diagonal part of the vacuum term H̄Kin, as

they are always subleading compared to the term propor-

tional to jpij → T̄jp̃ij. The summation ði; j; k; lÞ in H̄νν

denotes all pairs that conserve 3-momentum for the full

HamiltonianHðFÞ. In the truncated case H̄ðTÞ
νν ,we additionally

impose that pi ¼ pk and pj ¼ pl, or pi ¼ pl and pj ¼ pk.

V. A TOY PROBLEM WITH N = 2

In this section, we explore the impact of the nonforward

interaction on the evolution of flavor and momentum

degrees of freedom in a dense neutrino system by inspect-

ing a toy model. In the model, there are four momentum

modes (k ¼ 4) for neutrinos to fill, and we consider states

with two neutrinos (N ¼ 2). Therefore the dimension of the

relevant Hilbert space is d2;4 ¼ 28. The momentum modes

p̃ ¼ p=T in this toy system are chosen as follows:

p̃1 ¼ ðsinϕ; cosϕ; 0Þ

p̃2 ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − cos2ϕ

q

;− cosϕ; 0
�

p̃3 ¼
�

sinϕ;− cosϕ − ε; 0
�

p̃4 ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − cos2ϕ

q

; cosϕþ ε; 0
�

; ð58Þ

with ϕ∈ ½0; π=2�, r > 1 and ε∈R. In this system, p1 þ
p2 ¼ p3 þ p4 for any r;ϕ and ε. Therefore the quartic

terms in H̄νν involving creation of p1, p2 (p3, p4) and

annihilation of p3, p4 (p1, p2) will have nonzero matrix

elements. Note also that jp1j þ jp2j ¼ jp3j þ jp4j only

when ε ¼ 0. One important finding in this section is that

the nonforward interaction significantly affects the time

evolution only when εr 1=T̄, i.e. when the difference in

kinetic energy of the two pairs is on the order of or smaller

than potential energy due to the self-interactions.

The Hamiltonian is block diagonal in the basis of

Eq. (25) since it commutes with the total momentum

operator and hence connects states with the same total

momentum. Among the 28 basis states, 4 states have two

neutrinos with the same momentum and different flavor.

These 4 states have total momentum of 2pi, and they each

form a 1 × 1 block. Second, for the blocks with a total

momentum of pi þ pj (i ≠ j), there are 4 such states in

each block due to the choice of flavor for each neutrino.

Therefore there are six 4 × 4 blocks with those total

momenta. Finally, since p1 þ p2 ¼ p3 þ p4, blocks with

total momenta p1 þ p2 and p3 þ p4 are connected via H̄νν

for the full Hamiltonian. In summary, for the only-forward

Hamiltonian, there are four 1 × 1 blocks and six 4 × 4

blocks, while for the full Hamiltonian, there are four 1 × 1

blocks, four 4 × 4 blocks, and one 8 × 8 block connecting

states with p1 þ p2 and p3 þ p4.

Let us take a closer look at the 8 × 8 block. We order the

eight basis vectors jv1i…jv8i as follows:

Vjv1i ¼ a†eðp1Þa†eðp2Þj0i; Vjv5i ¼ a†eðp3Þa†eðp4Þj0i
Vjv2i ¼ a†eðp1Þa†μðp2Þj0i; Vjv6i ¼ a†eðp3Þa†μðp4Þj0i
Vjv3i ¼ a†μðp1Þa†eðp2Þj0i; Vjv7i ¼ a†μðp3Þa†eðp4Þj0i
Vjv4i ¼ a†μðp1Þa†μðp2Þj0i; Vjv8i ¼ a†μðp3Þa†μðp4Þj0i:

To write down the matrix elements of the Hamiltonian in

these basis states, we first introduce shorthand notations:

Dijð�i;�jÞ¼ T̄ðjp̃ijþ jp̃jjÞ�i

Ì̄cos2θ

jp̃ij
�j

Ì̄cos2θ

jp̃jj
ð59Þ

Ì̄i ¼
Ì̄ sin 2θ

jp̃ij
ð60Þ

for the kinetic parts and

fij ¼ fðpi;pjÞ ð61Þ

M ¼

0

B

B

B

@

4 0 0 0

0 2 2 0

0 2 2 0

0 0 0 4

1

C

C

C

A

ð62Þ

for the interactions, with the function fðpi;piÞ in Eq. (61)

defined inEq. (17).With these notations, thekinetic part of the

Hamiltonian, H̄Kin, including vacuummixing, takes the form

H̄Kin ¼

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

D12ð−;−Þ Ì̄2 Ì̄1 0 0 0 0 0

Ì̄2 D12ð−;þÞ 0 Ì̄1 0 0 0 0

Ì̄1 0 D12ðþ;−Þ Ì̄2 0 0 0 0

0 Ì̄1 Ì̄2 D12ðþ;þÞ 0 0 0 0

0 0 0 0 D34ð−;−Þ Ì̄4 Ì̄3 0

0 0 0 0 Ì̄4 D34ð−;þÞ 0 Ì̄3

0 0 0 0 Ì̄3 0 D34ðþ;−Þ Ì̄4

0 0 0 0 0 Ì̄3 Ì̄4 D34ðþ;þÞ

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

: ð63Þ
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The interaction terms read

H̄
ðTÞ
νν ¼

�

f†12f12M 0

0 f†34f34M

�

ð64Þ

and

H̄
ðFÞ
νν ¼

 

f†12f12M f†12f34M

f†34f12M f†34f34M

!

: ð65Þ

One thing to note about the eigenvalue spectrum of H̄νν

is that five of them are zero and three take the same value.

(When considering the total Hamiltonian, the vacuum

mixing terms in H̄Kin lift this degeneracy.) This is due to

the fact that each block is given by the 4 × 4 matrix M
multiplied by the products of two fab factors, correspond-

ing to the incoming and outgoing momentum pairs. As a

result, the first four columns of H̄νν and the last four are

linearly dependent. Together with the structure of M, this

implies that the rank of the matrix H̄νν is 3. This is a special

feature seen only in 2-neutrino systems.

In contrast to the above point, there is an important

general feature of the problem that emerges from the

analysis of this toy model. Given that in situations of

(astro)physical interest T̄=Ì̄ > 1010, when jp̃1j þ jp̃2j and
jp̃3j þ jp̃4j differ by Oð1Þ, transitions between the blocks

with the total momentum of p1 þ p2 and p3 þ p4 caused by

HðFÞ become negligible. The two blocks are dynamically

decoupled, similarly to what happens in any two-level

quantum system when the off-diagonal mixing term is

much smaller than the unperturbed level splitting. In this

regime, the evolution is effectively controlled by the

truncated Hamiltonian H̄ðTÞ. Only when the difference

between jp̃1j þ jp̃2j and jp̃3j þ jp̃4j is of similar magnitude

as jf†12f34j=T̄, do the neutrino-neutrino nonforward

interactions contribute to the dynamics. To test this obser-

vation, we analyze the time evolution of the toy model with

T̄ ¼ 104, Ì̄ ¼ 1, and sin 2θ ¼ 0.8 as we vary the parameter

ε that controls the “kinetic energy conservation” condition

through jp̃3j þ jp̃4j ¼ jp̃1j þ jp̃2j þOðεÞ. We fix the

momentum parameters to be r ¼ 2.0 and ϕ ¼ π=4 and

study

jËðtÞi ¼
X

8

i¼1

ciðtÞjvii: ð66Þ

For the purpose of illustration, we show results for initial

states jËð0Þi ¼ jv1i (two electron neutrinos with momen-

tum p1 and p2) and jËð0Þi ¼ jv2i (electron neutrino with

momentum p1 and muon neutrino with momentum p2). In

Fig. 1 we plot the Loschmidt echo jhËð0ÞjËðtÞij2 as a

function of time and compare it to the time evolution

obtained with the truncated (“forward”) Hamiltonian. As

expected, jhËð0ÞjËðtÞij2 starts to significantly deviate from
the truncated behavior around ε ∼ 1=T̄ ¼ 10−4 and the

effect of nonforward scattering increases as ε decreases. For

ε ∼ 10−5 ∼ 0.1=T̄ or smaller, the evolution becomes essen-

tially indistinguishable from the ε ¼ 0 case.

This dynamical pairwise kinetic energy conservation

limits the number of relevant terms in the full Hamiltonian

HðFÞ. This is still much less restrictive than the forward

kinematics enforced in the truncated Hamiltonian HðTÞ. In
fact, for each pair of momenta p and q, three-momentum

and kinetic energy conservation open up an infinite set of

momentum pairs p0 and q0 (parametrized by two angles as

shown in Appendix A) that contribute to the evolution, to

be contrasted to just one option in forward kinematics. The

pairwise kinetic energy conditions become very restrictive

only if one considers a one-dimensional setup. In this case,

the discussion below Eq. (19) implies that jpzj þ jqzj ¼
jp0

zj þ jq0
zj only holds if p0

z ¼ pz or p0
z ¼ qz. In other

FIG. 1. Loschmidt echo jhËð0ÞjËðtÞij2 in the two-neutrino toy model, for jËð0Þi ¼ jv1i (left panel) and jËð0Þi ¼ jv2i (right panel). In
both cases the Hamiltonian parameters are T̄ ¼ 104, Ì̄ ¼ 1, and sin 2θ ¼ 0.8. The momentum parameters are r ¼ 2.0, ϕ ¼ π=4 and

ε ¼ 0; 10−2 − 10−5.
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words, the pairwise kinetic energy condition enforces

forward or exchange kinematics and the evolution with

the full and truncated Hamiltonian effectively coincide.

When kinetic energy conservation holds approximately,

i.e. at ε ∼ 0, all eight states with total momentum of p1 þ
p2 (or equivalently p3 þ p4) get nonzero amplitudes over

time without suppression via T̄. This spread of amplitude is

governed by the interplay between the neutrino’s self-

interaction and their vacuum oscillation. One then naturally

expect to see the effect of nonforward scattering in flavor

equilibration and randomization of momenta. We can see a

hint of this even in this two-neutrino toy model. To study

these phenomena, in Fig. 2, we compare the Nþ
1 and N−

1

[see definition in Eq. (45)] for the state evolved via either

HðFÞ (in black) or HðTÞ (in red). Obviously, kinetic

evolution occurs only with the full Hamiltonian—the

occupation number of a given momentum mode cannot

change via forward scattering or exchange processes. This

is evident in the constant solid red line showing the total

occupation number of the momentum mode. Regarding

flavor conversion, which occurs for both full and truncated

setups, the evolution speed at initialization appears to be

faster with the full Hamiltonian. This is correlated with the

fact that the total occupation of the mode decreases quickly

due to the nonforward interaction. Therefore, at least in this

toy model, the time scales for kinetic evolution (and

ultimately thermalization) and flavor evolution are corre-

lated. We will further investigate the relation between

kinetic and flavor equilibration in the next section.

We close this section by pointing out that the evolution

time scales can be affected by the angular factors

gðp0;p;q0;qÞ in the Hamiltonian matrix elements, given

in Eq. (16). From now onward, we will refer to these as the

“g factors.” The magnitude of the g factors depends on the

relative angles of the incoming and outgoing momentum

modes, parametrized in this simple model by ϕ in Eq. (58).

In Fig. 3, we plot the time dependence of the sum of

occupation numbers Nþ
3 þ Nþ

4 of initially unoccupied

momentum modes [jËð0Þi ¼ jv1i] for different choices

of the angle ϕ in Eq. (58). As ϕ approaches π=2, the angle
between p1 and p2 decreases and the effect of nonforward

scattering vanishes. This has physical implications related

to geometric effects, as neutrino crossing angles away from

a source are geometrically suppressed. Besides this, even in

absence of geometric suppression, this feature is expected

to slow down the evolution time scales in simulations with

a small number of neutrinos and a small number of

available momentum modes. Some of these artifacts will

appear in our discussion in the next section.

In this section, we studied several key features of the full

Hamiltonian in the two-neutrino toy model:

(i) Most notably, the hierarchy between the neutrino

kinetic and potential energy (T̄ ≫ 1) results in

pairwise kinetic energy conservation. Together with

three-momentum conservation, for each pair of

momenta p and q, this still opens up an infinite

set of momentum pairs p0 and q0 that contribute to

the evolution (see Appendix A).

(ii) Nonforward processes induce kinetic (momentum)

randomization and have the potential for accelerat-

ing flavor evolution.

(iii) The quantitative impact of nonforward terms in the

Hamiltonian depends on the magnitude of the g
factors, which decrease as the relative angle of two

incoming momentum modes decreases.

FIG. 2. Expectation values of Nþ
1 and N−

1 for the mode p1 over

time for the full and truncated Hamiltonian. The Hamiltonian

parameters are chosen as T̄ ¼ 104, Ì̄ ¼ 1.0, and sin 2θ ¼ 0.8.

The momentum parameters are r ¼ 2.0;ϕ ¼ π=4 and ε ¼ 0.0.

The initial state is v1, i.e., neutrinos with flavor e and momentum

p1, p2.

FIG. 3. Time evolution induced by the full Hamiltonian HðFÞ

for the sum of occupation numbers Nþ
3 þ Nþ

4 of initially

unoccupied momentum modes p3 and p4 [jËð0Þi ¼ jv1i]. The
Hamiltonian parameters are T̄ ¼ 104, Ì̄ ¼ 1, and sin 2θ ¼ 0.8.

The momentum parameters are r ¼ 2.0 and ε ¼ 0 while we

vary ϕ.
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VI. TWO-DIMENSIONAL MODELS

In this section, we study the time evolution of various

neutrino systems under the full Hamiltonian HðFÞ and

truncated Hamiltonian HðTÞ with momentum modes taken

on a two-dimensional grid:

p̃≡ p=T ¼ 2π

LT
z

z ¼ fðzx; zyÞ; zx; zy ∈Zg
with 0 < jzj ≤ zmax and 0 < zx: ð67Þ

We exclude the zero mode and introduce a “UV” cutoff

pmax that sets the maximal magnitude on the momenta.

Moreover, we only consider the modes with a positive x
component to mimic astrophysical situations in which there

is a net flux of neutrinos.

With this setup, we first demonstrate that kinetic energy

conserves pair-by-pair through the self-interactions and

show that we can safely take this as an exact conservation

law at typical temperature of interest T sMeV. Given that,

we impose the pairwise kinetic energy conservation on both

the Hilbert space and Hamiltonian and explore the collec-

tive flavor evolution and kinetic (momentum) randomiza-

tion in this system while varying the number of neutrinos

N ¼ 6, 8, 10 and initial states. All codes developed for the

numerical simulations performed in this section are avail-

able online.
4

A. Pairwise kinetic energy conservation

As discussed in Sec. V, when the typical magnitude of

neutrino three-momenta (dictated by the temperature) is

much larger than the neutrino self-interaction potential

energy, out of all couplings contained in Hνν, only the ones

satisfying approximate pairwise kinetic energy conservation

are expected to affect thedynamics.Herewedemonstrate this

within the two-dimensional models specified by the grid of

momentummodes in Eq. (67). For this purpose, we simulate

the time evolution numerically via exact diagonalization of

the two Hamiltonians: the full Hamiltonian and the one with

the kinetic energy conservation imposed in Hνν, which we

denote as H
ðKÞ
νν . Explicitly, H

ðKÞ
νν is

H̄ðKÞ¼ H̄Kinþ H̄
ðKÞ
νν

H̄
ðKÞ
νν ¼−

1

V2

X

pi;j;k;l∈fpg

�

a†αðpiÞa†³ðpjÞaαðpkÞa³ðplÞ

×δpiþpj;pkþpl
δjpijþjpjj;jpkjþjpljgðpi;pk;pj;plÞ

�

: ð68Þ

Comparison with Eq. (57) reveals that H̄
ðTÞ
νν ⊂ H̄

ðKÞ
νν ⊂ H̄

ðFÞ
νν .

We set zmax ¼ 3 for the grid of momenta, which gives 11

modes. The simulation is performed in the Hilbert space

with the number of neutrinos N ¼ 2 and 4. Therefore the

dimension of the Hilbert space is dN;11 ¼ 231 or 7315 for

N ¼ 2, 4, respectively. We do not make a further truncation

to the Hilbert space. In the following demonstrations, the

Hamiltonian parameters are Ì̄ ¼ 1.0 and sin 2θ ¼ 0.8. We

take as initial state at time t ¼ 0 a superposition of all basis

states with N electron neutrinos, assigning an equal

amplitude to all such basis states:

jËð0Þi ¼ 1
ffiffiffiffiffiffiffiffiffiffi

11CN

p

X

n

δ
N;
P

11

i¼1
ni;e

jni; ð69Þ

where nCk denotes the binomial coefficient.

As an example, in the case of N ¼ 2 the squared

modulus of the amplitude of the 20th basis state, which

has electron neutrinos with momentum ðzx; zyÞ ¼ ð1;−2Þ
and (2,2), is shown in Fig. 4. When the temperature is low,

the state can transition to other 2-neutrino states such

as the one with momentum modes (1,0) and (2,0).

However, as the temperature increases, such transitions

are suppressed unless kinetic energy is conserved. In the

infinite-temperature limit, the initial state can transition only

to the states of neutrinos with momentummodes ð2;−2Þ and
(1,2) on the grid. Figure 4 shows that as the temperature T̄

goes up, jc20ðtÞj2 converges to the time evolution withHðKÞ.
The difference between the amplitude fromHðFÞ andHðKÞ is
negligible at T̄ ¼ 103 (in black solid line).

To quantify more globally the difference between two

simulationsdonewithHðFÞ orHðKÞ,we employ theKullback-

Leibler (KL) divergence [40], DKLðPkecðtÞjjPfullðtÞÞ, where
PkecðtÞ and PfullðtÞ are probabilities defined by their

FIG. 4. The squared modulus of the amplitude of the 20th basis

state simulated with HðFÞ (denoted as “Full”) and with HðKÞ

(denoted as “Kec”). The Hamiltonian parameters are Ì̄ ¼ 1.0 and

sin 2θ ¼ 0.8. The model has k ¼ 11 momentum modes and

N ¼ 2 neutrinos. Note that the black solid line is almost on

top of the red solid line.

4
https://github.com/yukariyamauchi/neutrinos_beyond_fwd.
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corresponding jcnðtÞj2. In Fig. 5 we show the KL divergence

at time t ¼ 10=E for the N ¼ 2, 4 systems while varying T̄.

The KL divergence decreases with temperature T̄ according

to a power law, thus offering a parametric evidence for the

“dynamical” pairwise kinetic energy conservation.

B. Details of the simulated systems

In the rest of the section, we impose that pairwise kinetic

energy conservation holds exactly in the neutrino-neutrino

self-interaction as in HðKÞ. Additionally, we exclusively

focus on the neutrino self-interaction and turn off the

vacuum oscillations by setting Ì̄ ¼ 0. This condition

allows us to decompose the entire Hilbert space into the

subspaces with a fixed total momentum, kinetic energy, and

particle numbers Ne (electron neutrino) and Nμ (muon

neutrino). Even within each subspace with these fixed

quantities, there are multiple disconnected subspaces—the

matrix element ofH
ðFÞ
νν is nonzero only when the two states

have a pair of two momentum modes whose total momen-

tum and kinetic energy are the same. On the momentum

grid with zmax ¼ 5 with k ¼ 35 momentum modes as

shown in the left panel of Fig. 6, we focus on three such

subspaces: H1 with N ¼ 6, H2 with N ¼ 8, and H3 with

N ¼ 10, where N denotes the total number of neutrinos.

We choose the number of electron neutrinos to be

Ne ¼ N=2þ 1. Some defining quantities of the Hilbert

spaces are summarized in Table. I.

The basis states in these Hilbert spaces are enumerated

by picking a “reference basis state” and listing all other

basis states that can be reached from the reference state via

repeatedly applying the self-interaction H̄
ðKÞ
νν . The reference

state we used for H1 is jni with

FIG. 5. The Kullback-Leibler divergence of the two probability

densities Pkecðt ¼ 10=EÞ and Pfullðt ¼ 10=EÞ defined by the set

of jcnðtÞj2 evolved with H
ðKÞ
νν and H

ðFÞ
νν , respectively. The

Hamiltonian parameters are Ì̄ ¼ 1.0 and sin 2θ ¼ 0.8 while

varying T̄. The model has 11 momentum modes, and the number

of neutrinos is 2 or 4.

FIG. 6. Left: 35 momentum modes are shown in pink circles on the grid with the maximal magnitude zmax ¼ 5 (blue line). Right: the

equilibrium expectation values of NN
þ=−
i computed with Eq. (74) are shown in blue and red, respectively, for H3.

TABLE I. Some defining quantities of the three Hilbert sub-

spaces we study, that is, the number of neutrinos Ne, Nμ, the

number of momentum modes k involved in the time evolution,

total momentum, total kinetic energy, and the dimension of the

Hilbert space (dh).

Hilbert space Ne Nμ k Total z
P

i jzij dh

H1 4 2 14 (13,0) 23.30 158

H2 5 3 18 (16,0) 26.95 1434

H3 6 4 20 (21,0) 33.38 6922

CIRIGLIANO, SEN, and YAMAUCHI PHYS. REV. D 110, 123028 (2024)

123028-12



nie ¼
	

1 i ¼ 1; 6; 11; 26

0 otherwise

niμ ¼
	

1 i ¼ 9; 34

0 otherwise:
ð70Þ

The reference state for H2 is

nie ¼
	

1 i ¼ 1; 6; 11; 13; 21

0 otherwise

niμ ¼
	

1 i ¼ 26; 29; 34

0 otherwise;
ð71Þ

and the reference state used for H3 is

nie ¼
	

1 i ¼ 1; 6; 9; 11; 13; 21

0 otherwise

niμ ¼
	

1 i ¼ 26; 27; 29; 34

0 otherwise:
ð72Þ

The momentum modes are labeled in an increasing order of

zy and zx, e.g.,

z1 ¼ ð1;−4Þ; z6 ¼ ð3;−3Þ; z9 ¼ ð2;−2Þ
z11 ¼ ð4;−2Þ; z13 ¼ ð2;−1Þ; z21 ¼ ð1; 1Þ
z26 ¼ ð2; 2Þ; z27 ¼ ð3; 2Þ; z29 ¼ ð1; 3Þ
z34 ¼ ð2; 4Þ: ð73Þ

From these reference states, H
ðKÞ
νν populates a total of 14,

18, or 20 momentum modes for H1;2;3, thus allowing us to

study the effects of nonforward scattering. The dimension

of the Hilbert space becomes dh ¼ 158, 1434, and 6922 for

H1;2;3, respectively.

By construction, any initial state inHi (i ¼ 1, 2, 3) stays

in Hi when evolved with HðKÞ. For the sake of simplicity,

we study the time evolution of 15 basis states for each case.

These initial states have the same momentum content as the

reference states but have different flavor contents, with the

total number of electron neutrinos fixed to N=2þ 1. For

N ¼ 6, there are 15 such basis states since 6C4
¼ 15. For

N ¼ 8, 10 we picked 15 states from the 8C5 or 10C6 number

of such basis states. These initial states are far from

equilibrium in both flavor and kinetic degrees of freedom.

We leave the study of a more realistic initial state that

mimics the situation in hot dense media of neutrinos to

future work.

The time evolution of these initial states is performed by

exactly diagonalizing the full or truncated Hamiltonian and

applying the corresponding unitary time-evolution operator

e−iHt to the initial state. The Hamiltonian parameters are

chosen to be sin 2θ ¼ 0.8 and Ì̄ ¼ 0. The diagonal terms in

HKin proportional to T̄ are dropped since they are

proportional to the identity in the restricted Hilbert spaces.

For the rest of the section, we study various quantities that

characterize the time evolution of the chosen initial states:

Loschmidt echo, N
þ=−
i , and the one-body entropies intro-

duced in Sec. III.

We close this section by introducing a microcanonical

ensemble for the systems we study [41]. All basis states of a

given Hilbert space,Hi (i ¼ 1, 2, 3), have the same kinetic

energy, which dominates the energy of the basis states

given the hierarchy Eq. (53). Since all the basis states jji in
Hi have the same particle numbers Ne, Nμ, and total

energy, in a microcanonical ensemble they are equally

probable and the corresponding density operator is

ρmc ¼
1

dh

X

dh

j¼1

jjihjj: ð74Þ

In equilibrium, the expectation values of various observ-

ables O are computed as Tr½ρmcO�. The equilibrium

expectation values of Nþ and N− will be used to in later

sections to quantitatively assess kinetic and flavor equili-

bration of our models. These equilibrium values are shown

in the right panel of Fig. 6 for H3.

C. Loschmidt echo

We begin the comparison of the time volution under the

full and truncated Hamiltonian by studying the Loschmidt

echo L≡ jhËðtÞjËð0Þij2. At early time, the decrease of the

Loschmidt echo indicates how quickly the amplitude of

the wave function spreads from the initial state to the rest of

the Hilbert space. The curvature of the echo at time t ¼ 0

is the negative of the variance of the Hamiltonian

hËð0ÞjHjËð0Þi2 − hËð0ÞjH2jËð0Þi. This variance naively

quantifies how densely the initial state is connected to the

rest of the Hilbert space via the Hamiltonian since the H2

piece measures the sum of the square moduli of the

Hamiltonian matrix elements between the initial state

and all other states. In particular, in our simulation setup,

since the initial state is taken to be one of the basis

states jËð0Þi ¼ jii, the curvature of the Loschmidt echo

at t ¼ 0 is

d2

dt2
jhËðtÞjËð0Þij2jt¼0 ¼ −

X

j≠i

jhijHjjij2: ð75Þ

Therefore one expects that the Loschmidt echo decreases

more rapidly with the full Hamiltonian than with the

truncated Hamiltonian for a given initial state.

Early-time behavior of the Loschmidt echo is shown for

one of 15 initial states for N ¼ 6, 8, 10 in Fig. 7. As

expected, the Loschmidt echo evolved under the full

Hamiltonian (solid lines) decreases faster to lower values

compared to those from the truncated simulation (dotted

lines). Although the Loschmidt echo does not give separate
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information about the time scale of flavor evolution or

kinetic randomization, it can still provide us with the

evidence that the full Hamiltonian is able to spread the

amplitude of the wave function more quickly to a larger

Hilbert space than what the truncated Hamiltonian can

achieve. Note that the Loschmidt echo from the full

simulations especially with N ¼ 8 and 10 show rather

quick convergence, whereas the others fluctuate about

∼0.3. This is due to the smallness of the number of

neutrinos and a resulting small dimension of the Hilbert

space. It is demonstrated in [30] that the Loschmidt echo

decreases and converges quickly for N ¼ 10–16 systems

under the truncated time evolution. We have confirmed this

behavior in our simulations for N ¼ 10–14.

To quantify the difference in randomization time scale

under the full or truncated Hamiltonian, we introduce tL,
defined as the time at which the Loschmidt echo reaches its

first minimum. In Fig. 8, we show tL and the Loschmidt

echo at the time for all 15 initial states in all N on the left

panel. The circles show tL obtained in the wave function

evolved by the full Hamiltonian, while triangles correspond

to the truncated Hamiltonian. The difference between tL
and the Loschmidt echo at the time tL by HðFÞ and HðTÞ is
striking. The full time evolution, on average, achieves a

minimum Loschmidt echo a few order of magnitude

smaller, in a shorter time. To emphasize this point, we

compare the time scale for each initial state from the full

and truncated Hamiltonian on the right panel of Fig. 8. The

figure shows t
ðTÞ
L

− t
ðFÞ
L

, i.e., the difference of tL between

two Hamiltonians on the horizontal axis and the ratio of the

echoes LðTÞ=LðFÞ on the vertical axis. For almost all initial

states taken for N ¼ 6, 8, 10, tL is smaller with the full time

evolution and Loschmidt echo is smaller at the first

minimum. Within our study, we are not able to observe

an obvious trend in tL as we vary the number of neutrinos

N. We will leave the study of the behavior of the Loschmidt

echo in systems with larger N to future work.

D. Single neutrino observables

In this section we analyze kinetic randomization and

flavor evolution of our neutrino systems separately through

the occupation numbers Nþ; N− introduced in Eq. (45). In

particular, we show that these expectation values converge

to their equilibrium values from the microcanonical ensem-

ble in Eq. (74), thus demonstrating the equilibration

process of our models.

The neutrino flavor degrees of freedom evolve over time

due to their vacuum oscillation (which we do not consider

here by setting Ì̄ ¼ 0) and self-interaction. While forward

FIG. 7. Loschmidt echo over time for the three cases, N ¼ 6 (in

H1), N ¼ 8 (in H2), and N ¼ 10 (in H3). Results from the time

evolution under the full Hamiltonian, (F), are shown in solid

lines, while truncated ones, (T), are in dotted lines. For each case,

we chose a basis state inH1,H2, orH3 as the initial state. We turn

off the vacuum oscillation (Ì̄ ¼ 0).

FIG. 8. Left: Loschmidt echo time scale tL when the echo reaches its first minimum and the echo at the time. The initial states chosen

in Sec. VI A are evolved either via the full and truncated Hamiltonian. These initial states differ only by the flavor content of each

momentum mode, but the populated momentum modes and total number of electron (and muon) neutrinos are fixed. Due to this choice,

combined with the artifact of the momentum grid, some simulations yield the same Loschmidt echo. Right: the difference between tL
and ratio of the Loschmidt echo at tL are shown for each initial state.
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scattering can cause flavor equilibration by exchanging

flavors among neutrinos [30], nonforward scattering proc-

esses are expected to speedup the equilibration process by

activating the modes which are inaccessible via forward

scattering and letting flavor mixing happen within those

modes. To visualize this effect, we inspect N−
i , which is the

difference between the occupation number of flavors e and

μ for the momentum mode zi. As an example, in the left

panel of Fig. 9 we show N−
i over time for all modes zi from

the time evolution of a basis state in H3 (N ¼ 10). When

using the truncated Hamiltonian, only the ten initially

populated bins evolve (shown in red), starting at either

NN−
i ¼ 1 (electron neutrino) or NN−

i ¼ −1 (muon neu-

trino). On the other hand, when using the full Hamiltonian,

ten additional momentum modes are activated via non-

forward scattering processes through the time evolution.

We see this effect in Fig. 9 already at early time t ∼ 0.2=E.
A closer look at the evolution of N−

i at very early time

indicates an acceleration of flavor evolution via nonforward

scatterings. Wewill quantify this acceleration in more detail

in the next section by looking at the one-body entropy.

After N−
i decrease to nearly zero for both full and

truncated evolutions around t ∼ 0.5=E, N−
i s show narrower

fluctuations with the full Hamiltonian than with the

truncated Hamiltonian. In the full evolution, N−
i (normal-

ized to 1) converges to the equilibrium values (right panel

of Fig. 6) quickly and fluctuate around the equilibrium by

r0.02. This is shown in the upper panel in Fig. 10—the

black lines are the difference of N−
i from the micro-

canonical value, N−
i − N−

i;M:C:, for all 20 momentum modes

and the red line (σN− ) shows the standard deviation of the

difference across the 20 modes. Clearly N−
i ’s converge to

the equilibrium values at around t ¼ 0.5=E and the fluc-

tuate around equilibrium. This is the first evidence we

show regarding the equilibration of flavor degrees of

freedom in our models. We will further confirm this finding

in the next section.

Kinetic randomization of many-body neutrino systems is

what we observe only in the presence of the nonforward

self-interactions. On the right panel of Fig. 9, we show

NNþ
i for all momentummodes for a 10-neutrino simulation

in the Hilbert space H3—the same initial state as the one

shown on the left panel for N− is used. Our results indicate

that momentum mode occupation numbers start fluctuating

around asymptotic values for times t ∼ ð2–5Þ=E, depending
on the momentum mode. The convergence of Nþ to

equilibrium is shown in the lower panel of in Fig. 10—

the black lines are the difference of Nþ
i from the micro-

canonical value for all 20 momentum modes and the red

line (σNþ) shows the standard deviation of the difference

across the 20 modes. The deviation of Nþ
i from equilibrium

FIG. 9. Left: N−
i (normalized to 1) for each momentum mode pi over time. The initial state is a basis state inH3 (with N ¼ 10) and is

time evolved under the full (F) or truncated (T) Hamiltonian. Right: Nþ
i (normalized to 1) for each momentum mode pi over time from

the same simulation as the left panel.

FIG. 10. Top: deviation of N−
i from the equilibrium values

[computed with Eq. (74)] for all momentum modes, along with

the standard deviation (σN− ). Bottom: deviation of Nþ
i from the

equilibrium values for all momentum modes, along with the

standard deviation (σNþ ). The initial state is the same as the one

shown in Fig. 9.
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does not appear to drop as quickly as the deviation of N−
i

from equilibrium. This could be attributed to the fact that it

takes time for some momentum modes to be populated

from a certain initial state due to the smallness of the g
factors—an effect that we expect to disappear in larger

systems and for initial states with more isotropic momen-

tum distribution.

To summarize, the time evolution of Nþ
i and N−

i in our

model with N ¼ 10 neutrinos shown in Fig. 9 demonstrates

two things. First, nonforward scattering changes the flavor

evolution of the state by activatingmomentummodes that are

initially unoccupied. It appears that the activation of unoc-

cupied modes accelerate the flavor equilibration. Second,

even in such a small system of neutrinos, the initial state that

is far from equilibrium can kinetically thermalize. The time

scales for flavor and kinetic equilibration appear to be both

t ∼Oð1Þ=E, and we cannot identify any dependence on the

total number of neutrinosN. Further studieswill be needed to

explore whether a separation of the two time scales arise.

Kinetic theory suggests that the time scale for momentum

evolution should scale as tinc ∼ ðG2
FT

5Þ−1, in accordance

with Fermi’s golden rule, while the time scale for coherent

refractive effects should scale as tcoh ∼ ðGFT
3Þ−1. These

estimates rely on the assumption (built into kinetic theory) of

interactions localized in space and time, which on the many-

body side would require working with wave packets, which

can be built out of our plane waves basis. If one works with

planewaves in a box, as shown inRef. [13], then the coherent

and incoherent time scales become tcoh ∼ 1=ðENÞ and

tinc ∼ 1=ðE
ffiffiffiffi

N
p

Þ, respectively. Therefore, we expect that to

disentangle the two will require studying larger systems,

with N ∼Oð100Þ.

E. Entanglement entropy

Finally, we quantitatively assess the time scales of the

flavor evolution and kinetic thermalization via the one-body

entropies Sðρð1ÞÞ; Sðρ̄ðiÞÞ andSðρð1;KÞÞ, which are introduced
in Eqs. (49) and (51), respectively. The one-body entropy

Sðρð1ÞÞ quantifies the entanglement of one neutrino with the

rest of the system, and it can be divided to two parts: the

kinetic entanglement Sðρð1;KÞÞ and flavor entanglement

ðSð1Þ;AF ¼ Sðρð1ÞÞ − Sðρð1;KÞÞ. In Fig. 11, we show these

one-body entropies of a 10-neutrino state over time. The

initial state is the same N ¼ 10 basis state as the one used in

Fig. 9. The black lines show the entropies from the full

simulation, while the red lines show those from the truncated

evolution. For each Hamiltonian, Sðρð1ÞÞ; Sðρð1;KÞÞ, and

Sð1Þ;AF are shown in solid line, dashed line, and dash-dotted

line, respectively. At initialization, the flavor component of

the entropy, Sð1Þ;AF, is zero since each neutrino has definite

flavor e or μ. On the other hand, since ten momentummodes

are occupied, the kinetic component, Sðρð1;KÞÞ, starts at a

nonzero value. Under the time evolution with the full

Hamiltonian, both the kinetic and flavor component of the

entropy grow and their sum asymptotes to themaximal value

are predicted via the microcanonical ensemble (shown in the

blue line). Under the truncated evolution, while the flavor

component of the entropy grows over time, the kinetic

component stays constant due to the lack of nonforward

scattering processes. In this example, the flavor component

of the entropy grows at a very similar rate with the full or

truncated evolution. We will take a closer look at the

difference between flavor evolution under the two

Hamiltonians later in the section.

To quantify the time scale associated to the growth of

entropy for N ¼ 6, 8, 10, we define tS to be the time when

the one-body entropy Sðρð1ÞÞ reaches its first maximum.We

show tS and the value of entropy at tS divided by the

maximal value via microcanonical ensemble in Fig. 12 for

N ¼ 6, 8, 10 neutrinos evolved from the 15 initial states

introduced in Sec. VI A. Most notably, for the full simu-

lation shown in circles, most initial states reach over 95% of

the maximal entropy around tS ∼ 0.5=E. Interestingly,

among the systems we study, we do not see much differ-

ence in tS as the number of neutrino is varied. Note that the

initial states will not be able to reach the maximal entropy

under the truncated time evolution, as shown by the

triangles in Fig. 12. This is because the kinetic component

of the entropy cannot be maximized due to the lack of

nonforward scattering processes.

To gain insight on the flavor and kinetic equilibration

time scales, we look into the kinetic and flavor component

of the entropy separately. Regarding the flavor evolution,

the flavor component of the one-body entropy is a weighted

(by Nþ
i =N) sum of the one-mode entropy Sðρ̄ðiÞÞ as is

shown in Eq. (49). Therefore, to remove the information on

FIG. 11. Time evolution of the one-body entropy Sðρð1ÞÞ, its
kinetic component Sðρð1Þ;KÞ, and flavor component Sð1Þ;AF ¼
Sðρð1ÞÞ − Sðρð1Þ;KÞ for a 10-neutrino basis state. The black lines

show the entropies from the time evolution with the full

Hamiltonian, while the red lines show the entropies from the

time evolution generated by the truncated Hamiltonian. The

maximal entropy computed from the microcanonical ensemble is

shown by the blue line.

CIRIGLIANO, SEN, and YAMAUCHI PHYS. REV. D 110, 123028 (2024)

123028-16



the kinetic randomization, we will first study the one-mode

entropy directly. Following that, we will study the time

scale of kinetic randomization from the kinetic component

Sðρð1;KÞÞ of the one-body entropy.

The entropy of the one-mode (normalized) density

matrix ρ̄ðiÞ quantifies the entanglement of neutrinos due

to their flavor degrees of freedom. As was hinted via the

2-neutrino toy model in Fig. 2, flavor evolution can be

accelerated by nonforward scattering processes since they

open up momentum modes that are initially unoccupied,

and flavor evolution can take place within those new sectors

of the Hilbert space. To illustrate this observation, in

Fig. 13, we show the one-mode entropy Sðρ̄ðiÞÞ over time

for 5 (z1, z6, z9, z11, z13) out of 10 momentum modes that

are occupied in the 10-neutrino initial state. The entropy of

the wave function evolved under the full and truncated

Hamiltonians are shown in black and red lines, respectively.

The same line type is used for the entropy of the same

momentum mode from the full and truncated time evolu-

tion. The figure shows that the entropy grows slightly faster

under the full time evolution than via the truncated one

(except those in short dashed lines which behave nearly the

same for full and truncated evolution).

To quantify the time scale of flavor evolution, we

introduce tS̄ to be the time when the one-mode entropy

reaches 90% of the maximal value, i.e., 0.9 × log 2, for the

first time. In Fig. 14, we show the time scales t
ðF=TÞ
S̄

(full or

truncated evolution) on the horizontal and vertical axis,

respectively, for initial momentum modes in all 15 simu-

lations. Since we focus on the momentum modes in

Eq. (73) that are occupied at t ¼ 0 and do not count in

those that are populated later by the nonforward scattering

processes, the total number of data points should be 90 for

N ¼ 6, 120 for N ¼ 80, and 150 for N ¼ 10 for both full

and truncated setups. However, we discarded those

tS̄ > 0.6=E, thus 17 (N ¼ 6), 20 (N ¼ 8), or 9 (N ¼ 10)

data points from the truncated simulations are excluded

from the plots. The distribution of points around the line of

t
ðFÞ
S̄

¼ t
ðTÞ
S̄

in black demonstrates the speedup of flavor

evolution via nonforward scattering processes even in these

small systems. To show this result even more explicitly, in

Fig. 15 we plot the normalized histogram of the ratio

t
ðTÞ
S̄

=t
ðFÞ
S̄

for the range [0, 3.25]. The bin with range [0.95,

1.05) is marked with the black vertical line. By comparing

the bins on the left and right side of the vertical line, one can

clearly see that the nonforward processes affect the time

scale of flavor evolution for individual momentum modes

and induce a bias towards faster equilibration.

While we observed acceleration of flavor evolution via

the full Hamiltonian in our small models, it is difficult to

conclude much about the dependence of the time scales on

N and k. We will leave a study of flavor evolution time

scale with larger number of neutrinos and/or larger number

of momentum modes to future work, where we expect to

see further speeding-up in the equilibration in the flavor

degrees of freedom.

We close the section by demonstrating kinetic thermal-

ization in our neutrino systems evolved with the full

Hamiltonian. The kinetic properties of many-body neutrino

systems are captured by the occupation numbers Nþ
i , and

their expected values in equilibrium can be computed from

the microcanonical ensemble in Eq. (74). Equivalently, the

kinetic one-body entropy Sð1;KÞ should increase over time

and asymptote to the maximal value predicted from the

microcanonical ensemble as the system equilibrates. In

Fig. 16, we show the ratio of Sð1;KÞ to its maximal value in

microcanonical ensemble over time for the 15 initial states

FIG. 12. Time at which the one-body entropy Sðρð1ÞÞ reaches its
first maximum, tS, and the entropy at tS is shown for 15 initial

states with N ¼ 6 (black), N ¼ 8 (blue), or N ¼ 10 (red). Circles

show the results obtained with the full Hamiltonian, while the

triangles show those obtained with the truncated Hamiltonian.

FIG. 13. The entropy per momentum bin, Sðρ̄iÞ, is shown for 5

(z1, z6, z9, z11, z13) out of 10 momentum modes that are initially

occupied in a 10-neutrino basis state. Black lines show the

entropy computed via the full Hamiltonian, while the red lines

show those from the truncated Hamiltonian. The line patterns

characterize a given momentum bin, regardless of the Hamil-

tonian used for the time evolution.

NEUTRINO MANY-BODY FLAVOR EVOLUTION: THE FULL … PHYS. REV. D 110, 123028 (2024)

123028-17



in black, blue, and red lines for N ¼ 6, 8, 10 cases,

respectively. The ratios for N ¼ 8, 10 are shifted by 0.1

and 0.2, respectively. The values of Sð1;KÞ in equilibrium are

2.567 for N ¼ 6, 2.837 for N ¼ 8, and 2.909 for N ¼ 10.

The systems with six neutrinos have trouble completely

thermalizing in our model. On the other hand, we see a nice

convergence of the entropy to the maximal value for 8- and

10-neutrino states.

In this section, we analyzed the one-body entropy and

the time scales tS and tS̄ that are defined according to the

growth of entropy over time. Under the full time evolution,

the one-body entropy Sðρð1ÞÞ reaches the first maximum for

6, 8, and 10-neutrino systems around t ∼ 0.5=E, and we do

not see an obvious trend as we vary the number of

neutrinos. According to the definition of Sðρð1ÞÞ, the

maximal entropy cannot be achieved using the truncated

Hamiltonian due to the lack of nonforward scattering

processes. Flavor evolution is where we can directly

compare the full and truncated Hamiltonian. First, we

show that flavor equilibration demonstrated in Ref. [30]

in the forward limit occurs with the full Hamiltonian as

well. Furthermore, we show evidence within our models

that the full Hamiltonian changes the flavor evolution in the

direction of accelerating the equilibration. Thermalization

of the momentum distribution is demonstrated in our

model, and the time scale for kinetic thermalization appears

to be slightly longer than the flavor equilibration time scale.

We do not have evidence that these time scales are

independent of the models we chose. In particular, the

separation of two time scales can vary with the number of

FIG. 14. The time scale tS̄ from the full and truncated evolution are on the horizontal and vertical axis, respectively. Results from all 15

simulations and for all momentum modes in Eq. (73) are shown together. The solid lines show the line of t
ðFÞ
S̄

¼ t
ðTÞ
S̄

.

FIG. 15. The histogram of the ratio t
ðTÞ
S̄

=t
ðFÞ
S̄

(truncated/full) in the range< 3.25. Results from all 15 simulations and for all momentum

modes in Eq. (73) are counted in together. The histogram is normalized by the total number of counts, that is 90, 120, 150 for N ¼ 6, 8,

10, respectively.
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neutrinos or available momentum modes. We leave the

study of these time scales with larger number of neutrinos

and/or momentum modes to future work.

VII. CONCLUSIONS AND OUTLOOK

In this paper we studied neutrino flavor evolution in the

quantum many-body approach using the full neutrino-

neutrino Hamiltonian, going beyond the commonly adopted

truncated version that allows only for the couplings of

neutrino pairs satisfying the forward kinematics condition.

We have set up a framework to implement the time

evolution of the system using the occupation number

representation for the many-body system. In this setup, we

have explored the evolution of simple initial states, i.e.

product states of neutrinos with different flavor and

momenta. For simplicity, we have restricted the analysis

to two flavors. We have studied a toy model with N ¼ 2

neutrinos and models with momenta on a two-dimensional

grid with N ¼ 6, 8, 10 neutrinos and up to k ¼ 20 momen-

tum modes. We have quantified the time scales for evolution

of flavor and momentum degrees of freedom and their

interplay. The main lessons from our explorations can be

summarized as follows:

(i) The hierarchy between the neutrino kinetic and

potential energy (T ≫ GFT
3) results in dynamical

pairwise kinetic energy conservation. This is the

statement that nonforward terms in Hνν, that couple

incoming and outgoing pairs of neutrinos, signifi-

cantly affect the time evolution only when the

difference in kinetic energy of the two pairs is on

the order of or smaller than potential energy due to

the self-interactions. This observation leads to sim-

plifications in the algorithm for time evolution.

Moreover, it is worth mentioning that together with

three-momentum conservation, for each pair of

momenta p and q this dynamical kinetic energy

conservation still opens up an infinite set of mo-

mentum pairs p0 and q0 that contribute to the

evolution (see Appendix A). A by-product of this

analysis is that one can only see significant

differences between full and truncated evolution

in systems with spacetime dimension d > 2.

(ii) On the qualitative side, we find that nonforward

processes affect the dynamics significantly. First,

even for the small systems with up to N ¼ 10

considered in this study, we find that nonforward

processes induce kinetic (momentum) randomiza-

tion on top of the flavor randomization already

induced by the truncated Hamiltonian [30]. We

observe “thermalization,” i.e. convergence towards

expectation values in a suitably defined microca-

nonical ensemble, in both flavor and momentum on

comparable time scales. We also observe that the

inclusion of nonforward processes generates a faster

flavor evolution compared to the one induced by the

truncated (forward) Hamiltonian.

(iii) On the quantitative side, we studied the impact on

the evolution time scales using a number of metrics,

such as the Loschmidt echo and the entanglement

entropy associated with the one-body density ma-

trix. The time scales in all observables are compa-

rable, with t ∼Oð1Þ=E.
In the many-body approach studied in this paper, several

open questions remain before one can draw definite

conclusions about problems of astrophysical interest, such

as assessing the impact of neutrino flavor evolution on

nucleosynthesis [42] and on the neutrino signal from

galactic supernovae. We can identify several interesting

thrusts for future investigations: (i) A key step is the study

of systems with larger number of neutrinos (N), which will

enable a number of interesting investigations. These

include studying the scaling of various observables and

time scales with N, exploring the possible emergence of

coherent enhancements, e.g. by considering initial states

with multiple neutrinos within a given solid angle, and

exploring the effect of spatially nonhomogeneous initial

conditions (neutrino wave packets). These studies, besides

their intrinsic interest, will also help clarifying the con-

nection between the many-body approach and kinetic

theory. (ii) Include neutrino-matter interactions in our

formalism. This requires the implementation of additional

four-fermion operators in the Hamiltonian, which are,

however, technically simpler than the one studied here

because they are linear or bilinear in the neutrino field.

(iii) Implementation on a quantum computer, which

requires finding efficient mappings of the full Hνν onto

qubit Hamiltonians. (iv) Work towards a comparison with

the QKEs, using as common ground the one-body density

FIG. 16. The ratio of the kinetic component of the one-body

entropy, Sð1;KÞ, to its maximal value in equilibrium is shown over

time for 15 initial states. The linesN ¼ 8 (blue) and N ¼ 10 (red)

are shifted by 0.1 or 0.2 for better visualization. The dotted lines

show the maximal entropy predicted from the microcanonical

ensemble.
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matrix. To quantitatively explore the connection of many-

body and QKE approaches will require simulating systems

with larger number of neutrinos [see point (i) above and

discussion at the end of Sec. VI D].
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APPENDIX A: KINEMATICS

OF 2 → 2 SCATTERING

Consider the reaction ναðpÞþν³ðqÞ→ να0ðp0Þþν³0ðq0Þ.
We want to parametrize all the pairs of three-vectors p0, q0

such that pþ q ¼ p0 þ q0 and jpj þ jqj ¼ jp0j þ jq0j in

terms of p, q, and two angles, denoted below by θ and ϕ.

This is achieved by (i) boosting to the center-of-mass

system (c.m.s.) of the initial momentum pair ðp;qÞ →
ðpc.m.s.;qc.m.s.Þ; (ii) parametrizing the outgoing momenta

for elastic scattering ðpc.m.s.;qc.m.s.Þ→ ðp0
c.m.s.;q

0
c.m.s.Þ in

terms of the polar and azimuthal angles ðθ;ϕÞ of the unit

vector v̂≡ p0
c.m.s.=jp0

c.m.s.j; and (iii) boosting back to the

original reference frame ðp0
c.m.s.;q

0
c.m.s.Þ → ðp0;q0Þ.

Explicitly, in terms of the c.m.s. velocity β ¼ ðpþ qÞ=
ðjpj þ jqjÞ, ´¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi

1−³2
p

, the unit vector v̂¼ðsinθcosϕ;
sinθ sinϕ;cosθÞ, and jpc.m.s.j ¼ jqc.m.s.j ¼ ´ðjpj − β · pÞ,
one has

p0 ¼ jpc.m.s.j
�

v̂þ β

�

´ þ ´ − 1

³2
β · v̂

��

ðA1Þ

q0 ¼ jqc.m.s.j
�

−v̂þ β

�

´ −
´ − 1

³2
β · v̂

��

: ðA2Þ

APPENDIX B: HAMILTONIAN INCLUDING

ANTINEUTRINOS

In Sec. II we explicitly wrote only the neutrino-neutrino

part of Hνν, ignoring antineutrinos. Here we will write

down all terms in the many-body Hamiltonian, taking into

account both neutrinos and antineutrinos. Treating neutrino

masses as a perturbation, we only include positive helicity

antineutrino modes and use the notation bαðp;þÞ → bαðpÞ,
with α ¼ e, μ.
The kinetic part of the Hamiltonian for the antineutrinos

can be obtained by just replacing the ae=μ by be=μ in

Eq. (14). When considering the interaction terms, the ν̄ − ν̄

and ν − ν̄ terms in Hνν are proportional to the same angular

function gðp0;p;q0;qÞ that controls the ν − ν interactions.

Keeping only the terms that conserve total particle number

(i.e. discarding terms that mediate ν↔ νν̄ν), we find

Hνν ¼
GF
ffiffiffi

2
p

X

α;α0;³;³0

Z

dq

ð2πÞ3
dq0

ð2πÞ3
dp

ð2πÞ3
dp0

ð2πÞ3 gðp
0;p;q0;qÞ δα

0αδ³0³ þ δα0³δ³0α

2

×

�

a†
α0ðp0ÞaαðpÞa†³0ðq0Þa³ðqÞð2πÞ3δðpþ q− p0 − q0Þ þ 2a†

α0ðp0ÞaαðpÞb³0ðq0Þb†³ðqÞð2πÞ3δðp− q− p0 þ q0Þ

þ 2bα0ðp0Þb†αðpÞa†³0ðq0Þa³ðqÞð2πÞ3δðp− q− p0 þ q0Þ þ bα0ðp0Þb†αðpÞb³0ðq0Þb†³ðqÞð2πÞ3δðpþ q− p0 − q0Þ
�

: ðB1Þ
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