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Neutrino many-body flavor evolution: The full Hamiltonian
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We study neutrino flavor evolution in the quantum many-body approach using the full neutrino-neutrino
Hamiltonian, including the usually neglected terms that mediate nonforward scattering processes. Working
in the occupation number representation with plane waves as single-particle states, we explore the time
evolution of simple initial states with up to N = 10 neutrinos. We discuss the time evolution of the
Loschmidt echo, one body flavor and kinetic observables, and the one-body entanglement entropy. For the
small systems considered, we observe “thermalization” of both flavor and momentum degrees of freedom
on comparable time scales, with results converging towards expectation values computed within a
microcanonical ensemble. We also observe that the inclusion of nonforward processes generates a faster
flavor evolution compared to the one induced by the truncated (forward) Hamiltonian.
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I. INTRODUCTION

The evolution of neutrino flavor in hot and dense media
provides key input to our understanding of the synthesis of
light nuclei in the early Universe and heavy nuclei in the
collapse or merger of compact astrophysical objects, and
affects the neutrino signal from a future galactic supernova.
Astrophysical neutrinos are usually studied through so-
called quantum kinetic equations (QKEs), which are
evolution equations for the one-body reduced neutrino
density matrix, accounting for both momentum and flavor
degrees of freedom [1-5]. The QKEs have been derived
from quantum field theory using various methods, includ-
ing the two-particle-irreducible (2PI) effective action [6]
truncated to three loops [3,7]. The QKEs involve both
coherent forward scattering and collisional kernel and lead
to a rich phenomenology of collective phenomena and
flavor instabilities (see the review [8] and references
therein).

While the computational implementation of the full
QKEs and their interface with compact objects evolution
codes is an arduous task, understanding the limits of
applicability of the one-body approach underlying the
QKEs remains an active area of research. The question
whether the one-body analysis leaves out important many-
body correlations and entanglement effects goes back to the
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early days of the field [9,10] and has received attention over
the years [11-16].

More recently, the validity of the QKE treatment of the
neutrino gas has come under scrutiny in the context of
quantum many-body approaches to this problem (see [17]
and references therein). As far as we are aware, all existing
quantum many-body studies of the neutrino system use a
truncated Hamiltonian (. [18] that only couples pairs of
momentum-space neutrino operators satisfying forward
kinematics. In other words, H ,(,f) contains terms that either
preserve or exchange the momenta of interacting neutrino
pairs (forward and exchange terms). As argued in
Ref. [19], the use of the truncated Hamiltonian is not
justified in a first-principles many-body approach. On the
other hand, the truncated v-v Hamiltonian has the virtue of
mapping onto a spin-spin Hamiltonian with all-to-all
couplings [18], which is amenable to many-body analyses
[20-31] and implementation on quantum computers [32—
36]. In certain regimes, the many-body results are at
variance with the QKE expectations (see for example
Refs. [17,29,30]), and there is an ongoing debate on
whether these calculations can indeed challenge the
validity of the QKEs’ approach [19,37,38].

The path towards more realistic many-body studies
requires several developments, which include: (i) assessing
the impact of using the full many-body Hamiltonian rather
than its truncated version, (ii) exploring more general initial
pure states (not product states of plane waves), and possibly
admixtures of pure states, that more realistically describe
the physical system, and (iii) studying the dynamics of
larger systems and systematically studying the scaling of
relevant observables with the number of neutrinos, includ-
ing neutrino interactions with other particles. In this work,
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we address point (i) above: first, we work out the full
neutrino-neutrino Hamiltonian H,, and set up the frame-
work to implement the time evolution using the occupation
number representation. Then we explore the evolution of
simple initial states. In this simplified setting, we study the
time scales for evolution of flavor and momentum degrees
of freedom and their interplay. While we use a plane wave
single-particle basis, we emphasize that, in principle, any
initial state can be built within this formalism, thus allowing
one to study point (ii) above.

This paper is organized as follows: in Sec. II we set up
the basic formalism, present the full Hamiltonian and give
its matrix elements in the occupation number basis. In
Sec. III we introduce the one-body density matrix and the
corresponding entanglement entropy, emphasizing the
interplay between flavor and momentum degrees of free-
dom. In Sec. IV we discuss the relevant energy scales in the
problems of astrophysical interest. In Sec. V we study the
time evolution in a toy model with N = 2, illustrating some
features that generalize to larger systems. In Sec. VI we
study the time evolution of neutrino systems with N = 6, 8,
10 in a two-dimensional setup and investigate qualitative
and quantitative differences that emerge when using the full
and truncated Hamiltonian. We summarize our results in
Sec. VII and provide some more technical details in
Appendixes A and B.

II. FORMALISM

In order to write down the Hamiltonian we describe
neutrino fields v,(x) as four-component spinors (a € {e,
u, 7} denoting the flavor). At energies much smaller than
the electroweak scale the Hamiltonian takes the form
(repeated flavor indices are summed over)

H=Hg,+H,+H,_, (1)
with
Hkin = / d3x Da(x)(—i5aﬁ}' -V + ma/j)l/ﬁ(X>7

Gr
H,=—
V2

where we will use the following gamma matrices:

o <o aﬂ> 4 ( 0 at’>
Yy = ; Yy = .
o 0 —o! 0

vs = iy’%7'r*y’? (3)

P x 00N, PR3P Prup(x). (2)

with ¢° being the two-dimensional identity matrix and o'
the ith Pauli matrix. P, = (1 —y5)/2, and m is a complex
mass matrix for Dirac neutrinos (for Majorana neutrino the
kinetic term acquires an overall factor of 1/2 and the mass
matrix becomes symmetric). H,_,, denotes the interaction

of neutrinos with quarks and charged leptons. For a
complete description of neutrino-matter interaction see,
for example, [7]. In this work we do not consider the effects
of H,_,,. In what follows we expand the neutrino fields in
creation and annihilation operators and derive a represen-
tation of the Hamiltonian in Fock space.

A. Neutrino fields and spinors

We expand the free Dirac neutrino fields as follows:

_ AP i
i)=Y [ G (vtwmato.n
+v@mwknmam) )

in terms of helicity spinors u(p, 1), v(p, h) and creation/
annihilation operators for neutrinos [a;(p, #)] and antineu-
trinos [b;(p, h)]. The h € {4, —} label refers to helicity and
ie{l1,2} refers to the mass eigenstate. With the normal-
izations adopted here, the creation and annihilation oper-
ators carry mass dimension —3/2 and satisfy the following
anticommutation relations:

{aq(p. 1), a/T;(P’, W)} = (27)%6) (p - PO s (5)

In our conventions the spinors are dimensionless and
normalized such that

u' (p. hyu(p. h') = v (p.h)o(p. i) = &y (6)

The helicity 4-spinors are given by

; E+|p|/ r(p)¢. ()
o -SSP
TV L))

<

with  E=+/p*+m®> and r(p)=m/(E+|p|)=

V/(E=1p|)/(E +|p|). Denoting by 6,.¢, (the polar
and azimuthal angles of p =p/|p|), the helicity Pauli
spinors are
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cos’ —e~ite sin%
R 2 R 2
§+(P)=< o (,> i(P)Z( ) ) (11)
e sin2 cos?

and satisty (¢ - )& (p) = ££.(P)-

Throughout, we treat neutrino masses as perturbations
and neglect terms of higher order in m;/|p|. As is well
known, in this approximation the left-handed neutrino field
appearing in the weak Hamiltonian only involves left-
helicity neutrinos and right-helicity antineutrinos,

Puits) = [ 585 (utp.—)astp. )
+o(p. +)b! (p. +)eiPX). (12)

Further focusing on the many-body dynamics of neutrinos
(ignoring antineutrinos for simplicity) we only need to
consider terms involving left-helicity neutrino mode oper-
ators. To simplify the notation, we thus suppress the
redundant helicity label: a;(p,—) — a;(p).

Finally, since the interaction Hamiltonian is most nat-
urally expressed in terms of flavor fields, we introduce the

|
dp m? + m3
Hkin—/m{om"‘ ! 2

dm? x sin20

alp] (a1<p>aﬂ<p> + a;<p>ae<p>)] ,

4lp|

flavor basis mode operators and express the Hamiltonian in
terms of these. In the two-flavor case, the relation between
mass and flavor operators is given by

a.(p) = cosBa;(p) + sind a,(p)
a,(p) = —sinfa,(p) + cos O a,(p). (13)

B. Hamiltonian

In what follows we focus on the many-body dynamics of
neutrinos, ignoring antineutrinos for simplicity. For com-
pleteness, the terms in H,, involving antineutrinos are
reported in Appendix B. As discussed above, we quantize
the fields in the mass basis and work in the ultrarelativistic
limit m;/|p| < 1. We then express the Hamiltonian in
terms of creation and annihilation operators of left-helicity
neutrinos, for which we use the flavor basis: a,(p),
a€{e,u,7}. From now on, we restrict our discussion to
the case of two flavors, e and p. The generalization to three
flavors is straightforward.

Defining 6m? = m35 —m?, the kinetic term of the
Hamiltonian reads

with the last term representing the usual vacuum mixing term.
The neutrino-neutrino terms in the interaction Hamiltonian H,, take the form

_Gr dq dq dp dp’
o = Z/( 27)° (27)°

a o pp

X (a;,(p’)a (p)a ﬁ/(q’)a/;(CI)
with

gp’.p.q4'.q) = a(p’,

—)1uPru(p,—) u(q’

— 2 i ; ’
dm? x cos 29) o (p)a(p) + (|p| LM + m3 +4T;n| X CoSs 29) a;(p)aﬂ(p)
(14)
;(27)%5(p+q-p' —q)
(5(ia5ﬁ/ﬂ —; 5(1’ﬁ6ﬁ/a) g’ .p.q.q) + - ) , (15)
=)rPru(q,—) = f1(p'.q)f(p.q) (16)

o) = V2 (e sin(2 ) cos (%) = encos( ) sin(7) ). (17)

From Eq. (15) we see that H,, takes each pair of occupied states with momenta p, q to states with momenta p’, q’, subject
to the condition p + q = p’ + ¢/, and acts on the flavors by either leaving them unchanged or by swapping them. The
weight for each set of momenta considered is given by the function g(p’,p,q’,q) in Eq. (16).

Note that g(p’, p,q’,q) = 9(d’,q,.p’.p) = —9(p’. q,q', p), where the last equality follows from the Fierz identities. In
the forward scattering kinematics (p’ = p or p’ = q), this expression reproduces the familiar factors encountered in the
literature [10],

9(p.p.4.9) = —g9(q.p.p.q) =1-p- 4. (18)
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As an illustration, we consider the two-dimensional case
with py =0 and p, >0 (corresponding to ¢, =0,
¢q = 0), which leads to

6, — 6 0, — Oy
9(p".p.4'.q) — 2sin <"2“> sin <P2q> (19)

The one-dimensional case (all momenta along the z axis)
corresponds to 8, y ¢ o = 0, 7, depending on the sign of the
z-component of the momenta. Equation (19) shows that in
this case a nonzero amplitude is only obtained when
the initial and final state momenta are ‘“head on” [i.e.
when the momenta satisfy momentum conservation p, +
q. = p’. + 4, and both conditions sign(q,) = —sign(p.)
and sign(q',) = —sign(p’.) hold].

When working in finite volume, the formulae presented
above need to be modified in the usual way. Assuming the
box has linear size L and volume V = L3, the 3-momenta p
are uniquely identified by triplets of integers (zp), .
through (p),,. = [(27)/L)(zp),,.- As a consequence,
the integrals over 3-momenta are replaced by finite sums
over triplets of integers through the usual relation,

> 1
/ (271']))3 - V;’ (20)

and the Dirac delta functions of momentum conservation
become Kroeneker deltas according to

(27[)35<3)(p +q- pl - q/) - V52p+zq—zp/—zq/i0~ (21)

C. Fock space

We consider for simplicity only two neutrino flavors
(denoted by e and u) and work in Fock space. A single-
particle state is identified by the three-momentum p;
(ie{l,.....k}) and a flavor label a (ae{e,u}). We
consider only neutrinos with negative helicity, so we do
not have to specify any other quantum numbers. There are
2k single particle states and a basis vector in Fock space is
specified by the set of occupation numbers n;, € {0, 1}.
The dimension of this space is 22t

We set out to study the problem in which the initial state
has total number of neutrinos N < k:

N= > 1 (22)

Since H,, conserves the total number of neutrinos, we need
to evolve the state in the space of fixed N, which has
dimension

'When considering 7 + flavors, one simply makes the replace-
ment 2k — ny x k.

= (%) -

The dy ; basis vectors are labeled by

o= {n Ry e, Mges Mgy} (24)

the 2k-dimensional array of occupation numbers obeying
the condition (22), and represent antisymmetrized products
of N single-particle states:

|n>—S.D.( II p,»,a)), (25)

io: ni,=1

where “S.D.” stands for Slater determinant. A generic state
is specified by dy; complex amplitudes c, as follows:

¥) = caln). (26)

Finally, to take into account the anticommutation of the
creation and annihilation operators correctly, we need to
introduce the ordering rule for the operators in defining the
basis vectors |n) in Eq. (25). The basis vectors |n) are
defined via the application of a sequence of creation
operators ordered in an increasing order of flavor and
momenta, i.e. momenta with a smaller label are on the left,
and within a given momentum label the electron flavor goes
to the left of the muon flavor. For example, the normalized
basis state of three neutrinos with flavor and momenta
(P1-€), (P1,#), (P2, e) (labeled by n with ny, = n,y, =
ny, =1 and all other occupation numbers n;; = 0) is
given by

In) = al(l’l)a;(l’l)az(l’z)
VV VY

Its complex conjugate is defined as

0. (27)

a,(p>) a,(p1) a,(py)
VV oV VY

This defines an orthonormal basis, i.e. (njm) = &, ,,. The
application of an annihilation operator a,(p;) to a basis
vector |n) results in

(n] = (0]

(28)

aa(pi)|n> = Vl/zfnﬁi,aén,‘ﬁ.] |n[ia]> (29)
where
nld =n with n,, -0 (30)

and
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Faia = (=1) 2000050, (31)

The volume factor in Eq. (29) arises due to the normali-
zation adopted for the creation and annihilation operators
[see Eq. (5) and its finite volume version]. The summation
Z(j-ﬂ) <(ia) jp In the exponent of the anticommutation
factor fy,, ;. means that we sum n;  for all (j, §) that are
on the left of (i, @) in the ordering rule introduced above.

D. Matrix elements of the Hamiltonian

We next discuss in some detail the matrix elements of the
Hamiltonian H;, and H,, in the occupation number basis.

1
V2

With the notation introduced in the previous subsection, the
matrix element of quadratic operators of the form

al(pi)ay(p,) is

(mlag(p:)ay(p;)m)

= (fm.i,a 5mi.avl) (fn,j,ﬁ 5”,‘,/}.1) <m[la] |n[Jﬁ]>
= Ay(m.n; {i.a}, {j. B}). (32)

<|=

The matrix elements of quartic operators of the form
a&([’i)a;(pj)ae(pk)a((pl) are

= |a;(pi)a};(p]‘)ae(pk)aé(pl) n) = (fm.iaOm,,.1) ([l JpO(ml )/,/,,1)(fn[1¢1,k$55(n[lcl)k_c.1)(fn,1,¢5nm,1 ) (mliellifl [ ikl

= Ay(m.n;{i,a}. {j. f}. {k.e}.{1.{}). (33)

where

nlialipl — plia]

with n, 45— 0. (34)

With Egs. (32) and (33), the Hamiltonian’s matrix elements can be written in the following way. First, the kinetic energy,

including the vacuum mixing terms, reads

m2 4+ m2 — ém? x cos?26 ] )
(m|Holn) = 3 [(|p,»| L mm >,42<m,n; {ire}. {ire})

i

4|p;|

m} + m3 + 6m? x cos20

+ (1mi +
ém? x sin20
4(p;|

4(p;|

>A2(m,n; (i1} (i)

<A2<m, n: {ive}. {ivu}) + As(m.n: (i} i, e}>)} . (35)

The matrix elements of the normal-ordered interaction Hamiltonian can be written using Eq. (33). For the full

Hamiltonian including nonforward terms, one finds

1 Gr

Fliny — _ & . .
<m|HW |n> o V2\/§az Z 51,,i+zpj—z,,k—z,,[,0 g(pn Pk pp pl)

P=euijk,l

x [Autm. i i), g (k@b {1.6)) + Astmmi (i, B () (L) (36)

Finally, restricting summation over k, [ in Eq. (36) to the forward limit (k = i or / = i), we obtain the usual truncated

(“forward scattering””) Hamiltonian,

1G
(m|H n) =——"L
Vv2,

P=ep 1]

where the summations of i, j run over all momentum modes.

> (1-pip)) [A4<m,n;{i,a},{j,ﬁ},{i,a},{j,ﬁw+A4(m,n;{i,a},{j,ﬂ},{i,ﬁ},{j,a})}

(37)
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III. REDUCED DENSITY MATRICES AND
ENTANGLEMENT ENTROPY

The full many-body system described by the state |¥) in
Eq. (26) can be partitioned into two subsystems in various
ways, and the corresponding entanglement can be studied.
In this context, the key object is the reduced density matrix,
obtained by tracing over one of the two subsystems,
starting from the full description of the state given by
the density operator

P = 3 cpcinln) (m]. (38)

A central object in our study is the one-body reduced
density matrix that corresponds to partitioning the system
into one particle versus N — 1 particles and tracing over
N — 1 particle states. This object is of great interest because
(i) neutrino measurements involve interactions of single
neutrinos, hence knowledge of the one-body density matrix
allows one to predict all observables of interest; (ii) the von
Neumann entropy computed in terms of the one-body
density matrix quantifies the degree of entanglement of a
single neutrino with the other N — 1; and (iii) the QKEs are
evolution equations for the one-body reduced density
matrix. Therefore, the one-body reduced density matrix
provides the common ground on which one can study and
compare QKEs and many-body approaches.

Denoting the single-particle states by |y;) = |py,.ay,)
(with a, € {e, u}), using the notation introduced in Sec. IT
C the one-body reduced density matrix takes the form

1
= ) wjlol) (39)
ij

m_1 .
ij N;CnCmén,16m./1fn.ifm.j5n[i]’m[i]- (40)

An alternative and very useful expression for the elements
of the one-body reduced density matrix in terms of
expectation values of creation and annihilation operators
of single-particle states is given by

o) = < ). (41)

=t
N
The von Neumann entropy computed with p(1),

S(pV) = =Tr(p") log pV), (42)

provides a measure of the entanglement between a single
particle and the rest of the system [39].

Invariance under translations and orthogonality of
single-particle momentum eigenstates implies that p(!)

has a block structure on orthogonal single-particle sub-
spaces labeled by three-momentum:

k

PU=3" > Ipead(publoy(p).  (43)

i=1 apefen)

a5(P) a,(p)
VvV VY

o) = (¥ W @)

Up to a normalization, pgg (p) is the dynamical quantity

appearing in the QKEs. The diagonal entries are positive
definite and represent the occupation numbers of electron
and muon neutrinos in momentum p, normalized to N. For
each momentum p;, it is convenient to define

Nii = Pgle)(pi) + pl(lil)(pi)' (45)

N/ is the total occupation number in momentum p,
(normalized to N), and it is very useful to study the kinetic
properties of the state. On the other hand, N} characterizes
the flavor content of the state in momentum p;. In what
follows, among other things, we will use the time depend-
ence of N5 to identify the time scales of flavor and kinetic
evolution.

Note that pf, ) (p;) is not a density matrix: its trace over
flavor indices is N; /N, where N is the total occupation
number of momentum bin p,, irrespective of flavor [see
Eq. (45)]. When N} # 0, rescaling by N;" /N, we can define
density matrices in flavor space for each momentum bin,

pO= 3 IpeadpAale).  (46)

ape{epn}
N
Puy(Pi) = 5P () (47)

in terms of which the full one-body density matrix reads’:

i% i (48)

Finally, the von Neumann entropy of p(!) can be written as

Lsp0). (49)

This expression shows that the entanglement entropy of a

single neutrino with the rest of the system can arise from
*Note that when N;~ — 0, all entries of pf}llz(p,-) vanish, so that

there is no singularity in the definition of 5\, Moreover, in the

limit N;” — 0 one also has N; () — 0, hence no contribution to
) from momentum bin p;.
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entanglement in both momentum (first term above) and
flavor (second term above).

To make the above statements more precise, we can
further trace the one-body density matrix over flavor or
momentum degrees of freedom. Tracing over flavor,
we get

k N-+

PO =2 1pi) (i (50)
i

0k + +
S =-» —Ltlog— 51
(o) = =3 loe (51)
Similarly, tracing over momenta gives
k

with pi}}(p,») defined in Eq. (44). For an initial state
containing N, electron neutrinos and N, muon neutrinos
across all momentum modes, one finds pMF =
diag(N,/N,N,/N).

The time over which S(p(1)), S(p)-K), S(p1)-F), S(p1)
reach the first maximum are proxy timescales for global,
kinetic, and flavor equilibration. We will illustrate these
points in Sec. VL.

IV. SETUP FOR HOT AND DENSE MEDIA

In this section, we discuss the energy scales characterizing
the dynamics of neutrinos in situations of astrophysical
interest and define a rescaled dimensionless Hamiltonian
suitable for computational implementation. In situations of
astrophysical interest, such as just below the decoupling
region in a supernova, the initial state of the neutrinos is not
too far from equilibrium. Therefore, it makes sense to
introduce a notion of near-equilibrium distribution and

HEIT = &(Hy, + HY'")

B} | A
Hyin = VZ <Tpi| -

i=1

@ cos 260

B

@ sin 260
L(p) + a;(l)i)

|z|

lal(p;)a

F/T

J.k.1)

*For a temperature of 1 MeV, we obtain V ~ 103N fm?.

Jal@iacten + (Tip +

Z (P Pi Pjs P1)aa(P:) @y (P;)aa(Pi)ap (P1).

temperature, which characterizes the typical scale of the
neutrino’s momenta. In equilibrium, N, 7', and V are related
by N/V = (3¢(3)T?)/(4z%). In our near-equilibrium sit-
uation, we assume that the above relation is approximately
valid and assume the scaling 1/V ~ T?/N to estimate the
relative size of the various contributions to the Hamiltonian.>

When the temperature of the system is order MeV,
widely separated energy scales enter the Hamiltonian,
that is,

Ip| ~T > GzT? > 6m?/T. (53)

The scales T and GpT? differ by about 10 orders of
magnitude. As discussed below, this wide separation
effectively removes the effect of self-interactions connect-
ing neutrino pairs with different kinetic energy, i.e. with
Ip;| + |p,| # [Pl + [p}|. On the other hand, G,T° and
om?/T differ by 2 to 3 orders of magnitude depending
on the magnitude of the mass splitting used. These two
scales together control the flavor evolution of the system.

To make the interplay between the three parameters more
explicit, we rescale the Hamiltonian for the rest of the
discussion. We take as the unit of energy (and inverse time)
the quantity £ = Gr/(v/2V) and introduce the dimension-
less parameters,

T= g~ 10 (54)
2
@ = j% ~1073 — 1072 (55)
- p
51=2l~ o). (56)

The Hamiltonian of the neutrinos can now be written in
terms of dimensionless operators in the following way:

@ cos 20

CIJr i)a i
|f)l| ) M(pt) ﬂ(pl)

ae(pi)]

(57)
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Note that we have dropped the terms proportional to (m? +
m3)/|p;| in the diagonal part of the vacuum term Hyj,, as
they are always subleading compared to the term propor-
tional to |p;| — T|p;|. The summation (i, j, k1) in H,,
denotes all pairs that conserve 3-momentum for the full
Hamiltonian #(F). In the truncated case A", we additionally
impose that p; = p; and p; = p;, or p; = p; and p; = py.

V. A TOY PROBLEM WITH N =2

In this section, we explore the impact of the nonforward
interaction on the evolution of flavor and momentum
degrees of freedom in a dense neutrino system by inspect-
ing a toy model. In the model, there are four momentum
modes (k = 4) for neutrinos to fill, and we consider states
with two neutrinos (N = 2). Therefore the dimension of the
relevant Hilbert space is d, 4 = 28. The momentum modes
P = p/T in this toy system are chosen as follows:

(sin ¢, cos ¢, 0)

(\/r — cos’, — cos ¢, 0>
(sm¢ —cos¢ — ¢, O)
o=

\/1r* — cos’¢, cos p + &, O)

with ¢ €[0,7/2], r > 1 and e€R. In this system, p; +
P> = p; + P4 for any r,¢ and e. Therefore the quartic
terms in H,, involving creation of py, p, (p3, p4) and
annihilation of ps3, ps (p;, p») Will have nonzero matrix
elements. Note also that |p,|+ |p»| = |ps| + |p4| only
when & = 0. One important finding in this section is that
the nonforward interaction significantly affects the time
evolution only when & < 1/T, i.e. when the difference in
kinetic energy of the two pairs is on the order of or smaller
than potential energy due to the self-interactions.

The Hamiltonian is block diagonal in the basis of
Eq. (25) since it commutes with the total momentum
operator and hence connects states with the same total
momentum. Among the 28 basis states, 4 states have two
neutrinos with the same momentum and different flavor.

'ﬁz '51
Il Il

(58)

Dyy(-.-) ) @ 0
@) D (=, +) 0 @)
@) 0 Dpp(+,-) 0}
He = 0 @) @, Dip(+,+)
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

These 4 states have total momentum of 2p;, and they each
form a 1 x 1 block. Second, for the blocks with a total
momentum of p; +p; (i # j), there are 4 such states in
each block due to the choice of flavor for each neutrino.
Therefore there are six 4 x 4 blocks with those total
momenta. Finally, since p; + p, = p; + P4, blocks with
total momenta p, + p, and p; + p, are connected via H,,
for the full Hamiltonian. In summary, for the only-forward
Hamiltonian, there are four 1 x 1 blocks and six 4 x 4
blocks, while for the full Hamiltonian, there are four 1 x 1
blocks, four 4 x 4 blocks, and one 8 x 8 block connecting
states with p; + p, and p3 + p4.

Let us take a closer look at the 8 x 8 block. We order the
eight basis vectors |v;)...|vg) as follows:

Vlv)) = ai(pr)ab(p2)[0),  Vlvs) = al(ps)ai(ps)0)
VIvy) = al(py)ai(p2)|0). Vive) = al(ps)ai(p4)|0)
Vvs) = a;(pl)az(p2)|0>, Vl|vg) = a;(P3)aZ(P4)|O>
Vlvg) = ap(pr)ap(p2)[0),  Vlvs) = aji(ps)as(pa)[0).

To write down the matrix elements of the Hamiltonian in
these basis states, we first introduce shorthand notations:

- . @cos20  @cos26
Djj(£, %)) =T(|pi| +[B)]) & — = (59)
D, |Pj|
L cbsi~n 260 (60)
D
for the kinetic parts and

fij = f(pi-p)) (61)

4 0 0 O

02 2 0
M= (62)

02 2 0

0 0 0 4

for the interactions, with the function f(p;,p;) in Eq. (61)
defined in Eq. (17). With these notations, the kinetic part of the
Hamiltonian, H;,, including vacuum mixing, takes the form

0 0 0 0

0 0 0 0

0 0 0 0

’ o ! ’ (63)
D3y(—,-) Wy 3 0

@y D3y(=,+) 0 3

@3 0 Di3y(+,-) on

0 @3 @y D3y(+,+)
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The interaction terms read

o _ (fizfuM T 0 ) (64)
0 faaf3aM

and

2 _ <szf12M fT2f34M>' (65)

wo— + F
Saaf oM [, fuM

One thing to note about the eigenvalue spectrum of H,,
is that five of them are zero and three take the same value.
(When considering the total Hamiltonian, the vacuum
mixing terms in Hy;, lift this degeneracy.) This is due to
the fact that each block is given by the 4 x 4 matrix M
multiplied by the products of two f,;, factors, correspond-
ing to the incoming and outgoing momentum pairs. As a
result, the first four columns of H,, and the last four are
linearly dependent. Together with the structure of M, this
implies that the rank of the matrix H,, is 3. This is a special
feature seen only in 2-neutrino systems.

In contrast to the above point, there is an important
general feature of the problem that emerges from the
analysis of this toy model. Given that in situations of
(astro)physical interest T/@ > 10'°, when |p,| + |p| and
|Ps| + |P4| differ by O(1), transitions between the blocks
with the total momentum of p; + p, and p; + p4 caused by
HF) become negligible. The two blocks are dynamically
decoupled, similarly to what happens in any two-level
quantum system when the off-diagonal mixing term is
much smaller than the unperturbed level splitting. In this
regime, the evolution is effectively controlled by the
truncated Hamiltonian A"). Only when the difference
between |p;| + |P,| and |Pp3| + [Py is of similar magnitude

as |fl,fsl/T, do the neutrino-neutrino nonforward

[w(0)) = |va)

— M
--= (F,e=1072
-=- (F),e=10"3
— (F,e=10"*
— (A, e=10"°
(F),€=0.0

lc1]?

time (&71)

interactions contribute to the dynamics. To test this obser-
vation, we analyze the time evolution of the toy model with
T =10* @ = 1, and sin 20 = 0.8 as we vary the parameter
€ that controls the “kinetic energy conservation” condition
through  [ps[ + [Ps| = [P1] + [Po +- O(e). We fix the
momentum parameters to be r =2.0 and ¢ = z/4 and
study

(1)) = ZQU)IM- (66)

For the purpose of illustration, we show results for initial
states [y(0)) = |vy) (two electron neutrinos with momen-
tum p; and p,) and |w(0)) = |v,) (electron neutrino with
momentum p; and muon neutrino with momentum p,). In
Fig. 1 we plot the Loschmidt echo [{y(0)|w(?))> as a
function of time and compare it to the time evolution
obtained with the truncated (‘“forward”) Hamiltonian. As
expected, | (y(0)|y(¢))|? starts to significantly deviate from
the truncated behavior around &~ 1/T = 107* and the
effect of nonforward scattering increases as € decreases. For
£ ~107 ~0.1/T or smaller, the evolution becomes essen-
tially indistinguishable from the ¢ = 0 case.

This dynamical pairwise kinetic energy conservation
limits the number of relevant terms in the full Hamiltonian
H'"). This is still much less restrictive than the forward
kinematics enforced in the truncated Hamiltonian H("). In
fact, for each pair of momenta p and q, three-momentum
and kinetic energy conservation open up an infinite set of
momentum pairs p’ and ¢’ (parametrized by two angles as
shown in Appendix A) that contribute to the evolution, to
be contrasted to just one option in forward kinematics. The
pairwise kinetic energy conditions become very restrictive
only if one considers a one-dimensional setup. In this case,
the discussion below Eq. (19) implies that |p.|+ |q.| =
Ip’.| +|q’.| only holds if p, =p. or p. =q.. In other

|@(0)) = |v2)
1.0 —
--- (F,e=107?
0s | - (Ae=10
— (Fe=10"*
(F),e=10"°
0.6 4
o~
~
usH
0.4
0.2
0.0
0 2 4 8 10

6
time (&71)

FIG. 1. Loschmidtecho |{y(0)|y(t))|? in the two-neutrino toy model, for |y(0)) = |v;) (left panel) and |y (0)) = |v,) (right panel). In
both cases the Hamiltonian parameters are 7 = 10*, @ = 1, and sin 20 = 0.8. The momentum parameters are r = 2.0, ¢ = z/4 and

e=0,10"2-1073.
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FIG. 2. Expectation values of N| and N7 for the mode p; over
time for the full and truncated Hamiltonian. The Hamiltonian
parameters are chosen as 7 = 10%, @ = 1.0, and sin20 = 0.8.
The momentum parameters are r = 2.0,¢ = z/4 and ¢ = 0.0.

The initial state is vy, i.e., neutrinos with flavor ¢ and momentum
Pi> P2-

words, the pairwise kinetic energy condition enforces
forward or exchange kinematics and the evolution with
the full and truncated Hamiltonian effectively coincide.
When kinetic energy conservation holds approximately,
i.e. at € ~ 0, all eight states with total momentum of p; +
p, (or equivalently p; + p4) get nonzero amplitudes over
time without suppression via 7. This spread of amplitude is
governed by the interplay between the neutrino’s self-
interaction and their vacuum oscillation. One then naturally
expect to see the effect of nonforward scattering in flavor
equilibration and randomization of momenta. We can see a
hint of this even in this two-neutrino toy model. To study
these phenomena, in Fig. 2, we compare the N{ and Ny
[see definition in Eq. (45)] for the state evolved via either
HF) (in black) or H) (in red). Obviously, kinetic
evolution occurs only with the full Hamiltonian—the
occupation number of a given momentum mode cannot
change via forward scattering or exchange processes. This
is evident in the constant solid red line showing the total
occupation number of the momentum mode. Regarding
flavor conversion, which occurs for both full and truncated
setups, the evolution speed at initialization appears to be
faster with the full Hamiltonian. This is correlated with the
fact that the total occupation of the mode decreases quickly
due to the nonforward interaction. Therefore, at least in this
toy model, the time scales for kinetic evolution (and
ultimately thermalization) and flavor evolution are corre-
lated. We will further investigate the relation between
kinetic and flavor equilibration in the next section.
We close this section by pointing out that the evolution
time scales can be affected by the angular factors
g(p’,p.q’,q) in the Hamiltonian matrix elements, given

2.00

— (P, ¢=0.48n
1.751 - (F),$=0.45n
155 —= (F),¢=0.40n

0 2 4 6 8 10
time (&71)

FIG. 3. Time evolution induced by the full Hamiltonian H*)

for the sum of occupation numbers Nj + N; of initially

unoccupied momentum modes p3 and py [|w(0)) = |v;)]. The

Hamiltonian parameters are 7 = 10*, @ = 1, and sin26 = 0.8.

The momentum parameters are r = 2.0 and ¢ =0 while we
vary ¢.

in Eq. (16). From now onward, we will refer to these as the
“g factors.” The magnitude of the ¢ factors depends on the
relative angles of the incoming and outgoing momentum
modes, parametrized in this simple model by ¢ in Eq. (58).
In Fig. 3, we plot the time dependence of the sum of
occupation numbers N7 + N of initially unoccupied
momentum modes [|y(0)) = |v;)] for different choices
of the angle ¢ in Eq. (58). As ¢ approaches /2, the angle
between p; and p, decreases and the effect of nonforward
scattering vanishes. This has physical implications related
to geometric effects, as neutrino crossing angles away from
a source are geometrically suppressed. Besides this, even in
absence of geometric suppression, this feature is expected
to slow down the evolution time scales in simulations with
a small number of neutrinos and a small number of
available momentum modes. Some of these artifacts will
appear in our discussion in the next section.

In this section, we studied several key features of the full
Hamiltonian in the two-neutrino toy model:

(i) Most notably, the hierarchy between the neutrino
kinetic and potential energy (7 > 1) results in
pairwise kinetic energy conservation. Together with
three-momentum conservation, for each pair of
momenta p and q, this still opens up an infinite
set of momentum pairs p’ and ¢’ that contribute to
the evolution (see Appendix A).

(i1) Nonforward processes induce kinetic (momentum)

randomization and have the potential for accelerat-
ing flavor evolution.
The quantitative impact of nonforward terms in the
Hamiltonian depends on the magnitude of the g
factors, which decrease as the relative angle of two
incoming momentum modes decreases.

(iii)

123028-10
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VI. TWO-DIMENSIONAL MODELS

In this section, we study the time evolution of various
neutrino systems under the full Hamiltonian H¥) and
truncated Hamiltonian ") with momentum modes taken
on a two-dimensional grid:

- 2r
z={(2r:3,); 2,2, €Z}

with 0 < |z| < zp and 0 < z,. (67)
We exclude the zero mode and introduce a “UV” cutoff
Pmax that sets the maximal magnitude on the momenta.
Moreover, we only consider the modes with a positive x
component to mimic astrophysical situations in which there
is a net flux of neutrinos.

With this setup, we first demonstrate that kinetic energy
conserves pair-by-pair through the self-interactions and
show that we can safely take this as an exact conservation
law at typical temperature of interest 7 2 MeV. Given that,
we impose the pairwise kinetic energy conservation on both
the Hilbert space and Hamiltonian and explore the collec-
tive flavor evolution and kinetic (momentum) randomiza-
tion in this system while varying the number of neutrinos
N = 6, 8, 10 and initial states. All codes developed for the
numerical simulations performed in this section are avail-
able online.*

A. Pairwise kinetic energy conservation

As discussed in Sec. V, when the typical magnitude of
neutrino three-momenta (dictated by the temperature) is
much larger than the neutrino self-interaction potential
energy, out of all couplings contained in H,,, only the ones
satisfying approximate pairwise kinetic energy conservation
are expected to affect the dynamics. Here we demonstrate this
within the two-dimensional models specified by the grid of
momentum modes in Eq. (67). For this purpose, we simulate
the time evolution numerically via exact diagonalization of
the two Hamiltonians: the full Hamiltonian and the one with

the kinetic energy conservation imposed in H,,, which we

denote as H ,(,f) . Explicitly, H 515) is

A% = Ay + ALY

1 C

H;ED)Z—W z alr(Pi)a);(pj)aa(Pk)aﬁ(Pl)
Pi,j,k.le{l)}
X Op,-+p, 0+ O I, o o I (P P P Py ) |- (68)

Comparison with Eq. (57) reveals that H, D g% b,

*https://github.com/yukariyamauchi/neutrinos_beyond_fwd.

0.0401 —— Full,T=10
—— Full, T=102
0.035 — Ful, =103
0.030 K
~ 0.025
=)
¢ 0.020
0.015
0.010
0.005
0.000
0 2 4 6 8 10
time (1/&)

FIG. 4. The squared modulus of the amplitude of the 20th basis
state simulated with HF) (denoted as “Full”) and with HK)
(denoted as “Kec”). The Hamiltonian parameters are @ = 1.0 and
sin20 = 0.8. The model has k = 11 momentum modes and
N = 2 neutrinos. Note that the black solid line is almost on
top of the red solid line.

We set z,,.x = 3 for the grid of momenta, which gives 11
modes. The simulation is performed in the Hilbert space
with the number of neutrinos N = 2 and 4. Therefore the
dimension of the Hilbert space is dy ;; = 231 or 7315 for
N = 2, 4, respectively. We do not make a further truncation
to the Hilbert space. In the following demonstrations, the
Hamiltonian parameters are @ = 1.0 and sin 26 = 0.8. We
take as initial state at time # = 0 a superposition of all basis
states with N electron neutrinos, assigning an equal
amplitude to all such basis states:

1

V1iCx Z,,:‘SNE;; w2

where ,,C; denotes the binomial coefficient.

As an example, in the case of N =2 the squared
modulus of the amplitude of the 20th basis state, which
has electron neutrinos with momentum (z,, z,) = (1, -2)
and (2,2), is shown in Fig. 4. When the temperature is low,
the state can transition to other 2-neutrino states such
as the one with momentum modes (1,0) and (2,0).
However, as the temperature increases, such transitions
are suppressed unless kinetic energy is conserved. In the
infinite-temperature limit, the initial state can transition only
to the states of neutrinos with momentum modes (2, —2) and
(1,2) on the grid. Figure 4 shows that as the temperature T
goes up, |c,o(#)|? converges to the time evolution with HK).
The difference between the amplitude from H¥) and HK) is
negligible at 7 = 10* (in black solid line).

To quantify more globally the difference between two
simulations done with H") or HX), we employ the Kullback-
Leibler (KL) divergence [40], Dy (Pyec(?)||Prun(?)), where
Piee(t) and Pgy(f) are probabilities defined by their

lw(0)) = (69)
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Dy (Pkec || Psun)
=
o
L

A

.
10 10 102 10°  10*  10°
T

FIG.5. The Kullback-Leibler divergence of the two probability
densities Py (t = 10/€) and Py (t = 10/E) defined by the set
of \cn(t)|2 evolved with H ,S,If) and H ,Sf), respectively. The
Hamiltonian parameters are @ = 1.0 and sin26 = 0.8 while
varying T. The model has 11 momentum modes, and the number
of neutrinos is 2 or 4.

corresponding |c, (¢)|?. In Fig. 5 we show the KL divergence
at time t = 10/& for the N = 2, 4 systems while varying 7.
The KL divergence decreases with temperature T according

to a power law, thus offering a parametric evidence for the
“dynamical” pairwise kinetic energy conservation.

B. Details of the simulated systems

In the rest of the section, we impose that pairwise kinetic
energy conservation holds exactly in the neutrino-neutrino
self-interaction as in HK). Additionally, we exclusively
focus on the neutrino self-interaction and turn off the

TABLE I. Some defining quantities of the three Hilbert sub-
spaces we study, that is, the number of neutrinos N,, N,, the
number of momentum modes k involved in the time evolution,
total momentum, total kinetic energy, and the dimension of the
Hilbert space (d},).

Hilbert space N, N, k Totalz 3} |z d,,

H, 4 2 14 (13,0) 23.30 158
H, 5 318 (16,0 2695 1434
H; 6 4 20 (21,0 3338 6922

vacuum oscillations by setting @ = 0. This condition
allows us to decompose the entire Hilbert space into the
subspaces with a fixed total momentum, kinetic energy, and
particle numbers N, (electron neutrino) and N, (muon
neutrino). Even within each subspace with these fixed

quantities, there are multiple disconnected subspaces—the

matrix element of H ,(,f) is nonzero only when the two states

have a pair of two momentum modes whose total momen-
tum and kinetic energy are the same. On the momentum
grid with 7., =5 with k =35 momentum modes as
shown in the left panel of Fig. 6, we focus on three such
subspaces: H; with N = 6, 'H, with N = 8§, and H; with
N = 10, where N denotes the total number of neutrinos.
We choose the number of electron neutrinos to be
N,=N/2+ 1. Some defining quantities of the Hilbert
spaces are summarized in Table. I.

The basis states in these Hilbert spaces are enumerated
by picking a “reference basis state” and listing all other
basis states that can be reached from the reference state via
repeatedly applying the self-interaction H 515) The reference
state we used for H; is [n) with

< ‘e N'NinM.C.
e N7 NinM.C.

ZyA
5 ™~
4 1.0/
3
1 0.6
0 1" 2 31 4 5 ZX .
= / 0.4
-2 0.2
-3 °
= 0.0{
L 0
-5

5 10 15 20 25 30 35
momentum mode z;

FIG. 6. Left: 35 momentum modes are shown in pink circles on the grid with the maximal magnitude z,,,,, = 5 (blue line). Right: the

equilibrium expectation values of NN f/ ~ computed with Eq. (74) are shown in blue and red, respectively, for H;.
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{1 i=1,6,11,26
Nje = .
0 otherwise
1 i=9,34
n;, = 70
: { 0 otherwise. (70)
The reference state for H, is
{1 i=1,6,11,13,21
nj, = .
0 otherwise
1 i=26,29,34
ny, = . (71)
0 otherwise,
and the reference state used for H;j is
{1 i=1,6,9,11,13,21
Nje = .
0 otherwise
1 i=26,27,29,34
niy = . (72)
0 otherwise.

The momentum modes are labeled in an increasing order of
z, and z,, e.g.,

z; = (1,-4), zg = (3,-3), zg = (2,-2)

z; = (4,-2), z;3 = (2,-1), z; = (1.1)

Zy = (2,2), zy = (3.2), Zy = (1,3)

23, = (2,4). (73)

From these reference states, H, £f> populates a total of 14,

18, or 20 momentum modes for H, 5 3, thus allowing us to
study the effects of nonforward scattering. The dimension
of the Hilbert space becomes d;, = 158, 1434, and 6922 for
'H, 13, respectively.

By construction, any initial state in H; (i = 1, 2, 3) stays
in H; when evolved with HX). For the sake of simplicity,
we study the time evolution of 15 basis states for each case.
These initial states have the same momentum content as the
reference states but have different flavor contents, with the
total number of electron neutrinos fixed to N/2 + 1. For
N = 6, there are 15 such basis states since (C, = 15. For
N = 8, 10 we picked 15 states from the 4C; or ,,C, number
of such basis states. These initial states are far from
equilibrium in both flavor and kinetic degrees of freedom.
We leave the study of a more realistic initial state that
mimics the situation in hot dense media of neutrinos to
future work.

The time evolution of these initial states is performed by
exactly diagonalizing the full or truncated Hamiltonian and
applying the corresponding unitary time-evolution operator
e to the initial state. The Hamiltonian parameters are
chosen to be sin 26 = 0.8 and @ = 0. The diagonal terms in
Hy;, proportional to 7 are dropped since they are

proportional to the identity in the restricted Hilbert spaces.
For the rest of the section, we study various quantities that
characterize the time evolution of the chosen initial states:

Loschmidt echo, N ;L/ ~, and the one-body entropies intro-
duced in Sec. IIL

We close this section by introducing a microcanonical
ensemble for the systems we study [41]. All basis states of a
given Hilbert space, H; (i = 1, 2, 3), have the same kinetic
energy, which dominates the energy of the basis states
given the hierarchy Eq. (53). Since all the basis states |;) in
H; have the same particle numbers N,, N,, and total
energy, in a microcanonical ensemble they are equally
probable and the corresponding density operator is

P :dihz 0 G- (74)

In equilibrium, the expectation values of various observ-
ables O are computed as Tr[p,.O]. The equilibrium
expectation values of N* and N~ will be used to in later
sections to quantitatively assess kinetic and flavor equili-
bration of our models. These equilibrium values are shown
in the right panel of Fig. 6 for Hj.

C. Loschmidt echo

We begin the comparison of the time volution under the
full and truncated Hamiltonian by studying the Loschmidt
echo £ = |(y(t)|w(0))|. At early time, the decrease of the
Loschmidt echo indicates how quickly the amplitude of
the wave function spreads from the initial state to the rest of
the Hilbert space. The curvature of the echo at time t = 0
is the negative of the variance of the Hamiltonian
(w(0)|H|y(0))? — (w(0)|H?|w(0)). This variance naively
quantifies how densely the initial state is connected to the
rest of the Hilbert space via the Hamiltonian since the H?
piece measures the sum of the square moduli of the
Hamiltonian matrix elements between the initial state
and all other states. In particular, in our simulation setup,
since the initial state is taken to be one of the basis
states [y(0)) = |i), the curvature of the Loschmidt echo
atr=0is

LW OWO) Pl = -SJGHIDE.  (5)

JF

Therefore one expects that the Loschmidt echo decreases
more rapidly with the full Hamiltonian than with the
truncated Hamiltonian for a given initial state.

Early-time behavior of the Loschmidt echo is shown for
one of 15 initial states for N =6, 8, 10 in Fig. 7. As
expected, the Loschmidt echo evolved under the full
Hamiltonian (solid lines) decreases faster to lower values
compared to those from the truncated simulation (dotted
lines). Although the Loschmidt echo does not give separate
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FIG. 7. Loschmidt echo over time for the three cases, N = 6 (in

H,), N =8 (in H,), and N = 10 (in H3). Results from the time
evolution under the full Hamiltonian, (F), are shown in solid
lines, while truncated ones, (T), are in dotted lines. For each case,
we chose a basis state in H;, H,, or H; as the initial state. We turn
off the vacuum oscillation (@ = 0).

information about the time scale of flavor evolution or
kinetic randomization, it can still provide us with the
evidence that the full Hamiltonian is able to spread the
amplitude of the wave function more quickly to a larger
Hilbert space than what the truncated Hamiltonian can
achieve. Note that the Loschmidt echo from the full
simulations especially with N =8 and 10 show rather
quick convergence, whereas the others fluctuate about
~0.3. This is due to the smallness of the number of
neutrinos and a resulting small dimension of the Hilbert
space. It is demonstrated in [30] that the Loschmidt echo
decreases and converges quickly for N = 10-16 systems
under the truncated time evolution. We have confirmed this
behavior in our simulations for N = 10-14.

n A, 4 24 ah
10~ Aa aTaa,, A AA‘ i a R &
A m, z
A A A
10—2 A
° L]
%o o3, A
L)
E 10—3 .; ° A ° Ca
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'°. o © o (FLN=8
107 o 8 . s (T),N=8
o (F,N=10
10—6_ > A (T),N=10
0.2 0.3 0.4 0.5 0.6 0.7 0.8
te (7Y

To quantify the difference in randomization time scale
under the full or truncated Hamiltonian, we introduce ¢,
defined as the time at which the Loschmidt echo reaches its
first minimum. In Fig. 8, we show 7, and the Loschmidt
echo at the time for all 15 initial states in all N on the left
panel. The circles show 7, obtained in the wave function
evolved by the full Hamiltonian, while triangles correspond
to the truncated Hamiltonian. The difference between ¢,
and the Loschmidt echo at the time 7, by HF) and H) is
striking. The full time evolution, on average, achieves a
minimum Loschmidt echo a few order of magnitude
smaller, in a shorter time. To emphasize this point, we
compare the time scale for each initial state from the full
and truncated Hamiltonian on the right panel of Fig. 8. The

figure shows t(LT) - t(p, i.e., the difference of ¢, between

two Hamiltonians on the horizontal axis and the ratio of the
echoes £7)/LF) on the vertical axis. For almost all initial
states taken for N = 6, 8, 10, t, is smaller with the full time
evolution and Loschmidt echo is smaller at the first
minimum. Within our study, we are not able to observe
an obvious trend in 7, as we vary the number of neutrinos
N. We will leave the study of the behavior of the Loschmidt
echo in systems with larger N to future work.

D. Single neutrino observables

In this section we analyze kinetic randomization and
flavor evolution of our neutrino systems separately through
the occupation numbers N, N~ introduced in Eq. (45). In
particular, we show that these expectation values converge
to their equilibrium values from the microcanonical ensem-
ble in Eq. (74), thus demonstrating the equilibration
process of our models.

The neutrino flavor degrees of freedom evolve over time
due to their vacuum oscillation (which we do not consider
here by setting @ = 0) and self-interaction. While forward

104 [ ] L ]
. 3 .
E5‘103 °
g & " O. o
S ° ° P %
: °
€. 102 o 20 W
= o
':Q . P ‘ °
101 LTS ° e N=6
. e N=8
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-0.2 0.0 0.2 0.4 0.6
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FIG. 8. Left: Loschmidt echo time scale 7, when the echo reaches its first minimum and the echo at the time. The initial states chosen
in Sec. VI A are evolved either via the full and truncated Hamiltonian. These initial states differ only by the flavor content of each
momentum mode, but the populated momentum modes and total number of electron (and muon) neutrinos are fixed. Due to this choice,
combined with the artifact of the momentum grid, some simulations yield the same Loschmidt echo. Right: the difference between 7,
and ratio of the Loschmidt echo at 7, are shown for each initial state.
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time (£71)

FIG. 9. Left: N (normalized to 1) for each momentum mode p; over time. The initial state is a basis state in 73 (with N = 10) and is
time evolved under the full (F) or truncated (T) Hamiltonian. Right: N l* (normalized to 1) for each momentum mode p; over time from

the same simulation as the left panel.

scattering can cause flavor equilibration by exchanging
flavors among neutrinos [30], nonforward scattering proc-
esses are expected to speedup the equilibration process by
activating the modes which are inaccessible via forward
scattering and letting flavor mixing happen within those
modes. To visualize this effect, we inspect N;, which is the
difference between the occupation number of flavors e and
u for the momentum mode z;. As an example, in the left
panel of Fig. 9 we show N; over time for all modes z; from
the time evolution of a basis state in H3 (N = 10). When
using the truncated Hamiltonian, only the ten initially
populated bins evolve (shown in red), starting at either
NN;7 =1 (electron neutrino) or NN;y = —1 (muon neu-
trino). On the other hand, when using the full Hamiltonian,
ten additional momentum modes are activated via non-
forward scattering processes through the time evolution.
We see this effect in Fig. 9 already at early time 7 ~ 0.2/&.
A closer look at the evolution of N; at very early time
indicates an acceleration of flavor evolution via nonforward
scatterings. We will quantify this acceleration in more detail
in the next section by looking at the one-body entropy.

After N; decrease to nearly zero for both full and
truncated evolutions around # ~ 0.5/&, N;s show narrower
fluctuations with the full Hamiltonian than with the
truncated Hamiltonian. In the full evolution, N; (normal-
ized to 1) converges to the equilibrium values (right panel
of Fig. 6) quickly and fluctuate around the equilibrium by
<0.02. This is shown in the upper panel in Fig. 10—the
black lines are the difference of N; from the micro-
canonical value, N; — N7y ¢, for all 20 momentum modes
and the red line (oy-) shows the standard deviation of the
difference across the 20 modes. Clearly N;’s converge to
the equilibrium values at around ¢ = 0.5/€ and the fluc-
tuate around equilibrium. This is the first evidence we
show regarding the equilibration of flavor degrees of
freedom in our models. We will further confirm this finding
in the next section.

Kinetic randomization of many-body neutrino systems is
what we observe only in the presence of the nonforward
self-interactions. On the right panel of Fig. 9, we show
NN for all momentum modes for a 10-neutrino simulation
in the Hilbert space H;—the same initial state as the one
shown on the left panel for N~ is used. Our results indicate
that momentum mode occupation numbers start fluctuating
around asymptotic values for times 7 ~ (2-5) /&, depending
on the momentum mode. The convergence of Nt to
equilibrium is shown in the lower panel of in Fig. 10—
the black lines are the difference of N; from the micro-
canonical value for all 20 momentum modes and the red
line (oy+) shows the standard deviation of the difference
across the 20 modes. The deviation of N from equilibrium

1.0
N7 =Niu.c.
0.51\\

0.0 iasss
—0.5“,‘3

-1.09

0.5

0.0 1§t

-0.5 1V

time (&71)

FIG. 10. Top: deviation of N; from the equilibrium values
[computed with Eq. (74)] for all momentum modes, along with
the standard deviation (cy-). Bottom: deviation of N; from the
equilibrium values for all momentum modes, along with the
standard deviation (o+). The initial state is the same as the one
shown in Fig. 9.
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does not appear to drop as quickly as the deviation of N}
from equilibrium. This could be attributed to the fact that it
takes time for some momentum modes to be populated
from a certain initial state due to the smallness of the g
factors—an effect that we expect to disappear in larger
systems and for initial states with more isotropic momen-
tum distribution.

To summarize, the time evolution of N; and N7 in our
model with N = 10 neutrinos shown in Fig. 9 demonstrates
two things. First, nonforward scattering changes the flavor
evolution of the state by activating momentum modes that are
initially unoccupied. It appears that the activation of unoc-
cupied modes accelerate the flavor equilibration. Second,
even in such a small system of neutrinos, the initial state that
is far from equilibrium can kinetically thermalize. The time
scales for flavor and kinetic equilibration appear to be both
t~0(1)/&, and we cannot identify any dependence on the
total number of neutrinos N. Further studies will be needed to
explore whether a separation of the two time scales arise.
Kinetic theory suggests that the time scale for momentum
evolution should scale as #,. ~ (GZT3)~!, in accordance
with Fermi’s golden rule, while the time scale for coherent
refractive effects should scale as f.y, ~ (GT3)~!. These
estimates rely on the assumption (built into kinetic theory) of
interactions localized in space and time, which on the many-
body side would require working with wave packets, which
can be built out of our plane waves basis. If one works with
plane waves in a box, as shown in Ref. [13], then the coherent
and incoherent time scales become f.y, ~ 1/(EN) and
tine ~ 1/(EV/N), respectively. Therefore, we expect that to
disentangle the two will require studying larger systems,
with N ~ O(100).

E. Entanglement entropy

Finally, we quantitatively assess the time scales of the
flavor evolution and kinetic thermalization via the one-body
entropies S(p(1)), S(p')) and S(p("-K)), which are introduced
in Egs. (49) and (51), respectively. The one-body entropy
S(p")) quantifies the entanglement of one neutrino with the
rest of the system, and it can be divided to two parts: the
kinetic entanglement S(p('X)) and flavor entanglement
(SMAF = §(p(1)) — S(p(LK)). In Fig. 11, we show these
one-body entropies of a 10-neutrino state over time. The
initial state is the same N = 10 basis state as the one used in
Fig. 9. The black lines show the entropies from the full
simulation, while the red lines show those from the truncated
evolution. For each Hamiltonian, S(p!)),S(p(*X)), and
S(MAF are shown in solid line, dashed line, and dash-dotted
line, respectively. At initialization, the flavor component of
the entropy, S(1)47, is zero since each neutrino has definite
flavor e or u. On the other hand, since ten momentum modes
are occupied, the Kinetic component, S (p(l’K)), starts at a
nonzero value. Under the time evolution with the full
Hamiltonian, both the kinetic and flavor component of the

3.5
30 ) —
2.5
2.0 —— Max S(pV)
F— (F),S(p“))
1> ---- (F), S(p¥)
1.0 —— (F), S.4F
- — (1), S(pM)
0-5 ~ -==- (T}, S(p'V-K)
0.0 ,'/ s (T)’S(l),AF
0.00 0.25 0.50 0.75 1.00 1.25 150 1.75 2.00
time (£71)

FIG. 11. Time evolution of the one-body entropy S(p")), its
kinetic component S(p(")X), and flavor component S()AF =
S(pV) — S(p")-K) for a 10-neutrino basis state. The black lines
show the entropies from the time evolution with the full
Hamiltonian, while the red lines show the entropies from the
time evolution generated by the truncated Hamiltonian. The
maximal entropy computed from the microcanonical ensemble is
shown by the blue line.

entropy grow and their sum asymptotes to the maximal value
are predicted via the microcanonical ensemble (shown in the
blue line). Under the truncated evolution, while the flavor
component of the entropy grows over time, the kinetic
component stays constant due to the lack of nonforward
scattering processes. In this example, the flavor component
of the entropy grows at a very similar rate with the full or
truncated evolution. We will take a closer look at the
difference between flavor evolution under the two
Hamiltonians later in the section.

To quantify the time scale associated to the growth of
entropy for N = 6, 8, 10, we define #g to be the time when
the one-body entropy S(p(!)) reaches its first maximum. We
show fg and the value of entropy at f¢¢ divided by the
maximal value via microcanonical ensemble in Fig. 12 for
N =6, 8, 10 neutrinos evolved from the 15 initial states
introduced in Sec. VI A. Most notably, for the full simu-
lation shown in circles, most initial states reach over 95% of
the maximal entropy around fg~ 0.5/&. Interestingly,
among the systems we study, we do not see much differ-
ence in zg as the number of neutrino is varied. Note that the
initial states will not be able to reach the maximal entropy
under the truncated time evolution, as shown by the
triangles in Fig. 12. This is because the kinetic component
of the entropy cannot be maximized due to the lack of
nonforward scattering processes.

To gain insight on the flavor and kinetic equilibration
time scales, we look into the kinetic and flavor component
of the entropy separately. Regarding the flavor evolution,
the flavor component of the one-body entropy is a weighted
(by N /N) sum of the one-mode entropy S(p'")) as is
shown in Eq. (49). Therefore, to remove the information on
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FIG. 12. Time at which the one-body entropy S(p(!)) reaches its
first maximum, 7y, and the entropy at ¢y is shown for 15 initial
states with N = 6 (black), N = 8 (blue), or N = 10 (red). Circles
show the results obtained with the full Hamiltonian, while the
triangles show those obtained with the truncated Hamiltonian.

the kinetic randomization, we will first study the one-mode
entropy directly. Following that, we will study the time
scale of kinetic randomization from the kinetic component
S(p!1-K)) of the one-body entropy.

The entropy of the one-mode (normalized) density
matrix 5\ quantifies the entanglement of neutrinos due
to their flavor degrees of freedom. As was hinted via the
2-neutrino toy model in Fig. 2, flavor evolution can be
accelerated by nonforward scattering processes since they
open up momentum modes that are initially unoccupied,
and flavor evolution can take place within those new sectors
of the Hilbert space. To illustrate this observation, in
Fig. 13, we show the one-mode entropy S(5")) over time

0.7

0.6

0.5

0.4

0.3
0.2

0.1 { ) — (A, S(pM
— (M), S(p")

0.0
0.0 01 0.2 03 0.4 0.5
time (&71)

FIG. 13. The entropy per momentum bin, S(p'), is shown for 5
(21, 7¢, 29, Z11, Z13) out of 10 momentum modes that are initially
occupied in a 10-neutrino basis state. Black lines show the
entropy computed via the full Hamiltonian, while the red lines
show those from the truncated Hamiltonian. The line patterns
characterize a given momentum bin, regardless of the Hamil-
tonian used for the time evolution.

for 5 (zy, zg, 29, 211, Z13) out of 10 momentum modes that
are occupied in the 10-neutrino initial state. The entropy of
the wave function evolved under the full and truncated
Hamiltonians are shown in black and red lines, respectively.
The same line type is used for the entropy of the same
momentum mode from the full and truncated time evolu-
tion. The figure shows that the entropy grows slightly faster
under the full time evolution than via the truncated one
(except those in short dashed lines which behave nearly the
same for full and truncated evolution).

To quantify the time scale of flavor evolution, we
introduce 3 to be the time when the one-mode entropy
reaches 90% of the maximal value, i.e., 0.9 x log 2, for the

first time. In Fig. 14, we show the time scales tgF/ D (full or
truncated evolution) on the horizontal and vertical axis,
respectively, for initial momentum modes in all 15 simu-
lations. Since we focus on the momentum modes in
Eq. (73) that are occupied at + = 0 and do not count in
those that are populated later by the nonforward scattering
processes, the total number of data points should be 90 for
N =6, 120 for N = 80, and 150 for N = 10 for both full
and truncated setups. However, we discarded those
ts > 0.6/&, thus 17 (N =6), 20 (N =8), or 9 (N = 10)
data points from the truncated simulations are excluded
from the plots. The distribution of points around the line of

AP _ T

5 g~ in black demonstrates the speedup of flavor
evolution via nonforward scattering processes even in these
small systems. To show this result even more explicitly, in

Fig. 15 we plot the normalized histogram of the ratio
t%n / t(SF) for the range [0, 3.25]. The bin with range [0.95,
1.05) is marked with the black vertical line. By comparing
the bins on the left and right side of the vertical line, one can
clearly see that the nonforward processes affect the time
scale of flavor evolution for individual momentum modes
and induce a bias towards faster equilibration.

While we observed acceleration of flavor evolution via
the full Hamiltonian in our small models, it is difficult to
conclude much about the dependence of the time scales on
N and k. We will leave a study of flavor evolution time
scale with larger number of neutrinos and/or larger number
of momentum modes to future work, where we expect to
see further speeding-up in the equilibration in the flavor
degrees of freedom.

We close the section by demonstrating kinetic thermal-
ization in our neutrino systems evolved with the full
Hamiltonian. The kinetic properties of many-body neutrino
systems are captured by the occupation numbers N, and
their expected values in equilibrium can be computed from
the microcanonical ensemble in Eq. (74). Equivalently, the
kinetic one-body entropy S('-X) should increase over time
and asymptote to the maximal value predicted from the
microcanonical ensemble as the system equilibrates. In
Fig. 16, we show the ratio of S(LK) to its maximal value in
microcanonical ensemble over time for the 15 initial states
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FIG. 14. The time scale #5 from the full and truncated evolution are on the horizontal and vertical axis, respectively. Results from all 15

simulations and for all momentum modes in Eq. (73) are shown together. The solid lines show the line of téF) = t(ST).
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FIG. 15. The histogram of the ratio t(ST) / t(SF) (truncated/full) in the range < 3.25. Results from all 15 simulations and for all momentum
modes in Eq. (73) are counted in together. The histogram is normalized by the total number of counts, that is 90, 120, 150 for N = 6, 8,

10, respectively.

in black, blue, and red lines for N =6, 8, 10 cases,
respectively. The ratios for N = 8, 10 are shifted by 0.1
and 0.2, respectively. The values of SU'X) in equilibrium are
2.567 for N = 6, 2.837 for N = 8, and 2.909 for N = 10.
The systems with six neutrinos have trouble completely
thermalizing in our model. On the other hand, we see a nice
convergence of the entropy to the maximal value for 8- and
10-neutrino states.

In this section, we analyzed the one-body entropy and
the time scales #g and 5 that are defined according to the
growth of entropy over time. Under the full time evolution,
the one-body entropy S(p(!)) reaches the first maximum for
6, 8, and 10-neutrino systems around z ~ 0.5/&, and we do
not see an obvious trend as we vary the number of
neutrinos. According to the definition of S(p(!)), the

maximal entropy cannot be achieved using the truncated
Hamiltonian due to the lack of nonforward scattering
processes. Flavor evolution is where we can directly
compare the full and truncated Hamiltonian. First, we
show that flavor equilibration demonstrated in Ref. [30]
in the forward limit occurs with the full Hamiltonian as
well. Furthermore, we show evidence within our models
that the full Hamiltonian changes the flavor evolution in the
direction of accelerating the equilibration. Thermalization
of the momentum distribution is demonstrated in our
model, and the time scale for kinetic thermalization appears
to be slightly longer than the flavor equilibration time scale.
We do not have evidence that these time scales are
independent of the models we chose. In particular, the
separation of two time scales can vary with the number of
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FIG. 16. The ratio of the kinetic component of the one-body
entropy, S!-X). to its maximal value in equilibrium is shown over
time for 15 initial states. The lines N = 8 (blue) and N = 10 (red)
are shifted by 0.1 or 0.2 for better visualization. The dotted lines
show the maximal entropy predicted from the microcanonical
ensemble.

neutrinos or available momentum modes. We leave the
study of these time scales with larger number of neutrinos
and/or momentum modes to future work.

VII. CONCLUSIONS AND OUTLOOK

In this paper we studied neutrino flavor evolution in the
quantum many-body approach using the full neutrino-
neutrino Hamiltonian, going beyond the commonly adopted
truncated version that allows only for the couplings of
neutrino pairs satisfying the forward kinematics condition.

We have set up a framework to implement the time
evolution of the system using the occupation number
representation for the many-body system. In this setup, we
have explored the evolution of simple initial states, i.e.
product states of neutrinos with different flavor and
momenta. For simplicity, we have restricted the analysis
to two flavors. We have studied a toy model with N = 2
neutrinos and models with momenta on a two-dimensional
grid with N = 6, 8, 10 neutrinos and up to kK = 20 momen-
tum modes. We have quantified the time scales for evolution
of flavor and momentum degrees of freedom and their
interplay. The main lessons from our explorations can be
summarized as follows:

(i) The hierarchy between the neutrino kinetic and
potential energy (T > GyT°) results in dynamical
pairwise kinetic energy conservation. This is the
statement that nonforward terms in H,,, that couple
incoming and outgoing pairs of neutrinos, signifi-
cantly affect the time evolution only when the
difference in kinetic energy of the two pairs is on
the order of or smaller than potential energy due to
the self-interactions. This observation leads to sim-
plifications in the algorithm for time evolution.

Moreover, it is worth mentioning that together with
three-momentum conservation, for each pair of
momenta p and q this dynamical kinetic energy
conservation still opens up an infinite set of mo-
mentum pairs p’ and ¢’ that contribute to the
evolution (see Appendix A). A by-product of this
analysis is that one can only see significant
differences between full and truncated evolution
in systems with spacetime dimension d > 2.

(i) On the qualitative side, we find that nonforward
processes affect the dynamics significantly. First,
even for the small systems with up to N =10
considered in this study, we find that nonforward
processes induce kinetic (momentum) randomiza-
tion on top of the flavor randomization already
induced by the truncated Hamiltonian [30]. We
observe “thermalization,” i.e. convergence towards
expectation values in a suitably defined microca-
nonical ensemble, in both flavor and momentum on
comparable time scales. We also observe that the
inclusion of nonforward processes generates a faster
flavor evolution compared to the one induced by the
truncated (forward) Hamiltonian.

(iii) On the quantitative side, we studied the impact on
the evolution time scales using a number of metrics,
such as the Loschmidt echo and the entanglement
entropy associated with the one-body density ma-
trix. The time scales in all observables are compa-
rable, with 7~ O(1)/€.

In the many-body approach studied in this paper, several
open questions remain before one can draw definite
conclusions about problems of astrophysical interest, such
as assessing the impact of neutrino flavor evolution on
nucleosynthesis [42] and on the neutrino signal from
galactic supernovae. We can identify several interesting
thrusts for future investigations: (i) A key step is the study
of systems with larger number of neutrinos (), which will
enable a number of interesting investigations. These
include studying the scaling of various observables and
time scales with N, exploring the possible emergence of
coherent enhancements, e.g. by considering initial states
with multiple neutrinos within a given solid angle, and
exploring the effect of spatially nonhomogeneous initial
conditions (neutrino wave packets). These studies, besides
their intrinsic interest, will also help clarifying the con-
nection between the many-body approach and kinetic
theory. (ii) Include neutrino-matter interactions in our
formalism. This requires the implementation of additional
four-fermion operators in the Hamiltonian, which are,
however, technically simpler than the one studied here
because they are linear or bilinear in the neutrino field.
(iii) Implementation on a quantum computer, which
requires finding efficient mappings of the full H,, onto
qubit Hamiltonians. (iv) Work towards a comparison with
the QKEs, using as common ground the one-body density
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matrix. To quantitatively explore the connection of many-
body and QKE approaches will require simulating systems
with larger number of neutrinos [see point (i) above and
discussion at the end of Sec. VID].
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APPENDIX A: KINEMATICS
OF 2 - 2 SCATTERING

Consider the reaction v,(p) +v4(q) = vy (p') +vp(q’).
We want to parametrize all the pairs of three-vectors p’, q’
such that p+q=p’ +q and |p|+|q] =|p'| +]|q/| in
terms of p, q, and two angles, denoted below by 0 and ¢.
This is achieved by (i) boosting to the center-of-mass
system (c.m.s.) of the initial momentum pair (p,q) —
(Pems.» Qems.); (i) parametrizing the outgoing momenta

Gr dq dq dp dp’

terms of the polar and azimuthal angles (6, ¢) of the unit

vector ¥ =p..,,. /|t |; and (iii) boosting back to the
original reference frame (p.. ., q.ns) = (P'.q').

Explicitly, in terms of the c.m.s. velocity f = (p +q)/
(

), ¥ =1/+/1— 2, the unit vector 9 = (sinfcos ¢,
SiHQSin¢’COSQ)a and |pam.s.| = |qc.m.s.| = 7/(|p| _ﬂ : p)?

one has
Ipcms|<v+ﬂ(y+ 7 ﬂ ))

. |qc_m.&|< v+ﬂ< ))

APPENDIX B: HAMILTONIAN INCLUDING
ANTINEUTRINOS

In Sec. II we explicitly wrote only the neutrino-neutrino
part of H,, ignoring antineutrinos. Here we will write
down all terms in the many-body Hamiltonian, taking into
account both neutrinos and antineutrinos. Treating neutrino
masses as a perturbation, we only include positive helicity
antineutrino modes and use the notation b, (p, +) — b,(p),
with a = e, u.

The kinetic part of the Hamiltonian for the antineutrinos
can be obtained by just replacing the a,,, by b,/ in
Eq. (14). When considering the interaction terms, the v — U
and v — v terms in H,, are proportional to the same angular
function g(p’, p,q’, q) that controls the v — v interactions.
Keeping only the terms that conserve total particle number
(i.e. discarding terms that mediate v <> viv), we find

5(1’(15/}//1 + 5(1/ p 5/}’ a

HW:%MW (277 (2n) (2n) (2n )3g(p .p.q9.q)

2

X (al/ (p")aa(p)a)y (q)as(q)(27)*5(p +q —p' —q') + 24}, (p)aq(p)by (d')bj(a) (27)*8(p —q —p' + ')

+ 2Dy (p)bi(P)aly (q)ag(a)(27)°8(p — a — P’ + @) + by (p")i(P) by (') b(q) (27)*5(p +q - p' - q’)) . (BI)
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