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The accuracy of Vud determinations from superallowed β decays critically hinges on control over

radiative corrections. Recently, substantial progress has been made on the single-nucleon, universal

corrections, while nucleus-dependent effects, typically parametrized by a quantity δNS, are much less well

constrained. Here, we lay out a program to evaluate this correction from effective field theory (EFT),

highlighting the dominant terms as predicted by the EFT power counting. Moreover, we compare the

results to a dispersive representation of δNS and show that the expected momentum scaling applies even in

the case of low-lying intermediate states. Our EFT framework paves the way toward ab initio calculations

of δNS and thereby addresses the dominant uncertainty in Vud.
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Introduction—A precise and robust determination of

Vud, the first element of the Cabibbo–Kobayashi–

Maskawa (CKM) matrix [1,2], is a critical input for the

unitarity test of the first row of the CKM matrix

jVudj2 þ jVusj2 þ jVubj2 ¼ 1: ð1Þ

At the moment, Eq. (1) displays a tension at the level of

2.8σ [3]. While a separate tension among Vus determina-

tions from kaon decays could potentially be resolved

by future measurements at NA62 [3], Vud has also come

under increased scrutiny in recent years, mainly in view of

the increased tension that followed from a reevaluation of

universal radiative corrections (RC) associated with γW
box diagrams [4–10]. Such a violation of CKM unitarity

could point to a wide range of possible beyond-the-

standard-model scenarios [11,12], including vectorlike

quarks [13–16] and leptons [17,18], or could be interpreted

as a modification of the Fermi constant [19,20], the

violation of lepton flavor universality [21–26], or, more

generally, in the context of standard-model EFT [27–30]. It

is thus paramount to consolidate the evaluation of Vud and

potentially even improve its precision.

The current best determination arises from superallowed

0þ → 0þ transitions [31], for which the average over a

large number of different isotopes ultimately yields the gain

in precision compared to other probes. In those cases, the

resulting precision of Vud is limited by experimental

uncertainties: for neutron decay, recent years have wit-

nessed impressive progress for the lifetime τn [32] and

the decay parameter λ [33], but at least another factor of 2 in

the latter is required for a competitive determination,

especially in view of the tension with Ref. [34]. An extrac-

tion from pion β decay would be theoretically even more

pristine [35–37] yet experimentally challenging [38], form-

ing a key physics goal of the PIONEER experiment [39].

In contrast, the challenges in the interpretation of super-

allowed β decays are of theoretical nature. In the formula

for the decay half-life t [31,40]

1

t
¼G2

FjVudj2m5
e

π3 log2
ð1þΔ

V
RÞð1þ δ0RÞð1þ δNS− δCÞ×f; ð2Þ

f is a phase-space factor that includes the Fermi function,

due to the Coulomb interaction of the outgoing electron in

the nuclear field, the nuclear electroweak (EW) form factor,

nuclear recoil, atomic electron screening, and atomic

overlap [31,40]. The other terms denote purely theoretical

input due to isospin-breaking and non-Coulomb RC. δC

denotes the deviation of the Fermi matrix element MF ¼
hfjτþjii ¼ M

ð0Þ
F ð1 − δC=2Þ from its isospin-limit value
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M
ð0Þ
F ¼

ffiffiffi

2
p

. The so-called outer correction δ0R encodes all

infrared-sensitive RC not included in the Fermi function. At

OðαÞ, these include the Sirlin function [41]. The precise

extraction of Vud requires control of corrections of Oðα2ZÞ
and higher [42–44]. The remaining RC are collectively

denoted as the inner correction and are usually split into the

single-nucleon correction Δ
V
R and the nuclear-structure-

dependent term δNS. The latter arises from the phase-space

average of a correction that in general depends on the

positron energy Ee, as pointed out recently in Refs. [45,46].

Currently, the largest uncertainties reside in δC and δNS.

First, control over δC has long been a concern [47,48], and

Refs. [49–54] provide recent studies and strategies for

improvements. Second, while the single-nucleon, universal

RC from γW box diagrams have reached a good level of

maturity, including a comprehensive analysis in EFT [55]

and a first lattice-QCD evaluation [56], the same cannot

be said for the nucleus-dependent effects of the same

diagrams. The nuclear correction called δNS dominates the

resulting uncertainty in Vud [45]. The formalism for an

evaluation using dispersion relations has been put forward

in Refs. [40,46], including subtleties that arise in the case of

low-lying intermediate states, such as the 3þ and 1þ levels

of 10B in the 10C → 10B 0þ → 0þ transition [57].

In this Letter, we lay out a program to evaluate δNS in an

EFT framework. We first set up the EFT power counting,

identify the leading contributions, and discuss the impact of

low-lying nuclear states in the EFT and the dispersive repre-

sentation of Refs. [40,46]. We then discuss in detail the

leading nuclear-structure-dependent contribution δNS. In par-

ticular, we analyze which contact terms are required as well as

possible strategies for their determination, as has proved

critical in the case of neutrinoless double-β decay [58–64].

Effective field theory—The RC to nuclear β decay

involve several widely separated energy scales. These

range from the EW scale (MW) to the very low-energy

scale qext of order of the reaction QEC value and the

electron mass me. The matrix element of the product of

EW and electromagnetic (EM) currents in nuclear states

brings in two additional scales: the hadronic scale set

by the nucleon mass mN (comparable to the breakdown

scale of chiral perturbation theory, Λχ) and the typical

nuclear scales, γ ≃ R−1 ≃Mπ ≃Oð100 MeVÞ, with bind-

ing momentum γ, nuclear radius R, and pion mass Mπ .

In the spirit of EFT we exploit the hierarchy

qext ≪ Mπ ≪ Λχ ≪ MW ð3Þ

to systematically expand the β decay amplitude in the ratios

of scales probed by the virtual photon. Besides the ratio

GFq
2
ext that sets the overall scale, these are

ϵrecoil¼O

�

qext
Λχ

�

; ϵ=π ¼O

�

qext
Mπ

�

; ϵχ ¼O

�

Mπ

Λχ

�

; ð4Þ

scaling roughly as ≃0.005, ≃0.05, and ≃0.1, respectively.

Our goal is to catalog all corrections to superallowed β

decays at the permille level. This requires keeping OðαϵχÞ
and Oðαϵ=πÞ corrections, which are the focus of this Letter.

Terms that are subleading in α but enhanced by the nuclear

charge Z or large logarithms, e.g., OðZα2Þ or Oðα2 log rÞ,
with r a ratio of the scales in Eq. (3), are also relevant and

discussed in detail in Ref. [65], as is the potential role of

Oðαϵ2χÞ corrections, which are not yet included at present.

The presence of multiple scales requires the use of a

tower of EFTs, as done in the single nucleon sector [55,66].

Between the EW scale and the hadronic scale, the relevant

EFT is given by the Fermi theory obtained by integrating

out the heavy standard-model particles. The resulting

semileptonic operators are evolved using the renormaliza-

tion group (RG) to the hadronic scale, where they are

matched onto an EFT written in terms of nucleons, pions,

light leptons, and photons [66], according to the sym-

metries of low-energy EW interactions, QED, and QCD.

In terms of the heavy-baryon nucleon NT ¼ ðp; nÞ
isodoublet, the nucleon four-velocity v¿ and spin S¿, and

isospin Pauli matrices τa [67,68], the leading-order (LO)

EW one-body (1b) Lagrangian is

L1b
W ¼−

ffiffiffi

2
p

GFVudēLγ¿ÀLN̄ðgVv¿−2gAS
¿ÞτþNþ��� ; ð5Þ

where the ellipsis denotes omitted terms involving pion

fields or of higher order in ϵχ . The effects of hard photons

with virtuality Q2 ≥ Λ
2
χ are captured in the deviation of the

vector coupling gV from one (and gA from gQCDA [66]); see

Ref. [65] for explicit expressions. Hard photons also

generate EW two-body (2b) contact operators. We can

write two S-wave operators relevant for superallowed β

decays that connect 1S0 to
1S0 states, with isospin I ¼ 1 and

I ¼ 2, given by

L2b
W ¼ −

ffiffiffi

2
p

e2GFVudēL=vÀL
�

gNN
V1 N

†τþNN†N

þ gNN
V2 N

†τþNN†τ3N
�

þ � � � : ð6Þ

Weinberg power counting based on naive dimensional

analysis would indicate that gNN
V1;V2 ¼ OðΛ−3

χ Þ, but the

requirement that the final nuclear amplitude be independent

of the regulator promotes the low-energy constants (LECs)

to OðΛ−1
χ F−2

π Þ, where Fπ ¼ 92.3 MeV is the pion decay

constant. The values of gNN
V1;V2 are not known, but we will

discuss strategies to obtain them below.

Within this chiral EFT with dynamical photons and

leptons we compute EW transition amplitudes involving

multiple nucleons; see Fig. 1 for some of the topologies

relevant for nuclear decays. In the presence of more than

one nucleon, the photon four-momentum can be in three

regions; see, e.g., Refs. [69,70]: (1) soft: q0γ ≃ jqγj ≃Mπ ,

(2) ultrasoft: q0γ ≃ jqγj ≃ qext, (3) potential: q0γ ≃

qγ
2=mN ≃ qext, jqγj ≃Mπ .
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In the nuclear EFT, potential and soft modes are

integrated out and give rise to an EW transition operator,

analogous to the pion-exchange potential in the strong

sector. In addition, hard photons also contribute to short-

range transition operators proportional to gNN
V1;V2 in Eq. (6);

see Fig. 1(e). Because the exchange of a hard, soft, or

potential photon leaves the intermediate nuclear state far off

shell, these contributions can be calculated by taking the

matrix element of the transition operator between the wave

functions of the initial and final state. On the other hand,

ultrasoft photons are sensitive to nuclear excitations and to

the spectrum of intermediate states that are connected to the

initial and final state by EW and EM currents.

We now discuss the contributions from each region.

Ultrasoft modes—Ultrasoft modes contribute at OðαÞ
through the LO photon-nucleon coupling. Through topol-

ogies such as those shown in Fig. 1(b) and 1(c) (and real

emission topologies that we have omitted), ultrasoft modes

give rise to the Sirlin function [41] and reproduce the OðαÞ
expansion of the Fermi [71] function, with the correct

nuclear charge Z; see Ref. [65] for details. Using known

results, terms to all orders in αZ, including logarithmi-

cally enhanced terms that start atOðα2Z2 log ε=πÞ, as well as
terms at Oðα2Z log ε=πÞ and Oðα2 log ε=πÞ, can be captured;

see Refs. [42–44,72–74] and, in an EFT formalism,

Refs. [55,75–78]. Subleading interactions, such as the

interactions of the photon with the nucleon magnetic

moment, are proportional to the ultrasoft momentum and

appear at OðαϵrecoilÞ beyond the order at which we work.

Potential modes—Through the topology shown in

Fig. 1(c), potential modes give rise to Oðαϵ=πÞ and OðαϵχÞ
corrections to δNS. The former depend on the electron energy

(Ee) and are induced by diagrams with the EW vector current

and the EM charge density. The latter are Ee independent and

are induced by the axial current and the nucleon magnetic

moments or recoil corrections to the vector current. Three-

body (3b) potentials contribute atOðαϵ2χÞ and are not shown.
Soft modes—Beyond tree level, the potentials receive

corrections from one-loop diagrams involving soft pions

and photons. By power counting, these first contribute to

δNS at Oðαϵ2χÞ and Oðα2Þ.

Hard modes—Hard modes give OðαÞ corrections to gV
[55] and generate the OðαϵχÞ two-nucleon counterterms

(gNN
V1;V2) needed for renormalization. In addition, they

produce Oðαϵ=π; αϵχÞ effects in δNS through the electro-

magnetic pion mass splitting in pion-mediated 2b currents;

see Fig. 1(d). The pion-mass splitting corrections are

the nuclear analogs of the pion-induced RC in neutron

decay [66].

The implication of this analysis is that in chiral EFT the

dominant contribution to δNS comes from the matrix

element of appropriate EW potentials between the initial

and final nuclear states. Some contributions (from pion

exchange) do not arise from nuclear γW box diagrams.

Sensitivity of δNS to intermediate nuclear states, including

low-lying levels, arises from ultrasoft contributions that

start to OðαϵrecoilÞ. This result is seemingly at odds with a

recent dispersive analysis [40,46] in which some individual

contributions scale as Oðα ffiffiffiffiffiffiffiffiffiffi

ϵrecoil
p Þ and thus enhanced

compared to the identified EFT scalings. We, therefore,

turn next to a detailed comparison to the dispersive

representation.

Dispersive representation—In the current-algebra frame-

work [73] for EW RC, δNS arises from the γW box diagram,

in which a virtual photon is exchanged between the electron

and the hadronic system. The relevant dynamical quantity

is the Compton tensor

T¿Àðq;p0; pÞ ¼ 1

2

Z

d4xeiq·xhfðp0ÞjTfJ¿emðxÞJÀð0ÞgjiðpÞi;

ð7Þ

involving the matrix element of an EW and an EM current

between the initial and final states with momentum p and

p0, respectively. The Ee-independent part of δNS is induced

by the axial-vector component T
¿À
A [46]. Ignoring recoil

corrections, the relevant amplitude is expressed as the

forward limit

T
¿À
A ðp; qÞ ¼ iϵ¿Àαβpαqβ

2MÀ
T3ðÀ; Q2Þ; ð8Þ

(a) (b) (c) (d) (e)

FIG. 1. Representative diagrams for RC to superallowed β decays up toOðαϵχÞ andOðαϵ
π
Þ. Leptons, nucleons, photons, and pions are

denoted by plain, double, wavy, and dashed lines, respectively. A blue circle denotes the insertion of the EW current, including OðαÞ
corrections from hard photon exchange. Black circles denote 1b EW and EM currents. The red and green ovals denote the wave

functions of the initial and final nuclei; the blue oval represents the iteration of the nuclear interaction. See main text for the discussion of

diagrams (a)–(e).
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where À ¼ p · q=M ¼ q0, Q2 ¼ −q2 ¼ −À2 þ q
2, and

Mi ¼ Mf ≡M has been assumed. Setting me ¼ 0, the

correction relative to M
ð0Þ
F becomes [46]

□γW ¼ −
e2

M
ð0Þ
F

Z

d4q

ð2πÞ4
M2

W

Q2 þM2
W

×
T3ðÀ; Q2Þ

ðpe − qÞ2Q2

Q2 þMÀ
pe·q
p·pe

MÀ
; ð9Þ

where pe is the momentum of the positron. The nucleus-

dependent correction is finally determined by subtracting

the single-nucleon contribution, i.e., [46]

δNS ¼ 2
�

□
nucl
γW −□

n
γW

�

: ð10Þ

One way to perform the loop integral in Eq. (9) relies on

a Wick rotation À → iÀE, which is advantageous when the

Compton tensor is expressed via a dispersion relation.

However, as pointed out in Ref. [40], such a Wick rotation

is not always possible. In the case of low-lying nuclear

states, as does happen in the 10C → 10B decay, the addi-

tional pole can move into the third quadrant and thus must

be subtracted explicitly. It was found that the resulting

residue contribution becomes singular for Ee → 0, which

could lead to a numerical enhancement. Such an enhance-

ment should be reflected by the momentum scaling and a

different region in the EFT analysis.

To clarify the role of such low-lying states, we consider a

simple example that displays all the relevant features:

iT
toy
3 ðÀ; Q2Þ
MÀ

¼ M

mN

gAgM

s − M̄2 þ iϵ
; ð11Þ

where s ¼ M2 þ À2 − q
2 þ 2MÀ and M2 − M̄2 ¼ 2MΔ.

Here, gA and gM parameterize the matrix elements for

the interaction with the EW and EM current, respectively.

We focus on a single intermediate state with mass M̄, with

Δ > 0 corresponding to a low-lying state. The prefactor has

been chosen to match the corresponding EFT expression

[65], counting the binding energy Δ ≃ qext as before.
We can evaluate the integral by collecting all three

residues in the upper half plane; see Ref. [65], which gives

□
toy;Δ
γW ¼ 3gAgM

4M
ð0Þ
F

α

π

Δ

mN

log
2Δ

M
þOðΔ2Þ; ð12Þ

where we have only displayed the corrections to the

M → ∞ limit. As expected from the ultrasoft region in

the EFT analysis, the result scales with OðαϵrecoilÞ.
In the dispersive approach, the presence of a low-lying

state impedes a straightforward Wick rotation, and its

residue needs to be subtracted whenever the pole lies in

the first or third quadrant. This gives rise to the residue

contribution

□
toy;res
γW ¼ gAgM

M
ð0Þ
F

ffiffiffiffiffiffiffi

M

mN

s

α

π

ffiffiffiffiffiffiffi

2Δ

mN

s

þOðΔ3=2Þ; ð13Þ

which is again finite for Ee → 0, but, contrary to Eq. (12),

scales as Oðα ffiffiffiffiffiffiffiffiffiffi

ϵrecoil
p Þ and could thus be enhanced numeri-

cally. The solution to this apparent mismatch is that the

Wick-rotated integral also involves terms scaling with
ffiffiffiffi

Δ
p

,

and one can show explicitly that [65]

□
toy
γW ¼ □

toy;Wick
γW −□

toy;res
γW : ð14Þ

This demonstrates that no contributions of Oðα ffiffiffiffiffiffiffiffiffiffi

ϵrecoil
p Þ

appear in the dispersive representation even in the case of

low-lying states, confirming the EFT scalings.

Leading contributions to δNS—In Ref. [65] we derive the

nuclear decay rate in the EFT framework, while here we

focus on the implications for δNS. Potential modes induce

an effective Hamiltonian of the form

Hβ ¼
ffiffiffi

2
p

GFVudēL½γ0ðV0þE0V
0
EÞþmeVme

þ…�ÀL; ð15Þ

where E0 is the end-point energy, and the ellipsis denotes

higher powers of lepton energy or me. The functions V0,

V0
E, and Vme

have a chiral expansion in ϵχ . The LO

contributions to Hβ arise from diagrams such as those in

Figs. 1(c)–1(e). We first consider Fig. 1(c). Because the LO

1b vector and axial currents are momentum independent,

the LO potential is odd in the photon three-momentum qγ

and vanishes between 0þ states. To get a nonvanishing

correction we need to retain the lepton momenta. Similarly,

the pion-exchange diagram [Fig. 1(d)] involving LO

vertices requires an insertion of an external lepton momen-

tum, leading to the only nonvanishing LO contributions

V0
E ¼ 1

3

�

1

2
þ 4Ee

E0

�

VE þVπ
E; Vme

¼ 1

2
VE þVπ

me
; ð16Þ

with the explicit expressions for VE, V
π
E, and Vπ

me
given in

Ref. [65]. The latter two depend on the pion mass splitting,

M2

π�
−M2

π0
¼ 2e2F2

πZπ , encoding effects of hard photons.

These potentials are energy dependent and affect both the

spectral shape and the total decay rate at Oðαϵ=πÞ.
Additional contributions arise from Figs. 1(c) and 1(d)

when using subleading vertices instead of inserting a lepton

momentum. One order down in the chiral expansion at

OðαϵχÞ we obtain potentials that are independent of the

lepton momenta and thus contribute to V0. These OðαϵχÞ
terms can be further decomposed as

V0 ¼ V
mag
0 þ Vrec

0 þ VCT
0 ; ð17Þ

corresponding to Figs. 1(c) and 1(d) via magnetic, recoil,

and contact-term contributions [65]. Beyond tree level, the
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potentials (16) and (17) receive corrections from soft pions

and photons at Oðαϵ2χÞ and Oðα2Þ, beyond the accuracy of

this work. At this order we also expect effects from 3b

potentials.

It is important to notice that V
mag
0 has a Coulombic, q−2,

scaling. Such a potential, when inserted into 1S0 chiral EFT
wave functions, gives rise to nuclear matrix elements that

depend logarithmically on the applied regulator [58,79].

This regulator dependence signals sensitivity to hard-

photon exchange between nucleons which, in chiral EFT,

are captured by the short-range operators in Eq. (6). The

corresponding LECs absorb the regulator dependence and

after renormalization are enhanced over naive dimensional

analysis as anticipated below Eq. (6). This is analogous

to the short-range operators identified for neutrinoless

double-β decay [58,59]. The short-range terms give an

OðαϵχÞ contribution

VCT
0 ¼ e2

�

gNN
V1 O1 þ gNN

V2 O2

�

; ð18Þ

where

O1 ¼
X

j≠k

τþðjÞ
1k; O2 ¼

X

j<k

h

τþðjÞτðkÞ3 þðj↔ kÞ
i

: ð19Þ

VCT
0 depends on two unknown LECs and corresponds to

genuine new 2b contributions arising from high-momen-

tum photon exchange. It is an intrinsic two-nucleon effect

that cannot be obtained from one-nucleon processes. Below

we compute the contributions of gNN
V1;V2 by using the scaling

discussed below Eq. (6) for the LECs and treating the result

as an overall uncertainty [65].

In the EFT approach, up to the order considered, δNS is

entirely determined by matrix elements of appropriate

potentials [see Eq. (15)] between the initial and final

states without dependence on intermediate nuclear states.

The EFT power counting indicates that δNS receives a

LO Ee-independent contribution of OðαϵχÞ, δð0ÞNS and an

Ee-dependent contribution of Oðαϵ=πÞ, δENS. In the case of

δ
ð0Þ
NS we also found an Oðα2Þ potential Vþ that needs to be

included for Oð10−4Þ precision [65].

The two currently unknown LECs gNN
V1;V2 can be deter-

mined in the future both from theory and experiment. First,

one can envision a matching calculation to the underlying

theory, performed in lattice QCD or within the Cottingham-

like approach [60,61]. Second, the LECs can be extracted

from experimental data, based on the observations that

(i) there areOð10Þ very precisely measured superallowed β

decays [31], connecting members of I ¼ 1 triplets with

initial mI ¼ −1 or mI ¼ 0; (ii) the LECs contribute to δNS

through the combinations gNN
V1 hfjjO1jjii ∓

ffiffiffiffiffiffiffiffi

3=5
p

gNN
V2 ×

hfjjO2jjii, depending on whether mI ¼ −1 or mI ¼ 0,

and hfjjO1;2jjii are reduced matrix elements that depend

on the decaying nucleus and can be computed with ab initio

nuclear methods. It is then possible to perform a global fit

to extract values of gNN
V1;V2 and Vud simultaneously from the

set of superallowed β decay measurements.

Based on the EFT framework described here, we have

derived a master formula for the decay rate and performed

first numerical calculations for δNS in the decay 14O → 14N

with quantum Monte Carlo methods, confirming the

expectations from the EFT power counting [65]. As an

illustration, we extract Vud from the 14O decay, finding

Vud½14O� ¼ 0.97364ð56Þ, with uncertainty dominated by

our ignorance of the LECs, ðδVudÞgNN
V

¼ 4.3 × 10−4.

Eliminating this uncertainty would result in δVud ¼
3.6 × 10−4. This is to be compared with Vud½14O� ¼
0.97405ð37Þ from Ref. [31], with uncertainty dominated

by δNS, ðδVudÞδNS ¼ 3.1 × 10−4 and with Vud ¼
0.97373ð31Þ obtained by a global analysis of the 0þ →
0þ decays [31]. These considerations show that there is a

clear path toward reaching δVud ≃ 3 × 10−4, once the LECs

are determined following the strategies outlined above. We

expect that a few decays of light nuclei, combined with

nuclear-structure calculations, should suffice to obtain a

competitive determination of Vud, including a robust

estimate of the nuclear-structure uncertainties.

Discussion and outlook—We have performed a first

study of RC to superallowed nuclear β decays in an EFT

framework that bridges the EW scale to nuclear scales. We

have identified the leading nuclear-structure-dependent

corrections δNS as arising from matrix elements of EW

transition operators of OðGFαϵ=π; GFαϵχÞ between initial

and final nuclear wave functions. Several terms, such as the

magnetic and recoil pieces of δNS, already appear in the

seminal work [80], while others are new. Most strikingly, we

identified novel pion-exchange and short-range corrections

that affect δNS at the same order as the usually considered

corrections. Furthermore, we have sketched a strategy using

global fits to superallowed β decays to empirically determine

the contact operators’ Wilson coefficients.

To map these EFT considerations onto a dispersive

approach for δNS [45,46], we first showed that the only

contributions that scale with qext arise in the potential region
and thus do not depend on the properties of individual states.

This remains true in the presence of low-lying levels.

Second, while the leading OðαϵχÞ effects are energy

independent, Oðαϵ=πÞ energy-dependent corrections are pre-
dicted by the EFT, related to δENS in the dispersive approach.

In conclusion, the EFT approach presented in this Letter

allows one to derive corrections in a systematic way and

thereby opens up new avenues to control the theoretical

uncertainties in superallowed nuclear β decays. This

enables first-principles nuclear many-body calculations

of structure-dependent corrections, whose uncertainty cur-

rently dominates the extraction of Vud, to further sharpen

precision tests of the standard model and potentially reveal

hints of physics beyond.
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