
Local-Transfer Gaussian Process (LTGP) Learning for Multi-fuel

Capable Engines

Sai Ranjeet Narayanan∗, Zongxuan Sun†, and Suo Yang‡

Department of Mechanical Engineering, University of Minnesota Twin Cities, Minneapolis, MN 55414, USA

John J. Miller§ and Simon Mak¶

Department of Statistical Science, Duke University, Durham, NC 27708, USA

Kenneth S. Kim‖ and Chol-Bum M. Kweon∗∗

U.S. Army Combat Capabilities Development Command Army Research Laboratory, Aberdeen Proving Ground, MD

21005, USA

Data-driven engine surrogate models have been widely used to emulate in-cylinder trends

of pressure and heat release rate for a wide variety of applications. For example, engines

using multi-fuels, e.g., varying fuel cetane number (CN) or different sustainable aviation fuel

(SAF) blends, require optimization of input parameters related to fuel injection and ignition

assistance to achieve maximum combustion efficiency. Such an optimization task requires

building an accurate surrogate model for the engine. Gaussian processes (GPs) are a popular

choice: they provide accurate predictions as well as efficient uncertainty quantification to

guide decision-making. One challenge, however, is the costly nature of engine combustion

experiments, which results in limited data for surrogate training with many input parameters,

i.e., with significant variability in engine parameters and conditions. To address this, we present

a new local transfer learning Gaussian process (LTGP) surrogate, which transfers knowledge

from CFD simulations to learn the expensive combustion response surface, on which limited

data is available. A key novelty of the LTGP is the use of a carefully-integrated classifier that

regulates when learning should be transferred using ignition misfire data from CFD simulations.

Compared to the standard GP surrogate, we show that the proposed model achieves superior

prediction performance for engine combustion modeling.

I. Nomenclature

�'! = Army Research Laboratory

�)�� = After Top Dead Center

��� = Crank Angle Degrees

��50 = Crank Angle at 50% Total heat release

�# = Cetane Number

���� = Energy-Assisted Compression Ignition

� �% = Ignition Assistant Power

"�) = Main Injection Timing

(�� = Sustainable Aviation Fuel
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II. Introduction

A
chieving multi-fuel capability for internal combustion (IC) engines is an emerging need, arising from demands

for greater operational versatility and extended range for aviation applications in the industrial/commercial and

military sectors. One type of IC engines, compression ignition (CI) engines, must be able to run consistently on jet

fuels, even with fuel property variation present for conventional jet fuels. Understanding CI engine ignition behavior

with fuel property variation and appropriate engine control becomes even more important when sustainable aviation

fuels (SAF) is integrated with conventional jet-A type fuels in the commercial fuel supply for operational flexibility

[1]. SAFs, such as isobutanol-derived alcohol-to-jet (ATJ), have an extremely low fuel cetane number (CN) of around

17 [2], which indicates low ignition quality. Upon blending with high CN jet-A type fuels, such as F-24 with CN

50, these fuel mixtures can exhibit a broad variation in CN from 30 to 50 [3], which poses challenges for ignition.

Ignition assistants, such as glow plugs, have been tested to effectively enhance ignition in CI engines (such engines are

known as energy-assisted CI or EACI engines) across a broad range of fuel CN [4–7]. In addition to changing CN and

fuel properties, EACI engines must also adapt to changing ambient conditions of low temperature & pressure. This

necessitates the development of robust control system models for optimizing engine performance [8–10].

Typical control system frameworks for such engines are developed based on data-driven models, such as Gaussian

process (GP) regression [10, 11]. These data-driven models are usually trained using experimental data. However,

there are many challenges that inhibit experimental data generation, including engine malfunctions, manufacturing

delays and logistical challenges. To overcome this difficulty, well-validated physics-based computational fluid dynamics

(CFD) models can be used to supplement data generation for control system training [12]. Despite their flexibility,

however, CFD simulations are computationally expensive and time consuming, which again limits the quantity of

generated data. Machine learning (ML) provides a promising solution for such data bottlenecks. ML has been utilized

effectively to build surrogate models of IC engines, spanning from neural networks (NN) [13–15] to GPs [16–21]. GPs,

in particular, have seen wide use in building IC engine surrogates. GP surrogates are appealing not only because of their

excellent predictive performance [16, 22–25], but also their ability to provide efficient uncertainty quantification for

timely downstream decision-making [26–28].

One critical challenge for surrogate training here, however, is the high cost of real engine combustion experiments.

This is further compounded by the moderate number of control parameters required for engine combustion, which

prohibits the generation of training data that sufficiently fills this parameter space. Given such limitations on training

data generation from both experiments and CFD, it is essential to have a surrogate model that effectively utilizes and

integrates both sources of limited data. To this end, a recent development in ML called transfer learning [29, 30]

provides a promising solution for this multi-source data assimilation (DA) problem. The idea is to transfer the knowledge

learned from a source system with sufficient training data, to improve performance on a target system with limited data.

For example, in our study, the target system is the combustion process of a real engine (experiments), whereas the

source system is the simulated combustion process via CFD. Although transfer learning has been successfully applied in

various ML contexts, including image classification [31] and natural language processing [32], there has been little

work investigating its use for surrogate modeling of internal combustion engines; we tackle this in the current work.

One important point of consideration when using transfer learning models is the potential for “negative transfer”,

where the transferred information can hurt (rather than help) the learning performance on the target system. Current

works have proposed various source selection methodology to select informative sources to transfer knowledge [33, 34].

Here, in transferring information from CFD simulations to real engine experiments, one way to mitigate negative transfer

is to identify when CFD ignition misfires arise over the parameter space. The proposed LTGP surrogate adopts such a

strategy: it first learns a classifier on when CFD misfires arise, then fits a transfer learning model only within local

regions on the parameter space where there are no misfires. In doing so, the LTGP avoids the undesirable negative

transfer of information from CFD misfires for surrogate modeling of real combustion experiments, where such misfires

do not arise.

The remaining of this paper proceeds as follows. Section III surveys the engine geometry and parameters used for

our study, as well as the corresponding physical models used in the validated CFD case setup. The LTGP methodology

is then highlighted in detail, showing how the surrogate model blends together the different levels of training data

sources as well as using support vector machine (SVM) based classification of misfires (abnormal combustion points)

for accurate engine CA50 predictions. Section IV reports the LTGP and standard GP predictions of CA50 and validates

them with experimental “true” CA50 values. Section V concludes the paper by summarizing the research efforts and

findings in this work.
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III. Methodology

A. Numerical CFD model details

The system being modeled is based on an EACI engine from previous studies [4, 5, 35], as shown in Fig. 1, where

the piston bowl and engine head are displayed. The fuel injector with seven nozzles is shown in Fig. 2a. The EACI

engine contains a glow plug (i.e., an ignition assistant or IA) attached to the engine head, such that the tip of the glow

plug is located an in-line orientation with one of the fuel nozzle spray (Fig. 2b).

Fig. 1 CFD model geometry of the metal engine. The piston bowl (orange) and engine head (cyan) are shown,

along with the glow plug (dark blue).

(a) Side view (b) Bottom view

Fig. 2 Ignition Assistant (i.e., Glow Plug) and Fuel Injector.

The closed-cycle engine simulations were conducted on Converge CFD 3.0 software [36] with a starting crank angle
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of -130 CAD and ending crank angle of +130 CAD. Table 1 displays the physical model details and Table 2 displays the

operating conditions and relevant engine parameters for the cases used in this work. The four control variables in this

study are the Main Injection Timing (MIT, also known as Start-of-Injection, or SOI), the Ignition Assistance Power

(IAP), fuel Cetane Number (CN), and Engine Speed (RPM). The different ATJ/F-24 fuel blends for varying fuel CN are

represented in the simulations by a multi-component blend [37], which consists of n-decane, toluene and iso-octane as

the fuel surrogate species. The CN is varied by adjusting the mass fractions of these constituents.

Table 1 Engine model details [35].

PHYSICAL MODEL NAME

Combustion SAGE Chemical Kinetics Solver + Three point PDF method [38]

Chemical mechanism Multi-compoment (178 sp., 758 reactions) [37]

Turbulence model RANS (RNG : − n) [39]

Droplet Evaporation model Frossling model [40]

Spray Breakup model KH-RT model [41]

Collision model No-Time-Counter (NTC) collision model [42]

Table 2 Engine parameter details [35].

PARAMETER VALUES [UNITS]

Engine speed 1200 - 2400 [rpm]

Bore 83 [mm]

Stroke 90.4 [mm]

CR Length 144.8 [mm]

Nozzle holes 7

IA Temp/Power 350 - 1400 [K]/0 - 70 [Watt]

Inj. Duration 0.66 [ms]

Inj. Mass 12 [mg]

IVC Temperature 330 [K]

IVC Pressure 88.87 [kPa]

B. Local-Transfer Gaussian Process (LTGP) model details

In our study, we are interested in the important combustion quantity CA50, the crank angle at 50% total heat release.

The measurement of CA50 is expensive and time-consuming with the real engines. In comparison, a virtual CFD

simulator is more cost-efficient to explore the relationship between the CA50 and control variables. Since the results of

real experiments and virtual simulators are governed by the same physical laws, we can transfer information from the

simulated data to the learning of the experimental data (i.e., we can utilize the trends of the experimental/real-system data

to guide the control system). Sometimes, however, high quantitative deviation arises between them due to insufficient

validation of the simulations with experiments, especially when a misfire phenomenon arises in the CFD simulation

but not in a real engine (or vice versa). Such deviations could cause inaccurate or even incorrect predictions of the

trends (e.g., opposite trends), which is not desirable. Therefore, we propose a local transfer Gaussian process modeling

framework, which only leverages information from the CFD simulation to the real engine at specific regions of the

parameter space.

Let x ∈ R4 consists of the four control variables: RPM, CN, MIT, and IAP. The responses are CA50 (at a given

combination of input parameters) for both the virtual CFD simulation and the real experimental tests. For simplicity,

we denote the CFD-simulated response as a source output 5( (x), for which a large number of simulation data are

available. We then denote the real engine response as a target output 5) (x), for which the experimental data are limited

and transfer learning is desired. Suppose the responses for the simulation f( = [H(
8
]<
8=1

are available at parameters
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X( = [x(
8
]<
8=1

, and the responses of the real engine f) = [ 5 )
9
]=
9=1

are tested at parameters X) = [x)
9
]=
9=1

. Further let

Z( = {I(x) ∈ {0, 1}|x ∈ X(} be the indicator for the ignition misfire in the CFD simulations: I(x=4F) = 1 indicates

misfire; and I(x=4F) = 0 indicates full combustion.

The proposed transfer learning method consists of two procedures: (1) we first learn the distribution of ignition

misfire in the parameter space and predict the misfire indicator I(x=4F) for the CFD simulation; (2) we then transfer

information from the simulated response to the real response locally: transfer is permitted at inputs for which misfires do

not happen (I(x=4F) = 0), while transfer is forbidden where misfire happens (I(x=4F) = 1). Those steps are described

in detail below. In the first step, we need to learn the regions where the ignition misfire happens in the parameter space.

We make use of a support vector machine (SVM) classifier with a rational quadratic kernel :

:BE< (x, x
′) = exp

(
−
∥x − x′∥2

;BE<

)
,

where ;BE< controls the influence of each sample on the decision boundary. Such a model is trained on the misfire

indication data Z( from the CFD simulation. Denote the trained classifier as Î(G) ∈ {0, 1}, and let X̂( ¢ X( denote the

subset of CFD training inputs resulting in full combustion (i.e., I(x) = 0 for x ∈ X̂().

Next, we construct a local transfer GP surrogate model that incorporates the misfire knowledge:

5) (x) = [1 − Î(x)] 5 �) (x) + Î(x) 5 � �) (x), (1)

where 5 �
)
(x) is a transfer model leveraging information from the CFD-simulated data 5( (x) for the prediction of

experimental response (i.e., prediction of the experimental/real-system output at x) 5) (x) (which will be discussed

later in Eq. 2), and 5 � �
)
(x) is a no-transfer model built on the experimental data only (which will also be discussed later

in Eq. 4). The key novelty here is that we control the information transfer according to the predicted class of a CFD

response: if x is in the fully-combusted region, transfer is permitted to enhance the prediction of real engine’s response;

on the other hand, if the points x is classified into the misfire category, the simulated response shares no similarity with

the real engine’s response and information transfer is forbidden between them. At the points with full combustion in the

CFD simulation, we adopt the following transfer model connecting the source (simulated) and the target (experimental)

responses :

5 �) (x) = d(x) 5( (x) + X(x),

5( (x) ∼ GP{`( , :( (·, ·)}

X(x) ∼ GP{`X , : X (·, ·)}. (2)

Here, the first line models the target response 5 �
)

as a weighted source response 5( (x), where d(x) = Ā¦x is the transfer

weight that depends on the parameter x. The function X(x) accounts for the discrepancy between the weighted source

and the target. Since neither 5( (x) nor the X(x) are known, we place independent Gaussian priors on them, where `

and : (·, ·) represent the mean and kernel function, respectively. The popular choices for the kernel functions include

Gaussian and Matérn functions. In this work, we employ the widely-used Gaussian kernels for surrogate models:

: (x, x′) = f2 exp


−

4∑

9=1

(G 9 − G′
9
)2

2;2
9


, (3)

where f2 is the variance parameter controlling the variation of the process and {; 9 }
4
9=1

are the length-scales controlling

the smoothness of sample paths (i.e., the individual functions that are generated when you draw a sample from the

probability distribution defined by the Gaussian process). The GP mean parameters `( and `X are set to zero, while the

hyper-parameters in :( and : X and the transfer weight parameter Ā are estimated through maximum likelihood methods

using the fully-combusted source data X̂( and the target data X) .

Regarding the points in the misfired region, we fit a single Gaussian process model using only the target data:

5 � �) (x) ∼ GP{`) , :) (·, ·)}. (4)

As before, the hyper-parameters in :) (·, ·) are estimated from the experimental data. With such a no-transfer model, the

misfired data in the source will not influence the target learning.
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After the above transfer model 5 �
)

and no-transfer model 5 � �
)

are trained, we predict 5̂) (x=4F) at the new parameter

x=4F . If the new parameter locates in a predicted fully-combusted region, i.e., Î(x=4F) = 0, the posterior of 5̂) (x=4F)

follows:

5̂) (x=4F) ∼ # ( ˆ̀�) (x=4F), (f̂
2
) )

� (x=4F)), (5)

where the posterior mean and variance are given by:

ˆ̀�) (x=4F) = d(x=4F)`( + `X + (k�
=4F)

¦ (K� )−1

[ (
f(

f)

)

−

(
`(1<

Ā(X) ) » `(1= + `X1=

) ]

; (6)

(f̂2
) )

� (x=4F) = d2 (x=4F):( (x=4F , x=4F) + : X (x=4F , x=4F) − (k�
=4F)

¦ (K� )−1 (k�
=4F), (7)

with k�
=4F = [k(

=4F , k
X
=4F], k(

=4F = [:( (x=4F , x8)]xğ∈X̂ď
, kX

=4F = [: X (x=4F , x 9 )]x Ġ ∈XĐ
, and

K�
=

(
K( (X() Ā(X) ) » K( (X( ,X) )

[Ā(X() » K( (X( ,X) )]
¦ [Ā(X) )Ā

¦ (X) )] » K( (X) ) + KX (X) )

)

.

On the contrary, if the new parameter is classified as a misfired point, i.e., I(x=4F) = 1, the no-transfer posterior of

5̂) (x=4F) is expressed as:

5̂) (x=4F) ∼ # ( ˆ̀� �) (x=4F), (f̂
2
) )

� � (x=4F)), (8)

with the posterior mean and variance given by:

ˆ̀� �) (x=4F) = `) + (k� �
=4F)

¦ (K� � )−1
[
f) − `)

]
, (9)

(f̂2
) )

� � (x=4F) = :) (x=4F , x=4F) − (k� �
=4F)

¦ (K) )
−1 (k� �

=4F), (10)

where k� �
=4F = [:) (x=4F , x 9 )]x Ġ ∈XĐ

and K� �
= K) (X) ).

IV. Results and Discussion

A. Effect of varying experimental training points

Figure 3 displays the predicted CA50 vs. true CA50 comparisons between the LTGP and standard GP models.

Specifically, we totally have 79 CFD-simulated samples and 39 experimental samples. We randomly select = < 39

experimental points for training. The LTGP model uses both the simulated samples as well as the selected experimental

samples, while the standard GP model only uses the selected experimental samples. The performances are evaluated

over another experimental test set of size 240 plus the experimental samples not used for training.

It is observed that the LTGP model consistently offers more accurate prediction than the standard GP, with the

predicted CA50 points following the true trend line more closely. That is expected since the CFD data provides a

better coverage of the input parameter space, and thus more information on the combustion process than the limited

experimental data. The accuracy of both models increase with increasing the number of experimental training points,

with the highest accuracy being observed in the 35 experimental training points case (Fig. 3e), and the lowest accuracy

being observed in the 15 experimental training points case (Fig. 3a). It is also observed that the LTGP model offers

better predictive performance in the CA50 range from 0 to 20 CAD, as seen in the green boxes. The accuracy of the

model is lowered near the extreme outlier CA50 of 30 CAD and above, which are typically partial burns or misfires.

Table 3 displays the mean absolute error (MAE) across 30 different trials for each case with a certain number of

experimental training points. It is seen that the MAE for the models reduce with an increase in experimental training

points. The MAE for the LTGP model is consistently lower than the standard GP model, and shows a more significant

decrease in MAE (from 7.16 to 3.77) than the standard GP model (from 7.39 to 5.65) with an increase in experimental

training points. Our LTGP model does not have a significant advantage with 15 experimental training points, because

that data set is too limited to learn an accurate transfer weight d(x). As a result, the enhanced transfer learning from

relatively “low” fidelity (CFD) to high fidelity (experiments) data in the training process of the model is able to achieve

much more accurate predictions of CA50, when compared to standard single fidelity GP models.

6



(a) 15 EXP training points (b) 20 EXP training points

(c) 25 EXP training points (d) 30 EXP training points

(e) 35 EXP training points

Fig. 3 Predicted CA50 vs. True CA50 for the 5 training cases classified according to the number of experimental

points (EXP) used for training the LTGP model (blue) and standard GP model (GP, orange).
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Table 3 Mean Absolute Error (MAE) comparison between the LTGP and standard GP models based on varying

number of experimental points used in the training.

No. of EXP Points MAE of LTGP [CAD] MAE of standard GP [CAD]

15 7.16 7.39

20 4.75 6.52

25 4.50 6.41

30 4.09 6.39

35 3.77 5.65

B. Effect of varying RPM

After fixing the number of experimental training points as 35 based on the most accurate scenario from the previous

section, we then further augment the CFD data by an additional 40 points (i.e., total of 119 points) to improve the model

accuracy, which reduces the MAE of the LTGP model from 3.77 CAD to 3.34 CAD. The total number of experimental

points used for validation is 230. We then analyze the error classification by the four different RPM (1200, 1500, 1800

and 2100) cases by comparing the LTGP and standard GP predictions with the experimental CA50 for different CA50

ranges, as shown in Fig. 4.

(a) 1200 RPM (b) 1500 RPM

(c) 1800 RPM (d) 2100 RPM

Fig. 4 Predicted CA50 vs. True CA50 for the LTGP model (blue) and standard GP model (orange) classified by

varying RPM.
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Table 4 Mean Absolute Error (MAE) comparison between the LTGP and standard GP models for different

CA50 ranges.

CA50 range [CAD] MAE of GP [CAD] MAE of LTGP [CAD] No. of Points

30 to 50 15 13 13

20 to 30 5.76 4.91 47

< 20 3.36 2.11 170

5 to 15 3.44 1.96 85

All CA50 4.51 3.34 230

Table 5 Mean Absolute Error (MAE) comparison between the LTGP and standard GP models for different

RPM ranges.

RPM MAE of standard GP [CAD] MAE of LTGP [CAD] No. of Points

(CA50: 5 to 15 CAD) (CA50: 5 to 15 CAD) (CA50: 5 to 15 CAD)

1200 4.14 1.93 51

1500 2.29 1.95 24

1800 2.22 1.99 5

2100 3.1 2.33 5

All RPM 3.44 1.96 85

It is clear from Table 4 that the LTGP model offers higher accuracy overall compared to the standard GP model for

all CA50 ranges. For instance, the LTGP model shows the highest accuracy in the CA50 range from 5 to 15 CAD (MAE

around 1.96 CAD), which is much lower compared to the MAE of the standard GP model (around 3.44 CAD). The high

accuracy of the LTGP model in this CA50 range is desirable, since this is the typical CA50 range used for optimizing

control models [12].

Table 5 displays the MAE of the LTGP and standard GP models in the CA50 range from 5 to 15 CAD for each

RPM. Starting with the 1200 RPM case which has the highest number of points available in the training and validation

space, the LTGP model offers much higher accuracy (MAE = 1.93 CAD) than the standard GP model (MAE = 4.14

CAD). This can also be seen in Fig. 4a, where the LTGP CA50 agree closely with the experimental CA50 compared to

the standard GP points. As the number of CFD and experimental training & validation points for 1200 RPM is more

compared to other RPMs, there is a significant improvement in using the multi-fidelity LTGP model over the standard

GP, which only uses 35 experimental points for training. The LTGP model offers higher accuracy for the 1500 RPM

case as well, as seen in Fig. 4b. The number of CFD points used for training in the 1500 RPM case is significantly less

than the number used for training in the 1200 RPM case. As a result, the gap in prediction error between the standard

GP and LTGP models is smaller, although the LTGP model still offers lower MAE (MAR = 1.95 CAD) compared to the

standard GP (MAE = 2.29 CAD). This trend of lower MAE for the LTGP model holds true for the 1800 RPM (Fig. 4c)

and 2100 RPM (Fig. 4d) cases as well, although the number of available training & validation points for these RPMs is

pretty low. Overall, the LTGP offers consistently accurate predictions compared to the standard GP model across all

RPM and across all CA50 ranges.

C. Effect of varying ignition assistant power (IAP)

Figure 5 displays the prediction comparison between the LTGP and standard GP models for different IAP values. It

is seen from Table 6 that the LTGP model consistently offers higher prediction accuracy than the standard GP model

across all IAP values. It is seen that the highest accuracy for both models is observed at the 70 W IAP case (Fig. 5d) for

the CA50 range from 5 to 15 CAD, with the LTGP model (MAE = 1.26 CAD) being more accurate than the standard

GP model (MAE = 1.58 CAD). The 70 W IAP cases offer the best (most stable) combustion performance since the

high temperature setting enhances ignition. Consequently, the 70 W case also has the highest number of points (both

experimental and CFD) available for training and validation, followed by the 50 W case (Fig. 5c). Consequently, the

models predict well for these two IAP cases. It is observed that at the 30 W case (Fig. 5b), the standard GP model
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(a) 0 W (b) 30 W

(c) 50 W (d) 70 W

Fig. 5 Predicted CA50 vs. True CA50 for the LTGP model (blue) and standard GP model (orange), classified by

varying IAP.

Table 6 Mean Absolute Error (MAE) comparison between the LTGP and standard GP models for different

IAP values.

IAP [W] MAE of GP [CAD] MAE of LTGP [CAD] No. of Points

(CA50: 5 to 15 CAD) (CA50: 5 to 15 CAD) (CA50: 5 to 15 CAD)

0 2.25 1.96 15

30 12.06 1.50 14

50 2.06 1.80 27

70 1.58 1.26 29

All IAP 3.44 1.96 85

particularly suffers in accuracy, due to relatively sparse spread of experimental training points available at 30 W. The

LTGP model, however, does not suffer from this drawback, since there were sufficient CFD points available for training

in addition to experiments. As a result, the LTGP model still maintains much lower error (MAE = 1.5 CAD) compared

to the standard GP (MAE = 12 CAD).
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V. Conclusion
In this work, we introduce a novel local transfer Gaussian process (LTGP) method for surrogate modeling of

multi-fuel capable diesel engines. The LTGP transfers the knowledge from virtual CFD simulators to real engine

combustion experiments. To address the negative transfer effects caused by the misfires predicted by CFD simulation,

a SVM classifier is trained to learn the local regions where transfer should be conducted. The validation results on

four-dimensional combustion data demonstrate that LTGP significantly enhances the prediction accuracy of CA50 in

real experiments through transferring information from simulated data, in comparison with the traditional GP models,

across all CA50 ranges of interest for varying RPM and IAP.
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