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Abstract

Local feature-based explanations are a key component of the XAI
toolkit. These explanations compute feature importance values rel-
ative to an “interpretable” feature representation. In tabular data,
feature values themselves are often considered interpretable. This
paper examines the impact of data engineering choices on local
feature-based explanations. We demonstrate that simple, common
data engineering techniques, such as representing age with a his-
togram or encoding race in a specific way, can manipulate feature
importance as determined by popular methods like SHAP. Notably,
the sensitivity of explanations to feature representation can be ex-
ploited by adversaries to obscure issues like discrimination. While
the intuition behind these results is straightforward, their system-
atic exploration has been lacking. Previous work has focused on
adversarial attacks on feature-based explainers by biasing data or
manipulating models. To the best of our knowledge, this is the first
study demonstrating that explainers can be misled by standard,
seemingly innocuous data engineering techniques.
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1 Introduction

Explainable AI (XAI) is becoming increasingly critical for justifying
the behavior of Al systems implemented in high stakes domains like
education, lending, public employment, and healthcare [1, 10, 39].
One of the key components of XAl is the use of local feature-based
explanations, which quantify the importance of an observation’s
features to an outcome (or some other quantity of interest). For
example, these explanations are foundational for algorithmic re-
course, where understanding why an individual is rejected for a
loan by an Al-assisted system allows them to contest or reverse
that unfavorable decision. Local feature-based explanations can
also be used to surface unfairness in decision-making, for example,
if a model is revealed to be making individual-level decisions on
the basis of features like age, gender, or race, which may be illegal
to use under the disparate treatment doctrine.! Further, these expla-
nations are becoming an essential tool to fulfill legal and regulatory
requirements, such as the European Union’s Al Act, and General
Data Protection Regulation’s “right to explanation” [14].

The Shapley value framework [29], originally developed for di-
viding revenue in cooperative games, is widely used to quantify
local feature importance in predictive classification. It underpins
prominent explanation methods like SHAP (Shapley Additive Ex-
planations) [23] and QII (Quantitative Input Influence) [11]. The
framework explains the classification outcome for an observation
by assessing how changes to a feature’s value, individually or in
combination with others, impact that outcome. This process sim-
ulates interventions, aligning with causal inference principles by
isolating each feature’s influence while controlling for others. A
high Shapley value for a protected feature like age suggests its
significant influence on the classifier’s decision.

However, Shapley-value-based explanations have limitations:
they can mislead users (intentionally or unintentionally) [17] and
are vulnerable to adversarial attacks and manipulations [22]. In
this paper, we focus on the key observation that local feature-
based explanations, derived from trained models and post-
processed data, are susceptible to manipulations through
feature engineering, which occurs upstream from classifica-
tion in the machine learning pipeline. We use SHAP [23], the
most widely adopted implementation of the Shapley value frame-
work, to show that local feature-based explanations are influenced
by simple data engineering operations, such as transforming contin-
uous values or encoding categorical values, which modify feature

!https://en.wikipedia.org/wiki/Disparate_treatment
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Figure 1: A hypothetical lending example: For a given clas-
sifier model, if we bucketize the age feature to generate a
local explanation of the outcome with SHAP, then the im-
portance of age for Ann decreases compared to using the
raw value of the feature. Intuitively, this happens because
age = 30 is infrequent—and low—in this hypothetical dataset,
while age < 50 appears to be typical, both on its own and in
combination with education.

representations. For instance, bucketization—a common method of
grouping values into ranges—can make a feature value appear less
(or more) important in terms of SHAP. We now provide an intuition
through the example below:

Example 1.1 (Motivating example). Consider a vendor — a finan-
cial institution that uses a binary classifier to approve loans (see
Figure 1). Suppose that Ann applies for the loan and is incorrectly
rejected (a false negative). The vendor would like to see if its model
made this rejection decision based on Ann’s age, and decides to
compute feature importance using SHAP as part of its analysis. In-
deed, when SHAP is run over the raw feature values, age appears to
have high importance, likely because an age of 30 is comparatively
low in the vendor’s data. Worried about a potential lawsuit, the
vendor attempts to generate a different explanation for the same
classification outcome: they keep the classifier model fixed, but
change the representation of age, “bucketizing” it into the ranges
“below 50” and “50 and above”. The vendor is relieved to see that
this simple manipulation substantially diminishes the importance
of age when explaining Ann’s outcome.

Figure 2 demonstrates this very scenario for an individual in
the ACS Income dataset, with the SHAP plot on the top showing
an explanation on raw feature values, and the plot on the bottom
showing an explanation after age is bucketized. Observe that the im-
portance of age drops from rank 1 (most important) in Figure 2a to
rank 5 (somewhat important) in Figure 2b, a decrease of 5 positions
in terms of importance. Note also that, because of the efficiency
property of Shapley values [29], a SHAP explanation can be used
to reconstruct the outcome (by summing feature weights and re-
turning the positive label if the sum is positive). In the example
in Figure 2, both explanations are consistent with the classifier’s
prediction: they both predict that the individual would be rejected
for the loan. If the vendor is worried about being challenged for
using a protected feature like age to incorrectly reject applicants,
it can look for an explanation that agrees with the prediction, but
diminishes the importance of age. In this paper, we refer to this
kind of a manipulation as a data engineering attack.

Contributions and roadmap. In this paper, we systematically in-
vestigate how SHAP-generated feature-based explanations are af-
fected by simple data engineering choices, and how this sensitivity
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Figure 2: SHAP values of features before (a) and after (b) buck-
etization for a fixed individual from the ACS Income dataset.
Note that the classifier model and SHAP explainer remain
fixed; the only modification to the individual’s features from
(a) — (b) was the bucketization of age. In (a), age is encoded
as a continuous feature and is deemed most important by
SHAP, with a rank of 1 and a feature weight of 0.99. In (b),
the age feature was bucketized into 12 equi-width intervals
over its active domain, using the median age to represent
observations within each interval. This decreased the feature
weight to 0.37, demoting age to the 5th rank in importance.

can be used to design a data engineering attack on SHAP. We dis-
cuss related work in Section 2, describe preliminaries in Section 3,
and then present our contributions.

e As our first contribution, in Section 4, we empirically exam-
ine the impact of bucketization or binning on continuous
features (e.g., age) and of different encoding methods on cat-
egorical features (e.g., race). We show that SHAP is highly
sensitive to data engineering choices, with the importance of
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age changing by as much as 20 rank positions in some cases.
Further, in cases where age is the most important feature, its
importance frequently drops by between 3 and 5 positions
in the ranking. When using the race feature, we show that
merging White and Asian individuals or White and Black
individuals into a single category can reduce the importance
of the race feature to nearly 0.

e As our second contribution, in Section 5, we design a fea-
ture engineering attack, demonstrating that sensitivity to
seemingly benign data engineering choices can enable ad-
versarial vendors to obscure the importance of protected
features with minimal impact on predictions, allowing them
to evade scrutiny without model retraining the model. For
example, we demonstrate that our attack generally outper-
forms equi-width bucketization by substantially reducing
the importance of the age feature without sacrificing expla-
nation fidelity.

In Section 6, we highlight the need for a more robust frame-
work for model explanations that evaluates not only accuracy and
fairness, but also the impact of data engineering on local feature-
based explanations. Creating tools and guidelines to ensure
that data engineering choices do not unduly influence re-
ported feature importance should become standard practice
in AI development. We also acknowledge limitations and outline
future directions. Finally, in Section 7, we summarize our insights.

All code is available at https://github.com/Aguno/Shap- Attack.

2 Related Work

The relationship between feature engineering and model explain-
ability has been explored in previous works. For example, Ribeiro
et al. [26] investigate how feature selection and engineering tech-
niques impact model explanations, focusing on how feature impor-
tance is derived from global model behavior. Our research comple-
ments this approach by systematically demonstrating how bucketi-
zation and binning can impact model explanations.

Other studies have examined how data engineering operations
like re-scaling, re-weighting, and re-sampling of features can either
mitigate or exacerbate bias [21, 38]. These works demonstrate the
unintended consequences of seemingly innocuous feature engi-
neering decisions on Al systems. However, none of these studies
explicitly address explainability, particularly in the context of SHAP,
one of the most widely adopted explanation methods [5, 7].

More recently, Slack et al. [30] proposed an adversarial attack on
SHAP by scaffolding a classifier that may be unfair on the input data,
but appears fair on the rest of the data in terms of common statistical
fairness criteria. In another recent approach, Baniecki and Biecek
[2] generate synthetic data to manipulate SHAP. The authors use a
genetic algorithm to manipulate the feature values towards certain
SHAP targets. Finally, the Fool SHAP method by Laberge et al. [22]
uses biased sampling to construct the background data such that
the protected feature’s importance is reduced, allowing the vendor
to show false compliance during an algorithmic fairness audit. Here,
an optimization problem is formulated to reduce the SHAP value
of a feature without significantly altering the background data
distribution relative to the original data. However, sampling data
can be viewed as an explicit manipulation and may be prohibited.
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In comparison, our work does not focus on model fairness and
only performs common data engineering manipulations that a data
analyst could legitimately perform. We show that such seemingly
benign operations can alter SHAP-computed feature importance
and be used to design an attack.

Unlike prior work on predictive multiplicity [8], starting with
the work on the “Rashomon Effect” [9], where different models
may have comparable performance, our contribution is in showing
that the same model may produce different explanations due to
seemingly innocuous data preprocessing (i.e., feature engineering)
choices. This exposes a critical weakness in SHAP that has not been
shown in prior work and that, as we demonstrate, can enable an
adversarial actor to manipulate explanations.

Finally, there are other works that interrogate explainability [3,
15, 16] (e.g., counterfactual explanations), but they do not identify
data preprocessing vulnerabilities when using SHAP as we do.

3 Preliminaries

3.1 Local feature-based explanations with
Shapley values

The Shapley value framework [29] is widely used to quantify local
feature importance in predictive models [11, 23]. It does so by
attributing a model’s output for a given instance to individual input
features, based on how their inclusion—alone or in combination
with other features—affects the prediction.

The Shapley value for a feature i is formally defined as:

ISIIN = 151 - 1) .
sH= 3, T RO
SCN\{i}

where N is the set of all players (features), S € N\ {i} is a subset of
players excluding player i, f is a value function defined on subsets
of N (e.g., the expected model output conditional on the features
in S), ¢i(f) is the Shapley value assigned to player i, representing
their marginal contribution averaged over all possible coalitions.

In predictive classification, the players correspond to input fea-
tures, and f(S) is typically defined as the expected value of the
model output conditional on the feature values in subset S. The
vector of Shapley values assigned to an instance’s features con-
stitutes an explanation. Due to the efficiency property of Shapley
values [29], the sum of these contributions exactly recovers the
model output (minus a baseline), ensuring additive consistency.

By convention, a feature’s importance is indicated by the ab-
solute value of its weight (with higher values denoting greater
importance), while the sign reflects the direction of its contribution
toward a specific prediction (positive or negative). For example, in
Figure 2(a), the age feature has a weight of —0.59: its high absolute
value indicates importance, and the negative sign points toward
the negative class label. Also by convention, visual explanations
sort features in descending order of absolute weight, with the most
important feature ranked first, regardless of sign, followed by the
next most important, and so on.

In this work, we use SHAP [23], with its open-source implemen-
tation?. SHAP is used extensively by industry practitioners [18, 33],
highlighting a critical need for its continued study, particularly

Zhttps://pypi.org/project/shap/
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Figure 3: The figures above represent different ways to bucketize a continuous or high-dimensional ordinal feature like age. In
each sub-figure, the feature is represented as a lineplot with values from 0 to 99. Each circle represents an age value for a single
observation from the dataset, and the observations are the same across the sub-figures. For equi-width buckets (a), the domain
is divided into buckets of equal width. For equi-depth buckets (b), buckets are created that all contain an approximately equal
number of observations (this is equivalent to equi-width buckets over the percentile values of the feature). Sub-figure (c) shows
how custom buckets may be created by the method described in Section 5.1 to manipulate the SHAP rank of a feature.

when it comes to surfacing vulnerabilities that could be abused by
bad actors. We reveal the sensitivity of SHAP to feature engineering,
adding to a robust body of work on studying the tool, surfacing
issues, patching them, or expanding SHAP in other ways towards
better implementation in practice [34, 36, 37].

Many researchers and practitioners use XAI for fairness auditing.
Most relevant to our work, a high Shapley value for a protected
feature like age or race suggests the feature has a significant in-
fluence on the classification outcome, which may raise ethical or
legal concerns. Wexler et al. [37] present an approach for using
SHAP and “what-if tools” to probe ML models for fairness. Vengroff
[34] develops a toolkit based on SHAP that helps identify bias in
both an ML system and the data used to train that system. Deck
et al. [12] offer a nuanced perspective, noting that XAl tools are not
an “ethical panacea,” but are “one of many tools to approach the
multidimensional, sociotechnical challenge of algorithmic fairness,”
along with other tools like those focused on bias auditing.

3.2 Representing features

In tabular data, features can be continuous, ordinal, or categorical.
Continuous data can take any value within a range and is measur-
able, while ordinal data represents categories with a meaningful
order or ranking. Categorical data consists of distinct groups or
categories without an inherent ordering.

There are various ways to represent these data types in machine
learning pipelines. For continuous or ordinal features, we may leave
the data as is, or discretize the values using bucketization, where
values are grouped into ranges. These buckets can then be one-hot
encoded or treated as ordinal features. Categorical features can be
encoded using methods like one-hot, ordinal, or target encoding.
Additionally, scaling or normalization may be applied to adjust
distributions or ranges of features.

Encoding continuous or ordinal features. Consider the feature
age, which may be continuous or ordinal with integer values. For
prediction or explanation purposes, age could be used in its raw
form, bucketized into ordinal categories, or encoded into multiple
buckets via one-hot encoding. Importantly, “upstream” feature rep-
resentation choices affect the properties of the “downstream” model
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in a machine learning pipeline [31], influencing its accuracy [20],
fairness, and explainability.

In this work, we focus on how bucketization [19]—grouping
continuous or ordinal data into distinct value ranges—affects model
predictions and SHAP explanations. We explore three methods
for bucketizing continuous features, as illustrated in Figure 3. The
first, equi-width in Figure 3a, creates buckets of equal feature value
ranges. The second, equi-depth in Figure 3b, ensures each bucket
contains an approximately equal number of data points (i.e., the
buckets represent percentiles of the data). The third method, in Fig-
ure 3¢, employs Bayesian Optimization to define bucket widths that
optimize an adversarial objective, which we describe in Section 5.1.
Note that the number of buckets can vary across methods.

Categorical features. We frame our discussion of encoding cat-
egorical features through the protected feature race. Whenever
practitioners include race as a feature in machine learning mod-
els, they are implicitly making choices about how to encode that
feature [6, 35]. For example, the ACS Income and ACS Public Cov-
erage datasets®, used in our experiments, include eight distinct race
categories plus a null value. One approach is to represent all eight
categories using one-hot encoding. However, due to small sample
sizes in some categories, practitioners often create an “other” su-
percategory, leading to arbitrary groupings. Further, one category
represents individuals identifying as “mixed race,” but lacks infor-
mation on which races they identify with. Intersectional encodings
could also be considered.

In this work, we focus on six plausible encoding methods of
the race feature, shown in Table 1. Four of these individuals into
two race categories and two split them into three categories. While
not exhaustive, these encodings are sufficient for exploring the
sensitivity of SHAP to different race encodings.

Note: One-hot encoding can lead to counter-intuitive or redun-
dant explanations. Consider, for example, a simple binary feature
that denotes whether a person is a smoker. This feature would be
represented by two one-hot-encoded features: smoker=yes (set to 0
for a non-smoker) and smoker=no (set to 1 for a non-smoker). An
explanation of a medical diagnosis may redundantly assign high

3https://github.com/socialfoundations/folktables
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importance to both smoker=yes and smoker=no: a person may be
predicted to have a low likelihood of developing lung cancer both
because they are a non-smoker (smoker=no is set to 1) and because
they are not a smoker (smoker=yes is set to 0). An explanation may
also be counter-intuitive, assigning high importance to smoker=yes
being set to 0 and low importance to smoker=no being set to 1.
Returning to the one-hot representation of race: an explanation
of a racially biased lending decision may assign a high positive
weight to both race=White being set to 1 (the applicant is White),
and to race=Black being set to 0 (the applicant is not Black). To
estimate the total impact of race on the outcome, we sum up the
weights of all one-hot-encoded components of the feature.

3.3 Experimental setup

We ran experiments over two real-world benchmark datasets with
associated predictive tasks.

(1) ACS Income (Virginia, 2018) [13] is used to predict whether
an individual’s income is above $50K. It contains 46,144 ob-
servations comprised of 8 features, out of which 5 are cate-
gorical.

(2) ACS Public Coverage (Virginia, 2018) [13] is used to predict
whether an individual is covered by public health insurance.
It contains 25,524 observations comprised of 16 features, out
of which 13 are categorical.

For both tasks, we treat age and race as protected features, and
one-hot encode all categorical features, including race. We use XG-
Boost, a state-of-the-art ensemble classifier, with hyperparemeter
tuning for overall accuracy.

Evaluating explanations. SHAP-based explanations can be eval-
uated using many different metrics [25, 27]. In this work, we use
three metrics. An explanation is considered faithful if, for a given
observation, the sum of its feature importance weights (before or
after any preprocessing modifications) corresponds to the originally
predicted outcome. The first metric, fidelity, refers to the propor-
tion of observations for which a faithful explanation was generated,
expressed as a ratio of those observations to the total number.

Additionally, we quantify how data representation choices affect
both the absolute and the relative importance of a feature. We
compute the average SHAP value (feature weight) and the average
rank (by absolute value of feature weight) of the protected feature,
and quantify the change in these metrics to compare explanations.
Difference in average SHAP value quantifies the absolute change
in feature importance, while difference in average rank quantifies
the relative change in feature importance.

Sensitivity versus attack experiments. In the sensitivity experi-
ments (Section 4), we alter the feature representation in both the
training data (used to train the classifier) and the test data (used
by the explainer). Here, we examine how explanations respond to
feature bucketization, training a new model each time and applying
the same representation to both the classifier and explainer.

In contrast, in the attack experiments (Section 5), we train the
model on the original, non-bucketized data. We then keep the model
fixed and only modify the representation of the inputs to the ex-
plainer. Here, we show that different explanations can be produced
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for the same model. In particular, this allows us to shift the apparent
importance of a sensitive feature without retraining.

In both settings, the baseline applies no additional feature engi-
neering beyond simple one-hot encoding for categorical features.

4 First Contribution: Sensitivity of SHAP to
Feature Engineering

The experimental results reported in this section demonstrate that
seemingly trivial feature engineering choices can lead to potentially
harmful outcomes.

4.1 Continuous features (age)

We evaluate SHAP’s sensitivity to bucketization of the continuous
age feature on the ACS Income dataset. Figure 4a shows that the
feature importance of age increases with increasing number of
buckets, both overall and for the observations for which age is
the most important feature when the classifier is trained on raw
(unbucketized) data. Figure 4b complements this result by showing
that the average rank of age decreases (i.e., age moves closer to
the top of the list) with increasing number of buckets. Figure 4c
shows that the percentage of observations for which age is the most
important feature increases substantially with increasing number
of buckets, showing high sensitivity.

Intuitively, as the number of buckets increases, age becomes less
obfuscated and thus plays a more important role in a model’s pre-
diction. Hence, even if bucketization itself is a standard operation,
the importance of age , both in absolute terms (its weight) and in
relative terms (its rank) can change drastically for a substantial por-
tion of the observations. Similar to the sensitivity testing scenario,
more buckets means the age is more fine-grained and has higher
SHAP values across the entire dataset. However, the average SHAP
value among the observations for which age is the most important
feature remains similar regardless of the number of buckets.

Figure 5 shows the frequencies of rank changes of the age fea-
ture when using 5 or 10 equi-width or equi-depth buckets on ACS
Income. For all scenarios, we observe that bucketization can have
drastic impacts on a non-trivial portion of individuals, and that the
importance of age may change by as much as 20 positions in the
ranking.

In Figure 6, we vary the number of equi-width buckets and show
the number of observations for which the rank of the age feature
increased, decreased, or did not change. We also perform the same
experiment for individuals for whom age is the highest-ranked
(i.e., most important) feature, see Figure 11 in the Appendix. We
can see in Figures 6a and 6b that the third bucket has the high-
est volatility. This demonstrates that bucketization can influence
specific demographics more than others.

We also investigate how the SHAP ranking sensitivity changes
based on the confusion matrix position of data points, i.e., whether
an individual was a true positive (TP), false positive (FP), true nega-
tive (TN), or false negative (FN). This has important implications for
fairness, as many fairness metrics are based on metrics derived from
the confusion matrix of a model [28]. Interestingly, we find that
changes are not uniform across these groups, as seen in Figure 12
in the Appendix, which quantifies the decrease in the importance
of age relative to other features as the number of histogram buckets
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shifts represent rank “promotion” where the importance of age increases.

large portion of the observations consider age to be unimportant
(“rank 5 or below”).

In summary, we showed that SHAP is highly sensitive to buck-
etization, with the relative importance of age changing by as much
as 20 rank positions in some cases. Furthermore, when age is the

increases. Depending on how much the adversary intends to lower
the importance of a protected feature, the adversary can choose a
specific number of buckets. For example, suppose that an adversary
is using ACS Income and wants to make age look unimportant for
false-negative observations using the data in Figure 12. Looking at
Figure 12d, the adversary may decide to use 4 or 7 buckets where a

1593



SHAP-based Explanations are Sensitive to Feature Representation

w2
(=
(=]
w2
(=
(=]

[
(=
(=]
[
(=]
(=]

frequency
frequency

(=]

17 25 33 41 48 56 64 71 79 87
bucket boundaries

(a) demotions of the rank of age

(b) promotions of the rank of age

FAccT ’25, June 23-26, 2025, Athens, Greece

1000

frequency

(=

400 400
750
500

17 25 33 41 48 56 64 71 79 87
bucket boundaries

17 25 33 4148 56 64 71 79 87
bucket boundaries

(c) the rank of age remains unchanged

Figure 6: Frequency plot for varying numbers of equi-width buckets on age on ACS Income. Bucket boundaries are shown on

the x-axis.

Table 1: Bucketization strategies for the race feature. BASE
retains the original categories. OVR (“one vs. rest”) creates
two categories: one for the specified value and one for all
others. The 2 BUCKETS and 3 BUCKETS strategies group values
into 2 or 3 categories, respectively. Each row in the table
corresponds to a strategy; buckets are separated by commas,
and merged values are indicated with a plus sign (+).

Strategy Buckets
BASE White, Black, Asian, Other
White, Rest
Black, Rest
One vs. rest (OVR) Asian, Rest
Other, Rest

White, Black + Asian + Other
White + Black , Asian + Other

2 BUCKETS White + Asian, Black + Other
White, Other
White, Black, Asian + Other
3 BUCKETS

White, Asian, Black + Other

most important feature, its importance frequently drops by 3-5
positions in the ranking.

4.2 Categorical features (race)

We also evaluate SHAP’s sensitivity to the representation of the
categorical feature race. We apply two preprocessing strategies:
one-vs-rest (OvR) and a combinatorial merging approach. In OvR,
each race value is isolated while the remaining values are grouped,
and a classifier is trained on the modified feature. The rest of the
evaluation follows the procedure described earlier. The different
merging strategies are shown and further described in Table 1.
Figures 7 (a)-(c) show how bucketization affects the race feature
in the OVR case. In particular, we compare several settings: Base (no
merging), White vs. others, Asian vs. others, Black vs. others, and
Non-(White, Asian, Black) vs. others. Overall, the average SHAP
value of the race feature decreases compared to Base for all settings
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as shown in Figure 7a. Even if the decrease seems minor for the
White-versus-Rest strategy, the fraction of samples that have race
as their most important feature drastically decreases, as shown in
Figure 7b, demonstrating the effectiveness of bucketization. For
Asian-versus-Rest, both of these values decrease significantly. We
perform additional analyses in Figure 7c, which shows the average
SHAP value of race only for observations with race as the most
important feature. For Asian-versus-Rest, the average SHAP value is
higher than that of Base, which means that these (few) observations
are more likely to be discriminated against based on race.

In summary, we showed that SHAP is highly sensitive to bucke-
tization for categorical features where the bucketization effectively
shifts the importance from race to other features.

5 Second contribution: A feature engineering
attack on SHAP

5.1 Deliberate manipulation of SHAP values

In Section 4, we demonstrated that post-hoc SHAP explanations
are sensitive to the way features are encoded. Importantly, this
sensitivity can be exploited to intentionally manipulate feature
importance reported by SHAP.

Audit scenario. Similar to Laberge et al. [22], we consider a two-
party audit scenario. The first party is a vendor that has full, white-
box access to the data, the classifier model, and the data engineering
and modeling pipelines. The vendor is able to make data engineer-
ing and modeling decisions and implement them into the respective
pipelines. The second party is an auditor, who receives static copies
of pre-processed data (i.e., the data that is prepared for modeling)
and the model, to which it has black-box access. While the auditor
cannot perform any engineering, it can generate feature-based ex-
planations of model predictions for any observation in the dataset
using SHAP. This allows the auditor to inspect how often the model
appears to use protected features (according to SHAP explanations)
to make classification decisions. Notably, the vendor has an adver-
sarial goal: it wants to build models that make use of protected
features, but it does not want those features to appear to have high
importance according to SHAP when inspected by an auditor.
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Figure 7: Effect on SHAP values using OVR bucketization for the race feature using the ACS Income dataset. We use each feature
value (White, Asian, Black, or Other) as a category and assign the remaining values to a single category. (a) Average SHAP
values of the race feature. (b) OVR setting versus the portion of observations where race is the most important feature. (c) OvR
setting versus the mean SHAP value of race for the observations where race is the most important feature.

Formalization. The dataset D consists of |D| training examples
as tuples (x;, y;), where example i corresponds to the i-th individual
in the dataset. Each x € R", where n is the number of features, and
that individual’s outcome (or target) is given by y € {0, 1}. We use
a to denote the feature at a specific index x, € x, which represents
the protected feature for each individual. The dataset D is used to
learn a machine learning classifier f : X — [0, 1].

Recall from the description of the audit scenario, that the vendor
is able to make data engineering decisions and implement them
before training the classifier f. Let 7~ be the set of all possible feature
transformations that could be applied to the protected feature a.
Each transformation 7 € 7 is a function of the form 7 : A — S,
where A is the set of possible values for the protected feature a, and
S is the set of all possible values for the transformed feature. We
refer to 7(a) as the transformation of feature a. Then generally, the
manipulation framework we propose uses the following objective:

m{}i_n —SHAP_Rank(a, f,D), s.t. A > ¢ (1)

where SHAP_Rank(a, f, D) is a function that returns the SHAP
rank of feature a under model f and with data D, A is the fidelity of
the explanation (as defined in Section 3.3), and € is a user-defined
threshold for fidelity. The purpose of the fidelity constraint is to en-
sure that the feature transformation remains faithful to the original
model (and, consequently, to the original explainer).

We now describe a particular instantiation of this framework
for manipulating continuous features via the bucketization feature
transformation. Suppose that a € R=? is a continuous feature. We
can define the feature transformation g : R20 {0,1,...,k} that
discretizes a into k buckets in the following way:

0, bp <a<by

1, b1 <a< bz
x(a) =1 . ()

K b1 <a<b

Where by < by < -+ < b are the upper-lower bounds for each
bucket. Based on the choices for the upper-lower bounds used to
define the cases of 7, applying the transformation 73 (a) can be

1595

used to induce a particular set of k partitions over the data D. Let Py
be the set of all k-partitions over D. Note that this occurs upstream
in our machine learning pipeline, so f will always be trained on
data with the transformed feature. Then our objective is:

min —SHAP_rank(a, f,D), s.t. by < --- < bp,A > €
kE{O,l,...,k},PEP“
3

We can solve this problem using Bayesian Optimization [24],
which is commonly used to solve black-box optimization problems
by constructing a posterior distribution of Gaussian functions that
best describe the unknown function to optimize. Bayesian Opti-
mization is particularly appropriate for this problem because it is
effective when the objective function is expensive to evaluate, as is
often the case with the function SHAP_rank.

5.2 Bucketization attack experiments

We now perform the data engineering attacks described in the pre-
vious section, which use Bayesian Optimization (BO) to tune bucket
boundaries when using age. Compared to equi-width bucketization,
we observe sharper changes in the SHAP rank of age, but also a
more substantial decrease in fidelity. (Although not shown here,
the comparison with equi-depth bucketization is very similar.)

The experimental results in this section are computed using 5-
fold cross-validation, with metrics averaged across folds. We report
results for both ACS Income and ACS Public Coverage.

For BO, we tune four bucket boundaries between fixed minimum
and maximum values. Using age, we set the minimum and maximum
values to be 17 and 94 years old, respectively. We then perform
300 iterations where the objective function is the same as Equation
(3). For the fidelity constraint, we require that the fidelity is at
least as good as that in the equi-width setting. As a result, the BO
attack significantly outperforms Base (no bucketization) and mostly
outperforms the equi-width setting. We conclude that BO thus may
be used to hide the contributions of age on model predictions.

Figure 8 shows how the importance rank of age changes when
varying the number of buckets (and thus the number of BO pa-
rameters) using ACS Income and Public Coverage. As the number
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Figure 8: SHAP value rank trends of the age feature on ACS In-
come and ACS Public Coverage. Higher average rank means
that feature has lower importance. Fidelity under attack is at
least as high as under equi-width bucketization in each case.

of buckets increases, our attack consistently shows comparable or
higher ranks compared to using the Base average rank, although the
gap decreases. The gap decrease is due to the difficulty in solving
high-dimensional BO problems. At the same time, the constraint
on fidelity ensures that our attack is always at least as meaningful
as the equi-width bucketization. Table 2 shows the fidelity values
of the attacks on age, with bucketization of Figure 8. Even when
the average rank of age drops dramatically, the fidelity values are
at least 88%.

When using race, BO cannot be performed on categorical values,
so we instead combine races for the bucketization attack as in Ta-
ble 1, but consider more combinations. Figure 9 shows the how the
rank of race changes on ACS Income and ACS Public Coverage. For
the {White+Black, Asian+Other} bucketization on both tasks, the
rank value of race is significantly higher (i.e., race is far less impor-
tant) compared to the Base strategy. We suspect that race=White
by itself is a strong signal when making predictions, but when
combined with another race into the same bucket, its importance
is diluted. Table 3 shows the fidelity values of the attacks on race
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Table 2: Fidelity values of bucketizations on age for ACS
Income and ACS Public Coverage.

Buckets ACS Income ACS Public Coverage

2 88.60 + 0.09 94.38 + 0.83
3 91.37 £ 0.26 95.99 + 0.13
4 92.39 + 0.21 96.95 £+ 0.03
5 93.15 + 0.13 96.85 + 0.04
6 94.67 + 0.08 97.25 £+ 0.03
7 94.59 + 0.04 97.43 £ 0.03
15
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Figure 9: SHAP value rank trends of the race feature using
the ACS Income and ACS Public Coverage datasets. Simply
combining two races into a single bucket dramatically in-
creases the average SHAP value rankings.

for the bucketizations of Figure 9. At least 98% of all explanations
have perfect fidelity (i.e., reconstruct the true outcome).

In summary, we showed that, on ACM Income and Public Cov-
erage, our BO attack mostly outperforms equi-width bucketization
in terms of increasing the SHAP ranks of age without compromis-
ing fidelity. Our attack is also effective when using race where we
combine races for bucketization. In particular, on ACS Public Cover-
age, combining White and Black individuals into a single category
brings the importance of race close to zero.
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Table 3: Fidelity value of bucketizations on race for ACS
Income and ACS Public Coverage.

Buckets ACS Income ACS Public Coverage
W, B+A+O 98.56 + 0.48 99.57 £ 0.09
W+B, A+O 98.10 = 0.10 98.00 + 0.19
W+A,B+O  99.16 + 0.09 99.65 + 0.10
W, B, A+O 99.72 + 0.01 99.67 + 0.10
W, A, B+O 99.65 = 0.05 99.74 + 0.09

6 Discussion

We note that any sociotechnical system that incorporates AI/ML
is not a monolith: it impacts many stakeholders, including prac-
titioners, compliance officers, auditors, affected individuals, and
society at large. In this section, we state the implications of our work
for practitioners and auditors seeking to ensure the responsible
implementation of AI/ML systems.

Our experimental results show that SHAP, one of the most
widely-used post-hoc explanation methods, is highly sensitive to
upstream data engineering decisions. Furthermore, we demonstrate
that a principled approach using Bayesian Optimization can exploit
this sensitivity to manipulate SHAP. Below, we discuss the practical
implications of this finding.

Practitioners. Our results further highlight the importance of
thoughtful feature engineering when building machine learning
pipelines, and of assessing how those decisions may impact the
accuracy, fairness, and explainability of the systems being built
and deployed [31]. Kamiran and Calders [21] and Zafar et al. [38]
showed that varying feature representations can affect the fairness
of a machine learning classifier. We expand on this result, show-
ing that these effects extend to model explainability—particularly
when using the post-hoc explanation method SHAP. Notably, this
recommendation can also be framed as an opportunity. In line with
earlier framing by Stoyanovich et al. [32], Bell et al. [4] showed that
the explainability of a system depends on the context of use, the
data, the underlying model type, the stakeholders, and the specific
questions a human is trying to answer about the system. Practition-
ers could use these factors to inform how they encode features to
improve the explainability of their pipelines.

Auditors. In this work, we showed how seemingly innocuous
decisions—such as the bucketization of the age feature—can be used
to manipulate the SHAP explainer. Our experiments demonstrate
that one can successfully reduce a feature’s apparent importance
while minimally impacting the explanation’s fidelity to the orig-
inal model’s outcomes. Importantly, such manipulation could be
exploited by adversarial actors to obscure discrimination in their
models. While developing a technical defense is beyond the scope
of this paper, we offer the following recommendation to auditors:
governance and audit frameworks for machine learning systems
should be expanded to account for data engineering decisions.

Limitations. This work has several limitations. While we do per-
form an attack on categorical features, it relies on predefined, se-
mantically meaningful groupings. More work is needed to develop
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methods for semi-automatically exploring the combinatorial space
of groupings, particularly for high-cardinality features. A naive
approach—exhaustively enumerating all bucketings to find the one
that most impacts the importance rank of race while preserving
model fidelity—is computationally infeasible. Future work should
develop principled techniques for navigating this space efficiently.

Another limitation is that we consider sensitive features in iso-
lation. Our experiments explore the sensitivity of explanations to
feature representations for age and race separately, with targeted
attacks designed independently for each. In practice, sensitive at-
tributes often interact—and their combined effects can influence
model behavior and interpretability. Future work should develop
holistic methods that jointly consider multiple sensitive features
for explainability and robustness.

7 Conclusions and future work

We explored how common data engineering techniques affect local
feature-based explanations from methods like SHAP, and showed
that subtle preprocessing choices can significantly alter explana-
tions. We also introduced a feature engineering attack that hides
the importance of protected features with minimal impact on pre-
dictions. Finally, we called for more robust explanation frameworks
that consider not only accuracy and fairness, but also the influence
of data engineering—especially in transparency-critical settings.

While our work highlighted SHAP’s sensitivity to common pre-
processing operations and their potential for misuse, the same
insights can be applied constructively. Instead of designing attacks,
similar techniques can inform data engineering choices that im-
prove the explainability and robustness of classification decisions.

For example, identifying preprocessing choices that consistently
elevate the importance of semantically meaningful features may
lead to models that better reflect human reasoning and are eas-
ier to audit. These insights could also support the development
of classifiers with greater control over the distribution of feature
importance. Future work should extend this approach to sets of
features—continuous, categorical, or mixed—and investigate how
thoughtful data engineering can help align model explanations with
stakeholder expectations. Finally, future research should examine
the impact of more complex data engineering transformations on
SHAP explanations.
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A Local explanations

Continuing from Section 1, we perform individual analyses to un-
derstand how the SHAP ranking of age can decrease for a sample
for the ACS Public Coverage dataset. Figure 10 shows how the age’s
SHAP ranking decreases for an individual. In (a), the age of the first
individual is 22, which can be viewed as a small value. Once the age
is bucketized into a range of ages, the value 22 is no longer special,
and the age’s SHAP value becomes negligible.

B Further analyses on ACS Income

Continuing from Section 4.1, we focus on individuals for whom
age is the highest-ranked (i.e., most important) feature and show

1599

Hwang et al.

the number of observations for which the rank of the age feature
increased, decreased, or did not change in Figure 11. Only a few
samples in the third bucket have age as the first rank.

C SHAP Ranking Sensitivity

Continuing from Section 4.1, we investigate how the SHAP ranking
sensitivity changes based on the confusion matrix position of data
points. Figure 12 shows that changes are not uniform across these
groups.
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(a) SHAP values before bucketization

(b) SHAP values after bucketizing age into 10 equally sized buckets

Figure 10: SHAP values of features before (a) and after (b) bucketization for a fixed observation from ACS Public Coverage.
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Figure 11: Frequency plot for different buckets of the age feature on ACS Income. Bucket boundaries are shown on the x-axis.
(a) Number of observations where age was the most important feature before bucketization, and where the relative importance
of age decreased (rank increased) after bucketization. (b) Number of observations where age was the most important feature
both before and after bucketization.
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Figure 12: SHAP ranking changes for the four outcomes where age was the highest-ranked feature as we change the number of

buckets in the ACS Income dataset.
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