
Transformation Groups

https://doi.org/10.1007/s00031-025-09902-6 Transformation Groups

Polynomial Functors on Flags

Teresa Yu
1

Received: 23 February 2024 / Accepted: 4 January 2025

char169 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer

Nature 2025

Abstract

We study generalizations of Schur functors from categories consisting of flags of

vector spaces. We give different descriptions of the category of such functors in terms

of representations of certain combinatorial categories and infinite rank groups, and

we apply these descriptions to study polynomial representations and representation

stability of parabolic subgroups of general linear groups.
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1 Introduction

Schur functors and polynomial functors are fundamental objects due to their ability to

translate properties across fields of math such as representation theory, commutative

algebra, algebraic geometry, and combinatorics [1, 2, 9, 19]. There has been recent

interest in studying variants of Schur functors from categories of linear algebraic

data, such as the category whose objects are vector spaces with symmetric bilin-

ear forms; these variants provide a new perspective for studying representations of

classical groups [15, 18, 25]. In this paper, we take a similar approach by studying

generalizations of Schur functors from categories where the linear algebraic data con-

sists of flags of vector spaces, and we use these functors to study representations of

parabolic subgroups of general linear groups.

1.1 Main Result

Throughout the paper, we work over the field C of complex numbers. In order to state

our main result, we introduce three categories. Each will be given the structure of a

tensor category, meaning it is linear and symmetric monoidal. Fix n ≥ 1.
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Let Flagn be the following category: an object {Vi } is a finite-dimensional complex

vector space V equipped with a flag 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V of length n, and a

morphism f : V → W is a linear map such that f (Vi ) ⊂ Wi for i ∈ [n] = {1, . . . , n}.

For a ≥ 0, there is a functor Fa : Flagn → Vec given by Fa({Vi }) = V ⊗a , where Vec

denotes the category of finite-dimensional complex vector spaces. We say a functor

Flagn → Vec is polynomial if it is a subquotient of a finite direct sum of Fa’s. The

tensor product of such functors is defined by tensoring their values, and it is again

polynomial.

Let GL =
⋃∞

i=1 GLi (C) be the infinite general linear group, and let V be the

defining representation. Equip V with a flag of length n where each graded piece is

also infinite-dimensional. Let Gn be the subgroup of GL preserving this flag; this

group can be identified with the group of invertible n × n block upper triangular

matrices, where each block is an element of End(C∞) =
⋃∞

i=1 End(Ci ) and blocks

along the diagonal are elements of GL. We call V along with the flag the standard

representation of Gn , and say a representation of Gn is polynomial if it appears as

a subquotient of a finite direct sum of tensor powers of V. The tensor product of

polynomial representations as complex vector spaces is again polynomial.

Let U (n) be the following category: an object is a finite set S equipped with a

weight function S → [n], and a morphism f : S → T is a bijection such that weights

are non-decreasing. A module over U (n) is a functor U (n) → Vec. A morphism

of U (n)-modules is a natural transformation of functors, and the tensor product of

U (n)-modules is defined by Day convolution (see Section 2.4 for a precise statement).

Our main result is the following.

Theorem 1.1 There is an equivalence among the following tensor categories:

• the category of polynomial functors Flagn → Vec;

• the category of polynomial representations of Gn;

• the category of finite length U (n)-modules.

The case with n = 1 recovers Schur–Weyl duality in the sense of the equivalence

among the categories of polynomial functors Vec → Vec, polynomial representations

of GL, and finite length FB-modules (see [21] for an overview of this equivalence).

Our result can therefore be seen as a generalization of Schur–Weyl duality for flags.

By studying U (n)-modules, we are able to describe many aspects for the other

models of the above category. In particular, the category is self-dual (despite not being

semisimple), all objects are of finite length and have both finite projective and injective

dimensions, and we give descriptions of all indecomposable projective and injective

objects. We also are able to compute the first Ext groups among simple objects and

describe left-exact tensor functors from the category.

1.2 Relation to OtherWork

1.2.1 The infinite symmetric group

Let FI(n) denote the category of [n]-weighted finite sets and injections such that the

weights are non-decreasing. When n = 1, this is the classical FI category [5]. An
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FI(n)-module is a functor FI(n) → Vec, and such functors are related to the infinite

symmetric group as follows.

Let R = C[x1, x2, . . .] denote the infinite polynomial ring; it has a natural action of

the infinite symmetric group S∞. There has been recent interest in studying modules

over R that are symmetric in the sense that they have a compatible action of S∞

[11–14]. Let hn = (xn
i : i ≥ 1) be the ideal of R generated by nth powers of

the variables. There is a natural functor from the category of FI(n)-modules to the

category of modules over R/hn+1 with a compatible S∞-action. In [27], we use the

results from this paper to study the category of FI(n)-modules; note in that paper, the

category U (n) is denoted by FB(n), and the group Gn is denoted by P. In future work,

we plan to apply this theory of FI(n)-modules to analyze the category of symmetric

R/hn+1-modules. Via the results in [14], understanding the category of symmetric

R/hn-modules for all n ≥ 1 is key to studying symmetric R-modules in general.

1.2.2 Representation Stability

The idea behind representation stability is to consider sequences of groups that are

naturally indexed in some way and to consider compatible representations of these

groups. It has been especially fruitful to study these as functors out of categories,

such as FI-modules for the study of symmetric groups, VI- and VIC-modules for

the study of general linear groups, and other variants of Schur functors for the study

of orthogonal and symplectic groups [5, 18, 25]. In this paper, a polynomial functor

Flagn → Vec corresponds to compatible representations of a sequence of parabolic

subgroups of finite rank general linear groups.

Representation stability can also be studied using representation theory of infinite

rank groups, as done in [22] with representations of groups such as infinite rank

orthogonal and sympletic groups. Such representations have also been studied from

the perspective of locally finite Lie algebras [6, 16, 17]. We also use this perspective

by considering representations of parabolic subgroups of the infinite general linear

group.

1.2.3 Brauer Categories and their Representations

A useful perspective for studying representations of infinite rank groups is through

representations of combinatorial or diagrammatic categories. In [22], the authors use

categories of various types of Brauer diagrams to study representations of different

infinite rank groups, such as algebraic representations of GL; many of the arguments

and ideas in this paper are similar to those in that paper. The same authors have also

begun to develop a more general theory for representations of Brauer categories in

[26].

The n = 2 case in this paper is particularly similar to the category of algebraic

representations of GL, which is equivalent to the category of modules over the upwards

walled Brauer diagram category [22, Corollary 3.2.12]. Let W =
⋃

d≥0 Cd be the

standard representation of GL. Algebraic representations of GL can also be described

in terms of certain representations of GL(W ⊕ W∗), where W∗ is the restricted dual.

Then the Lie algebra corresponding to the unipotent radical of the subgroup of block
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upper triangular matrices can be identified with W ⊗ W, while the corresponding Lie

algebra in our case can be identified with W ⊗ W∗.

1.2.4 Twisted Commutative Algebras and their Applications

Let n = 1, and consider the category of all (not necessarily of finite length) functors

U (1) → Vec. Then a commutative algebra object in the category is called a twisted

commutative algebra; over C, these are also GL-algebras. These algebras and their

modules have been well-studied [20, 23, 24], and have also been used to study various

notions of tensor rank and to give proofs of Stillman’s conjecture in commutative

algebra [3, 4, 7, 8].

1.3 Outline

The rest of the paper is organized as follows. In Section 2, we study the category of

U (n)-modules, and in Section 3, we study the category of polynomial representations

of Gn . In Section 4, we prove Theorem 1.1 and explicitly describe the equivalence of

categories, as well as give some immediate consequences.

1.4 Notation and Conventions

Fix n ≥ 1. We always work over the field C of complex numbers. We write a =

(a1, . . . , an) ∈ Nn for an n-tuple of nonnegative integers, and write |a| = a1+· · ·+an ;

the set of all such tuples is partially ordered by the dominance order. We let τ(a) =

(an, . . . , a1) denote the reverse tuple. We write λ = (λ1, . . . , λn) for an n-tuple of

partitions, where λi is a partition of |λi |.

Vec: the category of finite-dimensional complex vector spaces

Flagn: the category of finite-dimensional complex vector spaces

with flags of length n

A : the category of polynomial functors Flagn → Vec

G = Gn: the subgroup of GL of invertible n × n block upper

triangular matrices

Rep(G): the category of polynomial representations of G

L: the Levi subgroup of G

Ha, Ga: subgroups of G

V, {Vi }
n
i=0, V(i): the standard G-representation, its natural flag structure, and

graded pieces

U = Un,D: the categories of [n]-weighted finite sets and

non-decreasing/increasing bijections

ModU , ModD : the categories of finite length U - and D-modules

Mλ, Pa, Pλ, Ia, Iλ: objects of ModU
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Qa, Qλ, Ja, Jλ: objects of ModD

Sλ, Ta, Tλ, Ka, Ua, Uλ: objects of Rep(G)

Sλ(−): the Schur functor corresponding to the partition λ

Sa: the product of symmetric groups Sa1 × · · · × San

Ca: the flag 0 ⊂ Ca1 ⊂ Ca1+a2 ⊂ · · · ⊂ C|a|

2 Representations of Categories of Weighted Finite Sets

In this section, we study representations of certain combinatorial categories of

weighted finite sets. We refer the reader to [22, §2.1] and [26, §3] for further back-

ground on representations of combinatorial categories.

2.1 Preliminaries

Definition 2.1 The category of [n]-weighted finite sets and upwards bijections,

denoted U = Un , is the following category:

• The objects are [n]-weighted finite sets, i.e., finite sets S =
⊔n

i=1 Si where Si has

weight i ; an object is denoted by the n-tuple S = (S1, . . . , Sn).

• A morphism S → T is a bijection ϕ : S → T of sets such that weights do not

decrease, i.e., ϕ(Si ) ⊂
⊔n

j=i T j .

For an n-tuple of nonnegative integers a ∈ Nn , there is a weighted finite set

([a1], . . . , [an]), where [ai ] has weight i . Every object of U is isomorphic to a unique

such object. We will use a to denote both the tuple of integers and the corresponding

weighted finite set; context should clarify any confusion.

There is also the category of [n]-weighted finite sets and downwards bijections,

denoted D . Its definition is the same, except that a morphism is a bijection of finite

sets such that weights do not increase, and so D can naturally be identified with U op.

Both U and D have a symmetric monoidal structure 
 defined by disjoint union:

multiplication is defined by S 
 T = (S1 � T1, . . . , Sn � Tn), and the empty set ∅

is the unit object. The automorphism group of an object S in either category is the

product of symmetric groups Aut(S1) × · · · × Aut(Sn).

Definition 2.2 A U -module M is a functor U → Vec. A morphism of U -modules is

a natural transformation of functors.

For a morphism ϕ : S → T in U , we write ϕ∗ : M(S) → M(T ) to denote the

linear map M(ϕ).

A U -module M is of finite length if it is supported on finitely many objects of U up

to isomorphism. In this paper, we only consider finite length U -modules. Let ModU

denote the category of finite length U -modules. This is an abelian category. For U -

modules M and N , we write HomU (M, N ) for the space of morphisms M → N . We

also write HomU (S, T ) for the space of morphisms S → T for S, T ∈ U .

Analogous definitions and notation hold for modules over D .
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2.2 Duality

Given an U -module M , we define the D-module M∨ by M∨(S) = M(S)∗, where

(−)∗ denotes the dual vector space. This induces an exact functor (ModU )op →

ModD , which gives an equivalence of categories via the canonical isomorphism M →

(M∨)∨.

There is also a (covariant) equivalence of monoidal categories U ∼= D given by

changing the weights of elements from i to n − i + 1:

τ : S = (S1, . . . , Sn) �→ (Sn, Sn−1, . . . , S1).

A morphism ϕ : S → T in U also gives a morphism (Sn, . . . , S1) → (Tn, . . . , T1)

in D , since now ϕ does not increase weights. For an n-tuple a or λ, we also use τ(a)

or τ(λ) to denote the reverse tuple.

As a consequence, we have a covariant equivalence of categories ModU
∼= ModD

given by the pushforward and pullback of τ :

τ! : ModU → ModD , τ ∗ : ModD → ModU .

If M is a U -module, then τ!M is defined by τ!M(S1, . . . , Sn) = M(Sn, . . . , S1).

If ϕ : S → T is a morphism in D , then the linear map τ!M(S) → τ!M(T ) is defined

to be the map ϕ∗ = M(ϕ) : M(Sn, . . . , S1) → M(Tn, . . . , T1). The pullback τ ∗ is

defined similarly.

Proposition 2.3 The functors τ!, τ
∗ give an equivalence of categories ModU

∼=

ModD . In particular, this category is self-dual.

2.3 Simple, Projective, and Injective Modules

For a partition λ with |λ| = m, let Mλ denote the Specht module corresponding to λ;

this is a simple representation of Sm . Then, the simple U -modules and D-modules

are indexed by n-tuples of partitions λ = (λ1, . . . , λn), and are defined by

S �→

{

Mλ1 � · · · � Mλn if |λi | = |Si | for all i,

0 otherwise.

Here, � denotes the external tensor product. We let Mλ denote this simple module,

as well as the corresponding irreducible representation of Sa = Sa1 × · · · × San ,

where ai = |λi |.

We define the U -module Pa , called the principal projective at a, by Pa(T ) =

C[HomU (a, T )]. We define the U -module Ia , called the principal injective at a, by

Ia(T ) = C[HomU (T , a)]∗. Let M be a U -module. By [26, Proposition 3.2], we have

that

HomU (Pa, M) = M(a), HomU (M, Ia) = M(a)∗.
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In particular, the principal projectives are indeed projective objects, and the principal

injectives are injective objects.

We have that Sa acts on Pa and Ia by U -module automorphisms, and so for a tuple

of partitions λ with |λi | = ai for all i , we have U -modules Pλ and Iλ defined to be

the Mλ-isotypic pieces of Pa and Ia :

Pλ = HomSa
(Mλ, Pa), Iλ = HomSa

(Mλ, Ia).

Proposition 2.4 The module Iλ is an indecomposable injective, and its socle is Mλ.

Proof First, observe that Iλ is a direct summand of the injective Ia , and so it is injective

as well.

For a U -module M , we have that

HomU (M, Iλ) = HomSa
(M(a), M∗

λ).

In particular, taking M = Iλ, we see that EndU (Iλ) = HomSa
(Mλ, M∗

λ) = C,

where the last equality comes from working over C so Specht modules are self-dual.

We therefore have that there are no nontrivial idempotent endomorphisms of Iλ, and

so it is indecomposable.

To show that Mλ is the socle, it suffices to note that Mλ ⊂ Iλ; this can be seen by

HomU (Mλ, Iλ) = HomSa
(Mλ, M∗

λ) = C.

Then, Iλ is the injective hull of Mλ. �

Proposition 2.5 The module Pλ is an indecomposable projective, and it is the projec-

tive cover of Mλ.

Proof It is a direct summand of the projective Pa , and so it is projective as well. We

have that

EndU (Pλ) = HomSa
(Mλ, Pλ(a)) = HomSa

(Mλ, Mλ) = C,

and so Pλ is indecomposable.

There is a surjection Pλ → Mλ, since

HomU (Pλ, Mλ) = HomSa
(Mλ, Mλ) = C.

Therefore, by [10, Lemma 3.6], the surjection is a projective cover. �

Corollary 2.6 (1) The U -modules Iλ form a complete irredundant set of indecompos-

able injectives in ModU , and the U -modules Pλ form a complete irredundant set

of indecomposable projectives in ModU .

(2) Every object in ModU has finite injective and projective dimension.
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Proof (1) This follows from all simples being of the form Mλ.

(2) Suppose a = (|λ1|, . . . , |λn|). The quotient Iλ/Mλ is supported on weighted

finite sets b such that |a| = |b| and b > a under the dominance order, and the kernel of

the surjection Pλ → Mλ is supported on weighted finite sets c such that |a| = |c| and

c < a. There are only finitely many such sets b and c. Thus, any U -module has a finite

injective resolution given by finite direct sums of indecomposable injectives, and a

finite projective resolution given by finite direct sums of indecomposable projectives.�

The above definitions and results also hold for D-modules; we denote the corre-

sponding projective modules by Qa, Qλ, and the injective modules by Ja, Jλ. Under

the equivalence of categories (ModU )op ∼= ModD , we have that (Pa)∨ = Ja

and (Ia)∨ = Qa . Under the equivalence of categories ModU
∼= ModD , we have

Pa = Qτ(a) and Ia = Jτ(a). The analogous identifications hold for the indecompos-

able injective and projective objects.

2.4 Tensor Products

Using the monoidal structure 
 of U , one can define a tensor product of U -modules

(and analogously of D-modules) as follows. Let M, N be U -modules. We define

M ⊗ N by

(M ⊗ N )(U ) =
⊕

U=S
T

M(S) ⊗C N (T ), (1)

where U , S, T are weighted sets, and the weights of S, T are induced from those of

U .

The following lemma shows how this tensor product works on principal projectives.

For a, b ∈ Nn , let a + b = (a1 + b1, . . . , an + bn). Note that this is isomorphic to

a 
 b as weighted sets.

Lemma 2.7 For a, b ∈ Nn , there is a natural isomorphism Pa ⊗ Pb
∼= Pa+b.

Proof Let U ∈ U be a weighted finite set. Given a morphim ϕ : a + b → U

in U , one obtains morphisms ϕ1 : a → S, ϕ2 : b → U \ S by restricting ϕ

via the natural identification a + b = a 
 b. On the other hand, given morphisms

ψ1 : a → S, ψ2 : b → T such that S 
 T = U , one obtains a unique morphism

ψ : a 
 b → S 
 T = U . In particular, we have

C[HomU (a + b, U )] =
⊕

U=S
T

C[HomU (a, S)] ⊗ C[HomU (b, T )]

as vector spaces.

Furthermore, this identification is natural in the sense that if σ : U → V is a

morphism in U , then the maps Pa+b(U ) → Pa+b(V ) and (Pa ⊗ Pb)(U ) → (Pa ⊗

Pb)(V ) agree. Thus, we have the desired isomorphism of U -modules. �

By (1), this tensor product is exact in each variable. In particular, it is right-exact,

and so since it satisfies the property on tensor products of principal projectives in
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Lemma 2.7, this tensor product agrees with Day convolution, or the convolution tensor

product defined in [22, (2.1.14)]. Therefore, this tensor product naturally gives ModU

the structure of a tensor category with unit object P∅. Note also that the equivalence

ModU
∼= ModD given by τ is one of tensor categories.

2.5 Structured Hom Spaces and Tensor Products

We now give two constructions using U -modules and D-modules. They will be used

in Section 4 to describe the equivalence of categories ModU
∼= Rep(G), as well as to

give a universal property for this category.

Let C be an abelian category such that objects have an underlying vector space

structure (such as C = Rep(G)), and let K be a functor U → C . For a U -module

M , we define an object Hom(M,K) of C , called the structured Hom space, as

Hom(M,K) = lim
f :S→T

Hom(M(S),K(S)),

where Hom(M(S),K(S)) is the space of linear maps and the inverse limit is over

morphisms in U . Note that this is a finite limit since M is of finite length and U

decomposes into finite directed categories, and so this Hom space always exists.

More explicitly, the structured Hom space is the object in C defined by the following

mapping property. To give a morphism f : A → Hom(M,K) in C is the same as

giving morphisms fS : A → Hom(M(S),K(S)) for all S ∈ U such that for any x ∈ A

and morphism α : S → T in U , we have that the following diagram commutes:

M(S)
fS(x)

α∗

K(S)

α∗

M(T )
fT (x)

K(T )

The next result follows immediately from the universal property.

Lemma 2.8 We have an identification Hom(Pa,K) = K(a).

Another useful property regarding this construction is the following. There is a

functor C → ModU defined by

N �→ (S �→ HomC (N ,K(S));

we denote the resulting U -module by HomC (N ,K). Then by [22, Proposition 2.1.10],

the functor M �→ Hom(M,K) is adjoint on the right to this functor:

HomU (M, HomC (N ,K)) = HomC (N , Hom(M,K)).
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There is a covariant version of the structured Hom construction. If M is a D-module,

then we define the structured tensor product M � K to be

M � K = Hom(M∨,K).

It can also be defined by an inverse limit; see [22, (2.1.9)]. By [22, Proposition

2.1.16], we have that the functors

ModU → C : M �→ Hom(M,K),

ModD → C : N �→ N � K

are both tensor functors.

3 Representations of Infinite Rank Parabolic Subgroups

Recall that V is the infinite-dimensional vector space with the flag 0 = V0 ⊂ V1 ⊂

· · · ⊂ Vn = V where V(i) = Vi/Vi−1 is also infinite dimensional. Let G = Gn

denote the parabolic subgroup of GL(V) fixing this flag, and recall that a polynomial

representation of G is a representation that can be realized as a subquotient of a finite

direct sum of tensor powers of the standard representation V. In this section, we analyze

the category Rep(G) of polynomial representations of G.

Throughout this section, we utilize the representation theory of the Levi subgroup

L of G. The Levi subgroup consists of the block diagonal matrices of G, and so

L ∼=
∏n

i=1 GL. Many of the arguments in this subsection are similar to those in [22],

e.g., their argument that the category of polynomial representations of the infinite

orthogonal group is equivalent to the upwards Brauer category in [22, §4.2].

3.1 Action of the EndomorphismMonoid

Let V be a polynomial representation of G, and let ρ : G → GL(V ) denote the map

giving the G-action. Then, after picking a basis for V , the entries of ρ can be expressed

in terms of polynomials.

Let End(V) denote the monoid of endomorphisms of V preserving the flag structure,

so an element is a linear map f : V → V such that f (Vi ) ⊂ Vi . Then, any polynomial

representation V of G also has an action of End(V) via the polynomial entries of the

map ρ. Furthermore, if V → W is a map of polynomial G-representations, then the

map is equivariant with respect to the End(V)-actions on V and W .

3.2 Invariants and Specialization

Let a ∈ Nn . Let Ha denote the subgroup of G consisting of block diagonal matrices

such that the (i, i) block is of the form

(

1 0

0 ∗

)

,
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where the top left block is ai × ai and the bottom right block is (∞− ai )× (∞− ai ).

Note that Ha
∼= L, the Levi subgroup of G. Let Ga denote the subgroup of G consisting

of matrices where the (i, j) block is of the form

(

∗ 0

0 1

)

if i = j,

(

∗ 0

0 0

)

if i < j,

where the top left block is ai ×a j and the bottom right block is (∞−ai )×(∞−a j ) in

both cases. We have that Ga commutes with Ha , and so if V ∈ Rep(G), then V Ha is a

representation of Ga . Let Rep(Ga) denote the category of polynomial representations

of Ga .

Lemma 3.1 Taking Ha-invariants induces a tensor functor Rep(G) → Rep(Ga).

Proof For n = 1, this follows from the fact that taking such invariants for a polynomial

GL-representation is a tensor functor [22, Proposition 3.4.4]. For general n, we have

that a polynomial G-representation is also a polynomial
∏n

i=1 GL-representation by

restricting to the action of the Levi subgroup L. The result then follows by considering

taking Ha-invariants as a functor from the n-fold product of the category of polynomial

GL-representations.

3.3 Principal Objects

For an n-tuple a ∈ Nn , we define the polynomial G-representations Ta and Ua by

Ta =

n
⊗

i=1

(V/Vi−1)
⊗ai , Ua =

n
⊗

i=1

V
⊗ai

i .

After showing the equivalence of categories in Section 4, it will follow that Ta is

injective and Ua is projective.

For a morphism ϕ : a → b in U , there is a corresponding map of G-representations

Ta → Tb defined as follows. A tensor factor V/Vi−1 of Ta corresponds to an element

x of weight i in a, and ϕ(x) has weight j in b for some j ≥ i . Then surject V/Vi−1

onto the tensor factor V/V j−1 corresponding to ϕ(x).

Now, define the polynomial G-representation Ka by

Ka =
⋂

ker(Ta → Tb),

where the intersection ranges over all non-isomorphisms in U . This intersection is

finite, as the only such morphisms are if |a| = |b| with a > b.

Lemma 3.2 Fix a ∈ Nn .

(1) TheU -module given by b �→ HomG(Ta, Tb) is equal to Pa = (Ja)∨. In particular,

HomG(Ta, Tb) �= 0 if and only if |a| = |b| and a ≥ b. When |a| = |b|,

dim(HomG(Ta, Tb))=b1!b2! · · · bn !

n−1
∏

i=1

(

(a1+· · · + ai )−(b1+· · ·+bi−1)

bi

)

.
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(2) Ka =
⊗n

i=1 V
⊗ai

(i) .

Proof (1) We first show that HomG(Ta, Tb) = C[HomU (a, b)]. Let {ei, j } j≥1 be a

basis for V(i). Then Ta is generated as a G-module by x = en,1 ⊗ · · · ⊗ en,|a |; this

element has weight (0n−1, 1|a|) under the L-action. If |a| �= |b|, then there is no weight

space in Tb of this weight, and so there are no nonzero maps Ta → Tb.

Now assume |a| = |b| with a � b. Suppose for contradiction ϕ : Ta → Tb is a

nonzero map. Up to a scalar, the image of x must be of the form ϕ(x) = en,σ−1(1) ⊗

· · ·⊗ en,σ−1(|a|), where σ ∈ S|a|. Then for some i, j with 1 ≤ i < j ≤ n, there exists

k with

b1 + · · ·+ bi−1 < k ≤ b1 + · · ·+ bi , a1 + · · ·+ a j−1 < σ−1(k) ≤ a1 + · · ·+ a j .

Let g ∈ G be the element with I ’s along the diagonal, and e1,σ−1(k) in the (i, n)-

block. Then gx − x = 0 in Ta , while ϕ(gx − x) = gϕ(x) − ϕ(x) �= 0 in Tb, since

g(en,σ−1(k)) = ei,1 + en,σ−1(k). Thus, such a nonzero ϕ cannot exist.

Now suppose |a| = |b| with a ≥ b. A nonzero map ϕ : Ta → Tb must send x to

an element of the form (up to scalar) en,σ−1(1) ⊗ · · · ⊗ en,σ−1(|a|) for some σ ∈ S|a|.

In addition, we must have that σ−1([b1 + · · · + bi ]) ⊂ [a1 + · · · + ai ] for each

i = 1, . . . , n. This is because there are no nonzero maps V/V j−1 → V/Vi−1 for

i < j by the above argument. Thus, ϕ is determined by the morphism σ : a → b in

U . Furthermore, if π : b → c is a morphism in U , then π∗◦ϕ : Ta → Tc corresponds

to the morphism π ◦ σ in U . This identifies the U -module b �→ HomG(Ta, Tb) with

the principal projective Pa .

(2) Let j ∈ [n − 1], and let b = (a1, . . . , a j−1, 0, a j + a j+1, a j+2, . . . , an). Then

the kernel of the surjection ϕ j : Ta → Tb is

⎛

¿

j−1
⊗

i=1

(V/Vi−1)
⊗ai

À

⎠ ⊗ V
a j

( j) ⊗

⎛

¿

n
⊗

i= j+1

(V/Vi−1)
⊗ai

À

⎠ .

Thus, Ka ⊂
⋂

j ker ϕ j =
⊗n

i=1 V
⊗ai

(i) .

The vector

v = e1,1 ⊗ · · · ⊗ e1,a1 ⊗ · · · ⊗ en,1 ⊗ · · · ⊗ en,an

generates
⊗n

i=1 V
⊗ai

(i) as a G-module, and v has weight (1a1 , . . . , 1an ). For any Tb

with a > b, there is no weight space with this weight, so
⊗n

i=1 V
⊗ai

(i) ⊂ Ka . �

Remark 3.3 If a > b > c with |a| = |b| = |c|, then any morphism f : a → c in U

factors through a morphism g : a → b. In particular, ker(Ta → Tb) ⊂ ker(Ta → Tc),

and so Ka can equivalently be given by
⋂

ker(Ta → Tb), where a > b is a cover

relation in the dominance order.

3.4 Simple Representations

Recall that L ∼=
∏n

i=1 GL denotes the Levi subgroup of G, and let U = G/L denote the

unipotent radical. There is a surjection of groups G → L, so every simple L-module
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pulls back to a simple G-module. The simple L-modules are indexed by tuples of

partitions λ, and we denote them by Sλ:

Sλ = Sλ1(V(1)) ⊗ · · · ⊗ Sλn (V(n)),

where Sλi (−) denotes the Schur functor corresponding to the partition λi . The fact that

these are the simple L-modules follows from all simple polynomial representations

of GL being of the form Sλ(C
∞) for a partition λ (see, e.g., [21, §5]). We now show

that the Sλ’s are precisely the simple polynomial representations of G.

Proposition 3.4 Every simple object of Rep(G) is of the form Sλ.

Proof It suffices to show that every simple constituent of Ta is of the form Sλ. We have

an exact sequence

0 → Ka → Ta →
⊕

a→b

Tb, (2)

where the direct sum is over all non-isomorphisms in U with |a| = |b| and a > b a

cover relation. By Lemma 3.2, the action of G on Ka is given by the action of L. The

simple constituents of Ka are therefore given by its decomposition as a L-module, so

they are of the form Sλ.

Among the set {b : |a| = |b|}, the tuple (0, . . . , 0, |a|) is minimal in the dominance

order, and T(0,...,0,|a|) = (V(n))
⊗|a| has simple factors given by Sλ(V(n)). Thus, by

induction, the simple constituents of Ta are of the form Sλ as well. �

Corollary 3.5 A polynomial G-representation V is semisimple if and only if U acts

trivially on V .

Proof If V is semisimple, then since U acts trivially on each simple decomposition

factor of V , U acts trivially on V . If U acts trivially on V , then the action of G is given

by the action of L, and so V is semisimple. �

Corollary 3.6 The socle of Ta is Ka .

Proof By Lemma 3.2, Ka is semisimple. Any submodule of Ta properly containing

Ka has a nontrivial U-action, and so by Corollary 3.5, Ka is the maximal semisimple

submodule of Ta .

3.5 Injectives and Projectives

Let λ be an n-tuple of partitions and let a = (|λ1|, . . . , |λn|). Define the G-module Tλ

by Tλ = HomSa
(Mλ, Ta). This is therefore equal to

Tλ = Sλ1(V) ⊗ Sλ2(V/V1) ⊗ · · · ⊗ Sλn (V/Vn−1).

Similarly, define the G-module Uλ by Uλ = HomSa
(Mλ, Ua), so it is equal to

Uλ = Sλ1(V1) ⊗ Sλ2(V2) ⊗ · · · ⊗ Sλn (Vn).
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It will follow from the equivalence of categories Rep(G) ∼= ModU that the Tλ’s

constitute a complete irredundant set of indecomposable injectives and that the Uλ’s

constitute a complete irredundant set of indecomposable projectives.

4 Equivalence of the Categories

In this section, we prove the main theorem (Theorem 1.1) on the equivalence of tensor

categories. We then give some consequences of the equivalence, including computing

Ext1 groups among the simple objects and describing a universal property.

4.1 Equivalence Between Rep(G) andModU

Recall the representations Ta ∈ Rep(G) defined in Section 3.3. These representations

define a functor T : U → Rep(G) given by a �→ Ta .

Proposition 4.1 We have a covariant equivalence of tensor categories ModU →

Rep(G).

Proof We first show that ModD is covariantly equivalent to Rep(G). Recall from Sec-

tion 2.5 that the structured tensor product M �→ M � T defines a tensor functor

ModD → Rep(G). By [22, Corollary 2.1.12], to show that this functor is an equiva-

lence, it suffices to prove the following:

(1) For any λ with a = (|λi |), the polynomial G-representation HomSa
(Mλ, Ka) is

simple.

(2) For every simple object Sλ of Rep(G), there exists a unique tuple a such that

HomG(Sλ, Ta) is nonzero.

By Lemma 3.2,

HomSa
(Mλ, Ka) = Sλ1(V(1)) ⊗ · · · ⊗ Sλn (V(n)) = Sλ.

By Lemma 3.6, Sλ is a submodule of Ta if and only if a = (|λ1|, . . . , |λn|).

The covariant equivalence ModU
∼= Rep(G) now follows from Proposition 2.3.�

We explicitly describe the equivalence using the constructions from Section 2.5.

The equivalence with ModD is given by the functors

ModD → Rep(G) : M �→ Hom(M∨,T ) = M � T ,

Rep(G) → ModD : V �→ HomG(V ,T )∨.

Let F : ModU → Rep(G) and G : Rep(G) → ModU be the composition of

these functors with τ! and τ ∗ respectively. Then F ,G give the equivalence ModU
∼=

Rep(G).

Lemma 4.2 For any i = 1, . . . , n, let ei denote the tuple with 1 in the i th position and

0’s elsewhere. Then there is a natural isomorphism Hom(Iei
,T ) = Vi .
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Proof Let V be an object of Rep(G). By the mapping property, giving a map V →

Hom(Iei
,T ) is the same as giving maps f j : V → Hom(Iei

(e j ), V/V j−1) for

j = 1, . . . , n such that the necessary relations hold. In particular, the maps f j are

determined by f1, and since Iei
(e j ) = 0 for j > i , giving the map f1 is the same

as giving a map V → ker(V � V/Vi ) = Vi . Thus, Vi satisfies the same universal

property as Hom(Iei
,T ), which gives the desired identification. �

Lemma 4.3 For a, λ, we have

F(Ia) = Tτ(a), F(Iλ) = Tτ(λ), F(Pa) = Uτ(a), F(Pλ) = Uτ(λ).

Proof We have that F(Ia) = Hom(Pτ(a),T ) = T (τ (a)) = Tτ(a) by Lemma 2.8.

We also have that F(Pei
) = Hom(Ien−i+1

,T ) = Vn−i+1 by Lemma 4.2. Then since

Pa =
⊗n

j=1 P
⊗a j
e j

and F is a tensor functor, we see that F(Pa) = Uτ(a).

The other equalities follow from taking Mλ-isotypic pieces of Ia and F(Mλ) =

Sτ(λ)-isotypic pieces of Tτ(λ), and similarly for the projective objects. �

4.2 Category of Polynomial Functors on Flags

Let A denote the category of polynomial functors Flagn → Vec. In this subsection,

we show that objects of A correspond to sequences of representations of parabolic

subgroups of general linear groups that stabilize. This will be used to show the equiv-

alence A ∼= Rep(G).

Suppose that F ∈ A . For any tuple a of nonnegative integers, let Ca denote the

following flag:

0 ⊂ Ca1 ⊂ Ca1+a2 ⊂ · · · ⊂ C|a|.

Note that every object in Flagn is isomorphic to a unique such Ca . We have that

F(Ca) is a representation of the parabolic subgroup Ga ⊂ GL(C|a|) of n × n block

upper triangular matrices, where the (i, j)-block has dimension ai ×a j . Note that this

group is isomorphic to the group Ga defined in Section 3.2. Furthermore, if F → F ′

is a morphism in A , then the linear map F(Ca) → F ′(Ca) is Ga-equivariant.

If a, b ∈ Nn with ai ≤ bi for all i , there is a natural morphism ι : Ca → Cb in

Flagn given by inclusion on each graded piece of the flags. Notice that this morphism

splits, and so if F ∈ A , then F(ι) : F(Ca) → F(Cb) is an injective Ga-equivariant

linear map, where Ga ⊂ Gb is naturally a subgroup via ι. Such maps form a directed

system, and so one can consider the direct limit lim
−→

F(Ca). For any j � 0, there exists

one of these natural injections Ca → C( jn), where ( jn) = ( j, . . . , j); therefore, one

can equivalently consider the direct limit lim
−→

F(C( jn)).

Lemma 4.4 If F ∈ A , then lim
−→

F(C( jn)) is a polynomial representation of G.

Proof Recall that Fa ∈ A is the functor {Vi } �→ V ⊗a . We have that lim
−→

Fa(C( jn)) ∼=

V⊗a . The result then follows from direct limits being exact. �



T. Yu

4.3 Equivalence Between Rep(G) andA

We now show that Rep(G) ∼= A . By Lemma 4.4, there is a functor � : A → Rep(G)

given by F �→ lim
−→

F(C( jn)). Note that � is a tensor functor since it is defined using

a direct limit.

We now define a functor � : Rep(G) → A . Recall the subgroups Ha and Ga of G

defined in Section 3.2. For a polynomial G-representation V , define �(V )(Ca) = V Ha

to be the Ha-invariants of V . This is a representation of Ga , since Ga commutes

with Ha . As with �, this functor takes polynomial G-representations to polynomial

functors. Suppose f : Ca → Cb is a morphism in Flagn . There is an element g f in

End(V) extending f such that g f restricts to f on Ca and such that for any h ∈ Hb,

there exists an h′ ∈ Ha such that the action of h ◦ g f on the standard representation V

is equal to the action of g f ◦ h′. This shows that if V is a polynomial representation of

G, the image of V Ha from the induced action of g f on V is contained in V Hb . Define

the morphism �(V )( f ) in Vec by the action of g f on V . By Lemma 3.1, � is a tensor

functor.

Lemma 4.5 (�,�) is an adjoint pair and the counit �� → id is an equality.

Proof Let F be an object of A , and V an object of Rep(G). Suppose f : �(F) → V

is a G-equivariant map. For any a, there is a canonical Ga-equivariant map F(Ca) →

�(F), and composing with f and then taking Ha-invariants induces a Ga-equivariant

map fa : F(Ca) → V Ha . These maps are compatible with all maps induced by

morphisms in Flagn since f is equivariant under the action of End(V). We therefore

obtain a morphism F → �(V ) in A .

Conversely, suppose g : F → �(V ) is a map in A , and apply � to obtain

�(g) : �(F) → �(�(V )). Note that �(�(V )) = V , since every element of V is

invariant under H( jn) for j � 0. This gives a map �(F) → V , and one can check that

this construction is inverse to the one above. The claim that the counit is an equality

also follows. �

Proposition 4.6 The functors �,� give an equivalence of tensor categories A ∼=

Rep(G).

Proof It suffices to show that both �,� are fully faithful. The isomorphism �� → id

shows that � is fully faithful.

We claim � is faithful. Fix a, and let F ∈ A . Then for any j � 0, there is a natural

morphism ι j : Ca → C( jn) in Flagn that splits, and so F(ι j ) is injective. Furthermore,

the ι j maps are equivariant with the inclusions C( jn) → C(( j+1)n). We therefore

have an injection F(Ca) → �(F) = lim
−→

F(C( jn)). Now, suppose f : F → G is a

morphism in A . We then obtain the following commutative square with vertical maps

that are injections:

F(Ca)
f (Ca)

G(Ca)

�(F)
�( f )

�(G)
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Thus, if �( f ) = 0, then f = 0 and so � is faithful.

We now show � is full. Suppose f : M → N is a map in Rep(G), and let g = �( f ).

Then �(g) = ��( f ) = f , since �� = id. �

4.4 Consequences of the Equivalence

We now list some immediate consequences of the equivalence of categories.

Proposition 4.7 Consider the category A of polynomial functors Flagn → Vec. Let

{Vi } denote the object V in Flagn with flag 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V .

(1) The functor Fλ : {Vi } �→
⊗n

i=1 Sλi (Vi/Vi−1) is simple, and such functors con-

stitute a complete irredundant set of simple objects in A .

(2) The injective envelope and projective cover of Fλ are

{Vi } �→

n
⊗

i=1

Sλi (Vn/Vi−1), {Vi } �→

n
⊗

i=1

Sλi (Vi ).

(3) Polynomial functors Flagn → Vec are of finite length, and have finite injective

and projective dimensions.

(4) A is self-dual.

Proposition 4.8 Consider the category Rep(G) of polynomial representations of G.

(1) The G-modules Ta and Tλ are injective.

(2) Tλ is the injective envelope of Sλ, and the Tλ’s constitute a complete irredundant

set of indecomposable injective objects in Rep(G).

(3) The G-modules Ua and Uλ are projective.

(4) Uλ is the projective cover of Sλ, and the Uλ’s constitute a complete irredundant

set of indecomposable projective objects in Rep(G).

(5) All objects are of finite length, and have finite injective and projective dimensions.

(6) Tensor powers of the standard representation V⊗a are both projective and injec-

tive.

(7) The category Rep(G) is self-dual.

4.5 Extensions of Simples

In this subsection, we compute the first Ext groups between simples objects.

Lemma 4.9 Let λ,μ be tuples of partitions with a = (|μi |) and b = (|λi |). If

Ext1G(Sλ, Sμ) �= 0, then it must be that |a| = |b| and a > b is a cover relation.

Proof Recall from (2) that we have the exact sequence

0 → Ka → Ta →
⊕

f :a→c

Tc,
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where |a| = |c| with a > c a cover relation. Then, take the Mμ-isotypic piece of this

sequence to obtain the exact sequence 0 → Sμ → Tμ → T , where T is a summand

of
⊕

Tc. In particular, T is injective and if Tλ is a summand of T , then it must be that

|a| = |b| and a > b is a cover relation. �

We now give the formula for the first Ext groups by examining projective D-

modules. For partitions λ,μ, we say that λ/μ ∈ HS1 if μ ⊂ λ as Young diagrams and

their difference is a single box.

Proposition 4.10 Let λ,μ be tuples of partitions with a = (|μi |) and b = (|λi |). We

have Ext1G(Sλ, Sμ) �= 0 if and only if

(1) |a| = |b| and a > b is a cover relation where ai − 1 = bi ,

(2) μ j = λ j for j �= i, i + 1, and

(3) μi/λi and λi+1/μi+1 are both in HS1.

In this case, its dimension is 1.

Proof First suppose λ,μ satisfy the three conditions. Consider the simple D-module

Mλ, which has projective cover Qλ. Then, if Q• → Mλ → 0 is the projective

resolution of Mλ, we have that Q0 = Qλ. We now determine the multiplicity of Qμ

in Q1.

We have that the kernel of Qλ � Mλ evaluated on the weighted set a is given by

first restricting Mλ as a representation of Sb to a representation of the subgroup

Sb1 × · · · × Sbi
× S1 × Sbi+1−1 × Sbi+2

× · · · × Sbn ,

via Sbi+1−1 ×S1 ⊂ Sbi+1
, and then inducting to Sa via Sbi

×S1 ⊂ Sai
. By Pieri’s

rule, Mμ appears with multiplicity one. Since a > b is a cover relation, the projective

cover of Mμ must appear in Q1, and it appears with multiplicity one. Therefore,

Ext1
D

(Mλ, Mμ) = Ext1G(Sλ, Sμ) has dimension 1.

By Lemma 4.9, if condition (1) is not satisfied, then Ext1G(Sλ, Sμ) = 0. Now, if

condition (1) holds but conditions (2) and (3) are not satisfied, then Mμ does not appear

in the decomposition of Qλ(a), and so there is no map from Qμ → Qλ. Therefore,

Ext1G(Sλ, Sμ) = 0 in this case as well. �

An interesting problem is to construct the minimal projective or injective resolution

for simple objects in our category, and to then compute all higher Ext groups among

simple objects. We expect any formulas for such groups will involve Littlewood–

Richardson coefficients.

4.6 Universal Property

Using arguments similar to those in [22, §3.4], we now describe left-exact tensor

functors from the category ModD to an arbitrary abelian tensor category C . By pre-

composing with the pushforward τ! : ModU → ModD , this also describes left-exact
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tensor functors from ModU . The model for these functors is the one ModD → Rep(G)

described in Section 4.1 given by the structured tensor product with the functor T .

Let T (C ) be the category whose objects consist of an object A of C along with a

sequence of morphisms

A = A1 → A2 → · · · → An .

We denote this object by {Ai }. Given {Ai } ∈ T (C ), define K({Ai }) to be the functor

U → C given by

a �→

n
⊗

i=1

A
⊗ai

i .

A morphism ϕ : a → b in U defines a morphism in C given by mapping the tensor

factors according to ϕ and using the morphisms specified by {Ai }. One should view

this as a generalization of the functor T : U → Rep(G) giving injective objects in

Rep(G), where the sequence of morphisms are the surjections

V → V/V1 → · · · → V/Vn−1.

Proposition 4.11 To give a left-exact tensor functor ModD → C is equivalent to

giving an object of T (C ).

Proof Let LEx(ModD ,C ) denote the category of left-exact tensor functors ModD →

C . We have a functor � : LEx(ModD ,C ) → T (C ) defined as follows. Let F ∈

LEx(ModD ,C ). Recall that there are natural maps Je1 → Je2 → · · · → Jen , where

ei denotes the n-tuple with 1 in the i th position and 0’s elsewhere. Then {F(Jei
)} gives

an object in T (C ). We also have a functor � : T (C ) → LEx(ModD ,C ) given by

{Ai } �→ (N �→ N � K({Ai }).

By the construction of the structured tensor product, it gives a left-exact tensor functor.

We show that � and � are mutually quasi-inverse equivalences.

Let {Ai } be an object of T (C ). Then applying the functor �({Ai }) to Jei
, we obtain

Jei
�→ Jei

� K({Ai }) = Hom(Pei
,K({Ai })) = Ai .

Thus, ��({Ai }) = {Ai }, and so the natural morphism id → �� is an equality.

Now suppose F ∈ LEx(ModD ,C ). Applying ��, we obtain the functor ModD →

C given by

N �→ N � K({F(Jei
)}) = N � F(K({Jei

})) = F(N � K({Jei
})),

where the first equality follows from F being a tensor functor, and the second equality

comes from F being left-exact and � being an inverse limit. It therefore suffices to

show that N � K({Jei
}) = N .
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Let M be a D-module. Then

HomD (M, N � K({Jei
}) = HomD (M, Hom(N∨,K({Jei

})))

= HomU (N∨, HomD (M,K({Jei
})));

the second equality comes from the structured Hom being an adjoint functor, as

described in Section 2.5. We have that

HomD (M,K({Jei
})(a)) = HomD (M, Ja) = M∨(a).

In particular, HomD (M,K({Jei
})) = M∨ as U -modules, and so

HomD (M, N � K({Jei
})) = HomU (N∨, M∨) = HomD (M, N ).

Thus, we see that N � K({Jei
}) = N , and this completes the proof. �
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