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Abstract

We study generalizations of Schur functors from categories consisting of flags of
vector spaces. We give different descriptions of the category of such functors in terms
of representations of certain combinatorial categories and infinite rank groups, and
we apply these descriptions to study polynomial representations and representation
stability of parabolic subgroups of general linear groups.
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1 Introduction

Schur functors and polynomial functors are fundamental objects due to their ability to
translate properties across fields of math such as representation theory, commutative
algebra, algebraic geometry, and combinatorics [1, 2, 9, 19]. There has been recent
interest in studying variants of Schur functors from categories of linear algebraic
data, such as the category whose objects are vector spaces with symmetric bilin-
ear forms; these variants provide a new perspective for studying representations of
classical groups [15, 18, 25]. In this paper, we take a similar approach by studying
generalizations of Schur functors from categories where the linear algebraic data con-
sists of flags of vector spaces, and we use these functors to study representations of
parabolic subgroups of general linear groups.

1.1 Main Result
Throughout the paper, we work over the field C of complex numbers. In order to state

our main result, we introduce three categories. Each will be given the structure of a
tensor category, meaning it is linear and symmetric monoidal. Fix n > 1.

B Teresa Yu
twyu@umich.edu; https://sites.google.com/view/teresayu

1 Department of Mathematics, University of Michigan, Ann Arbor, MI, USA

Published online: 10 January 2025 ) Birkhauser


http://crossmark.crossref.org/dialog/?doi=10.1007/s00031-025-09902-6&domain=pdf
http://orcid.org/0000-0002-8943-5013

T.Yu

Let Flag,, be the following category: an object {V;} is a finite-dimensional complex
vector space V equipped withaflag0=Vy C Vi C --- C V,, = V of length n,and a
morphism f : V — W isalinear map such that f(V;) C W; fori € [n] = {1, ..., n}.
For a > 0, there is a functor F, : Flag, — Vec givenby F,({V;}) = V®4_ where Vec
denotes the category of finite-dimensional complex vector spaces. We say a functor
Flag, — Vec is polynomial if it is a subquotient of a finite direct sum of F,’s. The
tensor product of such functors is defined by tensoring their values, and it is again
polynomial.

Let GL = |J:2, GL;(C) be the infinite general linear group, and let V be the
defining representation. Equip V with a flag of length n where each graded piece is
also infinite-dimensional. Let G, be the subgroup of GL preserving this flag; this
group can be identified with the group of invertible n x n block upper triangular
matrices, where each block is an element of End(C*°) = U;’il End(C?) and blocks
along the diagonal are elements of GL. We call V along with the flag the standard
representation of G, and say a representation of G, is polynomial if it appears as
a subquotient of a finite direct sum of tensor powers of V. The tensor product of
polynomial representations as complex vector spaces is again polynomial.

Let % (n) be the following category: an object is a finite set S equipped with a
weight function S — [n], and a morphism f : § — T is a bijection such that weights
are non-decreasing. A module over % (n) is a functor % (n) — Vec. A morphism
of 7/ (n)-modules is a natural transformation of functors, and the tensor product of
% (n)-modules is defined by Day convolution (see Section 2.4 for a precise statement).

Our main result is the following.

Theorem 1.1 There is an equivalence among the following tensor categories:

e the category of polynomial functors Flag, — Vec;
e the category of polynomial representations of Gy;;
e the category of finite length % (n)-modules.

The case with n = 1 recovers Schur—Weyl duality in the sense of the equivalence
among the categories of polynomial functors Vec — Vec, polynomial representations
of GL, and finite length FB-modules (see [21] for an overview of this equivalence).
Our result can therefore be seen as a generalization of Schur—Weyl duality for flags.

By studying % (n)-modules, we are able to describe many aspects for the other
models of the above category. In particular, the category is self-dual (despite not being
semisimple), all objects are of finite length and have both finite projective and injective
dimensions, and we give descriptions of all indecomposable projective and injective
objects. We also are able to compute the first Ext groups among simple objects and
describe left-exact tensor functors from the category.

1.2 Relation to Other Work
1.2.1 The infinite symmetric group

Let FI(n) denote the category of [n]-weighted finite sets and injections such that the
weights are non-decreasing. When n = 1, this is the classical FI category [5]. An
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FI(n)-module is a functor FI(n) — Vec, and such functors are related to the infinite
symmetric group as follows.

Let R = C[xy, x2, . . .] denote the infinite polynomial ring; it has a natural action of
the infinite symmetric group G There has been recent interest in studying modules
over R that are symmetric in the sense that they have a compatible action of G,
[11-14]. Let b, = (x]' : i > 1) be the ideal of R generated by n™ powers of
the variables. There is a natural functor from the category of FI(n)-modules to the
category of modules over R/h,+1 with a compatible G;-action. In [27], we use the
results from this paper to study the category of FI(n)-modules; note in that paper, the
category % (n) is denoted by FB(n), and the group G, is denoted by P. In future work,
we plan to apply this theory of FI(n)-modules to analyze the category of symmetric
R/Y,4+1-modules. Via the results in [14], understanding the category of symmetric
R/bH,-modules for all n > 1 is key to studying symmetric R-modules in general.

1.2.2 Representation Stability

The idea behind representation stability is to consider sequences of groups that are
naturally indexed in some way and to consider compatible representations of these
groups. It has been especially fruitful to study these as functors out of categories,
such as FI-modules for the study of symmetric groups, VI- and VIC-modules for
the study of general linear groups, and other variants of Schur functors for the study
of orthogonal and symplectic groups [5, 18, 25]. In this paper, a polynomial functor
Flag,, — Vec corresponds to compatible representations of a sequence of parabolic
subgroups of finite rank general linear groups.

Representation stability can also be studied using representation theory of infinite
rank groups, as done in [22] with representations of groups such as infinite rank
orthogonal and sympletic groups. Such representations have also been studied from
the perspective of locally finite Lie algebras [6, 16, 17]. We also use this perspective
by considering representations of parabolic subgroups of the infinite general linear

group.
1.2.3 Brauer Categories and their Representations

A useful perspective for studying representations of infinite rank groups is through
representations of combinatorial or diagrammatic categories. In [22], the authors use
categories of various types of Brauer diagrams to study representations of different
infinite rank groups, such as algebraic representations of GL; many of the arguments
and ideas in this paper are similar to those in that paper. The same authors have also
begun to develop a more general theory for representations of Brauer categories in
[26].

The n = 2 case in this paper is particularly similar to the category of algebraic
representations of GL, which is equivalent to the category of modules over the upwards
walled Brauver diagram category [22, Corollary 3.2.12]. Let W = ;- C? be the
standard representation of GL. Algebraic representations of GL can also be described
in terms of certain representations of GL(W & W..), where W., is the restricted dual.
Then the Lie algebra corresponding to the unipotent radical of the subgroup of block

) Birkhauser



T.Yu

upper triangular matrices can be identified with W @ W, while the corresponding Lie
algebra in our case can be identified with W @ W.,.

1.2.4 Twisted Commutative Algebras and their Applications

Let n = 1, and consider the category of all (not necessarily of finite length) functors
% (1) — Vec. Then a commutative algebra object in the category is called a twisted
commutative algebra; over C, these are also GL-algebras. These algebras and their
modules have been well-studied [20, 23, 24], and have also been used to study various
notions of tensor rank and to give proofs of Stillman’s conjecture in commutative
algebra [3, 4, 7, 8].

1.3 Outline

The rest of the paper is organized as follows. In Section 2, we study the category of
% (n)-modules, and in Section 3, we study the category of polynomial representations
of G,,. In Section 4, we prove Theorem 1.1 and explicitly describe the equivalence of
categories, as well as give some immediate consequences.

1.4 Notation and Conventions

Fix n > 1. We always work over the field C of complex numbers. We write ¢ =

(ai, ..., a,) € N"for an n-tuple of nonnegative integers, and write |a| = aj+- - -+ay;
the set of all such tuples is partially ordered by the dominance order. We let t(a) =
(an, ...,ar) denote the reverse tuple. We write A = (Al, ..., A™) for an n-tuple of

partitions, where A’ is a partition of |A!].

Vec: the category of finite-dimensional complex vector spaces
Flag,: the category of finite-dimensional complex vector spaces
with flags of length n
o7+ the category of polynomial functors Flag, — Vec
G = G, the subgroup of GL of invertible n x n block upper
triangular matrices
Rep(G): the category of polynomial representations of G
L: the Levi subgroup of G
Hy, G4: subgroups of G
V. {Vi}!_y. V(i) the standard G-representation, its natural flag structure, and
graded pieces
U = Uy, P: the categories of [n]-weighted finite sets and
non-decreasing/increasing bijections
Mody,, Modg: the categories of finite length %/ - and Z-modules
M,,P,, P,,1,, I,: objects of Mody,
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Q.. Q;. Ja, Jy: objects of Mod
Sr, Ta, Ty, K4, Ug, Uy: objects of Rep(G)
B B S; (—): the Schur functor corresponding to the partition A
B, the product of symmetric groups Gy, X - -+ x &,
C%: the flag0 ¢ C c €12 ¢ ... c Cld

2 Representations of Categories of Weighted Finite Sets

In this section, we study representations of certain combinatorial categories of
weighted finite sets. We refer the reader to [22, §2.1] and [26, §3] for further back-
ground on representations of combinatorial categories.

2.1 Preliminaries

Definition 2.1 The category of [n]-weighted finite sets and upwards bijections,
denoted % = %,, is the following category:

e The objects are [n]-weighted finite sets, i.e., finite sets S = |_|l'-’=1 S; where S; has
weight i; an object is denoted by the n-tuple S = (51, ..., Sp).

e A morphism S — T is a bijection ¢ : S — T of sets such that weights do not
decrease, i.e., ¢(S;) C |_|;f:i T;.

For an n-tuple of nonnegative integers ¢ € N, there is a weighted finite set
([a1], - - -, [an]), where [a;] has weight i. Every object of % is isomorphic to a unique
such object. We will use a to denote both the tuple of integers and the corresponding
weighted finite set; context should clarify any confusion.

There is also the category of [n]-weighted finite sets and downwards bijections,
denoted Z. Its definition is the same, except that a morphism is a bijection of finite
sets such that weights do not increase, and so & can naturally be identified with % °P.

Both % and & have a symmetric monoidal structure LI defined by disjoint union:
multiplication is defined by SU T = (S; U Ty,..., S, UT,), and the empty set &
is the unit object. The automorphism group of an object S in either category is the
product of symmetric groups Aut(S7) x --- X Aut(S,).

Definition 2.2 A % -module M is a functor % — Vec. A morphism of 7/ -modules is
a natural transformation of functors.

For a morphism ¢ : S — T in %, we write ¢, : M(S) — M(T) to denote the
linear map M (¢).

A % -module M is of finite length if it is supported on finitely many objects of % up
to isomorphism. In this paper, we only consider finite length % -modules. Let Mody,
denote the category of finite length % -modules. This is an abelian category. For %/ -
modules M and N, we write Homgy, (M, N) for the space of morphisms M — N. We
also write Homgy, (S, T') for the space of morphisms S — T for S, T € % .

Analogous definitions and notation hold for modules over 2.
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2.2 Duality

Given an 7%/ -module M, we define the Z-module MY by MY (S) = M(S)*, where
(—)* denotes the dual vector space. This induces an exact functor (Modg, )P —
Modg, which gives an equivalence of categories via the canonical isomorphism M —
(MY)Y.

There is also a (covariant) equivalence of monoidal categories = 2 given by
changing the weights of elements from i ton —i + 1:

T:85=(S1,....,8) = (S, Su—1,...,S1).

A morphism ¢ : § — T in % also gives amorphism (S, ..., S1) = (T,, ..., T1)
in 2, since now ¢ does not increase weights. For an n-tuple ¢ or A, we also use 7(a)
or T()) to denote the reverse tuple.

As a consequence, we have a covariant equivalence of categories Modyg, = Modg
given by the pushforward and pullback of t:

71 : Modgy — Mody, t*:Mody — Mody,.

If M is a % -module, then ©yM is defined by ttM (S, ..., Sy) = M(S,, ..., S1).
If o : S — T is a morphism in Z, then the linear map ©/M (S) — tyM(T) is defined
to be the map ¢, = M(p) : M(S,,...,S1) > M(T,, ..., T). The pullback t* is
defined similarly.

Proposition 2.3 The functors ©, t* give an equivalence of categories Modg =
Modg. In particular, this category is self-dual.

2.3 Simple, Projective, and Injective Modules

For a partition A with |X| = m, let M, denote the Specht module corresponding to A;
this is a simple representation of G,,. Then, the simple %/-modules and Z-modules
are indexed by n-tuples of partitions A = (A!, ..., A"), and are defined by

MR- R My if M| =S| forall i,

0 otherwise.

Here, X denotes the external tensor product. We let M, denote this simple module,
as well as the corresponding irreducible representation of &, = G4, x -+ x G,
where a; = |Af].

We define the % -module P, called the principal projective at a, by Py (T) =
C[Homy, (a, T)]. We define the % -module I, called the principal injective at a, by
I,(T) = C[Homy (T, a)]*. Let M be a % -module. By [26, Proposition 3.2], we have
that

Homy, (P, M) = M(a), Homy, (M, 1,) = M(a)*.
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In particular, the principal projectives are indeed projective objects, and the principal
injectives are injective objects.

We have that &, acts on P, and I, by %/ -module automorphisms, and so for a tuple
of partitions A with |A'| = a; for all i, we have % -modules P; and I, defined to be
the M, -isotypic pieces of P, and I,:

PL = HOHIGQ(MA, PQ), I& = HomGl(MA’ IQ).

Proposition 2.4 The module I, is an indecomposable injective, and its socle is M.

Proof First, observe that I is a direct summand of the injective I;, and so it is injective
as well.
For a % -module M, we have that

Homy (M, I,,) = Homg, (M (). M}).

In particular, taking M = I, we see that Endy (I) = Homg,(M,, M}) = C,
where the last equality comes from working over C so Specht modules are self-dual.
We therefore have that there are no nontrivial idempotent endomorphisms of I, and
so it is indecomposable.

To show that M, is the socle, it suffices to note that M, C I,; this can be seen by

Homy, (My, I) = Homg, (M,, Mj) = C.

Then, I, is the injective hull of M. ]

Proposition 2.5 The module P, is an indecomposable projective, and it is the projec-
tive cover of M.

Proof 1t is a direct summand of the projective P,, and so it is projective as well. We
have that

Endy (Py) = Homg, (My, Py(a)) = Home, (M, M;)) = C,

and so P;, is indecomposable.
There is a surjection P), — M, since

Hom% (PL’ MA) = Homgﬂ(ML, MA) =C.

Therefore, by [10, Lemma 3.6], the surjection is a projective cover. ]

Corollary 2.6 (1) The % -modules I, form a complete irredundant set of indecompos-
able injectives in Mod,, and the % -modules Py form a complete irredundant set
of indecomposable projectives in Mody .

(2) Every object in Mod, has finite injective and projective dimension.
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Proof (1) This follows from all simples being of the form M.

(2) Suppose a = (|A'], ..., |A"]). The quotient I, /M, is supported on weighted
finite sets b such that |a| = |b| and b > a under the dominance order, and the kernel of
the surjection P, — M), is supported on weighted finite sets ¢ such that |a| = |c| and

¢ < a. There are only finitely many such sets b and ¢. Thus, any % -module has a finite
injective resolution given by finite direct sums of indecomposable injectives, and a
finite projective resolution given by finite direct sums of indecomposable projectives.[]

The above definitions and results also hold for Z-modules; we denote the corre-
sponding projective modules by Q,,, Q,, and the injective modules by J,, J;. Under
the equivalence of categories (Modg, )P = Mody, we have that (P,)Y = Ja
and (I,)” = Q,. Under the equivalence of categories Mody, = Modg, we have
P, = Q. and I, = J;(a). The analogous identifications hold for the indecompos-
able injective and projective objects.

2.4 Tensor Products

Using the monoidal structure LI of %/, one can define a tensor product of %/ -modules
(and analogously of Z-modules) as follows. Let M, N be % -modules. We define
M ® N by
MN)U)= P M(©S)&cNT), e
U=SUT

where U, S, T are weighted sets, and the weights of S, T' are induced from those of
U.

The following lemma shows how this tensor product works on principal projectives.
Fora,b € N",leta+b = (a; + by, ..., a, + b,). Note that this is isomorphic to
a LI b as weighted sets.

Lemma 2.7 Fora,b € N", there is a natural isomorphism Py, @ Py, = P,4p.

Proof Let U € 7 be a weighted finite set. Given a morphim ¢ : a+b — U
in 7%/, one obtains morphisms ¢| : a — S, ¢3 : b — U \ S by restricting ¢
via the natural identification a + b = a LI b. On the other hand, given morphisms
Y1:a— S,Y2:b — T suchthat SLI T = U, one obtains a unique morphism
Y:alb— SUT = U. In particular, we have

C[Homy (a+b,U)]= @5 ClHomy (g, S)] ® C[Homy (b, T)]
U=Sur

as vector spaces.

Furthermore, this identification is natural in the sense that if o : U — V is a
morphism in %, then the maps P,4,(U) — Pyyp(V) and (P, @ Pp)(U) — (P, ®
P,) (V) agree. Thus, we have the desired isomorphism of % -modules. ]

By (1), this tensor product is exact in each variable. In particular, it is right-exact,
and so since it satisfies the property on tensor products of principal projectives in
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Lemma 2.7, this tensor product agrees with Day convolution, or the convolution tensor
product defined in [22, (2.1.14)]. Therefore, this tensor product naturally gives Mody,
the structure of a tensor category with unit object Pg. Note also that the equivalence
Modg = Modg given by 7 is one of tensor categories.

2.5 Structured Hom Spaces and Tensor Products

We now give two constructions using %/ -modules and Z-modules. They will be used
in Section 4 to describe the equivalence of categories Mody, = Rep(G), as well as to
give a universal property for this category.

Let % be an abelian category such that objects have an underlying vector space
structure (such as 4 = Rep(G)), and let X be a functor % — €. For a %/ -module
M, we define an object Hom(M, K) of €, called the structured Hom space, as

Hom(M, K) = lim Hom(M/(S), K(S)),
f:8—>T

where Hom(M (S), K(S)) is the space of linear maps and the inverse limit is over
morphisms in 7. Note that this is a finite limit since M is of finite length and %
decomposes into finite directed categories, and so this Hom space always exists.

More explicitly, the structured Hom space is the object in 4" defined by the following
mapping property. To give a morphism f : A — Hom(M, K) in ¥ is the same as
giving morphisms fs : A — Hom(M(S), KC(S)) forall S € % suchthatforany x € A
and morphism « : S — T in %, we have that the following diagram commutes:

M) -2 k()

la* \La*
fr(x)

M) s ()

The next result follows immediately from the universal property.
Lemma 2.8 We have an identification Hom(P,, K) = K(a).

Another useful property regarding this construction is the following. There is a
functor 4 — Modg, defined by

N — (S — Hom (N, K(S));

we denote the resulting %7 -module by Hom (N, K). Then by [22, Proposition 2.1.10],
the functor M +— Hom(M, K) is adjoint on the right to this functor:

Homg, (M, Homy (N, K)) = Homy (N, Hom(M, K)).
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There is a covariant version of the structured Hom construction. If M is a Z-module,
then we define the structured tensor product M © K to be

M © K =Hom(M", K).

It can also be defined by an inverse limit; see [22, (2.1.9)]. By [22, Proposition
2.1.16], we have that the functors

Mody, — € : M +— Hom(M, K),
Modg - ¢: N— NOK

are both tensor functors.

3 Representations of Infinite Rank Parabolic Subgroups

Recall that V is the infinite-dimensional vector space with the flag 0 = Vo C V| C

- C V, = Vwhere V(;; = V;/V,;_; is also infinite dimensional. Let G = G,
denote the parabolic subgroup of GL(V) fixing this flag, and recall that a polynomial
representation of G is a representation that can be realized as a subquotient of a finite
direct sum of tensor powers of the standard representation V. In this section, we analyze
the category Rep(G) of polynomial representations of G.

Throughout this section, we utilize the representation theory of the Levi subgroup
L of G. The Levi subgroup consists of the block diagonal matrices of G, and so
L =[]/, GL. Many of the arguments in this subsection are similar to those in [22],
e.g., their argument that the category of polynomial representations of the infinite
orthogonal group is equivalent to the upwards Brauer category in [22, §4.2].

3.1 Action of the Endomorphism Monoid

Let V be a polynomial representation of G, and let p : G — GL(V) denote the map
giving the G-action. Then, after picking a basis for V, the entries of p can be expressed
in terms of polynomials.

Let End(V) denote the monoid of endomorphisms of V preserving the flag structure,
soanelementisalinearmap f : V — Vsuchthat f(V;) C V;. Then, any polynomial
representation V of G also has an action of End(V) via the polynomial entries of the
map p. Furthermore, if V — W is a map of polynomial G-representations, then the
map is equivariant with respect to the End(V)-actions on V and W.

3.2 Invariants and Specialization

Let a € N". Let H, denote the subgroup of G consisting of block diagonal matrices
such that the (i, i) block is of the form

(62)
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where the top left block is a; x a; and the bottom right block is (oo — a;) x (00 — a;).
Note that H, = L, the Levi subgroup of G. Let G, denote the subgroup of G consisting
of matrices where the (i, j) block is of the form

*0) ... . *0) ... .
(Ol) ifi = j, <00> ifi <j,

where the top left block is a; x a; and the bottom right block is (00 —a;) x (00 —a;) in
both cases. We have that G, commutes with H,, and so if V € Rep(G), then VHa iga
representation of G,. Let Rep(G,) denote the category of polynomial representations
of Gg.

Lemma 3.1 Taking H,-invariants induces a tensor functor Rep(G) — Rep(G,).

Proof Forn = 1, this follows from the fact that taking such invariants for a polynomial
GL-representation is a tensor functor [22, Proposition 3.4.4]. For general n, we have
that a polynomial G-representation is also a polynomial [, GL-representation by
restricting to the action of the Levi subgroup L. The result then follows by considering
taking H,-invariants as a functor from the n-fold product of the category of polynomial
GL-representations.

3.3 Principal Objects

For an n-tuple a € N", we define the polynomial G-representations 7, and U, by

n

n
L= QN U= @VE.
i=1

i=1

After showing the equivalence of categories in Section 4, it will follow that 7} is
injective and U, is projective.

Foramorphism¢ : a — bin %, there is a corresponding map of G-representations
T, — T defined as follows. A tensor factor V/V;_; of T, corresponds to an element
x of weight i in a, and ¢(x) has weight j in b for some j > i. Then surject V/V;_;
onto the tensor factor V/V;_; corresponding to ¢ (x).

Now, define the polynomial G-representation K, by

Ky = ()ker(T, — Tp),

where the intersection ranges over all non-isomorphisms in %/. This intersection is

finite, as the only such morphisms are if |a| = |b| with a > b.

Lemma 3.2 Fixa € N".

(1) The % -module givenby b — Homg(T,, Tp) isequaltoP, = (JQ)V. Inparticular,
Homg (Ty, Ty) # O if and only if |a| = |b| and a > b. When |a| = |b],

T ((@+ - +a)— b+ +bi 1)
dim(Homg (T, Tb))Zbl!bz!-~-bn!H((al T A 14 +bioi )
L

i=1
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_ Ra;
(2) K7 - ® V(l)

Proof (1) We first show that Homg (T, Tp) = C[Homy, (a, b)]. Let {¢; ;};>1 be a
basis for V(;). Then T, is generated as a G-module by x = ¢€,,1 ® - - ® e, |4[; this
element has weight (0" !, 1141y under the L-action. If |a| # |b|, then there is no weight
space in T}, of this weight, and so there are no nonzero maps 7, — Tj.
Now assume |a| = |b| with a < b. Suppose for contradiction o : T, - Tpisa
nonzero map. Up to a scalar, the image of x must be of the form ¢(x) = €, ,-1() ®
- ® €, 5-1(a))s where 0 € &\4). Then for some i, j with 1 <i < j < n, there exists
k with

bi+- by <k<bi+---+by, ai+---+aj_1 <o '(k)<ai+ - +aj.

Let g € G be the element with /’s along the diagonal, and e; , -1, in the (i, n)-
block. Then gx — x = 0 in 7, while p(gx — x) = go(x) — ¢(x) # 0 in Tj, since
g€, o-1(k)) = €i.1 + €, 5-1()- Thus, such a nonzero ¢ cannot exist.

Now suppose |a| = |b| with a > b. A nonzero map ¢ : T, — T), must send x to
an element of the form (up to scalar) €, ;-1(;) ® <= - @ €, ;1|4 fOr some o € Sig.

In addition, we must have that o ~'([by + --- + b;]) C [a; + --- + a;] for each
i = 1,...,n. This is because there are no nonzero maps V/V; | — V/V; | for
i < j by the above argument. Thus, ¢ is determined by the morphism o : ¢ — b in
% .Furthermore, if 7 : b — cisamorphismin % ,thenw,o¢ : T, — T, corresponds
to the morphism 7 o o in % . This identifies the %/ -module b +— Hom(;(Ta, 1) with
the principal projective P,.

(2)Let j € [n—1],andletb = (ai1,...,a;-1,0,a; +ajt1,aj42,...,ay). Then
the kernel of the surjection ¢; : T, — T is

j—1

QRV/Vin®i | e v [ & v/Viip®

i=1 i=j+1

Thus, K, C () kerg; = i Vf?;ll

The vector
V=21 Qe V- R®e1 Q- Qeygq,
generates @7, fo’)“ " as a G-module, and v has weight (14!, . 1“") For any Tj
with a > b, there is no weight space with this weight, so Q""_, Vf?)“ ! (|

Remark3.3 If a > b > ¢ with |a| = |b| = |¢|, then any morphism f :a — cin %
factors through a morphism g : @ — b. In particular, ker(7, — Tp) C ker(T, — T¢),
and so K, can equivalently be given by (\ker(7, — T}), where a > b is a cover
relation in the dominance order.

3.4 Simple Representations

Recall that L = []/_, GL denotes the Levi subgroup of G, and let U = G/L denote the
unipotent radical. There is a surjection of groups G — L, so every simple L-module
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pulls back to a simple G-module. The simple L-modules are indexed by tuples of
partitions A, and we denote them by Sy:

S5 =S (Va) @ --- @8y (Vi)

where S, ; (—) denotes the Schur functor corresponding to the partition A’. The fact that
these are the simple L-modules follows from all simple polynomial representations
of GL being of the form S; (C) for a partition A (see, e.g., [21, §5]). We now show
that the S ’s are precisely the simple polynomial representations of G.

Proposition 3.4 Every simple object of Rep(G) is of the form ;..

Proof It suffices to show that every simple constituent of 7 is of the form S. We have
an exact sequence

0> Ky — T, > P T, )
a—b
where the direct sum is over all non-isomorphisms in % with |a| = |b| anda > b a

cover relation. By Lemma 3.2, the action of G on K, is given by the action of L. The
simple constituents of K, are therefore given by its decomposition as a L-module, so
they are of the form S;.

Among the set {b : |a| = |b|}, the tuple (O, ..., 0, |a|) is minimal in the dominance
order, and T(o,....0,1a)) = (V(n))®lgl has simple factors given by S; (V(,)). Thus, by
induction, the simple constituents of 7; are of the form §), as well. O

Corollary 3.5 A polynomial G-representation V is semisimple if and only if U acts
trivially on V.

Proof 1f V is semisimple, then since U acts trivially on each simple decomposition
factor of V, U acts trivially on V. If U acts trivially on V, then the action of G is given
by the action of L, and so V is semisimple. (]

Corollary 3.6 The socle of T, is K.

Proof By Lemma 3.2, K, is semisimple. Any submodule of 7, properly containing
K, has a nontrivial U-action, and so by Corollary 3.5, K, is the maximal semisimple
submodule of 7.

3.5 Injectives and Projectives

Let A be an n-tuple of partitions and leta = (|A'[, ..., |A"]). Define the G-module T,
by 7, = Homg, (M;, 7). This is therefore equal to

T, =S (V)®8,2(V/V1) ® - - ® S;n(V/Vy—1).
Similarly, define the G-module U, by U, = Homg, (Mj, U,), so it is equal to

UA = SAI(V]) ® S)LZ(V2) ® - S)»" (Vn)
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It will follow from the equivalence of categories Rep(G) = Mody, that the T}’s
constitute a complete irredundant set of indecomposable injectives and that the U}, ’s
constitute a complete irredundant set of indecomposable projectives.

4 Equivalence of the Categories

In this section, we prove the main theorem (Theorem 1.1) on the equivalence of tensor
categories. We then give some consequences of the equivalence, including computing
Ext! groups among the simple objects and describing a universal property.

4.1 Equivalence Between Rep(G) and Mod,

Recall the representations 7, € Rep(G) defined in Section 3.3. These representations
define a functor .7 : % — Rep(G) given by a — T,.

Proposition 4.1 We have a covariant equivalence of tensor categories Mody, —
Rep(G).

Proof We first show that Mod g is covariantly equivalent to Rep(G). Recall from Sec-

tion 2.5 that the structured tensor product M — M © 7 defines a tensor functor

Modg — Rep(G). By [22, Corollary 2.1.12], to show that this functor is an equiva-

lence, it suffices to prove the following:

(1) For any A witha = (IAf]), the polynomial G-representation Homg , (M, K,) is
simple. -

(2) For every simple object S, of Rep(G), there exists a unique tuple a such that
Homg (S, T,) is nonzero.

By Lemma 3.2,
Home, My, Ko) = 8,1 (V1)) ® -+ @ Spn (Vi) = Sy

By Lemma 3.6, S, is a submodule of 7} if and only if g = (AN, . A,
The covariant equivalence Mody, = Rep(G) now follows from Proposition 2.3.0]

We explicitly describe the equivalence using the constructions from Section 2.5.
The equivalence with Modg is given by the functors
Modg — Rep(G) : M — Hom(M", 7)) =M O 7,
Rep(G) — Modgy : V +— Homg(V, 7).
Let F : Modgy — Rep(G) and G : Rep(G) — Modg, be the composition of

these functors with 7; and t* respectively. Then F, G give the equivalence Modg, =
Rep(G).

Lemma4.2 Foranyi =1,...,n, let e; denote the tuple with 1 in the i"" position and
0’s elsewhere. Then there is a natural isomorphism Hom(I,,, ) = V.
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Proof Let V be an object of Rep(G). By the mapping property, giving a map V —
Hom(I,,, 7) is the same as giving maps f; : V — Hom(,(e;), V/V;_1) for
J = 1,...,n such that the necessary relations hold. In particular, the maps f; are
determined by fi, and since I,;(e;) = O for j > i, giving the map fi is the same
as giving amap V — ker(V — V/V;) = V;. Thus, V; satisfies the same universal
property as Hom(I,,, .77), which gives the desired identification. ]

Lemma4.3 Fora, A, we have
Fdy) =Ty, Fdp) =Trp), FP) =Urw, F@PL =Ury.

Proof We have that 7(I,) = Hom(P(«), ) = J(t(a)) = Tr(e) by Lemma 2.8.
We also have that 7 (P,;) = Hom(I,,_,,,, 7) = V,_;y1 by Lemma 4.2. Then since
P, = ®’}: 1 Pf;aj and F is a tensor functor, we see that 7 (Py) = Uq¢(y).

The other equalities follow from taking M, -isotypic pieces of I, and F(M,) =

Sz (n-isotypic pieces of T¢(;), and similarly for the projective objects. ]

4.2 Category of Polynomial Functors on Flags

Let ./ denote the category of polynomial functors Flag, — Vec. In this subsection,
we show that objects of &7 correspond to sequences of representations of parabolic
subgroups of general linear groups that stabilize. This will be used to show the equiv-
alence &7 = Rep(G).
Suppose that F € 7. For any tuple a of nonnegative integers, let C% denote the
following flag:
0cCY ccut®c...ccll

Note that every object in Flag, is isomorphic to a unique such C%. We have that
F(C%) is a representation of the parabolic subgroup G, C GL(C!?) of n x n block
upper triangular matrices, where the (i, j)-block has dimension a; x a;. Note that this
group is isomorphic to the group G, defined in Section 3.2. Furthermore, if F — F’
is a morphism in 7, then the linear map F(C%) — F'(C%) is G -equivariant.

If a,b € N* with a; < b; for all i, there is a natural morphism ¢ : C¢ — Ctin
Flag, given by inclusion on each graded piece of the flags. Notice that this morphism
splits, and so if F € o7, then F (1) : F(C%) — F (Cb) is an injective G4-equivariant
linear map, where G, C Gy is naturally a subgroup via ¢. Such maps form a directed
system, and so one can consider the direct limit li)n F(C%).Forany j > 0, there exists

one of these natural injections C% — cu "), where 4( i =(j,..., J); therefore, one
can equivalently consider the direct limit h_r)n F(CU ")).

Lemmad.4 If F € o/, then lim F(CY") is a polynomial representation of G.

Proof Recall that F, € .o/ is the functor {V;} — V®“. We have that lim F, (CUM)y =
V&4, The result then follows from direct limits being exact. |
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4.3 Equivalence Between Rep(G) and .o/

We now show that Rep(G) = 7. By Lemma 4.4, there is a functor ® : &/ — Rep(G)
given by F +— ll_r)n F(CY™"). Note that ® is a tensor functor since it is defined using
a direct limit.

We now define a functor ¥ : Rep(G) — 7. Recall the subgroups H, and G, of G
defined in Section 3.2. For a polynomial G-representation V, define W (V) (C%) = V Ha
to be the Hy-invariants of V. This is a representation of G,, since G, commutes
with H,. As with @, this functor takes polynomial G-representations to polynomial
functors. Suppose f : C¢ — CZ is a morphism in Flag,. There is an element g s in
End(V) extending f such that g s restricts to f on C% and such that for any & € Hp,
there exists an 4" € H, such that the action of & o g s on the standard representation V
is equal to the action of g s o A’. This shows that if V is a polynomial representation of
G, the image of V"« from the induced action of g ron V is contained in Vb, Define
the morphism W (V) (f) in Vec by the action of gy on V. By Lemma 3.1, V¥ is a tensor
functor.

Lemma4.5 (®, V) is an adjoint pair and the counit @V — id is an equality.

Proof Let F be an object of <7, and V an object of Rep(G). Suppose f : ®(F) — V
is a G-equivariant map. For any a, there is a canonical G,-equivariant map F(C%) —
®(F), and composing with f and then taking H,-invariants induces a G,-equivariant
map f, : F(CY — VHa, These maps are compatible with all maps induced by
morphisms in Flag, since f is equivariant under the action of End(V). We therefore
obtain a morphism F — W (V) in /.

Conversely, suppose g : F — W(V) is a map in </, and apply & to obtain
D(g) : P(F) —> P(V(V)). Note that (W (V)) = V, since every element of V is
invariant under H;ny for j > 0. This gives amap ®(F) — V, and one can check that
this construction is inverse to the one above. The claim that the counit is an equality
also follows. ]

Proposition 4.6 The functors ®, V¥ give an equivalence of tensor categories o =
Rep(G).

Proof 1t suffices to show that both &, W are fully faithful. The isomorphism ®¥ — id
shows that W is fully faithful.

We claim @ is faithful. Fix a, and let F € 7. Then for any j 3> 0, there is a natural
morphism¢; : C4 — CU" in Flag, that splits, and so F'(¢;) is injective. Furthermore,
the ¢; maps are equivariant with the inclusions CY") — C{U+D") We therefore
have an injection F(C%) — ®(F) = li_r)nF(C(j")). Now, suppose f : F — G isa
morphism in 7. We then obtain the following commutative square with vertical maps
that are injections:

ce
Fice) L e

|

[
O(F) ——— P(G)
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Thus, if ®(f) = 0, then f = 0 and so @ is faithful.
We now show @ is full. Suppose f : M — N isamapinRep(G),andletg = W (f).
Then ®(g) = ®W(f) = f, since PV =id. ([l

4.4 Consequences of the Equivalence

We now list some immediate consequences of the equivalence of categories.

Proposition 4.7 Consider the category </ of polynomial functors Flag, — Vec. Let
{Vi} denote the object V in Flag, withflag0=VoC Vi C---CV,=V.

(1) The functor Fy, : {Vi} — @Qi_; S;i(Vi/Vi—1) is simple, and such functors con-
stitute a complete irredundant set of simple objects in < .
(2) The injective envelope and projective cover of Fy, are

Wit QS5 (Va/Vicr),  {Vid > QS (Vo).

i=1 i=l1

(3) Polynomial functors Flag, — Vec are of finite length, and have finite injective
and projective dimensions.

4) o is self-dual.

Proposition 4.8 Consider the category Rep(G) of polynomial representations of G.

(1) The G-modules T, and T), are injective.

(2) T, is the injective envelope of Sy, and the T)’s constitute a complete irredundant
set of indecomposable injective objects in Rep(G).

(3) The G-modules U, and U,, are projective.

(4) U, is the projective cover of Sy, and the U,,’s constitute a complete irredundant
set of indecomposable projective objects in Rep(G).

(5) All objects are of finite length, and have finite injective and projective dimensions.

(6) Tensor powers of the standard representation V®¢ are both projective and injec-
tive.

(7) The category Rep(G) is self-dual.

4.5 Extensions of Simples

In this subsection, we compute the first Ext groups between simples objects.

Lemmad4.9 Let , ju be tuples of partitions with a = (u') and b = (M), If
Exté(SA, Su) # O, then it must be that |a| = |b| and a > b is a cover relation.

Proof Recall from (2) that we have the exact sequence

0— K, —> T, —> @ T,

fa—c
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where |a| = |c| with @ > ¢ a cover relation. Then, take the M, -isotypic piece of this
sequence to obtain the exact sequence 0 — S, — T, — T, where T is a summand
of @ T,. In particular, 7 is injective and if 7}, is a summand of 7', then it must be that
la| = |b] and @ > b is a cover relation. ]

We now give the formula for the first Ext groups by examining projective Z-
modules. For partitions A, w, we say that A/ € HS; if u C A as Young diagrams and
their difference is a single box.

Proposition 4.10 Let A,  be tuples of partitions with a = (Iu']) and b = (|A!]). We
have Exth(SA, Su) # 0 if and only if

(1) la] = 1b| and a > b is a cover relation where a; — 1 = b;,
2 M/ = )L/for'j #Fi,i+1, and
(3) wi /Al and N F /it are both in HS).

In this case, its dimension is 1.

Proof First suppose A, u satisfy the three conditions. Consider the simple Z-module
M,,, which has projective cover Q,. Then, if Q, — M, — 0 is the projective
resolution of M, we have that Q = Q,.. We now determine the multiplicity of Q "
in Q] . B

We have that the kernel of Q, — M, evaluated on the weighted set a is given by
first restricting M, as a representation of S, to a representation of the subgroup

6},1 X-~-X6bi X61 X6hi+1—1 XGbi+2X~-~X6hn,

via Gp,,,—1 X &1 C Gy, ,, and then inducting to &, via &), x &1 C &,,. By Pieri’s
rule, M, appears with multiplicity one. Since a > b is a cover relation, the projective
cover of M,, must appear in Q, and it appears with multiplicity one. Therefore,
Extr, (M, M,) = Extg; (S, S,,) has dimension 1.

By Lemma 4.9, if condition (1) is not satisfied, then ExtIG(SL, Su) = 0. Now, if
condition (1) holds but conditions (2) and (3) are not satisfied, then M, does not appear
in the decomposition of Q, (a), and so there is no map from Q,, — Q,.. Therefore,

Ext};(SL, Sﬁ) = 0 in this case as well. U

An interesting problem is to construct the minimal projective or injective resolution
for simple objects in our category, and to then compute all higher Ext groups among
simple objects. We expect any formulas for such groups will involve Littlewood—
Richardson coefficients.

4.6 Universal Property
Using arguments similar to those in [22, §3.4], we now describe left-exact tensor
functors from the category Modg to an arbitrary abelian tensor category % . By pre-

composing with the pushforward t; : Mody, — Modg, this also describes left-exact
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tensor functors from Mody, . The model for these functors is the one Mod ¢ — Rep(G)
described in Section 4.1 given by the structured tensor product with the functor .7.

Let T (%) be the category whose objects consist of an object A of % along with a
sequence of morphisms

A=A > Ay — --- > A,.

We denote this object by {A;}. Given {A;} € T (%), define KL ({A;}) to be the functor
U — € given by
n
ar ® A?ai.
i=1

A morphism ¢ : @ — bin % defines a morphism in ¢ given by mapping the tensor
factors according to ¢ and using the morphisms specified by {A;}. One should view
this as a generalization of the functor .7 : % — Rep(G) giving injective objects in
Rep(G), where the sequence of morphisms are the surjections

V->V/Vi - ... > V/V,_,.

Proposition 4.11 To give a left-exact tensor functor Modgy — € is equivalent to
giving an object of T ().

Proof Let LEx(Modg, %) denote the category of left-exact tensor functors Mody —
%. We have a functor ® : LEx(Modg, ¥) — T (%) defined as follows. Let F €
LEx(Modg, €). Recall that there are natural maps J.;, — Je, — -+ — J¢,, where
e; denotes the n-tuple with 1 in the i th position and O’s elsewhere. Then { F (J,;)} gives
an object in T(%’). We also have a functor ¥ : T (%) — LEx(Modg, %) given by

{Ai} = (N — N O K{A;}).
By the construction of the structured tensor product, it gives a left-exact tensor functor.
We show that ® and W are mutually quasi-inverse equivalences.
Let {A;} be an object of 7'(%"). Then applying the functor W ({A;}) to J,,, we obtain
Je, = Je, © K({A;}) = Hom(P,,, K({A})) = A;.

Thus, ®W({A;}) = {A;}, and so the natural morphism id — ® W is an equality.
Now suppose F' € LEx(Modg, €). Applying ¥ &, we obtain the functor Mod g —
% given by

N NOK{FJ)) =No FK{J,}) = F(N O K{Je D),

where the first equality follows from F being a tensor functor, and the second equality
comes from F being left-exact and © being an inverse limit. It therefore suffices to
show that N © K({J;}) = N.
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Let M be a Z-module. Then

Homgy (M, N © K({Je;}) = Homg (M, Hom(N", K({J; D))
= Homy (N, Homg (M, K({J;;)));

the second equality comes from the structured Hom being an adjoint functor, as
described in Section 2.5. We have that

Homg (M, K({J;})(@)) = Homg(M, J,) = M” (a).
In particular, Homg (M, K({J,,})) = MY as % -modules, and so
Homg (M, N © K({J,,;})) = Homy (NY, M) = Homg (M, N).

Thus, we see that N © K({J,,;}) = N, and this completes the proof. O
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