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Abstract

We prove a version of the Lefschetz hyperplane theorem for fppf cohomology with coef-
ficients in any finite commutative group scheme over the ground field. As consequences,
we establish new Lefschetz results for the Picard scheme.

1. Introduction

1.1 Overview
A Lefschetz hyperplane theorem asserts, roughly speaking, that the cohomology groups of a
projective variety and one of its hyperplane sections agree in small degrees. There are many such
results, e.g. for the Picard group [SGA2, Exp. XII, Corollary 3.6], coherent cohomology [EGA,
III1, Theorem 1.3.1], and étale cohomology [SGA4, Exp. XIV, Corollary 3.3]. Our main result
is a Lefschetz hyperplane theorem with coefficients in a finite commutative group scheme over a
field.

Theorem 1.1.1 (Theorem 3.3.5). Let k be a field, let Y be a projective syntomic k-scheme of
pure dimension N � d + 1, let X ↪→ Y be a closed syntomic subscheme, and let G be a finite
commutative k-group scheme. Then the cone

cone(RΓfppf(Y, G) → RΓfppf(X, G))

lies in D�d(Z) if:

(i) Y = PN
k and X is a global complete intersection of dimension d; or

(ii) X ⊂ Y is a strongly ample Cartier divisor (see Definition 2.3.5).

The definition of strongly ample is somewhat technical, but ample Cartier divisors are
automatically strongly ample in the following two situations (see Theorem 2.2.3):

(i) Y is smooth and the characteristic of k is 0;
(ii) Y is smooth and the characteristic of k is � d + 1 and Y lifts to W2(k).

Moreover, Remark 2.3.6 shows that if L is an ample line bundle on Y and either Y has
isolated singularities or Y is a complete intersection inside a smooth projective variety, then for
n � 0, any divisor defining Ln is strongly ample.
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Remark 1.1.2. Example 3.3.6 shows that Theorem 1.1.1 may fail for ample (but not strongly
ample) divisors X ⊂ Y . Example 3.3.7 shows that Theorem 1.1.1 may also fail for finite flat
commutative Y -group schemes that are not defined over k. The assumption of syntomicity is
similar to the assumptions on the Lefschetz theorems proved in [SGA2, Exp. XII, Corollary 3.6].

We expect that there is a version of Theorem 1.1.1 for non-commutative finite k-group
schemes, but we have not proved it.

Question 1.1.3. Let X ⊂ PN
k be a complete intersection of dimension at least 2, and let G be

a finite (not necessarily commutative) k-group scheme. Is the natural morphism H1(PN
k , G) →

H1(X, G) a bijection? The same question may be asked for X ⊂ Y a strongly ample Cartier
divisor in a projective syntomic k-scheme Y (possibly with a different definition of ‘strongly
ample’).

Remark 1.1.4. If both X and Y are smooth connected projective k-schemes, and the ground
field k is algebraically closed, then Question 1.1.3 has a positive answer. This follows from the
Lefschetz-type result for Nori’s fundamental group πN

1 (X, x) (see [BH07, Theorem 1.1]) and the
observation that H1(X, G) = Homk-gp(π

N
1 (X, x), G) for any finite k-group scheme G (see [Nor82,

Proposition 3.11]).

By dévissage, Theorem 1.1.1 is reduced to the cases G = μ�, αp, μp, and Z/p, where � is a
prime number different from p = char k. The cases of αp and Z/p are reduced to questions of
coherent cohomology using standard exact sequences. For � �= p, the case of μ� is settled using
results in the theory of perverse sheaves.

The case of μp will give us the most difficulty. Here we will find it convenient to pivot to
proving a Lefschetz hyperplane theorem for the syntomic cohomology of the Tate twists Zp(i).
Using the Nygaard filtration, this will ultimately be reduced to proving a Lefschetz hyperplane
theorem for each filtered piece in the conjugate filtration on de Rham cohomology, which has been
established in [ABM21]. In particular, we get a Lefschetz hyperplane theorem for the syntomic
cohomology of the Tate twists Zp(i) defined in [BMS19] (see also § 1.2).

Theorem 1.1.5 (Theorem 3.1.1). Let k be a perfect field of characteristic p > 0, let Y be a
projective syntomic k-scheme of pure dimension N � d + 1, let X ↪→ Y be a closed syntomic
subscheme, and let i � 0. Then the cone

C := cone(RΓsyn(Y,Zp(i)) → RΓsyn(X,Zp(i)))

lies in D�d(Zp) with Hd(C) torsion-free if:

(i) Y = PN
k and X is a global complete intersection of dimension d; or

(ii) X ⊂ Y is a strongly ample Cartier divisor (see Definition 2.3.5).

As a consequence of Theorem 1.1.1, we prove a Lefschetz hyperplane theorem for the Picard
schemes of projective syntomic k-schemes.

Theorem 1.1.6 (Theorem 3.4.4). Let k be a field, let Y be a projective syntomic k-scheme of
pure dimension d, and let X ⊂ Y be a strongly ample Cartier divisor. If d � 3, then Picτ

Y/k →
Picτ

X/k is an isomorphism.

In Corollary 3.4.5, we combine Theorem 1.1.6 with [SGA2, Exp. XII, Corollary 3.6] to obtain
a Lefschetz hyperplane theorem for the full Picard scheme.
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Remark 1.1.7. Langer has informed us that an effective version of Theorem 1.1.6 for Picτ
red

follows from his Lefschetz-type theorem for the S-fundamental group when X and Y are smooth
(see [Lan11, Theorems 10.2 and 10.4]).

Theorem 1.1.6 appears to be new in every dimension, even for smooth X and Y . The main
difficulty in deducing it from Theorem 1.1.1 is that the Picard schemes can be highly non-reduced
in positive characteristic, so one cannot argue on the level of Picard groups, i.e. on the level of
k-points. To overcome this issue, we need to use the structure theory of commutative group
schemes over a field to obtain an isomorphism criterion (see Lemma 3.4.3), and to verify the
hypotheses of this criterion we need to generalize Theorem 1.1.1 to more general base schemes,
at least for G = μp (see Corollary 3.3.4).

In the case of complete intersections in projective space, we can show that the hypothesis of
strong ampleness is not necessary, and we can make a more refined statement, recovering [ČS24,
Corollary 7.2.3].

Theorem 1.1.8 [ČS24, Corollary 7.2.3]. Let k be a field, and X ⊂ PN
k be a complete intersection

of dimension at least 2. Then:

(i) Pic(X)tors = 0;
(ii) the class of OX(1) = i∗OPN (1) is a non-divisible element of Pic(X);
(iii) the group scheme Picτ

X/k is trivial.

If dimX � 3, then Theorem 1.1.8 was essentially settled by Grothendieck in [SGA2, Exp. XII,
Corollary 3.6]. If dimX � 2 and X is smooth, then this was settled by Deligne in [SGA7,
Exp. XI, Theorem 1.8]. A version for weighted complete intersection surfaces with certain
limited singularities can be found in [Lan84, § 1]. The general case was established in [ČS24,
Corollary 7.2.3]. However, Theorem 1.1.6 does not seem to follow from their methods. When we
started writing this paper, we were not aware that Theorem 1.1.8 was proven in [ČS24].

Both proofs of Theorem 1.1.8 share a similar idea of using prismatic techniques to reduce
the study of flat cohomology of μp to studying the cohomology of certain coherent sheaves.
However, the details of the proofs seem to be fairly different. Our proof is global and is based
on the Lefschetz hyperplane theorem from [ABM21], while the proof in [ČS24] is local; in their
argument they relate the Picard group of X to the local Picard group of the vertex x of the
affine cone over X, and then use local techniques to study that Picard group. Namely, if R is
the local ring of x, Pic(X)/Z[OX(1)] injects into Pic(SpecR � {x}), and this is good enough to
prove Theorem 1.1.8. However, the failure of the map Pic(X)/Z[OX(1)] → Pic(SpecR � {x}) to
be surjective is the main reason why their methods do not seem to be sufficient to obtain a proof
of Theorem 1.1.6. Both proofs treat all syntomic singularities uniformly in arbitrary dimension.

1.2 Terminology
For a fixed prime p and an object M ∈ D(A), the derived quotient [M/p] is the cone of the

multiplication by p map M
p
−→ M .

For a field k and a k-scheme X (not necessarily of finite type), we denote the derived de Rham
cohomology by RΓdR(X/k) = RΓ(X, dRX/k); see [Ill71, § VIII.2] or [Bha12, § 2] for more details.
We note that [Bha12, Corollary 3.10] implies that RΓdR(X/k) � RΓ(X, Ω•

X/k) if X is smooth
over a perfect field k of characteristic p > 0. However, these two complexes are usually different
if X is singular (or k is of characteristic 0).
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If k is a perfect field of characteristic p > 0 and X is a k-scheme, we denote the (underived)
crystalline cohomology by RΓcrys(X/W (k)). We refer to [BO78, § 5] and [Sta21, Tag 07GI] for
more details (see also [BL22, Construction F.2]).

For an Fp-scheme X and an integer i, we define the syntomic complex RΓsyn(X,Zp(i)) ∈
D(Zp) as in [BL22, Variant 7.4.12].

2. Hodge d-equivalences and Kodaira pairs

In this section, we recall the notion of Hodge d-equivalences and Kodaira pairs from [ABM21,
§ 5]. We further give some interesting examples that will be important for the rest of the paper.

For the rest of the section, we fix a field k.

2.1 Syntomic morphisms
The main goal of this section is to recall the definition of syntomic morphisms and discuss some
of its basic properties that do not seem to be explicitly stated in the literature. All results of
this section are certainly well-known to the experts.

Definition 2.1.1. [Sta21, Tag 00SL] A morphism of schemes f : X → Y is syntomic if f is
flat, of finite presentation, and all fibers are local complete intersections in the sense of [Sta21,
Tag 00S9].

Example 2.1.2. Any finite field extension k ⊂ k′ is syntomic by [Sta21, Tag 00SF].

The next lemma provides the main source of examples of syntomic morphisms which we use.

Lemma 2.1.3. Let A be a ring and let G be a flat, finitely presented A-group scheme. Then G
is A-syntomic.

Proof. This follows directly from [Sta21, Tag 00SJ] and [SGA3, Exp. VIIB, Corollary 5.5.1]. �

Lemma 2.1.4. A morphism f : A → B is syntomic if and only if it is flat, finitely presented, and
LB/A ∈ D(B) has Tor amplitude in [−1, 0].

Proof. If f is syntomic, it is a locally complete intersection morphism by [Sta21, Tag 069K].
Then LB/A has Tor amplitude in [−1, 0] by [Sta21, Tag 08SL].

Now we assume that f is flat, finitely presented, and LB/A has Tor amplitude in [−1, 0].
We want to conclude that the fibers of f are complete intersections. First, a standard limit
argument using [Sta21, Tag 08QQ] and [Qui70, Proposition 4.12] shows that LB/A ∈ D(B) is
pseudo-coherent. In this case, [Sta21, Tag 068V] and [Sta21, Tag 08QQ] ensure that it suffices
to prove the claim when A = k is a field. Then the result follows from [Avr99, (1.2) Second
Vanishing Theorem]. �

Remark 2.1.5. Lemma 2.1.4 guarantees that Definition 2.1.1 coincides with the definition of
syntomic morphisms given in [ABM21, Notation 2.1]. In particular, all results of their paper are
applicable with the definition of a syntomic morphism that we use.

Corollary 2.1.6. Let k be a field of characteristic p > 0, and let R be a syntomic k-algebra.
Then R is quasisyntomic in the sense of [BL22, Definition C.6 and Ex. C.11].

Proof. First, [BL22, Ex. C.11] implies that it suffices to show that the map LR/Fp
is concentrated

in degrees [−1, 0]. Using the fundamental exact triangle of cotangent complexes (see [Sta21,
Tag 08QX]) and Lemma 2.1.4, it suffices to show that Lk/Fp

is concentrated in degree 0. Since
any field extension Fp ⊂ k is a filtered colimit of smooth Fp-algebras, the result follows from
[Sta21, Tag 08R5] and [Sta21, Tag 08S9]. �
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2.2 Hodge d-equivalences
We begin with a definition.

Definition 2.2.1 [ABM21, Definition 5.1]. A morphism of syntomic k-schemes f : X → Y is a
Hodge d-equivalence if, for every s � 0, we have that

cone(RΓ(Y,∧sLY/k) → RΓ(X,∧sLX/k)) lies in D�d−s(k).

Roughly, Definition 2.2.1 is a formal way to say that a morphism f satisfies the conclusion
of the Lefschetz hyperplane theorem for Hodge cohomology groups.

The notion of Hodge d-equivalence will play a crucial role in our proof of Lefschetz-type
results. In fact, our strategy for proving Theorem 1.1.1 for G = μp is to reduce to the anal-
ogous statement for Hodge cohomology, which follows from the results of [ABM21] on Hodge
d-equivalences.

To proceed, it is important to have a good supply of interesting Hodge d-equivalences, and
we begin by providing some examples. In the next section, we will provide more examples after
reviewing the related notion of Kodaira pairs from [ABM21].

Definition 2.2.2. We say that a finite type k-scheme X lifts to W2(k) if there is a flat, finite
type W2(k)-scheme X̃ with an isomorphism of k-schemes X̃k � Xk.

Theorem 2.2.3. Let i : X ↪→ Y be a closed immersion of syntomic projective k-schemes.

(i) If Y = PN
k and X ⊂ Y is a d-dimensional (global) complete intersection over k, then i is a

Hodge d-equivalence.
(ii) If k is a field of characteristic 0, the k-scheme Y is smooth projective of pure dimension

d + 1, and X ⊂ Y is an ample Cartier divisor, then i is a Hodge d-equivalence.
(iii) If k is a field of characteristic p > 0, the k-scheme Y is smooth projective of pure dimension

d + 1 and lifts to W2(k), and X ⊂ Y is an ample Cartier divisor, then i is a Hodge (inf(p, d +
1) − 1)-equivalence.

Proof. The first claim is [ABM21, Proposition 5.3], and the second follows from [ABM21, Ex. 5.6]
and [ABM21, Proposition 5.7]. Using [DI87, Corollary 2.8], the proof of the third claim is very
similar to that of [ABM21, Proposition 5.7], but we spell out the details at the referee’s request.

First, we can assume that k = k is algebraically closed. Let n = inf(p, d + 1), and denote the
ample line bundle OY (X) simply by OY (1). Then [DI87, Corollary 2.8] implies that

RΓ(Y,∧sLY/k ⊗ OY (−r)) � RΓ(Y,Ωs
Y/k(−r)) ∈ D�n−s(k) (2.1)

for any s � 0 and all r > 0. To finish the proof, it suffices to show the following claim.

Claim. For all r, s � 0, we have

Cs,r := cone(RΓ(Y,Ωs
Y/k(−r)) → RΓ(X,∧sLX/k(−r))) ∈ D�n−s−1(k). (2.2)

We prove the claim by induction on s.

Base of induction: s = 0. In this case, we have a short exact sequence

0 → OY (−r − 1) → OY (−r) → i∗OX(−r) → 0. (2.3)

Therefore, (2.1) implies that C0,r � RΓ(Y,OY (−r − 1))[1] ∈ D�n−1(k).

Inductive step. We fix an integer s > 0 and assume that the claim is verified for s − 1 and all
r > 0. We first note that the claim for s − 1 and (2.1) imply that, for r > 0,

RΓ(X,∧s−1LX/k(−r)) ∈ D�n−s(k). (2.4)
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For r � 0, we write the map RΓ(Y,Ωs
Y/k(−r)) → RΓ(X,∧sLX/k(−r)) as the composition

RΓ(Y,Ωs
Y/k(−r))

fs
−→ RΓ(X, i∗Ωs

Y/k(−r))
gs
−→ RΓ(X,∧sLX/k(−r)).

It suffices to see that the cones of fs and gs lie in D�n−s−1(k). Note (2.3) implies that the cone of
fs can be identified with RΓ(Y,Ωs

Y/k(−r − 1))[1]. This complex lies in D�n−s−1(k) due to (2.1).
This finishes the proof for fs.

For the second map gs, we note that the fundamental triangle of cotangent complexes (see
[Ill71, (2.1.5.6) on p. 138]) and the computation LX/Y � OX(−1)[1] (see [Ill71, Chapter III,
Corollary 3.2.7]) imply that we have a distinguished triangle

OX(−1) → i∗Ω1
Y/k → LX/k.

This allows us to regard i∗Ω1
Y/k as a (two-term) filtered object in D(X). Passing to wedge

powers, we obtain a filtration on i∗Ωs
Y/k (see [Ill71, Chapter V, Proposition 4.2.5 and (4.2.7)]).

Since OX(−1) is a line bundle, this filtration degenerates to a distinguished triangle

∧s−1LX/k(−1) → i∗Ωs
Y/k → ∧sLX/k.

By twisting and taking derived global sections, we get the following distinguished triangle:

RΓ(X,∧s−1LX/k(−r − 1)) → RΓ(X, i∗Ωs
Y/k(−r)) → RΓ(X,∧sLX/k(−r)).

Therefore, the claim follows from (2.4), which implies that

cone(gs) � RΓ(X,∧s−1LX/k(−r − 1))[1] ∈ D�n−s−1(k). �

2.3 Kodaira pairs
In this subsection, we recall the definition of Kodaira pairs and use them discuss some other
examples of Hodge d-equivalences which will be important for us.

Definition 2.3.1 [ABM21, Definition 5.5]. A Kodaira pair is a d-dimensional k-scheme Y and
an ample line bundle L such that RΓ(Y,∧sLY/k ⊗ L−r) ∈ D�d−s(k) for all s � 0 and all r > 0.

The main point of Definition 2.3.1 is that, if (Y,L) is a Kodaira pair, then [ABM21,
Proposition 5.7] ensures that any section s ∈ L(Y ) defines a Hodge (d − 1)-equivalence
H = VY (s) ↪→Y .

The main goal of this section is to construct enough ‘asymptotic’ examples of Kodaira pairs.
For this, we will need a version of Fujita’s vanishing theorem for nef bundles. We recall that a
vector bundle E on a projective k-scheme X is nef if the tautological bundle OPX(E)/X(1) is a
nef line bundle on PX(E) (see [Laz04a, Definition 1.4.1] and [Laz04b, Definition 6.1.1]).

Lemma 2.3.2. Let X be a projective k-scheme, F a finite rank vector bundle on X, E a nef
vector bundle on X, and L an ample line bundle on X. Then there is an integer n0 � 0 such
that

Hi(X, F ⊗ Syma(E) ⊗ L⊗b) = 0

for i > 0, a, b � n0.

Proof. We consider the morphism p : P := PX(E) → X with antitautological bundle OP (1). Since
E is nef, the line bundle OP (1) is also nef, so [Laz04a, Ex. 1.4.4(i)] and the fact that tensor
products of nef line bundles are nef ensure that OP (n) ⊗ p∗L⊗n′

is nef for any integers n, n′ � 0.
Furthermore, [Sta21, Tag 0892] guarantees that there is an integer k > 0 such that OP (1) ⊗
p∗L⊗� is ample for all � � k. Therefore, Fujita’s vanishing theorem (see [Fuj83, § 5, Theorem] or
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[Kee03, Theorem 1.5] and [Kee18]) implies that there is a constant m0 � 0 such that Hi(P, p∗(F ⊗
L⊗b) ⊗ OP (a)) = 0 for a � m0, b � km0, and i > 0. Now the projection formula and Serre’s
computation (see [Sta21, Tag 01E8] and [Sta21, Tag 01XX]) imply that

Rp∗(p
∗(F ⊗ L⊗b) ⊗ OP (a)) � F ⊗ L⊗b ⊗L Rp∗OP (a) � F ⊗ L⊗b ⊗ Syma(E).

Therefore, we conclude that

RΓ(X, F ⊗ Syma(E) ⊗ L⊗b) � RΓ(P, p∗(F ⊗ L⊗b) ⊗ OP (a)) ∈ D�0(k)

for a � m0, b � km0. This gives the desired vanishing by setting n0 = km0. �

The following lemma gives an important source of examples of Kodaira pairs.

Lemma 2.3.3. Let Y be a smooth projective k-scheme of dimension N , let X be a syntomic
k-scheme of pure dimension d, and let ι : X → Y be a closed immersion of k-schemes. Let IX be
the ideal sheaf of X in Y , and L an ample line bundle on X. If the normal bundle N := NX/Y =
(IX/I2

X)∨ is nef, then there is an integer r such that (X, Ln) is a Kodaira pair for any n � r.

In the proof below, we always use the notation Symn,∧n, Γn, and (−)∨ = RHomX(−, OX)
in the derived sense (see [Ill71, Chapter V, § 4] or [Lur18, § 25.2] for the construction and basic
properties of these functors). These functors coincide with their naive analogues when applied to
vector bundles. We recall that, by definition, if E is a vector bundle in degree 0, then Γn(E) :=
(E⊗n)Σn .

Proof. First, we note that [Sta21, Tag 0DWA] implies that X is a Gorenstein scheme. Therefore,
[Sta21, Tag 0FVV] and [Sta21, Tag 0BFQ] imply that there is a line bundle ωX such that the
dualizing complex ω•

X is isomorphic to ωX [d]. Thus, Grothendieck duality (see [Sta21, Tag 0B6I])
and perfectness of ∧sLX/k imply that

RΓ(X,∧sLX/k ⊗ L−n) = RΓ(X, ωX [d] ⊗ (∧sLX/k)
∨ ⊗ Ln)∨

for all s and n. Therefore, it suffices to show that there is an integer r such that

RΓ(X, ωX ⊗ (∧sLX/k)
∨ ⊗ Ln) ∈ D�s(k) (2.5)

for any s � 0 and n � r.
Note that [Ill71, Chapter III, Corollary 3.2.7] implies that there is an isomorphism

LX/k � [0 → IX/I2
X → Ω1

Y/k|X → 0],

where Ω1
Y/k|X is in degree 0. Therefore, this allows us to regard LX/k as a (two-term) fil-

tered object in D(X) with associated graded pieces gr0LX/k = IX/I2
X [1] = N∨[1] and gr1LX/k =

Ω1
Y/k|X .

Now [Ill71, Chapter V, Proposition 4.2.5 and (4.2.7)] implies that ∧sLX/k admits a

finite decreasing filtration with associated graded pieces gives by gri ∧s LX/k � ∧s−i(N∨[1]) ⊗L

∧i(Ω1
Y/k|X) for i = 0, . . . , s. For brevity, we denote ∧i(Ω1

Y/k|X) by Gi.

Now we use [Lur18, Remark 25.2.2.4, Proposition 25.2.4.2] to write ∧j(N∨[1]) � Γj(N∨)[j] �
Symj(N)∨[j]. Passing to duals, we get a finite (increasing) filtration on (∧sLX/k)

∨ with associated
graded pieces

gri((∧
sLX/k)

∨) � (grs−i ∧s LX/k)
∨ � (Γi(N∨)[i])∨ ⊗L (Gs−i)

∨ � Symi(N) ⊗ G∨

s−i[−i] (2.6)

for i = 0, . . . , s. Combining (2.5) and (2.6), we conclude that it suffices to find an integer r � 0
such that

RΓ(X, ωX ⊗ Symi(N) ⊗ G∨

s−i ⊗ Ln) ∈ D�0(k) (2.7)
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for any s � 0, 0 � i � s, and n � r. For this, we apply Lemma 2.3.2 to the vector bundles
Fj := ωX ⊗ G∨

j , the nef vector bundle N, and the ample line bundle L to find r0, . . . , rN such
that

RΓ(X, ωX ⊗ Syma(N) ⊗ G∨

j ⊗ Lb) ∈ D�0(k) (2.8)

for any 0 � j � N and a, b � ri. We set r′ := max(r0, . . . , rN ). Serre vanishing [Sta21, Tag 0B5U]
ensures that, for 0 � j � N and 0 � t � r′ − 1, we can find an integer ri,j such that

RΓ(X, ωX ⊗ Symt(N) ⊗ G∨

j ⊗ Ln) ∈ D�0(k) (2.9)

for n � ri,j . Using (2.8), (2.9), and the fact that G∨
s−i = 0 for s − i > N , we see that r =

max(r′, ri,j) does the job. �

Now we are ready to give more examples of Hodge d-equivalences.

Corollary 2.3.4. Let ι : X → Y be a closed immersion as in Lemma 2.3.3, and let L be an
ample line bundle on X. Then there is an integer n0 such that for all n � n0 and any effective
Cartier divisor X ⊂ Y defined by a section of Ln, the morphism X → Y is a Hodge d-equivalence
in either of the following two cases:

(i) X has isolated singularities and Y = PN
k ;

(ii) Y has pure dimension N , and there is a nef rank N − d vector bundle E on Y with a section
s ∈ Γ(Y,E) such that X = VY (s).

Proof. Lemma 2.3.3 and [ABM21, Proposition 5.7] ensure that it suffices to show that the normal
bundle NX/Y = (IX/I2

X)∨ is nef in either of these two cases. In the first case, this follows directly
from [BBLSZ19, Theorem 2.16] and the observation that ample vector bundles are nef.

In the second case, we consider the Koszul complex Kos(E∨; s) associated to the mor-
phism s : E∨ → OY (see [Sta21, Tag 062K] and [Ful98, Appendix A.5]). By construction,
H0(Kos(E∨; s)) � OY /IX . Furthermore, [Sta21, Tag 02JN] and [Sta21, Tag 063I] imply that
Hi(Kos(E∨; s)) = 0 for i > 0, so

Kos�−1(E∨; s) → IX

is a finite resolution of IX by vector bundles. Since all differentials in Kos(E∨; s) vanish
on X, we conclude that IX/I2

X � E∨|X . Therefore, NX/Y = E|X is nef by [Laz04b,
Proposition 6.1.2(ii)]. �

Corollary 2.3.4 motivates the following definition.

Definition 2.3.5. An effective Cartier divisor D ⊂ X in a projective k-scheme of pure dimen-
sion d + 1 is strongly ample if D → X is a Hodge d-equivalence and X � D is an affine
subscheme.

Remark 2.3.6. Corollary 2.3.4 implies that an effective divisor D ⊂ X defined by a sufficiently
high power of an ample line bundle is strongly ample provided that X has isolated singularities,
or can be realized as a ‘complete intersection’ inside a smooth projective variety. We do not know
whether an analogous statement holds for an arbitrary projective syntomic k-scheme X.

Remark 2.3.7. Theorem 2.2.3 implies that any ample Cartier divisor in a smooth projective
variety Y is strongly ample in either of the following situations:

(i) the ground field k is of characteristic 0;
(ii) the ground field k is of characteristic p > 0, dimY � p, and Y admits a lift over W2(k).
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3. Lefschetz hyperplane theorem for flat cohomology

3.1 Zp(i) and µp coefficients
In this section, we prove the Lefschetz hyperplane theorem for μp-cohomology groups for Hodge
d-equivalences over a perfect field. More generally, we show it for Zp(i)-cohomology groups for
all i � 0.

For the rest of the section, we fix a perfect field k of characteristic p > 0.

Theorem 3.1.1. Let X → Y be a Hodge d-equivalence of syntomic k-schemes. For i � 0, the
cone

C := cone(RΓsyn(Y,Zp(i)) → RΓsyn(X,Zp(i)))

lies in D�d(Zp) and Hd(C) is torsion-free.

We will give a proof shortly, but before doing so we discuss its main application for our
purposes.

Corollary 3.1.2. Let X → Y be a Hodge d-equivalence of syntomic k-schemes. Then

C := cone(RΓfppf(Y, μp) → RΓfppf(X, μp)) ∈ D�d(Fp).

Proof. We note that [BL22, Proposition 7.5.6] and [Gro68, Theorem 11.7] imply that

[RΓsyn(Y,Zp(1))/p] � [RΓfppf(Y,Gm)/p][−1] � RΓfppf(Y, μp)

and similarly for X. Combining these observations with Theorem 3.1.1, we conclude. �

Now we turn to the proof of Theorem 3.1.1. The main idea of the proof is to deduce it
through a series of reductions from the definition of Hodge d-equivalences.

For a syntomic k-scheme X, we refer to Corollary 2.1.6, [BL22, Warning 4.6.2 and
Proposition 5.1.1]1 for the definition of the Nygaard filtration

Fil•NRΓcrys(X/W (k)) � Fil•NF ∗RΓ∆(X/W (k)).

Lemma 3.1.3. Let X ⊂ Y be a Hodge d-equivalence of syntomic k-schemes. For i � 0, the cone

C := cone(FiliNRΓcrys(Y/W (k)) → FiliNRΓcrys(X/W (k)))

lies in D�d(Zp) and Hd(C) is torsion-free.

Proof. We argue by induction on i � 0. The case of i = 0 is clear from [ABM21, Remark 5.2]
since Fil0NRΓcrys(X/W (k)) � RΓcrys(X/W (k)) and the same applies to Y .

Now fix i � 0 and suppose we know the claim for i. The global version of [BL22, Remark 5.1.2]
and the de Rham comparison theorem (see [BL22, Proposition 5.2.5]) imply2 that

gri
NRΓcrys(X/W (k)) � gri

NF ∗RΓ∆(X/W (k)) � Filconj
i RΓ

∆
(X/W (k))

� Filconj
i (F ∗)−1RΓ(X, dRX/k),

where dRX/k is the derived de Rham complex of X and F : W (k) → W (k) is the Frobenius
morphism. Since the Frobenius morphism F is an isomorphism and Zp-linear, we can choose a

1 Strictly speaking, [BL22, Proposition 5.1.1] constructs the Nygaard filtration only in the affine case. However,
similarly to [BL22, Notation 5.5.23], this can be formally extended to an arbitrary k-scheme.
2 In the formula below, we implicitly use that the Frobenius morphism F : W (k) → W (k) is an isomorphism and
preserves the ideal (p) ⊂ W (k). Therefore, the formula in [BL22, Proposition 5.2.5] can be Frobenius ‘untwisted’.
We also use that the Breuil–Kisin twists can be canonically trivialized for the prism (W (k), (p)).
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Zp-linear isomorphism (F ∗)−1RΓ(X, dRX/k) � RΓ(X, dRX/k). Therefore, we have the following
commutative diagram of exact triangles in D(Zp):

where Fil•conjRΓdR(X/k) is the conjugate filtration on the derived de Rham complex of X (and
similarly for Y ). Denote by C, C ′, and C ′′ cones of the left, middle, and right vertical maps,
respectively. Now [ABM21, Remark 5.2] shows that C ′′ ∈ D�d(Zp) and the induction hypothesis
gives that C ′ ∈ D�d(Zp) with Hd(C ′) torsion-free. This formally implies that C ∈ D�d(Zp) and
that Hd(C) is torsion-free. �

Now we are ready to prove Theorem 3.1.1.

Proof of Theorem 3.1.1. We note that [BL22, Theorem 5.6.2 and Var. 7.4.12] imply that we have
the following commutative diagram of exact triangles:

Now, as in the proof of Lemma 3.1.3, we see that it suffices to prove the claim for each
FiliNRΓcrys(−/W (k)) (including i = 0). This follows directly from Lemma 3.1.3. �

3.2 µ� coefficients
In this section, we give a proof of the Lefschetz hyperplane theorem for μ� coefficients. The proof
is probably well-known to the experts, but it seems hard to extract from the literature. The main
difficulty is that we do not require the ambient space Y to be smooth, but only syntomic (see
also [PV04, Appendix B] for the case of a smooth ambient space Y ).

For the rest of the section, we fix a separably closed field k (possibly of characteristic 0) and
a prime number � not equal to the characteristic of k.

We recall that there is a well-behaved theory of perverse F�-sheaves on finite type k-schemes;
see [BBD82, Intro to Chapter 4] or [BH22, § 4]3 for a more detailed discussion. We only mention
two main results that we will need in this section.

Lemma 3.2.1. Let X a finite type k-scheme of pure dimension d. Then:

(i) the sheaf F�[d] is a perverse sheaf on X if X is k-syntomic;
(ii) for a perverse F�-sheaf L, the complex RΓc(Xét, L) lies in D�0(F�) if X is affine.

Proof. The first claim is [Ill03, Corolary 1.4]; the second is [Ill03, Theorem 2.4] or [BBD82,
Theorem 4.1.1]. �

For our next result, we drop the assumption that k is separably closed.

Theorem 3.2.2. Let k be a field, let Y be a syntomic proper k-scheme of pure dimension d + 1,
let X ⊂ Y be a Cartier divisor such that Y � X is affine (e.g. X is an ample Cartier divisor),

3 This is written for rigid-analytic spaces, but similar (and, in fact, easier) proofs work in the algebraic situation.
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let � be a prime different from char k, and let G be a finite �∞-torsion k-group scheme. Then

C := cone(RΓfppf(Y, G) → RΓfppf(X, G)) ∈ D�d(Z).

Proof. In this proof, we feel freely use that G is étale, and so fppf cohomology with G-coefficients
coincide with analogous étale cohomology (see [Gro68, Theorem 11.7]).

We first assume that k is separably closed. In this case, G has a finite filtration with associated
graded pieces isomorphism to F�. This it suffices to prove the claim for G = F�. In this case,
we then denote the complement of X in Y by U . Then [Sta21, Tag 0GKP] and properness of Y
imply that we have an exact triangle

RΓc(Uét,F�) → RΓét(Y,F�) → RΓét(X,F�).

By Lemma 3.2.1, F�[d + 1] is a perverse sheaf on U . Therefore, the same lemma implies that
RΓc(Uét,F�) ∈ D�d+1(Z), so C lies in D�d(Z).

If k is an arbitrary field, we denote its absolute Galois group by Galk and note that

RΓét(X, G) � RΓcont(Galk, RΓét(Xksep , Gksep)),

and similarly for Y . Thus, the general result follows from the special case k = ksep. �

3.3 Finite flat commutative group scheme coefficients
In this section, we prove the general version of the Lefschetz hyperplane theorem. The strategy
is to reduce the general case to the cases of finite flat group schemes G = μ�, μp, αp, and Z/p,
and deal with each case separately.

Lemma 3.3.1. Let k be a perfect field of characteristic p > 0, let X → Y be a Hodge
d-equivalence of syntomic k-schemes, and let G be a commutative finite flat k-group scheme
with a finite filtration Fil•G such that each griG is isomorphic to either μp, αp, or Z/p. Then

cone(RΓfppf(Y, G) → RΓfppf(X, G)) ∈ D�d(Z).

Proof. One easily reduces to the case G = μp, G = αp, or G = Z/p. The first case is simply
Corollary 3.1.2. In the second case, one uses the short exact sequence

0 → αp → Ga
f �→fp

−−−−→ Ga → 0

to reduce the claim to Definition 2.2.1 with s = 0. In the last case, one uses the Artin–Schreier
sequence to reduce to Definition 2.2.1 again. �

Before we extend Lemma 3.3.1 to more general fields and more general group schemes G, we
need the following preliminary result.

Lemma 3.3.2. Let X be a finite type k-scheme, let Xn be the base change X
k
⊗n

k
, and let G be

a flat finitely presented commutative group X-scheme. Then the natural morphism

RΓfppf(X, G) → R lim
n∈∆

(RΓfppf(Xn, G))

is an isomorphism.

Proof. For each finite extension k ⊂ k′, denote by Xn,k′ the fiber product X
k
′⊗n

k
. The natural

map

RΓfppf(X, G) → R lim
n∈∆

(RΓfppf(Xn,k′ , G))

1860

https://doi.org/10.1112/S0010437X24007231 Published online by Cambridge University Press



Lefschetz theorems in flat cohomology and applications

is an equivalence for any finite k ⊂ k′ because fppf cohomology satisfies fppf descent. Now [Čes15,
Lemma 2.1] implies that the natural morphism

hocolimk⊂k′⊂k RΓfppf(Xn,k′ , G) → RΓfppf(Xn, G)

is an equivalence for any n � 0. Thus, the claim follows from the fact that totalization of
coconnective cosimplicial objects commute with filtered (homotopy) colimits. �

Corollary 3.3.3. Let k be a field of characteristic p > 0, let X → Y be a Hodge d-equivalence
of syntomic k-schemes, and let G be a finite commutative k-group scheme of p-power order. Then

C := cone(RΓfppf(Y, G) → RΓfppf(X, G)) ∈ D�d(Z).

Proof. Let Xn = X
k
⊗n

k
(and similarly for Y ). We have a commutative diagram

whose horizontal arrows are isomorphisms by Lemma 3.3.2. Thus, it suffices to show that

cone(RΓfppf(Yn, G) → RΓfppf(Xn, G))

lies in D�d(Z). For each finite extension k ⊂ k′ ⊂ k, we define Xn,k′,k = X
k
′⊗

n−1
k ⊗kk

(and we

define Yn,k′,k similarly). By [Čes15, Lemma 2.1], it suffices to show that

Cn,k′ := cone(RΓfppf(Yn,k′,k, G) → RΓfppf(Xn,k′,k, G))

lies in D�d(Z).
Since syntomic morphisms are closed under pullbacks and compositions, we conclude from

Example 2.1.2 that each Xn,k′,k and Yn,k′,k is syntomic over k for every finite extension k ⊂

k′ ⊂ k. Likewise, Example 2.1.2 and [ABM21, Proposition 5.10(1)] imply that Xn,k′,k → Yn,k′,k

is a Hodge d-equivalence for every k′. Furthermore, the classification of commutative finite flat
k-group schemes implies that Gk admits a finite filtration such that each associated graded
piece is isomorphic to either μp, αp, or Z/pZ. Therefore, Lemma 3.3.1 implies that Cn,k′ lives in
D�d(Z), as desired. �

Corollary 3.3.4. Let k be a field of characteristic p > 0, let X → Y be a Hodge d-equivalence
of syntomic k-schemes, and let G be a finite commutative k-group scheme of p-power order. Then

C := cone(RΓfppf(YS , G) → RΓfppf(XS , G)) ∈ D�d(Z)

for any syntomic k-scheme S.

Proof. The closed embedding XS → YS is a Hodge d-equivalence by [ABM21,
Proposition 5.10(i)]. Moreover, both XS and YS are syntomic over k because syntomic morphisms
are closed under pullbacks and compositions. Therefore, Corollary 3.3.3 implies the claim. �

Theorem 3.3.5. Let k be a field, let Y be a projective syntomic k-scheme of pure dimension
N � d + 1, let X ↪→ Y be a closed syntomic subscheme, and let G be a finite commutative
k-group scheme. Then the cone

cone(RΓfppf(Y, G) → RΓfppf(X, G))
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lies in D�d(Z) if:

(i) Y = PN
k and X is a global complete intersection of dimension d; or

(ii) X ↪→ Y is a Cartier divisor such that Y � X is affine and X ↪→ Y is a Hodge d-equivalence
(e.g. X ⊂ Y is a strongly ample Cartier divisor).

Proof. Let p � 0 be the characteristic of k. We consider the short exact sequence

0 → G[p∞] → G → G/G[p∞] → 0.

The group G′ := G/G[p∞] is p-torsion-free and finite étale. Therefore, it suffices to prove the
claim separately for a p-power torsion G[p∞] and for a p-torsion-free étale G′.

The case of a p-torsion-free étale group scheme follows from Theorem 3.2.2. Thus, we
can assume that p > 0 and G = G[p∞] is p-power torsion. In either case, X → Y is a Hodge
d-equivalence (see Theorem 2.2.3), so the claim follows from Corollary 3.3.3. �

The next example shows that Theorem 3.3.5 does not hold for an arbitrary ample divisor
X ⊂ Y .

Example 3.3.6 ([BH07, § 2] and [Lan11, Ex. 10.1]). Let k be a perfect field of characteristic p > 0,
let Y be a smooth, projective, geometrically connected k-scheme, and let X ⊂ Y be an ample
Cartier divisor such that:

(i) H0(X, OX) = k (e.g. X is reduced and geometrically connected);
(ii) Y is of pure dimension d + 1 � 2;
(iii) H1(Y,OY (−X)) �= 0 (for examples of such pairs with d + 1 = 2, see [Eke88,

Proposition 2.14]).4

Then r : H1
fppf(Y, αp) → H1

fppf(X, αp) is not injective. In particular,

C := cone(RΓfppf(Y, αp) → RΓfppf(X, αp))

does not lie in D�d(Zp).

Proof. Our assumptions on Y imply that H0(Y,OY ) � k. Therefore, the map

H1(Y,OY (−X)) → H1(Y,OY )

is injective. Thus, any non-trivial class in H1(Y,OY (−X)) defines a non-trivial class x ∈
H1(Y,OY ) such that x|X = 0 ∈ H1(X, OX). We claim that (Fn

Y )∗(x) = 0 for some n � 0. Indeed,
by functoriality, (Fn

Y )∗(x) lies in H1(Y,OY (−((Fn
Y )∗X))) = H1(Y,OY (−pnX)). Since d � 1,

[Sta21, Tag 0FD8] implies that H1(Y,OY (−pnX)) = 0 for n � 0.
Choose a minimal n such that (Fn

Y )∗(x) = 0. Then we replace x with (Fn−1
Y )∗(x) to assume

that F ∗

Y (x) = 0 (and x �= 0). Since F ∗

Y and F ∗

X are bijective on H0(Y,OY ) and H0(X, OX)
respectively, we may use the Artin–Schreier sequence to conclude that

H1
fppf(Y, αp) � ker(F ∗

Y : H1(Y,OY ) → H1(Y,OY ))

and the same for X. In particular, H1
fppf(Y, αp) → H1(Y,OX) is injective (and the same for X).

Therefore, x defines a non-trivial class in ker(r). In particular, C does not lie in D�d(Zp). �

If G is a lisse sheaf of F�-modules on Yét with � �= char k, then the Lefschetz hyperplane
theorem holds for G if Y is smooth. One may wonder if there is an analogous result for flat

4 Burt Totaro has informed us that the higher-dimensional examples of pairs (D ⊂ X) constructed in (the proof of)
[Muk13, Theorem 2] satisfy the assumption of Example 3.3.6. A full justification of this fact will appear elsewhere.
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coefficients. In general, we do not know the correct coefficient theory for flat cohomology in
which to pose such a question. In any event, Theorem 3.3.5 is false if one does not assume that
G comes from a base field, as the following example shows.

Example 3.3.7. Let p be a prime number, and let k = Fp be a finite field with p elements. Then,
for any N > 1, there is a commutative finite flat rank p group scheme G on PN

k such that:

(i) Zariski-locally on PN
k , the group G is defined over k;

(ii) for any hyperplane H ⊂ PN
k , the cone

C := cone(RΓfppf(P
N
k , G) → RΓfppf(H, G))

does not lie in D�N−1(Z).

Proof. Let Ga(n) be the PN -group scheme associated with the line bundle O(n). Then we define
G = ker(Fr : Ga(1) → Ga(p)). Note, Zariski-locally on PN , the group G is isomorphic to αp and
in particular defined over k.

Now using that Hi
fppf(P

N
k ,Ga(n)) = Hi(PN

k , O(n)), Serre’s calculation of cohomology groups
of O(n), and the short exact sequence 0 → G → Ga(1) → Ga(p) → 0, we conclude that

logp(#H1
fppf(P

N
k , G)) =

(

N + p

N

)

− N − 1,

logp(#H1
fppf(H, G)) = logp(#H1

fppf(P
N−1
k , G)) =

(

N + p − 1

N − 1

)

− N.

In particular, the map H1
fppf(P

N
k , G) → H1

fppf(H, G) cannot be injective by cardinality reasons.

Therefore, C cannot lie in D�N−1(Zp) for any N > 1. �

3.4 The torsion part of the Picard scheme
Fix a field k. In this section, we use the results of §§ 3.1 and 3.2 to get a Lefschetz hyperplane
theorem for the torsion part of the Picard group. We show that, for a complete intersection
X ⊂ PN

k scheme of dimension at least 2, the torsion part of the Picard group Pic(X)tors and
the torsion component Picτ

X/k vanish. We also give a version of this result for a general strongly
ample divisor.

If dimX � 3, Grothendieck proved the stronger result Pic(X) � Z in [SGA2, Exp. XII,
Corollary 3.2] which can be also used to deduce that PicX/k � Z as k-group schemes. These
results are sharp: for instance, the Segre embedding realizes P1

k × P1
k as a hypersurface in P3

k,
but Pic(P1

k × P1
k) � Z ⊕ Z. However, one can still control the torsion part of Picard group in

dimension 2. If X is a smooth surface and k is algebraically closed, then these results were estab-
lished in [SGA7, Exp. XI, Theorem 1.8]. The general case was proven in [ČS24, Corollary 7.2.3]
by different methods.

Proof of Theorem 1.1.8. For part (i), it suffices to show that Pic(X)[p] = 0 for every prime
number p. Since Pic(PN

k )[p] = 0, it suffices to show that the natural morphism Pic(PN
k )[p] →

Pic(X)[p] is an isomorphism. From the Kummer sequence we obtain the following commutative
diagram:
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We note that the morphism O(PN
k ) → O(X) is an isomorphism due to Theorem 2.2.3 (and

Definition 2.2.1 with s = 0). In particular, α is an isomorphism as well. In addition, ³ is an
isomorphism by Theorems 2.2.3 and 3.3.5. By the five lemma, ´ is an isomorphism, and part (i)
holds.

Now we show part (ii). It suffices to show that the class of [OX(1)] ∈ Pic(X) has non-zero
image in Pic(X)/p for every prime p. Let cX

1 : Pic(X)/p → H2
fppf(X, μp) be the connecting map

from the Kummer exact sequence. By definition, cX
1 is injective, so it is enough to show that

cX
1 ([OX(1)]) �= 0 in H2

fppf(X, μp). The commutative square

shows that we have cX
1 ([OX(1)]) = resfppf(cP

n

1 ([OPN (1)])). Then we conclude that

cX
1 ([OX(1)]) �= 0 because cP

N

1 ([OPN (1)]) is a generator of Pic(PN
k ) � Z, and resfppf is injective

by Theorem 3.3.5.
Finally, we show part (iii). For this, we can and do assume that k = k. By [SGA6, Exp. XII,

Corollary 1.5; Exp. XIII, Theorem 4.7], Picτ
X/k is a finite type k-group scheme and an open

subfunctor of PicX/k, so Te(Picτ
X/k) = Te(PicX/k) � H1(X, OX). Theorem 2.2.3 implies that

H1(X, OX) = 0 and so Picτ
X/k is étale. Since k = k, we have Picτ

X/k(k) = Pic(X)tors = 0 by the
above, and part (iii) follows. �

Our next aim is to prove an analogue of Theorem 1.1.6 for strongly ample divisors (see
Theorem 3.4.4). The derivation of this is slightly more involved than in the previous case, and
we must begin with a series of results about algebraic groups.

Lemma 3.4.1. Let G be a commutative group scheme locally of finite type over a field k, and let
H be a finite type closed k-subgroup scheme of G. Let n be a positive integer. For each M � 1,
there exists a closed subgroup scheme GM of G killed by some power of n such that the map

GM → G/H

factors through (G/H)[nM ] and such that the factored map is an epimorphism of fppf sheaves.5

(Note that G/H exists as a group scheme by [SGA3, Exp. VIA, Theorem 3.2].)

Proof. Fixing the positive integer M , we may replace G by the schematic preimage of (G/H)[nM ]
in G to assume that G/H is nM -torsion. Consider for any N the commutative diagram

with exact rows. By the snake lemma, this gives an exact sequence of group schemes

G[nN ] → (G/H)[nN ] → H/nNH → G/nNG.

5 A homomorphism of finite type group schemes over a field induces an epimorphism of fppf sheaves if and only
if it is faithfully flat by [SGA3, Exp. VIB, Remark 9.2.2], but we do not need this fact.
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Thus, it suffices to show that there is some N � M such that H/nNH → G/nNG is a
monomorphism. Equivalently, one must show that there is some N � M such that

H ∩ nNG = nNH.

To prove the existence of some such N , note that the sequence {nNH} of closed k-subgroup
schemes of H is decreasing, so the fact that H is noetherian (being finite type over k) implies
that there exists some N0 such that nN0H = nN0+1H. Since G/H is nM -torsion, we have

H ∩ nN0+MG ⊂ nN0H = nN0+MH

by the choice of N0. Thus, taking N := N0 + M completes the proof. �

Lemma 3.4.2. Let G be a commutative group scheme of finite type over an algebraically closed
field k of characteristic p � 0.

(i) The natural map G(k)tors → G(k)/G0(k) is surjective.
(ii) For some integer N � 1, the map G[pN ] → G/Gred is an epimorphism of fppf sheaves.
(iii) If G is smooth and p > 0, then G(k)tors is schematically dense in G.

Proof. For part (i), it suffices to show that for every integer n � 1, the natural map G(k)[n∞] →
(G(k)/G0(k))[n∞] is surjective, and this follows from Lemma 3.4.1.

For part (ii), there is nothing to prove if p = 0. If instead p > 0, then G/Gred is a finite
k-group scheme whose order is a power of p. By a theorem of Deligne [TO70, § 1], the group
scheme G/Gred is killed by its order, so the result follows again from Lemma 3.4.1.

Finally, we consider part (iii). By part (i), we may and do reduce to the case that G is
connected, in which case we will show that if � �= p is any prime number then G(k)[(�p)∞] is
schematically dense in G. By a theorem of Chevalley [Con02, Theorem 1.1], since k is perfect
there is a short exact sequence

0 → H → G → A → 0,

where H is a linear algebraic group over k and A is an abelian variety over k. Moreover, since
H is a commutative linear algebraic group over a perfect field, we have H = T × U for some
k-torus T and a smooth commutative unipotent k-group scheme U . It is standard that T (k)[�∞]
and A(k)[�∞] are schematically dense in T and A, respectively, and U = U [pM ] for some M � 1.
(This is where we use that p > 0; in characteristic 0, the group Ga has no torsion.)

Let G0 denote the schematic closure of G(k)[(�p)∞] in G, so that G0 is a smooth closed
k-subgroup scheme of G. We aim to show that G0 = G. Every connected commutative finite-
type k-group scheme is �-divisible, so by the snake lemma the natural map G(k)[�∞] → A(k)[�∞]
is surjective. By schematic density of A(k)[�∞] in A, the induced map G0 → A is dominant,
hence surjective by [SGA3, Exp. VIB, Proposition 1.2]. It suffices therefore to show that H is
contained in G0. However, H(k)[(�p)∞] is schematically dense in H, so indeed H ⊂ G0 and so
G0 = G, establishing the result. �

Lemma 3.4.3. Let f : G → H be a homomorphism of commutative group schemes of finite type
over a field k of characteristic p � 0. Suppose that:

(i) f [�n](k) : G[�n](k) → H[�n](k) is an isomorphism for every prime � and every n � 1;
(ii) Lie f : LieG → LieH is an isomorphism;
(iii) if p > 0, then f [pn] : G[pn] → H[pn] is an epimorphism of fppf sheaves for every n � 1.

Then f is an isomorphism.
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Proof. We may and do assume that k is algebraically closed. Part (ii) shows that ker f is finite
etale, and so part (i) implies that ker f = 0. Thus, f is a closed embedding by [SGA3, Exp. VIB,
Corollary 1.4.2]. Moreover, Lemma 3.4.2(i) shows that the image of f intersects each connected
component of H nontrivially. If p = 0, then G and H are smooth, so f is an isomorphism. Thus,
from now on we assume p > 0.

Let G = G/Gred (which is a scheme by [SGA3, Exp. VIA, Theorem 3.2]) and consider the
commutative diagram

with exact rows. Since p > 0 and f is surjective on torsion, Lemma 3.4.2(iii) shows that f is
dominant, and thus it is surjective by [SGA3, Exp. VIB, Proposition 1.2]. Now Gred and Hred

are both smooth over k, so because f is a surjective closed embedding it follows that fred

is an isomorphism. Thus, to show that f is an isomorphism, it suffices to show that f is an
isomorphism.

Now by Lemma 3.4.2(ii), there is some integer N � 1 such that the natural maps G[pN ] → G
and H[pN ] → H are faithfully flat. Thus, we find a commutative diagram

with exact rows. By part (iii) and the fact that ker f = 0, the map f [pN ] is an isomorphism. The
previous paragraph shows that fred[p

N ] is an isomorphism, so also f is an isomorphism. Since
both fred and f are isomorphisms, we see that f is an isomorphism, as desired. �

With these preliminaries in hand, we can finally prove the following theorem.

Theorem 3.4.4. Let Y be a projective syntomic k-scheme of pure dimension � 3, and let
X ⊂ Y be a Cartier divisor such that Y � X is affine and X ↪→ Y is a Hodge 2-equivalence. The
natural map f : Picτ

Y/k → Picτ
X/k is an isomorphism.

Proof. We may and do assume that k is algebraically closed of characteristic p � 0 by [ABM21,
Proposition 5.10]. We need only verify the hypotheses of Lemma 3.4.3 applied to G = Picτ

Y/k and
H = Picτ

X/k (which are finite type k-group schemes by [SGA6, Exp. XII, Corollary 1.5; Exp. XIII,

Theorem 4.7(iii)]). Condition (ii) follows from the fact that the natural map H1(Y,O) → H1(X, O)
is an isomorphism by Definition 2.3.5.

Let � be a prime number and let S be a syntomic k-scheme. We have a commutative diagram

(3.1)

with exact rows. The leftmost vertical arrow of (3.1) is an isomorphism by Definition 2.2.1 and
[ABM21, Proposition 5.10], since H0(YS ,Gm) = H0(YS , O)∗. Moreover, the map

H1(YS , μ�n) → H1(XS , μ�n)
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is an isomorphism by Theorem 3.3.5. Thus, Pic(YS)[�n] → Pic(XS)[�n] is an isomorphism by the
five lemma. Since X has a rational point (k being algebraically closed), we have PicY/k(S) =
Pic(YS)/Pic(S), and similarly for X. Letting S = Spec k, we see that Picτ

Y/k[�
n](k) →

Picτ
X/k[�

n](k) is an isomorphism and we have verified part (i).
Now set S = PX,n := PicX/k[p

n], which is a syntomic k-scheme by Lemma 2.1.3. Define PY,n

similarly. Since Pic(PX,n) = 0 (as PX,n is an extension of a finite k-group scheme by a unipo-
tent group scheme), the argument above shows PX,n(PX,n) = Pic(XPX,n

)[pn], and similarly for
PY,n(PX,n). Thus, the previous paragraph shows that the natural map PY,n(PX,n) → PX,n(PX,n)
is an isomorphism, and so there is a morphism g : PX,n → PY,n such that f ◦ g = idPX,n

.
Therefore, f is an epimorphism of fppf sheaves, so Lemma 3.4.3 shows that Picτ

Y/k → Picτ
X/k is

an isomorphism. �

Corollary 3.4.5. Let Y be a projective syntomic k-scheme of pure dimension � 4, and let
X ⊂ Y be a Cartier divisor such that Y � X is affine, X ↪→ Y is a Hodge 2-equivalence, and
Hi(Y,OY (−nX)) = 0 for all n > 0 and i = 1, 2. The map PicY/k → PicX/k is an isomorphism.

Proof. We may and do assume k = k. In view of Theorem 3.4.4, we see that Picτ
Y/k → Picτ

X/k

is an isomorphism. Considering the commutative diagram

we see that it suffices to show that the natural map Num(Y ) → Num(X) is an isomorphism, and
for this it suffices to show that Pic(Y ) → Pic(X) is an isomorphism, a consequence of [SGA2,
Exp. XII, Corollary 3.6] (which applies because Y is syntomic and Hi(Y,OY (−nX)) = 0 for n > 0
and i = 1, 2). �

We note that Corollary 2.3.4 and Theorem 2.2.3 (together with [DI87, Corollary 2.8]) produce
many interesting examples when the assumptions of the two above theorems are satisfied.

The following example provides some evidence that Theorem 3.4.4 and Corollary 3.4.5 are
probably false for a general ample divisor.

Example 3.4.6. Let X ⊂ Y be a pair as in Example 3.3.6 with d + 1 � 3 (respectively, d + 1 � 4).
Then:

(i) the map Picτ
Y/k → Picτ

X/k (respectively, PicY/k → PicX/k) is not an isomorphism;

(ii) if X is also smooth and the natural morphism H0(Y,Ω1
Y ) → H0(X, Ω1

X) is an isomorphism,
then Pic(Y )[p] → Pic(X)[p] is not an isomorphism.6

Proof. First, we note that the proof of Example 3.3.6 implies that the natural morphism
H1(Y,OY ) → H1(X, OX) is not an isomorphism. Thus, the morphism Picτ

Y/k → Picτ
X/k (respec-

tively, PicY/k → PicX/k) does not induce an isomorphism of Lie algebras.
For part (ii), we note that the Kummer exact sequence implies that H1(Y, μp) = Pic(Y )[p]

and the same for X. Therefore, it suffices to show the analogous claim for H1(−, μp). Let Y ′

be the Frobenius twist of Y , and let Ω1
Y ′/k,cl denote the sheaf of closed 1-forms on Y ′ (and

similarly for X and X ′). Now we note that [AM76, Proposition 2.4] implies that there are

6 We do not know if such examples exist.
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exact sequences

0 → H1(Y, μp) → H0(Y,Ω1
Y ′/k,cl)

ψ1
−→ H0(Y,Ω1

Y/k), (3.2)

0 → H1(Y, αp) → H0(Y,Ω1
Y ′/k,cl)

ψ2
−→ H0(Y,Ω1

Y/k), (3.3)

and similarly for X (we note that ψ1 and ψ2 are different maps). Now (the proof of) Example 3.3.6
ensures that the natural morphism H1(Y, αp) → H1(X, αp) is not injective. Thus, (3.3) formally
implies that the natural morphism H0(Y,Ω1

Y ′/k,cl) → H0(X, Ω1
X′/k,cl) is not injective. Now (3.2)

and our assumption imply that H1(Y, μp) → H1(X, μp) is not injective either. This finishes the
proof. �
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Hautes Études Sci. 4, 8, 11, 17, 20, 24, 28, 32 (1961–1967).

Eke88 T. Ekedahl, Canonical models of surfaces of general type in positive characteristic, Publ.
Math. Inst. Hautes Études Sci. 67 (1988), 97–144.

Fuj83 T. Fujita, Semipositive line bundles, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1983),
353–378.

Ful98 W. Fulton, Intersection theory, second edition, Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 2 (Springer, Berlin,
1998).

Gro68 A. Grothendieck, Le groupe de Brauer. III. Exemples et compléments, in Dix exposés sur la
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Ill71 L. Illusie, Complexe cotangent et déformations. I, Lecture Notes in Mathematics, vol. 239
(Springer, Berlin–New York, 1971).
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