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ABSTRACT Generalizations ofmatrix decompositions tomultidimensional arrays, called tensor decomposi-

tions, are simple yet powerful methods for analyzing datasets in the form of tensors. These decompositions

model a data tensor as a sum of rank-1 tensors, whose factors provide uses for a myriad of applications.

Given the massive sizes of modern datasets, an important challenge is how well computational complexity

scales with the data, balanced with how well decompositions approximate the data. Many efficient methods

exploit a small subset of the tensor’s elements, representing most of the tensor’s variation via a basis over

the subset. These methods’ efficiencies are often due to their randomized natures; however, deterministic

methods can provide better approximations, and can perform feature selection, highlighting a meaningful

subset that well-represents the entire tensor. In this paper, we introduce an efficient subset-based form of the

Tucker decomposition, by selecting coresets from the tensor modes such that the resulting core tensor can

well-approximate the full tensor. Furthermore, our method enables a novel feature selection scheme unlike

other methods for tensor data. We introduce methods for random and deterministic coresets, minimizing

error via a measure of discrepancy between the coreset and full tensor. We perform the decompositions on

simulated data, and perform on real-world fMRI data to demonstrate our method’s feature selection ability.

We demonstrate that compared with other similar decomposition methods, our methods can typically better

approximate the tensor with comparably low computational complexities.

INDEX TERMS Tensor Decomposition, Tucker Decomposition, Higher Order Singular Value Decomposi-

tion, Coresets, Tensor CUR Decomposition, Subset Selection, Feature Selection, fMRI.

I. INTRODUCTION

Datasets in the modern era often take the form of large multi-

dimensional arrays called tensors. A tensor can be understood

as a collection of values (e.g. measurements) that are each

associated with a corresponding list ofN array indices, where

N denotes the order of the tensor. Whereas a vector is a first

order tensor and amatrix is a second order tensor, the analysis

of third or higher order tensors is the focus of those meth-

ods formally called tensor decompositions. Tensor decom-

positions generalize matrix decompositions to higher order

tensors, approximating a tensor dataset as a tensor product

of several factor matrices that have various use cases. These

generalizations notably endow tensor decompositions with

the ability to model multilinear relationships within the data,

concisely modeling the relationships across different modes

of the tensor. Furthermore, tensor decompositions provide

a low-rank model of the tensor that typically is orders of

magnitude smaller in memory than the original tensor. A

tensor decomposition’s factors are typically useful for de-

scribing the latent characteristics of the tensor, and are often

used for providing a generative model of the data. All in all,

tensor decompositions provide tools for a wide range of uses,
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such as dimension reduction [1]–[5], feature extraction [6]–

[9], denoising [10]–[15], missing data completion [15]–[20],

dictionary learning [21]–[25], signal processing [26]–[32],

and various others. Applications of tensor decompositions

are widespread and include chemometrics [1], [33], [34],

psychometrics [35], [36], econometrics [37], [38], analysis of

medical imaging modalities [7], [39]–[48], radar and commu-

nication applications [30], [49], [50], applications to machine

learning [26], [51], [51]–[56], and many others.

Perhaps one of the simplest tensor decompositions is what

is often called the canonical polyadic decomposition (CPD)

[57], [58], which approximates a tensor as the sum of R rank-

1 tensors where R is a user-defined positive integer. CPD can

be understood as a higher-order generalization of matrix low-

rank decompositions, which decompose a matrix into a sum

of rank-1 matrices that best approximates the original matrix.

However, whereas matrix rank decompositions are typically

not unique unless additional constraints are imposed, the CPD

is often unique under much milder conditions. This results in

unique factors that reveal the latent structure of the data under

fewer required assumptions [1], [59]–[61].

Another useful form of tensor decomposition is the Tucker

Decomposition [62], [63]. The Tucker decomposition is a

general form of tensor decomposition that represents an N th

order tensor as the tensor product of N factor matrices with

an N th order ‘‘core’’ tensor: a small tensor that can be con-

sidered a compressed version of the original tensor. A notable

specific type of Tucker decomposition is the higher-order

singular value decomposition (HOSVD) [63], [64], the direct

generalization of the matrix singular value decomposition

(SVD) to tensors. HOSVD is analytically represented by its

factor matrices being the singular vectors of each ‘‘unfold-

ing’’ (matricization) of the original tensor, in which case

the core tensor can be interpreted as a tensorial form of

principal components.While the CPD and Tucker are perhaps

the most popularly used tensor decompositions, since their

introduction a wide variety of other decompositions have

been introduced and used successfully. These include the

Tensor Train decomposition [65], [66], hierarchical Tucker

decompositions [67], [68], tensor block-term decompositions

[69], [70], coupled matrix-tensor factorizations [44], [71],

[72], and online tensor decompositions [73]–[76].

Most tensor decompositions perform their optimization

routines by breaking the problem of estimating all N factor

matrices into N simpler subproblems. This typically involves

solving for each factor matrix one at a time, by unfolding

the tensor with respect to each of the N modes and sub-

sequently solving for (or updating) a corresponding mode’s

factor matrix. While these routines simplify optimization

by allowing decompositions to be solved with matrix-based

methods, tensor decompositions nevertheless rely on multi-

plying high-dimensional matrix representations of the ten-

sor data, which can become computationally expensive with

exceedingly massive tensors. These challenges have greatly

motivated computationally efficient methods for tensor de-

compositions, especially those that retain simple models with

excellent approximation and explainability.

Many efficient tensor decompositions are direct general-

izations of matrix decompositions. With matrices, a partic-

ularly useful strategy has been to approximate a matrix via

projecting onto the span of only a small subset of columns.

These are referred to as column subset selection (CSS) meth-

ods, of which include the matrix CUR decomposition [77],

[78] which approximates a given matrix by both a subset of

columnsC and a subset of rowsR. Subset selection methods

are distinguished by those that select a subset randomly, with

a focus on faster decompositions, or those that select a subset

deterministically, with a focus on better approximation and

for performing feature selection: identifying particularly rep-

resentative elements of the data that well-describe the rest of

the data. Extensions of thesematrix decompositions to tensors

exist as types of Tucker decompositions that are called tensor

CUR decompositions [79]–[84], which use subsets of ele-

ments from multiple modes of a tensor to provide a multilin-

ear basis for the entire tensor. Due to their simple procedures,

tensor CUR decompositions are among the fastest tensor

decompositions, and can also provide good approximations

of tensors with reasonably large subset sizes, yet may suffer

with smaller subset sizes. These methods exclusively select

subsets randomly, rather than deterministically. Extensions

of deterministic subset-based methods may also be desirable

for tensors, especially in the interest of determining well-

representative subsets of the data.

Tensorial feature selection has been accomplished in [85]–

[87] but only in the context of supervised learning for classi-

fication, where tensors are accompanied by labels and feature

selection is a function of the labels. An unsupervised feature

selection method for third order tensors was proposed in

[88], which takes subsets from a single mode of the tensor.

However, features in these subsets differ depending on what

elements they correspond to in another ‘‘view’’ mode, and

thus may be harder to interpret. Furthermore, these subsets

are acquired after performing a CPD, whereas the methods

we consider in this paper actually use the subsets to perform

efficient tensor decompositions. To our knowledge there have

been no other extensions of deterministic subset-based meth-

ods to tensor data in the general unsupervised setting, and

none for multiple modes of the tensor.

In this paper, we introduce an efficient weighted subset-

based type of Tucker decomposition, similar in form to the

tensor CUR decompositions and the sequentially truncated

higher-order singular value decomposition (ST-HOSVD)

[89]. Notably, the deterministic variation of our method pro-

vides a novel unsupervised feature selection algorithm for

tensor data, selecting subsets from one or more modes that

are reasonably best able to summarize the structure of the

tensor. Sequentially across a tensor’sN modes, we select from

each mode a coreset, i.e. a weighted subset of elements [90]–

[94], that reasonably minimizes a measure of discrepancy

between the coreset and the entire mode, which in turn min-

imizes the mean squared error cost between the tensor and

its approximation. We connect the discrepancy to the cost
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function of HOSVD, showing that use of weighed subsets

provides a better minimization to the cost than unweighted

subsets used in tensor CUR decompositions. We consider two

methods: one based on random coreset selection, sampling

according to a weighted probability distribution, and one

based on deterministic coreset selection, utilizing an efficient

weighted kernel herding (WKH) [95] procedure. For a given

coreset, we select the corresponding coreset weights via an

efficient nonnegative least squares (NNLS) minimizing the

discrepancy between the coreset and the entire mode. We

analyze performance of our two methods on large datasets,

testing with both simulated data and real functional magnetic

resonance imaging (fMRI) data via functional connectivity

matrices (FNCs) arranged as a large tensor. Comparing with

similar Tucker-type methods, such as variations of the Tensor

CUR decomposition and randomized HOSVD methods, we

demonstrate that our methods are highly efficient, provide

good approximation performance, and can be converted to a

HOSVD decomposition with strong estimation quality.

The paper is organized as follows. Section II introduces

preliminary concepts regarding matrices and tensors, includ-

ing several basic methods for matrix and tensor decom-

positions. Section III explains efficient generalizations of

subset-based methods for matrix decompositions to tensor

decompositions, such as the tensor CUR decompositions.

Section IV introduces our proposed sequential coreset-based

tensor decomposition methods, which we refer to as tensor

coreset decompositions (TCD). Section V provides results

of our methods, compared with various other methods, on

both simulated tensor datasets and a real fMRI FNC tensor

dataset. Section VI concludes the paper and overviews the

contributions.

II. PRELIMINARIES

A. NOTATION

Throughout the paper, we use notation that is summarized

in Table 1, and is consistent with notation of other works that

discuss tensor decompositions (e.g., [1]).

We denote scalars by lowercase unbolded letters (e.g., x),

vectors by lowercase bolded letters (e.g., x), matrices by

uppercase bolded letters (e.g. X), and higher order tensors

(order three or higher) by calligraphic bolded letters (e.g.X ).

The order of a tensor, N , also referred to as the number of

modes, can be loosely thought of as the number of dimensions

in the tensor, but more precisely it is the number of indices

needed to index an entry in the tensor. For instance, a third or-

der tensorX has a corresponding (i1, i2, i3) element denoted

by (X )(i1i2i3). Each index corresponds to a different mode of

the tensor, and is bounded by the dimensionality of that mode.

For example, given a third-order tensor X ∈ R
D1×D2×D3 ,

the dimensionality of the first mode is D1. In general, when

dealing withN th-order tensors, we refer to the dimensionality

of the nth node by Dn, and a particular index from that mode

by in, for in = 1, . . . ,Dn, and n = 1, . . . ,N .

As our paper utilizes subsets of the tensor, we define a

subtensor as a subset of elements in the tensor corresponding

to some set of indices. We define index sets over a given

nth mode of a tensor by unbolded calligraphic letters In, and
use a colon to otherwise indicate all elements of a mode. For

example, (X )(i,:,:) denotes the ith element of the first mode,

and (X )(I1,:,:) denotes a subset of elements in the first mode

corresponding to the index set I1.
An important operation in tensor decompositions is the

matricization of a tensor, also called the unfolding.We denote

the nth mode unfolding of a tensorX ∈ R
D1×D2×...×DN by the

matrix X(n) ∈ R
Dn×D̃n , where D̃n =

∏N
m=1
m̸=n

Dm is the product

of all other mode’s dimensionalities. The ith row of the nth

mode unfolding is the vectorization of the ith element in the

nth mode, e.g. (X(1))(3,:) denotes the third row in the first

mode unfolding of X and is equal to vec(X(3,:,:,...,:))
¦, the

third element of the first mode.

The rank of a tensorX is defined as the smallest number of

rank-1 tensors that exactly sum to X . Unlike with matrices,

determining the tensor rank is difficult for most real-world

tensors. A more well-defined notion of a tensor’s rank struc-

ture are the n-ranks, the ranks of each unfolding X(n).

If the nth mode unfolding of a tensor X(n) ∈ R
Dn×D̃n is

left multiplied by a matrixU ∈ R
Jn×Dn , the resulting product

G = U X(n) ∈ R
Jn×D̃n is equivalently represented in the

tensor domain by the nth mode tensor product G = X ×n

U ∈ R
D1×...×Dn−1×Jn×Dn+1×...×DN .

The norm of a tensor X ∈ R
D1×...×DN is defined by:

∥X ∥F =

( D1
∑

i1=1

. . .

DN
∑

iN=1

(X )2(i1,...,iN )

)
1
2

. .

Notation Definition

x scalar

x vector

X matrix

X tensor

N number of modes

Dn dimensionality of nth mode, for n = 1, . . . ,N
Rn n-rank: rank ofX(n)

R̂n number of factors in decomposition of nth mode

D̃n
∏N

m=1
m ̸=n

Dm

D̃
(n)
n (

∏n−1
m=1 R̂m) (

∏N
m=n+1 Dm)

T̂n
∏N

m=1
m ̸=n

R̂m

in ith index of the nth mode, for in = 1, . . . ,Dn
In index set of nth mode (with cardinality R̂n)

I = {I1, . . . , IN} All modes’ index sets

(X )(:,...,in,...,:) element in of the nth mode

(X )(:,...,In,...,:) subset of nth mode corresponding to indices In

X(n) nth mode unfolding ofX

X ×n An nth mode tensor product of X with An

X
¦ matrix transpose

X
† matrix pseudoinverse

X X
† projection matrix

MIn nth mode ‘‘mapping’’ matrix corresponding to In
. .

Table 1. Notation used in this paper.
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Algorithm 1: HOSVD

Input: X ∈ R
D1×...×DN (N -mode tensor),

[R̂1, . . . , R̂N ] (number of factors per mode)

Output: X ≈ G ×1 A1 × . . . ×M AN , where

G ∈ R
R̂1×...×R̂N (core tensor),

{A1, . . . ,AN} (factor matrices)

for each mode n = 1 : N
unfold (matricize) tensor w.r.t. nth mode

llllllllll X → X(n) ∈ R
Dn×D̃n , with D̃n =

∏N
m=1
m̸=n

Dm

compute An ∈ R
Dn×R̂n ,

llllllllll the R̂n left singular vectors of X(n)

end for

G = X ×1 A
¦
1 ×2 . . .×N A¦

N

In the next subsections, we first discuss Tucker and

HOSVD decompositions for tensors, and note their complex-

ities. We then discuss column subset selection (CSS) methods

for reducing complexities of matrix decompositions, and then

discuss generalizations of these methods to tensors.

B. TUCKER AND HOSVD DECOMPOSITIONS

The Tucker decomposition [62], [63] is a general type of

tensor decomposition that approximates an N th order tensor

X ∈ R
D1×...×DN by the tensor product of N factor matrices

An (n = 1, . . .N ), with a smaller core tensor G. The general

cost function for Tucker decompositions takes the form:

J (G,A1, . . . ,AN ) = ∥ X − G ×1 A1 ×2 . . .×N AN ∥2F
(1)

where An ∈ R
Dn×R̂n is the nth mode’s factor matrix, G

∈ R
R̂1×...×R̂N is the core tensor, and R̂n are the number of

factors chosen for the nth mode, which are often closely

Algorithm 2: ST-HOSVD

Input: X ∈ R
D1×...×DN (N -mode tensor),

[R̂1, . . . , R̂N ] (number of factors per mode)

Output: X ≈ G ×1 A1 × . . . ×M AN , where

G ∈ R
R̂1×...×R̂N (core tensor),

{A1, . . . ,AN} (factor matrices)

for each mode n = 1 : N
unfold (matricize) tensor w.r.t. nth mode

llllllllll X → X(n) ∈ R
Dn×(D̃n)

(n)

,

llllllllll with (D̃n)
(n) = (

∏n−1
m=1 R̂m) (

∏N

m=n+1 Dm)

compute An ∈ R
Dn×R̂n ,

llllllllll the R̂n left singular vectors ofX(n)

truncate the unfolded tensor

llllllllll X(n) →A¦
n X(n) ∈ R

R̂n×(D̃n)
(n)

un-matricize the tensor

llllllllll X(n) → X ∈ R
R̂1×...×R̂n×Dn+1×...×Dn

end for

G → X

related to the tensor’s n-ranks Rn, for n = 1, . . . ,N .

The Tucker decomposition is not unique without any fur-

ther constraints. There are a variety of ways to achieve a

unique Tucker decomposition over a tensor, including several

subset-based approaches such as the tensor CUR decomposi-

tion and the method that we later propose in this paper.

A useful Tucker decomposition is the HOSVD [63], [64],

a natural generalization of SVD to tensors. HOSVD’s factor

matrices of a tensor X are analytically given as the left

singular vectors of each unfolding of X , and the core tensor

is obtained from a tensor product of these factor matrices with

X . The HOSVD procedure is described in Algorithm 1.

Several variations of HOSVD have been introduced since

its inception to improve its efficiency, with one of the most

used variations being the sequentially truncated HOSVD (ST-

HOSVD) [89]. Across each nth mode of the tensor, ST-

HOSVD first estimates a mode’s factor matrix from the left

singular vectors of the nth mode unfoldingX(n) (just as done

with HOSVD), and then replaces X with the core tensor

formed by the tensor product of this factor matrix with X .

Over calculation of the N mode factor matrices, the current

tensor progressively reduces in size until it becomes the final

core tensor and all N factor matrices are obtained. The ST-

HOSVD procedure is described in Algorithm 2.

If we denote the SVD of eachX(n) in the for loop of Algo-

rithm 2 byX(n) =UX(n)
ΣX(n)

V¦
X(n)

, such thatAn =UX(n)
,

it follows that ST-HOSVD’s truncation strategy sequentially

replaces X(n) with its top R̂n right principal components

(PCs) ΣX(n)
V¦

X(n)
, thus best preserving the approximation

of the original tensor while reducing the dimensionality of

operations across all remaining modes.

We now compare the computational complexities of

HOSVD and ST-HOSVD. For simplicity, we assume

that the order of modes truncated with ST-HOSVD is

n = 1, . . . ,N . HOSVD’s computational complexity is

O
(

∑N

n−1 min
(

D2
nD̃n, D̃

2
nDn

)

)

, dominated by the N SVD-

unfoldings for large tensors. ST-HOSVD considerably re-

duces this complexity toO
(

∑N

n−1 min
(

D2
nD̃

(n)
n , (D̃

(n)
n )2Dn

)

)

,

where D̃
(n)
n = (

∏n−1
m=1 R̂m) (

∏N

m=n+1 Dm), here R̂m is the num-

ber of factors in the mth mode. However with ST-HOSVD,

the first few modes’ SVDs are similar in complexity to those

calculated with HOSVD. This leads ST-HOSVD to still be

computationally expensive when dealing with large tensors,

motivating more scalable decomposition methods.

In the next section, we overview subset-based methods for

reducing complexity of matrix decompositions, from which

we then overview their various generalizations to tensors.

C. MATRIX DECOMPOSITIONS BY COLUMN SUBSET

SELECTION (CSS)

This subsection gives a general overview of column subset

selection methods for matrices. For a more detailed discus-

sion of the topic, we refer the reader to [96]–[98].

CSS methods approximate a matrix X ∈ R
M×N by se-

lecting a subset of columns of the matrix, selecting either
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randomly or deterministically, and then approximating X by

projecting onto the span of the subset. If we denote XIs ≜

(X)(:,Is) ∈ R
M×Ns as the matrix formed by a Ns subset of

columns, corresponding to some index set Is, the approxima-

tion error for some choice ofXIs is given by:

J (Is) =
∥

∥ X−XIs(X
¦
Is
XIs)

−1X¦
Is
X

∥

∥

2

F

=
∥

∥ X−XIsXIs
† X

∥

∥

2

F

=
∥

∥ X−PXIs
X

∥

∥

2

F
(2)

where XIs
† = (X¦

Is
XIs)

−1X¦
Is

is the pseudoinverse of XIs

(such that XIs
† XIs = I ∈ R

Ns×Ns , and PXIs
= XIsXIs

†

∈ R
M×M is the projectionmatrix corresponding to the column

space ofXIs . This is equivalently given by:

J (Is) = ∥X−XIs MIs ∥
2
F (3)

where MIs = (X¦
Is
XIs)

−1X¦
Is

X ∈ R
Ns×N is a matrix

mapping columns of X onto the span of XIs , which in later

sections we refer to as a ‘‘mapping’’ matrix.

1) Randomized CSS

Randomized CSSmethods operate by assigning aweighted

probability distribution to the columns and then sampling ac-

cording to this distribution. Uniform sampling of the columns

(giving equal sampling probability to each column) generally

produces bad approximations of a matrix, especially if the

columns are heterogeneous. Instead, sampling distributions

are often based on probabilities weighted by the squared norm

of columns, i.e. ‘‘norm sampling’’ [77], [99], or approximated

statistical leverage scores [100]. In our paper, we focus on

norm sampling, which is the most computationally efficient

of the sampling-based methods, and we note that norm sam-

pling is also conventional in tensor-based methods [79], [82],

[101]. It has been proven in [99] that norm sampling provides

the following error guarantees: given a matrix X ∈ R
M×N

and values for ϵ, ¶, and a defined upper limit to the rank k

of PXIs
= XIsXIs

†, then a norm sampled selection for XIs

satisfies the following error probability:

Pr

{

∥

∥X−PXIs
X
∥

∥

2

F
f ∥X−Xk∥2F+ ϵ ∥X∥2F

}

g 1− ¶

where Xk is the best rank-k approximation to X, and 0 f
¶ f 1 is the probability of failure.

Furthermore, it has been proven in [77] that given a norm

sampled subset of columns XIs , after rescaling the columns

of XIs to be the same norm:

(XIs)(:,i) → 1√
Ns

∥X ∥F
∥

∥ (XIs)(:,i)
∥

∥

F

(XIs)(:,i) , (4)

that the following error probability is satisfied ∀ ϵ g 0 :

Pr

{

∥

∥XX¦ − XIsX
¦
Is

∥

∥

2

F
f ¸

(Ns)
1
2

∥X ∥2F
}

g 1− ¶

where ¸ = 1 + (8log(¶−1))
1
2 .

If we denote the SVD of X by X = UX ΣX V¦
X
, this

particular result suggests that with a high enough sample size

Ns, a norm sampledXIs can adequately approximate the left

PCs UX ΣX of X with a high probability, by re-scaling the

columns according to (4). We later will refer to this result

when introducing our coreset-based method.

2) Deterministic CSS

Deterministic CSS methods are combinatorial methods for

selecting a ‘‘best’’ representative subset of columns, where

‘‘best’’ is relative to the method used. The problem of finding

a subset that exactly minimizes the approximation cost over

all possible subsets has been acknowledged as being UG-

hard (where ‘‘UG’’ refers to the unique games conjecture)

[102], in which case deterministic algorithms mainly focus

on obtaining a reasonably ‘‘best’’ subset in a reasonable

amount of time. These methods can also effectively serve as

feature selection methods, and thus there is a large overlap

between methods that can be used for feature selection and

those used for deterministic CSS. However, the design of CSS

methods typically puts a greater emphasis on the scalability of

methods, especially with the high-dimensional combinatorial

problems posed by large matrices or tensors.

Perhaps the most popular method for deterministic CSS is

to use the greedy algorithm, which consecutively searches for

a new column to add onto a subset such that the resulting new

subset best approximates the full matrix. The greedy CSS al-

gorithm was first studied in [103], and has been demonstrated

to be both scalable to large numbers of columns and provide

high-quality representative subsets [97], [104]–[108].

As one may expect, deterministic CSS methods provide

better approximation than randomized methods and incur

better error guarantees. The tightest bounds for deterministic

CSS depend on the singular values of X; intuitively, those

matrices whose singular values have higher rate of decay are

simpler matrices which require much fewer columns to well-

approximate the matrix. In [98], the following bound was

proven on greedy CSS:

∥

∥ X−PXIs
X

∥

∥

2

F
g (1− ϵ) ∥ X−Xk ∥2F

where Xk is the best rank-k approximation to X, r g
16k (ϵÃmin(Xk))

−1 is the number of steps taken by the

greedy algorithm, and Ãmin(Xk) is the smallest singular value

of Xk . Similar results have been proven in Theorem 3 of

[109]. A shared result amongst these works is that by only

taking slightly more than k columns with greedy CS, the

approximated matrix is less than a 1 − ϵ factor from the

optimal choice of k columns.

III. SUBSET METHODS GENERALIZED TO TENSORS

(METHODS TO APPROXIMATE THE HOSVD)

As tensor decompositions frequently invoke matrix opera-

tions with the tensor unfolding, matrix approximation tech-

niques have found great use for accelerating tensor decom-

positions [79]–[83], [101]. As our proposed method is most

analogous to the HOSVD, we focus only on those subset-
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based methods for performing a Tucker decomposition in the

form of an approximated HOSVD.

These methods generally estimate a form of Tucker de-

composition that is not a HOSVD decomposition, but can be

used to approximate one. In order to provide an approximate

HOSVD decomposition, we may convert any method’s corre-

sponding Tucker decomposition to a HOSVD decomposition

via the procedure [82] outlined in Algorithm 3.

Algorithm 3: Convert Tucker decomposition to HOSVD

Input: G̃ ∈ R
R̂1×...×R̂N (core tensor)

{Ã1, . . . , ÃN} (factor matrices)

Output: G ∈ R
R̂1×...×R̂N (HOSVD core tensor),

{A1, . . . ,AN} (HOSVD factor matrices)

for each mode n = 1 : N
factorize Ãn using the QR decomposition:

llllllllll
[

Qn,Rn

]

= qr(Ãn)

replace G̃ → G̃ ×n Rn

end for

perform HOSVD on the new core tensor:

llllllllll
[

G,A1, . . . ,AN

]

= HOSVD(G̃)

for each mode n = 1 : N
replace = An →Qn An

end for

There are various different strategies to provide a Tucker

decomposition over a tensor X via exploiting the previously

discussed matrix approximation techniques over the tensor

unfoldings X(n). These strategies can generally be separated

into two distinct camps with differing decompositions:

• column-based subsets: approximate X(n) by a subset of

its columns, e.g. randomized sampling tucker CUR [80]

• row-based subsets: approximate X(n) by a subset of its

rows, e.g. Chidori CUR [79], [82], Fiber CUR [81], [82],

and randomized-block HOSVD (RB-HOSVD) [101]

We briefly overview and contrast these two strategies in the

following subsections.

A. COLUMN-BASED SUBSET METHODS FOR TENSOR

UNFOLDINGS

Column-based subset methods approximate a tensor un-

foldingX(n) using a subset of its columns. These columns are

referred to as ‘‘fibers’’ in the tensor literature, and represent a

fixed index in all modes of the tensor except for the nth mode.

As an example, (X(1))(:,z) is a fiber of the first mode which

represents (X )(:,i2,i3,...,iN ) for some indices of the N−1 other
modes i2, i3, . . . , iN that correspond to some fiber index z.

For the nthmode unfoldingX(n) of a tensorX , if we denote

In as an index set for some subset of R̂n columns, and denote

(X(n))In ≜ (X(n))(:,In) ∈ R
Dn×R̂n as the matrix formed by

these R̂n columns, then (2) is restated as:

J (In) =
∥

∥

∥
X(n) −P(X(n))In

X(n)

∥

∥

∥

2

F
(5)

=
∥

∥ X(n) − (X(n))In MIn

∥

∥

2

F
(6)

whereP(X(n))In
= (X(n))In(X(n))In

† ∈ R
Dn×Dn is the projec-

tion matrix corresponding to the column space of (X(n))In ,

(X(n))In
† ∈ R

R̂n×Dn is the pseudoinverse of (X(n))In , and

MIn = (X(n))In
† X(n) ∈ R

R̂n×D̃n is the matrix mapping

columns ofX(n) onto (X(n))In .

By denoting I =
{

I1, . . . , IN
}

as the set of all N mode’s

column index sets In, for n = 1, . . . ,N , then we can represent

the resulting decomposition’s cost in a manner similar to (1):

J (I) =
∥

∥ X −M×1 (X(1))I1
×2 . . .×N (X(N))IN

∥

∥

2

F

(7)

where the core tensor is given byM=X×1 (X(1))I1
†×2

. . . ×N (X(N))IN
† ∈ R

R̂1×...×R̂N , and the factor matrices are

given by the column subsets (X(n))In .

This decomposition in (7) was first introduced in [80],

referred to as ‘‘ApproxTensorSVD’’ in that paper. Later pub-

lications such as [83] refer to the algorithm as randomized

sampling tucker CUR (RST-CUR). This decomposition is

perhaps the most direct generalization of the matrix CUR

to the tensor domain, as the decomposition takes the exact

form of the matrix CUR when N = 2. We refer to this

decomposition as RST-CUR for the remainder of the paper.

The same advantages gained by matrix CUR for matrices

carries over to RST-CUR for tensors, notably a low com-

plexity way to approximate a tensor’s HOSVD. Additionally,

as the factor matrices (X(n))In are fibers of the full tensor

X , the factor matrices retain properties held by the original

tensor, which can include sparsity, nonnegativity, etc.. These

qualities inX being retained in factor matrices (X(n))In may

aid with the interpretability of the decomposition.

A key difference between column-based subset methods

and row-based subset methods over X(n) is how differences

in dimensions affect the subset selection process. As X(n)

∈ R
Dn×D̃n is in general a very wide matrix with D̃n k Dn,

the massive number of columns leads deterministic column

subset selection methods to be intractable, as their complexi-

ties are typically in the order ofO(D̃2
n) or more. Furthermore,

even randomized methods typically only use a uniform dis-

tribution for sampling the columns, e.g. with norm sampling

it may also be intractable to calculate the norm of all D̃n

columns of X(n). This is a significant comparative disad-

vantage of the column-based methods such as RST-CUR, as

uniform sampling of the columns may lead to significantly

worse approximations for a given choice of R̂n. While column

subset methods over X(n) are expensive, on the other hand,

row-based subset methods are typically tractable due to the

much smaller number of rows Dn, as we discuss in the next

subsection.
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B. ROW-BASED SUBSET METHODS FOR TENSOR

UNFOLDINGS

Row-based subset methods approximate a tensor unfolding

X(n) using a subset of its rows. Aside from more advanced

sampling methods being tractable over the rows than the

columns of X(n), another advantage of row-based methods

is the interpretability of their subsets. Because rows in X(n)

are simply the elements of the nth mode, rows of X(n) are

easier to interpret than the fiber columns of X(n).

For the nth mode unfoldingX(n) of a tensor X , if we now

denote In as an index set for some subset of R̂n rows, and

denote (X(n))In ≜ (X(n))(In,:) ∈ R
R̂n×D̃n as thematrix formed

by these R̂n rows, then (2) is restated as:

J (In) =
∥

∥

∥
X(n) −X(n) P(X(n))In

∥

∥

∥

2

F
(8)

=
∥

∥ X(n) −MIn (X(n))In
∥

∥

2

F
(9)

where P(X(n))In
∈ R

Tn×D̃n is the projection matrix corre-

sponding for the row space of (X(n))In , andMIn ∈ R
Dn×R̂n is

the nth mode’s mapping matrix, which maps rows of X onto

the span of (X(n))In , and is given by:

MIn = X(n)(X(n))
¦
In
((X(n))In(X(n))

¦
In
)−1 (10)

By denoting I =
{

I1, . . . , IN
}

as the set of all N modes’

row index sets In, for n = 1, . . . ,N , then we can represent

the resulting decomposition’s cost in a form similar to (1):

J (I) = ∥ X −XI ×1 MI1 ×2 . . .×N MIN ∥2F (11)

where the core tensor XI = (X )(I1,...,IN ) ∈ R
R̂1×...×R̂N

is a subtensor of X over the index sets In, and the factor

matrices are the N mapping matricesMIn , for n = 1, . . . ,N .

The characteristic difference between the decomposition

XI ×1 MI1
×2 . . .×N MIN in (11), and the decomposition

M×1 (X(1))I1
×2 . . .×N (X(N))IN in (7), is how elements

of the tensor X manifest as elements in the decomposition,

relative to a tensor generalization of (3). In (7), elements ofX

manifest as fibers in the factor matrices (X(n))In , and the core
tensor M can be considered a tensor generalization of the

mapping matrix. Where in (11), the opposite occurs: elements

ofX manifest as the core tensorXI , and the factor matrices

MIn are the N modes’ mapping matrices. Thus with (11), the

core tensor is the element of the decomposition that retains

properties of the original tensor, which may yield more useful

decompositions depending on the application.

Various tensor decompositions take the form of the de-

composition XI ×1 MI1
×2 . . . ×N MIN in (11). This

decomposition was first introduced in [79] shortly before the

introduction of the RST-CUR decomposition. Later works

such as [82] have provided significant understandings to the

error guarantees of this decomposition, and have referred to

it by the name ‘‘Chidori CUR’’ decomposition.

A key feature of the Chidori CUR is that the subset indices

In are chosen prior to the decomposition, and that the map-

ping matrices MIn are calculated only over those fibers of

X(n) that correspond to the subset indices In of all N − 1
other modes. In other words, in calculation ofMIn in (10), the

matrixX(n) is the unfolding of the nth mode ‘‘Chodiri Beam’’

(X )(I1,...,In−1,:,In+1,...,IN ) ∈ R
R̂1×...×R̂n−1×D1×R̂n+1×...×R̂n ,

and (X(n))In is the unfolding of the core tensor XI (a sub-

tensor of the nth Chidori Beam). Because theMIn are calcu-

lated over only the Chidori Beams, the decomposition only

requires access to the Chidori beams and is thus independent

from all other elements in the tensor. This reliance on only

a small subset of the tensor to perform the decomposition

results in one of the most computationally efficient tensor

decompositions. At the same time, however, independence of

the decomposition from elements outside the Chidori beams

may result in a worse factorization than other decompositions,

particularly when the subsets of the core tensor XI are not

well-representative of the rest of X , or if X is otherwise

heavily heterogeneous in nature.

A similar decomposition was later introduced in [81], and

can be considered a generalization of the Chidori CUR where

the unfolding fibers inX(n) and (X(n))In are not restricted to
those In of the N − 1 other modes, but can be any random

corresponding subset of fibers from X(n) and (X(n))In over
the entire tensor. This decomposition was also later studied in

[82] and has been called the ‘‘Fiber CUR’’ decomposition. As

the Fiber CUR allows access to any random subset of fibers of

X(n) and (X(n))In for calculating mapping matricesMIn , its

decomposition may be more robust to poorly chosen subsets

of the data. However, as column fibers in Fiber CUR are typ-

ically uniformly sampled, this may also lead the Fiber CUR

to exhibit considerably higher variation in the quality of the

estimated MIn , which often leads to worse decompositions

than those provided by Chidori CUR.

As described in Section III.A, the massive numbers of

columns inX(n) make column selection methods intractable,

and thus typically only rely on uniform sampling to select the

columns. However for row-based methods such as Chidori

CUR and Fiber CUR, the much smaller number of rows

Dn j D̃n allow for more sophisticated sampling methods

such as norm sampling. When norm sampling is applied,

index sets In are selected according to the norms of elements

in the original tensor, e.g. (X(n))(i,:) which when vectorized is

of dimension D̃n. These sampling schemes require N passes

over the tensor to construct the N index sets, and thus can

still be of considerable expense. Perhaps as a result of this,

row-based subset methods for tensors have exclusively used

random subset methods such as uniform and norm sampling

to obtain subsets of the tensor, and thus deterministic subset

methods have not been explored.

Building on the ideas presented in previous sections, in the

next section we introduce a new way of performing a subset-

based Tucker decomposition that provides a good balance

between efficiency and approximation quality, by exploiting

weighted subsets of the data called coresets.
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IV. TENSOR CORESET DECOMPOSITION

In this section, we introduce a method for the Tucker

decomposition that operates by selecting coresets: weighted

subsets of the data. As we later explain, these weighted

subsets can provide a better approximation to the tensor X

by effectively better approximating the HOSVD’s principal

component tensor G. We later motivate additional differences

vs. the previously discussed methods, such as a sequentially

truncated coresets approach analogous to ST-HOSVD, and

the ability to represent symmetry in the tensor over multiple

modes. Furthermore, instead of exclusively selecting sub-

sets randomly for greater efficiency, we also motivate ability

to select subsets deterministically, for better approximation

quality and for feature selection.

A. SUBSET DISCREPANCY – A MEASURE OF

‘‘REPRESENTATIVENESS’’

To motivate weighted subsets within a tensor, we first refer

back to the per-mode approximation error provided for row-

based subsets in (9).

J (In) =
∥

∥ X(n) −MIn (X(n))In
∥

∥

2

F

Denoting the SVD of X(n) by X(n) = UX(n)
ΣX(n)

V¦
X(n)

,

the approximation error of MIn (X(n))In ∈ R
Dn×D̃n depends

on how well the subset (X(n))In can approximate the row-

space of X(n), specifically in terms of approximating its

right principal components ΣX(n)
V¦

X(n)
, which in the tensor

domain is represented by the HOSVD core tensor G. These

PCs are analytically given by the eigenvectorsVX(n)
and cor-

responding eigenvalues ΣX(n)
of the quadratic formX¦

(n)X(n)

∈ R
Tn×D̃n , and thus can be approximated from (X(n))In via

the corresponding form (X(n))
¦
In

(X(n))In ∈ R
Tn×D̃n . As a

result, an implicit distance between the PCs of X(n) and

(X(n))In is given by the distance between the quadratic forms:

R (In) =
∥

∥

∥
(X(n))

¦
Is
(X(n))Is −X¦

(n)X(n)

∥

∥

∥

2

F
(12)

This can be understood as a nonparametric measure of

discrepancy [90]–[95] between the full set X(n) and the

subset (X(n))In , analogous to the maximum mean discrep-

ancy [92]–[94] for a particular realization of distributional

‘‘embeddings’’ of the elements in the set. Specifically for

some ith element in the nth node, given by (X(n))(i,:), its
corresponding embedding in this discrepancy is given by

(X(n))
¦
(i,:)(X(n))(i,:) ∈ R

D̃n×D̃n , and the nth mode’s ‘‘full

mode embedding’’ X¦
(n)X(n) is given by the sum X¦

(n)X(n)

=
∑Dn

i=1(X(n))
¦
(i,:)(X(n))(i,:), which we seek to best approxi-

mate via the subset’s embedding (X(n))
¦
In
(X(n))In .

B. CORESETS – WEIGHTED SUBSETS

A subset’s discrepancy can be further decreased by weight-

ing the subset: assigning individual weights w
[i]
n to each ith

element in the subset. Utilizing these weighted subsets, called

coresets, the discrepancy measure is given by:

R (In,wn) =

∥

∥

∥

∥

∥

∑

i∈In

w[i]
n (X(n))

¦
(i,:)(X(n))(i,:) −Bn

∥

∥

∥

∥

∥

2

F

(13)

where wn =
[

w
[1]
n , . . . ,w

[R̂n]
n

]

∈ R
R̂n is the set of R̂n coreset

weights corresponding to each element in (X(n))In ∈ R
R̂n×D̃n ,

and Bn ≜ X¦
(n)X(n) ∈ R

D̃n×D̃n is the nth modes full mode

embedding (a fixed quantity).

An important point to acknowledge here is that in

(13), the weights w
[i]
n are applied to the element embed-

dings (X(n))
¦
(i,:)(X(n))(i,:), and not the elements themselves

(X(n))(i,:). Instead, it follows that the elements receive the

square root of the weights (w
[i]
n )

1
2 :

w
[i]
n

(

(X(n))
¦
(i,:)(X(n))(i,:)

)

=
(

(w
[i]
n )

1
2 (X(n))(i,:)

)¦(

(w
[i]
n )

1
2 (X(n))(i,:)

)

This necessitates us to later specify nonnegative weights

w
[i]
n g 0 in order for (w

[i]
n )

1
2 to be real.

We now discuss the procedure for selectingweightswn that

minimize the discrepancy (13). For simplicity, for now we

assume that we have a particular realization of the subset In,
which is selected either randomly or deterministically (as we

explain in the next subsection).With In fixed and discrepancy
as only a function of the weights wn, we can equivalently

write (13) in a form where all D̃n × D̃n matrices are instead

given as D̃2
n × 1 vectors:

R (wn) =

∥

∥

∥

∥

∥

∑

i∈In

w[i]
n a

[i]
n − bn

∥

∥

∥

∥

∥

2

2

(14)

= ∥Anwn − bn ∥22
where we define a

[i]
n = vec((X(n))

¦
(i,:)(X(n))(i,:)) ∈ R

T2

as the vectorization of the ith element’s embedding, An =
[

a
[1]
n , . . . ,a

[R̂n]
n

]

∈ R
D̃2
n×R̂n as the horizontal concatenation of

the a
[i]
n , and bn = vec(Bn) ∈ R

D̃2
n as the vectorization of the

full mode embedding.

This is a least squares problem arg min
wn

∥Anwn − bn ∥22 for

which the ordinary least squares (OLS) solution is wn =
(A¦

n An)
−1A¦

n bn. However as noted previously, we also

require that the weights w
[i]
n be nonnegative in order for the

square root of weights (applied to the elements themselves) to

be real. Therefore, we use a NNLS algorithm [110] to solve

for wn. This is an efficient algorithm that does not explicitly

form the D̃n × D̃n embeddings, instead only requiring the

kernels between embeddings which are significantly easier

to calculate. We define the kernel between the embeddings of

(X(n))(i,:) and (X(n))(j,:) as:

k(in, jn) = < a[i]n ,a
[j]
n > =

(

(X(n))(i,:)(X(n))
¦
(j,:)

)2

(15)
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The two quantities required by the algorithm are kernels

(A¦
n An) ∈ R

R̂n×R̂n and A¦
n bn ∈ R

R̂n . The matrix (A¦
n An)

provides all pairwise kernels within the In subset, and is equal
to

(

(X(n))(In,:)(X(n))
¦
(In,:)

)◦2 ∈ R
R̂n×R̂n , where (.)◦2 denotes

the Hadamard power (here, elementwise squaring). The vec-

tor A¦
n bn provides kernels with each element in the subset

with the full mode embedding, equal to
(

(X(n))(In,:)X
¦
(n)

)◦2
1

∈ R
R̂n , where 1 ∈ R

Dn is the vector of 1s. For further effi-
ciency, we initialize the NNLS algorithmwith the mapping of

the OLS solution (A¦
n An)

−1A¦
n bn to its nearest nonnegative

vector. In our experience, we often observe that the OLS

solution is already nonnegative and thus exactly minimizes

(14) without requiring the NNLS algorithm.

Having provided the means to optimize the weightswn, in

the next section we discuss ways of selecting the subsets.

C. SUBSET SELECTION – RANDOMIZED OR

DETERMINISTIC

As our method is a row-based subset method over X(n),

we can consider more advanced means of selecting subsets

(X(n))(In,:) than uniform sampling of rows. We use different

strategies if we seek random subsets, prioritizing computa-

tional efficiency over approximation quality, or deterministic

subsets, prioritizing approximation quality in addition to the

utility of feature selection.

For random subsets, we use norm sampling as done with

previously mentioned methods. While we unfortunately do

not provide an approximation bound for random subsets us-

ing the NNLS weights discussed previously, intuitively these

weights should yield a discrepancy that is less than or equal to

that provided by the normalized weights discussed in (4), as

those weights are not explicitly optimizing over the discrep-

ancy whereas the NNLS weights are. Therefore, we expect an

error superior or equal to that of (4)’s weights. As we show

in the next section, it is inexpensive to calculate the NNLS

weights since the kernel quantities are required anyways to

calculate the nth mode’s mapping matrix MIn . Selection of

the random subset along with calculating the weights has

complexity ofO((R̂n +1)D̃nDn + R̂3
n), which is linear in Dn.

For deterministic subsets, we retain the use of greedy

methods in the interest of balancing approximation quality

with computational efficiency. As discussed in Section II.C,

greedy methods significantly outperform the error bounds of

randomizedmethods and lead to subsets that rapidly converge

to the properties of the full set. We specifically utilize the

weighted kernel herding (WKH)method [95] which allows us

to simultaneously and efficiently solve for the subset indices

In and weights wn. Like the NNLS algorithm, the WKH

algorithm is made more efficient by only requiring kernels

to operate. It uses X(n) X
¦
(n) ∈ R

Dn×Dn , the matrix of pair-

wise kernels between all elements in the nth mode, and has

complexity O(D̃nD
2
n + R̂3

nDn), which is quadratic in Dn.

In the next section, we introduce our tensor decomposition

method as a sequentially truncated variation of the row-based

subset model in (11), where we sequentially replace the tensor

with a coreset of itself.

D. TENSOR DECOMPOSITION VIA SEQUENTIALLY

TRUNCATED CORESETS

We now motivate our method for performing a coreset-

based Tensor decomposition. We first revisit points men-

tioned in Section III.B. specifically discussing the advantages

and disadvantages of the Chidori CUR decomposition. As we

note previously, the Chidori CUR Decomposition is efficient

because it only requires processing small subsets of the tensor

– the ‘‘Chidori beams’’ – in order to calculate the mode’s

mapping matrices MIn . However, this may also lead to a

significantly worse approximation quality for the decompo-

sition, in the event that the randomly chosen subsets are not

well representative of the entire tensor X, or otherwise for

decomposing tensors that are highly heterogeneous in nature.

When approximation quality is a priority for both randomized

and deterministic methods, it may be more prudent to use

a method that does pass over all elements of the tensor,

but preferably only once if computational efficiency is also

a priority. These decompositions can provide significantly

more representative subsets of the data while still maintaining

excellent computational efficiency.

With this focus in mind, in order to provide a good bal-

ance between approximation error and efficiency, we instead

consider a method inspired by ST-HOSVD that utilizes se-

quentially truncated coresets to perform the decomposition.

Like ST-HOSVD, for each nth mode of the tensor, we would

learn the mapping matrix MIn and then replace the tensor

with a truncated tensor, thus significantly decreasing the com-

plexity of calculatingMIn for all remaining modes. However,

whereas ST-HOSVD replaces the tensor with the PCs of the

mode, we instead replace the tensor with the nth mode’s

coreset. These methods are closely connected by the fact that

the coresets are trying to best preserve the PCs of the tensor,

as evidence by the discrepancy cost in (12) and (13).

We now discuss details of our method’s implementation to

assist understanding the pseudocode provided in Algorithm

4. The factorization of the nth mode is initialized by selecting

a subset In, which as we mentioned in Section VI.C is in

general O(Dn) for random subsets or O(D2
n) for determin-

istic subsets. We then compute the pairwise inner products

between the subset and the full set, given by the matrix PIn

= (X(n))In X¦
(n) ∈ R

R̂n×Dn , within which the submatrix

P(In,In) = (PIn)(:,In) ∈ R
R̂n×R̂n provides the pairwise inner

products within the subset. With both of these matrices, we

can obtain the kernels of embeddings P◦2
(In,In)

∈ R
R̂n×R̂n

and P◦2
In

1Dn
∈ R

R̂n to perform NNLS and learn the coreset

weights wn ∈ R
R̂n . Arranging wn in the diagonal matrixWn

∈ R
R̂n×R̂n , the approximation in (9) given by MIn (X(n))In

can be weighted via MIn W
−1
n Wn (X(n))In , in which case

the mapping matrix (accounting for weights) is given byMIn

= P¦
In
P−1

(In,In)
W−1

n ∈ R
Dn×R̂n , and the weighted coreset is
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Fig. 1. Visualization of the tensor coreset decomposition

(TCD) applied to a 3rd-order tensor X . The core tensor C

is a weighted subtensor (coreset) of X .

.

given byWn (X(n))In . Thus with the weights calculated, we
compute the mappingmatrixMIn , then truncate the nth mode

by replacing it with the coresetWn (X(n))In , and finally un-
matricize the tensor so that the entire process can be repeated

for the remaining modes. Fig. 1 visualizes the tensor coreset

decomposition (TCD).

After truncating over all modes, the resulting coreset core

tensor C = XI ×1 W1 ×2 . . . ×N WN is a subtensor

XI weighted on each nth mode by weight matrix Wn, and

serves as a compressed form ofX analogous to the principal

component tensor G from HOSVD. The weights Wn are a

key differentiator from other methods like the Chidori CUR

decomposition, and the use of Wn within this sequentially

method can allow for an excellent approximation to the

HOSVD core tensor G, and by extension, the tensor X .

The method described in Algorithm 4 assumes that X is

an asymmetric tensor, and does not preserve symmetry in the

decomposition if X is symmetric across several modes. To

retain symmetry in the decomposition in the event that X is

symmetric, we simply compute only one factor matrix MIn

for one of the symmetric modes n, and reuseMIn for all other

modes symmetric to n, while truncating those other modes the

same way X(n) →Wn (X(n))In .
In the next subsection, we compare our so called Tensor

Coreset Decomposition (TCD) to the Chidori CUR decom-

position from a computational complexity standpoint.

E. COMPUTATIONAL COMPLEXITY OF TCD

In this section, we discuss the complexities of TCD with

random (norm sampled) or deterministic (WKH) subsets,

compared to Chidori CUR with random (norm sampled)

subsets. We retain notations such as D̃
(n)
n = (

∏n−1
m=1 R̂m)

(
∏N

m=n+1 Dm) for sequentially truncated methods like ST-

HOSVD and TCD. For simplicity, we assume that the modes

truncated with these methods are in the order n = 1, . . . ,N .

We first discuss complexity of Chidori CUR decompo-

sition with random (norm sampled) subsets. The majority

Algorithm 4: Tensor Coreset Decomposition (TCD)

Input: X ∈ R
D1×...×DN (N -mode tensor),

[R̂1, . . . , R̂N ] (subset sizes per mode)

Output: X ≈ C ×1 MI1
× . . . ×N MIN , where

C ∈ R
R̂1×...×R̂N (coreset tensor),

{MI1
, . . . ,MIN } (mapping matrices per mode lll-

llllllllllllllllllllllllllllllllllllllllllllllllll – like factor matrices),

I =
{

I1, . . . , IN
}

(subset index sets per mode)

for each mode n = 1 : N
unfold (matricize) tensor w.r.t . nth mode

llllllllll X → X(n) ∈ R
Dn×D̃n , with D̃n =

∏N
m=1
m ̸=n

Dm

select subset indices In for some R̂n rows ofX(n),

llllllllll either randomly (using e.g. norm sampling),

llllllllll or deterministically (using e.g. greedy WKH).

compute inner products of full mode with subset:

llllllllll PIn = (X(n))In X
¦
(n) ∈ R

R̂n×Dn ,

llllllllll also within PIn the submatrix P(In,In) ∈ R
R̂n×R̂n

using the kernels P◦2
(In,In)

∈ R
R̂n×R̂n

llllllllll and P◦2
In

1Dn
∈ R

R̂n , perform kernel NNLS

llllllllll to learn coreset weights w ∈ R
R̂n .

arrange weights into diagonal matrix Wn = diag(w)
compute and store nth mode’s mapping matrix:

llllllllll MIn = P¦
In
P−1

(In,In)
W−1

n ∈ R
Dn×R̂n

replace unfolded tensor with weighted coreset

llllllllll X(n) → Wn (X(n))In ∈ R
R̂n×D̃n

replace nth dimension Dn → R̂n
un-matricize the tensor X(n) → X

end for

C → X

of complexity is in calculation of the norms of elements

across the N modes of the original tensor X , each mode of

complexity O(DnD̃n). These are then followed by the sig-

nificantly cheaper calculations of the mapping matrices per

each Chidori Beam, of complexityO(R̂nDnT̂n+ R̂3
n + R̂2

nDn),
where we denote T̂n=

∏N
m=1
m ̸=n

R̂m. The total complexity is thus:

O
(
∑N

n=1(DnD̃n + R̂nDnT̂n + R̂3
n + R̂2

nDn)
)

.

We then consider the complexity of TCD with random

(norm sampled) subsets, which we refer to as TCD-R. The

majority of complexity from each nth mode’s truncation

occurs from the norm sampling of complexity O(DnD̃
(n)
n ),

Table 2. computational complexities of TCD and similar

methods described in Sections II and III. For truncated meth-

ods, we assume that the truncation order is n = 1, . . . ,N .

ST-HOSVD O
(

∑N
n−1 min

(

D2
n D̃

(n)
n , (D̃

(n)
n )2Dn

)

)

Chidori CUR O
(

∑N
n=1

(

DnD̃n + R̂nDnT̂n + R̂3n + R̂2nDn
)

)

TCD-R O
(

∑N
n=1

(

(R̂n + 1)DnD̃
(n)
n + R̂3n + R̂2nDn

)

)

TCD-D O
(

∑N
n=1

(

D2
n D̃

(n)
n + R̂3nDn + R̂2nDn

)

)
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and the calculation of inner products between the subset

and full set PIn of complexity O(R̂nDnD̃
(n)
n ). These are

then used by the significantly cheaper calculations of the

coreset weights of complexity O(R̂3
n), and calculation of the

mapping matrices MIn of complexity O(R̂2
nDn) (re-using

P−1
(In,In)

from the coreset weights). The total complexity is

thus: O
(

∑N

n=1

(

(R̂n + 1)DnD̃
(n)
n + R̂3

n + R̂2
nDn

)

)

.

Lastly, we consider the complexity of TCD with determin-

istic (WKH) subsets, which we refer to as TCD-D. The ma-

jority of complexity from each nth mode’s truncation occurs

from requiring calculation of Pn = X(n) X
¦
(n) ∈ R

Dn×Dn , the

pairwise inner products over the entire nth mode, of complex-

ityO(D2
nD̃

(n)
n ). This is followed by theWKH subset selection

of complexityO(R̂3
nDn), which yields indices In and weights

wn, along with the significantly cheaper calculations of the

mapping matrices MIn of complexity O(R̂2
nDn) (where we

can also re-useP−1
(In,In)

from theWKH). The total complexity

is thus: O
(

∑N

n=1

(

D2
nD̃

(n)
n + R̂3

nDn + R̂2
nDn

)

)

.

Table 2 provides complexities of these methods. We note

that for symmetric tensors, all methods are capable of exploit-

ing symmetry by re-using factor matrices across symmetric

modes, as described in Section IV.D. In this case, the summa-

tion O(
∑N

n=1(.)) is truncated to only the number of unique

modes (i.e., symmetric modes are only counted once).

In the next section, we experimentally test the TCD meth-

ods vs other efficient Tucker decomposition methods for ap-

proximating the HOSVD. We first demonstrate performance

of methods on simulated data under various generative condi-

tions. Later, we demonstrate these methods on real fMRI data

in the form of functional connectivity maps (FNCs).

V. NUMERICAL EXPERIMENTS

We first introduce the performance measures used to com-

pare the Tensor decompositionmethods. Denoting amethod’s

approximated tensor by X̂ , the relative approximation error

of X̂ is given by:

err(X̂ ) =

∥

∥

∥
X − X̂

∥

∥

∥

F

∥X∥F
∈ [0 ∞)

As the methods discussed in this paper are often used to ap-

proximate the HOSVD or ST-HOSVD, we also use a measure

of distance between factors of the ST-HOSVD and factors

of a method’s estimated HOSVD. We introduce this new

measure as ‘‘HOSVD distance’’, and note that its formula-

tion utilizes the inter-symbol-interference (ISI) [111] used to

evaluate the performance of blind source separation methods.

Defining HOSVD distance, we denote A = {A1, . . . ,AN}
as the N factor matrices for the ‘‘true’’ ST-HOSVD, and

denote Â =
{

Â1, . . . , ÂN

}

as a method’s corresponding

estimated HOSVD factor matrices, obtained by converting a

method’s factorization into a HOSVD via Algorithm 3. Then

the HOSVD distance between a method’s estimated HOSVD

factors Â and the true factors A is given by:

HOSVD distance (A, Â) =

N
∑

n=1

ISI(A¦
n Ân) (16)

Where the ISI of a matrixU ∈ R
N×N measures how close

the matrixG is to a permuted diagonal matrix (a performance

measure invariant to sign and permutation ambiguities of the

factors), and is given by:

ISI(U) =
1

2N (N − 1)

[

N
∑

n=1

(

N
∑

m=1

|(U)(n,m)|
maxp(|(U)(n,p)|)

− 1
)

+

N
∑

m=1

(

N
∑

n=1

|(U)(n,m)|
maxp(|(U)(p,n)|)

− 1
)

]

(17)

Finally, we also measure the CPU-time of the methods. For

all performance evaluations done in Sections V and VI, we

use the computational resources provided by the UMBCHigh

Performance Computing Facility (HPCF), thus CPU-time is

reflective of HPCF’s capabilities.

A. EXPERIMENTS WITH SIMULATED DATA

Our generative model of a tensor X is as follows. For a

common dimensionality across the modes D, we model a

tensor X ∈ R
D×...×D as the sum of a low-rank signal tensor

XS ∈ R
D×...×D and a full-rank noise tensor XN ∈ R

D×...×D:

X = XS + ¸
∥XS∥F
∥XN∥F

XN , (18)

where ¸ is the signal to noise ratio (SNR) of X .

The signal tensor XS is given in the form XS = G ×1 A1

×2 . . .×N AN , where G ∈ R
R×...×R is a core tensor for some

‘‘true core size’’ R, and An ∈ R
D×R for n = 1, . . . ,N are

the factor matrices. The core tensor G, factor matrices An,

and noise tensor XN are all randomly generated with entries

sampled from the standard Gaussian distribution.

We consider two sets of simulated experiments: one where

the generative model follows a CPD model, and one where

the generative model follows a Tucker model (respectively

referred to in our experiments as ‘‘CPD model data’’ or

‘‘Tucker model data’’). These experiments use the same con-

ditions described above except for generation of core tensor

G: the Tucker experiments generate all entries of G from the

standard Gaussian distribution, whereas the CPD experiments

specifyG as a superdiagonal core tensor wherein all (G)(i,...,i)
for i = 1, . . . ,R are drawn from the standard Gaussian

distribution, and all other entries of G equal 0.

As our paper focuses on subset-based methods for a

Tucker decomposition, particularly those that approximate

the HOSVD, we limit our results to variations of these meth-

ods. We thus include ST-HOSVD [89], Chidori CUR [79],

[82], RST-CUR [80], a random-projection variant of HOSVD

called RP-HOSVD [C] [83], [112], and another row-based

tensor decomposition like those discussed in Section III.B.,

called RB-HOSVD [101]. While we also discuss the Fiber

CUR [81] in Section III.B, we do not include Fiber CUR in
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our experiments as we observed poor performance compared

to the other algorithms.

All of the methods and experiments are coded in MAT-

LAB. According to the tested methods’ respective papers, we

use norm sampling to obtain random row subsets of the tensor

unfoldings X(n) for Chidori CUR and RB-HOSVD, and we

use uniform sampling to to obtain random column subsets

of X(n) for RST-CUR. Our implementation of ST-HOSVD

is from the tensor toolbox version 3.6 [113], and all other

methods are coded via details given in their respective papers.

To simplify the experiments, we perform all of these meth-

ods with a common ‘‘estimated core size’’ R̂ that is shared

across the modes of the estimated tensor. The decomposition

is then converted to an estimated HOSVD decomposition that

also uses the same R̂ for all modes of the tensor. Therefore,

the true HOSVD factor matrices are given byAn ∈ R
D×R̂ and

the estimated factor matrices can be given by Ân ∈ R
D×R̂, for

n = 1, . . . ,N , in which case theUmatrices in (17) are of size

R̂× R̂. Note here that the true HOSVD is performed for some

choice of estimated core size R̂ that may differ from the true

core size R of XS .

Under the generative model defined in (18), we vary these

qualities of the model to test the methods’ performances:

estimated core size R̂, the true core sizesR, the dimensionality

of the modes (mode size) D, the SNR of the simulated data

tensor ¸, and the number of modes N . All of our experiments

use these default parameters: R = 4, R̂ = 4, ¸ = 10, N = 3,
and D = 200. Given the memory requirements of extremely

large tensors, in the experiment that varies the number of

modes, we restrict N to be either 3 or 4 modes and we use

a smaller default mode size of D = 80.
For all plots where we display CPU time performance, we

note that these plots were essentially identical for the CPD

and Tucker modeled data, thus performance was effectively

independent of the generative model’s core tensor structure.

Therefore, we only show the plot for the CPD model data.

Additionally, we do not show figures for CPU time vs. the

true core size R or the SNR ¸, as these experiments feature

CPU times that are constant with respect to these variables.

Fig. 2 plots the methods’ CPU time performance with

respect to the mode size D. In this experiment ST-HOSVD

is the slowest of the methods, followed by Chidori CUR, RP-

HOSVD, RST-CUR, TCD-D, and TCD-R. With the default

estimated core size R̂ = 4, we note that TCD-D can maintain

fast times in the event that R̂ is small, which works well

for tensors that have a reasonably low ranks. We also note

that Chidori CUR’s slower performance is mainly due to the

norm sampling over the entire tensor for each nth mode,

in contrast to sampling over truncated tensors such as done

in other methods. Chidori CUR is significantly faster when

uniform sampling is done in place of norm sampling, with an

accompanying degree of loss in approximation performance.

Fig. 3 plots the methods’ CPU time performance with

respect to the estimated core size R̂. TCD-D faces larger

complexity with higher R, whereas all other methods have

complexity that only increases slightly with increasing R.

This may motivate other methods besides TCD-D for when

CPU time is a priority and larger R̂ are desired. However,

TCD-D is still unique among these methods for deterministi-

cally selecting elements from the modes. Thus, compared to

these otherwise predominately randomized methods, TCD-D

is perhaps unique in its utility for feature selection.

Fig. 4 plots the methods’ CPU time performance with

respect to the number of modes N , for N = 3 and N = 4.
TCD-D and TCD-R are among the fastest methods in this

experiment, and interestingly, TCD-D is the fastest despite

being deterministic. We observe that this is due to how MAT-

LAB’s efficiency varies with respect to different mathemati-

cal operations: MATLAB is especially efficient in computing

the Gram matrix X(n)X
¦
(n) ∈ R

D×D, so much so that it can

actually be more efficient to computeX(n)X
¦
(n) than even the

fastest methods for calculating norms of rows ofX(n), which

is required of the norm sampling approaches like TCD-R,

Chidori CUR, and RB-HOSVD. Depending on the efficiency

of the calculations, the programming environment used and

the dimensions of the tensor, these methods may benefit by

Fig. 2. CPU time w.r.t. mode size D.

Fig. 3. CPU time w.r.t. estimated core size R̂.

Fig. 4. CPU time w.r.t. number of modes N .
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usingX(n)X
¦
(n) to calculate the norms. At the same time, this

also demonstrates the efficiency of the WKH procedure in

TCD-D for smaller R̂, since it does not lead to significant

increases in complexity above the other methods.

Fig. 5 plots the methods’ relative error performance with

respect to the estimated core size R̂. All methods’ decomposi-

tions exponentially approach the true tensor in approximation

quality with diminishing returns in R̂. Performance of TCD-R

in this experiment is comparable to Chidori CUR, with these

methods only beaten by ST-HOSVD and TCD-D for lower R̂.

Fig. 6 plots the methods’ relative error performance with

respect to the true core size R. Given a fixed estimated core

size R̂ = 4, all decompositions perform worse as the true core

size R̂ increases, where with R > 4 the decompositions are

effectively underparametrizing and/or undersampling their

model of the tensor. Like in Fig. 5, in this experiment TCD-D

has an estimation performance that is only slightly worse than

ST-HOSVD. After these methods, TCD-R has the third best

performance, exceeding that of Chidori CUR for larger R̂.

Fig. 7 plots the methods’ relative error performance with

respect to the mode size D. These performances are mostly

constant in D with the CPD data (left), but for the Tucker

data, some methods like Chidori CUR and TCD-R feature

slightly worse performances with larger D, up to diminishing

returns. Most of the randomized methods have much more

comparable relative errors for the CPD model data, with

significantly higher spread with the Tucker model data.

Fig. 8 plots the methods’ relative error performance with

respect to the signal to noise ratio (SNR) ¸. Subject to di-

minishing returns, all methods perform significantly better in

approximating the tensor with higher SNR, and TCD-D and

TCD-R appear to provide some of the better approximations

with lower SNR values. With higher SNR values, TCD-D’s

performance is comparable to ST-HOSVD and TCD-R’s per-

formance is comparable to Chidori CUR.

Fig. 9 plots the methods’ relative error performance with

respect to the number of modes N , for N = 3 and N = 4.
An apparent disadvantage to Chidori CUR and TCD-R occurs

when N = 4, in which case these methods’ performances

appear to suffer considerably, whereas all other methods are

not as much affected by change of N .

We now discuss the methods’ performances in terms of the

HOSVD distance measure defined in (17). We note that we

compare each algorithm’s estimated HOSVD factors to the

‘‘true’’ factors estimated by ST-HOSVD for the same choice

of R̂, thus we don’t include ST-HOSVD in these plots since it

has a HOSVD distance of 0 with itself.

Fig. 10 plots the methods’ HOSVD distances with respect

to the estimated core size R̂. All plots feature a clear U-shaped

performance curve where the best performance generally oc-

curs at R̂ = 6, slightly higher than the true core size R = 4.
Interestingly, these U-shaped HOSVD distance vs. R̂ plots are

notably different in shape from the monotonically decreas-

ing error vs. R̂ plots in Fig. 5. While the relative error of

the decompositions only decreases when the decompositions

model allows for more complexity (via increasing R̂), the

HOSVD distance represents more of a measure of parameter

estimation, where the desired parameters are the true ST-

HOSVD factors, and are best estimated when the estimated

number of factors R̂ is close to the true number R.

Fig. 11 plots the methods’ HOSVD distances with respect

Fig. 5. Relative error w.r.t. the estimated core size R̂.

llllllllll Left: CPD model data. Right: Tucker model data.

Fig. 6. Relative error w.r.t. the true core size R.

llllllllll Left: CPD model data. Right: Tucker model data.

Fig. 7. Relative error w.r.t. the mode size D.

llllllllll Left: CPD model data. Right: Tucker model data.

Fig. 8. Relative error w.r.t. the SNR ¸.

llllllllll Left: CPD model data. Right: Tucker model data.

Fig. 9. Relative error w.r.t. the number of modes N .

llllllllll Left: CPD model data. Right: Tucker model data.
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to the true core size R. Whereas Fig. 10 shows a U-shaped

curve with varying R̂, Fig. 11 shows that increasing R strictly

worsens the methods’ performances as R < R̂ for a fixed

R̂ = 4. All methods perform poorly when R is too large for

the Tucker model data. However with the CPD model data,

TCD-D performs significantly better than all other methods,

especially with large R.

Fig. 12 plots the methods’ HOSVD distances with respect

to the mode size D. Like in Fig. 7, performances are mostly

constant in D with the CPD data (left), but for the Tucker

data, all methods except TCD-D feature slightly worse per-

formances with larger D, whereas TCD-D actually features

slightly better performances for larger D, up to diminishing

returns. We suspect the reason for TCD-D actually doing

better for larger D is that as all other variables are fixed,

the tensor is generated the same with different D but there

are just more elements available to consider subsets over, in

which case TCD-D’s deterministic WKH has more options

of a subset that better minimize the discrepancy measure, and

thus better match the PCs of the tensor.

Fig. 13 plots the methods’ HOSVD distances with respect

to the SNR ¸. Like in Fig. 8, subject to diminishing returns, all

methods perform significantly better with higher SNR, with

TCD-R’s performance slightly better than Chidori CUR but

typically worse than RST-CUR and RP-HOSVD. Whereas

in Fig. 8 all methods’ relative errors nearly converge to 0

with increased SNR, TCD-D’ HOSVD distance in Fig. 13

converges significantly faster to 0 with increased SNR than

the other methods’ HOSVD distances.

Fig. 14 plots the methods’ HOSVD distances with respect

to the number of modes N , for N = 3 and N = 4. Like in

Fig. 9, TCD-R Chidori CUR perform worse with N = 4 with
the Tucker model data, whereas all other methods’ HOSVD

distances are not as much affected by N .

To summarize these experiments, we observe that TCD-

R is among the most efficient of these methods, and TCD-

D is also efficient when R̂ is small. In most experiments,

TCD-R yields comparatively better approximation error and

HOSVD distance performance vs. other methods with similar

time complexities. Furthermore, TCD-D’s performance is

typically significantly better than all other tested methods,

and even competes closely to that of ST-HOSVD despite

using only a subset of the tensor’s elements.

In the next section, we perform these methods on real data

in the form of fMRI functional connectivity matrices (FNCs),

where we visually demonstrate performance of these methods

and also demonstrate the use of TCD-D for feature selection.

B. EXPERIMENT WITH FMRI DATA

Our experiments use resting-state fMRI data from the

bipolar-schizophrenia network on intermediate phenotypes

(B-SNIP) [114], [115], where our data tensorX was obtained

from the acquisition and preprocessing steps described in

[116], [117]. The main goals of these experiments are to:

• Demonstrate performance of the tensor decomposition

methods on real fMRI data in terms of estimation quality

and computational efficiency.

• Demonstrate TCD-D’s ability (unique among these

Fig. 10. HOSVD distance w.r.t. the estimated core size R̂.

llllllllll Left: CPD model data. Right: Tucker model data.

Fig. 11. HOSVD distance w.r.t. the true core size R.

llllllllll Left: CPD model data. Right: Tucker model data.

Fig. 12. HOSVD distance w.r.t. the mode size D.

llllllllll Left: CPD model data. Right: Tucker model data.

Fig. 13. HOSVD distance w.r.t. the SNR ¸.

llllllllll Left: CPD model data. Right: Tucker model data.

Fig. 14. HOSVD distance w.r.t. the number of modes N .

llllllllll Left: CPD model data. Right: Tucker model data.
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methods) to perform feature selection within modes,

selecting well-representative elements of the data. In

our case, these elements are functional networks (FNs)

which are typically used to characterize neurological

phenomenon.

We now detail how the data tensor X was formed.

The fMRI dataset includes 176 healthy control and 176

schizophrenia patients for a total of K = 352 subjects. The

data was first preprocessed and then analyzed via constrained

independent vector analysis (cIVA) to extract meaningful

latent factors for describing the data. From each subject’s

data, 53 spatial factors were extracted which correspond to

biologically important functional networks (FNs). These fac-

tors are representative of seven different functional domains:

subcortical (SC, 5 FNs), auditory (AUD, 2 FNs), sensorimo-

tor (MOT, 9 FNs), visual (VIS, 9 FNs), cognitive control (CC,

17 FNs), default mode (DMN, 7 FNs) and cerebellar (CB, 4

FNs). Corresponding to each of these 53 spatial factors are

time course factors, representing amplitudes of the networks

at each point of measurement, and the correlations between

these time courses are particularly useful for representing

relationships between the networks. All pairwise Pearson cor-

relations between any two of the 53 networks’ time courses

is represented in a symmetric 53 × 53 matrix called a func-

tional network connectivity (FNC) matrix. Our experiment

constructs these FNC matrices across each of 352 subjects,

and forms an FNC tensor X ∈ R
53×53×352.

A key factor in dealing with the data tensor is understand-

ing its effective n-ranks given how the tensor was obtained.

Our FNC data was extracted from functional networks that

are expected to be maximally statistically independent from

one another, being extracted from cIVA which maximizes

statistical independence between networks. Therefore, we

expect low correlation between the spatial components of

different networks, and this can also result in time courses

that demonstrate low correlation between disparate networks.

This results in a tensor with effectively high n-ranks, thus

decompositions of FNC tensors like X require higher num-

bers of factors R̂n to adequately approximate the FNCs. This

Table 3. Performances of methods on the original FNC tensor

X ∈ R
53×53×352, averaged over 1000 independent runs over

the data. Best performances per measure are bolded.

CPU-time
(sec)

.
relative
error
.

HOSVD
distance

cross-
distance

.
ST-HOSVD

.
0.026 0.500 0 0

.
TCD-D

.
0.025 0.650 0.128 0

.
TCD-R

.
0.005 0.686 0.130 0.145

.
Chidori CUR

.
0.007 0.687 0.133 0.150

.
RST-CUR

.
0.002 0.691 0.132 0.169

.
RP-HOSVD

.
0.006 0.689 0.207 0.169

.
RB-HOSVD

.
0.015 0.940 0.148 0.163

presents a challenge for the decomposition methods to ap-

proximate the tensor with relatively fewer factors, allowing

us to better magnify and compare the methods’ estimation

capabilities.

Due to the higher n-ranks of the FNC tensor, we test

the algorithms on two different forms of the FNC tensor:

one being the original FNC tensor, and the other being the

elementwise squaring of the FNC tensor. The elementwise

squaring provides R-squared values representing the degree

of association between the network time courses. Taking the

elementwise square of these FNCs effectively increases the

spread of the singular values of each mode unfolding X(n),

allowing for better approximation with lower-rank models

while still maintaining an interpretable decomposition.

For our experiments, we did a prior exploratory analysis

over several candidates of estimated numbers of factors R̂n,

and ultimately implemented [R̂1, R̂2, R̂3] = [20, 20, 352] for
both forms of the tensor. The reasoning for these choice of

R̂n were as follows: to better exemplify the approximation

quality differences between the methods, to reasonably ap-

proximate the FNCs without too many factors, and to provide

a more parsimonious model which TCD-D can then use to

select networks whose R-squared values are ‘‘well represen-

tative’’ of all R-squared values inX . These 20 networks could
then be interpreted as particularly informative for approxi-

mating the relationships between any of the 53 networks.

We use the same tensor decomposition methods in Section

V.A to decompose our FNC tensorX . In order to also exploit

the symmetry of X , we modify each of these methods to use

the same symmetry exploiting process described at the end of

Section IV.D. Therefore, since the first and second modes are

symmetric (pertaining to the 53 networks), the same factor

matrix is used for both of these modes, and the core tensor is

thus also symmetric with respect to these modes.

As done in the previous section, our experiments measure

performance via CPU time, relative error, and HOSVD dis-

tance. Additionally, we implement a measure of how con-

sistent the methods’ approximated HOSVD decompositions

Table 4. Performances of methods on the elementwise

squared FNC tensor X ∈ R
53×53×352, averaged over 1000

independent runs over the data. Best performances per mea-

sure are bolded.

CPU-time
(sec)

.
relative
error
.

HOSVD
distance

cross-
distance

.
ST-HOSVD

.
0.026 0.384 0 0

.
TCD-D

.
0.025 0.464 0.150 0

.
TCD-R

.
0.005 0.514 0.155 0.155

.
Chidori CUR

.
0.007 0.520 0.160 0.157

.
RST-CUR

.
0.002 0.549 0.156 0.185

.
RP-HOSVD

.
0.006 0.528 0.218 0.175

.
RB-HOSVD

.
0.015 0.890 0.176 0.183
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are with respect to different runs of the decompositions,

which corresponds to different random subsets per run for

the randomized methods. In defining this measure, we denote

Â[m] as the approximated HOSVD factors from a mth run of

a decomposition method over the data, and define the set of

the Â[m] across M runs by the set F =
{

Â[1], . . . , Â[M ]
}

.

Then our measure of ‘‘cross-distance’’, the average distance

between any two runs of a decomposition, is given by:

cross-
distance(F) =

∑M
m1=1
m2=1

HOSVD distance (Â[m1], Â[m2])

M2
.

(19)

This ‘‘cross-distance’’ can be considered a generalization

of the ‘‘cross-ISI’’ measure used to measure distances be-

tween runs for Blind Source Separation (BSS) methods [118].

Along with using cross-distance to measure the variability

of the randomized methods, we also use cross-distance to

obtain a single run that is the most well representative of all

other runs, for which we may plot the FNCs approximated

by this run to visually compare the average approximation

quality of the methods. The plotted average FNCs were ob-

tained by constructing the most representative run’s approxi-

mate tensor X̂ from its factorization, and then averaging the

approximated subject FNCs across the 352 subjects.

Fig. 15 and Fig. 16 exhibit the average FNCs extracted

from a typical run of each method, on the FNC tensor and

squared FNC tensor respectively. In both forms of the data,

the FNCs typically feature two well-defined blocks on the

Fig. 15. Plots of the average FNCs obtained by the approximated original FNC tensor X̂ , for each method’s most typical run

(the run with the minimum cross-distance to all other runs). All methods used the ranks [R̂1, R̂2, R̂3] = [20, 20, 352].

Fig. 16. Plots of the average FNCs obtained by the approximated elementwise squared FNC tensor X̂ , for each method’s most

typical run (the run with the minimum cross-distance to all other runs). All methods used the ranks [R̂1, R̂2, R̂3] = [20, 20, 352].
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diagonal. These correspond to the motor (upper block) and

visual (lower block) groups of networks, which feature high

correlation and R-squared values within the groups. Because

of the larger degree of association within these networks, their

larger values in X lead them to be especially important for

approximating X . Viewing the averages of FNCs in Fig. 15,

we observe all methods are able to reasonably approximate at

least one of these blocks, with ST-HOSVD, TCD-D, TCD-R,

Chidori CUR, and RP-HOSVD demonstrating the two well-

defined blocks, and TCD-D and TCD-R having performance

closest to ST-HOSVD. Viewing the average of squared FNCs

in Fig. 16, we note that all methods except for RB-HOSVD

demonstrate two clearly defined blocks, with TCD-D and

TCD-R having performance closest to ST-HOSVD.

Tables 3 and 4 presents each method’s performance

measures on the FNC tensor. All methods provide rela-

tively higher relative errors, as the decomposition ranks

[R̂1, R̂2, R̂3] = [20, 20, 352] are perhaps relatively conserva-

tive for the more heterogeneous nature of the FNC tensor.

While in practice we select R̂n to provide an approximation

quality that is nearly identical to the original tensor, our choice

of lower R̂n is useful for better magnifying the approximation

capabilities of the methods, which are clearly demonstrated in

the much wider range of their values. ST-HOSVD provides

the best relative error, and TCD-D features a comparatively

similar error while simultaneously identifying representative

networks. Among the more efficient methods, RST-CUR is

the fastest method but has the second worst error and worst

cross-distance, whereas TCD-R is the second fastest method

with the third lowest error, HOSVD distance, and cross-

distance. This demonstrates that TCD-D and TCD-R provide

good performance measures given their time complexities,

and can provide reasonably good approximations to the tensor

with fewer factors R̂n.

Additionally, a key distinction between TCD-D and the

other methods is that TCD-D deterministically selects ele-

ments that are well representative of the tensor. Thus, TCD-

D is unique among these methods for the capability of per-

forming feature selection with the tensor data. With this

fMRI dataset, TCD-D deterministically selects a reasonably

‘‘best’’ subset of the factor networks. We now consider the

interpretation of the TCD-D selected networks. We observed

that several TCD-D selected networks were selected not only

for the 20 selected networks of the original FNC data, but

also the 20 selected networks of the elementwise squared

data, highlighting the importance of these networks (a total

of 14 networks shared between the two forms of the tensor,

corresponding to the indices 5, 8, 9, 12, 15, 17, 23, 24, 27, 28,

33, 45, 49, 51). Table 5 overviews details of these 14 networks
identified over both forms of the data tensor, including their

associated factor index in the FNCs (their index i1 = i2 in

X ), the region of the brain the network corresponds to, and

the group of networks it associates with.

These identified networks, including regions such as the

thalamus, superior temporal gyrus, superior frontal gyrus, and

posterior cingulate cortex, are significant as they represent

Table 5. Descriptions of 14 factors selected by TCD-D,

shared between the 20 selected from the original FNC tensor

and the 20 from the elementwise-squared FNC tensor.

Index Region Network Component
.
.
5
.
.

Thalamus
subcortical

(SC)

.
8
.

.
Postcentral

gyrus
.

sensorimotor
(SM)

.
9
.

.
Left

postcentral
gyrus
.

sensorimotor
(SM)

.
12
.

.
Superior
parietal
lobule

.

sensorimotor
(SM)

.
15
.

.
Superior
parietal
lobule

.

sensorimotor
(SM)

.
17
.

.
Calcarine
gyrus
.

visual
(VIS)

.
23
.

.
Inferior
occipital
gyrus
.

visual
(VIS)

.

.
24
.
.

.
Lingual
gyrus
.

visual
(VIS)

.
27
.

.
Inferior
parietal
lobule

.

sensorimotor
(SM)

.
28
.

.
Superior
frontal
gyrus
.

cognitive
control
(CC)

.
33
.

.
Inferior
parietal
lobule

.

sensorimotor
(SM)

.
45
.

.
Anterior
cingulate
cortex

.

default-mode
network
(DMN))

.
49
.

.
Posterior
cingulate
cortex

.

default-mode
network
(DMN)

.

.
51
.
.

.
Cerebellar

.

Cerebellar
(CB)
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crucial functional "blocks of networks" within the brain.

Each of these networks is associated with specific func-

tional domains, such as sensorimotor (e.g., left postcentral

gyrus, superior parietal lobule), visual (e.g., inferior occipital

gyrus), cognitive control (e.g., inferior parietal lobule), and

the default mode network (e.g., posterior cingulate cortex).

Clinically, these functional networks have been reported as

significant brain regions highly associated with various psy-

chiatric disorders. For instance, the superior frontal gyrus and

posterior cingulate cortex have been identified in previous

research as valuable biomarkers for different psychiatric con-

ditions [116], [119]–[122]. Furthermore, the fact that 14 of

the 20 networks were identified over both forms of the ten-

sor (original FNCs, and elementwise squared FNCs) demon-

strates robustness of the proposed TCD-D method, showing

consistent identification of meaningful functional areas that

are associated with several psychiatric disorders. For exam-

ple, reduced connectivity between the posterior cingulate and

frontal areas in patients with first-episode schizophrenia has

been reported in [123]. The failure of appropriate posterior

cingulate cortex deactivation has been reported as potential

biomarker in traumatic brain injury and mental disorders like

ADHD, autism and schizophrenia [124].

VI. CONCLUSION

This paper presents efficient Tucker decomposition meth-

ods via using a small subtensor as a multilinear basis over the

full data tensor, which we refer to as tensor coreset decom-

positons (TCD). Themethods operate by sequentially truncat-

ing the tensor by replacing it with a coreset of elements from

one or more of the tensor’s modes, with the coreset calculated

such that it minimizes a discrepancy between itself and the

HOSVD core tensor: principal components of the tensor’s

unfoldings. This process sub-sequentially estimates mapping

matrices that serve as the decomposition’s factor matrices,

which can also be useful for efficiently approximating the

tensor’s HOSVD.

For quantifying the ‘‘representativeness’’ of a coreset over

the data tensor, we introduced a discrepancy-based measure

that has straightforward connections to the cost function of

HOSVD. We use this measure to develop a new efficient

nonnegative least squares (NNLS) procedure for selecting the

coreset weights, such that we minimize the discrepancy with

respect to a choice of subset.

For decompositions that put greater emphasis on efficiency,

we proposed ‘‘TCD-R’’ which randomly selects the subsets

using norm sampling. For decompositions that place greater

emphasis on approximation quality, and utility of selecting

well representative subsets and for feature selection, we pro-

posed ‘‘TCD-D’’ which uses a deterministic subset selection

scheme based on the method of weighted kernel herding

(WKH). Compared to previous methods, TCD-D is notably

unique for its ability to perform unsupervised feature selec-

tion within the modes of the tensor data.

Finally, we experimentally demonstrate that our methods

generally provide good balances between efficiency, approx-

imation error quality, and quality of factors when converted to

a HOSVD. Furthermore, we demonstrate on real fMRI FNC

data that TCD-D is able to identify meaningful subsets of

functional networks which are able to well-approximate the

relationships between all networks in the FNC tensor.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Evrim Acar for her

expertise and helpful feedback on the paper.

References

[1] Tamara G Kolda and Brett W Bader. Tensor decompositions and applica-

tions. SIAM review, 51(3):455–500, 2009.

[2] Andrzej Cichocki, Namgil Lee, Ivan Oseledets, Anh-Huy Phan, Qibin

Zhao, Danilo P Mandic, et al. Tensor networks for dimensionality reduc-

tion and large-scale optimization: Part 1 low-rank tensor decompositions.

Foundations and Trends® in Machine Learning, 9(4-5):249–429, 2016.

[3] Andrzej Cichocki, Anh-Huy Phan, Qibin Zhao, Namgil Lee, Ivan Os-

eledets, Masashi Sugiyama, Danilo P Mandic, et al. Tensor networks for

dimensionality reduction and large-scale optimization: Part 2 applications

and future perspectives. Foundations and Trends® in Machine Learning,

9(6):431–673, 2017.

[4] Ali Zare, Alp Ozdemir, Mark A Iwen, and Selin Aviyente. Extension

of PCA to higher order data structures: An introduction to tensors, tensor

decompositions, and tensor PCA. Proceedings of the IEEE, 106(8):1341–

1358, 2018.

[5] Mojtaba Taherisadr, Mohsen Joneidi, and Nazanin Rahnavard. EEG

signal dimensionality reduction and classification using tensor decompo-

sition and deep convolutional neural networks. In 2019 IEEE 29th Inter-

national Workshop on Machine Learning for Signal Processing (MLSP),

pages 1–6. IEEE, 2019.

[6] Anh Huy Phan and Andrzej Cichocki. Tensor decompositions for feature

extraction and classification of high dimensional datasets. Nonlinear

theory and its applications, IEICE, 1(1):37–68, 2010.

[7] Fengyu Cong, Qiu-Hua Lin, Li-Dan Kuang, Xiao-Feng Gong, Piia

Astikainen, and Tapani Ristaniemi. Tensor decomposition of EEG sig-

nals: a brief review. Journal of neuroscience methods, 248:59–69, 2015.

[8] Y-H Taguchi. Identification of candidate drugs using tensor-

decomposition-based unsupervised feature extraction in integrated anal-

ysis of gene expression between diseases and DrugMatrix datasets. Sci-

entific reports, 7(1):13733, 2017.

[9] Yuan Gao, Guangming Zhang, Chunchun Zhang, JinkeWang, Laurence T

Yang, and Yaliang Zhao. Federated tensor decomposition-based feature

extraction approach for industrial IoT. IEEE Transactions on Industrial

Informatics, 17(12):8541–8549, 2021.

[10] Haiyan Fan, Chang Li, Yulan Guo, Gangyao Kuang, and Jiayi Ma.

Spatial–spectral total variation regularized low-rank tensor decomposi-

tion for hyperspectral image denoising. IEEE Transactions onGeoscience

and Remote Sensing, 56(10):6196–6213, 2018.

[11] Tao Lin and Salah Bourennane. Survey of hyperspectral image denoising

methods based on tensor decompositions. EURASIP journal on Advances

in Signal Processing, 2013:1–11, 2013.

[12] Xiao Gong, Wei Chen, Jie Chen, and Bo Ai. Tensor denoising using

low-rank tensor train decomposition. IEEE Signal Processing Letters,

27:1685–1689, 2020.

[13] Hongyan Zhang, Lu Liu, Wei He, and Liangpei Zhang. Hyperspectral

image denoising with total variation regularization and nonlocal low-rank

tensor decomposition. IEEE Transactions on Geoscience and Remote

Sensing, 58(5):3071–3084, 2019.

[14] Jize Xue, Yongqiang Zhao, Wenzhi Liao, and Jonathan Cheung-Wai

Chan. Nonlocal low-rank regularized tensor decomposition for hyper-

spectral image denoising. IEEE Transactions on Geoscience and Remote

Sensing, 57(7):5174–5189, 2019.

[15] Zemin Zhang, Gregory Ely, Shuchin Aeron, Ning Hao, andMisha Kilmer.

Novel methods for multilinear data completion and de-noising based on

tensor-SVD. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 3842–3849, 2014.

[16] Evrim Acar, Daniel M Dunlavy, Tamara G Kolda, and Morten Mørup.

Scalable tensor factorizations for incomplete data. Chemometrics and

Intelligent Laboratory Systems, 106(1):41–56, 2011.

18 VOLUME 11, 2023



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[17] Gregory Ely, Shuchin Aeron, Ning Hao, and Misha E Kilmer. 5d seismic

data completion and denoising using a novel class of tensor decomposi-

tions. Geophysics, 80(4):V83–V95, 2015.

[18] Huachun Tan, Guangdong Feng, Jianshuai Feng, Wuhong Wang, Yu-Jin

Zhang, and Feng Li. A tensor-based method for missing traffic data

completion. Transportation Research Part C: Emerging Technologies,

28:15–27, 2013.

[19] Qingquan Song, Hancheng Ge, James Caverlee, and Xia Hu. Tensor

completion algorithms in big data analytics. ACM Transactions on

Knowledge Discovery from Data (TKDD), 13(1):1–48, 2019.

[20] Hong Chen, Mingwei Lin, Jiaqi Liu, Hengshuo Yang, Chao Zhang, and

Zeshui Xu. NT-DPTC: a non-negative temporal dimension preserved

tensor completion model for missing traffic data imputation. Information

Sciences, 653:119797, 2024.

[21] Boaz Barak, Jonathan A Kelner, and David Steurer. Dictionary learning

and tensor decomposition via the sum-of-squares method. In Proceedings

of the forty-seventh annual ACM symposium on Theory of computing,

pages 143–151, 2015.

[22] Yanbo Zhang, Xuanqin Mou, Ge Wang, and Hengyong Yu. Tensor-based

dictionary learning for spectral CT reconstruction. IEEE transactions on

medical imaging, 36(1):142–154, 2016.

[23] Syed Zubair and Wenwu Wang. Tensor dictionary learning with sparse

Tucker decomposition. In 2013 18th international conference on Digital

Signal Processing (DSP), pages 1–6. IEEE, 2013.

[24] Diriba Gemechu. Sparse regularization based on orthogonal tensor

dictionary learning for inverse problems. Mathematical Problems in

Engineering, 2024(1):9655008, 2024.

[25] Yuhui Song, Zijun Gong, Yuanzhu Chen, and Cheng Li. Tensor-based

sparse Bayesian learning with intra-dimension correlation. IEEE Trans-

actions on Signal Processing, 71:31–46, 2023.

[26] Nicholas D Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang,

Evangelos E Papalexakis, and Christos Faloutsos. Tensor decomposition

for signal processing and machine learning. IEEE Transactions on signal

processing, 65(13):3551–3582, 2017.

[27] Andrzej Cichocki, Danilo Mandic, Lieven De Lathauwer, Guoxu Zhou,

Qibin Zhao, Cesar Caiafa, and Huy Anh Phan. Tensor decompositions

for signal processing applications: From two-way to multiway component

analysis. IEEE signal processing magazine, 32(2):145–163, 2015.

[28] Lek-Heng Lim and Pierre Comon. Multiarray signal processing: Tensor

decomposition meets compressed sensing. Comptes Rendus Mecanique,

338(6):311–320, 2010.

[29] Lieven De Lathauwer and Bart De Moor. From matrix to tensor: Multi-

linear algebra and signal processing. In Institute of mathematics and its

applications conference series, volume 67, pages 1–16. Citeseer, 1998.

[30] Hongyang Chen, Fauzia Ahmad, Sergiy Vorobyov, and Fatih Porikli.

Tensor decompositions in wireless communications and MIMO radar.

IEEE Journal of Selected Topics in Signal Processing, 15(3):438–453,

2021.

[31] Mikael Sørensen and Lieven De Lathauwer. Coupled tensor decomposi-

tions for applications in array signal processing. In 2013 5th IEEE Inter-

national Workshop on Computational Advances in Multi-Sensor Adaptive

Processing (CAMSAP), pages 228–231. IEEE, 2013.

[32] Karelia Pena-Pena, Daniel L Lau, and Gonzalo R Arce. T-HGSP:

Hypergraph signal processing using t-product tensor decompositions.

IEEE Transactions on Signal and Information Processing over Networks,

9:329–345, 2023.

[33] Age K Smilde, Rasmus Bro, and Paul Geladi. Multi-way analysis:

applications in the chemical sciences. John Wiley & Sons, 2005.

[34] Viktor Skantze, Mikael Wallman, Ann-Sofie Sandberg, Rikard Landberg,

Mats Jirstrand, and Carl Brunius. Identification of metabotypes in

complex biological data using tensor decomposition. Chemometrics and

Intelligent Laboratory Systems, 233:104733, 2023.

[35] Yingyue Bi, Yingcong Lu, Zhen Long, Ce Zhu, and Yipeng Liu. Tensor

decompositions: computations, applications, and challenges. Tensors for

Data Processing, pages 1–30, 2022.

[36] Cristian Minoccheri, Reza Soroushmehr, Jonathan Gryak, and Kayvan

Najarian. Tensor methods for clinical informatics. In Artificial Intelli-

gence in Healthcare and Medicine, pages 261–281. CRC Press, 2022.

[37] Di Wang, Yao Zheng, and Guodong Li. High-dimensional low-rank

tensor autoregressive time series modeling. Journal of Econometrics,

238(1):105544, 2024.

[38] Monica Billio, Roberto Casarin, Matteo Iacopini, and Sylvia Kaufmann.

Bayesian dynamic tensor regression. arXiv preprint arXiv:1709.09606,

2017.

[39] Arash Golibagh Mahyari, David M Zoltowski, Edward M Bernat, and

Selin Aviyente. A tensor decomposition-based approach for detecting

dynamic network states from EEG. IEEE Transactions on Biomedical

Engineering, 64(1):225–237, 2016.

[40] Su Wei, Yunbo Tang, Tengfei Gao, Yaodong Wang, Fan Wang, and Dan

Chen. Scale-variant structural feature construction of EEG stream via

component-increasedDynamic Tensor decomposition. Knowledge-Based

Systems, 294:111747, 2024.

[41] Bhaskar Sen and Keshab K Parhi. Extraction of common task signals

and spatial maps from group fMRI using a PARAFAC-based tensor

decomposition technique. In 2017 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pages 1113–1117.

IEEE, 2017.

[42] Christos Chatzichristos, Eleftherios Kofidis, Manuel Morante, and Ser-

gios Theodoridis. Blind fMRI source unmixing via higher-order tensor

decompositions. Journal of neuroscience methods, 315:17–47, 2019.

[43] Evrim Acar, Yuri Levin-Schwartz, Vince D Calhoun, and Tülay Adali.

Tensor-based fusion of EEG and fMRI to understand neurological

changes in schizophrenia. In 2017 IEEE international symposium on

circuits and systems (ISCAS), pages 1–4. IEEE, 2017.

[44] Christos Chatzichristos, Eleftherios Kofidis, Wim Van Paesschen, Lieven

De Lathauwer, Sergios Theodoridis, and Sabine Van Huffel. Early soft

and flexible fusion of electroencephalography and functional magnetic

resonance imaging via double coupled matrix tensor factorization for

multisubject group analysis. Human brain mapping, 43(4):1231–1255,

2022.

[45] EvrimAcar, Canan Aykut-Bingol, Haluk Bingol, Rasmus Bro, and Bülent

Yener. Multiway analysis of epilepsy tensors. Bioinformatics, 23(13):i10–

i18, 2007.

[46] Evrim Acar, Marie Roald, Khondoker M Hossain, Vince D Calhoun, and

Tülay Adali. Tracing evolving networks using tensor factorizations vs.

ICA-based approaches. Frontiers in neuroscience, 16:861402, 2022.

[47] Eleftherios Kofidis and Phillip A Regalia. Tensor approximation and

signal processing applications. Contemporary Mathematics, 280:103–

134, 2001.

[48] Naimahmed Nesaragi, Shivnarayan Patidar, and Veerakumar Thangaraj.

A correlation matrix-based tensor decomposition method for early pre-

diction of sepsis from clinical data. Biocybernetics and Biomedical

Engineering, 41(3):1013–1024, 2021.

[49] Eleftherios Kofidis. Adaptive joint channel estimation/data detection

in flexible multicarrier MIMO systems — a tensor-based approach. In

ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pages 8721–8725. IEEE, 2024.

[50] Feng Xu, Matthew W Morency, and Sergiy A Vorobyov. DOA estima-

tion for transmit beamspace MIMO radar via tensor decomposition with

Vandermonde factor matrix. IEEE Transactions on Signal Processing,

70:2901–2917, 2022.

[51] Yuwang Ji, Qiang Wang, Xuan Li, and Jie Liu. A survey on tensor

techniques and applications inmachine learning. IEEEAccess, 7:162950–

162990, 2019.

[52] StephanRabanser, Oleksandr Shchur, and StephanGünnemann. Introduc-

tion to tensor decompositions and their applications in machine learning.

arXiv preprint arXiv:1711.10781, 2017.

[53] Rohit Kumar Kaliyar, Anurag Goswami, and Pratik Narang. Deepfake:

improving fake news detection using tensor decomposition-based deep

neural network. The Journal of Supercomputing, 77(2):1015–1037, 2021.

[54] Alexander Novikov, Pavel Izmailov, Valentin Khrulkov, Michael Fig-

urnov, and Ivan Oseledets. Tensor train decomposition on tensorflow

(t3f). Journal of Machine Learning Research, 21(30):1–7, 2020.

[55] Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura. Tensor decom-

position for compressing recurrent neural network. In 2018 International

Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2018.

[56] Koji Maruhashi, Masaru Todoriki, Takuya Ohwa, Keisuke Goto,

Yu Hasegawa, Hiroya Inakoshi, and Hirokazu Anai. Learning multi-way

relations via tensor decomposition with neural networks. In Proceedings

of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[57] Frank L Hitchcock. The expression of a tensor or a polyadic as a sum of

products. Journal of Mathematics and Physics, 6(1-4):164–189, 1927.

[58] Frank L Hitchcock. Multiple invariants and generalized rank of a p-way

matrix or tensor. Journal of Mathematics and Physics, 7(1-4):39–79,

1928.

[59] Ignat Domanov and Lieven De Lathauwer. On the uniqueness of the

canonical polyadic decomposition of third-order tensors—Part I: Basic

VOLUME 11, 2023 19



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

results and uniqueness of one factor matrix. SIAM Journal on Matrix

Analysis and Applications, 34(3):855–875, 2013.

[60] Ignat Domanov and Lieven De Lathauwer. On the uniqueness of

the canonical polyadic decomposition of third-order tensors—Part II:

Uniqueness of the overall decomposition. SIAM Journal on Matrix

Analysis and Applications, 34(3):876–903, 2013.

[61] Ignat Domanov and Lieven De Lathauwer. Canonical polyadic decompo-

sition of third-order tensors: Relaxed uniqueness conditions and algebraic

algorithm. Linear Algebra and its Applications, 513:342–375, 2017.

[62] Ledyard R Tucker. Implications of factor analysis of three-way matrices

for measurement of change. Problems in measuring change, 15(122-

137):3, 1963.

[63] Ledyard R Tucker. Some mathematical notes on three-mode factor

analysis. Psychometrika, 31(3):279–311, 1966.

[64] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. A multilinear

singular value decomposition. SIAM journal on Matrix Analysis and

Applications, 21(4):1253–1278, 2000.

[65] Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scien-

tific Computing, 33(5):2295–2317, 2011.

[66] Daniele Bigoni, Allan P Engsig-Karup, and YoussefMMarzouk. Spectral

tensor-train decomposition. SIAM Journal on Scientific Computing,

38(4):A2405–A2439, 2016.

[67] Lars Grasedyck. Hierarchical singular value decomposition of tensors.

SIAM journal on matrix analysis and applications, 31(4):2029–2054,

2010.

[68] Nadav Cohen, Or Sharir, Yoav Levine, Ronen Tamari, David Yakira, and

Amnon Shashua. Analysis and design of convolutional networks via

hierarchical tensor decompositions. arXiv preprint arXiv:1705.02302,

2017.

[69] Lieven De Lathauwer. Decompositions of a higher-order tensor in block

terms—part ii: Definitions and uniqueness. SIAM Journal on Matrix

Analysis and Applications, 30(3):1033–1066, 2008.

[70] Jinmian Ye, Linnan Wang, Guangxi Li, Di Chen, Shandian Zhe, Xinqi

Chu, and Zenglin Xu. Learning compact recurrent neural networks with

block-term tensor decomposition. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 9378–9387, 2018.

[71] Evrim Acar, Tamara G Kolda, and Daniel M Dunlavy. All-at-once

optimization for coupled matrix and tensor factorizations. arXiv preprint

arXiv:1105.3422, 2011.

[72] Beyza Ermiş, Evrim Acar, and A Taylan Cemgil. Link prediction in

heterogeneous data via generalized coupled tensor factorization. Data

Mining and Knowledge Discovery, 29:203–236, 2015.

[73] Shuo Zhou, Nguyen Xuan Vinh, James Bailey, Yunzhe Jia, and Ian David-

son. Accelerating online CP decompositions for higher order tensors.

In Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 1375–1384, 2016.

[74] Yishuai Du, Yimin Zheng, Kuang-chih Lee, and Shandian Zhe. Prob-

abilistic streaming tensor decomposition. In 2018 IEEE International

Conference on Data Mining (ICDM), pages 99–108. IEEE, 2018.

[75] Athanasios ARontogiannis, Eleftherios Kofidis, and Paris VGiampouras.

Online rank-revealing block-term tensor decomposition. In 2021 55th

Asilomar Conference on Signals, Systems, and Computers, pages 1678–

1682. IEEE, 2021.

[76] Furong Huang, UN Niranjan, Mohammad Umar Hakeem, and Ani-

mashree Anandkumar. Online tensor methods for learning latent variable

models. The Journal of Machine Learning Research, 16(1):2797–2835,

2015.

[77] Petros Drineas, Ravi Kannan, andMichaelWMahoney. FastMonte Carlo

algorithms for matrices I: Approximating matrix multiplication. SIAM

Journal on Computing, 36(1):132–157, 2006.

[78] Michael W Mahoney and Petros Drineas. CUR matrix decompositions

for improved data analysis. Proceedings of the National Academy of

Sciences, 106(3):697–702, 2009.

[79] Michael W Mahoney, Mauro Maggioni, and Petros Drineas. Tensor-

CUR decompositions for tensor-based data. In Proceedings of the 12th

ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 327–336, 2006.

[80] Petros Drineas and Michael W Mahoney. A randomized algorithm for a

tensor-based generalization of the singular value decomposition. Linear

algebra and its applications, 420(2-3):553–571, 2007.

[81] Cesar F Caiafa and Andrzej Cichocki. Generalizing the column–row

matrix decomposition to multi-way arrays. Linear Algebra and its

Applications, 433(3):557–573, 2010.

[82] HanQin Cai, KeatonHamm, LongxiuHuang, andDeannaNeedell. Mode-

wise tensor decompositions: Multi-dimensional generalizations of CUR

decompositions. Journal of machine learning research, 22(185):1–36,

2021.

[83] Salman Ahmadi-Asl, Stanislav Abukhovich, Maame G Asante-Mensah,

Andrzej Cichocki, Anh Huy Phan, Tohishisa Tanaka, and Ivan Oseledets.

Randomized algorithms for computation of Tucker decomposition and

higher order SVD (HOSVD). IEEE Access, 9:28684–28706, 2021.

[84] Salman Ahmadi-Asl, Cesar F Caiafa, Andrzej Cichocki, Anh Huy Phan,

Toshihisa Tanaka, Ivan Oseledets, and Jun Wang. Cross tensor approx-

imation methods for compression and dimensionality reduction. IEEE

Access, 9:150809–150838, 2021.

[85] Bokai Cao, Lifang He, Xiangnan Kong, S Yu Philip, Zhifeng Hao, and

AnnBRagin. Tensor-basedmulti-view feature selectionwith applications

to brain diseases. In 2014 IEEE International Conference onDataMining,

pages 40–49. IEEE, 2014.

[86] Aaron Smalter, Jun Huan, and Gerald Lushington. Feature selection

in the tensor product feature space. In 2009 Ninth IEEE International

Conference on Data Mining, pages 1004–1009. IEEE, 2009.

[87] Jun Yu, Zhaoming Kong, Liang Zhan, Li Shen, and Lifang He. Tensor-

based multi-modality feature selection and regression for alzheimer’s dis-

ease diagnosis. Computer science & information technology, 12(18):123,

2022.

[88] Yongshan Zhang, Xinxin Wang, Zhihua Cai, Yicong Zhou, and S Yu

Philip. Tensor-based unsupervised multi-view feature selection for image

recognition. In 2021 IEEE International Conference on Multimedia and

Expo (ICME), pages 1–6. IEEE, 2021.

[89] Nick Vannieuwenhoven, Raf Vandebril, and Karl Meerbergen. A new

truncation strategy for the higher-order singular value decomposition.

SIAM Journal on Scientific Computing, 34(2):A1027–A1052, 2012.

[90] Sinead A Williamson and Jette Henderson. Understanding collections of

related datasets using dependentMMDcoresets. Information, 12(10):392,

2021.

[91] Raaz Dwivedi and Lester Mackey. Generalized kernel thinning. arXiv

preprint arXiv:2110.01593, 2021.

[92] Zohar Karnin and Edo Liberty. Discrepancy, coresets, and sketches in

machine learning. In Conference on Learning Theory, pages 1975–1993.

PMLR, 2019.

[93] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard

Schölkopf, and Alexander Smola. A kernel two-sample test. The Journal

of Machine Learning Research, 13(1):723–773, 2012.

[94] Ilya O Tolstikhin, Bharath K Sriperumbudur, and Bernhard Schölkopf.

Minimax estimation of maximum mean discrepancy with radial kernels.

Advances in Neural Information Processing Systems, 29, 2016.

[95] Ferenc Huszár and David Duvenaud. Optimally-weighted herding is

Bayesian quadrature. arXiv preprint arXiv:1204.1664, 2012.

[96] Christos Boutsidis, Michael W Mahoney, and Petros Drineas. An im-

proved approximation algorithm for the column subset selection prob-

lem. In Proceedings of the twentieth annual ACM-SIAM symposium on

Discrete algorithms, pages 968–977. SIAM, 2009.

[97] Ahmed K Farahat, Ahmed Elgohary, Ali Ghodsi, andMohamed S Kamel.

Greedy column subset selection for large-scale data sets. Knowledge and

Information Systems, 45:1–34, 2015.

[98] Jason Altschuler, Aditya Bhaskara, Gang Fu, Vahab Mirrokni, Afshin

Rostamizadeh, and Morteza Zadimoghaddam. Greedy column subset

selection: New bounds and distributed algorithms. In International

conference on machine learning, pages 2539–2548. PMLR, 2016.

[99] Alan Frieze, Ravi Kannan, and Santosh Vempala. Fast monte-carlo

algorithms for finding low-rank approximations. Journal of the ACM

(JACM), 51(6):1025–1041, 2004.

[100] Alessandro Rudi, Daniele Calandriello, Luigi Carratino, and Lorenzo

Rosasco. On fast leverage score sampling and optimal learning. Advances

in Neural Information Processing Systems, 31, 2018.

[101] Xiaofeng Jiang, XiaodongWang, Jian Yang, ShuangwuChen, andXi Qin.

Faster TKD: Towards lightweight decomposition for large-scale tensors

with randomized block sampling. IEEE Transactions on Knowledge and

Data Engineering, 35(8):7966–7979, 2022.

[102] Ali Civril. Column subset selection problem is UG-hard. Journal of

Computer and System Sciences, 80(4):849–859, 2014.

[103] Ali Civril and Malik Magdon-Ismail. Column subset selection via sparse

approximation of SVD. Theoretical Computer Science, 421:1–14, 2012.

[104] Ahmed K Farahat, Ali Ghodsi, and Mohamed S Kamel. An efficient

greedy method for unsupervised feature selection. In 2011 IEEE 11th

International Conference on Data Mining, pages 161–170. IEEE, 2011.

20 VOLUME 11, 2023



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[105] Ahmed K Farahat, Ali Ghodsi, and Mohamed S Kamel. A fast greedy

algorithm for generalized column subset selection. arXiv preprint

arXiv:1312.6820, 2013.

[106] BaharanMirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan

Vondrák, and Andreas Krause. Lazier than lazy greedy. In Proceedings

of the AAAI Conference on Artificial Intelligence, volume 29, 2015.

[107] Yifan Pi, Haoruo Peng, Shuchang Zhou, and Zhihua Zhang. A scalable

approach to column-based low-rank matrix approximation. In Twenty-

Third International Joint Conference on Artificial Intelligence. Citeseer,

2013.

[108] Bruno Ordozgoiti, Alberto Mozo, and Jesús García López de Lacalle.

Regularized greedy column subset selection. Information Sciences,

486:393–418, 2019.

[109] Michal Derezinski, Rajiv Khanna, and Michael W Mahoney. Improved

guarantees and a multiple-descent curve for column subset selection

and the Nystrom method. Advances in Neural Information Processing

Systems, 33:4953–4964, 2020.

[110] Rasmus Bro and Sijmen De Jong. A fast non-negativity-constrained

least squares algorithm. Journal of Chemometrics: A Journal of the

Chemometrics Society, 11(5):393–401, 1997.

[111] Shun’ichi Amari Amari et al. Advances in neural information processing

systems. InAdvances in neural information processing systems, volume 8,

page 757–763. Cambridge, MA: MIT Press, 1996.

[112] Guoxu Zhou, Andrzej Cichocki, and Shengli Xie. Decomposition of big

tensors with low multilinear rank. arXiv preprint arXiv:1412.1885, 2014.

[113] Tamara G Kolda and Brett W Bader. Matlab tensor toolbox. Technical

report, Sandia National Laboratories (SNL), Albuquerque, NM, and Liv-

ermore, CA . . . , 2006.

[114] Carol A Tamminga, Elena I Ivleva, Matcheri S Keshavan, Godfrey D

Pearlson, Brett A Clementz, Bradley Witte, David W Morris, Jeffrey

Bishop, Gunvant K Thaker, and John A Sweeney. Clinical phenotypes

of psychosis in the Bipolar-Schizophrenia Network on Intermediate Phe-

notypes (B-SNIP). American Journal of psychiatry, 170(11):1263–1274,

2013.

[115] Carol A Tamminga, Godfrey Pearlson, Matcheri Keshavan, John

Sweeney, Brett Clementz, and Gunvant Thaker. Bipolar and schizophre-

nia network for intermediate phenotypes: outcomes across the psychosis

continuum. Schizophrenia bulletin, 40(Suppl_2):S131–S137, 2014.

[116] Hanlu Yang, Trung Vu, Qunfang Long, Vince Calhoun, and Tülay Adali.

Identification of homogeneous subgroups from resting-state fMRI data.

Sensors, 23(6):3264, 2023.

[117] Trung Vu, Francisco Laport, Hanlu Yang, Vince D Calhoun, and Tulay

Adali. Constrained independent vector analysis with reference for multi-

subject fMRI analysis. arXiv preprint arXiv:2311.05049, 2023.

[118] Qunfang Long, Chunying Jia, Zois Boukouvalas, Ben Gabrielson, Darren

Emge, and Tulay Adali. Consistent run selection for independent compo-

nent analysis: Application to fMRI analysis. In 2018 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages

2581–2585. IEEE, 2018.

[119] Hideo Matsumoto, Andrew Simmons, Steven Williams, Michael Had-

julis, Roderic Pipe, Robin Murray, and Sophia Frangou. Superior tem-

poral gyrus abnormalities in early-onset schizophrenia: similarities and

differences with adult-onset schizophrenia. American Journal of Psychi-

atry, 158(8):1299–1304, 2001.

[120] Tao Li, Qiang Wang, Jie Zhang, Edmund T Rolls, Wei Yang, Lena

Palaniyappan, Lu Zhang, Wei Cheng, Ye Yao, Zhaowen Liu, et al. Brain-

wide analysis of functional connectivity in first-episode and chronic

stages of schizophrenia. Schizophrenia bulletin, 43(2):436–448, 2017.

[121] Hanlu Yang, Mohammad ABS Akhonda, Fateme Ghayem, Qunfang

Long, Vince D Calhoun, and Tülay Adali. Independent vector analysis

based subgroup identification from multisubject fMRI data. In ICASSP

2022-2022 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 1471–1475. IEEE, 2022.

[122] H Yang, M Ortiz-Bouza, T Vu, F Laport, VD Calhoun, S Aviyente, and

T Adali. Subgroup identification through multiplex community structure

within functional connectivity networks. In ICASSP 2024-2024 IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 2141–2145. IEEE, 2024.

[123] Sugai Liang, Wei Deng, Xiaojing Li, Qiang Wang, Andrew J Greenshaw,

Wanjun Guo, Xiangzhen Kong,Mingli Li, Liansheng Zhao, YajingMeng,

et al. Aberrant posterior cingulate connectivity classify first-episode

schizophrenia from controls: A machine learning study. Schizophrenia

research, 220:187–193, 2020.

[124] Robert Leech andDavid J Sharp. The role of the posterior cingulate cortex

in cognition and disease. Brain, 137(1):12–32, 2014.

BEN GABRIELSON received his B.A. degree in

Physics from Franklin and Marshall College, Lan-

caster PA, USA, in 2015, and received his M.S. de-

gree in Electrical Engineering from the University

of Maryland, Baltimore County, Baltimore, MD,

USA, in 2020. He is currently pursuing a PhD

degree in Electrical Engineering at the University

of Maryland, Baltimore County, under the super-

vision of Dr. Tülay Adali.

His research interests include matrix and tensor

factorizations, with a particular emphasis on efficient implementations of

blind source separation and joint blind source separation.

HANLU YANG (Graduate StudentMember, IEEE)

received her B.A. degree from Jilin University,

China, and her M.S. degree from Temple Univer-

sity, Philadelphia, USA, both in Electrical Engi-

neering. She is currently pursuing a PhD degree in

Electrical Engineering at the University of Mary-

land, Baltimore County, USA, under the supervi-

sion of Dr. Tülay Adali.

Her research interests include matrix and ten-

sor factorizations, machine/deep learning, statis-

tical/graph signal processing, with applications in community detection,

precision medicine, and large-scale neuroimaging data analysis.

TRUNG VU received the B.S. degree in Com-

puter Science from Hanoi University of Science

and Technology, Hanoi, Vietnam, in 2014. He re-

ceived the Ph.D. degree in Computer Science at

the School of Electrical Engineering andComputer

Science, Oregon State University, Corvallis, Ore-

gon, USA, in 2022. He is currently a postdoctoral

research associate at the Department of Computer

Science and Electrical Engineering, University of

Maryland, Baltimore County, USA.

His research interests include optimization methods, independent compo-

nent analysis, and matrix factorization with applications in machine learning

and signal processing. Dr. Vu received a Best Student Paper Award at IEEE

MLSP 2019.

VOLUME 11, 2023 21



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

VINCE CALHOUN is founding director of the tri-

institutional Center for Translational Research in

Neuroimaging and Data Science (TReNDS) where

he holds appointments at Georgia State, Georgia

Tech and Emory. He is the author of more than

1,100 full journal articles. His work includes the

development of flexible methods to analyze neu-

roimaging data including blind source separation,

deep learning, multimodal fusion and genomics,

and neuroinformatics tools.

Dr. Calhoun is a fellow of the Institute of Electrical and Electronic En-

gineers, The American Association for the Advancement of Science, The

American Institute of Biomedical and Medical Engineers, The American

College of Neuropsychopharmacology, The Organization for Human Brain

Mapping (OHBM) and the International Society of Magnetic Resonance in

Medicine. He currently serves on the IEEE BISP Technical Committee and

is also a member of IEEE Data Science Initiative Steering Committee as well

as the IEEE Brain Technical Committee.

TÜLAY ADALI is a Distinguished University Pro-

fessor at the University of Maryland Baltimore

County (UMBC), Baltimore,MD. She received the

Ph.D. degree in Electrical Engineering from North

Carolina State University, Raleigh, NC, USA, in

1992 and joined the faculty at UMBC the same

year.

Prof. Adali has been active in conference or-

ganizations, and served or will serve as technical

chair, 2017, 2025, special sessions chair, 2018,

2024, publicity chair, 2000, 2005, for the IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP), general/technical chair

for the IEEE Machine Learning for Signal Processing (MLSP) and Neural

Networks for Signal Processing Workshops 20012009, 2014, and 2023. She

was the Chair of the NNSP/MLSP Technical Committee, 2003–2005 and

2011–2013, and served or is currently serving on numerous boards and

technical committees of the SPS. She served as the Chair of the IEEE Brain

Technical Community in 2023, and the Signal Processing Society (SPS) Vice

President for Technical Directions 20192022.

She is currently the editor-in-chief of the Signal Processing Magazine.

Prof. Adali is a Fellow of the IEEE, AIMBE, and AAIA, a Fulbright

Scholar, and an IEEE SPS Distinguished Lecturer. She is the recipient of

SPS Meritorious Service Award, a Humboldt Research Award, an IEEE SPS

Best Paper Award, SPIE Unsupervised Learning and ICA Pioneer Award,

Presidential Research Professorship at UMBC, the University System of

Maryland Regents’ Award for Research, and the NSF CAREER Award.

22 VOLUME 11, 2023


	Introduction
	Preliminaries
	Notation
	Tucker and HOSVD decompositions
	Matrix Decompositions by Column Subset Selection (CSS)
	Randomized CSS
	Deterministic CSS


	Subset methods generalized to Tensors (methods to approximate the HOSVD)
	Column-based subset methods for tensor unfoldings
	Row-based subset methods for tensor unfoldings

	Tensor Coreset Decomposition
	Subset discrepancy – a measure of ``representativeness''
	Coresets – weighted subsets
	Subset selection – randomized or deterministic
	Tensor decomposition via sequentially truncated coresets
	computational complexity of TCD

	Numerical Experiments
	Experiments with simulated data
	Experiment with fMRI data

	Conclusion

