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ABSTRACT Generalizations of matrix decompositions to multidimensional arrays, called fensor decomposi-
tions, are simple yet powerful methods for analyzing datasets in the form of tensors. These decompositions
model a data tensor as a sum of rank-1 tensors, whose factors provide uses for a myriad of applications.
Given the massive sizes of modern datasets, an important challenge is how well computational complexity
scales with the data, balanced with how well decompositions approximate the data. Many efficient methods
exploit a small subset of the tensor’s elements, representing most of the tensor’s variation via a basis over
the subset. These methods’ efficiencies are often due to their randomized natures; however, deterministic
methods can provide better approximations, and can perform feature selection, highlighting a meaningful
subset that well-represents the entire tensor. In this paper, we introduce an efficient subset-based form of the
Tucker decomposition, by selecting coresets from the tensor modes such that the resulting core tensor can
well-approximate the full tensor. Furthermore, our method enables a novel feature selection scheme unlike
other methods for tensor data. We introduce methods for random and deterministic coresets, minimizing
error via a measure of discrepancy between the coreset and full tensor. We perform the decompositions on
simulated data, and perform on real-world fMRI data to demonstrate our method’s feature selection ability.
We demonstrate that compared with other similar decomposition methods, our methods can typically better
approximate the tensor with comparably low computational complexities.

INDEX TERMS Tensor Decomposition, Tucker Decomposition, Higher Order Singular Value Decomposi-

tion, Coresets, Tensor CUR Decomposition, Subset Selection, Feature Selection, fMRI.

I. INTRODUCTION

Datasets in the modern era often take the form of large multi-
dimensional arrays called fensors. A tensor can be understood
as a collection of values (e.g. measurements) that are each
associated with a corresponding list of N array indices, where
N denotes the order of the tensor. Whereas a vector is a first
order tensor and a matrix is a second order tensor, the analysis
of third or higher order tensors is the focus of those meth-
ods formally called tensor decompositions. Tensor decom-
positions generalize matrix decompositions to higher order
tensors, approximating a tensor dataset as a tensor product
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of several factor matrices that have various use cases. These
generalizations notably endow tensor decompositions with
the ability to model multilinear relationships within the data,
concisely modeling the relationships across different modes
of the tensor. Furthermore, tensor decompositions provide
a low-rank model of the tensor that typically is orders of
magnitude smaller in memory than the original tensor. A
tensor decomposition’s factors are typically useful for de-
scribing the latent characteristics of the tensor, and are often
used for providing a generative model of the data. All in all,
tensor decompositions provide tools for a wide range of uses,
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such as dimension reduction [1]-[5], feature extraction [6]—
[9], denoising [10]-[15], missing data completion [15]-[20],
dictionary learning [21]-[25], signal processing [26]-[32],
and various others. Applications of tensor decompositions
are widespread and include chemometrics [1], [33], [34],
psychometrics [35], [36], econometrics [37], [38], analysis of
medical imaging modalities [7], [39]-[48], radar and commu-
nication applications [30], [49], [50], applications to machine
learning [26], [51], [51]-[56], and many others.

Perhaps one of the simplest tensor decompositions is what
is often called the canonical polyadic decomposition (CPD)
[571, [58], which approximates a tensor as the sum of R rank-
1 tensors where R is a user-defined positive integer. CPD can
be understood as a higher-order generalization of matrix low-
rank decompositions, which decompose a matrix into a sum
of rank-1 matrices that best approximates the original matrix.
However, whereas matrix rank decompositions are typically
not unique unless additional constraints are imposed, the CPD
is often unique under much milder conditions. This results in
unique factors that reveal the latent structure of the data under
fewer required assumptions [1], [59]-[61].

Another useful form of tensor decomposition is the Tucker
Decomposition [62], [63]. The Tucker decomposition is a
general form of tensor decomposition that represents an Nth
order tensor as the tensor product of N factor matrices with
an Nth order “core” tensor: a small tensor that can be con-
sidered a compressed version of the original tensor. A notable
specific type of Tucker decomposition is the higher-order
singular value decomposition (HOSVD) [63], [64], the direct
generalization of the matrix singular value decomposition
(SVD) to tensors. HOSVD is analytically represented by its
factor matrices being the singular vectors of each “unfold-
ing” (matricization) of the original tensor, in which case
the core tensor can be interpreted as a tensorial form of
principal components. While the CPD and Tucker are perhaps
the most popularly used tensor decompositions, since their
introduction a wide variety of other decompositions have
been introduced and used successfully. These include the
Tensor Train decomposition [65], [66], hierarchical Tucker
decompositions [67], [68], tensor block-term decompositions
[69], [70], coupled matrix-tensor factorizations [44], [71],
[72], and online tensor decompositions [73]-[76].

Most tensor decompositions perform their optimization
routines by breaking the problem of estimating all N factor
matrices into N simpler subproblems. This typically involves
solving for each factor matrix one at a time, by unfolding
the tensor with respect to each of the N modes and sub-
sequently solving for (or updating) a corresponding mode’s
factor matrix. While these routines simplify optimization
by allowing decompositions to be solved with matrix-based
methods, tensor decompositions nevertheless rely on multi-
plying high-dimensional matrix representations of the ten-
sor data, which can become computationally expensive with
exceedingly massive tensors. These challenges have greatly
motivated computationally efficient methods for tensor de-
compositions, especially those that retain simple models with
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excellent approximation and explainability.

Many efficient tensor decompositions are direct general-
izations of matrix decompositions. With matrices, a partic-
ularly useful strategy has been to approximate a matrix via
projecting onto the span of only a small subset of columns.
These are referred to as column subset selection (CSS) meth-
ods, of which include the matrix CUR decomposition [77],
[78] which approximates a given matrix by both a subset of
columns C and a subset of rows R.. Subset selection methods
are distinguished by those that select a subset randomly, with
a focus on faster decompositions, or those that select a subset
deterministically, with a focus on better approximation and
for performing feature selection: identifying particularly rep-
resentative elements of the data that well-describe the rest of
the data. Extensions of these matrix decompositions to tensors
exist as types of Tucker decompositions that are called tensor
CUR decompositions [79]-[84], which use subsets of ele-
ments from multiple modes of a tensor to provide a multilin-
ear basis for the entire tensor. Due to their simple procedures,
tensor CUR decompositions are among the fastest tensor
decompositions, and can also provide good approximations
of tensors with reasonably large subset sizes, yet may suffer
with smaller subset sizes. These methods exclusively select
subsets randomly, rather than deterministically. Extensions
of deterministic subset-based methods may also be desirable
for tensors, especially in the interest of determining well-
representative subsets of the data.

Tensorial feature selection has been accomplished in [85]—
[87] but only in the context of supervised learning for classi-
fication, where tensors are accompanied by labels and feature
selection is a function of the labels. An unsupervised feature
selection method for third order tensors was proposed in
[88], which takes subsets from a single mode of the tensor.
However, features in these subsets differ depending on what
elements they correspond to in another “view”” mode, and
thus may be harder to interpret. Furthermore, these subsets
are acquired after performing a CPD, whereas the methods
we consider in this paper actually use the subsets to perform
efficient tensor decompositions. To our knowledge there have
been no other extensions of deterministic subset-based meth-
ods to tensor data in the general unsupervised setting, and
none for multiple modes of the tensor.

In this paper, we introduce an efficient weighted subset-
based type of Tucker decomposition, similar in form to the
tensor CUR decompositions and the sequentially truncated
higher-order singular value decomposition (ST-HOSVD)
[89]. Notably, the deterministic variation of our method pro-
vides a novel unsupervised feature selection algorithm for
tensor data, selecting subsets from one or more modes that
are reasonably best able to summarize the structure of the
tensor. Sequentially across a tensor’s N modes, we select from
each mode a coreset, i.e. a weighted subset of elements [90]—
[94], that reasonably minimizes a measure of discrepancy
between the coreset and the entire mode, which in turn min-
imizes the mean squared error cost between the tensor and
its approximation. We connect the discrepancy to the cost
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function of HOSVD, showing that use of weighed subsets
provides a better minimization to the cost than unweighted
subsets used in tensor CUR decompositions. We consider two
methods: one based on random coreset selection, sampling
according to a weighted probability distribution, and one
based on deterministic coreset selection, utilizing an efficient
weighted kernel herding (WKH) [95] procedure. For a given
coreset, we select the corresponding coreset weights via an
efficient nonnegative least squares (NNLS) minimizing the
discrepancy between the coreset and the entire mode. We
analyze performance of our two methods on large datasets,
testing with both simulated data and real functional magnetic
resonance imaging (fMRI) data via functional connectivity
matrices (FNCs) arranged as a large tensor. Comparing with
similar Tucker-type methods, such as variations of the Tensor
CUR decomposition and randomized HOSVD methods, we
demonstrate that our methods are highly efficient, provide
good approximation performance, and can be converted to a
HOSVD decomposition with strong estimation quality.

The paper is organized as follows. Section II introduces
preliminary concepts regarding matrices and tensors, includ-
ing several basic methods for matrix and tensor decom-
positions. Section III explains efficient generalizations of
subset-based methods for matrix decompositions to tensor
decompositions, such as the tensor CUR decompositions.
Section IV introduces our proposed sequential coreset-based
tensor decomposition methods, which we refer to as tensor
coreset decompositions (TCD). Section V provides results
of our methods, compared with various other methods, on
both simulated tensor datasets and a real fMRI FNC tensor
dataset. Section VI concludes the paper and overviews the
contributions.

Il. PRELIMINARIES
A. NOTATION

Throughout the paper, we use notation that is summarized
in Table 1, and is consistent with notation of other works that
discuss tensor decompositions (e.g., [1]).

We denote scalars by lowercase unbolded letters (e.g., x),
vectors by lowercase bolded letters (e.g., x), matrices by
uppercase bolded letters (e.g. X), and higher order tensors
(order three or higher) by calligraphic bolded letters (e.g. X).

The order of a tensor, N, also referred to as the number of
modes, can be loosely thought of as the number of dimensions
in the tensor, but more precisely it is the number of indices
needed to index an entry in the tensor. For instance, a third or-
der tensor X has a corresponding (i1, iz, i3) element denoted
by (&) (i1izis)- Each index corresponds to a different mode of
the tensor, and is bounded by the dimensionality of that mode.
For example, given a third-order tensor X € RP1xP2xDs
the dimensionality of the first mode is D;. In general, when
dealing with N th-order tensors, we refer to the dimensionality
of the nth node by D,,, and a particular index from that mode
by iy, fori, =1,...,Dy,andn=1,...,N.

As our paper utilizes subsets of the tensor, we define a
subtensor as a subset of elements in the tensor corresponding
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to some set of indices. We define index sets over a given
nth mode of a tensor by unbolded calligraphic letters Z,, and
use a colon to otherwise indicate all elements of a mode. For
example, (X)(; . .) denotes the ith element of the first mode,
and (X)(z, ..., denotes a subset of elements in the first mode
corresponding to the index set Z;.

An important operation in tensor decompositions is the
matricization of a tensor, also called the unfolding. We denote
the nth mode unfolding of a tensor X’ € RP1XP2-xDv by the
matrix X,y € R?*Pr where D, = Hm 1 D, is the product

of all other mode’s dimensionalities. The ith row of the nth
mode unfolding is the vectorization of the ith element in the
nth mode, e.g. (X(1))(3,:) denotes the third row in the first
mode unfolding of X and is equal to VCC(X(&:’:’“":))T, the
third element of the first mode.

The rank of a tensor X is defined as the smallest number of
rank-1 tensors that exactly sum to X. Unlike with matrices,
determining the tensor rank is difficult for most real-world
tensors. A more well-defined notion of a tensor’s rank struc-
ture are the n-ranks, the ranks of each unfolding X,).

If the nth mode unfolding of a tensor X,y € RP*Pr js
left multiplied by a matrix U € R’*Px_ the resulting product
G = U X,y € R"*Pr is equivalently represented in the
tensor domain by the nth mode tensor product G = X X,
Ue RDl X.ooXDy—1 XJyXDyy1X...XDn .

The norm of a tensor X € RP1 X+ XDv s defined by:

||X||F(Z S <>)

lNl

Notation Definition
X scalar
X vector
X matrix
X tensor
N number of modes
D, dimensionality of nth mode, forn =1,...,N
Ry n-rank: rank of X,
kn number of factors in decomposition of nth mode
Dn Hm 1 D m
myﬁn
by (IT=3 R) (Td Do)
T Hm 1 Rm
m#n
in ith index of the nth mode, fori, = 1,...,D,
Tn index set of nth mode (with cardinality Rn)

All modes’ index sets
element i, of the nth mode

(X Tprn) subset of nth mode corresponding to indices Z,,
X nth mode unfolding of X
X X, A, nth mode tensor product of X with A,
X7 matrix transpose
bl matrix pseudoinverse
X Xt projection matrix
Mz, nth mode “mapping” matrix corresponding to Z,

Table 1. Notation used in this paper.
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Algorithm 1: HOSVD

Input: X € RPvX-XDv (N-mode tensor),
[R1, ..., Ry] (number of factors per mode)
Output: X ~ g X1 Ay X ... Xy Ay, where
G € RRuvx.. xRy (core tensor),
{A1,..., Ay} (factor matrices)

for cachmoden=1:N
unfold (matricize) tensor w.r.t. nth mode
X — X(,,) € RD"XD” with Dn = Hm 1Dy,
m£n

compute A, € RO xR
the R, left singular vectors of X,
end for

g:XXlAIXQ...XNA;Vr

In the next subsections, we first discuss Tucker and
HOSVD decompositions for tensors, and note their complex-
ities. We then discuss column subset selection (CSS) methods
for reducing complexities of matrix decompositions, and then
discuss generalizations of these methods to tensors.

B. TUCKER AND HOSVD DECOMPOSITIONS

The Tucker decomposition [62], [63] is a general type of
tensor decomposition that approximates an Nth order tensor
X € RPvx--XDv by the tensor product of N factor matrices

A, (n=1,...N), with a smaller core tensor G. The general

cost function for Tucker decompositions takes the form:

j(g,Al,...,AN) = || ng X1A1 X9 ... XNAN H]Q;
ey

where A, € RP*R: is the nth mode’s factor matrix, G
€ RF1x.-XRv ig the core tensor, and R, are the number of
factors chosen for the nth mode, which are often closely

Algorithm 2: ST-HOSVD

Input: X € RPvX-XPv (N-mode tensor),
[R1,...,Ry] (number of factors per mode)
Output: X ~ g X1 Ay X ... xy Ay, where
G € RFv X xRy (core tensor),
{Aq,..., Ay} (factor matrices)

for eachmoden=1:N
unfold (matricize) tensor w.r.t. nth mode
X = X(,) € RBXO)T
with (D) = (TTpZy Ru) (T4 D)
compute A, € RP>*R:,
the R, left singular vectors of X,
truncate the unfolded tensor
X — A X, € RRx(On
un-matricize the tensor
X(n) 3 X e RR1>< xR, XDpq1X...XDy
end for
g X

)()

related to the tensor’s n-ranks R, forn =1,... N.

The Tucker decomposition is not unique without any fur-
ther constraints. There are a variety of ways to achieve a
unique Tucker decomposition over a tensor, including several
subset-based approaches such as the tensor CUR decomposi-
tion and the method that we later propose in this paper.

A useful Tucker decomposition is the HOSVD [63], [64],
a natural generalization of SVD to tensors. HOSVD’s factor
matrices of a tensor X are analytically given as the left
singular vectors of each unfolding of X, and the core tensor
is obtained from a tensor product of these factor matrices with
X. The HOSVD procedure is described in Algorithm 1.

Several variations of HOSVD have been introduced since
its inception to improve its efficiency, with one of the most
used variations being the sequentially truncated HOSVD (ST-
HOSVD) [89]. Across each nth mode of the tensor, ST-
HOSVD first estimates a mode’s factor matrix from the left
singular vectors of the nth mode unfolding X,y (just as done
with HOSVD), and then replaces X with the core tensor
formed by the tensor product of this factor matrix with X.
Over calculation of the N mode factor matrices, the current
tensor progressively reduces in size until it becomes the final
core tensor and all N factor matrices are obtained. The ST-
HOSVD procedure is described in Algorithm 2.

If we denote the SVD of each X, in the for loop of Algo-
rithm 2 by X,y = Ux,,, Ix,, Vx,,.suchthat A, =Ux,,,
it follows that ST-HOSVD’s truncation strategy sequentially
replaces X,y with its top R, right principal components
(PCs) x, VX thus best preserving the approximation
of the original tensor while reducing the dimensionality of
operations across all remaining modes.

We now compare the computational complexities of
HOSVD and ST-HOSVD. For simplicity, we assume
that the order of modes truncated with ST-HOSVD is
n = 1,...,N. HOSVD’s computational complexity is
ngg_l min(DfDn,Dan)), dominated by the N SVD-
unfoldings for large tensors. ST-HOSVD considerably re-
duces this complexity to O ( SV min (DQD,(,") . (D{)?D, ))

where DY) = (IT"Z} Rn) ([T w1 D). here R, is the num-
ber of factors in the mth mode. However with ST-HOSVD,
the first few modes’ SVDs are similar in complexity to those
calculated with HOSVD. This leads ST-HOSVD to still be
computationally expensive when dealing with large tensors,
motivating more scalable decomposition methods.

In the next section, we overview subset-based methods for
reducing complexity of matrix decompositions, from which
we then overview their various generalizations to tensors.

C. MATRIX DECOMPOSITIONS BY COLUMN SUBSET
SELECTION (CSS)

This subsection gives a general overview of column subset
selection methods for matrices. For a more detailed discus-
sion of the topic, we refer the reader to [96]-[98].

CSS methods approximate a matrix X € RM¥*V by se-
lecting a subset of columns of the matrix, selecting either
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randomly or deterministically, and then approximating X by
projecting onto the span of the subset. If we denote X7, £
(X)(.,z,) € RM*M as the matrix formed by a N, subset of
columns, corresponding to some index set Z, the approxima-
tion error for some choice of Xz, is given by:

J(T) = | X - X7,(X{Xz) ' XT X ||}
| X - Xz Xz X ||}
= [| X - Px, X||; @

where X7, T = (X7 Xz,)7'X] is the pseudoinverse of Xz,
(such that X7," Xz, =T € RM*N and Px, = X7 XzT
€ RM*M s the projection matrix corresponding to the column
space of Xz . This is equivalently given by:

J(I,) = || X - Xz, Mz, ||} 3)

where Mz, = (X7 Xz) 'X7 X € R¥™*V is a matrix
mapping columns of X onto the span of Xz , which in later
sections we refer to as a “mapping” matrix.

1) Randomized CSS

Randomized CSS methods operate by assigning a weighted
probability distribution to the columns and then sampling ac-
cording to this distribution. Uniform sampling of the columns
(giving equal sampling probability to each column) generally
produces bad approximations of a matrix, especially if the
columns are heterogeneous. Instead, sampling distributions
are often based on probabilities weighted by the squared norm
of columns, i.e. “norm sampling” [77], [99], or approximated
statistical leverage scores [100]. In our paper, we focus on
norm sampling, which is the most computationally efficient
of the sampling-based methods, and we note that norm sam-
pling is also conventional in tensor-based methods [79], [82],
[101]. It has been proven in [99] that norm sampling provides
the following error guarantees: given a matrix X € RY*N
and values for €, §, and a defined upper limit to the rank k
of Px, = Xz, Xz, then a norm sampled selection for Xz,
satisfies the following error probability:

Pr{ IX - Px, X|? < ||xxk||§+e||xn§} > 1.5

where X, is the best rank-k approximation to X, and 0 <
& < 1 is the probability of failure.

Furthermore, it has been proven in [77] that given a norm
sampled subset of columns Xz, after rescaling the columns
of Xz, to be the same norm:

1 X
N X2)ens @
(Xz.) () VN [(X2) e Hp( He

that the following error probability is satisfied Ve > 0 :

2 n 2
R MR EREY
where 77 = 1 + (8log(6~1))z.
If we denote the SVD of X by X = Ux ZIx V)T(, this
particular result suggests that with a high enough sample size

Pr{ [XXT — X7 X7
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N;, a norm sampled Xz, can adequately approximate the left
PCs Ux Zx of X with a high probability, by re-scaling the
columns according to (4). We later will refer to this result
when introducing our coreset-based method.

2) Deterministic CSS

Deterministic CSS methods are combinatorial methods for
selecting a ““best” representative subset of columns, where
“best” is relative to the method used. The problem of finding
a subset that exactly minimizes the approximation cost over
all possible subsets has been acknowledged as being UG-
hard (where “UG” refers to the unique games conjecture)
[102], in which case deterministic algorithms mainly focus
on obtaining a reasonably ‘“‘best” subset in a reasonable
amount of time. These methods can also effectively serve as
feature selection methods, and thus there is a large overlap
between methods that can be used for feature selection and
those used for deterministic CSS. However, the design of CSS
methods typically puts a greater emphasis on the scalability of
methods, especially with the high-dimensional combinatorial
problems posed by large matrices or tensors.

Perhaps the most popular method for deterministic CSS is
to use the greedy algorithm, which consecutively searches for
anew column to add onto a subset such that the resulting new
subset best approximates the full matrix. The greedy CSS al-
gorithm was first studied in [103], and has been demonstrated
to be both scalable to large numbers of columns and provide
high-quality representative subsets [97], [104]-[108].

As one may expect, deterministic CSS methods provide
better approximation than randomized methods and incur
better error guarantees. The tightest bounds for deterministic
CSS depend on the singular values of X; intuitively, those
matrices whose singular values have higher rate of decay are
simpler matrices which require much fewer columns to well-
approximate the matrix. In [98], the following bound was
proven on greedy CSS:

| X —Px, X[} > (1—o) | X~ X |2

where X; is the best rank-k approximation to X, r >
16k (€0min(Xx)) ™! is the number of steps taken by the
greedy algorithm, and o, (X} ) is the smallest singular value
of Xy. Similar results have been proven in Theorem 3 of
[109]. A shared result amongst these works is that by only
taking slightly more than k columns with greedy CS, the
approximated matrix is less than a 1 — € factor from the
optimal choice of k columns.

IIl. SUBSET METHODS GENERALIZED TO TENSORS
(METHODS TO APPROXIMATE THE HOSVD)

As tensor decompositions frequently invoke matrix opera-
tions with the tensor unfolding, matrix approximation tech-
niques have found great use for accelerating tensor decom-
positions [79]-[83], [101]. As our proposed method is most
analogous to the HOSVD, we focus only on those subset-
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based methods for performing a Tucker decomposition in the
form of an approximated HOSVD.

These methods generally estimate a form of Tucker de-
composition that is not a HOSVD decomposition, but can be
used to approximate one. In order to provide an approximate
HOSVD decomposition, we may convert any method’s corre-
sponding Tucker decomposition to a HOSVD decomposition
via the procedure [82] outlined in Algorithm 3.

Algorithm 3: Convert Tucker decomposition to HOSVD

Input: G € RR >R (core tensor)
{Ah . ,AN} (factor matrices)
Output: G € RF xR (HOSVD core tensor),
{A1,..., Ay} (HOSVD factor matrices)

for eachmoden=1: N
factorize A, using the QR decomposition:
[Q113~Rn] - qr(An)
replace G — G x, R,
end for
perform HOSVD on the new core tensor:
[g, Aq,. .., AN} = HOSVD(G)

foreachmoden=1:N
replace = A, — Q, A,
end for

There are various different strategies to provide a Tucker
decomposition over a tensor X via exploiting the previously
discussed matrix approximation techniques over the tensor
unfoldings X ,,). These strategies can generally be separated
into two distinct camps with differing decompositions:

o column-based subsets: approximate X,y by a subset of
its columns, e.g. randomized sampling tucker CUR [80]

o row-based subsets: approximate X, by a subset of its
rows, e.g. Chidori CUR [79], [82], Fiber CUR [81], [82],
and randomized-block HOSVD (RB-HOSVD) [101]

We briefly overview and contrast these two strategies in the
following subsections.

A. COLUMN-BASED SUBSET METHODS FOR TENSOR
UNFOLDINGS

Column-based subset methods approximate a tensor un-
folding X,y using a subset of its columns. These columns are
referred to as ““fibers” in the tensor literature, and represent a
fixed index in all modes of the tensor except for the nth mode.
As an example, (X(1))(. . is a fiber of the first mode which
represents (X') . i, i,,....iy) for some indices of the N — 1 other
modes iz, i3, . . ., iy that correspond to some fiber index z.

For the nth mode unfolding X(n) of atensor X, if we denote
7, as an index set for some subset of 1?,, columns, and denote
(Xw)z, = (Xw)ez,) € RP*Fr as the matrix formed by
these R, columns, then (2) is restated as:

6

2
J(T,) H X = Pxgy)z X ’ ©)

= || Xy — (Xw)z, Mz, ||2 (6)

where P(x ), = (X(n)z,(X(m)z,T € RPPris the projec-
tion matrix corresponding to the column space of (X)),

(Xw)z" € RR“XD" is the pseudoinverse of (X(,)z,, and
Mz, = X))z Xw) € R*>Dx s the matrix mapping
columns of X, onto (X,))z, .

By denoting 7 = {Il, e ,IN} as the set of all N mode’s
column index sets Z,,, forn = 1, ..., N, then we can represent
the resulting decomposition’s cost in a manner similar to (1):

J@) = || X = M1 X))z, x2- xx Xz, ||
)

where the core tensor is given by M = X x1 (X(y) )z, T %o

Xy (Xvy)zy | € RRX-XRY “and the factor matrices are
given by the column subsets (X(,)z,

This decomposition in (7) was first introduced in [80],
referred to as “ApproxTensorSVD” in that paper. Later pub-
lications such as [83] refer to the algorithm as randomized
sampling tucker CUR (RST-CUR). This decomposition is
perhaps the most direct generalization of the matrix CUR
to the tensor domain, as the decomposition takes the exact
form of the matrix CUR when N = 2. We refer to this
decomposition as RST-CUR for the remainder of the paper.

The same advantages gained by matrix CUR for matrices
carries over to RST-CUR for tensors, notably a low com-
plexity way to approximate a tensor’s HOSVD. Additionally,
as the factor matrices (X(,))z, are fibers of the full tensor
X, the factor matrices retain properties held by the original
tensor, which can include sparsity, nonnegativity, etc.. These
qualities in X being retained in factor matrices (X,))z, may
aid with the interpretability of the decomposition.

A key difference between column-based subset methods
and row-based subset methods over X, is how differences
in dimensions affect the subset selection process. As X
€ RP>Du i in general a very wide matrix with D, > D,,
the massive number of columns leads deterministic column
subset selection methods to be intractable, as their complexi-
ties are typically in the order of O(D?) or more. Furthermore,
even randomized methods typically only use a uniform dis-
tribution for sampling the columns, e.g. with norm sampling
it may also be intractable to calculate the norm of all D,
columns of X(,). This is a significant comparative disad-
vantage of the column-based methods such as RST-CUR, as
uniform sampling of the columns may lead to significantly
worse approximations for a given choice of R,.. While column
subset methods over X(,,) are expensive, on the other hand,
row-based subset methods are typically tractable due to the
much smaller number of rows D,,, as we discuss in the next
subsection.
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B. ROW-BASED SUBSET METHODS FOR TENSOR
UNFOLDINGS

Row-based subset methods approximate a tensor unfolding
Xy using a subset of its rows. Aside from more advanced
sampling methods being tractable over the rows than the
columns of X(,,), another advantage of row-based methods
is the interpretability of their subsets. Because rows in X,
are simply the elements of the nth mode, rows of X, are
easier to interpret than the fiber columns of X ).

For the nth mode unfolding X ;) of a tensor X, if we now
denote Z, as an index set for some subset of Rn rows, and
denote (X ())z, = (X () (z,,,) € RF*Pr as the matrix formed
by these R, rows, then (2) is restated as:

2
J (Zn) H X(ﬂ) - X(n) P(X(H))Iu ‘F ®)

= | X — Mz, (X@)z, ||§ )

where P(x ), € R7%Di s the projection matrix corre-
sponding for the row space of (X,)z,, and Mz, € RP»*® jg
the nth mode’s mapping matrix, which maps rows of X onto
the span of (X,))z,, and is given by:

Mz, = X (X)), (X)z, Xw)z,) " (10)

By denoting Z = {Z1,...,Zy } as the set of all N modes’
row index sets Z,, forn = 1,..., N, then we can represent
the resulting decomposition’s cost in a form similar to (1):

J(I) = | & — Xz x1 Mg, Xa...xy Mg, |2 (11)

where the core tensor X7 = (X)(z,,..,7,) € RRu X xRy

is a subtensor of X over the index sets Z,, and the factor
matrices are the N mapping matrices Mz, forn =1,...,N.

The characteristic difference between the decomposition
X1 X1 Mz, Xg... Xy Mz, in (11), and the decomposition
M x1 (X(1))z, X2... Xy (X(v))zy in (7), is how elements
of the tensor X manifest as elements in the decomposition,
relative to a tensor generalization of (3). In (7), elements of X’
manifest as fibers in the factor matrices (X ,))z,, and the core
tensor M can be considered a tensor generalization of the
mapping matrix. Where in (11), the opposite occurs: elements
of X manifest as the core tensor Xz, and the factor matrices
Mz, are the N modes’ mapping matrices. Thus with (11), the
core tensor is the element of the decomposition that retains
properties of the original tensor, which may yield more useful
decompositions depending on the application.

Various tensor decompositions take the form of the de-
composition Xz X3 Mz, Xg ... Xy Mg, in (11). This
decomposition was first introduced in [79] shortly before the
introduction of the RST-CUR decomposition. Later works
such as [82] have provided significant understandings to the
error guarantees of this decomposition, and have referred to
it by the name ‘““Chidori CUR” decomposition.

A key feature of the Chidori CUR is that the subset indices
7, are chosen prior to the decomposition, and that the map-
ping matrices Mz, are calculated only over those fibers of
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X, that correspond to the subset indices Z, of all N — 1
other modes. In other words, in calculation of Mz, in (10), the

matrix X, is the unfolding of the nth mode *“Chodiri Beam”

Ry X...XRy_1%xD1XRyy1X...XR,
(X>(Il1-”71-1171A,37Irz+l1--»7IN) € R™ n LA "

and (X,))z, is the unfolding of the core tensor Xz (a sub-
tensor of the nth Chidori Beam). Because the Mz, are calcu-
lated over only the Chidori Beams, the decomposition only
requires access to the Chidori beams and is thus independent
from all other elements in the tensor. This reliance on only
a small subset of the tensor to perform the decomposition
results in one of the most computationally efficient tensor
decompositions. At the same time, however, independence of
the decomposition from elements outside the Chidori beams
may result in a worse factorization than other decompositions,
particularly when the subsets of the core tensor Xz are not
well-representative of the rest of X, or if X is otherwise
heavily heterogeneous in nature.

A similar decomposition was later introduced in [81], and
can be considered a generalization of the Chidori CUR where
the unfolding fibers in X,y and (X,))z, are not restricted to
those Z,, of the N — 1 other modes, but can be any random
corresponding subset of fibers from X,y and (X(,)z, over
the entire tensor. This decomposition was also later studied in
[82] and has been called the “Fiber CUR”’ decomposition. As
the Fiber CUR allows access to any random subset of fibers of
X (ny and (X,))z, for calculating mapping matrices Mz, , its
decomposition may be more robust to poorly chosen subsets
of the data. However, as column fibers in Fiber CUR are typ-
ically uniformly sampled, this may also lead the Fiber CUR
to exhibit considerably higher variation in the quality of the
estimated Mz , which often leads to worse decompositions
than those provided by Chidori CUR.

As described in Section III.A, the massive numbers of
columns in X,y make column selection methods intractable,
and thus typically only rely on uniform sampling to select the
columns. However for row-based methods such as Chidori
CUR and Fiber CUR, the much smaller number of rows
D, < D, allow for more sophisticated sampling methods
such as norm sampling. When norm sampling is applied,
index sets Z,, are selected according to the norms of elements
in the original tensor, e.g. (X(n) ) (i,-) which when vectorized is
of dimension D,,. These sampling schemes require N passes
over the tensor to construct the N index sets, and thus can
still be of considerable expense. Perhaps as a result of this,
row-based subset methods for tensors have exclusively used
random subset methods such as uniform and norm sampling
to obtain subsets of the tensor, and thus deterministic subset
methods have not been explored.

Building on the ideas presented in previous sections, in the
next section we introduce a new way of performing a subset-
based Tucker decomposition that provides a good balance
between efficiency and approximation quality, by exploiting
weighted subsets of the data called coresets.
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IV. TENSOR CORESET DECOMPOSITION

In this section, we introduce a method for the Tucker
decomposition that operates by selecting coresets: weighted
subsets of the data. As we later explain, these weighted
subsets can provide a better approximation to the tensor X’
by effectively better approximating the HOSVD’s principal
component tensor G. We later motivate additional differences
vs. the previously discussed methods, such as a sequentially
truncated coresets approach analogous to ST-HOSVD, and
the ability to represent symmetry in the tensor over multiple
modes. Furthermore, instead of exclusively selecting sub-
sets randomly for greater efficiency, we also motivate ability
to select subsets deterministically, for better approximation
quality and for feature selection.

A. SUBSET DISCREPANCY - A MEASURE OF
“REPRESENTATIVENESS”

To motivate weighted subsets within a tensor, we first refer
back to the per-mode approximation error provided for row-
based subsets in (9).

J(Z) = || Xy — Mz, Xw)z, |1

Denoting the SVD of X,y by X,

the approximation error of Mz, (X(,))z, € RP?"*Pr depends
on how well the subset (X(,)z, can approximate the row-
space of X(,, specifically in terms of approximating its
right principal components 2x Vi .,» which in the tensor
domain is represented by the HOSVD core tensor G. These
PCs are analytically given by the eigenvectors Vx ,; and cor-
responding eigenvalues 2x , of the quadratic form X(T,,)X(n)
€ R"*Pr and thus can be approximated from (X )z, via
the corresponding form (X(,))7 (X(y))z, € R"*P. As a
result, an implicit distance between the PCs of X,y and
(X (n)z, is given by the distance between the quadratic forms:

_ T
- UX(n) Z{((u) VX<,,>’

2
.
R(T,) = H (X)7. (Xw)z, — Xy X ‘F (12)

This can be understood as a nonparametric measure of
discrepancy [90]-[95] between the full set X,y and the
subset (X(,))z,, analogous to the maximum mean discrep-
ancy [92]-[94] for a particular realization of distributional
“embeddings” of the elements in the set. Specifically for
some ith element in the nth node, given by (X)), its
corresponding embedding in this discrepancy is given by
(X)) oy X)) € RPPr,and the nth mode’s “full
mode embedding”’ X(Tn)X(,,) is given by the sum X(T”)X(n)
= Zl 1(X(n))( (X)) i,)» which we seek to best approxi-
mate via the subset’s embedding (X(,))7 (X))z,

B. CORESETS - WEIGHTED SUBSETS

A subset’s discrepancy can be further decreased by weight-
ing the subset: assigning individual weights w,[,l] to each ith

8

element in the subset. Utilizing these weighted subsets, called
coresets, the discrepancy measure is given by:
2

R(Zuywa) = || Y- wil (Xw) iy Xw)i) —Ba
i€Z, F
(13)
where w, = {wl,l], - 7w,[ff2 "]} IS R& s the set of IAQ,, coreset

weights corresponding to each element in (X,))z, € REuxDu
and B, £ X[ X(,) € RP*Pr s the nth modes full mode
embedding (a fixed quantity).

An important point to acknowledge here is that in
(13), the weights w,[,i] are applied to the element embed-
dings (X(n))(, (X)) (i,:)> and not the elements themselves
(X)) Instead it follows that the elements receive the

square root of the weights (wg] \EE
7 —
wi! (X)) (K)o ) =
. T .
(0ol X)) (D% (X))

This necessitates us to later specify nonnegative weights
w,[,] > 0 in order for (WL]) 2 to be real.

We now discuss the procedure for selecting weights w, that
minimize the discrepancy (13). For simplicity, for now we
assume that we have a particular realization of the subset Z,,,
which is selected either randomly or deterministically (as we
explain in the next subsection). With Z, fixed and discrepancy
as only a function of the weights w,, we can equivalently
write (13) in a form where all D x D, matrices are instead
given as D? x 1 vectors:

2

R(w,) = > wllall —b (14)
i€T, 5
= ” A,w, —b, ||§

where we define af = vee((X ) (o (X)) € R
as the vectorization of the ith element’s embedding, A, =
[a;[}k e ,a,[,R"]} € RD: %R a5 the horizontal concatenation of

the a['] and b, = vec(B,) € RP: as the vectorization of the
full mode embedding.

This is a least squares problem “§M"||A,w, — b, Hg for
which the ordinary least squares (OLS) solution is w, =
(AJA,)"tADb,. However as noted previously, we also
require that the weights wLi] be nonnegative in order for the
square root of weights (applied to the elements themselves) to
be real. Therefore, we use a NNLS algorithm [110] to solve
for w,,. This is an efficient algorithm that does not explicitly
form the D, x D, embeddings, instead only requiring the
kernels between embeddings which are significantly easier
to calculate. We define the kernel between the embeddings of
(X)) and (Xn)) ) as:

- - 2
K(inn) = < all all > = (X))o X)) (15)
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The two quantities required by the algorithm are kernels
(ATA,) € RR>R and ATb, € RR. The matrix (A] A,)
prov1des all pairwise kernels w1th1n the Z,, subset, and is equal

to (X)) (Xm)(z, )) € RR:*R: where (.)°2 denotes
the Hadamard power (here elementw1se squaring). The vec-
tor A,/ b, provides kernels with each element in the subset
with the full mode embedding, equal to (X)) z, )X(n))

€ R®_ where 1 € R is the vector of 1s. For further effi-
ciency, we initialize the NNLS algorithm with the mapping of
the OLS solution (A, A,))~' A, b, to its nearest nonnegative
vector. In our experience, we often observe that the OLS
solution is already nonnegative and thus exactly minimizes
(14) without requiring the NNLS algorithm.

Having provided the means to optimize the weights w,,, in
the next section we discuss ways of selecting the subsets.

C. SUBSET SELECTION - RANDOMIZED OR
DETERMINISTIC

As our method is a row-based subset method over X,
we can consider more advanced means of selecting subsets
(X(n))(z,,:) than uniform sampling of rows. We use different
strategies if we seek random subsets, prioritizing computa-
tional efficiency over approximation quality, or deterministic
subsets, prioritizing approximation quality in addition to the
utility of feature selection.

For random subsets, we use norm sampling as done with
previously mentioned methods. While we unfortunately do
not provide an approximation bound for random subsets us-
ing the NNLS weights discussed previously, intuitively these
weights should yield a discrepancy that is less than or equal to
that provided by the normalized weights discussed in (4), as
those weights are not explicitly optimizing over the discrep-
ancy whereas the NNLS weights are. Therefore, we expect an
error superior or equal to that of (4)’s weights. As we show
in the next section, it is inexpensive to calculate the NNLS
weights since the kernel quantities are required anyways to
calculate the nth mode’s mapping matrix Mz, . Selection of
the random subset along with calculating the weights has
complexity of O((R, + 1)D,D, + R3), which is linear in D,.

For deterministic subsets, we retain the use of greedy
methods in the interest of balancing approximation quality
with computational efficiency. As discussed in Section II.C,
greedy methods significantly outperform the error bounds of
randomized methods and lead to subsets that rapidly converge
to the properties of the full set. We specifically utilize the
weighted kernel herding (WKH) method [95] which allows us
to simultaneously and efficiently solve for the subset indices
7, and weights w,. Like the NNLS algorithm, the WKH
algorithm is made more efficient by only requiring kernels
to operate. It uses X, XE';) € RP*Du | the matrix of pair-
wise kernels between all elements in the nth mode, and has
complexity O(D,D? + R3D,,), which is quadratic in D,,.

In the next section, we introduce our tensor decomposition
method as a sequentially truncated variation of the row-based
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subset model in (11), where we sequentially replace the tensor
with a coreset of itself.

D. TENSOR DECOMPOSITION VIA SEQUENTIALLY
TRUNCATED CORESETS

We now motivate our method for performing a coreset-
based Tensor decomposition. We first revisit points men-
tioned in Section IIL.B. specifically discussing the advantages
and disadvantages of the Chidori CUR decomposition. As we
note previously, the Chidori CUR Decomposition is efficient
because it only requires processing small subsets of the tensor
— the “Chidori beams” — in order to calculate the mode’s
mapping matrices Mz, . However, this may also lead to a
significantly worse approximation quality for the decompo-
sition, in the event that the randomly chosen subsets are not
well representative of the entire tensor X, or otherwise for
decomposing tensors that are highly heterogeneous in nature.
When approximation quality is a priority for both randomized
and deterministic methods, it may be more prudent to use
a method that does pass over all elements of the tensor,
but preferably only once if computational efficiency is also
a priority. These decompositions can provide significantly
more representative subsets of the data while still maintaining
excellent computational efficiency.

With this focus in mind, in order to provide a good bal-
ance between approximation error and efficiency, we instead
consider a method inspired by ST-HOSVD that utilizes se-
quentially truncated coresets to perform the decomposition.
Like ST-HOSVD, for each nth mode of the tensor, we would
learn the mapping matrix Mz, and then replace the tensor
with a truncated tensor, thus significantly decreasing the com-
plexity of calculating Mz, for all remaining modes. However,
whereas ST-HOSVD replaces the tensor with the PCs of the
mode, we instead replace the tensor with the nth mode’s
coreset. These methods are closely connected by the fact that
the coresets are trying to best preserve the PCs of the tensor,
as evidence by the discrepancy cost in (12) and (13).

We now discuss details of our method’s implementation to
assist understanding the pseudocode provided in Algorithm
4. The factorization of the nth mode is initialized by selecting
a subset Z,,, which as we mentioned in Section VI.C is in
general O(D,,) for random subsets or O(D2) for determin-
istic subsets. We then compute the pairwise inner products
between the subset and the full set, given by the matrix Pz,
= (X(w)z, X{,) € REPr within which the submatrix

Pi,.z)=Pz)¢z) € RER: provides the pairwise inner
products within the subset. With both of these matrices, we
can obtain the kernels of embeddings P(Z 1) € RRxXRa
and P$? 1p, € R to perform NNLS and learn the coreset
weights w, € Rk, Arranging w,, in the diagonal matrix W,

€ RR*R: the approximation in (9) given by Mz, (X)z,
can be welghted via Mz, W, 1 W, (X (n))Z,» in Which case
the mapping matrix (accounting for weights) is given by Mz,

S PI P(I ) W1 € RP*R: and the weighted coreset is

9
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Fig. 1. Visualization of the tensor coreset decomposition
(TCD) applied to a 3rd-order tensor X. The core tensor C
is a weighted subtensor (coreset) of X.

given by W, (X(,))z,. Thus with the weights calculated, we
compute the mapping matrix Mz, then truncate the nth mode
by replacing it with the coreset W, (X,))z,, and finally un-
matricize the tensor so that the entire process can be repeated
for the remaining modes. Fig. 1 visualizes the tensor coreset
decomposition (TCD).

After truncating over all modes, the resulting coreset core
tensor C = X7 X1 Wy X5 ... Xy Wy is a subtensor
X7 weighted on each nth mode by weight matrix W,,, and
serves as a compressed form of X analogous to the principal
component tensor G from HOSVD. The weights W, are a
key differentiator from other methods like the Chidori CUR
decomposition, and the use of W,, within this sequentially
method can allow for an excellent approximation to the
HOSVD core tensor G, and by extension, the tensor X.

The method described in Algorithm 4 assumes that X is
an asymmetric tensor, and does not preserve symmetry in the
decomposition if X is symmetric across several modes. To
retain symmetry in the decomposition in the event that X is
symmetric, we simply compute only one factor matrix Mz,
for one of the symmetric modes 7, and reuse Mz, for all other
modes symmetric to 7, while truncating those other modes the
same way X,y — W, (X(,))z,

In the next subsection, we compare our so called Tensor
Coreset Decomposition (TCD) to the Chidori CUR decom-
position from a computational complexity standpoint.

E. COMPUTATIONAL COMPLEXITY OF TCD

In this section, we discuss the complexities of TCD with
random (norm sampled) or deterministic (WKH) subsets,
compared to Chidori CUR with random (norm sampled)
subsets. We retain notations such as D" = (an;ll Ry
I1_, 41 D) for sequentially truncated methods like ST-
HOSVD and TCD. For simplicity, we assume that the modes
truncated with these methods are in the ordern = 1,...,N.

We first discuss complexity of Chidori CUR decompo-

sition with random (norm sampled) subsets. The majority
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Algorithm 4: Tensor Coreset Decomposition (TCD)

Input: X € R **Pv (N-mode tensor),
[Ry1,...,Ry] (subset sizes per mode)

Output: X ~ CA X1 Mz, x ... Xy Mgz, , where
C € RRxX.- xRy (coreset tensor),

{Mcz,,...,Mz,} (mapping matrices per mode
— like factor matrices),
Z={Ty,...,Zy} (subset index sets per mode)

for eachmoden =1: N
unfold (matricize) tensor w.r.t . nth mode
X — X(n) S RD"XD" with D = H’”#l D,,

select subset indices Z,, for some f?n rows of Xy,
either randomly (using e.g. norm sampling),
or deterministically (using e.g. greedy WKH).
compute inner products of full mode with subset:
PI = (X(n)) X(n) S RR"XD"
also within Pz, the submatrix Pz, 7 € RF>R

using the kernels P"2 T € RR: xR,

and P$> 1), € RR , perform kernel NNLS

to learn coreset weights w € RF,
arrange weights into diagonal matrix W,, = diag(w)
compute and store nth mode’s mapping matrix:
Mz, =P. P . W, e R
replace unfolded tensor with weighted coreset
X(n) - W, (X(,,))I € REXDn
replace nth dimension D,, — R,
un-matricize the tensor X,y — X
end for
C— X

of complexity is in calculation of the norms of elements
across the N modes of the original tensor X, each mode of
complexity O(D,D,). These are then followed by the sig-
nificantly cheaper calculations of the mapping matrices per
each Chidori Beam, of complex1ty O(R,D,T,+R? +R?D,),
where we denote T}, = Hm 1 R, The total complexity is thus:

m#n
O(XN_ (DuD, + R,D,T, + R + R2D,,)).

We then consider the complexity of TCD with random
(norm sampled) subsets, which we refer to as TCD-R. The
majority of complexity from each nth mode’s truncation
occurs from the norm sampling of complexity O(D, D("))

Table 2. computational complexities of TCD and similar
methods described in Sections II and III. For truncated meth-

ods, we assume that the truncation orderisn =1,...,N.
ST-HOSVD o ( >V, min(D2D{", (D,(,"))QD,,)>
Chidori CUR | O (2{;1 (DuDy + RuDu T, + RS + R,%D,,))
TCDR | O(SN, ((Ra + DD + RS + R2D,) )
TCD-D o( N (02D + R3D, + R,%Dn))
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and the calculation of inner products between the subset
and full set Pz, of complexity O(knDnDS,")). These are
then used by the significantly cheaper calculations of the
coreset weights of complexity O(i@g), and calculation of the
mapping matrices Mz, of complexity O(kﬁDn) (re-using

P(Iln,z,) from the coreset weights). The total complexity is

thus: O(Zilvzl (R, + 1)Dnl~),(ln) + R + R,%Dn))

Lastly, we consider the complexity of TCD with determin-
istic (WKH) subsets, which we refer to as TCD-D. The ma-
jority of complexity from each nth mode’s truncation occurs
from requiring calculation of P, = X, XE;) € RP*Dnthe
pairwise inner products over the entire nth mode, of complex-
ity O(D2DS"). This is followed by the WKH subset selection
of complexity O(R3D,), which yields indices 7, and weights
w,,, along with the significantly cheaper calculations of the
mapping matrices Mz, of complexity O(R2D,) (where we
can also re-use P(_Ii ) from the WKH). The total complexity
is thus: O (ZnN:l (D,%DS,") +R3D, + kZDn)) :

Table 2 provides complexities of these methods. We note
that for symmetric tensors, all methods are capable of exploit-
ing symmetry by re-using factor matrices across symmetric
modes, as described in Section IV.D. In this case, the summa-
tion O(Z,,N:;L( .)) is truncated to only the number of unique
modes (i.e., symmetric modes are only counted once).

In the next section, we experimentally test the TCD meth-
ods vs other efficient Tucker decomposition methods for ap-
proximating the HOSVD. We first demonstrate performance
of methods on simulated data under various generative condi-
tions. Later, we demonstrate these methods on real fMRI data
in the form of functional connectivity maps (FNCs).

V. NUMERICAL EXPERIMENTS

We first introduce the performance measures used to com-
pare the Tensor decomposition methods. Denoting a method’s
approximated tensor by X, the relative approximation error
of X is given by:

err(X) = ‘ F c[000)

121

As the methods discussed in this paper are often used to ap-
proximate the HOSVD or ST-HOSVD, we also use a measure
of distance between factors of the ST-HOSVD and factors
of a method’s estimated HOSVD. We introduce this new
measure as ““HOSVD distance”, and note that its formula-
tion utilizes the inter-symbol-interference (IST) [111] used to
evaluate the performance of blind source separation methods.
Defining HOSVD distance, we denote A = {A4,..., Ay}
as the N factor matrices for the ‘“true” ST-HOSVD, and
denote A = {A,..., Ay} as a method’s corresponding
estimated HOSVD factor matrices, obtained by converting a
method’s factorization into a HOSVD via Algorithm 3. Then
the HOSVD distance between a method’s estimated HOSVD
factors \A and the true factors A is given by:
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HOSVD distance (\A, A ZISI ATA (16)

Where the IST of a matrix U € ]RN *N measures how close
the matrix G is to a permuted diagonal matrix (a performance
measure invariant to sign and permutation ambiguities of the
factors), and is given by:

N N

1 _N@eml
ISI(U) = IN(N — 1) [2 (mzz:l max, (|(U) ) !
n,m |
S oy V) 00

Finally, we also measure the CPU-time of the methods. For
all performance evaluations done in Sections V and VI, we
use the computational resources provided by the UMBC High
Performance Computing Facility (HPCF), thus CPU-time is
reflective of HPCF’s capabilities.

A. EXPERIMENTS WITH SIMULATED DATA

Our generative model of a tensor X is as follows. For a
common dimensionality across the modes D, we model a
tensor X' € RP*--*D ag the sum of a low-rank signal tensor
X € RP*--*D and a full-rank noise tensor Xy € RP*---*D:

||XS ||1=
Tl o
where 7 is the signal to noise ratio (SNR) of X'.

The signal tensor X is given in the form Xy = G x; A,
Xo ... Xy Ay, where G € RF*XR ig 3 core tensor for some
“true core size” R, and A, € RP*R forn = 1,... N are
the factor matrices. The core tensor G, factor matrices A,,,
and noise tensor Xy are all randomly generated with entries
sampled from the standard Gaussian distribution.

We consider two sets of simulated experiments: one where
the generative model follows a CPD model, and one where
the generative model follows a Tucker model (respectively
referred to in our experiments as “CPD model data” or
“Tucker model data’). These experiments use the same con-
ditions described above except for generation of core tensor
G: the Tucker experiments generate all entries of G from the
standard Gaussian distribution, whereas the CPD experiments
specify G as a superdiagonal core tensor wherein all (G) (i)
for i = 1,...,R are drawn from the standard Gaussian
distribution, and all other entries of G equal 0.

As our paper focuses on subset-based methods for a
Tucker decomposition, particularly those that approximate
the HOSVD, we limit our results to variations of these meth-
ods. We thus include ST-HOSVD [89], Chidori CUR [79],
[82], RST-CUR [80], a random-projection variant of HOSVD
called RP-HOSVD [C] [83], [112], and another row-based
tensor decomposition like those discussed in Section IIL.B.,
called RB-HOSVD [101]. While we also discuss the Fiber
CUR [81] in Section III.B, we do not include Fiber CUR in

X =Xs+
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our experiments as we observed poor performance compared
to the other algorithms.

All of the methods and experiments are coded in MAT-
LAB. According to the tested methods’ respective papers, we
use norm sampling to obtain random row subsets of the tensor
unfoldings X(n) for Chidori CUR and RB-HOSVD, and we
use uniform sampling to to obtain random column subsets
of X,y for RST-CUR. Our implementation of ST-HOSVD
is from the tensor toolbox version 3.6 [113], and all other
methods are coded via details given in their respective papers.

To simplify the experiments, we perform all of these meth-
ods with a common “estimated core size” R that is shared
across the modes of the estimated tensor. The decomposition
is then converted to an estimated HOSVD decomposition that
also uses the same R for all modes of the tensor. Therefore,
the true HOSVD factor matrices are given by A,, € R?*® and
the estimated factor matrices can be given by A, € RP*R for
n=1,...,N,in which case the U matrices in (17) are of size
R x R. Note here that the true HOSVD is performed for some
choice of estimated core size R that may differ from the true
core size R of Xs.

Under the generative model defined in (18), we vary these
qualities of the model to test the methods’ performances:
estimated core size f?, the true core sizes R, the dimensionality
of the modes (mode size) D, the SNR of the simulated data
tensor 7, and the number of modes N. All of our experiments
use these default parameters: R = 4, R= 4,n=10,N =3,
and D = 200. Given the memory requirements of extremely
large tensors, in the experiment that varies the number of
modes, we restrict N to be either 3 or 4 modes and we use
a smaller default mode size of D = 80.

For all plots where we display CPU time performance, we
note that these plots were essentially identical for the CPD
and Tucker modeled data, thus performance was effectively
independent of the generative model’s core tensor structure.
Therefore, we only show the plot for the CPD model data.
Additionally, we do not show figures for CPU time vs. the
true core size R or the SNR 7, as these experiments feature
CPU times that are constant with respect to these variables.

Fig. 2 plots the methods’ CPU time performance with
respect to the mode size D. In this experiment ST-HOSVD
is the slowest of the methods, followed by Chidori CUR, RP-
HOSVD, RST-CUR, TCD-D, and TCD-R. With the default
estimated core size R = 4, we note that TCD-D can maintain
fast times in the event that R is small, which works well
for tensors that have a reasonably low ranks. We also note
that Chidori CUR’s slower performance is mainly due to the
norm sampling over the entire tensor for each nth mode,
in contrast to sampling over truncated tensors such as done
in other methods. Chidori CUR is significantly faster when
uniform sampling is done in place of norm sampling, with an
accompanying degree of loss in approximation performance.

Fig. 3 plots the methods’ CPU time performance with
respect to the estimated core size R. TCD-D faces larger
complexity with higher R, whereas all other methods have
complexity that only increases slightly with increasing R.

12

This may motivate other methods besides TCD-D for when
CPU time is a priority and larger R are desired. However,
TCD-D is still unique among these methods for deterministi-
cally selecting elements from the modes. Thus, compared to
these otherwise predominately randomized methods, TCD-D
is perhaps unique in its utility for feature selection.

Fig. 4 plots the methods’ CPU time performance with
respect to the number of modes N, for N = 3and N = 4.
TCD-D and TCD-R are among the fastest methods in this
experiment, and interestingly, TCD-D is the fastest despite
being deterministic. We observe that this is due to how MAT-
LAB’s efficiency varies with respect to different mathemati-
cal operations: MATLAB is especially efficient in computing
the Gram matrix X(,,)X(Tn) € RP*P 5o much so that it can
actually be more efficient to compute X(,,)X(Tn) than even the
fastest methods for calculating norms of rows of X, which
is required of the norm sampling approaches like TCD-R,
Chidori CUR, and RB-HOSVD. Depending on the efficiency
of the calculations, the programming environment used and
the dimensions of the tensor, these methods may benefit by

’
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using X(n)X(Tn) to calculate the norms. At the same time, this
also demonstrates the efficiency of the WKH procedure in
TCD-D for smaller R, since it does not lead to significant
increases in complexity above the other methods.

Fig. 5 plots the methods’ relative error performance with
respect to the estimated core size R. All methods’ decomposi-
tions exponentially approach the true tensor in approximation
quality with diminishing returns in R. Performance of TCD-R
in this experiment is comparable to Chidori CUR, with these
methods only beaten by ST-HOSVD and TCD-D for lower R.

Fig. 6 plots the methods’ relative error performance with
respect to the true core size R. Given a fixed estimated core
size R = 4, all decompositions perform worse as the true core
size R increases, where with R > 4 the decompositions are
effectively underparametrizing and/or undersampling their
model of the tensor. Like in Fig. 5, in this experiment TCD-D
has an estimation performance that is only slightly worse than
ST-HOSVD. After these methods, TCD-R has the third best
performance, exceeding that of Chidori CUR for larger R.

Fig. 7 plots the methods’ relative error performance with
respect to the mode size D. These performances are mostly
constant in D with the CPD data (left), but for the Tucker
data, some methods like Chidori CUR and TCD-R feature
slightly worse performances with larger D, up to diminishing
returns. Most of the randomized methods have much more
comparable relative errors for the CPD model data, with
significantly higher spread with the Tucker model data.

Fig. 8 plots the methods’ relative error performance with
respect to the signal to noise ratio (SNR) 7. Subject to di-
minishing returns, all methods perform significantly better in
approximating the tensor with higher SNR, and TCD-D and
TCD-R appear to provide some of the better approximations
with lower SNR values. With higher SNR values, TCD-D’s
performance is comparable to ST-HOSVD and TCD-R’s per-
formance is comparable to Chidori CUR.

Fig. 9 plots the methods’ relative error performance with
respect to the number of modes N, for N = 3 and N = 4.
An apparent disadvantage to Chidori CUR and TCD-R occurs
when N = 4, in which case these methods’ performances
appear to suffer considerably, whereas all other methods are
not as much affected by change of N.

We now discuss the methods’ performances in terms of the
HOSVD distance measure defined in (17). We note that we
compare each algorithm’s estimated HOSVD factors to the
“true” factors estimated by ST-HOSVD for the same choice
of k, thus we don’t include ST-HOSVD in these plots since it
has a HOSVD distance of 0 with itself.

Fig. 10 plots the methods” HOSVD distances with respect
to the estimated core size R. All plots feature a clear U-shaped
performance curve where the best performance generally oc-
curs at R = 6, slightly higher than the true core size R = 4.
Interestingly, these U-shaped HOSVD distance vs. R plots are
notably different in shape from the monotonically decreas-
ing error vs. R plots in Fig. 5. While the relative error of
the decompositions only decreases when the decompositions
model allows for more complexity (via increasing R), the
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HOSVD distance represents more of a measure of parameter
estimation, where the desired parameters are the true ST-
HOSVD factors, and are best estimated when the estimated
number of factors R is close to the true number R.

Fig. 11 plots the methods” HOSVD distances with respect
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to the true core size R. Whereas Fig. 10 shows a U-shaped
curve with varying R, Fig. 11 shows that increasing R strictly
worsens the methods’ performances as R < R for a fixed
R = 4. All methods perform poorly when R is too large for
the Tucker model data. However with the CPD model data,
TCD-D performs significantly better than all other methods,
especially with large R.

Fig. 12 plots the methods” HOSVD distances with respect
to the mode size D. Like in Fig. 7, performances are mostly
constant in D with the CPD data (left), but for the Tucker
data, all methods except TCD-D feature slightly worse per-
formances with larger D, whereas TCD-D actually features
slightly better performances for larger D, up to diminishing
returns. We suspect the reason for TCD-D actually doing
better for larger D is that as all other variables are fixed,
the tensor is generated the same with different D but there
are just more elements available to consider subsets over, in
which case TCD-D’s deterministic WKH has more options
of a subset that better minimize the discrepancy measure, and
thus better match the PCs of the tensor.

Fig. 13 plots the methods” HOSVD distances with respect
to the SNR 7. Like in Fig. 8, subject to diminishing returns, all
methods perform significantly better with higher SNR, with
TCD-R’s performance slightly better than Chidori CUR but
typically worse than RST-CUR and RP-HOSVD. Whereas
in Fig. 8 all methods’ relative errors nearly converge to 0
with increased SNR, TCD-D’ HOSVD distance in Fig. 13
converges significantly faster to O with increased SNR than
the other methods’ HOSVD distances.

Fig. 14 plots the methods’ HOSVD distances with respect
to the number of modes N, for N = 3 and N = 4. Like in
Fig. 9, TCD-R Chidori CUR perform worse with N = 4 with
the Tucker model data, whereas all other methods’ HOSVD
distances are not as much affected by N.

To summarize these experiments, we observe that TCD-
R is among the most efficient of these methods, and TCD-
D is also efficient when R is small. In most experiments,
TCD-R yields comparatively better approximation error and
HOSVD distance performance vs. other methods with similar
time complexities. Furthermore, TCD-D’s performance is
typically significantly better than all other tested methods,
and even competes closely to that of ST-HOSVD despite
using only a subset of the tensor’s elements.

In the next section, we perform these methods on real data
in the form of fMRI functional connectivity matrices (FNCs),
where we visually demonstrate performance of these methods
and also demonstrate the use of TCD-D for feature selection.

B. EXPERIMENT WITH FMRI DATA

Our experiments use resting-state fMRI data from the
bipolar-schizophrenia network on intermediate phenotypes
(B-SNIP) [114], [115], where our data tensor X was obtained
from the acquisition and preprocessing steps described in
[116], [117]. The main goals of these experiments are to:
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« Demonstrate performance of the tensor decomposition
methods on real fMRI data in terms of estimation quality
and computational efficiency.

o Demonstrate TCD-D’s ability (unique among these
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methods) to perform feature selection within modes,
selecting well-representative elements of the data. In
our case, these elements are functional networks (FNs)
which are typically used to characterize neurological
phenomenon.

We now detail how the data tensor X was formed.
The fMRI dataset includes 176 healthy control and 176
schizophrenia patients for a total of K = 352 subjects. The
data was first preprocessed and then analyzed via constrained
independent vector analysis (cIVA) to extract meaningful
latent factors for describing the data. From each subject’s
data, 53 spatial factors were extracted which correspond to
biologically important functional networks (FNs). These fac-
tors are representative of seven different functional domains:
subcortical (SC, 5 FNs), auditory (AUD, 2 FNs), sensorimo-
tor (MOT, 9 FNs), visual (VIS, 9 FNs), cognitive control (CC,
17 FNs), default mode (DMN, 7 FNs) and cerebellar (CB, 4
FNs). Corresponding to each of these 53 spatial factors are
time course factors, representing amplitudes of the networks
at each point of measurement, and the correlations between
these time courses are particularly useful for representing
relationships between the networks. All pairwise Pearson cor-
relations between any two of the 53 networks’ time courses
is represented in a symmetric 53 x 53 matrix called a func-
tional network connectivity (FNC) matrix. Our experiment
constructs these FNC matrices across each of 352 subjects,
and forms an FNC tensor X' € R®3X53%352,

A key factor in dealing with the data tensor is understand-
ing its effective n-ranks given how the tensor was obtained.
Our FNC data was extracted from functional networks that
are expected to be maximally statistically independent from
one another, being extracted from cIVA which maximizes
statistical independence between networks. Therefore, we
expect low correlation between the spatial components of
different networks, and this can also result in time courses
that demonstrate low correlation between disparate networks.
This results in a tensor with effectively high n-ranks, thus
decompositions of FNC tensors like X require higher num-
bers of factors R, to adequately approximate the FNCs. This

Table 3. Performances of methods on the original FNC tensor
X € RO3%53x352 averaged over 1000 independent runs over
the data. Best performances per measure are bolded.

crgre | e | Home [ e
ST-HOSVD 0.026 0.500 0 0
TCD-D 0.025 0.650 0.128 0
TCD-R 0.005 0.686 0.130 0.145
Chidori CUR 0.007 0.687 0.133 0.150
RST-CUR 0.002 0.691 0.132 0.169
RP-HOSVD 0.006 0.689 0.207 0.169
RB-HOSVD 0.015 0.940 0.148 0.163
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presents a challenge for the decomposition methods to ap-
proximate the tensor with relatively fewer factors, allowing
us to better magnify and compare the methods’ estimation
capabilities.

Due to the higher n-ranks of the FNC tensor, we test
the algorithms on two different forms of the FNC tensor:
one being the original FNC tensor, and the other being the
elementwise squaring of the FNC tensor. The elementwise
squaring provides R-squared values representing the degree
of association between the network time courses. Taking the
elementwise square of these FNCs effectively increases the
spread of the singular values of each mode unfolding X ,),
allowing for better approximation with lower-rank models
while still maintaining an interpretable decomposition.

For our experiments, we did a prior exploratory analysis
over several candidates of estimated numbers of factors R,,,
and ultimately implemented [f?l,iﬁ,f?g] = [20, 20, 352] for
both forms of the tensor. The reasoning for these choice of
R, were as follows: to better exemplify the approximation
quality differences between the methods, to reasonably ap-
proximate the FNCs without too many factors, and to provide
a more parsimonious model which TCD-D can then use to
select networks whose R-squared values are “well represen-
tative” of all R-squared values in X'. These 20 networks could
then be interpreted as particularly informative for approxi-
mating the relationships between any of the 53 networks.

We use the same tensor decomposition methods in Section
V.A to decompose our FNC tensor X. In order to also exploit
the symmetry of X', we modify each of these methods to use
the same symmetry exploiting process described at the end of
Section IV.D. Therefore, since the first and second modes are
symmetric (pertaining to the 53 networks), the same factor
matrix is used for both of these modes, and the core tensor is
thus also symmetric with respect to these modes.

As done in the previous section, our experiments measure
performance via CPU time, relative error, and HOSVD dis-
tance. Additionally, we implement a measure of how con-
sistent the methods’ approximated HOSVD decompositions

Table 4. Performances of methods on the elementwise
squared FNC tensor X' € R53%53x352 averaged over 1000
independent runs over the data. Best performances per mea-
sure are bolded.

crime | e [ HOSND [ o
ST-HOSVD 0.026 0.384 0 0
TCD-D 0.025 0.464 0.150 0
TCD-R 0.005 0.514 0.155 0.155
Chidori CUR 0.007 0.520 0.160 0.157
RST-CUR 0.002 0.549 0.156 0.185
RP-HOSVD 0.006 0.528 0.218 0.175
RB-HOSVD 0.015 0.890 0.176 0.183
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are with respect to different runs of the decompositions,
which corresponds to different random subsets per run for
the randomized methods. In defining this measure, we denote
Al ag the approximated HOSVD factors from a mth run of
a decomposition method over the data, and define the set of

the A"l across M runs by the set F = Am, . ,AW] }
Then our measure of “‘cross-distance”, the average distance
between any two runs of a decomposition, is given by:

S —1 HOSVD distance (A1, A4lm])

Cross- mo=1

distance

(F) = — .
19)

This “cross-distance” can be considered a generalization
of the “cross-ISI” measure used to measure distances be-
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tween runs for Blind Source Separation (BSS) methods [118].

Along with using cross-distance to measure the variability
of the randomized methods, we also use cross-distance to
obtain a single run that is the most well representative of all
other runs, for which we may plot the FNCs approximated
by this run to visually compare the average approximation
quality of the methods. The plotted average FNCs were ob-
tained by constructing the most representative run’s approxi-
mate tensor X from its factorization, and then averaging the
approximated subject FNCs across the 352 subjects.

Fig. 15 and Fig. 16 exhibit the average FNCs extracted
from a typical run of each method, on the FNC tensor and
squared FNC tensor respectively. In both forms of the data,
the FNCs typically feature two well-defined blocks on the
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Fig. 15. Plots of the average FNCs obtained by the approximated original FNC tensor 2&: , for each method’s most typical run
(the run with the minimum cross-distance to all other runs). All methods used the ranks [R1, Ro, R3] = [20, 20, 352].
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diagonal. These correspond to the motor (upper block) and
visual (lower block) groups of networks, which feature high
correlation and R-squared values within the groups. Because
of the larger degree of association within these networks, their
larger values in X lead them to be especially important for
approximating X. Viewing the averages of FNCs in Fig. 15,
we observe all methods are able to reasonably approximate at
least one of these blocks, with ST-HOSVD, TCD-D, TCD-R,
Chidori CUR, and RP-HOSVD demonstrating the two well-
defined blocks, and TCD-D and TCD-R having performance
closest to ST-HOSVD. Viewing the average of squared FNCs
in Fig. 16, we note that all methods except for RB-HOSVD
demonstrate two clearly defined blocks, with TCD-D and
TCD-R having performance closest to ST-HOSVD.

Tables 3 and 4 presents each method’s performance
measures on the FNC tensor. All methods provide rela-
tively higher relative errors, as the decomposition ranks
[R1, Rz, R3] = [20,20,352] are perhaps relatively conserva-
tive for the more heterogeneous nature of the FNC tensor.
While in practice we select R, to provide an approximation
quality that is nearly identical to the original tensor, our choice
of lower R, is useful for better magnifying the approximation
capabilities of the methods, which are clearly demonstrated in
the much wider range of their values. ST-HOSVD provides
the best relative error, and TCD-D features a comparatively
similar error while simultaneously identifying representative
networks. Among the more efficient methods, RST-CUR is
the fastest method but has the second worst error and worst
cross-distance, whereas TCD-R is the second fastest method
with the third lowest error, HOSVD distance, and cross-
distance. This demonstrates that TCD-D and TCD-R provide
good performance measures given their time complexities,
and can provide reasonably good approximations to the tensor
with fewer factors Rn.

Additionally, a key distinction between TCD-D and the
other methods is that TCD-D deterministically selects ele-
ments that are well representative of the tensor. Thus, TCD-
D is unique among these methods for the capability of per-
forming feature selection with the tensor data. With this
fMRI dataset, TCD-D deterministically selects a reasonably
“best” subset of the factor networks. We now consider the
interpretation of the TCD-D selected networks. We observed
that several TCD-D selected networks were selected not only
for the 20 selected networks of the original FNC data, but
also the 20 selected networks of the elementwise squared
data, highlighting the importance of these networks (a total
of 14 networks shared between the two forms of the tensor,
corresponding to the indices 5, 8, 9, 12, 15, 17, 23, 24, 27, 28,
33,45,49,51). Table 5 overviews details of these 14 networks
identified over both forms of the data tensor, including their
associated factor index in the FNCs (their index i1 = is in
X)), the region of the brain the network corresponds to, and
the group of networks it associates with.

These identified networks, including regions such as the
thalamus, superior temporal gyrus, superior frontal gyrus, and
posterior cingulate cortex, are significant as they represent
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Table 5. Descriptions of 14 factors selected by TCD-D,
shared between the 20 selected from the original FNC tensor
and the 20 from the elementwise-squared FNC tensor.

Index Region Network Component
subcortical
5 Thalamus (SC)
3 Postcentral | sensorimotor
gyrus (SM)
Left sensorimotor
9 postcentral (SM)
gyrus
Superior .
12 parietal sensorll\;[notor
lobule (SM)
Superior .
15 parietal Sensosrll\iln otor
lobule (SM)
17 Calcarine visual
gyrus (VIS)
Inferior visual
23 otécylﬁitsal (VIS)
24 Lingual visual
gyrus (VIS)
Inferior sensorimotor
27 parietal
lobule (SM)
Superior cognitive
28 frontal control
gyrus (CO)
Inferior sensorimotor
33 parietal
lobule (SM)
Anterior default-mode
45 cingulate network
cortex (DMN))
Posterior default-mode
49 cingulate network
cortex (DMN)
Cerebellar
51 Cerebellar (CB)
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crucial functional "blocks of networks" within the brain.
Each of these networks is associated with specific func-
tional domains, such as sensorimotor (e.g., left postcentral
gyrus, superior parietal lobule), visual (e.g., inferior occipital
gyrus), cognitive control (e.g., inferior parietal lobule), and
the default mode network (e.g., posterior cingulate cortex).
Clinically, these functional networks have been reported as
significant brain regions highly associated with various psy-
chiatric disorders. For instance, the superior frontal gyrus and
posterior cingulate cortex have been identified in previous
research as valuable biomarkers for different psychiatric con-
ditions [116], [119]-[122]. Furthermore, the fact that 14 of
the 20 networks were identified over both forms of the ten-
sor (original FNCs, and elementwise squared FNCs) demon-
strates robustness of the proposed TCD-D method, showing
consistent identification of meaningful functional areas that
are associated with several psychiatric disorders. For exam-
ple, reduced connectivity between the posterior cingulate and
frontal areas in patients with first-episode schizophrenia has
been reported in [123]. The failure of appropriate posterior
cingulate cortex deactivation has been reported as potential
biomarker in traumatic brain injury and mental disorders like
ADHD, autism and schizophrenia [124].

VI. CONCLUSION

This paper presents efficient Tucker decomposition meth-
ods via using a small subtensor as a multilinear basis over the
full data tensor, which we refer to as tensor coreset decom-
positons (TCD). The methods operate by sequentially truncat-
ing the tensor by replacing it with a coreset of elements from
one or more of the tensor’s modes, with the coreset calculated
such that it minimizes a discrepancy between itself and the
HOSVD core tensor: principal components of the tensor’s
unfoldings. This process sub-sequentially estimates mapping
matrices that serve as the decomposition’s factor matrices,
which can also be useful for efficiently approximating the
tensor’s HOSVD.

For quantifying the “representativeness” of a coreset over
the data tensor, we introduced a discrepancy-based measure
that has straightforward connections to the cost function of
HOSVD. We use this measure to develop a new efficient
nonnegative least squares (NNLS) procedure for selecting the
coreset weights, such that we minimize the discrepancy with
respect to a choice of subset.

For decompositions that put greater emphasis on efficiency,
we proposed “TCD-R” which randomly selects the subsets
using norm sampling. For decompositions that place greater
emphasis on approximation quality, and utility of selecting
well representative subsets and for feature selection, we pro-
posed “TCD-D” which uses a deterministic subset selection
scheme based on the method of weighted kernel herding
(WKH). Compared to previous methods, TCD-D is notably
unique for its ability to perform unsupervised feature selec-
tion within the modes of the tensor data.

Finally, we experimentally demonstrate that our methods
generally provide good balances between efficiency, approx-
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imation error quality, and quality of factors when converted to
a HOSVD. Furthermore, we demonstrate on real fMRI FNC
data that TCD-D is able to identify meaningful subsets of
functional networks which are able to well-approximate the
relationships between all networks in the FNC tensor.
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