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It was previously shown that if an experimenter, Alice, puts a massive or charged body in a quantum

spatial superposition, then the presence of a black hole (or more generally any Killing horizon) will

eventually decohere the superposition. This decoherence was identified as resulting from the radiation of

soft photons/gravitons through the horizon, thus suggesting that the global structure of the spacetime is

essential for describing the decoherence. In this paper, we show that the decoherence can alternatively be

described in terms of the local two-point function of the quantum field within Alice’s lab, without any

direct reference to the horizon. From this point of view, the decoherence of Alice’s superposition in the

presence of a black hole arises from the extremely low frequency Hawking quanta present in Alice’s lab.

We explicitly calculate the decoherence occurring in Schwarzschild spacetime in the Unruh vacuum from

the local viewpoint. We then use this viewpoint to elucidate (i) the differences in decoherence effects that

would occur in Schwarzschild spacetime in the Boulware and Hartle-Hawking vacua; (ii) the difference in

decoherence effects that would occur in Minkowski spacetime filled with a thermal bath as compared with

Schwarzschild spacetime; (iii) the lack of decoherence in the spacetime of a static star even though the

vacuum state outside the star is similar in many respects to the Boulware vacuum around a black hole; and

(iv) the requirements on the degrees of freedom of a material body needed to produce a decoherence effect

that mimics that of a black hole.
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I. INTRODUCTION

In quantum mechanics, any interaction of a system with

an “environment” will typically result in decoherence of the

system. This decoherence arises because the environment

responds differently depending on the state of the quantum

system and thereby becomes entangled with the quantum

system. While, in principle, any local “environmental

influences” (i.e. interaction with any degrees of freedom

present within the lab) can be minimized by a sufficiently

controlled experiment, the long-range gravitational fields of

the superposition cannot be perfectly controlled. In princi-

ple, any quantum superposition of gravitational fields can be

“measured” by an external observer—or the environment—

and may give rise to some degree of decoherence. As was

already noted by Feynman in the 1950s [1,2], key insights

into the quantum nature of gravity can be gleaned by

considering gedankenexperiments analyzing the entangle-

ment and decoherence due to the gravitational field of a

massive body. Indeed, such gedankenexperiments have

been the basis of actual proposed tabletop experiments in

quantum gravity to measure the gravitationally mediated

entanglement of two quantum systems [3–21].

In previous work [22,23] (see also [24]), we showed that

a black hole can, in effect, measure the long range fields

of a massive or charged body, resulting in the decoherence

of a quantum superposition of such a body. The precise

mechanism producing this decoherence was found to be

entangling radiation that is emitted by the quantum super-

position into the black hole. To understand this, suppose an

experimenter, Alice, creates a spatial superposition of a

charged or massive body, e.g., by putting it through a

Stern-Gerlach apparatus. Suppose that after keeping this

superposition in place for a time, T, Alice brings the

components of the body together and determines if they

have remained coherent. Even if Alice performs her

experiment in Minkowski spacetime, some entangling
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radiation will be emitted to infinity when the spatial

superposition is created and brought back together.

However, in Minkowski spacetime, the decoherence

resulting from this radiation can be made arbitrarily small

by “opening” and “closing” the superposition in a suffi-

ciently adiabatic manner. Furthermore, in Minkowski

spacetime, the amount of time, T, that she keeps the

superposition open is not relevant to the decoherence

(provided, of course, that she makes all ordinary inter-

actions with the environment negligible). However, as we

showed, this is not the case in the presence of a black hole.

Although the energy radiated into the black hole can be

made arbitrarily small by “opening” and “closing” the

superposition is a sufficiently adiabatic manner, the num-

ber of entangling photons/gravitons radiated into the black

hole increases linearly with total time T that the super-

position is kept “open,” so, eventually, a black hole will

decohere any quantum superposition. This effect occurs

more generally for any Killing horizon, e.g., it also occurs

for a Rindler horizon and a cosmological horizon [23,24].

The analysis of [22–24] strongly suggests that global

aspects of the structure of the spacetime—specifically, the

presence of a horizon—are essential for the decoherence

effect. The main purpose of the present paper is to show

that one can give an alternative, purely local description of

the decoherence in terms of the behavior of the quantum

field within Alice’s lab. From this viewpoint, the

decoherence arises from the behavior of the unperturbed

two-point function of the quantum field in the region

where the superposition was created. In particular, the

decoherence in the presence of a black hole can be

understood as resulting from the extremely low frequency

Hawking radiation that partially penetrates into Alice’s lab

before being reflected back into the black hole by the

effective potential of the black hole. This local viewpoint

will enable us to gain insights into various aspects of the

decoherence process, such as the differences in decoh-

erence that occur in different vacuum states and in different

spacetimes. We will also gain insight into the requirements

on a material body to mimic the decoherence effects of a

black hole.

We note that, very recently, Wilson-Gerow et al. [25] also

have given a local formulation of our decoherence results,

focusing particularly on the Rindler case, i.e., an accelerat-

ing observer in Minkowski spacetime. The methods and

arguments used in [25] are quite different from the ones we

shall give in our analysis below. Nevertheless, there are a

number of significant points of overlap in the results. In

particular, our result Eq. (4.8) relating the decoherence to

the local two-point function of the electric field corresponds

to Eq. (103) of [25].

We also note that in a previous paper [23] we analyzed

the decohering effects of the scattering of Unruh radiation

on a charged superposition in an accelerating laboratory in

Minkowski spacetime. We concluded that this decoherence

was distinct from (and smaller than) the decohering effects

of emission of entangling radiation through the Rindler

horizon. However, in [23] we considered only incoherent

scattering effects of individual Unruh photons. We did not

consider the coherent effects of the presence of a large

number of Unruh photons of frequency ω ∼ 1=T j 1=a,

where a denotes the acceleration of the laboratory. As we

shall see in the present paper, the presence of these very low

frequency photons can be viewed as stimulating the

emission of entangling radiation from the superposition.

Thus, the decoherence effect in Rindler spacetime is, in

fact, intimately related to the presence of very low

frequency Unruh radiation in the Minkowski vacuum.

Similarly, the decoherence effect in a black hole spacetime

is intimately related to the presence of very low frequency

Hawking radiation in the Unruh vacuum.

Our local reformulation of the decoherence makes

manifest that one can interpret the decoherence of Alice’s

superposition in terms of the interaction of Alice’s particle

with the local state of the quantum field in her lab. It should

be emphasized that the thermal nature of the state is, by

itself, insufficient to account for this effect [23,25].

In particular, for the decoherence in the Unruh vacuum

in the presence of a black hole, it is essential that there is an

extremely large reservoir of “soft” Hawking quanta in the

Unruh vacuum as compared with an ordinary inertial

thermal bath in Minkowski spacetime at the same temper-

ature. Furthermore, in the Boulware vacuum in a black hole

spacetime—which is the ground state with respect to the

timelike Killing field and thus has no particles—Alice’s

superposition still spontaneously emits entangling soft

photons/gravitons into the black hole, but the number of

entangling particles grows only logarithmically with time.

The Unruh vacuum corresponds to a thermal population

whose density of states diverges at low frequencies. The

presence of these low-frequency quanta stimulate the

emission of entangling soft radiation into the horizon, so

that the number of entangling soft photons/gravitons grows

linearly in time.

Our local reformulation of Alice’s decoherence also

allows one to also consider what happens when one replaces

the black hole by a body without a horizon. It is instructive

to consider the case where Alice’s lab is in the spacetime

outside of a static, spherical star rather than a black hole but

we do not consider any internal degrees of freedom of the

matter composing the star, i.e., we consider only the effect

of replacing the spacetime geometry of a black hole with the

spacetime geometry of a star. If the quantum field is in its

stationary ground state in the spacetime of the star, then the

two-point function of the quantum field in Alice’s lab

should look very much like the Boulware vacuum in

Schwarzschild spacetime with respect to the incoming

modes from infinity. However, the “white hole incoming
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modes” of Schwarzschild will be entirely absent for the star.

These white hole modes are responsible for the decoherence

effects that grow with T in Schwarzschild, so a similar

decoherence will not occur for the star. Even if the quantum

field is in a thermal state in the spacetime of the static star,

there will be no decoherence effects that grow with T. Thus,

the presence of a horizon is essential for the kind of

decoherence obtained for a Schwarzschild black hole.

Nevertheless, one can get decoherence without a horizon

if one has a material body with internal degrees of freedom

that interact electromagnetically and/or gravitationally with

the particle in Alice’s lab. In this situation, the interaction is

now mediated by the long-range Couloumbic/Newtonian

field of the superposition without any emission of radiation,

analogous to the gedankenexperiment [26,27] in flat

spacetime where Alice and Bob both perform their experi-

ments adiabatically and in causal contact with one another.

As we shall show, the material body will mimic the

decoherence effects of the black hole if, at very low

frequencies, the thermal fluctuations of its electric dipole

moment and/or mass quadrupole moment agree with black

hole case [see Eqs. (4.48) and (4.49) below]. This issue has

recently been investigated by Biggs and Maldacena [28]. In

order for a body of size comparable to that of a black hole to

be able to absorb and emit low frequency electromagnetic

or gravitational waves as efficiently as the black hole, a

conducting or gravitating body must have a very large

resistance or viscosity. There does not appear to be any

difficulty, in principle, in achieving this in the electromag-

netic case [28]. However, some extraordinary physical

properties of matter would be required to mimic the

quantum gravitational decoherence effect [28].

In Sec. II, we review our previous derivation of

decoherence in the presence of a horizon. In Sec. III, we

provide a local reformulation of this decoherence in terms

of the two-point function of the quantum field in Alice’s

laboratory over the duration of her experiment. In Sec. IV,

we compute the decoherence in the Unruh vacuum in

Schwarzschild using our local formulation, which requires

the computation of the two-point function of the electric

field along the worldline of Alice’s lab. Finally, in Sec. V,

we compute the decoherence for different vacua in

Schwarschild and in different spacetimes, including a brief

discussion of the decoherence due to entanglement with an

ordinary material body.

Unless otherwise stated, we will work in Planck units

where G ¼ c ¼ ℏ ¼ kB ¼ 1 and, in electromagnetic for-

mulas, we also put ϵ0 ¼ 1. We will generally follow the

notational conventions of [29]. In particular, abstract

spacetime indices will be denoted with lowercase latin

indices from the early alphabet (a; b; c…). Spacetime

coordinate components will be denoted with greek indices.

Spatial coordinates and components will be denoted with

latin indices from the middle alphabet (i; j; k;…).

II. DECOHERENCE OF A QUANTUM

SUPERPOSITION DUE TO RADIATION

In this section we briefly review the analysis of

decoherence due to radiation through a Killing horizon

previously given in [22,23]. We will focus on the electro-

magnetic case and merely state the corresponding results in

the gravitational case.

An experimenter, Alice, in a stationary lab in a stationary

spacetime ðM ; gabÞ controls a charged particle
1
which is

initially held stationary in her lab. The particle is put

through a Stern-Gerlach apparatus over a time T1 so that at

the end of this process its quantum state is of the form

jψi ¼ 1
ffiffiffi

2
p ðjψ1i þ jψ2iÞ; ð2:1Þ

where jψ1i and jψ2i are the spatially separated, normalized

states of the particle after passing through the Stern-Gerlach

apparatus. Alice maintains this stationary superposition for

a (proper) time T, and she subsequently recombines her

particle over a time T2 where we assume that T k T1; T2.

The recombined particle is then kept stationary. We now

analyze the decoherence of Alice’s particle due to emission

of entangling electromagnetic radiation sourced by Alice’s

superposition.

We assume that jψ1i and jψ2i are sufficiently spatially

separated that hψ1j jajψ2i ¼ 0 and we further assume that

the fluctuations of the charge current ja in states jψ1i and
jψ2i are negligible compared with their expected values.

We may then treat the charge-current of each component of

the superposition as a c-number source in Maxwell’s

equations. Thus, if Alice’s particle is in state jψni for

n ¼ 1, 2, then the electromagnetic field operator is given

by [30]

An;a ¼ Ain
a þ Gret

a ðjnÞ1; ð2:2Þ

where Ain
a is the unperturbed (“in”) field operator and

Gret
a ðjnÞ is the retarded solution associated to the classical

charge-current jan ¼ hψnjjajψni. The “out” radiative field at
late times is obtained by subtracting the final Coulomb

field Ca of the recombined particle from An;a

Aout
n;a ¼ An;a − Ca1;

¼ Ain
n;a þAn;a1; ð2:3Þ

where

1
The “particle” need not be “elementary,” e.g., it could be a

nanoparticle. All that is required is that the degrees of freedom of
the particle apart from its center of mass may be neglected.
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An;a ≡ Gret
a ðjnÞ − Ca: ð2:4Þ

We assume that the initial state of the quantum electro-

magnetic field is some “vacuum state” (i.e., a pure, quasi-

free state) jΩi that is invariant under the time translation

symmetries of the spacetime. The unperturbed field oper-

ator Ain on the Fock space, FðH inÞ, associated with jΩi
can be expressed in terms of annihilation and creation

operators on FðH inÞ as

Ain
a ðfaÞ ¼ iaðKΔðfÞÞ − ia†ðKΔðfÞÞ; ð2:5Þ

where fa is a divergence-free
2
test vector field and ΔðfÞ is

the advanced minus retarded solution to Maxwell’s equa-

tion with source fa

½ΔðfÞ�aðxÞ ¼
Z

M

ffiffiffiffiffiffi

−g
p

d4x0Δaa0ðx; x0Þfa
0ðx0Þ; ð2:6Þ

where Δaa0ðx; x0Þ is the advanced minus retarded Greens

function. Here K is the map that takes classical solutions

into the corresponding one-particle states in the Fock space

defined by jΩi.
As can be seen from Eq. (2.3), the “out” state corre-

sponding to the “in” vacuum jΩi has field correlation

functions at late times that are obtained from the vacuum

correlation functions by shifting the field operator by a

multiple of the identity operator. It follows that if Alice’s

particle is in state jψni, then the “out” state of the

electromagnetic field will be given by the coherent state

jΨni ¼ e−
1

2
kKAnk2 exp½a†ðKAnÞ�jΩi; ð2:7Þ

where, for notational simplicity, we drop the spacetime

index “a” from An;a, Eq. (2.4), here and elsewhere in the

remainder of this section. The norm kKAnk appearing in

Eq. (2.7) is taken in the one-particle Hilbert space of the

Fock space of jΩi.
The joint quantum state of Alice’s particle together

with the emitted electromagnetic radiation at late times

is given by

1
ffiffiffi

2
p ðjψ1i ⊗ jΨ1i þ jψ2i ⊗ jΨ2iÞ: ð2:8Þ

Thus, the decoherence of Alice’s particle due to the

emission of electromagnetic radiation is then given by

DAlice ¼ 1 − jhΨ1jΨ2ij: ð2:9Þ

The magnitude of the inner product of the coherent states

jΨ1i and jΨ2i is computed to be

jhΨ1jΨ2ij ¼ exp

�

−
1

2
kKðA1 −A2Þk2

�

; ð2:10Þ

where KðA1 −A2Þ denotes the one-particle state associ-

ated with late time classical solution

A1 −A2 ¼ Gretðj1 − j2Þ: ð2:11Þ

But kKðA1 −A2Þk2 is equal to the expected number of

photons, hNi, in the coherent state associated with the late

time classical solution A1 −A2 sourced by j1 − j2

hNi≡ kKðA1 −A2Þk2 ¼ kKGretðj1 − j2Þk2: ð2:12Þ

Thus, we have

D ¼ 1 − exp

�

−
1

2
hNi

�

: ð2:13Þ

We shall refer to hNi as the expected number of entangling

photons. If the expected number of entangling photons is

significantly bigger than 1, then Alice’s superposition will

be completely decohered.

Thus, we see that to compute the decoherence of a

superposition created by Alice under the assumptions

stated above, we proceed as follows:

(1) We compute the expected currents j1 and j2 of the

components of Alice’s superposition.

(2) We compute the classical retarded solution Gretðj1 −
j2Þ sourced by the difference of these currents.

(3) We compute the one-particle state KGretðj1 − j2Þ of
this classical solution at late times and its squared

norm kKGretðj1 − j2Þk2. This yields the expected

number of entangling photons, hNi, and thereby the

decoherence, Eq. (2.13). Note that the one-particle

map K depends on the choice of vacuum state jΩi.
The above analysis extends directly to the linearized

quantum gravitational case, where the linearized metric

perturbation hab is treated as a field propagating on a fixed

spacetime background. In the above formulas, we simply

replace Aa with hab and we replace the current ja with the

linearized stress tensor Tab. The expected number of

entangling gravitons is then given by the analog of

Eq. (2.12) and the decoherence is given by Eq. (2.13).

In Minkowski spacetime, we may take the notion of

stationarity to be given by ordinary, inertial time translations

and we may take jΩi to be the Poincaré invariant vacuum. If

a particle of charge q is put in a superposition separated by a

distance d, then we may estimate Gretðj1 − j2Þ near null

infinity using the Larmor formula. The one-particle state

KGretðj1 − j2Þ is the positive frequency part of this solution
with respect to inertial time translations. The norm of this

2
Restriction of the smearing to divergence-free test functions is

necessary and sufficient to eliminate the gauge dependence of
Ain;a (see, e.g., p. 101 of [31]).
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one-particle state is given by the Klein-Gordon norm. The

expected number of entangling photons is thereby estimated

to be [26,27]

hNi ∼ q2d2

min½T1; T2�2
ðMinkowski;EMÞ: ð2:14Þ

Thus, the decoherence does not depend upon T and can be

made arbitrarily small by performing the separation and

recombination of the superposition sufficiently slowly, so

that T1; T2 k qd.
In the analysis of the corresponding gravitational case we

must take into account the fact that conservation of total

stress-energy implies that the center of mass cannot change.

Thus if the component jψ1i of the superposition corre-

sponds to the particle moving to the right, then Alice’s lab

must move a tiny bit to the left to keep the center of mass

unchanged. The upshot is that the leading order contribution

to the retarded solution with source Tab
1

− Tab
2

arises from

quadrupole radiation rather than dipole radiation. The

estimate corresponding to Eq. (2.14) for the number of

entangling gravitons is [26,27]

hNi ∼ m2d4

min½T1; T2�4
ðMinkowski;GRÞ: ð2:15Þ

Again, the decoherence does not depend upon T and can be

made arbitrarily small by performing the separation and

recombination of the superposition sufficiently slowly, so

that T1; T2 k
ffiffiffiffiffiffiffiffiffi

md2
p

.

However, it was shown in [22] that the situation is

drastically different in the presence of a black hole or, more

generally, any Killing horizon [23]. In the case of a black

hole, the relevant vacuum is the “Unruh vacuum” jΩUi. If
T1, T2 are sufficiently large—i.e., if Alice separates and

recombines the particle sufficiently slowly—then the num-

ber of entangling photons/gravitons emitted to infinity will

again be negligible. However, if an initially stationary

source is moved to a new position and held there forever,

the retarded solution will exhibit a “memory effect” on the

horizon [32]. Consequently, it can be seen that if Alice were

to keep her superposition open forever, an infinite number

of soft entangling photons/gravitons would be emitted

through the horizon, in close analogy with the infrared

divergences at infinity that arise in scattering theory (see,

e.g., [33–36]). If Alice closes her superposition after time T,
then the number of entangling photons radiated through the

horizon will be finite but will grow linearly with T. In the

electromagnetic case the number of photons grows as [22]

hNi ∼M3q2d2

D6
T ðblack hole;EMÞ; ð2:16Þ

where M is the mass of the black hole and D is the proper

distance of Alice’s lab from the horizon (and, for simplicity,

we have assumed thatD≳M so that, e.g., the redshift factor

at Alice’s lab is of order unity and can be absorbed in the

“∼”). The analogous computation in the gravitational case
3

yields [22]

hNi ∼M5m2d4

D10
T ðblack hole;GRÞ: ð2:17Þ

More generally, it was shown that in the presence of any

Killing horizon (e.g., a Rindler or cosmological horizon)

the number of entangling soft photons and gravitons

grows linearly in the time T that the superposition is

maintained [23].

The above results were obtained by calculating the

quantum state of the electromagnetic and linearized gravi-

tational fields on the horizon associated with the retarded

solution sourced by the components of Alice’s super-

position. The decoherence of Alice’s particle was attributed

to the emission of entangling photons/gravitons through the

horizon. Thus, it might appear that the global properties of

the spacetime—specifically, the presence of a horizon—are

essential for the description of the decoherence phenome-

non we have just given. However, we will now show that

the decoherence can alternatively be described purely in

terms of the local properties of the unperturbed quantum

field within Alice’s laboratory. This alternative viewpoint

will enable us to compare decoherence phenomena in the

presence of a black hole with decoherence phenomena

occurring when no horizon is present.

III. LOCAL REFORMULATION

OF THE DECOHERENCE

As in the previous section, we first consider the electro-

magnetic case and then state the corresponding results in

the gravitational case.

A local reformulation of the electromagnetic decohe-

rence results of the previous section is obtained from the

following simple observations: First, since j1 ¼ j2 at

late times, the retarded solution Gretðj1 − j2Þ is equal to

−Δðj1 − j2Þ at late times, whereΔ ¼ Gadv −Gret. Thus, we

may replace Gret by −Δ in Eqs. (2.11) and (2.12), and we

no longer have to evaluate these quantities at late times.

Second, we note that it follows immediately from Eq. (2.5)

that for any (divergence-free) test vector field fa, we have

hΩj½Ain
a ðfaÞ�2jΩi ¼ kKΔðfÞk2; ð3:1Þ

where Ain denotes the unperturbed electromagnetic field.

Combining Eq. (3.1) with Eq. (2.12) (with Gret replaced

by −Δ), we obtain

3
In the gravitational case, it will be necessary to have some

additional stress energy present to hold Alice’s lab stationary and
keep her particle components stationary. We neglect any effects
of such additional stress energy.
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hNi ¼ hΩj½Ain
a ðja1 − ja

2
Þ�2jΩi: ð3:2Þ

Thus, we see that the prescription for computing the

decoherence of Alice’s superposition outlined in the points

given in the previous section can be equivalently reformu-

lated as follows:

(1) We compute the expected currents ja
1
and ja

2
of the

components of Alice’s superposition.

(2) We compute the two-point function hΩjAin
a ðxÞ×

Ain
a0ðx0ÞjjΩi of the unperturbed field in the vacuum

state jΩi.
(3) We smear this two-point function in both variables

with the test vector field fa ¼ ja
1
− ja

2
. This yields

the expected number of entangling photons, hNi,
and thereby the decoherence, Eq. (2.13).

The remarkable feature of this reformulation is that it

requires only knowledge of the expected currents and the

unperturbed two-point function of the quantum field in

Alice’s lab, i.e., unlike the previous prescription, we do not

need to calculate anything about the particle content of the

perturbed field at late times. In particular, this explicitly

demonstrates that the decoherence can be viewed as a purely

local phenomenon occurring entirely in Alice’s lab.

The corresponding result in the linearized gravitational

case is

hNi ¼ hΩj½hinabðTab
1

− Tab
2
Þ�2jΩi; ð3:3Þ

where Tab
1

− Tab
2

is the difference in the stress energy of the

components of Alice’s particle (also taking into account the

tiny correlated motion of Alice’s lab that keeps the center of

mass fixed). Again, the calculation of decoherence is seen

to require only a knowledge of the expected stress energy of

the components of Alice’s particle as well as the unper-

turbed two-point function of the quantum field in Alice’s

lab, so the decoherence can be viewed as a purely local

phenomenon occurring entirely in Alice’s lab.

Note that Eqs. (3.2) and (3.3) show that the quantity

hNi—and hence the corresponding decoherence, D , given

by Eq. (2.13)—are determined by the vacuum fluctuations

of the quantum field smeared into the difference of the

sources in Alice’s lab.

In the next section, we recompute the black hole

decoherence Eq. (2.16) using our local reformulation.

This will enable us to gain further insights into the nature

of the decoherence in the presence of a black hole and to

compare it with cases where no horizon is present.

IV. LOCAL CALCULATION

OF THE DECOHERENCE IN THE UNRUH

VACUUM AROUND A SCHWARZSCHILD

BLACK HOLE

We now compute the decoherence of Alice’s particle in

the presence of a Schwarzschild black hole by the methods

of the previous section. We will focus upon the electro-

magnetic case and merely comment briefly on the linear-

ized gravitational case near the end of this section.

If we neglect the spatial extent of the particle compo-

nents, then we have

ja
1
ðt; xiÞ ≈ q

ffiffiffiffiffiffi

−g
p δð3Þ½xi − Xi

1
ðtÞ�ua

1

dτ1

dt
ð4:1Þ

and similarly for ja
2
. Here t is the Killing time coordinate, xi

are spatial coordinates on the hypersurfaces Σt orthogonal

to the timelike Killing field ta, Xi
1
ðtÞ is the path taken by the

center of mass of the first component of the particle, ua
1
is

the 4-velocity of that path, τ1 is the proper time along the

path, and δð3Þ is the “coordinate delta function” defined so

that
R

δð3Þ½xi − Xi
1
ðtÞ�d3x ¼ 1. For nonrelativistic motion

relative to the rest frame of ta, we have dτ1=dt ≈
ffiffiffiffiffiffiffiffi

−gtt
p

and

ja
1
ðt; xiÞ ≈ q

ffiffiffiffiffiffi

−g
p δð3Þ½xi − Xi

1
ðtÞ�ðta þ va

1
Þ; ð4:2Þ

where va is the coordinate velocity of the component, i.e.,

vi
1
¼ dXi

1
=dt and vt

1
¼ 0. We represent the displacement of

the two components of Alice’s particle at time t by the

tangent vector SaðtÞ to the geodesic segment in Σt of unit

affine parameter that connects the centers of mass of the

two components. We write SaðtÞ ¼ dðtÞsaðtÞ, where sa is a
unit vector. Then dðtÞ represents the proper distance

between the components. We assume that sa is Lie trans-

ported along ta (i.e., the direction of separation does not

change with time) and that dðtÞ is smoothly varying and is

such that

dðtÞ ¼
(

d for jtj< T=2

0 for t < −T=2−T1 and t > T=2þT2

: ð4:3Þ

The difference between the current densities of the two

components is given by

ðja
1
− ja

2
Þ ≈ qdðtÞ

ffiffiffiffiffiffi

−g
p tasb∇bδ

ð3Þðxi − XiÞ

−
q
ffiffiffiffiffiffi

−g
p δð3Þðxi − XiÞsatb∇bdðtÞ; ð4:4Þ

where Xi is the position of Alice’s lab. Here, the first term

arises from the difference in charge densities and the

second term arises from the difference in spatial currents.

We may rewrite this as

ðja
1
− ja

2
Þ ≈ 2q

ffiffiffiffiffiffi

−g
p t½asb�∇b½dðtÞδð3Þðxi − XiÞ�: ð4:5Þ
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We define the electric field Ea on the static slices by
4

Ea ¼ Fabt
b ¼ ð∇aAb −∇bAaÞtb: ð4:6Þ

It follows immediately from Eq. (4.5) and the definition of

E that the unperturbed field Ain smeared in with ja
1
− ja

2

(with the volume element
ffiffiffiffiffiffi

−g
p

d4x understood in the

smearing) is given by

Ain
a ðja1 − ja

2
Þ ≈ q

Z

dtdðtÞsaEin
a ðt; XiÞ: ð4:7Þ

Thus, from Eq. (3.2), we have

hNi ¼ q2
Z

dtdt0dðtÞdðt0ÞhsaEin
a ðt; XiÞsa0Ein

a0ðt0; XiÞiΩ:

ð4:8Þ

Thus, to calculate hNi and thereby the decoherence

Eq. (2.13) of Alice’s particle, we simply evaluate the

two-point function of the component, saEin
a of the electric

field in the direction of the separation, sa, of the compo-

nents of Alice’s particle evaluated at Alice’s lab, xi ¼ Xi,

and smeared in time via the separation dðtÞ.
Thus, the remaining task is to obtain the two-point

function of the unperturbed electric field, which we will do

via a mode expansion. We shall simplify this task by

restricting consideration to the case of radial separation of

the components of Alice’s particle, so that we need only

calculate the two-point function of the radial component of

Ein
a . The magnetic parity modes do not contribute to the

radial component of the electric field so we need only

consider the electric parity modes [37]. The two-point

function of the radial coordinate component Ein
r has been

calculated for the Boulware, Unruh, and Hartle-Hawking

vacuum states by Zhou and Yu [38] and Menezes [39],

who obtained
5

hErðxÞErðx0ÞiΩ ¼
X

∞

l¼1

ClPlðr̂ · r̂0Þ
r2r02

Z

∞

−∞

dω

ω
e−iωðt−t

0Þ

× ½G⃗ðωÞR⃗ωlðrÞR⃗�
ωlðr0Þ

þ G⃖ðωÞR⃖ωlðrÞR⃖�
ωlðr0Þ�: ð4:9Þ

Here,

Cl ≡
1

16π2
lðlþ 1Þð2lþ 1Þ ð4:10Þ

and Pl is the lth Legendre polynomial [so Plðr̂ · r̂0Þ ¼ 1

for the case of interest below where xi ¼ x0i]. The

mode functions R⃗ωlðrÞ and R⃖ωlðrÞ satisfy the differential

equation

d2Rωl

dr�2
þ ½ω2 − VðrÞ�Rωl ¼ 0; ð4:11Þ

where

VðrÞ ¼
�

1 −
2M

r

�

lðlþ 1Þ
r2

ð4:12Þ

and r� is the radial “tortoise coordinate”

r� ¼ rþ 2M ln

�

r

2M
− 1

�

; ð4:13Þ

which satisfies dr�=dr ¼ ð1 − 2M=rÞ−1 and ranges from

r� → −∞ at the horizon to r� → þ∞ at infinity. The

modes R⃗ωl correspond to waves that are incoming from the

white hole and are defined by the asymptotic conditions

R⃗ωlðrÞ→
(

eiωr
� þ A⃗ωle

−iωr� as r → 2M

B⃗ωle
iωr� as r → ∞

; ð4:14Þ

whereas the modes R⃖ωl correspond to waves that are

incoming from infinity and are defined by the asymptotic

conditions

R⃖ωlðrÞ →
(

B⃖ωle
−iωr� as r → 2M

e−iωr
� þ A⃖ωle

iωr� as r →∞

: ð4:15Þ

Finally, the coefficients G⃗ðωÞ and G⃖ðωÞ appearing in

Eq. (4.9) depend on the choice of vacuum state jΩi.
For the Boulware vacuum [40], jΩBi, we have

G⃗BðωÞ ¼ G⃖BðωÞ ¼ ΘðωÞ ð4:16Þ

corresponding to the fact that Boulware vacuum is positive

frequency with respect to Killing time at both the white

hole horizon and past infinity. For the Unruh vacuum [41],

jΩUi, we have

G⃗UðωÞ ¼
1

1 − e−2πω=κ
and G⃖UðωÞ ¼ ΘðωÞ; ð4:17Þ

where κ is the surface gravity of the black hole, correspond-

ing to the fact that the Unruh vacuum is positive frequency

with respect to Killing time at past null infinity but is

positive frequency with respect to affine time (and thus is

4
Note that this differs from the notion of the “electric field on

the horizon” used in [22,23], which was defined as Fabk
b, where

kb is the null normal to the horizon.
5
These results are given in Eqs. (51)–(53) of [38] and

Eqs. (A13)–(A16) of [39]. We have used the addition theorem
for spherical harmonics to rewrite their sum of spherical har-
monics over azimuthal number m in terms of Plðr̂ · r̂0Þ.
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thermally populated with respect to Killing time at temper-

ature κ=2π) on the white hole horizon. Finally, for the

Hartle-Hawking vacuum [42], jΩHHi, we have

G⃗HHðωÞ ¼ G⃖HHðωÞ ¼
1

1 − e−2πω=κ
; ð4:18Þ

corresponding to the fact that the Hartle-Hawking vacuum is

a thermal state at both the white hole horizon and past null

infinity.

We now plug our expression Eq. (4.9) for the two-point

function into our formula Eq. (4.8) for hNi. We obtain

hNi ¼ q2
X

∞

l¼1

Clð1 − 2M=rÞ
r4

Z

∞

−∞

dω

ω
jd̂ðωÞj2

× ½G⃗ðωÞjR⃗ωlðrÞj2 þ G⃖ðωÞjR⃖ωlðrÞj2�: ð4:19Þ

Here r is the radial coordinate of Alice’s lab and d̂ðωÞ is the
Fourier transform of dðtÞ

d̂ðωÞ ¼
Z

∞

−∞

dt eiωtdðtÞ: ð4:20Þ

The factor of ð1 − 2M=rÞ arises from converting the proper

distance component saEa appearing in Eq. (4.8) to the

coordinate component Er appearing in Eq. (4.9), and we

used the fact that Plð1Þ ¼ 1.

For dðtÞ of the form Eq. (4.3) with T large, the

magnitude of the Fourier transform jd̂ðωÞj behaves like

d=jωj as ω → 0 until this divergent behavior levels off

below jωj ∼ 1=T. There will also be a high frequency

cutoff at jωj ∼ 1=min½T1; T2�. Thus, we may approximate

the contribution of jd̂ðωÞj to the integral in Eq. (4.19) using

jd̂ðωÞj ∼
(

d
ω

1

T
< jωj < 1

min½T1;T2�

0 jωj < 1

T
or jωj > 1

min½T1;T2�
: ð4:21Þ

Thus, the behavior of hNi at large T will be determined by

the behavior of the integrand of Eq. (4.19) near the low

frequency end, jωj ∼ 1=T, of the range of integration. In

order to determine this behavior, we need to obtain

expressions for the mode functions R⃗ωlðrÞ and R⃖ωlðrÞ
at very low frequencies.

In order to determine these mode functions at low

frequencies, we divide the exterior into three regions

(see Fig. 1):

Region I 2M < r f r1; ð4:22Þ

Region II r1 < r j r2; ð4:23Þ

Region III 3M j r < ∞; ð4:24Þ

where [43]

r1 ¼ 2M þ 8ω2M3

lðlþ 1Þ ; ð4:25Þ

r2 ¼
½lðlþ 1Þ�1=2

ω
: ð4:26Þ

Note that for ωM j 1, there will be a large overlap of

regions II and III. In region I, we may neglect the potential,

VðrÞ, in Eq. (4.11) compared with ω2 and the solutions take

the form

RI
ωlðrÞ ≈ ³I

l
ðωÞeiωr� þ ´I

l
ðωÞe−iωr� : ð4:27Þ

In region II, the potential, VðrÞ, dominates over ω2 and the

solutions are well approximated by the static (zero fre-

quency) solutions [43,44]

RII
ωlðrÞ≈³II

l
ðωÞ

�

y

2
Plðy−1Þ−Plþ1ðy−1Þ−Pl−1ðy−1Þ

2ð2lþ1Þ

�

þ´II
l
ðωÞ

�

y

2
Qlðy−1Þ−Qlþ1ðy−1Þ−Ql−1ðy−1Þ

2ð2lþ1Þ

�

;

ð4:28Þ

where y≡ r=M.

Finally, in region III, we may approximate the potential

as VðrÞ ≈ lðlþ 1Þ=r�2 and we may then approximate the

solutions by the flat spacetime solutions with r� replacing r

FIG. 1. The potential Vðr�Þ plotted as a function of r� for

l ¼ 1. The horizontal, gray dashed line corresponds to square of

the frequency ω ¼ 0.01=M. The vertical blue and orange dashed

lines correspond to the turning points r�
1
and r�

2
, respectively. The

vertical, red dashed line is the peak of the potential at r ¼ 3M.

The radial mode solutions in regions II and III are matched in the

regions where they overlap. The solutions in regions I and II are

both good approximations in a neighborhood of r� ¼ r�
1
and so

can be matched there.
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RIII
ωlðrÞ ≈ ³III

l
ðωÞr�jlðωr�Þ þ ´III

l
ðωÞr�nlðωr�Þ; ð4:29Þ

where jl and nl denote the spherical Bessel and Neumann

functions. Note that in the overlap between regions II and

III, we may neglect
6
the difference between r and r� and the

solutions take the form

RII;III
ωl ðrÞ ≈ ³lðωÞrlþ1 þ ´lðωÞ

rl
: ð4:30Þ

In order to determine R⃗ωlðrÞ, we start with the solution

B⃗ωle
−iωr� in region III [see Eq. (4.14)], with initially

unknown coefficient B⃗ωl. We match this solution to the

general solution Eq. (4.28) in region II and then match the

resulting solution to the general solution Eq. (4.27) in

region I. Finally, we adjust B⃗ωl so as to give a coefficient

of 1 to the term eiωr
�
as r → 2M in Eq. (4.14). Similarly, to

obtain R⃖ωlðrÞ, we start with the solution B⃖ωle
−iωr� in

region I [see Eq. (4.15)], with initially unknown coefficient

B⃖ωl. We match this solution to the general solution

Eq. (4.28) in region II, match the resulting solution to

the general solution Eq. (4.29) in region III, and adjust B⃖ωl

so as to give a coefficient of 1 to the term e−iωr
�
as r → ∞

in Eq. (4.15).

For simplicity, we shall assume that Alice’s lab is

located in the region M j r j 1=ω for the relevant range

of frequencies ω ∼ 1=T, so that it lies in the overlap of

regions II and III. This is the regime in which the estimates

of [22,23] reviewed in Sec. II apply, so we will be able to

make a direct comparison of our results with the results of

the previous calculation. The mode functions R⃖ωlðrÞ were
previously obtained by Fabbri [43], since they are needed

to analyze scattering of classical waves by a black hole.

In region III, we find that ´III
l

¼ Oð½ωM�2lþ2Þ and thus the

Neumann term in Eq. (4.29) may be neglected. The

solution with the correct normalization in region III is

R⃖ωlðrÞ ≈ −2i3lþ1ωr�jlðωr�Þ: ð4:31Þ

If, in addition, we have ωr j 1, then

R⃖ωlðrÞ≈−
i3lþ12lþ1

l!

ð2lþ1Þ! ðωrÞlþ1 ðMj rjω−1Þ: ð4:32Þ

Thus, as might be expected, if we assume that Alice’s lab is

not close to the black hole (r k M), the modes in Alice’s

lab corresponding to low frequency incoming waves from

infinity are essentially unaffected by the black hole. As in

flat spacetime, they are suppressed by the factor ðωrÞlþ1

due to the angular momentum barrier. Since ωr j 1, the

dominant contribution to the two-point function in Alice’s

lab from modes that are incoming from infinity arises from

the l ¼ 1 mode.

Performing the similar analysis for R⃗ωlðrÞ, we obtain

R⃗ωlðrÞ ≈ al

�

M

r

�

l

ðMωÞ ðM j r j ω−1Þ; ð4:33Þ

where

al ¼ −i2lþ2ðl − 1Þ!ðlþ 1Þ!
ð2lþ 1Þð2lÞ! : ð4:34Þ

Note that, although at low frequencies the white hole modes

are essentially entirely reflected back into the black hole by

the potential barrier VðrÞ, these modes fall off in r only as

the power law 1=rl and, thus, they penetrate far beyond the
peak of the potential barrier at r ¼ 3M and can have a

nontrivial effect in Alice’s lab. Note also that, as opposed to

the incoming modes from infinity, the frequency depend-

ence of the white hole modes is l independent. Since

r k M, the dominant contribution to the two-point func-

tion in Alice’s lab from the modes emerging from the white

hole arises from the l ¼ 1 modes.

We now estimate hNiU, Eq. (4.19), for the case of the

Unruh vacuum, jΩUi. (The cases of the Boulware and

Hartle-Hawking vacua will be treated in the next section.)

We first consider the contribution, hNiU
←
, of the incoming

modes from infinity. We keep only the l ¼ 1 contribution

and use Eq. (4.32) to evaluate R⃖ω1. We use Eq. (4.21) to

evaluate d̂ and we also use G⃖UðωÞ ¼ ΘðωÞ. Ignoring all

subleading terms and all factors of order unity, we obtain

the following expression for the contribution of the

incoming modes from infinity in the Unruh vacuum

hNiU
←
∼
q2

r4

Z

1=min½T1;T2�

1=T

dω

ω

d2

ω2
ðωrÞ4 ∼ q2d2

min½T1; T2�2
:

ð4:35Þ

This agrees with the estimate Eq. (2.14) for Minkowski

spacetime obtained by considering radiation of entangling

photons to infinity. Note that the contribution from the

incoming modes from infinity does not grow with T.

Next, we estimate the contribution, hNiU
→
of the incom-

ing modes from the white hole to hNiU. We keep only the

l ¼ 1 contribution and use Eq. (4.33). In the Unruh

vacuum, we have

6
Replacement of r� by r in Eq. (4.29) would give rise to an

arbitrarily large phase error in the solutions as r → ∞, so the
difference between r and r� cannot be neglected throughout
region III. However, the difference between r and r� makes only a
small correction, which we neglect, in the overlap of regions II
and III.
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G⃗UðωÞ ¼
1

1 − e−2πω=κ
≈

κ

2πω
: ð4:36Þ

Ignoring all subleading terms and all factors of order unity

and setting r ¼ D, we obtain the following expression for

the contribution of the incoming modes from the while hole

in the Unruh vacuum:

hNiU
→
∼
q2d2κM4

D6

Z

1=min½T1;T2�

1=T

dω

ω2
∼
q2d2M3

D6
T: ð4:37Þ

For large T, this contribution dominates over Eq. (4.35), so

we have

hNiU ¼ hNiU
←
þ hNiU

→
≈ hNiU

→
∼
q2d2M3

D6
T: ð4:38Þ

This agrees with the estimate Eq. (2.16) for the

decoherence resulting from the emission of entangling

photons through the black hole horizon. Thus, our purely

local analysis reproduces the results previously obtained

in [22,23].

We now briefly comment on the analogous computation

in the linearized quantum gravitational case. If we approxi-

mate the stress-energy tensor of the first component of

Alice’s particle as being essentially a point particle, then its

stress-energy tensor would take the form

Tab
1
ðtÞ ≈ m

ffiffiffiffiffiffi

−g
p δð3Þ½xi − Xi

1
ðtÞ�ua

1
ub
1

dτ1

dt
ð4:39Þ

in analogy with Eq. (4.1). If this component was not

interacting with any other matter, then conservation of

stress energy would imply that it must move on a geodesic.

However, since we want the component to follow a non-

geodesic trajectory, Alice must apply some “external force”

to it. The external forces on the different components act

oppositely on the different components during separation

and recombination and will have a backreaction effect on

Alice’s lab. In Minkowski spacetime, conservation of total

stress energy implies that Alice’s lab would have to move

oppositely to the particle components so as to keep the

center of mass of the total system fixed. In the case of a

black hole spacetime, the situation is more complicated,

since a further external system would be needed to keep

Alice’s lab stationary. Nevertheless, the analog of the dipole

contribution Eq. (4.5) to the difference in stress energy of

the components should be canceled by the stress-energy

effects of Alice’s lab, and the leading order contribution

should be given by

ðTab
1

− Tab
2
Þ ≈ 2m

ffiffiffiffiffiffi

−g
p dt

dτ
t½asc�t½bsd�∇c∇d½d2ðtÞδð3Þðxi − XiÞ�:

ð4:40Þ

The analog of Eq. (4.7) is then

hinabðTab
1

− Tab
2
Þ ≈m

Z

dtd2ðtÞsasbEin
abðt; XiÞ; ð4:41Þ

whereEin
ab is the quantum field observable corresponding to

the electric part of the Weyl tensor Eab ¼ Cacbdt
ctd. Thus,

the computation of hNi, Eq. (3.3), reduces to obtaining the

two-point function of the Weyl tensor. Again, we can

simplify calculations by restricting to the case of radial

separation. The upshot is that the order of magnitude

estimates that we obtained above for the electromagnetic

case apply with the substitutions q → m, d → d2, and the

mode sum now running over l g 2, so that the dominant

contribution arises from l ¼ 2. For the Unruh vacuum, this

yields the estimate

hNiU;GR
←

∼
m2d4

min½T1; T2�4
ð4:42Þ

in agreement with Eq. (2.15), and the estimate

hNiU;GR
→

∼
M5m2d4

D10
T ð4:43Þ

in agreement with Eq. (2.17).

Finally, we note that Eq. (4.8) shows that, in the

electromagnetic case, we have

hNi ¼ q2
��

Z

dtdðtÞsaEin
a

�

2
�

Ω

∼ q2d2T2½ΔðsaEin
a Þ�2;

ð4:44Þ

where ΔðsaEin
a Þ is defined by

½ΔðsaEin
a Þ�2 ¼

��

1

T

Z

dt
dðtÞ
d

saEin
a

�

2
�

Ω

ð4:45Þ

and thus can be interpreted as the root mean square of the

time average of the sa component of the electric field

fluctuations in state jΩi on Alice’s worldline during the

duration of her experiment.

The fluctuations of the electric field are most usefully

characterized by its power spectrum. The power spectrum

of the radial component of the electric SUr ðωÞ is given by

SUr ðωÞ ¼
Z

∞

−∞

dt eiωðt−t
0ÞhErðt; XiÞErðt0; XiÞiΩU

: ð4:46Þ

The modes that dominantly contribute to this power

spectrum in Alice’s lab are the white hole modes R⃗ωl with
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l ¼ 1 and ω ∼ 1=T. By Eqs. (4.9) and (4.33), in the Unruh
vacuum these modes contribute

7

SUr ðωÞ ∼
1

r4
1

ω
G⃗UðωÞjR⃗ω1ðrÞj2;

∼
κ

r4ω2

�

M2ω

r

�

2

;

∼
M3

r6
: ð4:47Þ

This corresponds to the black hole in the Unruh vacuum

acting as though it were an ordinary body with a randomly

fluctuating electric dipole moment, P⃗U with constant power

spectrum

ΔjP⃗UjðωÞ ∼
ffiffiffiffiffiffiffi

ϵ0ℏ
p

G3=2M3=2

c3
∼ 10

e · m
ffiffiffiffiffiffi

Hz
p

�

M

M⊙

�

3=2

; ð4:48Þ

where we have restored fundamental constants to empha-

size that this is an Oð
ffiffiffi

ℏ
p

Þ effect.
Similarly, in the gravitational case, the black hole acts as

though it were an ordinary body with a fluctuating mass

quadrupole moment of magnitude

ΔjQUjðωÞ ∼
ffiffiffi

ℏ
p

G2M5=2

c5
∼ 10−1

g · m2

ffiffiffiffiffiffi

Hz
p

�

M

M⊙

�

5=2

: ð4:49Þ

More generally, the power spectra of the higher electric

multipole fluctuations and mass multipole fluctuations of

the black hole go as

ΔjQEM
l

jðωÞ∼Mlþ1=2; ΔjQGR
l

jðωÞ∼Mlþ1=2: ð4:50Þ

There also are similar fluctuations of the magnetic parity

multipole moments. The dominant contribution to the

decoherence in Alice’s experiment, however, comes from

the lowest electric parity multipole moment.

In conclusion, we have successfully reproduced the main

results of [22,23] using our purely local reformulation. In

the next section, we will use our local reformulation to

compare the results for the decoherence in the Unruh

vacuum around a black hole to other cases.

V. COMPARISON WITH DECOHERENCE

ARISING IN OTHER CASES

The results we have obtained in the previous section

will now enable us to analyze the decoherence arising in

other situations. Specifically, we will analyze the cases

of (i) a Schwarzschild black hole in the Boulware or

Hartle-Hawking vacuum, (ii) Minkowski spacetime in the

Minkowski vacuum or filled with a thermal bath of

radiation, (iii) a spacetime corresponding to the gravita-

tional field of a star with no internal degrees of freedom

assigned to the star, and (iv) a material body with internal

degrees of freedom in a thermal state.

A. Decoherence in the Boulware

and Hartle-Hawking vacua

The Boulware vacuum, jΩBi, is the ground state for the

exterior region (r > 2M) of Schwarzschild with respect

to the timelike Killing field. The Boulware vacuum

is singular on the past and future event horizons of

Schwarzschild. Since it is singular on the future horizon,

it does not correspond to a physically reasonable state for a

black hole formed by gravitational collapse. Nevertheless,

the Boulware vacuum is a well-defined state in Alice’s lab,

and it is instructive to compute the decoherence of her

particle in the Boulware vacuum using the results of the

previous section.

The Boulware vacuum differs from the Unruh vacuum

only in that G⃗ and G⃖ are now given by Eq. (4.16) rather than

Eq. (4.17). Since G⃖B ¼ G⃖U, it follows immediately that

hNiB
←

is again given by Eq. (4.35), i.e.,

hNiB
←
¼ hNiU

←
∼

q2d2

min½T1; T2�2
: ð5:1Þ

On the other hand, in the Boulware vacuum, we have

G⃗B ¼ ΘðωÞ rather than being given by Eq. (4.36).

Consequently, the integrand of the formula for hNiB
→

will

differ from the integrand appearing on the right side of

Eq. (4.37) by a factor of ∼ω=κ. We obtain

hNiB
→
∼
q2d2M4

D6

Z

1=min½T1;T2�

1=T

dω

ω
;

¼ q2d2M4

D6
ln

�

T

min½T1; T2�

�

: ð5:2Þ

Additionally, we note that the Boulware vacuum atMω j 1

has a randomly fluctuating electric dipole ΔjP⃗Bj and mass

quadrupole ΔjQBj of magnitude

ΔjP⃗BjðωÞ ∼M2
ffiffiffiffi

ω
p

; ΔjQBjðωÞ ∼M3
ffiffiffiffi

ω
p

; ð5:3Þ

which are much smaller than the corresponding fluctuations

in the Unruh vacuum given by Eqs. (4.48) and (4.49).

Equation (5.2) could also be derived by the methods used

in [22,23]. Indeed, the only change that needs to be made to

the calculations done in [22,23] is that when we compute

the one-particle norm corresponding to the retarded sol-

ution with source ja
1
− ja

2
on the horizon, we now have to

take the positive frequency part with respect to Killing time

7
In Rindler spacetime, the analogous horizon modes similarly

make a contribution to the power spectrum of the electric field
that is nonvanishing as ω → 0 [25]. This fact is undoubtedly
intimately related to the phenomena analyzed in [45–48].
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rather than affine time. The same calculation as led to

Eq. (13) of [22]—which yielded hNi varying as lnV, where
V denotes the affine time duration of the separation—now

yields the lnT dependence
8
given in Eq. (5.2).

Next, we consider decoherence in the Hartle-Hawking

vacuum, jΩHHi. In the exterior region (r > 2M) of

Schwarzschild, the Hartle-Hawking vacuum is a thermal

(KMS) state with respect to all modes at temperature

T ¼ κ=2π. Since G⃗HH ¼ G⃗U, it follows immediately that

hNiHH
→

is again given by Eq. (4.37), i.e.,

hNiHH
→

¼ hNiU
→
∼
q2d2M3

D6
T: ð5:4Þ

On the other hand, in the Hartle-Hawking vacuum we have

G⃖HHðωÞ ¼
1

1 − e−ω=T
; ð5:5Þ

withT ¼ κ=2π ¼ 1=8πM rather than G⃖ ¼ ΘðωÞ as for the
Boulware and Unruh vacua. At low frequencies, we have

G⃖HHðωÞ ≈T =ω. Consequently, the integrand of the for-

mula for hNiHH
←

will differ from the integrand appearing on

the right side of Eq. (4.35) by a factor of T =ω at low

frequencies. We obtain

hNiHH
←

∼
q2d2T

min½T1; T2�
∼

q2d2

Mmin½T1; T2�
; ð5:6Þ

which differs from Eq. (4.35) in that a factor of M has

replaced a factor of min½T1; T2� in the denominator.

Nevertheless, the thermal population of incoming modes

from infinity does not lead to a decoherence that grows with

T. The key point is that although the radiation incoming

from infinity is thermal, it does not have the necessary

population of “soft modes” to provide a decoherence effect

similar to the white hole modes [25]. For sufficiently large

T the contribution of the incoming modes from infinity will

be negligible compared with the contribution from the

white hole modes, Eq. (5.4), and the decoherence in the

Hartle-Hawking vacuum will be the same as in the Unruh

vacuum.

It should be noted that there can be additional

decoherence effects resulting from thermal populations

of modes emerging from the white hole and/or infinity that

have not been taken into account in our analysis above. In

particular, we have implicitly assumed in our analysis that

the components of Alice’s particle move on fixed trajec-

tories that are not affected by the incoming radiation. This

would be the case if, e.g., the components of Alice’s

particle are rigidly held in traps.
9
However, if these

components are free to move in response to the incoming

electromagnetic radiation, there will be Thompson scatter-

ing of the radiation. Since the Thompson scattering will

be slightly different for the different components, this

will result in decoherence that will grow with time for a

steady influx of radiation. The decoherence arising from

Thompson scattering of low frequency thermal radiation

was estimated in [23], based upon previous analyses of

collisional decoherence given in [49–52]. It was shown

in [23] that, in the Rindler case, this collisional decohe-

rence can be neglected compared with the decoherence due

to emission of soft radiation. For the case of a black hole in

the Unruh or Hartle-Hawking states, the same would be

true if Alice’s lab is sufficiently near the black hole.

However, the decoherence rate due to emission of soft

radiation falls off rapidly with distance, D, from the black

hole, whereas the collisional decoherence rate falls off

more slowly in the Unruh vacuum and does not fall off at

all in the Hartle-Hawking vacuum. Thus, if the particle

components are free to respond to the incoming radiation,

the collisional decoherence effects will dominate at suffi-

ciently large distances from the black hole.

Finally, we briefly mention the corresponding results for

the gravitational case. In the gravitational case, a calcu-

lation analogous to that which led to Eq. (5.2) now yields

hNiB;GR
→

∼
m2d4M6

D10
ln

�

T

min½T1; T2�

�

; ð5:7Þ

whereas hNiB;GR
←

is the same as for the Unruh vacuum,

Eq. (4.42). A calculation analogous to that which led to

Eq. (5.6) now yields

hNiHH;GR
←

∼
m2d4T

min½T1; T2�3
∼

m2d4

Mmin½T1; T2�3
; ð5:8Þ

whereas hNiHH;GR
→

is the same as for the Unruh vacuum,

Eq. (4.43).

B. Decoherence in Minkowski spacetime

In Minkowski spacetime, there are no “white hole

modes,” R⃗ωlðrÞ, of the quantum field. The incoming modes

from infinity, R⃖ωlðrÞ, are given by

R⃖ωlðrÞ ¼ −2i3lþ1ωrjlðωrÞ; ð5:9Þ

8
Affine time V is related to Killing time T by V ∝ expðκTÞ, so,

for the Unruh vacuum, the logarithmic dependence on V is
converted to the linear dependence on T obtained above.
However, for an extremal black hole (κ ¼ 0), the relation between
V and T is linear, so one would expect only logarithmic growth of
hNi with T in the extremal case. In fact, in the electromagnetic
case, the coefficient of this logarithmic term also vanishes in
extremal Kerr [24] (the “black hole Meisner effect”) but a ln T
dependence occurs for a scalar field [24].

9
It would be best to use nonelectromagnetic traps, so that the

traps do not produce any shielding or other electromagnetic
effects that could interfere with Alice’s experiment.
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corresponding to taking the limit as M → 0 of the

Schwarzschild modes. The two point function of the radial

component of the electric field can be obtained from

Eq. (4.9) by deleting the white hole modes and using

Eq. (5.9) for the incoming modes from infinity. The

Minkowski vacuum, jΩMi, corresponds to G⃖ðωÞ ¼ ΘðωÞ.
It follows immediately that the decoherence of Alice’s

particle in the Minkowski vacuum will be given by the

same estimate as we previously obtained for the

decoherence effects of the incoming modes from infinity

in Schwarzschild for the Boulware or Unruh vacua [see

Eqs. (4.35) and (5.1)], namely

hNiM ∼
q2d2

min½T1; T2�2
: ð5:10Þ

This agrees with the estimate originally given in [26]. In

particular, the decoherence effects do not grow with T.

If we thermally populate the modes R⃖ωlðrÞ in Minkowski

spacetime at temperature T , then the decoherence will be

given by the same estimate as we previously obtained in

Eq. (5.6) for the decoherence effects of the incoming modes

from infinity in Schwarzschild for the Hartle-Hawking

vacuum, namely

hNiMth ∼
q2d2T

min½T1; T2�
: ð5:11Þ

In particular, the decoherence effects do not grow with T,
despite the presence of the thermal bath.

In a similar manner, in the gravitational case, for the

Minkowski vacuum, we obtain

hNiM;GR ∼
m2d4

min½T1; T2�4
ð5:12Þ

in agreement with the original estimate of [26]. If

Minkowski spacetime is populated with a thermal bath

of gravitons at temperature T , then we obtain the same

estimate as in Eq. (5.8), namely

hNiM;GR
th ∼

m2d4T

min½T1; T2�3
: ð5:13Þ

Again, the decoherence effects do not grow with T, despite
the presence of a thermal bath of gravitons.

Finally, we point out that for a scalar field it is possible,

in principle, to get decoherence in an inertial laboratory in

Minkowski spacetime from “soft radiation” despite the

absence of a horizon. In Minkowski spacetime, a memory

effect and associated infrared divergences occur at null

infinity for a massless field as a result of a permanent

change in the field at order 1=r. Since charge is conserved
in electromagnetism, such Oð1=rÞ changes can occur in

the electromagnetic case only via Lorentz boosting of the

Coulomb fields of the charged particles. This generically

occurs in scattering, since the outgoing charged particles

generically have different momenta from the incoming

particles. However, the protocol of Alice’s experiment

requires her to keep the components of her particle

confined to her lab, which precludes changes in particle

momenta lasting a long enough time T to produce

significant decoherence via “soft radiation.” This is in

accord with what we have found above. Similarly, since

mass is conserved in linearized gravity, there also are no

significant “soft radiation” decoherence effects. However,

for a scalar field, scalar charge need not be conserved, and

a change in the scalar field at order 1=r can be achieved by
simply changing the monopole moment of the source.

Consequently, a source with a permanent change of scalar

charge will radiate an infinite number of “soft” massless

scalar particles in l ¼ 0 modes. We can use this fact to

obtain decoherence via soft radiation to null infinity in

Minkowski spacetime in a manner previously suggested

in [24] as follows.

Suppose that a massless scalar field ϕ exists in nature

and Alice performs her experiment in an inertial laboratory

in Minkowski spacetime with a particle with scalar charge.

Suppose, further, that her protocol includes changing the

charge of one of the components during separation and then

restoring the charge during the recombination.
10
The scalar

analog of Eqs. (3.2) and (3.3) is

hNi ¼ hΩj½ϕinðj1 − j2Þ�2jΩi: ð5:14Þ

The mode expansion of the two-point function of a scalar

field in Schwarzschild is given in [53]. It takes a form very

similar to Eq. (4.9) except that (i) the factor of 1=r2r02 is

replaced by 1=rr0 for the definition of scalar mode functions

analogous to our definition of electromagnetic mode func-

tions used in Eq. (4.9) and (ii) the mode sum begins at l ¼ 0

rather than l ¼ 1. Only the incoming modes from infinity

are relevant for Minkowski spacetime, and they again take

the form Eq. (5.9). The l ¼ 0 modes contribute to

Eq. (5.14) an extra factor of 1=ω2 relative to the l ¼ 1

modes. For the case where the scalar field initially is in the

Minkowski vacuum state jΩMi, a calculation in direct

parallel to Eq. (4.35) yields

hNiM;S ∼ ðΔqSÞ2 ln
�

T

min½T1; T2�

�

; ð5:15Þ

where ΔqS denotes the scalar charge difference of the two

components during their separation. This behavior is

analogous to the decoherence occurring in the presence

10
If the experiment is performed in the presence of a black hole

or other gravitating body, such a change in scalar charge as
determined at infinity automatically occurs from redshift effects if
the components are separated in the radial direction [24].
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of a black hole for the Boulware vacuum [see Eqs. (5.2) and

(5.8)]. If Minkowski spacetime is initially filled with a

thermal bath of scalar particles at temperature T , then we

obtain

hNiM;S
th ∼ ðΔqSÞ2T T; ð5:16Þ

which is analogous to the decoherence in the presence of a

black hole in the Unruh or Hartle-Hawking vacua.
11
In both

cases, the decoherence grows with T due to the emission of

soft radiation to infinity, and we thus see that such

decoherence is possible, in principle, without the presence

of a horizon.

C. Decoherence in the spacetime of a static star

We now consider the decoherence effects arising in

Alice’s lab when we place it outside of a star rather than a

black hole. In this subsection, we do not consider the

decoherence effects that may arise from interactions with

degrees of freedom of the matter composing the star, i.e.,

we are concerned only with the effects of replacing the

black hole spacetime with a spacetime without a horizon.

Decoherence effects due to interactions with matter will be

considered in the next subsection.

The metric outside of a static, spherical star is identical to

the metric of a Schwarzschild black hole. If the electro-

magnetic field in the spacetime of a static star is initially in

its ground state, then one might expect that if Alice

performs her experiment outside of the star, she would

get essentially the same results as she would have obtained

by performing her experiment at the same radius in

Schwarzschild spacetime with the electromagnetic field

initially in the Boulware vacuum state.
12

Similarly, if the

electromagnetic field in the spacetime of the star is initially

in a thermal state at temperature T ¼ 1=8πM, one might

expect that Alice would get essentially the same results as

for a Schwarzschild black hole with the electromagnetic

field initially in the Hartle-Hawking vacuum state. The

purpose of this subsection is to explain why these expect-

ations are not correct.

The key point is that the behavior of a quantum field in

the spacetime of a star differs significantly from that of a

quantum field around a black hole in that the white hole

modes, R⃗ωlðrÞ, are absent. The complete absence of the

white hole modes in the case of a star is very different from

the modes being present but in their ground state, as occurs

for the Boulware vacuum in Schwarzschild. The white hole

modes in Schwarzschild represent additional degrees of

freedom of the quantum field that are not present in the case

of the star. It is these additional degrees of freedom—

associated with the presence of a horizon—that are respon-

sible for the decoherence effects that grow with T in Alice’s

experiment.

To see this explicitly, we note that in the spacetime of the

star, the two-point function of the radial component of the

electric field is modified from Eq. (4.9) in that (i) the white

hole modes, R⃗ωlðrÞ, are absent and (ii) the incoming modes

from infinity, R⃖ωlðrÞ, are modified by the presence of the

star. However, at very low frequencies, ωR j 1, where R

denotes the radius of the star, the corrections to R⃖ωlðrÞ are
negligibly small. The ground state of the star satisfies

G⃖ðωÞ ¼ ΘðωÞ. It follows immediately that the decoherence

in the spacetime of a star with the electromagnetic field

initially in its ground state is the same as the decoherence in

Schwarzschild due to the incoming modes from infinity

in the Boulware or Unruh vacua [see Eq. (5.1)], which, in

turn, is the same as the decoherence in Minkowski

spacetime in the Minkowski vacuum [see Eq. (5.10)].

Thus, we obtain

hNistar ∼ q2d2

min½T1; T2�2
: ð5:17Þ

Similarly, if the electromagnetic field around the star is in a

thermal state at temperatureT , we obtain the same result as

in Eq. (5.8), namely

hNistarth ∼
q2d2T

min½T1; T2�
: ð5:18Þ

In the gravitational case, we obtain results in agreement

with Eqs. (5.12) and (5.13), respectively.

In summary, the presence of a horizon is essential for the

black hole decoherence effects. Similar effects do not occur

in the spacetime of a static star.

D. Decoherence due to the presence of a body

with internal degrees of freedom

As we have just seen, in the electromagnetic and

gravitational cases, decoherence due to emission of “soft

radiation” does not occur in a static asymptotically flat

spacetime without a horizon.
13

This can be understood as

11
For a scalar field the similarity of the decoherence rate in a

global thermal state in Minkowski spacetime, as compared to the
decoherence due to a Killing horizon is related to the fact that the
restriction of the two-point function of the Minkowski vacuum to
a uniformly accelerating world line is identical to the restriction
of the two-point function of the global Minkowski thermal state at
the Unruh temperature to an inertial world line. However, for the
electromagnetic and gravitational fields, no such equivalence
holds [54], and, as we have seen, these fields do not exhibit the
analogous decoherence in a global thermal state.

12
In contrast to a static star, a body that collapses to a black

hole produces the Unruh vacuum in its exterior, so that hNi grows
linearly in time, as we have shown.

13
However, as discussed at the end of Sec. V B, in the scalar

case one can get decoherence due to emission of soft radiation to
null infinity.
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resulting from the absence of any “white hole mode”

degrees of freedom associated with the horizon.

However, if an actual material body is present, there will

be additional degrees of freedom associated with the

material body. These degrees of freedom can couple to

the components of Alice’s particle via ordinary Coulombic

(or, in the gravitational case, Newtonian) interactions. If

there is suitable dissipation in the material body system,

then this can result in the decoherence of Alice’s particle.

Indeed, ordinary environmental decoherence is exactly of

this nature. In this subsection, we will consider whether the

decoherence of Alice’s particle resulting from Coulombic/

Newtonian interactions with a material body can mimic the

decoherence obtained for the case of a black hole.

As we have seen in Sec. IVabove, in the electromagnetic

case the dominant contribution to decoherence of Alice’s

particle near a Schwarzschild black hole in the Unruh

vacuum comes from the l ¼ 1 white hole modes at very

low frequencies. Very near the horizon of the black hole,

these modes correspond to radiation and they represent

genuine additional degrees of freedom of the electromag-

netic field. Nevertheless, we saw at the end of Sec. IV that

in Alice’s lab, these modes look just like the exterior dipole

field of an ordinary body, with a fluctuating electric dipole

moment given by Eq. (4.48). Thus, if we have a material

body with the property that its ordinary thermal fluctua-

tions cause its electric dipole moment at very low frequen-

cies ω to fluctuate in accord with Eq. (4.48), then that

material body should mimic the decoherence effects of a

black hole. Similarly, in the gravitational case, a material

body will mimic the decoherence effects of a black hole if

ordinary thermal fluctuations cause its mass quadrupole

moment at very low frequencies ω to fluctuate in accord

with Eq. (4.49).

The issue of whether an ordinary material body can

mimic a black hole of the same temperature in this manner

has very recently been investigated by Biggs andMaldacena

[28]. They have shown that in the electromagnetic case,

there are no difficulties in constructing a physically rea-

sonable matter model that mimics the “soft radiation”

decoherence effects of a black hole. However, in the

gravitational case, the mimicking of black hole decoherence

effects by an ordinary body of the same physical size and

temperature as the black hole appears to require extraordi-

nary properties of the matter. The underlying difficulty is the

weakness of the coupling of matter to gravity. In order to

produce a fluctuating quadrupole moment of the required

size Eq. (4.49), it seems possible that the body would need

to have a mass comparable to that of a black hole as well as

extremely large dissipation. This issue appears worthy of

further investigation.

ACKNOWLEDGMENTS

We thank Anna Biggs, Simon Carot-Huot, Yanbei Chen,

Juan Maldacena, and Jordan Wilson-Gerow for helpful

discussions. D. L. D. acknowledges support as a Fannie and

John Hertz Foundation Fellow holding the Barbara Ann

Canavan Fellowship and as an Eckhardt Graduate Scholar

at the University of Chicago. This research was supported

in part by NSF Grants No. 21-05878 and No. 24-03584 and

Templeton Foundation Grant No. 62845 to the University

of Chicago and by the Princeton Gravity Initiative at

Princeton University.

DATA AVAILABILITY

No data were created or analyzed in this study.

[1] C. DeWitt-Morette and D. Rickles, The Role of Gravitation

in Physics: Report from the 1957 Chapel Hill Conference

(Max Planck Institute for the History of Science, Berlin,

2011).

[2] H. D. Zeh, Feynman’s interpretation of quantum theory, Eur.

Phys. J. H 36, 63 (2011).

[3] L. H. Ford, Gravitational radiation by quantum systems,

Ann. Phys. (N.Y.) 144, 238 (1982).

[4] N. H. Lindner and A. Peres, Testing quantum superpositions

of the gravitational field with Bose-Einstein condensates,

Phys. Rev. A 71, 024101 (2005).

[5] M. Bahrami, A. Bassi, S. McMillen, M. Paternostro, and H.

Ulbricht, Is gravity quantum?, arXiv:1507.05733.

[6] S. Bose, A. Mazumdar, G. W. Morley, H. Ulbricht, M.

Toroš, M. Paternostro, A. A. Geraci, P. F. Barker, M. S. Kim,

and G. Milburn, Spin entanglement witness for quantum

gravity, Phys. Rev. Lett. 119, 240401 (2017).

[7] C. Marletto and V. Vedral, Gravitationally-induced entan-

glement between two massive particles is sufficient evi-

dence of quantum effects in gravity, Phys. Rev. Lett. 119,

240402 (2017).

[8] D. Carney, P. C. E. Stamp, and J. M. Taylor, Tabletop

experiments for quantum gravity: A user’s manual, Classical

Quantum Gravity 36, 034001 (2019).

[9] S. A. Haine, Searching for signatures of quantum

gravity in quantum gases, New J. Phys. 23, 033020

(2021).

[10] S. Qvarfort, S. Bose, and A. Serafini, Mesoscopic entan-

glement through central–potential interactions, J. Phys. B

53, 235501 (2020).

LOCAL DESCRIPTION OF DECOHERENCE OF QUANTUM … PHYS. REV. D 111, 025014 (2025)

025014-15



[11] M. Carlesso, A. Bassi, M. Paternostro, and H. Ulbricht,

Testing the gravitational field generated by a quantum

superposition, New J. Phys. 21, 093052 (2019).

[12] R. Howl, V. Vedral, D. Naik, M. Christodoulou, C. Rovelli,

and A. Iyer, Non-Gaussianity as a signature of a quantum

theory of gravity, PRX Quantum 2, 010325 (2021).

[13] A. Matsumura and K. Yamamoto, Gravity-induced entan-

glement in optomechanical systems, Phys. Rev. D 102,

106021 (2020).

[14] J. S. Pedernales, K. Streltsov, and M. B. Plenio, Enhan-

cing gravitational interaction between quantum systems

by a massive mediator, Phys. Rev. Lett. 128, 110401

(2022).

[15] Y. Liu, J. Mummery, J. Zhou, and M. A. Sillanpää, Gravi-

tational forces between nonclassical mechanical oscillators,

Phys. Rev. Appl. 15, 034004 (2021).

[16] A. Datta and H. Miao, Signatures of the quantum nature of

gravity in the differential motion of two masses, Quantum

Sci. Technol. 6, 045014 (2021).

[17] C. Gonzalez-Ballestero, M. Aspelmeyer, L. Novotny, R.

Quidant, and O. Romero-Isart, Levitodynamics: Levitation

and control of microscopic objects in vacuum, Science 374,

eabg3027 (2021).

[18] T. Krisnanda, G. Y. Tham, M. Paternostro, and T. Paterek,

Observable quantum entanglement due to gravity, npj

Quantum Inf. 6, 12 (2020).

[19] Y. Margalit, O. Dobkowski, Z. Zhou, O. Amit, Y. Japha, S.

Moukouri, D. Rohrlich, A. Mazumdar, S. Bose, C. Henkel,

and R. Folman, Realization of a complete Stern-Gerlach

interferometer: Toward a test of quantum gravity, Sci. Adv.

7, eabg2879 (2021).

[20] M. Christodoulou and C. Rovelli, On the possibility of

laboratory evidence for quantum superposition of geom-

etries, Phys. Lett. B 792, 64 (2019).

[21] S. Bose, A. Mazumdar, M. Schut, and M. Toroš, Mechanism

for the quantum natured gravitons to entangle masses, Phys.

Rev. D 105, 106028 (2022).

[22] D. L. Danielson, G. Satishchandran, and R. M. Wald, Black

holes decohere quantum superpositions, Int. J. Mod. Phys.

D 31, 2241003 (2022).

[23] D. L. Danielson, G. Satishchandran, and R. M. Wald, Kill-

ing horizons decohere quantum superpositions, Phys. Rev.

D 108, 025007 (2023).

[24] S. E. Gralla and H. Wei, Decoherence from horizons:

General formulation and rotating black holes, Phys. Rev.

D 109, 065031 (2024).

[25] J. Wilson-Gerow, A. Dugad, and Y. Chen, Decoherence by

warm horizons, Phys. Rev. D 110, 045002 (2024).

[26] A. Belenchia, R. M. Wald, F. Giacomini, E. Castro-Ruiz, v.

Brukner, and M. Aspelmeyer, Quantum superposition of

massive objects and the quantization of gravity, Phys. Rev.

D 98, 126009 (2018).

[27] D. L. Danielson, G. Satishchandran, and R. M.

Wald, Gravitationally mediated entanglement: New-

tonian field versus gravitons, Phys. Rev. D 105, 086001

(2022).

[28] A. Biggs and J. Maldacena, Comparing the decoherence

effects due to black holes versus ordinary matter, arXiv:

2405.02227.

[29] R. M. Wald, General Relativity (Chicago University Press,

Chicago, USA, 1984).

[30] C. Yang and D. Feldman, The S-matrix in the Heisenberg

representation, Phys. Rev. 79, 972 (1950).

[31] R. M. Wald, Quantum Field Theory in Curved Space-

Time and Black Hole Thermodynamics, Chicago Lectures

in Physics (University of Chicago Press, Chicago, IL,

1995).

[32] S.W. Hawking, M. J. Perry, and A. Strominger, Soft hair on

black holes, Phys. Rev. Lett. 116, 231301 (2016).

[33] A. Ashtekar, Asymptotic Quantization: Based On 1984

Naples Lectures, Monographs and Textbooks in Physical

Science (Bibliopolis, Naples, Italy, 1987).

[34] A. Ashtekar, M. Campiglia, and A. Laddha, Null infinity,

the BMS group and infrared issues, Gen. Relativ. Gravit. 50,

140 (2018).

[35] K. Prabhu, G. Satishchandran, and R. M. Wald, Infrared

finite scattering theory in quantum field theory and quantum

gravity, Phys. Rev. D 106, 066005 (2022).

[36] K. Prabhu and G. Satishchandran, Infrared finite scattering

theory: Amplitudes and soft theorems, Phys. Rev. D 110,

085022 (2024).

[37] R. M. Wald, Advanced Classical Electromagnetism (Prince-

ton University Press, Princeton, USA, 2022).

[38] W. Zhou and H. Yu, Spontaneous excitation of a static

multilevel atom coupled with electromagnetic vacuum

fluctuations in Schwarzschild spacetime, Classical Quantum

Gravity 29, 085003 (2012).

[39] G. Menezes, Radiative processes of two entangled atoms

outside a Schwarzschild black hole, Phys. Rev. D 94,

105008 (2016).

[40] D. G. Boulware, Quantum field theory in Schwarzschild and

Rindler spaces, Phys. Rev. D 11, 1404 (1975).

[41] W. G. Unruh, Notes on black-hole evaporation, Phys. Rev.

D 14, 870 (1976).

[42] J. B. Hartle and S. W. Hawking, Path integral derivation of

black hole radiance, Phys. Rev. D 13, 2188 (1976).

[43] R. Fabbri, Scattering and absorption of electromagnetic

waves by a Schwarzschild black hole, Phys. Rev. D 12, 933

(1975).

[44] J. M. Cohen and R. M. Wald, Point charge in the vicinity of

a Schwarzschild black hole, J. Math. Phys. (N.Y.) 12, 1845

(1971).

[45] A. Higuchi, G. E. A. Matsas, and D. Sudarsky, Bremsstrah-

lung and zero energy Rindler photons, Phys. Rev. D 45,

R3308 (1992).

[46] A. Higuchi, G. E. A. Matsas, and D. Sudarsky, Bremsstrah-

lung and Fulling-Davies-Unruh thermal bath, Phys. Rev. D

46, 3450 (1992).

[47] G. E. A. Matsas, D. Sudarsky, and A. Higuchi, Bremsstrah-

lung by static charges outside a static black hole?, arXiv:gr-

qc/9605030.

[48] A. Higuchi, G. E. A. Matsas, and D. Sudarsky, Do static

sources outside a Schwarzschild black hole radiate?, Phys.

Rev. D 56, R6071 (1997).

[49] L. Diósi, Quantum master equation of a particle in a gas

environment, Europhys. Lett. 30, 63 (1995).

[50] M. R. Gallis and G. N. Fleming, Environmental and sponta-

neous localization, Phys. Rev. A 42, 38 (1990).

DANIELSON, SATISHCHANDRAN, and WALD PHYS. REV. D 111, 025014 (2025)

025014-16



[51] K. Hornberger and J. E. Sipe, Collisional decoherence

reexamined, Phys. Rev. A 68, 012105 (2003).

[52] E. Joos and H. D. Zeh, The emergence of classical proper-

ties through interaction with the environment, Z. Phys. B

Condens. Matter 59, 223 (1985).

[53] P. Candelas, Vacuum polarization in Schwarzschild space-

time, Phys. Rev. D 21, 2185 (1980).

[54] T. H. Boyer, Thermal effects of acceleration through

random classical radiation, Phys. Rev. D 21, 2137

(1980).

LOCAL DESCRIPTION OF DECOHERENCE OF QUANTUM … PHYS. REV. D 111, 025014 (2025)

025014-17


	Local description of decoherence of quantum superpositions by black holes and other bodies
	I. INTRODUCTION
	II. DECOHERENCE OF A QUANTUM SUPERPOSITION DUE TO RADIATION
	III. LOCAL REFORMULATION OF THE DECOHERENCE
	IV. LOCAL CALCULATION OF THE DECOHERENCE IN THE UNRUH VACUUM AROUND A SCHWARZSCHILD BLACK HOLE
	V. COMPARISON WITH DECOHERENCE ARISING IN OTHER CASES
	A. Decoherence in the Boulware and Hartle-Hawking vacua
	B. Decoherence in Minkowski spacetime
	C. Decoherence in the spacetime of a static star
	D. Decoherence due to the presence of a body with internal degrees of freedom

	ACKNOWLEDGMENTS
	DATA AVAILABILITY
	References


