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It was previously shown that if an experimenter, Alice, puts a massive or charged body in a quantum
spatial superposition, then the presence of a black hole (or more generally any Killing horizon) will
eventually decohere the superposition. This decoherence was identified as resulting from the radiation of
soft photons/gravitons through the horizon, thus suggesting that the global structure of the spacetime is
essential for describing the decoherence. In this paper, we show that the decoherence can alternatively be
described in terms of the local two-point function of the quantum field within Alice’s lab, without any
direct reference to the horizon. From this point of view, the decoherence of Alice’s superposition in the
presence of a black hole arises from the extremely low frequency Hawking quanta present in Alice’s lab.
We explicitly calculate the decoherence occurring in Schwarzschild spacetime in the Unruh vacuum from
the local viewpoint. We then use this viewpoint to elucidate (i) the differences in decoherence effects that
would occur in Schwarzschild spacetime in the Boulware and Hartle-Hawking vacua; (ii) the difference in
decoherence effects that would occur in Minkowski spacetime filled with a thermal bath as compared with
Schwarzschild spacetime; (iii) the lack of decoherence in the spacetime of a static star even though the
vacuum state outside the star is similar in many respects to the Boulware vacuum around a black hole; and
(iv) the requirements on the degrees of freedom of a material body needed to produce a decoherence effect

that mimics that of a black hole.
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I. INTRODUCTION

In quantum mechanics, any interaction of a system with
an “environment” will typically result in decoherence of the
system. This decoherence arises because the environment
responds differently depending on the state of the quantum
system and thereby becomes entangled with the quantum
system. While, in principle, any local “environmental
influences” (i.e. interaction with any degrees of freedom
present within the lab) can be minimized by a sufficiently
controlled experiment, the long-range gravitational fields of
the superposition cannot be perfectly controlled. In princi-
ple, any quantum superposition of gravitational fields can be
“measured” by an external observer—or the environment—
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and may give rise to some degree of decoherence. As was
already noted by Feynman in the 1950s [1,2], key insights
into the quantum nature of gravity can be gleaned by
considering gedankenexperiments analyzing the entangle-
ment and decoherence due to the gravitational field of a
massive body. Indeed, such gedankenexperiments have
been the basis of actual proposed tabletop experiments in
quantum gravity to measure the gravitationally mediated
entanglement of two quantum systems [3-21].

In previous work [22,23] (see also [24]), we showed that
a black hole can, in effect, measure the long range fields
of a massive or charged body, resulting in the decoherence
of a quantum superposition of such a body. The precise
mechanism producing this decoherence was found to be
entangling radiation that is emitted by the quantum super-
position into the black hole. To understand this, suppose an
experimenter, Alice, creates a spatial superposition of a
charged or massive body, e.g., by putting it through a
Stern-Gerlach apparatus. Suppose that after keeping this
superposition in place for a time, 7, Alice brings the
components of the body together and determines if they
have remained coherent. Even if Alice performs her
experiment in Minkowski spacetime, some entangling
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radiation will be emitted to infinity when the spatial
superposition is created and brought back together.
However, in Minkowski spacetime, the decoherence
resulting from this radiation can be made arbitrarily small
by “opening” and “closing” the superposition in a suffi-
ciently adiabatic manner. Furthermore, in Minkowski
spacetime, the amount of time, 7, that she keeps the
superposition open is not relevant to the decoherence
(provided, of course, that she makes all ordinary inter-
actions with the environment negligible). However, as we
showed, this is not the case in the presence of a black hole.
Although the energy radiated into the black hole can be
made arbitrarily small by “opening” and “closing” the
superposition is a sufficiently adiabatic manner, the num-
ber of entangling photons/gravitons radiated into the black
hole increases linearly with total time 7' that the super-
position is kept “open,” so, eventually, a black hole will
decohere any quantum superposition. This effect occurs
more generally for any Killing horizon, e.g., it also occurs
for a Rindler horizon and a cosmological horizon [23,24].

The analysis of [22-24] strongly suggests that global
aspects of the structure of the spacetime—specifically, the
presence of a horizon—are essential for the decoherence
effect. The main purpose of the present paper is to show
that one can give an alternative, purely local description of
the decoherence in terms of the behavior of the quantum
field within Alice’s lab. From this viewpoint, the
decoherence arises from the behavior of the unperturbed
two-point function of the quantum field in the region
where the superposition was created. In particular, the
decoherence in the presence of a black hole can be
understood as resulting from the extremely low frequency
Hawking radiation that partially penetrates into Alice’s lab
before being reflected back into the black hole by the
effective potential of the black hole. This local viewpoint
will enable us to gain insights into various aspects of the
decoherence process, such as the differences in decoh-
erence that occur in different vacuum states and in different
spacetimes. We will also gain insight into the requirements
on a material body to mimic the decoherence effects of a
black hole.

We note that, very recently, Wilson-Gerow et al. [25] also
have given a local formulation of our decoherence results,
focusing particularly on the Rindler case, i.e., an accelerat-
ing observer in Minkowski spacetime. The methods and
arguments used in [25] are quite different from the ones we
shall give in our analysis below. Nevertheless, there are a
number of significant points of overlap in the results. In
particular, our result Eq. (4.8) relating the decoherence to
the local two-point function of the electric field corresponds
to Eq. (103) of [25].

We also note that in a previous paper [23] we analyzed
the decohering effects of the scattering of Unruh radiation
on a charged superposition in an accelerating laboratory in

Minkowski spacetime. We concluded that this decoherence
was distinct from (and smaller than) the decohering effects
of emission of entangling radiation through the Rindler
horizon. However, in [23] we considered only incoherent
scattering effects of individual Unruh photons. We did not
consider the coherent effects of the presence of a large
number of Unruh photons of frequency w ~ 1/T < 1/a,
where a denotes the acceleration of the laboratory. As we
shall see in the present paper, the presence of these very low
frequency photons can be viewed as stimulating the
emission of entangling radiation from the superposition.
Thus, the decoherence effect in Rindler spacetime is, in
fact, intimately related to the presence of very low
frequency Unruh radiation in the Minkowski vacuum.
Similarly, the decoherence effect in a black hole spacetime
is intimately related to the presence of very low frequency
Hawking radiation in the Unruh vacuum.

Our local reformulation of the decoherence makes
manifest that one can interpret the decoherence of Alice’s
superposition in terms of the interaction of Alice’s particle
with the local state of the quantum field in her lab. It should
be emphasized that the thermal nature of the state is, by
itself, insufficient to account for this effect [23,25].
In particular, for the decoherence in the Unruh vacuum
in the presence of a black hole, it is essential that there is an
extremely large reservoir of “soft” Hawking quanta in the
Unruh vacuum as compared with an ordinary inertial
thermal bath in Minkowski spacetime at the same temper-
ature. Furthermore, in the Boulware vacuum in a black hole
spacetime—which is the ground state with respect to the
timelike Killing field and thus has no particles—Alice’s
superposition still spontaneously emits entangling soft
photons/gravitons into the black hole, but the number of
entangling particles grows only logarithmically with time.
The Unruh vacuum corresponds to a thermal population
whose density of states diverges at low frequencies. The
presence of these low-frequency quanta stimulate the
emission of entangling soft radiation into the horizon, so
that the number of entangling soft photons/gravitons grows
linearly in time.

Our local reformulation of Alice’s decoherence also
allows one to also consider what happens when one replaces
the black hole by a body without a horizon. It is instructive
to consider the case where Alice’s lab is in the spacetime
outside of a static, spherical star rather than a black hole but
we do not consider any internal degrees of freedom of the
matter composing the star, i.e., we consider only the effect
of replacing the spacetime geometry of a black hole with the
spacetime geometry of a star. If the quantum field is in its
stationary ground state in the spacetime of the star, then the
two-point function of the quantum field in Alice’s lab
should look very much like the Boulware vacuum in
Schwarzschild spacetime with respect to the incoming
modes from infinity. However, the “white hole incoming
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modes” of Schwarzschild will be entirely absent for the star.
These white hole modes are responsible for the decoherence
effects that grow with T in Schwarzschild, so a similar
decoherence will not occur for the star. Even if the quantum
field is in a thermal state in the spacetime of the static star,
there will be no decoherence effects that grow with 7. Thus,
the presence of a horizon is essential for the kind of
decoherence obtained for a Schwarzschild black hole.

Nevertheless, one can get decoherence without a horizon
if one has a material body with internal degrees of freedom
that interact electromagnetically and/or gravitationally with
the particle in Alice’s lab. In this situation, the interaction is
now mediated by the long-range Couloumbic/Newtonian
field of the superposition without any emission of radiation,
analogous to the gedankenexperiment [26,27] in flat
spacetime where Alice and Bob both perform their experi-
ments adiabatically and in causal contact with one another.
As we shall show, the material body will mimic the
decoherence effects of the black hole if, at very low
frequencies, the thermal fluctuations of its electric dipole
moment and/or mass quadrupole moment agree with black
hole case [see Egs. (4.48) and (4.49) below]. This issue has
recently been investigated by Biggs and Maldacena [28]. In
order for a body of size comparable to that of a black hole to
be able to absorb and emit low frequency electromagnetic
or gravitational waves as efficiently as the black hole, a
conducting or gravitating body must have a very large
resistance or viscosity. There does not appear to be any
difficulty, in principle, in achieving this in the electromag-
netic case [28]. However, some extraordinary physical
properties of matter would be required to mimic the
quantum gravitational decoherence effect [28].

In Sec. II, we review our previous derivation of
decoherence in the presence of a horizon. In Sec. III, we
provide a local reformulation of this decoherence in terms
of the two-point function of the quantum field in Alice’s
laboratory over the duration of her experiment. In Sec. IV,
we compute the decoherence in the Unruh vacuum in
Schwarzschild using our local formulation, which requires
the computation of the two-point function of the electric
field along the worldline of Alice’s lab. Finally, in Sec. V,
we compute the decoherence for different vacua in
Schwarschild and in different spacetimes, including a brief
discussion of the decoherence due to entanglement with an
ordinary material body.

Unless otherwise stated, we will work in Planck units
where G = ¢ =h = kg =1 and, in electromagnetic for-
mulas, we also put ¢, = 1. We will generally follow the
notational conventions of [29]. In particular, abstract
spacetime indices will be denoted with lowercase latin
indices from the early alphabet (a,b,c...). Spacetime
coordinate components will be denoted with greek indices.
Spatial coordinates and components will be denoted with
latin indices from the middle alphabet (i, j, k, ...).

II. DECOHERENCE OF A QUANTUM
SUPERPOSITION DUE TO RADIATION

In this section we briefly review the analysis of
decoherence due to radiation through a Killing horizon
previously given in [22,23]. We will focus on the electro-
magnetic case and merely state the corresponding results in
the gravitational case.

An experimenter, Alice, in a stationary lab in a stationary
spacetime (.7, g,;) controls a charged particle’ which is
initially held stationary in her lab. The particle is put
through a Stern-Gerlach apparatus over a time 7' so that at
the end of this process its quantum state is of the form

1

ly) = ﬁ(lvm + [y2)). (2.1)

where |y, ) and |y») are the spatially separated, normalized
states of the particle after passing through the Stern-Gerlach
apparatus. Alice maintains this stationary superposition for
a (proper) time T, and she subsequently recombines her
particle over a time 7, where we assume that 7 > T, T,.
The recombined particle is then kept stationary. We now
analyze the decoherence of Alice’s particle due to emission
of entangling electromagnetic radiation sourced by Alice’s
superposition.

We assume that |y;) and |y») are sufficiently spatially
separated that (y| j*|w,) = 0 and we further assume that
the fluctuations of the charge current j¢ in states |y) and
lw,) are negligible compared with their expected values.
We may then treat the charge-current of each component of
the superposition as a c-number source in Maxwell’s
equations. Thus, if Alice’s particle is in state |y,) for
n =1, 2, then the electromagnetic field operator is given
by [30]

An,a = Aian + Graet(jn)l’ (22)

where A" is the unperturbed (“in”) field operator and
G%'(j,) is the retarded solution associated to the classical
charge-current j¢ = (y,[j*|w,). The “out” radiative field at
late times is obtained by subtracting the final Coulomb
field C, of the recombined particle from A, ,

Aguztz = An,a - Calv

=Abh, +A,,.1, (2.3)

where

'"The “particle” need not be “elementary,” e.g., it could be a
nanoparticle. All that is required is that the degrees of freedom of
the particle apart from its center of mass may be neglected.
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-An,a = Graet(jn) -G, (24)

We assume that the initial state of the quantum electro-
magnetic field is some “vacuum state” (i.e., a pure, quasi-
free state) |Q2) that is invariant under the time translation
symmetries of the spacetime. The unperturbed field oper-
ator A" on the Fock space, .7 (.5}, ), associated with |Q)
can be expressed in terms of annihilation and creation
operators on .% () as

A (f?) = ia(KA(f)) — ia"(KA(f)). (2.5

where f is a divergence-free” test vector field and A(f) is
the advanced minus retarded solution to Maxwell’s equa-
tion with source f¢

A)](x) = /% VI B (x X)), (26)

where A, (x,x") is the advanced minus retarded Greens
function. Here K is the map that takes classical solutions
into the corresponding one-particle states in the Fock space
defined by |Q).

As can be seen from Eq. (2.3), the “out” state corre-
sponding to the “in” vacuum |Q) has field correlation
functions at late times that are obtained from the vacuum
correlation functions by shifting the field operator by a
multiple of the identity operator. It follows that if Alice’s
particle is in state |y,), then the “out” state of the
electromagnetic field will be given by the coherent state

|¥,) = e IEAI expla’ (K A,))|Q). (2.7)
where, for notational simplicity, we drop the spacetime
index “a” from A, ,, Eq. (2.4), here and elsewhere in the
remainder of this section. The norm ||KA,|| appearing in
Eq. (2.7) is taken in the one-particle Hilbert space of the
Fock space of |Q).

The joint quantum state of Alice’s particle together
with the emitted electromagnetic radiation at late times
is given by

1
ﬁ

Thus, the decoherence of Alice’s particle due to the
emission of electromagnetic radiation is then given by

(1) ® [¥1) + [w2) @ [¥2)). (2.8)

Datice = 1 = [(¥1]¥2)]. (2.9)

“Restriction of the smearing to divergence-free test functions is
necessary and sufficient to eliminate the gauge dependence of
Ain. (see, e.g., p. 101 of [31]).

The magnitude of the inner product of the coherent states
|¥,) and |¥,) is computed to be

)| = exp( -3 IK (4 - A)P). 210

where K(A; — A,) denotes the one-particle state associ-
ated with late time classical solution

Ay = Ay = G=(j, — o). @.11)
But [|[K(A; — A,)|* is equal to the expected number of
photons, (N), in the coherent state associated with the late
time classical solution .A; — A, sourced by j; — j,

(N) = [|K(A = A)|I?> = [KG(jy = )P (2.12)

Thus, we have

@zl—exp(—%(N}). (2.13)

We shall refer to (N) as the expected number of entangling
photons. If the expected number of entangling photons is
significantly bigger than 1, then Alice’s superposition will
be completely decohered.

Thus, we see that to compute the decoherence of a
superposition created by Alice under the assumptions
stated above, we proceed as follows:

(1) We compute the expected currents j; and j, of the

components of Alice’s superposition.

(2) We compute the classical retarded solution G™(j; —
J») sourced by the difference of these currents.

(3) We compute the one-particle state KG™(j; — j,) of
this classical solution at late times and its squared
norm ||[KG™(j, — j,)||>. This yields the expected
number of entangling photons, (N), and thereby the
decoherence, Eq. (2.13). Note that the one-particle
map K depends on the choice of vacuum state |2).

The above analysis extends directly to the linearized
quantum gravitational case, where the linearized metric
perturbation £, is treated as a field propagating on a fixed
spacetime background. In the above formulas, we simply
replace A, with h,;, and we replace the current j, with the
linearized stress tensor 7T, The expected number of
entangling gravitons is then given by the analog of
Eq. (2.12) and the decoherence is given by Eq. (2.13).

In Minkowski spacetime, we may take the notion of
stationarity to be given by ordinary, inertial time translations
and we may take |Q) to be the Poincaré invariant vacuum. If
a particle of charge ¢ is put in a superposition separated by a
distance d, then we may estimate G™(j; — j,) near null
infinity using the Larmor formula. The one-particle state
KG™(j; — j,) is the positive frequency part of this solution
with respect to inertial time translations. The norm of this
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one-particle state is given by the Klein-Gordon norm. The
expected number of entangling photons is thereby estimated
to be [26,27]

q*d?

Ny~ ——m———— Mink ki, EM). 2.14
(N) [T, o (Minkowski ) ( )

Thus, the decoherence does not depend upon 7" and can be
made arbitrarily small by performing the separation and
recombination of the superposition sufficiently slowly, so
that Tl? T2 > qd

In the analysis of the corresponding gravitational case we
must take into account the fact that conservation of total
stress-energy implies that the center of mass cannot change.
Thus if the component |y;) of the superposition corre-
sponds to the particle moving to the right, then Alice’s lab
must move a tiny bit to the left to keep the center of mass
unchanged. The upshot is that the leading order contribution
to the retarded solution with source T¢* — T4 arises from
quadrupole radiation rather than dipole radiation. The
estimate corresponding to Eq. (2.14) for the number of
entangling gravitons is [26,27]

m*d*
min[7T, T,]*

(N) (Minkowski, GR). (2.15)

Again, the decoherence does not depend upon 7 and can be
made arbitrarily small by performing the separation and
recombination of the superposition sufficiently slowly, so

that Ty, T, > Vmd".

However, it was shown in [22] that the situation is
drastically different in the presence of a black hole or, more
generally, any Killing horizon [23]. In the case of a black
hole, the relevant vacuum is the “Unruh vacuum” |Qy). If
T,, T, are sufficiently large—i.e., if Alice separates and
recombines the particle sufficiently slowly—then the num-
ber of entangling photons/gravitons emitted to infinity will
again be negligible. However, if an initially stationary
source is moved to a new position and held there forever,
the retarded solution will exhibit a “memory effect” on the
horizon [32]. Consequently, it can be seen that if Alice were
to keep her superposition open forever, an infinite number
of soft entangling photons/gravitons would be emitted
through the horizon, in close analogy with the infrared
divergences at infinity that arise in scattering theory (see,
e.g., [33-36]). If Alice closes her superposition after time 7,
then the number of entangling photons radiated through the
horizon will be finite but will grow linearly with 7. In the
electromagnetic case the number of photons grows as [22]

M3q*d>

<N> ~ Do

T (black hole, EM),  (2.16)

where M is the mass of the black hole and D is the proper
distance of Alice’s lab from the horizon (and, for simplicity,

we have assumed that D > M so that, e.g., the redshift factor
at Alice’s lab is of order unity and can be absorbed in the

~”). The analogous computation in the gravitational case’
yields [22]

Mom?d*

Wh~ i

T (black hole, GR).  (2.17)

More generally, it was shown that in the presence of any
Killing horizon (e.g., a Rindler or cosmological horizon)
the number of entangling soft photons and gravitons
grows linearly in the time 7 that the superposition is
maintained [23].

The above results were obtained by calculating the
quantum state of the electromagnetic and linearized gravi-
tational fields on the horizon associated with the retarded
solution sourced by the components of Alice’s super-
position. The decoherence of Alice’s particle was attributed
to the emission of entangling photons/gravitons through the
horizon. Thus, it might appear that the global properties of
the spacetime—specifically, the presence of a horizon—are
essential for the description of the decoherence phenome-
non we have just given. However, we will now show that
the decoherence can alternatively be described purely in
terms of the local properties of the unperturbed quantum
field within Alice’s laboratory. This alternative viewpoint
will enable us to compare decoherence phenomena in the
presence of a black hole with decoherence phenomena
occurring when no horizon is present.

III. LOCAL REFORMULATION
OF THE DECOHERENCE

As in the previous section, we first consider the electro-
magnetic case and then state the corresponding results in
the gravitational case.

A local reformulation of the electromagnetic decohe-
rence results of the previous section is obtained from the
following simple observations: First, since j; = j, at
late times, the retarded solution G™'(j; — j,) is equal to
—A(j, — j») at late times, where A = G — G™, Thus, we
may replace G™ by —A in Egs. (2.11) and (2.12), and we
no longer have to evaluate these quantities at late times.
Second, we note that it follows immediately from Eq. (2.5)
that for any (divergence-free) test vector field f¢, we have

(QIAZ(F)IP1Q) = KA, (3.1)

where A" denotes the unperturbed electromagnetic field.
Combining Eq. (3.1) with Eq. (2.12) (with G™" replaced
by —A), we obtain

*In the gravitational case, it will be necessary to have some
additional stress energy present to hold Alice’s lab stationary and
keep her particle components stationary. We neglect any effects
of such additional stress energy.
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(N) = (QI[AR(j¢ — )P I). (3.2)
Thus, we see that the prescription for computing the
decoherence of Alice’s superposition outlined in the points
given in the previous section can be equivalently reformu-
lated as follows:

(1) We compute the expected currents j{ and j§ of the
components of Alice’s superposition.

(2) We compute the two-point function (QJAI"(x) x
A (x')||Q) of the unperturbed field in the vacuum
state |Q).

(3) We smear this two-point function in both variables
with the test vector field f¢ = j{ — j§. This yields
the expected number of entangling photons, (N),
and thereby the decoherence, Eq. (2.13).

The remarkable feature of this reformulation is that it
requires only knowledge of the expected currents and the
unperturbed two-point function of the quantum field in
Alice’s lab, i.e., unlike the previous prescription, we do not
need to calculate anything about the particle content of the
perturbed field at late times. In particular, this explicitly
demonstrates that the decoherence can be viewed as a purely
local phenomenon occurring entirely in Alice’s lab.

The corresponding result in the linearized gravitational
case is

(N) = (@i, (15~ T)PQ), (33)
where T{? — T4? is the difference in the stress energy of the
components of Alice’s particle (also taking into account the
tiny correlated motion of Alice’s lab that keeps the center of
mass fixed). Again, the calculation of decoherence is seen
to require only a knowledge of the expected stress energy of
the components of Alice’s particle as well as the unper-
turbed two-point function of the quantum field in Alice’s
lab, so the decoherence can be viewed as a purely local
phenomenon occurring entirely in Alice’s lab.

Note that Egs. (3.2) and (3.3) show that the quantity
(N)—and hence the corresponding decoherence, 7, given
by Eq. (2.13)—are determined by the vacuum fluctuations
of the quantum field smeared into the difference of the
sources in Alice’s lab.

In the next section, we recompute the black hole
decoherence Eq. (2.16) using our local reformulation.
This will enable us to gain further insights into the nature
of the decoherence in the presence of a black hole and to
compare it with cases where no horizon is present.

IV. LOCAL CALCULATION
OF THE DECOHERENCE IN THE UNRUH
VACUUM AROUND A SCHWARZSCHILD
BLACK HOLE

We now compute the decoherence of Alice’s particle in
the presence of a Schwarzschild black hole by the methods

of the previous section. We will focus upon the electro-
magnetic case and merely comment briefly on the linear-
ized gravitational case near the end of this section.

If we neglect the spatial extent of the particle compo-
nents, then we have

, . . dr
i) 2 L0 - XN Ot (@)
and similarly for j§. Here 7 is the Killing time coordinate, x’
are spatial coordinates on the hypersurfaces X, orthogonal
to the timelike Killing field 74, X! (¢) is the path taken by the
center of mass of the first component of the particle, u{ is
the 4-velocity of that path, 7, is the proper time along the
path, and 53) is the “coordinate delta function” defined so
that [ 6@ [x' — Xi(#)]d®x = 1. For nonrelativistic motion
relative to the rest frame of #“, we have dr, /dt ~ \ /=g, and

j (1, x7) z%é@) = X))+ 09), (4.2)

-9

where v“ is the coordinate velocity of the component, i.e.,
vi = dX}/dt and v = 0. We represent the displacement of
the two components of Alice’s particle at time ¢ by the
tangent vector S%(¢) to the geodesic segment in X, of unit
affine parameter that connects the centers of mass of the
two components. We write S¢(r) = d()s*(t), where s® is a
unit vector. Then d(7) represents the proper distance
between the components. We assume that s¢ is Lie trans-
ported along ¢ (i.e., the direction of separation does not
change with time) and that d(¢) is smoothly varying and is
such that

4 = {d for || < T/2 “3)

0 fort<-T/2—T;andt>T/2+T,

The difference between the current densities of the two
components is given by

o adl _xi
(§—J5) ~ q—/ﬁ—g) 15PV,60 (x — X7)
q . .
— S (xf = X)) V,d(1),  (4.4)
N

where X' is the position of Alice’s lab. Here, the first term
arises from the difference in charge densities and the
second term arises from the difference in spatial currents.
We may rewrite this as

(e - j3) j—j’_grlasﬂvb[d(z)(s@)(xf _X). (45)
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We define the electric field £, on the static slices by4

Ea - Fahlb — (VuAh - V,,Aa)th. (46)
It follows immediately from Eq. (4.5) and the definition of
E that the unperturbed field A" smeared in with j§ — j§
(with the volume element ,/—gd*x understood in the
smearing) is given by

ARGt =39~ a [ (O BR (X, (@47)
Thus, from Eq. (3.2), we have

(N) = qz/dtdl’d(t)d(t’)(s“Eian(t, X)s“E™ (¢, X"))q.
(4.8)

Thus, to calculate (N) and thereby the decoherence
Eq. (2.13) of Alice’s particle, we simply evaluate the
two-point function of the component, s“E™" of the electric
field in the direction of the separation, s¢, of the compo-
nents of Alice’s particle evaluated at Alice’s lab, x' = X',
and smeared in time via the separation d(r).

Thus, the remaining task is to obtain the two-point
function of the unperturbed electric field, which we will do
via a mode expansion. We shall simplify this task by
restricting consideration to the case of radial separation of
the components of Alice’s particle, so that we need only
calculate the two-point function of the radial component of
E™. The magnetic parity modes do not contribute to the
radial component of the electric field so we need only
consider the electric parity modes [37]. The two-point
function of the radial coordinate component E™ has been
calculated for the Boulware, Unruh, and Hartle-Hawking
vacuum states by Zhou and Yu [38] and Menezes [39],
who obtained’

(E.(x)E,(x'))g = i%/ﬁ %"e—iw(z—/)
X [G(@)R s (r)R: ()
G(@)R o (PR} (1)].

+

(4.9)
Here,

*Note that this differs from the notion of the “electric field on
the horizon” used in [22,23], which was defined as F,k?, where
kP is the null normal to the horizon.

>These results are given in Egs. (51)-(53) of [38] and
Egs. (A13)-(A16) of [39]. We have used the addition theorem
for spherical harmonics to rewrite their sum of spherical har-
monics over azimuthal number m in terms of P,(7 - 7).

1

C,=
T

A6+ 1)26 +1) (4.10)

and P, is the Zth Legendre polynomial [so P,(?-#) =1

for the case of interest below where x' = x']. The

mode functions R,,(r) and R,,(r) satisfy the differential
equation

d*R
2 4 [0 = V(r)R,e =0, (4.11)
dr
where
2MN\ (¢ + 1
WA:O-—yigPl (4.12)
r r
and r* is the radial “tortoise coordinate”
f = 2MIn (- —1 (4.13)
rr=r — = .
2M ’

which satisfies dr*/dr = (1 —=2M/r)~" and ranges from
r* — —oo at the horizon to r* — +oco at infinity. The

modes ﬁa,f correspond to waves that are incoming from the
white hole and are defined by the asymptotic conditions

Rye(r) = (4.14)

- )

- { e + Ay pe " as r— 2M
iwr*
Bwfe

asr —> oo

whereas the modes wa correspond to waves that are
incoming from infinity and are defined by the asymptotic
conditions

- [Ber e
ot .

(4.15)

e—ia)r* +Awfei(11r* as 7 — oo

Finally, the coefficients G(w) and G(w) appearing in
Eq. (4.9) depend on the choice of vacuum state |Q).
For the Boulware vacuum [40], |Qg), we have

Gg(w) = Gp(w) = O(w) (4.16)
corresponding to the fact that Boulware vacuum is positive
frequency with respect to Killing time at both the white

hole horizon and past infinity. For the Unruh vacuum [41],
|Qy), we have

. 1

Gu(w) =+ and Gylw) =0O(w), (4.17)

where « is the surface gravity of the black hole, correspond-
ing to the fact that the Unruh vacuum is positive frequency

with respect to Killing time at past null infinity but is
positive frequency with respect to affine time (and thus is
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thermally populated with respect to Killing time at temper-
ature x/27) on the white hole horizon. Finally, for the
Hartle-Hawking vacuum [42], |Qyy), we have

1

Gin() = Gyn(@) = 1= g 2malx’ (4.18)

corresponding to the fact that the Hartle-Hawking vacuum is
a thermal state at both the white hole horizon and past null
infinity.

We now plug our expression Eq. (4.9) for the two-point
function into our formula Eq. (4.8) for (N). We obtain

i CALZ2D [ 22 ae

AN

X [G(@)|Roe (NP + G@)[Rye(MP]. (419
Here r is the radial coordinate of Alice’s lab and d(w) is the
Fourier transform of d(t)

d(w) = /_ " dt e 'd(r). (4.20)

The factor of (1 — 2M/r) arises from converting the proper
distance component s“E, appearing in Eq. (4.8) to the
coordinate component E, appearing in Eq. (4.9), and we
used the fact that P,(1) = 1.

For d(t) of the form Eq. (4.3) with T large, the
magnitude of the Fourier transform |d(w)| behaves like
d/|w| as @ — 0 until this divergent behavior levels off
below |w|~ 1/T. There will also be a high frequency
cutoff at |w| ~ 1/ min[T, T,]. Thus, we may approximate
the contribution of |d(w)| to the integral in Eq. (4.19) using

A d
Iﬂwﬂ~{0

Thus, the behavior of (N) at large T will be determined by
the behavior of the integrand of Eq. (4.19) near the low
frequency end, |w| ~ 1/T, of the range of integration. In
order to determine this behavior, we need to obtain

I_éwf(r> and Ewt’(r)

1~ |a)| <1
T min[7,T,]
1 (4.21)

lw| <1 or |w| > T

expressions for the mode functions
at very low frequencies.

In order to determine these mode functions at low
frequencies, we divide the exterior into three regions
(see Fig. 1):

Regionl 2M < r <ry, (4.22)
RegionIl r; < r < ry, (4.23)
RegionIll 3M < r < oo, (4.24)

il

|
w
o
[e=]

FIG. 1. The potential V(r*) plotted as a function of r* for
¢ = 1. The horizontal, gray dashed line corresponds to square of
the frequency @ = 0.01/M. The vertical blue and orange dashed
lines correspond to the turning points ] and r3, respectively. The
vertical, red dashed line is the peak of the potential at » = 3M.
The radial mode solutions in regions II and III are matched in the
regions where they overlap. The solutions in regions I and II are
both good approximations in a neighborhood of 7* = r] and so
can be matched there.

where [43]
8w’ M?
(¢ +1))'/?
G (4.26)
0]

Note that for oM <« 1, there will be a large overlap of
regions II and III. In region I, we may neglect the potential,
V(r),in Eq. (4.11) compared with @* and the solutions take
the form

RLA(r) mab(@)e™ + fl@)e™ . (4.27)
In region I, the potential, V(r), dominates over w* and the
solutions are well approximated by the static (zero fre-
quency) solutions [43,44]

R (r) ) 3pey-1) =102 P =]

2 2(2¢+1)
+ﬂg(a)) EQL,(),_ 1)- Ot ()’;(lz)f——’_Qlf)_l (y— 1)} ’

(4.28)

where y = r/M.

Finally, in region III, we may approximate the potential
as V(r) ~ £(¢ + 1)/r? and we may then approximate the
solutions by the flat spacetime solutions with r* replacing r
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R (r) ~ al(@)r* jo(wr) + I (@) r*ns(wr), (4.29)
where j, and n, denote the spherical Bessel and Neumann
functions. Note that in the overlap between regions II and
111, we may neglect® the difference between r and 7* and the
solutions take the form

Pl
RM ) ~ ap(w) /! + 7fr(f ) )

wl (430)

In order to determine R, (), we start with the solution
B, e~ in region III [see Eq. (4.14)], with initially
unknown coefficient wa. We match this solution to the
general solution Eq. (4.28) in region II and then match the
resulting solution to the general solution Eq. (4.27) in

region L. Finally, we adjust Ewbﬂ so as to give a coefficient
of 1 to the term e’ as r — 2M in Eq. (4.14). Similarly, to

obtain R,(r), we start with the solution B, e~ in
region I [see Eq. (4.15)], with initially unknown coefficient
Ew,;. We match this solution to the general solution
Eq. (4.28) in region II, match the resulting solution to

the general solution Eq. (4.29) in region III, and adjust éwf
so as to give a coefficient of 1 to the term e~ as r — oo
in Eq. (4.15).

For simplicity, we shall assume that Alice’s lab is
located in the region M < r < 1/w for the relevant range
of frequencies w ~ 1/T, so that it lies in the overlap of
regions II and III. This is the regime in which the estimates
of [22,23] reviewed in Sec. II apply, so we will be able to
make a direct comparison of our results with the results of

the previous calculation. The mode functions wa(r) were
previously obtained by Fabbri [43], since they are needed
to analyze scattering of classical waves by a black hole.
In region 111, we find that ' = O([@M]**?) and thus the
Neumann term in Eq. (4.29) may be neglected. The
solution with the correct normalization in region III is

R (r) m =23 aor* j(wr*). (4.31)
If, in addition, we have wr < 1, then
- i3f+]2f+lbp| . |
~_L = + -
R, (r)~ 751! (wr) M<r<w™). (4.32)

Thus, as might be expected, if we assume that Alice’s lab is
not close to the black hole (r > M), the modes in Alice’s
lab corresponding to low frequency incoming waves from

6Replalcement of r* by r in Eq. (4.29) would give rise to an
arbitrarily large phase error in the solutions as r — oo, so the
difference between r and r* cannot be neglected throughout
region III. However, the difference between r and r* makes only a
small correction, which we neglect, in the overlap of regions II
and III

infinity are essentially unaffected by the black hole. As in
flat spacetime, they are suppressed by the factor (wr)’+!
due to the angular momentum barrier. Since wr < 1, the
dominant contribution to the two-point function in Alice’s
lab from modes that are incoming from infinity arises from
the £ = 1 mode.

Performing the similar analysis for ﬁu,f(r), we obtain

few,f(r)wfg)fww) M<r<ol), (433)

where

22 =)+ 1)!
(2¢ +1)(2¢)!

ay = (4.34)

Note that, although at low frequencies the white hole modes
are essentially entirely reflected back into the black hole by
the potential barrier V(r), these modes fall off in r only as
the power law 1/7* and, thus, they penetrate far beyond the
peak of the potential barrier at r = 3M and can have a
nontrivial effect in Alice’s lab. Note also that, as opposed to
the incoming modes from infinity, the frequency depend-
ence of the white hole modes is ¢ independent. Since
r > M, the dominant contribution to the two-point func-
tion in Alice’s lab from the modes emerging from the white
hole arises from the # = 1 modes.

We now estimate (N)V, Eq. (4.19), for the case of the
Unruh vacuum, |Qy). (The cases of the Boulware and
Hartle-Hawking vacua will be treated in the next section.)
We first consider the contribution, (N)V, of the incoming
modes from infinity. We keep only the £ = 1 contribution

and use Eq. (4.32) to evaluate ﬁ,vl. We use Eq. (4.21) to

evaluate d and we also use Gy (w) = O(w). Ignoring all
subleading terms and all factors of order unity, we obtain
the following expression for the contribution of the
incoming modes from infinity in the Unruh vacuum

2 (1/min[T1.T5] deo d?

q

NV ~ L = 4
(V)= r K/T ® w? (@r)

N
min[Tl s Tz]z ’

(4.35)

This agrees with the estimate Eq. (2.14) for Minkowski
spacetime obtained by considering radiation of entangling
photons to infinity. Note that the contribution from the
incoming modes from infinity does not grow with 7.

Next, we estimate the contribution, (N)Y of the incom-
ing modes from the white hole to (N)Y. We keep only the
¢ =1 contribution and use Eq. (4.33). In the Unruh
vacuum, we have

025014-9



DANIELSON, SATISHCHANDRAN, and WALD

PHYS. REV. D 111, 025014 (2025)

> 1 K
Gy(w) = 1 — ¢~2m0/x ~ 27w’

(4.36)

Ignoring all subleading terms and all factors of order unity
and setting r = D, we obtain the following expression for
the contribution of the incoming modes from the while hole
in the Unruh vacuum:

(V)2

2d2kM* [ 1/min[T,.T5] d 2d*M>?
Nu/ e M p o 437)
1

DO T o> DS

For large T, this contribution dominates over Eq. (4.35), so
we have

q2d2M3
D6

~ (N)Y ~ T. (4.38)

This agrees with the estimate Eq. (2.16) for the
decoherence resulting from the emission of entangling
photons through the black hole horizon. Thus, our purely
local analysis reproduces the results previously obtained
in [22,23].

We now briefly comment on the analogous computation
in the linearized quantum gravitational case. If we approxi-
mate the stress-energy tensor of the first component of
Alice’s particle as being essentially a point particle, then its
stress-energy tensor would take the form

m . . dr
Ti (1) — =60 = X ()]uful —

N (4.39)

in analogy with Eq. (4.1). If this component was not
interacting with any other matter, then conservation of
stress energy would imply that it must move on a geodesic.
However, since we want the component to follow a non-
geodesic trajectory, Alice must apply some “external force”
to it. The external forces on the different components act
oppositely on the different components during separation
and recombination and will have a backreaction effect on
Alice’s lab. In Minkowski spacetime, conservation of total
stress energy implies that Alice’s lab would have to move
oppositely to the particle components so as to keep the
center of mass of the total system fixed. In the case of a
black hole spacetime, the situation is more complicated,
since a further external system would be needed to keep
Alice’s lab stationary. Nevertheless, the analog of the dipole
contribution Eq. (4.5) to the difference in stress energy of
the components should be canceled by the stress-energy
effects of Alice’s lab, and the leading order contribution
should be given by

2m dt i ;
(T = T§9) m 2 sl 9,V (1)) (xf - X)),

V/—gdr
(4.40)

The analog of Eq. (4.7) is then
R (T4 — TSP) ~m / dtd?(1)s9sPED™ (1, X7),  (4.41)

where E is the quantum field observable corresponding to
the electric part of the Weyl tensor E,j, = Cy0pqtt?. Thus,
the computation of (N), Eq. (3.3), reduces to obtaining the
two-point function of the Weyl tensor. Again, we can
simplify calculations by restricting to the case of radial
separation. The upshot is that the order of magnitude
estimates that we obtained above for the electromagnetic
case apply with the substitutions ¢ — m, d — d°, and the
mode sum now running over £ > 2, so that the dominant
contribution arises from £ = 2. For the Unruh vacuum, this
yields the estimate

2d4
(N)UOR M E (4.42)
min[T, 7]
in agreement with Eq. (2.15), and the estimate
MPm?d*
<N> E’GR ~ D10 (4'43)

in agreement with Eq. (2.17).
Finally, we note that Eq. (4.8) shows that, in the
electromagnetic case, we have

(N) = 612< (/ dtd(t)S“EL“>2>Q ~ @dPT?[A(sEM)]2,
(4.44)

where A(s“E") is defined by

[A(s*EM)]? = <<; / dtdg)s“Ei;)2>Q (4.45)

and thus can be interpreted as the root mean square of the
time average of the s* component of the electric field
fluctuations in state |Q) on Alice’s worldline during the
duration of her experiment.

The fluctuations of the electric field are most usefully
characterized by its power spectrum. The power spectrum
of the radial component of the electric S¥(w) is given by

SV(w) = / " dt 0O (B, (1, XDE, (1, X))o, (4.46)

o

The modes that dominantly contribute to this power
spectrum in Alice’s lab are the white hole modes R, with
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¢ =1and w~ 1/T. By Egs. (4.9) and (4.33), in the Unruh
vacuum these modes contribute’

$9(@) ~ 5 Gylo >|ie (.

"(

~—. 4.47
,,6 (4.47)

This corresponds to the black hole in the Unruh vacuum
acting as though it were an ordinary body with a randomly

fluctuating electric dipole moment, 1_5U with constant power
spectrum

AlPy|(w) ~

RG3/2 M3/ . M\ 3/2
Veo . ~10 ‘:'/HE <M> . (4.48)
C yA o)

where we have restored fundamental constants to empha-
size that this is an O(v/7) effect.

Similarly, in the gravitational case, the black hole acts as
though it were an ordinary body with a fluctuating mass
quadrupole moment of magnitude

VRG> M?/? gem? [ M52
AlQul(w) ~ = Nlol\/}E(_M> . (4.49)
(O]

More generally, the power spectra of the higher electric
multipole fluctuations and mass multipole fluctuations of
the black hole go as

ME+/2.

A|2B (@) ~ 1712

A2 (@) ~ (4.50)

There also are similar fluctuations of the magnetic parity
multipole moments. The dominant contribution to the
decoherence in Alice’s experiment, however, comes from
the lowest electric parity multipole moment.

In conclusion, we have successfully reproduced the main
results of [22,23] using our purely local reformulation. In
the next section, we will use our local reformulation to
compare the results for the decoherence in the Unruh
vacuum around a black hole to other cases.

V. COMPARISON WITH DECOHERENCE
ARISING IN OTHER CASES

The results we have obtained in the previous section
will now enable us to analyze the decoherence arising in
other situations. Specifically, we will analyze the cases
of (i) a Schwarzschild black hole in the Boulware or

"In Rindler spacetime, the analogous horizon modes similarly
make a contribution to the power spectrum of the electric field
that is nonvanishing as @ — 0 [25]. This fact is undoubtedly
intimately related to the phenomena analyzed in [45-48].

Hartle-Hawking vacuum, (ii) Minkowski spacetime in the
Minkowski vacuum or filled with a thermal bath of
radiation, (iii) a spacetime corresponding to the gravita-
tional field of a star with no internal degrees of freedom
assigned to the star, and (iv) a material body with internal
degrees of freedom in a thermal state.

A. Decoherence in the Boulware
and Hartle-Hawking vacua

The Boulware vacuum, |Qg), is the ground state for the
exterior region (r > 2M) of Schwarzschild with respect
to the timelike Killing field. The Boulware vacuum
is singular on the past and future event horizons of
Schwarzschild. Since it is singular on the future horizon,
it does not correspond to a physically reasonable state for a
black hole formed by gravitational collapse. Nevertheless,
the Boulware vacuum is a well-defined state in Alice’s lab,
and it is instructive to compute the decoherence of her
particle in the Boulware vacuum using the results of the
previous section.

The Boulware vacuum differs from the Unruh vacuum

only in that G and G are now given by Eq. (4.16) rather than
Eq. (4.17). Since Gy = Gy, it follows immediately that

(N)B is again given by Eq. (4.35), i.e.,
q2d2
min[Tl s T2]2 ’

—~
2
=
1w
I

—~
=

c

(5.1)

On the other hand, in the Boulware vacuum, we have
éB = O(w) rather than being given by Eq. (4.36).
Consequently, the integrand of the formula for (N)E will

differ from the integrand appearing on the right side of
Eq. (4.37) by a factor of ~w/x. We obtain

(N)B. ~

’

q2d2M4 /l/min[TIVTz] dw
D /T @

_ grdEmt n T
- D° min[T,T,]/)"

Additionally, we note that the Boulware vacuum at Mo < 1

(5.2)

has a randomly fluctuating electric dipole A|f’B| and mass
quadrupole A|Qg| of magnitude

NMZ\/E, NM3\/5’

which are much smaller than the corresponding fluctuations
in the Unruh vacuum given by Eqs. (4.48) and (4.49).
Equation (5.2) could also be derived by the methods used
in [22,23]. Indeed, the only change that needs to be made to
the calculations done in [22,23] is that when we compute
the one-particle norm corresponding to the retarded sol-
ution with source j{ — j§ on the horizon, we now have to
take the positive frequency part with respect to Killing time

A|1'_5B|(CU)

A|Qs(w) (5.3)
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rather than affine time. The same calculation as led to
Eq. (13) of [22]—which yielded (N) varying as In V, where
V denotes the affine time duration of the separation—now
yields the InT dependence8 given in Eq. (5.2).

Next, we consider decoherence in the Hartle-Hawking
vacuum, |Quy). In the exterior region (r > 2M) of
Schwarzschild, the Hartle-Hawking vacuum is a thermal
(KMS) state with respect to all modes at temperature

T =«/2x. Since éHH = éU, it follows immediately that
(N)IH is again given by Eq. (4.37), i.e.,

q2J2M3
D6

(NI = (N)E ~ T. (5.4)

On the other hand, in the Hartle-Hawking vacuum we have

< 1
Gun () = 1= ool 7 (5.5)
with .7 = /27 = 1/8zM rather than G = O(w) as for the
Boulware and Unruh vacua. At low frequencies, we have
GHH(w) ~ 7 /w. Consequently, the integrand of the for-
mula for (N1 will differ from the integrand appearing on
the right side of Eq. (4.35) by a factor of 7 /w at low

frequencies. We obtain

22 2 2
i TET TE (s
min[T,,T,] Mmin[T,, T,]
which differs from Eq. (4.35) in that a factor of M has
replaced a factor of min[7},T,] in the denominator.
Nevertheless, the thermal population of incoming modes
from infinity does not lead to a decoherence that grows with
T. The key point is that although the radiation incoming
from infinity is thermal, it does not have the necessary
population of “soft modes” to provide a decoherence effect
similar to the white hole modes [25]. For sufficiently large
T the contribution of the incoming modes from infinity will
be negligible compared with the contribution from the
white hole modes, Eq. (5.4), and the decoherence in the
Hartle-Hawking vacuum will be the same as in the Unruh
vacuum.

It should be noted that there can be additional
decoherence effects resulting from thermal populations
of modes emerging from the white hole and/or infinity that
have not been taken into account in our analysis above. In

¥ Affine time V is related to Killing time 7 by V « exp(xT), so,
for the Unruh vacuum, the logarithmic dependence on V is
converted to the linear dependence on 7 obtained above.
However, for an extremal black hole (x = 0), the relation between
V and T is linear, so one would expect only logarithmic growth of
(N) with T in the extremal case. In fact, in the electromagnetic
case, the coefficient of this logarithmic term also vanishes in
extremal Kerr [24] (the “black hole Meisner effect”) but a InT
dependence occurs for a scalar field [24].

particular, we have implicitly assumed in our analysis that
the components of Alice’s particle move on fixed trajec-
tories that are not affected by the incoming radiation. This
would be the case if, e.g., the components of Alice’s
particle are rigidly held in traps.” However, if these
components are free to move in response to the incoming
electromagnetic radiation, there will be Thompson scatter-
ing of the radiation. Since the Thompson scattering will
be slightly different for the different components, this
will result in decoherence that will grow with time for a
steady influx of radiation. The decoherence arising from
Thompson scattering of low frequency thermal radiation
was estimated in [23], based upon previous analyses of
collisional decoherence given in [49-52]. It was shown
in [23] that, in the Rindler case, this collisional decohe-
rence can be neglected compared with the decoherence due
to emission of soft radiation. For the case of a black hole in
the Unruh or Hartle-Hawking states, the same would be
true if Alice’s lab is sufficiently near the black hole.
However, the decoherence rate due to emission of soft
radiation falls off rapidly with distance, D, from the black
hole, whereas the collisional decoherence rate falls off
more slowly in the Unruh vacuum and does not fall off at
all in the Hartle-Hawking vacuum. Thus, if the particle
components are free to respond to the incoming radiation,
the collisional decoherence effects will dominate at suffi-
ciently large distances from the black hole.

Finally, we briefly mention the corresponding results for
the gravitational case. In the gravitational case, a calcu-
lation analogous to that which led to Eq. (5.2) now yields

2d*M® T
M In( — . (5)
D min[7', T,]

whereas (N)BCR is the same as for the Unruh vacuum,
Eq. (4.42). A calculation analogous to that which led to
Eq. (5.6) now yields

(N)BCR

(NYHHGR m2d* T m2d*

~ , 5.8
- min[Tl, T2]3 Mmin[Tl, T2]3 ( )

whereas (N)HHGR 5 the same as for the Unruh vacuum,
Eq. (4.43).

B. Decoherence in Minkowski spacetime
In Minkowski spacetime, there are no ‘“white hole
modes,” ﬁwf( r), of the quantum field. The incoming modes
from infinity, I?a,f(r), are given by

Erz}f<r) = _2i3l+10)rjf(a)r)7 (59)

°It would be best to use nonelectromagnetic traps, so that the
traps do not produce any shielding or other electromagnetic
effects that could interfere with Alice’s experiment.
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corresponding to taking the limit as M — 0 of the
Schwarzschild modes. The two point function of the radial
component of the electric field can be obtained from
Eq. (4.9) by deleting the white hole modes and using
Eq. (5.9) for the incoming modes from infinity. The

Minkowski vacuum, |Q,,), corresponds to é(w) = 0(w).
It follows immediately that the decoherence of Alice’s
particle in the Minkowski vacuum will be given by the
same estimate as we previously obtained for the
decoherence effects of the incoming modes from infinity
in Schwarzschild for the Boulware or Unruh vacua [see
Egs. (4.35) and (5.1)], namely

q2d2
min[T1 s T2]2 ’

(N)M (5.10)

This agrees with the estimate originally given in [26]. In
particular, the decoherence effects do not grow with 7.

If we thermally populate the modes wa(r) in Minkowski
spacetime at temperature .7, then the decoherence will be
given by the same estimate as we previously obtained in
Eq. (5.6) for the decoherence effects of the incoming modes
from infinity in Schwarzschild for the Hartle-Hawking
vacuum, namely

2
(N)M LT (5.11)
mln[Tl s Tz]
In particular, the decoherence effects do not grow with 7,
despite the presence of the thermal bath.
In a similar manner, in the gravitational case, for the
Minkowski vacuum, we obtain

m2d*

N M,GR
< > min[Tl, T2]4

(5.12)

in agreement with the original estimate of [26]. If
Minkowski spacetime is populated with a thermal bath
of gravitons at temperature .7, then we obtain the same
estimate as in Eq. (5.8), namely

m*d* T

N MGR _| ]
< >th min[T1 R T2]3

(5.13)

Again, the decoherence effects do not grow with 7', despite
the presence of a thermal bath of gravitons.

Finally, we point out that for a scalar field it is possible,
in principle, to get decoherence in an inertial laboratory in
Minkowski spacetime from *“soft radiation” despite the
absence of a horizon. In Minkowski spacetime, a memory
effect and associated infrared divergences occur at null
infinity for a massless field as a result of a permanent
change in the field at order 1/r. Since charge is conserved
in electromagnetism, such O(1/r) changes can occur in
the electromagnetic case only via Lorentz boosting of the

Coulomb fields of the charged particles. This generically
occurs in scattering, since the outgoing charged particles
generically have different momenta from the incoming
particles. However, the protocol of Alice’s experiment
requires her to keep the components of her particle
confined to her lab, which precludes changes in particle
momenta lasting a long enough time 7 to produce
significant decoherence via “soft radiation.” This is in
accord with what we have found above. Similarly, since
mass is conserved in linearized gravity, there also are no
significant “soft radiation” decoherence effects. However,
for a scalar field, scalar charge need not be conserved, and
a change in the scalar field at order 1/r can be achieved by
simply changing the monopole moment of the source.
Consequently, a source with a permanent change of scalar
charge will radiate an infinite number of “soft” massless
scalar particles in £ = 0 modes. We can use this fact to
obtain decoherence via soft radiation to null infinity in
Minkowski spacetime in a manner previously suggested
in [24] as follows.

Suppose that a massless scalar field ¢ exists in nature
and Alice performs her experiment in an inertial laboratory
in Minkowski spacetime with a particle with scalar charge.
Suppose, further, that her protocol includes changing the
charge of one of the components during separation and then
restoring the charge during the recombination.'® The scalar
analog of Egs. (3.2) and (3.3) is

(N) = (@™ () — j2)PI). (5.14)
The mode expansion of the two-point function of a scalar
field in Schwarzschild is given in [53]. It takes a form very
similar to Eq. (4.9) except that (i) the factor of 1/r%r? is
replaced by 1/r7 for the definition of scalar mode functions
analogous to our definition of electromagnetic mode func-
tions used in Eq. (4.9) and (ii) the mode sum begins atZ = 0
rather than # = 1. Only the incoming modes from infinity
are relevant for Minkowski spacetime, and they again take
the form Eq. (5.9). The # =0 modes contribute to
Eq. (5.14) an extra factor of 1/w” relative to the £ = 1
modes. For the case where the scalar field initially is in the
Minkowski vacuum state |Qy), a calculation in direct
parallel to Eq. (4.35) yields

W~ @asPin( ) (9

where Agg denotes the scalar charge difference of the two
components during their separation. This behavior is
analogous to the decoherence occurring in the presence

'If the experiment is performed in the presence of a black hole
or other gravitating body, such a change in scalar charge as
determined at infinity automatically occurs from redshift effects if
the components are separated in the radial direction [24].
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of a black hole for the Boulware vacuum [see Egs. (5.2) and
(5.8)]. If Minkowski spacetime is initially filled with a
thermal bath of scalar particles at temperature .7, then we
obtain

(N)iw® ~ (Ags? T, (5.16)
which is analogous to the decoherence in the presence of a
black hole in the Unruh or Hartle-Hawking vacua.'' In both
cases, the decoherence grows with T due to the emission of
soft radiation to infinity, and we thus see that such
decoherence is possible, in principle, without the presence
of a horizon.

C. Decoherence in the spacetime of a static star

We now consider the decoherence effects arising in
Alice’s lab when we place it outside of a star rather than a
black hole. In this subsection, we do not consider the
decoherence effects that may arise from interactions with
degrees of freedom of the matter composing the star, i.e.,
we are concerned only with the effects of replacing the
black hole spacetime with a spacetime without a horizon.
Decoherence effects due to interactions with matter will be
considered in the next subsection.

The metric outside of a static, spherical star is identical to
the metric of a Schwarzschild black hole. If the electro-
magnetic field in the spacetime of a static star is initially in
its ground state, then one might expect that if Alice
performs her experiment outside of the star, she would
get essentially the same results as she would have obtained
by performing her experiment at the same radius in
Schwarzschild spacetime with the electromagnetic field
initially in the Boulware vacuum state.” Similarly, if the
electromagnetic field in the spacetime of the star is initially
in a thermal state at temperature .7 = 1/8zM, one might
expect that Alice would get essentially the same results as
for a Schwarzschild black hole with the electromagnetic
field initially in the Hartle-Hawking vacuum state. The
purpose of this subsection is to explain why these expect-
ations are not correct.

The key point is that the behavior of a quantum field in
the spacetime of a star differs significantly from that of a

"For a scalar field the similarity of the decoherence rate in a
global thermal state in Minkowski spacetime, as compared to the
decoherence due to a Killing horizon is related to the fact that the
restriction of the two-point function of the Minkowski vacuum to
a uniformly accelerating world line is identical to the restriction
of the two-point function of the global Minkowski thermal state at
the Unruh temperature to an inertial world line. However, for the
electromagnetic and gravitational fields, no such equivalence
holds [54], and, as we have seen, these fields do not exhibit the
analogous decoherence in a global thermal state.

"In contrast to a static star, a body that collapses to a black

hole produces the Unruh vacuum in its exterior, so that (N) grows
linearly in time, as we have shown.

quantum field around a black hole in that the white hole

modes, I_éwa(r), are absent. The complete absence of the
white hole modes in the case of a star is very different from
the modes being present but in their ground state, as occurs
for the Boulware vacuum in Schwarzschild. The white hole
modes in Schwarzschild represent additional degrees of
freedom of the quantum field that are not present in the case
of the star. It is these additional degrees of freedom—
associated with the presence of a horizon—that are respon-
sible for the decoherence effects that grow with 7 in Alice’s
experiment.

To see this explicitly, we note that in the spacetime of the
star, the two-point function of the radial component of the
electric field is modified from Eq. (4.9) in that (i) the white

hole modes, R,,(r), are absent and (ii) the incoming modes

Py

from infinity, R,,(r), are modified by the presence of the
star. However, at very low frequencies, ®R < 1, where R

denotes the radius of the star, the corrections to ﬁa,f(r) are
negligibly small. The ground state of the star satisfies

G(w) = ©(w). It follows immediately that the decoherence
in the spacetime of a star with the electromagnetic field
initially in its ground state is the same as the decoherence in
Schwarzschild due to the incoming modes from infinity
in the Boulware or Unruh vacua [see Eq. (5.1)], which, in
turn, is the same as the decoherence in Minkowski
spacetime in the Minkowski vacuum [see Eq. (5.10)].
Thus, we obtain

q*d*

N star .
(N) min[T, T,)?

(5.17)

Similarly, if the electromagnetic field around the star is in a
thermal state at temperature .7, we obtain the same result as
in Eq. (5.8), namely

¢G> T

N star .
< >th mil’l[Tl,T2]

(5.18)

In the gravitational case, we obtain results in agreement
with Egs. (5.12) and (5.13), respectively.

In summary, the presence of a horizon is essential for the
black hole decoherence effects. Similar effects do not occur
in the spacetime of a static star.

D. Decoherence due to the presence of a body
with internal degrees of freedom

As we have just seen, in the electromagnetic and
gravitational cases, decoherence due to emission of “soft
radiation” does not occur in a static asymptotically flat
spacetime without a horizon."? This can be understood as

13However, as discussed at the end of Sec. V B, in the scalar
case one can get decoherence due to emission of soft radiation to
null infinity.
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resulting from the absence of any “white hole mode”
degrees of freedom associated with the horizon.
However, if an actual material body is present, there will
be additional degrees of freedom associated with the
material body. These degrees of freedom can couple to
the components of Alice’s particle via ordinary Coulombic
(or, in the gravitational case, Newtonian) interactions. If
there is suitable dissipation in the material body system,
then this can result in the decoherence of Alice’s particle.
Indeed, ordinary environmental decoherence is exactly of
this nature. In this subsection, we will consider whether the
decoherence of Alice’s particle resulting from Coulombic/
Newtonian interactions with a material body can mimic the
decoherence obtained for the case of a black hole.

As we have seen in Sec. IV above, in the electromagnetic
case the dominant contribution to decoherence of Alice’s
particle near a Schwarzschild black hole in the Unruh
vacuum comes from the £ = 1 white hole modes at very
low frequencies. Very near the horizon of the black hole,
these modes correspond to radiation and they represent
genuine additional degrees of freedom of the electromag-
netic field. Nevertheless, we saw at the end of Sec. IV that
in Alice’s lab, these modes look just like the exterior dipole
field of an ordinary body, with a fluctuating electric dipole
moment given by Eq. (4.48). Thus, if we have a material
body with the property that its ordinary thermal fluctua-
tions cause its electric dipole moment at very low frequen-
cies w to fluctuate in accord with Eq. (4.48), then that
material body should mimic the decoherence effects of a
black hole. Similarly, in the gravitational case, a material
body will mimic the decoherence effects of a black hole if
ordinary thermal fluctuations cause its mass quadrupole
moment at very low frequencies o to fluctuate in accord
with Eq. (4.49).

The issue of whether an ordinary material body can
mimic a black hole of the same temperature in this manner
has very recently been investigated by Biggs and Maldacena
[28]. They have shown that in the electromagnetic case,
there are no difficulties in constructing a physically rea-
sonable matter model that mimics the ‘“soft radiation”
decoherence effects of a black hole. However, in the
gravitational case, the mimicking of black hole decoherence
effects by an ordinary body of the same physical size and
temperature as the black hole appears to require extraordi-
nary properties of the matter. The underlying difficulty is the
weakness of the coupling of matter to gravity. In order to
produce a fluctuating quadrupole moment of the required
size Eq. (4.49), it seems possible that the body would need
to have a mass comparable to that of a black hole as well as
extremely large dissipation. This issue appears worthy of
further investigation.
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