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In this paper, we investigate a sink-driven three-layer flow in a radial Hele-Shaw cell. The

three fluids are of different viscosities with one fluid occupying an annulus-like domain,

forming two interfaces with the other two fluids. Using a boundary integral method and

a semi-implicit time stepping scheme, we alleviate the numerical stiffness in updating the

interfaces and achieve spectral accuracy in space. The interaction between the two interfaces

introduces novel dynamics leading to rich pattern formation phenomena, manifested by two

typical events: either one of the two interfaces reaches the sink faster than the other (forming

cusp-like morphology) or they come very close to each other (suggesting a possibility of

interface merging). In particular, the inner interface can be wrapped by the other to have both

scenarios. We find that multiple parameters contribute to the dynamics including the width

of the annular region, the location of the sink, and the mobilities of the fluids.

Key words: Hele-Shaw problem; Sink; Multiphase flow; Cusp singularity; Boundary integral

method

1. Introduction

The Hele-Shaw flow or the gap averaged Stokes flow is an important subclass of fluid

problems, where the flow of fluids occurs between two closely placed plates. In such a case,

one ignores the out of the plane velocity component and averages the in-plane velocity over

the thickness of the gap to reduce the problem to two dimensions. The Hele-Shaw flow attracts

considerable attention because of its applications in oil recovery (She et al. 2022; Hornof

& Baig 1995), micro-fluidics (Hashimoto et al. 2008; Chakraborty et al. 2019) and porous

media flow (Saffman & Taylor 1958; Taylor & Saffman 1959) etc. In the oil recovery process,

for example, one might consider that the oil is getting extracted through a sink while being
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surrounded by air or a different less viscous fluid which tries to penetrate the oil and therefore

has an impeding effect on the recovery process. The flow problem is quite challenging – one

has to track one or multiple moving interfaces which typically exhibit Saffman-Taylor-like

instability (Saffman & Taylor 1958). As the system evolves, the interfaces develop viscous

fingers giving rise to beautiful and complex patterns (Paterson 1981; Chen 1989; Li et al.

2009; Zhao et al. 2018, 2017).

The classic Hele-Shaw flow has been studied extensively through experimental (Paterson

1981; Chen 1989), numerical (Zhao et al. 2017; Li et al. 2007; Morrow et al. 2019, 2023),

and analytical (Prokert 1998; Escher & Simonett 1996, 1997; Xie & Tanveer 2003; Tanveer

& Xie 2003) means. Extensions of the classical problem have also been formulated and

investigated, where the nature of the fluid (Kondic et al. 1996; Fast et al. 2001), the geometry

of the system (Dias & Miranda 2013) and driving forces (Anjos et al. 2022; Zhao et al. 2023,

2021; Miranda & Widom 2000) have been varied. The literature is extensive and we do not

intend to give a comprehensive review here. In the current work, our interest is in observing

such flows in radial cells but in a multi-layer setup with a sink as the driving force. We discuss

a few key references below.

Various experimental, numerical and analytical studies have been conducted for the multi-

layer Hele-Shaw problem. For example, the annular flow was considered experimentally

(Cardoso & Woods 1995) and in a rotating radial cell (Carrillo et al. 1999, 2000). It was

found that any perturbation to the outer interface tends to stabilize as the interfaces approach

one another and the annulus region gets thinner (Cardoso & Woods 1995). In a separate

work, an empirical relation between capillary number and another dimensionless quantity

(related to the ratio of centrifugal to capillary forces) was found for a wide range of values

(Carrillo et al. 1999). A linear stability analysis, carried out in conjunction with experiments,

revealed a good match between theoretical and experimental observations for the number

of fingers produced on the interface (Carrillo et al. 2000). In an early study, the onset of

Rayleigh-Benard convection in presence of magnetic fields was checked (Aniss et al. 1993).

Logvinov investigated the displacement of a more viscous fluid with a less viscous one in

presence of a source (Logvinov 2019). Through linear stability analysis, the author identified

a mode that grew the fastest. Also the predictions matched quite well with the experimental

results in the low capillary number regime.

In the analytical front, the use of complex variable theory has proven quite fruitful as the

real and complex parts of analytic functions are harmonic. Taking a cue from this, powerful

techniques have been devised (Richardson 1996; Crowdy 1999; Crowdy & Kang 2001;

Crowdy 2002; Cummings & King 2004). The effect of surface tension is ignored in these

references as it is not easy to find solutions in the presence of the capillary forces. More

recently, attention was given to the annular problems using a pressure differential (Dallaston

& McCue 2012). Again surface tension was ignored to bring in the force of complex analysis.

In contrast, a number of other references consider the multi-layer Hele-Shaw problem with

surface tension (Beeson-Jones & Woods 2015; Gin & Daripa 2015, 2021; Anjos & Li 2020).

Instead of using the complex variable approach, all of them took up a small-perturbation

analysis approach to investigate the stability of the interfaces. For example, authors tried to

find the optimal value of the viscosity of the intermediate fluid in order to inject fluid at the

fastest rate possible while not disrupting the stable flow (Beeson-Jones & Woods 2015). In

a separate work, an upper bound on the growth of perturbations was found out and verified

with simulations (Gin & Daripa 2015). The scope of this analysis was expanded further

with analysis carried out for a three layer Hele-Shaw problem with the middle layer having

variable viscosity (Gin & Daripa 2021). The goal was to find injection schemes that would

maintain the stability of the interfaces. Prior to that the question of short time existence

and uniqueness of the Hele-Shaw problem for various initial conditions of the interface and
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in the presence of surface tension was settled (Escher & Simonett 1996). A second order

mode coupling theory was used to demonstrate that as the thickness of the annulus domain

decreases, the interaction between the interfaces gets strong with wide fingers forming on

the interfaces with bifurcated tips (Anjos & Li 2020). However, it was observed in the same

reference that if the thickness of the annulus is reduced too much then the finger-splitting

morphologies are replaced by polygonal-like structures with narrow fingers.

As mentioned above, most of the analytical studies either disregard the effects of surface

regularisation mechanism, i.e., capillary effects, or prove the existence and uniqueness of the

solutions for a short time, or rely on a perturbation approach which linearizes the problem

and can therefore again be relied upon for a short duration of time. In some recent analytical

works (see Green et al. 2017), attention has been given to surface tension, however the

geometric setup has been special in those references, requiring certain symmetries. This is

where the role of the numerical methods becomes important. For example, in a very recent

work, Morrow et al. (2023) performed simulations in annular domains with surface tension

using level set methods to understand the progression of viscous fingering. The motion was

driven either by rotation or pressure difference. A sharp interface approach involving the

boundary integral technique yields much accurate results for a long time duration of the

problem, especially when the space-time convergence of the problem is of high order. For

example, Zhao et al. (2020) have investigated the pattern formation problem for a three-layer

problem driven by a source at the origin using the boundary integral approach. Nonlinear

simulations are shown to match with experiments and weakly non-linear analysis although

their simulations go well beyond the weakly nonlinear regime and provide good insight to

fully nonlinear dynamics. The question of numerical stiffness in the time-stepping, due to

interfacial conditions, is dealt through a small-scale decomposition technique (Hou et al.

1994). There are several advantages of using the boundary integral method. In a moving

boundary problem like ours, the method allows to recast the original problem formulated

in terms of partial differential equations to boundary integral equations defined only on the

interfaces and then track the latter. This leads to a reduction of the problem dimension by

one. Other benefits include the exact treatment of the interface conditions and the existence

of highly accurate numerical techniques. A major downside of the boundary integral method

is its inability to deal with topological changes in the configuration.

An early numerical work in the presence of an eccentric sink is due to Kelly & Hinch (1997)

where they consider the problem in presence of small surface tension. Using a boundary

integral method they show that zero surface tension cusp formation scenario can be avoided

even if the surface tension effect is small. The scope of this work is expanded further in Tian

& Nie (1998) and Ceniceros et al. (1999). Both use boundary integral formulations like Kelly

& Hinch (1997), however the numerical methods differ. One of the main contributions of Tian

& Nie (1998) is to analyze the nature of the singularity in a sink driven flow. They predict

that the interface reaches the sink before all fluid is sucked out which is also supported by

the experimental evidence found in Paterson (1981). In Ceniceros et al. (1999), the authors

compute cases of (a) small and (b) large viscosity ratios between the outer and inner fluids.

It is observed that when viscosity ratio is small, the interface develops a finger that evolves

into a wedge having a neck region. In case the ratio is large, the formation of the neck gets

suppressed and the finger that develops on the interface is thinner.

The current work is motivated by the cusp-like interface morphology that develops during

sink driven Hele-Shaw flow (Tian & Nie 1998). We are interested in investigating the effects

of the sink on the dynamics of the Hele-Shaw problem with one more interface, thus the

sink location could be in the interior of the inner interface or the annulus region, as shown in

figure 1. It should be noted that in the latter case, one does not have any results from linear

analysis. This makes the problem difficult to solve via analytical means, hence, in this work,
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we adopt a numerical approach based on boundary integral formulations (Zhao et al. 2020).

To the best of our knowledge, this is the first boundary integral theory based work applied to

the multi-connected Hele Shaw problem driven by a sink. Through numerical simulations,

we observe that the interaction between the two interfaces introduces rich dynamics beyond

the classic cusp-like patterns for a single interface (Tian & Nie 1998). Our study reveals the

importance of initial distance between the two interfaces in the nature of pattern formation

- if the two interfaces are initially placed “close”, then they tend to come close to each

other before either one of them reaches the sink; however if they are “well separated” at the

beginning, then one interface reaches the sink before the other catches up with it. This leads

to two typical events: (1) cusp-like pattern forming mechanism if one of the two interfaces

reaches the sink faster than the other; (2) interface-merging patterns if they come close to

each other. In particular, we observe that the inner interface can be wrapped by the other to

have both scenarios. We find that multiple parameters contribute to the dynamics including

the width of the annular region, the location of the sink and the mobilities of the fluids. An

important practical application of the current study could be in the oil extraction process

where multiple layers of oil get recovered through the sink with air or water trapped in the

oil. The success of the process would depend on how the viscous fingers form. For example,

if the fingers generated by the air bubble reach the sink before the oil is extracted, then the

recovery efficiency might be reduced. Two-interface problems driven by Darcy type equation

in geometric setup like ours, can also found in other areas like tumor dynamics (Lu et al.

2022) where, moving from inner to outer region, we find necrotic core, tumor and healthy

tissues, respectively. Thus the current problem connects to other areas of application and is

of fundamental importance.

The paper is organized as follows: in Section 2, we describe the governing equations. In

Section 3, we discuss our numerical methods. In Section 4, we discuss the main results. In

Section 5, we summarize our findings.

2. Governing equations

We consider a radial Hele-Shaw cell with three fluid layers trapped between two plates

separated by a small distance 𝑏 which remains unchanged. The innermost fluid region Ω1 is

a bounded, simply connected domain in R2. The region Ω1 is surrounded by a second fluid

that occupies an annulus-like region Ω2, and Ω2 in turn is surrounded by a third fluid domain

Ω3, which extends to infinity. The closed interface that separates Ω1 and Ω2 is denoted by

Γ1(𝑡) and the one that separates Ω2 and Ω3 is denoted by Γ2(𝑡), as shown in figure 1.

In each of these regions, the fluid is considered to be incompressible and irrotational.

Therefore the gap-averaged velocity follows the Darcy’s law

u𝑖 = − 𝑏2

12𝜇𝑖
∇𝑃𝑖 = −𝑀̄𝑖∇𝑃𝑖 , x ∈ Ω𝑖 , (2.1)

where u𝑖 is the velocity, 𝑃𝑖 is the gap-averaged pressure, 𝜇𝑖 is the viscosity of the fluid, and

𝑀̄𝑖 is the mobility in the domain Ω𝑖 , 𝑖 = 1, 2, 3. The incompressibility condition requires

∇ · u𝑖 = 0, x ∈ Ω𝑖 . (2.2)

The irrotational nature of the velocity fields, i.e., ∇×u𝑖 = 0 in the fluid domains implies that

the problem can be recast in terms of a velocity potential in each of the domain that satisfies

the Laplace equation there.

In the present problem, the flow is driven by the removal of the fluids through the sink

Focus on Fluids articles must not exceed this page length
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Figure 1: Schematic diagram of a three-layer Hele-Shaw flow in the presence of a sink.
The innermost layer is Ω1 which is surrounded by a domain Ω2 of annulus-like shape. The
outermost layer is Ω3. The moving interface between Ω1 and Ω2 is Γ1 (𝑡) and that between
Ω2 and Ω3 is Γ2 (𝑡). The sink is represented by the black dot. We always place the sink at
the origin. Depending on the location of Ω1, the sink can either be in the fluid region Ω1

(figure 1a) or in the annulus Ω2 (figure 1b).

following the equation

−𝑄 =

∫

Σ0

u𝑘 · n d𝑠, (2.3)

where 𝑄 is the net flux out of the system. Here 𝑘 is either 1 or 2, corresponding to the

location of the sink in Ω1 or Ω2. Also, Σ0 is a small interface around the point of extraction

mimicking the existence of a tube that is used to extract the fluids, n is unit outward normal

on Σ0 and 𝑠 is the arc-length of the interface. Note that the point of extraction is always at

the origin of the system. Depending on our goal, we suitably adjust the geometry to place

the extraction point either in Ω1 or Ω2.

The pressure is discontinuous across the two interfaces

𝑃2 − 𝑃3 = 𝜎23𝜅23 on Γ2(𝑡) and 𝑃1 − 𝑃2 = 𝜎12𝜅12 on Γ1(𝑡), (2.4)

where 𝜎12 and 𝜎23 are the surface tension, and 𝜅12 and 𝜅23 are the curvatures of the interfaces

Γ1(𝑡) and Γ2(𝑡), respectively. The kinematic conditions or the continuity of the normal

components of the fluid velocities on the interfaces read

u2 · n = u3 · n on Γ2(𝑡), (2.5)

u1 · n = u2 · n on Γ1(𝑡). (2.6)

We use the length scale 𝐿0 = 𝑅1(0) (initial size of the inner interface) and the time scale

𝑇0 = 2𝜋𝑅2
1
(0)/𝑄 to nondimensionalize the system. We obtain the following nondimensional
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equations

u𝑖 = −𝑀𝑖∇𝑃𝑖 for x ∈ Ω𝑖 , (2.7)

∇ · u𝑖 = 0 for x ∈ Ω𝑖 , (2.8)

𝑃1 − 𝑃2 =
1

𝐶𝑎
𝜅12 for x ∈ Γ1(𝑡), (2.9)

𝑃2 − 𝑃3 =
𝛼

𝐶𝑎
𝜅23 for x ∈ Γ2(𝑡), (2.10)

u1 · n = u2 · n for x ∈ Γ1(𝑡), (2.11)

u2 · n = u3 · n for x ∈ Γ2(𝑡), (2.12)
∫

Σ0

u𝑘 · n d𝑠 = −2𝜋, 𝑘 = 1 or 2, (2.13)

where the capillary number, 𝐶𝑎, indicates the relative importance of the viscous to surface

tension forces

𝐶𝑎 =
𝑄𝑅1(0)

2𝜋𝜎12𝑀0

. (2.14)

Here, 𝑀0 is a characteristic mobility, 𝑀𝑖 = 𝑀̄𝑖/𝑀0 is the dimensionless mobility of the

𝑖th fluids. The parameter 𝛼 = 𝜎23/𝜎12 is the ratio of the surface tensions. We define a

new function 𝜙𝑖 = −𝑀𝑖𝑃𝑖 , such that Δ𝜙𝑖 = 0 in each fluid domain. We will formulate the

numerical method using this function 𝜙𝑖 . Equation (2.13) is the scaled version of (2.3).

Note that in the non-dimensionalization, we scale out the strength 𝑄 of the sink. Finally, an

experimental work with real fluids used the ratio of the surface tensions of the interfaces

𝛼 = 0.485 (Cardoso & Woods 1995). For simplicity, we assume that 𝛼 = 1 in this paper,

though we can use different surface tension parameters 𝜎23 and 𝜎12 in our simulations.

3. Boundary integral formulation and Time-stepping algorithm

Since the function 𝑃𝑖 (or 𝜙𝑖 = −𝑀𝑖𝑃𝑖) is harmonic in Ω𝑖 , using the potential theory, we

rewrite the boundary value problem in terms of integrals

𝜙𝑖 (x) =
1

2𝜋

∫

Γ1

𝛾1

𝜕 ln |x − x′ |
𝜕n(x′) d𝑠(x′) + 1

2𝜋

∫

Γ2

𝛾2

𝜕 ln |x − x′ |
𝜕n(x′) d𝑠(x′) − ln |x|, (3.1)

where the first two terms correspond to the double layer representation of a harmonic function

𝜙𝑖 in the the fluid domain Ω𝑖 , using two unknown dipole densities 𝛾1 and 𝛾2. The density

functions 𝛾1 and 𝛾2 are defined on the boundaries Γ1(𝑡) and Γ2(𝑡), respectively. The effect of

sink has been incorporated in the solution by the term − ln |x| (Zhao et al. 2020; Greenbaum

et al. 1993). In 2D, the Green’s function 𝐺 (x, 0) = − ln |x| is harmonic in R2 \ {0} and

satisfies the equation −Δ𝐺 = 2𝜋𝛿 (x), where 𝛿 (x) is the Dirac delta function at the origin

(also the location of the sink).

Using the pressure jump conditions across the interface, we obtain a system of integral
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equations for the unknown density function 𝛾1 and 𝛾2,

1

2

(

𝑀2

𝑀1

+ 1

)

𝛾1(x1) +
1

2𝜋

(

𝑀2

𝑀1

− 1

) ( ∫

Γ1

𝛾1(x′)
𝜕 ln |x1 − x′ |

𝜕n(x′) d𝑠(x′) (3.2)

+
∫

Γ2

𝛾2(x′)
𝜕 ln |x1 − x′ |

𝜕n(x′) d𝑠(x′) − 2𝜋 ln |x1 |
)

= − 1

𝐶𝑎
𝜅12,

1

2

(

𝑀2

𝑀3

+ 1

)

𝛾2(x2) +
1

2𝜋

(

1 − 𝑀2

𝑀3

) ( ∫

Γ1

𝛾1(x′)
𝜕 ln |x2 − x′ |

𝜕n(x′) d𝑠(x′) (3.3)

+
∫

Γ2

𝛾2(x′)
𝜕 ln |x2 − x′ |

𝜕n(x′) d𝑠(x′) − 2𝜋 ln |x2 |
)

= − 1

𝐶𝑎
𝜅23.

The above two equations are Fredholm integral equations of the second kind, well-

conditioned from a computational point of view. Both the integral operators in (3.2) and (3.3)

are compact and the kernels have a removable singularity. Once the integral equations are

solved and dipoles 𝛾1 and 𝛾2 are obtained, one can use the Dirichlet-Neumann map to

compute the normal velocities of the interfaces as

𝑉Γ1
=

1

2𝜋

∫

Γ1

𝛾1,𝑠′
(x − x′)⊥ · n(x)

|x − x′ |2
d𝑠′ (x′)

+ 1

2𝜋

∫

Γ2

𝛾2,𝑠′
(x − x′)⊥ · n(x)

|x − x′ |2
d𝑠′ (x′) − x · n

|x|2
, (3.4)

𝑉Γ2
=

1

2𝜋

∫

Γ1

𝛾1,𝑠′
(x − x′)⊥ · n(x)

|x − x′ |2
d𝑠′ (x′)

+ 1

2𝜋

∫

Γ2

𝛾2,𝑠′
(x − x′)⊥ · n(x)

|x − x′ |2
d𝑠′ (x′) − x · n

|x|2
, (3.5)

where the subscript 𝑠 denotes the partial derivatives with respect to arclength and x⊥ =

(𝑥2,−𝑥1). The interfaces evolve through these velocities.

The integral equations are solved following a Nystrom method whereby the integral

equations are discretized at marker points x𝑖 using spectrally accurate quadrature rules. Since

the kernels of integral equations are periodic and smooth, the trapezoidal rule with modified

kernels has spectral convergence. One can also use an alternating point quadrature rule to

achieve the same effect (Sidi & Israeli 1988). The resulting linear system is solved via GMRES

method (Saad & Schultz 1986). The integral operators in the Dirichlet-Neumann maps

can similarly be computed with same accuracy making the overall numerical computation

spectrally accurate in space. A core component of GMRES requires computing the matrix-

vector product. Since in our case, the matrix is dense but structured, one can use fast multipole

method (FMM) (Greengard & Rokhlin 1987) or fast tree-code (Lindsay & Krasny 2001; Feng

et al. 2014) to expedite the computation. This reduces the cost of matrix-vector products from

O
(

𝑁2
)

to O (𝑁 log 𝑁) or even O (𝑁), where 𝑁 is the size of the matrix (the total number of

marker points).

One fundamental challenge in the surface tension driven Hele-Shaw flow is how to update

the interface efficiently and accurately. A straightforward analysis of the equations of motion

shows that one has to maintain the conditionΔ𝑡 ∼ Δ𝑥3 if the time-stepping method is explicit.

Here Δ𝑡 and Δ𝑥 are sizes of the time step and space resolution, respectively. Satisfying this

stability constraint requires very small time-steps. The computational cost gets really high,

especially for complicated interfaces where a large number of marker points are needed to

maintain good spatial resolution.

The small scale decomposition (SSD) technique (Hou et al. 1994) alleviates the problem
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and reduces the spatio-temporal constraint to Δ𝑡 ∼ Δ𝑥. Following this technique, we first

rewrite the equation of motion in terms of the length 𝐿 (𝑡) of the interface and the tangent

angle 𝜃 𝑗 that the marker point x 𝑗 makes with the positive direction of the 𝑥-axis. The equation

for arc-length 𝐿 is non-stiff and can be updated using the 2nd order Adam-Bashforth method.

However the 𝜃 equation is stiff. Following the idea of SSD, we recast the equation in terms of

a stiff and a non-stiff part. The stiff part is linear and can be integrated exactly in the Fourier

space. For completeness, we briefly describe the method here.

The algorithm requires the marker points to be equally spaced in arc-length at all times.

This is achieved through a direct discretization at 𝑡 = 0 and by adding a special tangential

velocity 𝑇Γ𝑖 , 𝑖 = 1, 2 of the form

𝑇Γ𝑖 (𝛼, 𝑡) = 𝑇Γ𝑖 (0, 𝑡) +
∫ 𝛼

0

𝑠𝛼′𝜅𝑉Γ𝑖
d𝛼′ − 𝛼

2𝜋

∫ 𝛼

0

𝑠𝛼′𝜅𝑉Γ𝑖
d𝛼′ (3.6)

to the equations of motion at later times to maintain the equal space property, where 𝛼

parameterizes the interface and 𝑠𝛼 =

√︁

𝑥2
𝛼 + 𝑦2

𝛼. Also 𝑉Γ𝑖
(x (𝛼, 𝑡)) and 𝑇Γ𝑖 (x (𝛼, 𝑡)) denote

the normal velocity and tangential velocity of the interface Γ𝑖 (𝑡).
In the (s, n) (tangent-normal) frame, the equations of motion then become

d

d𝑡
x = 𝑉Γ𝑖

(x)n + 𝑇Γ𝑖 (x)s for x ∈ Γ𝑖 (𝑡), 𝑖 = 1, 2, (3.7)

where n and s represent the unit normal and tangential vector on each interface. Next using

the equal arc-length frame, we repose the equations of motion in terms of 𝐿 and 𝜃 coordinates

as

𝜃𝑡 = 𝑉𝑠 + 𝜅𝑇, (3.8)

𝑠𝛼,𝑡 = (𝑇𝑠 − 𝜅𝑉) 𝑠𝛼, (3.9)

where we use the relation 𝑑𝑠 =
𝐿

2𝜋
𝑑𝛼. In both these equations, we suppress Γ𝑖 to keep the

notation simple. Also 𝑡 in the subscript of different variables denotes derivative with respect

to time. The first equation is stiff, while the second equation is not and can be updated using

an explicit scheme, e.g., the second order Adams-Bashforth (AB2) method. Following (Hou

et al. 1994), we recast (3.8) in the form

𝜃𝑡 =
𝜎

𝑠3
𝛼

H [𝜃𝛼𝛼𝛼] + 𝑁 (𝛼, 𝑡) (3.10)

where the operatorH [ · ] denotes the Hilbert transform, and𝑁 (𝛼, 𝑡) = 𝑉𝑠+𝜅𝑇− 𝜎

𝑠3
𝛼

H [𝜃𝛼𝛼𝛼]
is nonstiff and has removable singularity. In the Fourier space, it can be diagonalized as

𝜃𝑡 (𝑡) = −𝜎𝑘3

𝑠3
𝛼

𝜃 (𝑘, 𝑡) + 𝑁̂ (𝑘, 𝑡) . (3.11)

We implement a linear propagator based Adams-Bashforth scheme of second order accuracy

to numerically integrate the above equation, and then perform inverse Fourier transform to

find 𝜃. We also use smoothing filters and cut-off filters to control the onsets of non-physical

high-frequency spurious modes (Jou et al. 1997).

4. Results and discussions

In the following sections, we investigate various mechanisms of instability in the three-layered

configuration. The two interfaces move due to removal of fluid through a sink, located either
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in the fluid domain Ω1 or Ω2. Unless stated otherwise, we use 𝑁 = 8192 and Δ𝑡 = 1 × 10−5,

where 𝑁 is the number of marker points on each interface and Δ𝑡 is the time-step. The

iterative GMRES solver tolerance is set to 𝜖 = 10−12, so is the filter tolerance 𝜖tol.

All our computations are carried out using a computer with 3.7 GHz AMD Ryzen

ThreadRipper 3970X CPUs. We start our simulations using smooth interfaces with relatively

simple geometries. At the beginning, it takes only a few GMRES iterations to obtain

the solution. However, all our simulations approach finite time singularities and near the

break down, the count of iterations increases dramatically either (i) due to the tiny distance

separating the two interfaces or (ii) due to the high curvature development (sharp corners),

or (iii) due to the thin neck formation of the interface.

The capillary number 𝐶𝑎 is a dimensionless quantity representing the relative effect of

viscous drag forces versus surface tension forces acting across an interface. Due to a large

length scale 𝑅1(0) and the extraction flux time scale 𝑄 used to nondimensionalize the

equations, our definition of the capillary number is 𝐶𝑎 =
12𝜇2𝑄𝑅1(0)

2𝜋𝜎12𝑏2
. Following this

definition, for example, we find that silicone oil with viscosity 𝜇2 = 11.4 Pa s, surface

tension 0.02 N/m, the gap width 𝑏 = 0.75 mm, initial size of the inner interface 𝑅1 (0) = 3

cm, and 𝑄 = 0.1 cm2/s will result in 𝐶𝑎 ≈ 580 (Nase et al. 2011). One could use other less

viscous fluid than the silicone oil with smaller 𝑏 or large 𝑅1(0) to get this capillary number

as well. In this paper, we set 𝐶𝑎 = 500 throughout.

4.1. Numerical convergence

In this section, we summarize the spatio-temporal convergence studies of our numerical

algorithm. We introduce fluid mobility which is widely used in porous media flow and

is quite useful for further discussion. In porous media literature, the mobility is defined

𝑀 =
𝑘

𝜇
, where 𝜇 is the viscosity of the fluid and 𝑘 is the permeability of the surrounding

media. Comparing porous media and Hele-Shaw flow, we observe that the constant 𝑏2/12

takes the role of parameter 𝑘 in case of latter. Hence 𝑀 varies inversely with the fluid

viscosity. To study interface instabilities, we set 𝑀𝑖’s in such a way that the innermost fluid

Ω1 is the most viscous, followed by the annulus fluid region Ω2 and the outer fluid domain

Ω3. In our simulations, we choose the mobilities of the fluids as 𝑀1 = 0.01, 𝑀2 = 1, and

𝑀3 = 100 in regions Ω1,Ω2 and Ω3, respectively. We set the initial outer interface Γ2(0)

with Cartesian coordinates 𝑥 =

√
2

6
(4 cos(𝛼) + cos(2𝛼)) and 𝑦 =

√
2

6
(4 sin(𝛼) + sin(2𝛼)),

where 𝛼 ∈ [0, 2𝜋] is a parametrization. The initial inner interface Γ1(0) is just a circle with

radius of 0.65 centered at the origin. Because of the setup of our problem, the fluid domain

Ω1 gets drained from the system.

First we demonstrate spatial accuracy. We define numerical error

Err (𝑡) = |𝐴 (𝑡) − 𝐴 (0) | , (4.1)

where 𝐴(𝑡) is the area of fluid domainΩ2 and should be equal to its initial value 𝐴(0) in theory,

because the location of the sink is in Ω1. We plot − log10 Err (𝑡) with respect to time 𝑡 for

various values of 𝑁 , the number of marker points on the interfaces. We choose Δ𝑡 = 5×10−6.

In figure 2(a), we observe that the curves are on the top of each other, indicating that the

solutions of the integral equation are almost identical as long as the interface is well resolved.

For example, 𝑁 = 1024 is enough to run the simulation to 𝑡 = 0.15, and further increase in

the number of points does not contribute to the accuracy anymore, suggesting the spectral

accuracy of our method (Trefethen & Weideman 2014; Kress 2014). Inset shows the region

near time 𝑡 = 0.15 where the simulation stops. We note that the smallest distance between
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the two interfaces at 𝑡 = 0.15 is about 7.8 × 10−3, about two times the spatial resolution

Δ𝑥 = 4 × 10−3. Numerically, the two close interfaces result in a very ill-conditioned linear

system with large condition numbers, and the GMRES iterations do not converge.

The second order accuracy of the time stepping scheme can also be demonstrated by using

different time steps to perform the same simulation. In figure 2(b), we choose 𝑁 = 4096

and run 4 sets of simulations with Δ𝑡 = 4 × 10−5, 2 × 10−5, 1 × 10−5 and 5 × 10−6, i.e., the

subsequent time steps are half of the previous values. This suggests that, when we plot the

− log10 Err (𝑡) against the time 𝑡, the curves should be apart by log10 4 = 0.602 for a 2nd order

time-stepping method, which indeed is consistent with the implemented 2nd order Adams-

Bashforth scheme. The figure in the inset displays the final configuration of the interfaces

when we stop the simulations.

4.2. Numerical Validation

We consider two circles initially centered at the origin, 𝑥2
1 + 𝑦2

1 = 1 (inner interface) and

𝑥2
2 + 𝑦2

2 = 4 (outer interface). The mobilities of the fluids are 𝑀1 = 0.01, 𝑀2 = 1, and

𝑀3 = 100. We choose the capillary number 𝐶𝑎 = 500 and 𝑄 = −1. For this perfect annulus

problem with the sink placed right at the center, there exist analytical solutions. Namely, the

normal velocity of each interface is given by 𝑉Γ1
=

1
√

1 − 2𝑡
and 𝑉Γ2

=
1

√
4 − 2𝑡

. In figure

3(a), we compare the numerical normal velocities from our scheme with the theoretical

results and find they are in excellent agreement with a discrepancy of about 10−12.

Next, we provide a comparison between our numerical calculations and the predictions

of linear stability analysis (Beeson-Jones & Woods 2015; Zhao et al. 2020; Gin & Daripa

2021). We consider the two interfaces are perturbed circles centered at the origin, 𝑟1(𝛼, 𝑡) =
𝑅1(𝑡) +𝑎𝑛 (𝑡) cos(𝑛𝛼) (inner interface) and 𝑟2(𝛼, 𝑡) = 𝑅2(𝑡) +𝑏𝑛 (𝑡) cos(𝑛𝛼) (outer interface).

Here 𝑅1(𝑡) represents the size of the inner interface and 𝑎𝑛 (𝑡) denotes the cosine perturbation.

𝑅2(𝑡) represents the size of the outer interface and 𝑏𝑛 (𝑡) denotes the cosine perturbation.

From the linear stability analysis, the motion of the perturbations satisfies

¤𝑎𝑛 = 𝑓1

[

𝑛 − 𝑓 −1
1

𝑅2
1

−
(

𝑀1

𝑀1 − 𝑀2

)

𝑛(𝑛2 − 1)
𝐶𝑎𝑅3

1

]

𝑎𝑛 + 𝑓2

[

𝑛

𝑅2
2

−
(

𝑀3

𝑀2 − 𝑀3

)

𝑛(𝑛2 − 1)
𝐶𝑎𝑅3

2

]

𝑏𝑛,

(4.2)

¤𝑏𝑛 = 𝑓3

[

𝑛

𝑅2
1

−
(

𝑀1

𝑀1 − 𝑀2

)

𝑛(𝑛2 − 1)
𝐶𝑎𝑅3

1

]

𝑎𝑛 + 𝑓4

[

𝑛 − 𝑓 −1
4

𝑅2
2

−
(

𝑀3

𝑀2 − 𝑀3

)

𝑛(𝑛2 − 1)
𝐶𝑎𝑅3

2

]

𝑏𝑛,

(4.3)

where

𝑓1 =
𝐴12(1 − 𝐴23𝑅

2𝑛)
1 + 𝐴12𝐴23𝑅2𝑛

, 𝑓2 =
𝐴23(1 + 𝐴12)𝑅 (𝑛−1)

1 + 𝐴12𝐴23𝑅2𝑛
,

𝑓3 =
𝐴12(1 − 𝐴23)𝑅 (𝑛+1)

1 + 𝐴12𝐴23𝑅2𝑛
, 𝑓4 =

𝐴23(1 + 𝐴12𝑅
2𝑛)

1 + 𝐴12𝐴23𝑅2𝑛
.

Here 𝐴12 =
𝑀1 − 𝑀2

𝑀1 + 𝑀2

and 𝐴23 =
𝑀2 − 𝑀3

𝑀2 + 𝑀3

are the viscosity contrast of fluids 1 and 2 (2 and

3) written in terms of the fluid mobilities and 𝑅 = 𝑅(𝑡) = 𝑅1

𝑅2

(Zhao et al. 2020).

For the interface configurations, we choose 𝑛 = 4, 𝑅1(0) = 1.5, 𝑎𝑛 (0) = 0.05, 𝑅2(0) = 2,

Rapids articles must not exceed this page length
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Figure 2: (a) Spectral accuracy of the algorithm, we plot − log10 Err (𝑡) vs. time 𝑡 for
different values of 𝑁 = 1024, 2048, 4096 to see that the curves are on the top of each

other. The inset shows the region near time 𝑡 = 0.15 in detail. This is where the simulation
stops because inner and outer interfaces come very close to each other. (b) Second order

accuracy of the time-stepping algorithm, we plot − log10 Err (𝑡) vs. time 𝑡 for

Δ𝑡 = 4 × 10−5, 2 × 10−5, 1 × 10−5, 5 × 10−6.
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and 𝑏𝑛 (0) = 0.1. Other parameters are 𝐶𝑎 = 500, 𝑀1 = 0.01, 𝑀2 = 1, and 𝑀3 = 100. In

figure 3(b), we plot the evolution of the relative perturbations
𝑎𝑛 (𝑡)
𝑅1(𝑡)

and
𝑏𝑛 (𝑡)
𝑅2(𝑡)

as functions of

time. With the given parameters, both perturbations increase, indicating that both interfaces

are unstable. The dashed curves show the results given by the numerical method and the

solid lines are predicted by the linear stability analysis in equations (4.2) and (4.3). The plot

shows an excellent agreement between the numerical and linear analysis at early times, when

the perturbations are small and satisfy the assumption of linear analysis.

4.3. Motivation behind our numerical simulations

Before we discuss our results, we briefly review the important findings of a single-layer

Hele-Shaw flow with suction (Tian & Nie 1998). One starts with an initial shape of the

viscous fluid domain as

𝑓 (𝑧) = 𝑎̃1(𝑡)𝑧 + 𝑎̃2(𝑡)𝑧2, (4.4)

where 𝑧 ∈ C with |𝑧 | < 1, 𝑎̃1(0) = 2
√

2/3 and 𝑎̃2(0) =
√

2/6, and investigates the evolution

under various strengths of surface tension. Then one can show that in the absence of surface

tension, the interface forms a single cusp well before any part of it reaches the sink. In the

cases with non-zero surface tension, the interface forms a finger that moves toward the sink.

A large surface tension leads to a “fat” finger and the movement towards the sink is slow.

These findings reaffirm the regularizing nature of surface tension in sink-driven Hele-Shaw

flows.

Our numerical investigation starts with the interface outlined in equation (4.4), however,

we do not restrict ourselves just to this interface. We scale-up the investigation by adding the

second interface and targeting its impact on the dynamics by focusing on: the initial geometry

of inner and outer interfaces, the location of the sink, and the effects of mobility (viscosity).

We next use various configurations other than equation (4.4) and summarize their common

characteristics in section 4.8 in terms of the evolution of surface energy. In this paper, we

are interested in the interfacial instabilities. Thus, we choose the outermost fluid to have the

highest mobility which makes the outer interface more unstable than the inner one. In the

scheme, we can set the mobility parameters to any value. We observe that in certain cases,

when we change the mobility parameters, the interfacial patterns do not change appreciably.

In next few sections, we report some of the typical findings that we have observed.

4.4. Pattern formation with a sink and geometrically similar outer and inner interfaces

As a first variation of the classic simulations (Tian & Nie 1998), we wish to investigate how

the proximity of the outer interface to the inner one affects the pattern formation. We take

the initial shape of the outer interface to be a magnified version of the inner one given by

equation (4.4).

In figure 4(a), the initial outer interface is 1.2 times larger than the inner one, while

in figure 5(a), it is 1.05 times. The mobilities of the fluids are 𝑀1 = 1, 𝑀2 = 100, and

𝑀3 = 10000 in regions Ω1,Ω2 and Ω3, respectively. We place the sink at the origin. In

figures 4(c) and 5(c), we show our numerical results at the time when the simulation stops.

The red and blue curves indicate the outer and inner interfaces, respectively.

In figures 4(a)–(c), we observe the gradual formation of a finger on the inner interface

that eventually approaches the sink. We have to stop the simulation at 𝑇 = 0.1150 due to

non-convergence of the linear solver beyond this time. The part of the outer interface, located

near the negative 𝑥-axis and close to this finger, also moves towards the sink. This result

is similar to that observed in figure (2) or figure (7) of Tian & Nie (1998), indicating that

the coupling effects of the two interfaces is weak. In figure 4(d), we show the close-up of
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Figure 3: (a) shows the normal velocity of the interfaces with respect to time. The
interfaces are two circles with radius 1 and 2 centered at the origin. (b) presents the

evolution of the relative perturbation 𝑎𝑛 (𝑡)/𝑅1 (𝑡) and 𝑏𝑛 (𝑡)/𝑅2 (𝑡). The dashed curves
show the result given by the numerical approach and the solid lines are predicted by the

linear theory. The initial conditions for the inner and outer interfaces are
𝑟1 (𝛼, 0) = 1.5 + 0.05 cos(4𝛼) and 𝑟2 (𝛼, 0) = 2 + 0.1 cos(4𝛼), respectively. In addition, we

set 𝐶𝑎 = 500, 𝑀1 = 0.01, 𝑀2 = 1, and 𝑀3 = 100. In the case of the fully nonlinear
numerical amplitudes, we utilized 𝑁 = 8192 points along each interface and time step

Δ𝑡 = 1 × 10−5.
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Figure 4: Effects of geometry. The sink is at the origin. The mobilities of the fluids are
𝑀1 = 1, 𝑀2 = 100, and 𝑀3 = 10000. In (a), we display the initial configuration. At 𝑡 = 0,
the inner and the outer interfaces are both given by (4.4). The outer interface is 1.2 times
of the inner interface. The intermediate and the final configurations are shown in (b) and

(c). In (d), we show the close-up of the inner interface finger at the times 𝑡 = 0.1118,
0.1128, 0.1138, 0.1148, and 0.1150.

the inner interface finger at the times 𝑡 = 0.1118, 0.1128, 0.1138, 0.1148, and 0.1150. At

𝑡 = 0.1150, the curvature at the cusp-like point is about −274, quite large compared with its

initial value 9.16×10−10. The distance between the inner interface and the sink is 1.19×10−3,

about twice the spatial resolution Δ𝑥. The GMRES iterations do not converge because of the

resulting ill-conditioned linear system. As a note, we observe an excellent conservation of

mass in the region Ω2(𝑡). The area is preserved up to ten digits accuracy after the decimal

point throughout the simulation.

In figures 5(a)–(c), because the distance between the two interfaces is small, the outer

interface feels the presence of the sink quite strongly (though the sink is in Ω1), and moves

towards the sink along with the inner interface. By the time the inner interface starts to

develop a finger to reach the sink, the outer interface is already very close to the inner interface

and the simulation stops at 𝑇 = 0.1068. In this simulation, at very early times, the distance

between the two interfaces increases slightly from 0.0354 to 0.0357. That is because the inner

interface moves a little bit faster than the outer one. Then the outer interface tends to catch up

with the inner interface and the distance between them decreases. The approaching velocity
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Figure 5: Effects of geometry. The sink is at the origin. The mobilities of the fluids are
𝑀1 = 1, 𝑀2 = 100, and 𝑀3 = 10000. In (a), we display the initial configuration. At 𝑡 = 0,
the inner and the outer interfaces are both given by (4.4). The outer interface is 1.05 times
of the inner interface. The intermediate and the final configurations are shown in (b) and

(c).
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Figure 6: Effects of geometry. The sink is at the origin. The mobilities of the fluids are
𝑀1 = 1, 𝑀2 = 100, and 𝑀3 = 10000. In (a), we display the initial configuration. At 𝑡 = 0,
the outer interface is given by (4.4) and the inner interface is a circle with 𝑟 = 0.7. The

intermediate and the final configurations are shown in (b) and (c).

of the interfaces increases as time evolves, which follows approximately an exponential

relation: 0.0148 exp(43.39𝑡). Unfortunately, we have to stop the calculation at later times,

as the distance separating the two interfaces is quite small 2.05 × 10−3 ≈ 3Δ𝑥, where the

spatial resolution Δ𝑥 is about 7.36 × 10−4. We found the discretized linear system is very

ill-conditioned and the GMRES iteration solver does not converge.

These simulations suggest a new pattern forming mechanism by interface merging. The

sink is the driving force, nevertheless, the precise nature of the instability is a result of

the interaction between the two interfaces and the sink. As long as the interfaces are well

separated, the inner interface approaches the sink before the outer one captures it; while if

they are close initially, then it is more likely that they will come very close to each other

before the inner interface reaches the sink.

4.5. Pattern formation with a sink and dissimilar outer and inner interfaces

The next extension is to consider cases where the inner and outer interfaces are no longer a

scaled version of each other. We keep the outer interface as before (given by equation (4.4)),

while the inner one is changed to a circle. All other parameters are the same as those used in
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Figure 7: Effects of geometry. The sink is at the origin. The mobilities of the fluids are
𝑀1 = 1, 𝑀2 = 100, and 𝑀3 = 10000. In (a), we display the initial configuration. At 𝑡 = 0

the outer interface is given by (4.4). The inner interface is a circle with 𝑟 = 0.6. The
intermediate and the final configurations are shown in (b) and (c).

figure 4. We set the radius of the inner interface, 𝑟 = 0.7 and 𝑟 = 0.6 initially, and display

the simulation results in figures 6 and 7, respectively.

In figure 6(a), the outer and the inner interfaces are placed quite close to each other on the

negative 𝑥-axis at time 𝑡 = 0. At later times, the outer interface does not develop any fingers,

while the inner interface shows an early sign of developing two fingers, marked by the two

arrows pointing to the sink. However, before they fully develop, the outer interface comes

very close to the inner one. The computation stops when the minimum distance between the

interfaces is about 4.2 × 10−4 while the spatial resolution Δ𝑥 is about 2.37 × 10−4.

The development of these two fingers on the inner interface is far more prominent for

𝑟 = 0.6 as shown in figure 7(a)–(c). Here, we observe two well-developed fingers racing

to the sink and forming two equal angles, giving the inner interface two distinct parts: (i)

a bigger portion having a crescent shape and (ii) a smaller region having the shape of an

elongated drop along the negative 𝑥-axis. The inset of figure 7(c) zooms into the region

where the parts of the inner interface come very close to each other. Compared with the

single interface case (Tian & Nie 1998), the existence of a simple circular inner interface

fundamentally alters the dynamics. At the end, the curvature at the cusp-like point is about

−250. The distance between the inner interface and the sink is about 5.03 × 10−3.

4.6. Pattern formation with a sink in the annulus region

We next consider that the sink is in the annular region, i.e., the fluid in Ω2 gets extracted.

We keep the outer interface the same as before. The inner interface is a circle of radius

𝑟 = 0.2 with its center placed initially at (i) (0.3, 0), (ii) (0.9, 0) and (iii) (−0.3, 0). The sink

remains at the origin. The results are summarized in figures 8(a)–(c), 9(a)–(c) and 10(a)–(c),

where we show the evolution of morphologies of the two interfaces; and in figures 8(d), 9(d)

and 10(d), where we plot the velocity of characteristic points on the interfaces at positive

(right) and negative (left) 𝑥-axis as a function of time.

In figures 8(c) and 9(c), we observe the outer interface develops a finger with the tip on

the negative 𝑥-axis, which moves towards the sink. It is evident that the inner interface is

not circular. Though in figure 9(c), it looks more circular-like. To quantify these results, we

check the normal velocity of four characteristic points on the 𝑥-axis for both the inner and

outer interfaces. As shown in figures 8(d) and 9(d), the point on the negative 𝑥-axis on the

outer interface (in solid red color) is the fastest moving. The near vertical segment of the

curve implies the fact that the interface is rapidly approaching the sink towards the end of
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Figure 8: Effects of sink location. The sink is at the origin. The mobilities of the fluids are
𝑀1 = 1, 𝑀2 = 100, and 𝑀3 = 10000. In (a), we display the initial configuration. At 𝑡 = 0,
the outer interface is given by (4.4) and the inner interface is a circle of radius 𝑟 = 0.2 with
centers at (0.3, 0). The intermediate and the final configurations are shown in (b) and (c).

In figure (d) we plot the velocity of various points on the interface.

the simulation. On the other hand, the velocity of the point on the positive 𝑥-axis of the outer

interface (in dashed red color) is small, indicating that this point moves very slowly (normal

velocity≈ 0.01). The difference of the normal velocities inner left (in solid blue color) and

inner right (in dashed blue color) in figure 8(d) explains the morphological change from the

initial circular shape. In figure 9(d), we find that the normal velocities of both the points on

the inner interface are nearly equal and very small, suggesting the better preservation of the

circular shape of the inner interface.

For the case in figure 8(d), with our simulation data the velocity seems to fit a relationship

0.7227(0.18499 − 𝑡)−0.4654 + 2.166 even though in figure 9(d), the velocity seems to fit

4.126 × 10−4(0.21671 − 𝑡)−0.1.581 + 4.639. We note that our simulations stop at 𝑡 = 0.1848

and 𝑡 = 0.21661, respectively. Even though the infinity velocity is not observed in our

simulation, the velocity might blow up at a finite time. In figure 8(c), the distance between

the outer interface and the sink is about 1.51 × 10−3. For figure 9(c), the distance between

the outer interface and the sink is about 2.63 × 10−3 while the minimum distance between

the interfaces is about 1.58 × 10−2.

A significantly different scenario is observed when the center of the inner domain is initially

placed at (−0.3, 0). As shown in figure 10(c), both interfaces are distorted considerably from

their initial appearances. The region of the outer interface in the vicinity of the inner interface,

tends to bend around the inner one in its motion towards the sink, and eventually comes very
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Figure 9: Effects of sink location. The sink is at the origin. The mobilities of the fluids are
𝑀1 = 1, 𝑀2 = 100, and 𝑀3 = 10000. In (a), we display the initial configuration. At 𝑡 = 0,
the outer interface is given by (4.4) and the inner interface is a circle of radius 𝑟 = 0.2 with
centers at (0.9, 0). The intermediate and the final configurations are shown in (b) and (c).

In figure (d) we plot the velocity of various points on the interface.

close to the inner interface. This introduces a completely different final appearance for the

outer interface as compared to the cases discussed above. The normal velocities also show a

very different qualitative behavior. The rightmost point on the outer interface moves quite fast

towards the sink, while the leftmost point has a non-monotonic normal velocity. The velocity

increases at early times when the outer and the inner interfaces are well separated in space.

But at later times, the velocity shows a rapid decrease when the outer interface comes close

to the inner one. Note that the leftmost point on the inner interface hardly moves, while the

rightmost point shows a normal velocity of magnitude close to 0.2. This novel “wrapping”

mechanism indicates nontrivial interactions between the two interfaces.

4.7. Effects of mobility

The relation between the viscosity ratio and the interfacial morphology is indeed a compli-

cated one. In the case of a growing Hele-Shaw bubble, it is well known that at later stages of

evolution, the fingering patterns depend strongly on the viscosity ratio of the fluids involved

in a two fluid system (Bischofberger et al. 2015; Coutinho & Miranda 2020). Multi-layer

cases have also been examined (Beeson-Jones & Woods 2015; Gin & Daripa 2015). However,

the investigation of such problems in the case of sink-driven flow remains less explored. In

this section, we check the effects of mobility in our problem.

In figures 11 and 12, we investigate the effects of mobility on the pattern formation. We
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Figure 10: Effects of sink location. The sink is at the origin. The mobilities of the fluids
are 𝑀1 = 1, 𝑀2 = 100, and 𝑀3 = 10000. In (a), we display the initial configuration. At
𝑡 = 0, the outer interface is given by (4.4). The inner interface is a circle of radius 𝑟 = 0.2
with centers at (-0.3, 0). The intermediate and the final configurations are shown in (b) and

(c). In figure (d) we plot the velocity of various points on the interface.

select a new set of mobilities 𝑀1 = 0.01, 𝑀2 = 1 and 𝑀3 = 100 for regions Ω1,Ω2 and

Ω3, respectively, different from the values used before. We keep the capillary number 𝐶𝑎

unchanged. Therefore, other parameters remaining the same, the increase of mobilities by a

factor of 100, can be understood the same as increasing the rate of extraction𝑄 hundred times

or decreasing the surface tension parameter by the same factor. In the initial configuration,

the outer interface remains unchanged. We choose the inner interface to be a circle of radius

𝑟 = 0.2, centered at two different locations (−0.5, 0) and (0.25, 0). The sink stays at the

origin and hence, inside the annular region. In figure 11(c), which corresponds to the inner

interface being placed at (−0.5, 0) initially, the outer interface tries to reach the sink from

the left and almost wraps the inner interface. This results in the formation of two long fingers

(fluid of Ω3) penetrating into fluid in Ω2 towards the sink, and a neck-like region of fluid 2

wrapping the inner interface.

We suspect that at the tip of both fingers, two cusp-like singularities are about to form.

This is because, in the adjacent 𝜃 −𝛼 plot of the outer interface shown in figure 11(d), where

𝜃 is the tangent angle and 𝛼 is the parameter that parametrizes the outer interface, we observe

a sharp transition in the value of 𝜃 near the region marked “a” in the inset of figure 11(c),

similar to the calculation of cusp-like formation observed earlier (Tian & Nie 1998). Figure

11(e) shows the close-up of the inner interface fingers at the times 𝑡 = 0.1182, 0.1198, and

0.12133.
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Figure 11: Effects of mobility. The sink is at the origin. The mobilities of the fluids are
𝑀1 = 0.01, 𝑀2 = 1, and 𝑀3 = 100. In (a), we display the initial configuration. At 𝑡 = 0,
the outer interface is given by (4.4). The inner interface is a circle of radius 0.2 initially
centered at (−0.5, 0). The intermediate and the final configurations are shown in (b) and

(c). In (d) we show the tangent angle 𝜃 vs. parametrization 𝛼. In (e), we show the close-up
of the outer interface finger at the times 𝑡 = 0.1182, 0.1198, and 0.12133.

A remarkable situation is observed when the center of the inner interface is placed at

(0.25, 0) at 𝑡 = 0, shown in figure 12(a). Here we plot a sequence of morphologies as insets,

and the curves are the 𝜃 − 𝛼 relation of the inner interface at different times close to the

point where simulation fails. The inner interface clearly experiences the presence of sink and

is pulled strongly towards the sink, forming what looks to be a small but distinct cusp-like

pattern, which distinguishes itself from those reported earlier (Tian & Nie 1998): the cusp-

like morphology in our case forms in the outward direction whereas in their case the cusp is

inward. Again, the 𝜃 − 𝛼 curve of the inner interface shows a steep transition near 𝛼 = 3.14.

Finally, the normal velocity plots of the left point on the outer and inner interfaces are shown

in figures 12(b) and (c), respectively for various initial locations of the initial center of the

inner circle. The curves indicate that the motion of the two interfaces approaches a possible

(quasi)-steady state as the time progresses.

4.8. Evolution of surface energy

In this section, we investigate the evolution of surface energy. The energy of the interface is

defined as 𝐸 (𝑡) =
∫

Γ (𝑡 )
𝜎𝑑𝑠, where 𝜎 is the surface tension of the interface Γ(𝑡). Apparently,

𝐸 (𝑡) is related to the length of the interface. For example, when the sink is at the center
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Figure 12: Effects of mobility. The sink is at the origin. The mobilities of the fluids are
𝑀1 = 0.01, 𝑀2 = 1, and 𝑀3 = 100. The outer interface is given by (4.4). The inner

interface is a circle of radius 0.2 initially centered at (0.25, 0) in (a). In (b) we show the
normal velocity of left point on the outer interface and in (c) the normal velocity of left

point on the inner interface for various location of centers of the inner circle.

of a circle, 𝐸 (𝑡) = 2𝜎
√︁

𝜋𝐴(𝑡) in theory for a constant surface tension, where 𝐴(𝑡) is the

area enclosed by the interface at time 𝑡. To scale out the size of the interface, we consider

a nondimensional energy and obtain that 𝐸 (𝑡)/𝐸 (0) =
√︁

𝐴(𝑡)/𝐴(0) for the circle. When all

the fluid is removed, the energy goes to zero, i.e., the interface shrinks to a point.

First, we explore the evolution of 𝐸 (𝑡)/𝐸 (0) with respect to 𝐴(𝑡)/𝐴(0) for the inner

interface in our simulations when the sink is in the interior region of the inner interface.

Different types of various initial configurations of the two interfaces are used (see table 1).

The result is summarized in figure 13(a) and one dataset is chosen from each type. The

theoretical formula is used for the result of two circles, where the sink is placed right at

the center of the annulus. Our simulation results coincide with the formula while the area

does not go to zero in our simulation. For other cases, the interface remains smooth and the
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Figure 13: (a) shows the evolution of nondimensional energy 𝐸 (𝑡)/𝐸 (0) with respect to
the nondimensional area 𝐴(𝑡)/𝐴(0) when the sink is in the inner interface. [b] shows the
evolution of nondimensional energy 𝐸 (𝑡)/𝐸 (0) with respect to the nondimensional area

𝐴(𝑡)/𝐴(0) when the sink is in the annulus region.

energy decreases as the area shrinks at early times. When the inner interface experiences

long fingers, the energy starts to increase while the area decays. The energy evolution of

simulations shown in section 4.4 (figure 4) and 4.5 (figure 7) also demonstrate the behavior.

Note that for the case in figure 7, the inner interface is a circle centered at the origin. The

interactions between the inner interface and outer interface make the inner interface deform

from the circle. It takes a long time for the interface to form long fingers. Thus the energy

evolution agrees very well with the theoretical results (two circles) for a long period.

Next, we investigate the evolution of 𝐸 (𝑡)/𝐸 (0) for the outer interface when the sink is in

the fluid region Ω2, i.e. 𝐴(𝑡) represents the area of fluid domain Ω2 and 𝐸 (𝑡) is the surface

energy of Γ2(𝑡). Again, different types of various initial configurations of the two interfaces

are used (see table 2). The result is summarized in figure 13(b) and one dataset is chosen

from each type. At early times, the energy and the area both decay. These data could be

fitted as 𝐸 (𝑡)/𝐸 (0) ∼ (𝐴(𝑡)/𝐴(0))0.658. During this moment, the outer interface is smooth

and does not experience long fingers. Later, multiple long fingers are formed and the surface

energy starts to grow. The energy evolution of simulations shown in section 4.6 (figures 8

and 10) and 4.7 (figure 11) also satisfies the behavior.

5. Conclusion

In this article, we have investigated a three-layer Hele-Shaw problem where the interfaces

move due to the presence of a sink. We present the governing equations of the problem

and the corresponding boundary integral formulation. The boundary integral equations are

discretized by spectrally accurate quadratures and we march in time with a second order

accurate time-stepping technique after alleviating the numerical stiffness issue. We have

performed simulations by varying the initial geometry of the interfaces, the location of sink

and the mobility of the fluids. In a single interface problem, the singularity occurs when

the interface reaches the sink. However, in the multilayer problem, we observe that the

singularity may also occur because the interfaces come very close to each other. We observe

rich interface dynamics and report novel cases beyond those reported previously in literature
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(Tian & Nie 1998). A natural extension of our work would be to consider a more practical

geometry consisting of multiple inner regions of fluids Ω11,Ω12, . . . ,Ω1𝑛, instead of just Ω1,

which would be all surrounded by the interface Γ2. This would better capture the scenario

where multiple air bubbles (or regions of less viscous fluids) are trapped within, for example,

a system with two additional fluids. Further, it would be interesting to see the effects of

multiple sinks and possibly, a combination of both sources and sinks.

Apart from the Hele-Shaw community, the current work could be of interest for the multi-

phase flows in permeable media, where the flow is well approximated by Darcy’s laws. In

the oil-filled rocks, several fluids like water, oil and air might be present. There could be

areas where all these fluids of contrasting viscosity flow while interacting with each other.

Our present work would prove quite relevant in such situations, especially if we extend this

problem to more complicated setups.

Finally some comments on the experimental side of our problem – it is not hard to

find experimental studies looking into a single layer problem (Logvinov 2019). Multi-layer

experiments are few (Cardoso & Woods 1995), however, these studies are gaining momentum.

For example, there has been work to explore the effect of squeezing the plates, which reduces

the gap distance, on the flow pattern (Moffatt et al. 2021). A very recent work explores

the gravity driven flow in four-layer cells (Brahim & Thoroddsen 2022). Since the external

force, i.e., gravity drives the flow, the arrangement does not need injection or removal of the

fluid. Lastly, we wish to add that suction related Hele-Shaw experiments are limited and our

findings might serve as a benchmark for the experimental fluid mechanics community, and

shed light on or motivate the development of analytical works for this practically important

problem.
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7. Appendix

In this appendix, we display the initial configurations corresponding to figures 13(a) and (b)

in tables 1 and 2 respectively.
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inner interface outer interface

two
circles

𝑥 = cos(𝛼), 𝑦 = sin(𝛼) 𝑥 = 2 cos(𝛼), 𝑦 = 2 sin(𝛼)

𝑥 = cos(𝛼), 𝑦 = sin(𝛼) 𝑥 = 3 cos(𝛼), 𝑦 = 3 sin(𝛼)

two
per-
turbed
circles

𝑟1 (𝛼, 0) = 1 + 0.05(sin(3𝛼) + cos(4𝛼)) 𝑟2 (𝛼, 0) = 2 + 0.1(sin(5𝛼) + cos(6𝛼))
𝑥 = 𝑟1 cos(𝛼), 𝑦 = 𝑟1 sin(𝛼) 𝑥 = 𝑟2 cos(𝛼), 𝑦 = 𝑟2 sin(𝛼)

𝑟1 (𝛼, 0) = 1 + 0.05(sin(5𝛼) + cos(6𝛼)) 𝑟2 (𝛼, 0) = 2 + 0.1(sin(3𝛼) + cos(4𝛼))
𝑥 = 𝑟1 cos(𝛼), 𝑦 = 𝑟1 sin(𝛼) 𝑥 = 𝑟2 cos(𝛼), 𝑦 = 𝑟2 sin(𝛼)

𝑟1 (𝛼, 0) = 1 + 0.05(sin(4𝛼) + cos(5𝛼)) 𝑟2 (𝛼, 0) = 2 + 0.01(sin(10𝛼) + cos(11𝛼))
𝑥 = 𝑟1 cos(𝛼), 𝑦 = 𝑟1 sin(𝛼) 𝑥 = 𝑟2 cos(𝛼), 𝑦 = 𝑟2 sin(𝛼)

𝑟1 (𝛼, 0) = 1 + 0.01(sin(10𝛼) + cos(11𝛼)) 𝑟2 (𝛼, 0) = 2 + 0.05(sin(5𝛼) + cos(6𝛼))
𝑥 = 𝑟1 cos(𝛼), 𝑦 = 𝑟1 sin(𝛼) 𝑥 = 𝑟2 cos(𝛼), 𝑦 = 𝑟2 sin(𝛼)

two
shifted
circles

𝑥 = cos(𝛼) − 0.5, 𝑦 = sin(𝛼) 𝑥 = 3 cos(𝛼) − 0.5, 𝑦 = 3 sin(𝛼)

𝑥 = cos(𝛼) − 0.25, 𝑦 = sin(𝛼) 𝑥 = 3 cos(𝛼) − 0.25, 𝑦 = 3 sin(𝛼)

𝑥 = 2 cos(𝛼) − 0.75, 𝑦 = 2 sin(𝛼) 𝑥 = 3 cos(𝛼) − 0.75, 𝑦 = 3 sin(𝛼)

𝑥 = 2 cos(𝛼) − 1.75, 𝑦 = 2 sin(𝛼) 𝑥 = 3 cos(𝛼) − 1.75, 𝑦 = 3 sin(𝛼)

two
shifted
per-
turbed
circles

𝑟1 (𝛼, 0) = 1 + 0.05(sin(3𝛼) + cos(4𝛼)) 𝑟2 (𝛼, 0) = 2 + 0.1(sin(5𝛼) + cos(6𝛼))
𝑥 = 𝑟1 cos(𝛼) − 0.65, 𝑦 = 𝑟1 sin(𝛼) 𝑥 = 𝑟2 cos(𝛼) − 0.65, 𝑦 = 𝑟2 sin(𝛼)

𝑟1 (𝛼, 0) = 1 + 0.05(sin(3𝛼) + cos(4𝛼)) 𝑟2 (𝛼, 0) = 2
𝑥 = 𝑟1 cos(𝛼) − 0.5, 𝑦 = 𝑟1 sin(𝛼) 𝑥 = 𝑟2 cos(𝛼) − 0.5, 𝑦 = 𝑟2 sin(𝛼)

𝑟1 (𝛼, 0) = 2 + 0.1(sin(5𝛼) + cos(6𝛼)) 𝑟2 (𝛼, 0) = 3
𝑥 = 𝑟1 cos(𝛼) − 1, 𝑦 = 𝑟1 sin(𝛼) 𝑥 = 𝑟2 cos(𝛼) − 1, 𝑦 = 𝑟2 sin(𝛼)

𝑟1 (𝛼, 0) = 1 + 0.01(sin(10𝛼) + cos(11𝛼)) 𝑟2 (𝛼, 0) = 2 + 0.1(sin(4𝛼) + cos(5𝛼))
𝑥 = 𝑟1 cos(𝛼) − 0.1, 𝑦 = 𝑟1 sin(𝛼) 𝑥 = 𝑟2 cos(𝛼) − 0.2, 𝑦 = 𝑟2 sin(𝛼)

Table 1: Initial configurations of the two interfaces when the sink is inside the inner
interface.
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Inner interface Outer interface

two
circles

𝑥 = 0.2 cos(𝛼) − 0.65, 𝑦 = 0.2 sin(𝛼) 𝑥 = cos(𝛼), 𝑦 = sin(𝛼)

𝑥 = 0.2 cos(𝛼) − 0.5, 𝑦 = 0.2 sin(𝛼) 𝑥 = 2 cos(𝛼), 𝑦 = 2 sin(𝛼)

two
per-
turbed
circles

𝑟1 (𝛼, 0) = 0.2 + 0.01(sin(3𝛼) + cos(4𝛼)) 𝑟2 (𝛼, 0) = 1 + 0.05(sin(5𝛼) + cos(6𝛼))
𝑥 = 𝑟1 cos(𝛼) − 0.65, 𝑦 = 𝑟1 sin(𝛼) 𝑥 = 𝑟2 cos(𝛼), 𝑦 = 𝑟2 sin(𝛼)

𝑟1 (𝛼, 0) = 0.2 + 0.01(sin(5𝛼) + cos(6𝛼)) 𝑟2 (𝛼, 0) = 1 + 0.05(sin(3𝛼) + cos(4𝛼))
𝑥 = 𝑟1 cos(𝛼) − 0.5, 𝑦 = 𝑟1 sin(𝛼) 𝑥 = 𝑟2 cos(𝛼), 𝑦 = 𝑟2 sin(𝛼)

𝑟1 (𝛼, 0) = 0.2 + 2 × 10−3 (sin(9𝛼) + cos(10𝛼)) 𝑟2 (𝛼, 0) = 1 + 0.05(sin(5𝛼) + cos(6𝛼))
𝑥 = 𝑟1 cos(𝛼) − 0.65, 𝑦 = 𝑟1 sin(𝛼) 𝑥 = 𝑟2 cos(𝛼), 𝑦 = 𝑟2 sin(𝛼)

𝑟1 (𝛼, 0) = 1 + 2 × 10−3 (sin(5𝛼) + cos(6𝛼)) 𝑟2 (𝛼, 0) = 2 + 0.05(sin(9𝛼) + cos(10𝛼))
𝑥 = 𝑟1 cos(𝛼) − 0.65, 𝑦 = 𝑟1 sin(𝛼) 𝑥 = 𝑟2 cos(𝛼), 𝑦 = 𝑟2 sin(𝛼)

two
shifted
circles

𝑥 = 0.2 cos(𝛼) − 0.5, 𝑦 = 0.2 sin(𝛼) 𝑥 = cos(𝛼) − 0.5, 𝑦 = sin(𝛼)

𝑥 = 0.2 cos(𝛼) − 0.65, 𝑦 = 0.2 sin(𝛼) 𝑥 = cos(𝛼) − 0.65, 𝑦 = sin(𝛼)

𝑥 = 0.25 cos(𝛼) − 0.5, 𝑦 = 0.2 sin(𝛼) 𝑥 = 2 cos(𝛼) − 0.5, 𝑦 = 2 sin(𝛼)

𝑥 = 0.5 cos(𝛼) − 0.7, 𝑦 = 0.5 sin(𝛼) 𝑥 = 2 cos(𝛼) − 0.3, 𝑦 = 2 sin(𝛼)

two
shifted
per-
turbed
circles

𝑟1 (𝛼, 0) = 0.2 + 0.01(sin(3𝛼) + cos(4𝛼)) 𝑟2 (𝛼, 0) = 2 + 0.1(sin(5𝛼) + cos(6𝛼))
𝑥 = 𝑟1 cos(𝛼) − 0.5, 𝑦 = 𝑟1 sin(𝛼) 𝑥 = 𝑟2 cos(𝛼) − 0.5, 𝑦 = 𝑟2 sin(𝛼)

𝑟1 (𝛼, 0) = 0.2 + 0.01(sin(5𝛼) + cos(6𝛼)) 𝑟2 (𝛼, 0) = 2 + 0.1(sin(3𝛼) + cos(4𝛼))
𝑥 = 𝑟1 cos(𝛼) − 0.5, 𝑦 = 𝑟1 sin(𝛼) 𝑥 = 𝑟2 cos(𝛼) − 0.5, 𝑦 = 𝑟2 sin(𝛼)

𝑟1 (𝛼, 0) = 0.25 + 2 × 10−3 (sin(4𝛼) + cos(5𝛼)) 𝑟2 (𝛼, 0) = 2 + 0.05(sin(10𝛼) + cos(11𝛼))
𝑥 = 𝑟1 cos(𝛼) − 0.5, 𝑦 = 𝑟1 sin(𝛼) 𝑥 = 𝑟2 cos(𝛼) − 0.5, 𝑦 = 𝑟2 sin(𝛼)

𝑟1 (𝛼, 0) = 0.25 + 2 × 10−3 (sin(10𝛼) + cos(11𝛼)) 𝑟2 (𝛼, 0) = 2 + 0.05(sin(4𝛼) + cos(5𝛼))
𝑥 = 𝑟1 cos(𝛼) − 0.5, 𝑦 = 𝑟1 sin(𝛼) 𝑥 = 𝑟2 cos(𝛼) − 0.2, 𝑦 = 𝑟2 sin(𝛼)

Table 2: Initial configurations of the two interfaces when the sink is in the annulus region.
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