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Abstract This paper is concerned with the mean curvature flow, which de-
scribes the dynamics of a hypersurface whose normal velocity is determined by
local mean curvature. We present a Cartesian grid-based method for solving
mean curvature flows in two and three space dimensions. The present method
embeds a closed hypersurface into a fixed Cartesian grid and decomposes it
into multiple overlapping subsets. For each subset, extra tangential velocities
are introduced such that marker points on the hypersurface only moves along
grid lines. By utilizing an alternating direction implicit (ADI)-type time inte-
gration method, the subsets are evolved alternately by solving scalar parabolic
partial differential equations on planar domains. The method removes the stiff-
ness using a semi-implicit scheme and has no high-order stability constraint
on time step size. Numerical examples in two and three space dimensions are
presented to validate the proposed method.
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1 Introduction

Geometric evolution of interfaces draws many attentions in the last decades
due to its wide applications in mathematics [10], materials science [22], bi-
ology [23] and, more recently, image processing [19,33,20]. In a geometric
evolution problem, the dynamics of a hypersurface are described by its ge-
ometry. Typically, the normal velocity of the hypersurface is given by a law
defined by geometry. In this paper, we are concerned with a representative
case of geometric evolution problems, the mean curvature flow, in which the
hypersurface evolves such that its normal velocity equals its negative mean
curvature. Mean curvature flow was originally proposed by Mullins to model
an ideal grain boundary motion [22]. Thereafter, it was also used to model
various other physical phenomena [23,1].

Numerical methods for mean curvature flows can be classified into three
categories, based on their different representations of hypersurfaces, which are
parametric approaches, level set method [24,26,25] and phase field method [8,
9,27]. Representative parametric approaches include the parametric finite ele-
ment method [3,7,5,4], graph approach [12,13] and the front tracking method
[18,31]. For a comprehensive survey on numerical methods for mean curvature
flows, the interested reader is referred to the review article by Deckelnick et
al. [13].

For general moving interface problems, although the level set method and
the phase field method have their advantages in handling topological changes
and ease in implementation, parametric approaches provide surprisingly good
results, such as accurate computation of curvature and conservation of mass,
even with a coarse grid, and are computationally very cheap as well [6,30].
Despite the benefits, numerical computation of mean curvature flows with
parametric approaches also encounters several difficulties, including the de-
terioration of mesh quality during the computation and the numerical stiff-
ness induced by the mean curvature term. Due to the pure normal motion of
the surface, adjacent mesh nodes may become closer and closer, making the
computation highly unstable. The problem is even more severe for the mean
curvature flow due to its ”curve shortening” property by Mullins [22]. In addi-
tion, the evolution equation of mean curvature flows has second-order spatial
derivatives in the mean curvature term, which induces numerical stiffness such
that a small time step is required for explicit time integration schemes [17]. A
naive discretization with implicit time integration to remove stiffness leads to
a nonlinear system, for which finding a numerical solution is time-consuming,
even with advanced iterative solvers. For two space dimensional curves, these
difficulties can be very well handled by the small scale decomposition method,
initially proposed by Hou et al. [17]. The idea was also extended to three space
dimensional cases for some special surfaces [16,2]. However, for general closed
surfaces in three space dimensions, it is still unclear how to apply small scale
decomposition for mean curvature flows.

This work proposes a new numerical method for mean curvature flows. The
method decomposes a moving hypersurface into multiple overlapping subsets
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such that each subset can be viewed as a Monge patch for which the graph
approach [12,13] is applicable. The method is based on an overlapping de-
composition method for hypersurfaces, initially proposed by Wilson for com-
puting integrals on implicitly defined curves and surfaces [32]. A few years
later, the method was extended by the second author to incorporate a kernel-
free boundary integral method for solving elliptic partial differential equations
on irregular domains [34]. The decomposition strategy has many advantages
in simplicity and efficiency. By representing each subset with its intersection
points with grid lines, it is natural to keep marker points quasi-equidistant
and maintain mesh quality. By reformulating the evolution equation, which
is a nonlinear system, into a sequence of scalar PDEs on overlapping subsets,
one can evolve the subsets alternately in the spirit of the alternating direction
implicit (ADI) method [28,14,15]. The resulting algorithm is efficient and has
no high-order stability constraint.

The remainder of the paper is organized as follows. In Section 2, we de-
scribe the governing equation of mean curvature flow and its hybrid formula-
tion based on an overlapping surface decomposition method. The numerical
methods for solving mean curvature flows are described in Section 3. In Sec-
tion 4, the numerical algorithm of the proposed method is briefly summarized.
Multiple numerical examples are presented to validate the present method in
Section 5. In the final Section 6, we briefly discuss the present method and
some further work.

2 Mathematical formulation

Let Γ (t) ⊂ Rd, d = 2, 3 be a closed moving hypersurface. Consider the mean
curvature flow problem that, for any point x on Γ , the evolution is given by,

xt = V n, V = −κ, x ∈ Γ, (1)

where κ is the (mean) curvature and n the unit outward normal. Here, a
circle/sphere has positive curvature. By applying the transport theorem of
evolving hypersurfaces, it can be shown that the mean curvature flow has
length-decreasing and area-decreasing properties in 2D and 3D, respectively,

d

dt
|Γ (t)| = d

dt

∫
Γ (t)

1 ds = −
∫
Γ (t)

κ2 ds < 0, if d = 2, (2)

d

dt
|Γ (t)| = d

dt

∫
Γ (t)

1 dA = −
∫
Γ (t)

κ2 dA < 0, if d = 3, (3)

where |Γ (t)| is the length of Γ (t) in 2D and the area of Γ (t) in 3D. Specially,
for the case d = 2, it holds that

d

dt
A(t) =

∫
Γ (t)

dx

dt
· n ds = −

∫
Γ (t)

κ ds = −2π, (4)
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where A(t) is the area enclosed by Γ (t). It suggests that the enclosed area of a
2D mean curvature flow always decreases at a constant rate [11]. The result no
longer holds for the enclosed volume of 3D surfaces since the surface integral
of mean curvature varies from case to case.

If Γ is closed, and there is no boundary condition, then the solution of mean
curvature flow is determined by its initial configuration. For some certain initial
configurations, solutions of mean curvature flows may develop singularities,
such as pinch-off and topological changes, in finite time before shrinking to a
point. In this paper, we seek well-defined solutions of mean curvature flows,
i.e., solutions before singularities happen.

In order to tackle the mean curvature flow problem, the evolution equa-
tion (1) is divided into multiple subproblems with an overlapping surface de-
composition of Γ . For r = 1, · · · , d, let er be the rth unit vector in Rd and
α ∈ (cos−1(1/

√
d), π/2) be a fixed angle. The set

Γr = {x ∈ Γ : |n · er|(x) > cosα}, (5)

is an open subset of the surface Γ for each r = 1, 2, · · · , d. The union of the sets
{Γr}dr=1 forms an overlapping surface decomposition of Γ . Then the surface
Γ is represented by the overlapping subsets Γr with a partition of unity.

2.1 Divided problems

Note that the evolution of a hypersurface is only determined by its normal
velocity V . One is allowed to add arbitrary tangential velocity to the evolution
of Γ without altering its shape. The tangent velocity only changes in the frame
for the parametrization of the surface. For arbitrary tangential velocities T ,
T1 and T2, the evolution governed by (1) is equivalent to

xt = −V nnn+ Tτττ , x ∈ Γ, (6)

in two space dimensions and

xt = −V nnn+ T1τττ1 + T2τττ2, x ∈ Γ, (7)

in three space dimensions. Here, the notations τ , τ 1 and τ 2 mean tangent
vectors.

Consider the evolution of the overlapping subsets Γr in three space dimen-
sions. Let x(r) denote a point on the subset Γr. The evolutions of Γr are given
by

x
(r)
t = −V (r)n, x(r) ∈ Γr, r = 1, · · · , d. (8)

where V (r) are the restrictions of V from Γ to Γr. By adding tangential ve-

locities T
(r)
1 and T

(r)
2 , it yields the equivalent evolution equations

x
(r)
t = −V (r)n+ T

(r)
1 τ 1 + T

(r)
2 τ 2, x(r) ∈ Γr, r = 1, · · · , d. (9)
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Hence, the evolution equation (1) of Γ is divided into a sequence of evolution
equations of subsets Γr. With the divided formulation (9), for each subset Γ ,

the tangential velocities T
(r)
1 and T

(r)
2 can be chosen independently.

Due to the overlapping surface decomposition (5), each subset Γr can be
easily parameterized with Cartesian coordinates in a planar domain Ωr ⊂
Rd−1. For example, in three space dimensions, denote by Ω3 the projection
of Γ3 onto X-Y plane. Then Γ3 can be represented by the Monge patch
x(x, y) = x(x, y, z(x, y)), (x, y) ∈ Ω3 in which z(x, y) is a height function. With
this understanding, the evolution of Γr can be described as a time-dependent
height function on the base plane Ω3 in d − 1 space dimensions. The height
function representation is an Eulerian description of the moving hypersurface.
Its numerical approximation is much simpler than that for tracking a mov-
ing hypersurface with its Lagrangian motion. With Eulerian description, it is
natural to use a Cartesian grid to approximate the height function. With the
understanding that the Eulerian description is equivalent to moving marker
points of the hypersurface along fixed grid lines, the evolution equations of
the equivalent Eulerian motion can be derived by carefully choosing tangent

velocities T (r), T
(r)
1 and T

(r)
2 such that Γr only have one non-zero velocity

component in direction er.

2.1.1 Two space dimensional case

Let Γ ⊂ R2 be a time-dependent Jordan curve which is given by x(t) =
(x(θ, t), y(θ, t)) where θ parameterizes the curve. Its curvature κ and unit
outward normal vector are, respectively, given by

κ =
xθyθθ − xθθyθ

(x2
θ + y2θ)

3
2

, n =
1

(x2
θ + y2θ)

1
2

(
yθ
−xθ

)
. (10)

For each subset Γr, r = 1, 2, it can be parameterized by x or y to be a
height function y = y(x) or x = x(y) depending on its orientation. Suppose Γr

is represented in the form η = η(ξ) where (ξ, η) coincides with (x, y) or (y, x).
After extra tangential velocity T is added into the original evolution equation
(1), the evolution of Γr is equivalent to

d

dt

(
ξ
η

)
=− ηξξ

(η2ξ + 1)2

(
ηξ
−1

)
+ T

(
1
ηξ

)
. (11)

It is worth mentioning that equation (11) does not rely on the orientation of
the curve due to the cancellation of signs in the curvature and normal vector
when one reverses the parameterization, namely, from ξ to −ξ.

To determine a specific tangential velocity T such that marker points on
Γr only have non-zero velocity component in er direction. One needs to set
ξt = 0, i.e.

ξt = − ηξηξξ
(η2ξ + 1)2

+ T = 0. (12)
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The expression of T can be easily solved. By substituting the determined T
into (11), it yields the evolution law for Γr in terms of height function,

ηt =
ηξξ

η2ξ + 1
, (13)

which is a scalar parabolic-type partial differential equation.

2.1.2 Three space dimensional case

The derivation in three space dimensions is similar. For each subset Γr, r =
1, 2, 3, it can be regarded as a Monge patch x(u, v) = x(u, v, w(u, v)), (u, v) ∈
Ωr where Ωr is the projection of Γr on its base plane and w(u, v) is the height
function. Denote by τ 1 = (1, 0, wu)

T , τ 2 = (0, 1, wv)
T two tangent vectors of

Γr. After adding two tangential velocities T1 and T2, the evolution equation
(1) in three space dimensions becomes

d

dt

u
v
w

 =
(1 + w2

u)wvv − 2wuwvwuv + (1 + w2
v)wuu

2(1 + w2
u + w2

v)
2

−wu

−wv

1

+T1

 1
0
wu

+T2

 0
1
wv

 .

(14)
By setting ut = vt = 0, one can solve for T1 and T2,

T1 = wu
(1 + w2

u)wvv − 2wuwvwuv + (1 + w2
v)wuu

2(1 + w2
u + w2

v)
2

, (15)

T2 = wv
(1 + w2

u)wvv − 2wuwvwuv + (1 + w2
v)wuu

2(1 + w2
u + w2

v)
2

. (16)

By substituting (15) and (16) into (14), it gives the evolution of Γr in terms
of its height functions w,

wt =
(1 + w2

u)wvv − 2wuwvwuv + (1 + w2
v)wuu

2(1 + w2
u + w2

v)
. (17)

The equation (17) is also a scalar parabolic-type partial differential equation.

2.2 Matching condition

Until now, the original evolution equation (1) is reformulated as a sequence of
scalar partial differential equations (13) and (17). To ensure the well-posedness
of the divided problem, we follow the idea of domain decomposition [21] to
add an extra matching condition for the solution of the divided problem at
the overlapping zone such that the equations (13) and (17) have boundary
condition.

A simple choice of the matching condition is to enforce continuity of the
global solution at an overlapping zone with a partition of unity,

x(r) =
∑
j ̸=r

χjx
(j), x(r) ∈ ∂Γr. (18)
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where ∂Γr denotes the boundary of Γr. Here, the notation χj is the partition
of unity subordinate to the subset Γj , which satisfies

χr(x) ≥ 0, x ∈ Γr,

χr(x) = 0, x ∈ Γ\Γr,

d∑
r=1

χr(x) = 1, x ∈ Γ.

(19)

The divided problem (9) together with the matching condition (18) forms
an equivalent coupled system, which is called hybrid formulation, to equation
(1) in three space dimensions,

x
(r)
t = −V (r)n+ T

(r)
1 τ 1 + T

(r)
2 τ 2, x(r) ∈ Γr,

x(r) =
∑
j ̸=r

χjx
(j), x(j) ∈ ∂Γr.

(20)

Once the hybrid formulation (20) is solved, the global solution x can be re-
constructed with a partition of unity,

x =

d∑
r=1

χrx
(r). (21)

Unlike Ambrose’s method [2], which is applicable only for a particular class
of surfaces with doubly-periodic boundary conditions, our method can handle
more general cases, including closed surfaces, with this hybrid formulation.

3 Numerical Methods

In this section, the numerical methods for mean curvature flow are described,
including the discrete representation of a moving hypersurface, numerical dis-
cretizations of the partial differential equations (13) and (17) as well as the
matching condition (18).

3.1 Hypersurface representation

Let Γ be a smooth closed hypersurface. It is separately represented by the
height functions of its overlapping subsets Γr, r = 1, · · · , d, which are ap-
proximated by nodal values at Cartesian grid nodes in the base domain Ωr.
Equivalently, the nodal values are, in fact, the intersection points of Γr and
grid lines, which are aligned with er. At the implementation level, this is done
by selecting from all intersection points p of Γ and grid lines for certain ones
which satisfy the decomposition rule:

p ∈ Γr and n(p) · er > cosα. (22)
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where n(p) is the unit outward normal at p and α is a given threshold angle.
Those points which satisfy (22) are named as control points for Γr and the
point set is denoted by Γh

r . We also denote all control points on Γ by Γh =
∪d
r=1Γ

h
r . The point set Γh is used to represent Γ in terms of its overlapping

subsets. We remark that, although points in Γh are not quasi-equidistant,
local interpolation stencil only involves points in each subset Γh

r , which are
quasi-equidistant. Figure 1 and 2 show the distribution of control points in
two and three space dimensions, respectively.

(a) (b)

Fig. 1 Control points for the representation of an ellipse: (a) control points on Γ1 (red
rectangle markers); (b) control points on Γ2 (blue circle markers).

X

Z

Fig. 2 Control points for the representation of an ellipsoid on Γ1.
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The advantage of this representation of hypersurface is evident. One can
easily find out that the projections of control points in Γh

r coincide with Carte-
sian grid nodes in Ωr. Instead of tracking Γ by marker points whose velocities
are in d dimensions, one needs to solve the evolution for the height functions,
i.e. marker points moving along grid lines, which only change values in one
dimension.

3.1.1 Solving PDEs on hypersurfaces

Generally, for a closed smooth hypersurface Γ , the subset Γr consists of several
isolated components which are denoted by Γr,l, l = 1, 2, · · · . For example,
suppose Γ : x = x(θ), θ ∈ [0, 2π) is a circle, then the curve segments Γ1,1 :
x = x(θ), θ ∈ (2π − α, 2π) ∪ [0, α) and Γ1,2 : x = x(θ), θ ∈ (π − α, π + α) are
both subsets of Γ1. Let Ωr,l denote the projection of Γr,l on the base plane. If
Ωr,l overlap with each other, then Γr is a multi-valued function on Ωr, which
induces ambiguity.

The correct understanding is to separate Γr,l from each other, and on which
PDEs are solved independently. Once the components are separated from each
other, the ambiguity is removed, since Γr,l is a single-valued function on Ωr,l

(see Figure 3). Only points on the same component are involved in a local
stencil for solving PDEs. In the implementation, one can check their distance
and normals to determine if two points are on the same component Γr,l. We
identify two points p and q on the same component if they satisfy

∥p− q∥ < D0 and n(p) · n(q) < cos(θ0), (23)

where ∥ · ∥ is the Euclidean distance, D0 and θ0 are threshold values given in
advance. In this work, we set D0 = 5h and θ0 = π/6. The separation proce-
dure is meant to find the correct finite difference stencil point from possible
intersection points that lie on the same grid line. The implementation based
on the criteria (23) can naturally handle cases with multiple (more than 2)
components in each Γr, for example, oscillating curves or surfaces, as long as
the grid is fine enough to resolve them.

3.1.2 Interpolation on hypersurface

In the discrete representation Γh, geometric quantities and functions on the
hypersurface are evaluated by local interpolation. Given a point p ∈ Γ , to in-
terpolate the function value at p using function values on Γh

r , one needs to find
its projection point p⋆ ∈ Ω in which the selection of r depends on the direction
of n(p). A quadratic polynomial is locally constructed for interpolation,

P2(u, v) = c1 + c2u+ c3v + c4u
2 + c5v

2 + c6uv, (24)

where (u, v) is the local coordinate near p⋆ in the base plane. With the help
of a Cartesian grid, finding interpolation stencils on Γh is very simple. One
can attach control points to their closest grid nodes and find stencil points by
searching nearby grid nodes with their indices in the Cartesian grid.
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Fig. 3 A surface component Γr,l and its projection on the base plane Ωr,l.

3.1.3 Evolving the hypersurface

After the PDEs (13) and (17) are solved for a time step, control points are
moved to different positions and form a new hypersurface. Old points can no
longer represent the new hypersurface since they do not satisfy the decompo-
sition rule mentioned before. To represent the new hypersurface, new control
points must be added, and some old ones must be deleted. This is achieved
by finding out all intersection points by local interpolation and select for new
control points. Even in three space dimensions, intersection points can be
computed using one-dimensional polynomial interpolations since both stencil
points and new intersection points are on the same plane.

Take the surface component Γ3,l as an example. The component is dis-
cretized by intersection points with coordinates (xi, yj , ηi,j) where (xi, yj) ∈
Ωh

3,l. In order to find new intersection points of the component with the grid
line {(x, y, z)|y = yj , z = zk}, one first needs to identify the intersection in-
terval (xi0 , xi1) by check the side of grid nodes, and then choose three in-
tersection points (xi0−1, yj , ηi0−1,j), (xi0 , yj , ηi0,j), and (xi0+1, yj , ηi0+1,j) to
locally construct a 1D quadratic polynomial z = P2(x). By solving the equa-
tion P2(x

∗) = zk with either the Newton method or the bisection method, one
can obtain the new intersection point (x∗, yj , zk).

After an intersection point is found, following (22), one can determine
whether it is kept or deleted by checking the normal vector, which is also
evaluated by locally constructing a parabola. It is worth mentioning that if a
new component Γr,l is too small and does not have enough control points for
interpolation, the whole component should be deleted.
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3.2 Discretization of PDEs

3.2.1 Temporal discretization

The equation (13) and (17) are parabolic PDEs and have second-order spatial
derivatives. Generally, explicit time integration methods, such as the forward
Euler method, for PDEs involving high-order spatial derivatives suffer from
high-order stability constraints, and one has to use small time steps to solve
the equations. These problems are known as stiff problems. The stiffness for
mean curvature flow is rather severe. Take two space dimensional cases as an
example. If one discretizes Γ by uniformly partitioning the parameter θ. An
explicit time integration suffers from a second order stability constraint ∆t ≤
C(minθ sθh)

2 where C is a constant, s is arclength, and h is the grid spacing
in θ. Since 2-D mean curvature flow is also known as the ”curve shortening
flow”, sθh decreases with time and results in an even worse situation. Although
implicit methods are unconditionally stable for stiff problems, there is another
difficulty in implicit time integration for (13) and (17) since it results in a
nonlinear system in each time step, for which finding a solution is highly
inefficient.

Notice that equations (13) and (17) are quasi-linear equations. The source
of stiffness comes from the highest-order terms, which are linear in equations
(13) and (17). The stiffness can be removed by only treating the highest or-
der terms implicitly with lower order terms treated explicitly. The resulting
time integration scheme is semi-implicit in time. It only requires solving linear
systems, which are much more acceptable than nonlinear systems.

Suppose the time interval [0, T ] is uniformly partitioned into 0 = t0 < t1 <
· · · < tn < · · · < tN = T with tn+1 − tn = ∆t. The semi-implicit schemes for
equations (13) and (17), respectively, are give by

ηn+1 − ηn

∆t
=

ηn+1
ξξ

(ηnξ )
2 + 1

, (25)

and

wn+1 − wn

∆t
=

(1 + (wn
u)

2)wn+1
vv − 2wn

uw
n
vw

n+1
uv + (1 + (wn

v )
2)wn+1

uu

2(1 + (wn
u)

2 + (wn
v )

2)
. (26)

The semi-implicit schemes (25) and (26) are only in semi-discrete forms.

3.2.2 Spatial discretization

Generally, physical properties should be encoded into the discretization of
spatial derivatives. In the case of mean curvature flow, the evolution of a
hypersurface is driven by surface tension, which is diffusive in nature. Since
diffusion comes from all directions, it is preferred to adopt central differences
for approximating the spatial derivatives in the mean curvature term. Though
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tangential velocities terms may introduce the convection effect, which com-
monly should be discretized with methods for hyperbolic PDEs, we remark
that the convection effect is expected to be small compared to the diffusion
effect. Hence, for simplicity, we approximated all the spatial derivatives in (13)
and (17) with central differences.

Suppose Γ ∈ Rd, d = 2, 3 is embedded into a bounding box B which is the
tensor product of one dimensional intervals Ii, i = 1, 2, · · · , d. If Ii is uniformly
partitioned into a Cartesian grid Gi for each i, then the tensor product of Gi

forms a natural uniform partition of B, which is also a Cartesian grid and is
denoted by G. Without loss of generality, we assume equal bounding intervals
Ii = [a, b], i = 1, 2, · · · , d, and they are uniformly partitioned into N intervals.
Denote by h = (b− a)/N the mesh parameter.

Let ∆ξ, δ
2
ξ denote central difference quotients,

∆ξui =
ui+1 − ui−1

2h
, δ2ξui =

ui+1 − 2ui + ui−1

h2
.

The fully discrete form of equation (13) is given by

un+1
i − un

i

∆t
=

δ2ξu
n+1
i

(∆ξun
i )

2 + 1
. (27)

Similarly, introduce the central difference quotients,

∆uwij =
wi+1,j − wi−1,j

2h
, ∆vwij =

wi,j+1 − wi,j−1

2h
,

δ2uuwij =
wi+1,j + wi−1,j − 2wij

h2
, δ2vvwij =

wi,j+1 + wi,j−1 − 2wij

h2
.

The fully discrete form of equation (17) is given by

wn+1
ij − wn

ij

∆t
= Cn

ij,1δ
2
vvw

n+1
ij + Cn

ij,2∆u∆vw
n+1
ij + Cn

ij,3δ
2
uuw

n+1
ij , (28)

where the coefficients Cij,1, Cij,2 and Cij,3 are specified by

Cn
ij,1 =

1 + (∆uw
n
ij)

2

2(1 + (∆uwn
ij)

2 + (∆uwn
ij)

2)
,

Cn
ij,2 =

−∆uw
n
ij∆vw

n
ij

1 + (∆uwn
ij)

2 + (∆uwn
ij)

2
,

Cn
ij,3 =

1 + (∆vw
n
ij)

2

2(1 + (∆uwn
ij)

2 + (∆uwn
ij)

2)
.
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Fig. 4 A schematic of node identification of the nine-point scheme (28) on a base domain:
boundary nodes ∂Ωh

r,l (marked by red rectangles) and interior nodes Ωh
r,l\∂Ω

h
r,l(marked by

blue triangles).

3.3 Boundary condition

Note that the finite difference schemes (27) and (28) are three-point and nine-
point schemes, respectively. Denote by Ωh

r,l all grid nodes in Ωr,l. A grid node

is identified as a boundary node if all of its stencil nodes belong to Ωh
r,l.

Otherwise, it is identified as an interior node, see Figure 4 for an example.
The set of boundary nodes is denoted as ∂Ωh

r,l. Further, a control point is
identified as a boundary control point if its projection on the base plane belongs
to ∂Ωh

r,l. Denote by ∂Γh
r,l the set of boundary control points. It is worthwhile

to mention that ∂Γh
r,l works as the numerical boundary of Γr,l and is not

necessarily a subset of ∂Γr,l. At boundary nodes, the match condition (18) is
utilized to pose Dirichlet boundary conditions for (13) and (17). Numerically,
the partition of unity χr is taken as

χr(x) =

{
1, if |n(x) · er| > |n(x) · ej |,∀j ̸= r,

0, otherwise.
(29)

This simple choice of partition of unity is sufficient for accuracy, though it
is not a smooth one. The partition of unity can be understood as evaluating
values at boundary nodes on Γr by interpolation from interior nodes on other
subsets Γj , j ̸= r. Since subsets overlap with each other, interpolation stencils
always exist.

In the following, we introduce the approaches to discretize the matching
condition (18).
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3.3.1 Coupled matching condition

The simplest way to discretize (18) is to enforce it at every time level in a
discrete sense.

x(r),n+1 =
∑
j ̸=r

χjx
(j),n+1, x(r),n+1 ∈ ∂Γh,n+1

r . (30)

This leads to a nonlinear system that couples the solutions on all subsets Γr

in each time step. Let ui and ub denote the vectors of solutions at the interior
and boundary nodes, respectively. The system, which needs to be solved in
each time step, is written as

Aui +Qub = f ,

ub = Πui,
(31)

where A,Q are matrices, Π is the interpolation operator and f is the vector
containing solutions at previous time levels. Typically, in the system (31), the
first equation approximates PDEs, and the second approximates the matching
condition. Here, the operator Π is essentially nonlinear since discretizing (30)
involves the root-finding of polynomials. Note that the matrix A is block-wise
diagonal and is invertible. The nonlinear system (31) can be solved, in spirit,
with the technique of Schur complement. One first needs to solve the lower
dimensional system

ΠA−1(f −Qub)− ub = 0, (32)

for ub and then obtains ui by solving

Aui = f −Qub. (33)

The system (32), which looks like a Schur complement system but is nonlinear,
can be solved with the method widely used in domain decomposition meth-
ods, the Schwarz alternating method, which is a block-wise Gauss-Seidel type
iteration method [21,29]. The main idea of the method is to solve problems
alternately on each subdomain and to provide boundary conditions for other
subdomains. Generally, the Schwarz alternating method converges geometri-
cally within a few iterations. The blocks in matrix A are the approximations
of elliptic differential operators, which can also be inverted by an iterative
method, such as the successive over-relaxation (SOR) method. In particular,
in two space dimensions, A is block-wise tri-diagonal, and the Thomas algo-
rithm is applicable.

3.3.2 ADI method

Instead of directly enforcing the matching condition (18), we can also follow
the idea of the alternating direction implicit (ADI) method, which is used
to solve time-dependent PDEs in multiple space dimensions and discretize
the matching condition with a time splitting technique. Note that there is no
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need to enforce (18) accurately since numerical discretization of the PDEs has
already introduced numerical errors. One only needs to approximate it with an
error on the order of O(τp) where τ is the time step, and p is the approximation
order. We evolve Γr alternately and compute boundary conditions with the
newest solutions, which is also an accurate approximation to the matching
condition, by

x(r),n+1 =
∑
j ̸=r

χjx
(j),n⋆

, x(r),n+1 ∈ ∂Γh,n+1
r . (34)

where x(j),n⋆

is the newest solution on Γj . For example, boundary conditions
for Γ1 are interpolated from the newest solution on Γ2 and Γ3; then, update
the solution on Γ1 and compute boundary conditions for Γ2 using the newest
solution on Γ1 and Γ3, etc. This approach is non-iterative in the sense that
the solutions on subsets Γr are not coupled, and no Schur complement system
needs to be solved in each time step. This ADI method is also a time-splitting
strategy with a formal splitting error on the order of O(τ).

The two approaches only differ in the computation of boundary conditions.
Figure 5 presents the numerical solutions obtained by these two approaches.
One can see that the solutions obtained by these two approaches only have
subtle differences at several nodes in the overlapping region.

(a) (b) (c)

Fig. 5 Zoom-in snapshots of numerical solutions. (a) initial solution; (b) solution after a
time step by the ADI method; (c) solution after a time step by coupled matching condition.
Control points on horizontal lines are marked as red rectangles, and those on vertical lines
are marked as blue circles.

In fact, the ADI method and the Schwarz alternating method are closely
related to this problem. The ADI method is only a strategy to provide Dirichlet
boundary conditions for PDEs (13) and (17). One can also repeatedly use the
ADI method to compute new boundary conditions and update the solution at
tn+1, which exactly leads to the Schwarz alternating method. Therefore, the
Schwarz alternating method reduces to the ADI method if only one iteration
is performed in each time step.
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4 Algorithm summary

In this section, the algorithm for solving mean curvature flows (1) with the
proposed ADI method is summarized as follows:

Algorithm. The ADI method for mean curvature flows:
Step 1. Given the initial hypersurface by its parametric form or a level set

function, embed it into a bounding box that is uniformly partitioned into
a Cartesian grid and find the control points with overlapping decomposition
strategy described in Subsection 3.1.

Step 2. In each time step, evolve the overlapping subsets alternately. For each
subset, do the following three procedures:
(a) identify all the nodes in each isolated component of the subset with the

breadth-first search method.
(b) compute the Dirichlet-type boundary condition for boundary nodes

with the discrete matching condition (34);
(c) evolve the subset to the next time level by solving (27) or (28);

Step 4. Update control points such that they satisfy the decomposition strat-
egy described in Subsection 3.1.

Step 5. Repeat steps 2-4 until the final computational time.

Remark 1 Procedure (a) in Step 2 is only for matrix assembly such that direct
methods, such as the Thomas algorithm, are applicable. Suppose the finite
difference equations (27) and (28) are solved with iterative methods which
only require the matrix-vector product. In that case, one can find the local
stencil points on-the-fly instead of finding all the nodes in the components in
advance.

5 Numerical results

This section presents numerical examples in two and three space dimensions
to validate the proposed method. Initial hypersurfaces are given in parametric
forms or the zero level set of level set functions, which will be prescribed in
each example. In all the numerical examples, the bounding box B is uniformly
partitioned into a Cartesian grid G with N intervals in each direction. For
problems with exact solutions, we estimate the numerical error at a surface
point by finding its projection on the hypersurface of the exact solution and
computing the distance. We take the solution on a fine grid for problems
without exact solutions as a reference “exact” solution. Then, we estimate the
numerical error at a surface point by finding the closest surface point on the
reference solution and computing the distance. The numerical errors in the
maximum norm and l2 norm are computed by

∥eh∥∞ = max
xi∈Γh

{
∥xi − xref

i ∥
}
, ∥eh∥2 =

√
1

NΓ

∑
xi∈Γh

∥xi − xref
i ∥2, (35)
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where xref
i is the exact solution or reference solution on a fine grid associated

with xi and NΓ is the total point number.
The following numerical experiments are performed on a personal com-

puter with a 3.80 GHz Intel Core i7 processor. The codes for conducting the
numerical experiments are written in C++ computer language.

5.1 Two space dimensional examples

First, we solve the mean curvature flow for a simple case and compare the
numerical solution with the exact solution to verify the convergence of the
proposed method. The initial shape is chosen such that the curve is a circle
whose radius r(t) satisfies

r(t) =
√
1− 2t. (36)

The bounding box is taken as [−1.2, 1.2]2. Note that the curve will eventually
shrink to a point at Tend = 0.5. We chose to estimate the numerical errors at
T = 0.2 to ensure that the coarsest grid N = 64 can fully resolve the curve
during the computation. On finer grids, the computation can last longer than
T . Time step size is chosen to be ∆t = 0.1∆x where ∆x is the spatial grid
size. Numerical results are summarized in Table 1.

Table 1 Numerical error and convergence order of the 2D MCF for a circle-shaped initial
curve.

N ∥eh∥∞ order ∥eh ∥2 order
64 7.99e-03 - 3.99e-03 -
128 3.80e-03 1.07 1.79e-04 1.16
256 1.88e-03 1.02 8.42e-04 1.09
512 9.45e-04 0.99 4.12e-05 1.03
1024 4.72e-04 1.00 2.05e-05 1.01

Next, we change the initial shape to an ellipse which is given by{
x = a cos(θ),

y = b sin(θ),
θ ∈ [0, 2π), (37)

with a = 1.0, b = 0.5. The problem is solved in the bounding box B =
[−1.2, 1.2]2. Time step size is taken as ∆t = 0.1∆x. Since there is no ex-
act solution for this configuration, the solution on a fine grid with N = 2048
is chosen as a reference solution to estimate numerical errors. The estimated
error and the convergence order are summarized in Table 2. It can be ob-
served that the convergence order is a bit larger than 1. This may be due to
the inaccurate estimation of numerical error based on the distance between
the surface point to its closest point in the reference solution. The evolution
history of the curve is presented in Figure 6. The changes in curve length and
enclosed area are computed on the grid with N = 1024 and shown in Figure
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Table 2 Numerical error and convergence order of the 2D MCF for an ellipse-shaped initial
curve.

N ∥eh∥∞ order ∥eh∥2 order
128 2.45e-02 - 1.84e-02 -
256 1.04e-02 1.24 7.95e-03 1.21
512 4.31e-03 1.27 3.31e-03 1.26
1024 1.55e-03 1.48 1.15e-03 1.52

(a) t = 0 (b) t = 0.04 (c) t = 0.08

(d) t = 0.12 (e) t = 0.16 (f) t = 0.20

Fig. 6 Time evolution of the MCF for an ellipse-shaped curve.
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Fig. 7 Time evolution of curve length and enclosed area of the ellipse-shaped curve.

7. It can be observed that the enclosed area loss rate compares favorably with
the theoretic result, whose slope is mref = −2π.

We also chose a five-fold star-shaped initial curve, which is given by{
x = a(κ+ η sin(mθ)) cos(θ),

y = b(κ+ η sin(mθ)) sin(θ),
θ ∈ [0, 2π), (38)
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with a = 1.0, b = 1.0, κ = 0.8, η = 0.2 and m = 5. The bounding box and time
step size are the same as those in the last case. Estimated numerical errors and
convergence orders are summarized in Table 3. The evolution history of the
curve and changes in curve length and enclosed area are presented in Figure 8
and 7, respectively. The numerical results are also consistent with theoretical
results.

Table 3 Numerical error and convergence order of the 2D MCF for a five-fold star-shaped
initial curve.

N ∥eh∥∞ order ∥eh∥2 order
128 5.45e-03 - 3.21e-03 -
256 2.60e-03 1.07 1.46e-03 1.14
512 1.21e-03 1.10 6.60e-04 1.15
1024 5.00e-04 1.28 2.26e-05 1.55

(a) t = 0 (b) t = 0.02 (c) t = 0.04

(d) t = 0.06 (e) t = 0.08 (f) t = 0.10

Fig. 8 Time evolution of the MCF for a five-fold star-shaped curve.

For this case, we compare the present method with an explicit time-advancing
scheme for the mean curvature flow, which discretizes the equation

d

dt

(
x
y

)
= −xθyθθ − xθθyθ

(x2
θ + y2θ)

2

(
yθ
−xθ

)
, θ ∈ [0, 2π), (39)

with forward Euler scheme and central differences for temporal and spatial
derivatives, respectively. The time step size for the explicit method is chosen
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Fig. 9 Time evolution of curve length and enclosed area of the five-fold star-shaped curve.

to ensure numerical stability, using the adaptive time step

∆t = 0.8(min
θ

∆s)2, (40)

where ∆s denotes the Euclidean distance between two adjacent grid nodes. We
properly optimize the codes for both methods and collect the required CPU
times for solving the mean curvature flow to the final time T = 0.1. The control
point number at time t is denoted by Mt. Numerical results are summarized in
Table 4. It can be observed that while the forward Euler method is faster on
coarse grids, the present method becomes more efficient than the forward Euler
method as the point number increases. It can be explained by the complexities
of the two methods. To compute the solution to a fixed final time, since the
time step size can be chosen as linearly proportional to the spatial grid size
for the present method, the computational complexity is O(N2). However, the
computational complexity of the forward Euler scheme is O(N3) due to high-
order constraints on time step size. In fact, the forward Euler method fails for
long-time computation since the required time step size quickly decreases to
10−6 due to the curve shortening phenomenon and poor mesh quality.

Table 4 CPU time comparison between the present method and an explicit time advancing
scheme.

Present method Forward Euler method
N M0 MT CPU times(secs) M0 = MT CPU times(secs)
128 392 224 9.66e-03 224 3.73e-03
256 786 444 3.54e-02 448 1.73e-02
512 1574 890 1.34e-01 896 1.34e-01
1024 3150 1776 5.15e-01 1792 1.02e+00
2048 6300 3548 2.08e+00 3584 8.30e+00
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5.2 Three space dimensional examples

For three space dimensional mean curvature flows, we test the convergence rate
of the method by considering a simple case, a sphere-shaped initial surface.
Similar to two space dimensional case, this configuration has an exact solution:
the surface maintains a sphere, and the radius r(t) satisfies

r(t) =
√
1− 2t. (41)

Numerical errors are estimated at T = 0.2 and summarized in Table 5.

Table 5 Numerical error and convergence order of the 3D MCF for a sphere-shaped initial
surface.

N ∥eh∥∞ order ∥eh∥2 order
64 4.72e-03 - 1.42e-03 -
128 3.46e-03 0.45 7.46e-04 0.93
256 1.45e-03 1.25 3.63e-04 1.04
512 9.18e-04 0.66 1.82e-04 1.00
1024 3.47e-04 1.40 8.81e-05 1.05

We also solve the mean curvature flow in three space dimensions for more
examples. In the following numerical examples, the bounding boxes partitioned
into a Cartesian grid are all chosen as B = [−1.2, 1.2]3. The time step is chosen
as ∆t = 0.05∆x.

In the first case, we set the initial shape as an ellipsoid which is given by

Γ =

{
(x, y, z)

∣∣∣x2

a2
+

y2

b2
+

z2

c2
− 1 = 0

}
, (42)

with a = 1.0, b = 0.7, c = 0.5. Numerical error and convergence order es-
timated at t = 0.2 are summarized in Table 6. The time evolution of the
surface and its area and enclosed volume are presented in Figure 10 and 11,
respectively. One can observe that the major axis of the ellipsoid decreases
faster compared with the other two axes and the ellipsoid becomes very close
to a sphere. Surface area decreases with time, which is consistent with the
theoretical result.

Table 6 Numerical error and convergence order of the 3D MCF for an ellipsoid-shaped
initial surface.

N ∥eh∥∞ order ∥eh∥2 order
128 1.58e-03 - 3.78e-04 -
256 1.32e-03 0.26 1.74e-04 1.12
512 3.70e-04 1.83 6.36e-05 1.45
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(a) t = 0 (b) t = 0.04 (c) t = 0.08

(d) t = 0.12 (e) t = 0.16 (f) t = 0.20

Fig. 10 Time evolution of the MCF for an ellipsoid-shaped surface.
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Fig. 11 Time evolution of the surface area and enclosed volume of the ellipsoid-shaped
surface.

In the second case, we chose a genus 1 torus-shaped initial surface. The
surface is given by

Γ =

{
(x, y, z)

∣∣∣ (c−√
x2 + y2

)2

+ z2 − a2 = 0

}
, (43)

with a = 0.34, c = 0.8. Numerical error and convergence order are summarized
in Table 7. The time evolution of the surface and its area and enclosed volume
are presented in Figure 12 and 13, respectively. Driven by mean curvature, the
torus-shaped surface becomes thinner with time.
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Table 7 Numerical error and convergence order of the 3D MCF for a torus-shaped initial
surface.

N ∥eh∥∞ order ∥eh∥2 order
128 1.65e-03 - 3.08e-04 -
256 1.29e-03 0.36 1.64e-04 0.91
512 8.26e-04 0.64 5.94e-05 1.47

(a) t = 0 (b) t = 0.02 (c) t = 0.04

(d) t = 0.06 (e) t = 0.08 (f) t = 0.10

Fig. 12 Time evolution of the MCF for a torus-shaped surface.
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Fig. 13 Time evolution of the surface area and enclosed volume of the torus-shaped surface.
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In the final case, the initial surface is a four-atom molecular-shaped surface
which is given by

Γ =

{
(x, y, z)

∣∣∣c− 4∑
k=1

exp

(
−|x− xk|2

r2

)
= 0

}
, (44)

with x1 = (
√
3/3, 0,−

√
6/12), x2 = (−

√
3/6, 0.5,−

√
6/12), x3 = (−

√
3/6,−0.5,−

√
6/12),

x4 = (0, 0,
√
6/4) and c = 0.5, r = 0.5. The numerical error and convergence

order are summarized in Table 8. The time evolution of the surface and its
area and enclosed volume are presented in Figure 14 and 15, respectively.

Table 8 Numerical error and convergence order of the 3D MCF for a molecular-shaped
initial surface.

N ∥eh∥∞ order ∥eh∥2 order
128 1.79e-03 - 4.43e-04 -
256 1.24e-03 0.53 2.51e-04 0.82
512 5.19e-04 1.26 9.12e-05 1.46

(a) t = 0 (b) t = 0.04 (c) t = 0.08

(d) t = 0.12 (e) t = 0.16 (f) t = 0.20

Fig. 14 Time evolution of the MCF for a molecular-shaped surface.
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Fig. 15 Time evolution of the surface area and enclosed volume of the molecular-shaped
surface.

6 Discussion

This work presents a Cartesian grid-based alternating direction implicit method
for solving mean curvature flows in two and three space dimensions. The
method decomposes a hypersurface into multiple overlapping subsets for which
new evolution equations are derived by adding extra tangential velocities. The
new formulations for the moving hypersurface only require solving a sequence
of scalar quasi-linear parabolic PDEs on planar domains, which is one di-
mensional lower than the original formulation. The overlapping subsets of the
hypersurface can be represented in terms of height functions of Monge patches
which are discretized with Cartesian grids. With this representation of the hy-
persurface, an ADI-type semi-implicit time integration method is proposed
such that the subsets can be evolved alternately.

The convergence of the proposed method is validated by numerical exper-
iments. The results show that the ADI method is efficient compared with an
explicit scheme since it does not have high-order stability constraints on time
step size. Mean curvature flows for various hypersurfaces in two and three
space dimensions are also presented, including one whose initial configuration
is a genus 1 surface.

Although the method in this paper is designed for solving mean curvature
flows, it is expected to be able to solve more moving interface problems de-
scribed by geometric evolution laws, such as the anisotropic mean curvature
flow, the surface diffusion flow, and the Willmore flow. Further, for problems
that involve moving interfaces and bulk PDEs simultaneously, such as the Ste-
fan problem and two-phase Stokes flow, the method can also be applicable if
combined with a PDE solver such as the kernel-free boundary integral method
[34].
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