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Abstract—This paper identifies common varieties of threats
and perturbations in contemporary food, energy, and water
(FEW) systems in order to improve system resilience. We
categorize perturbations and challenges faced by subsystems
and then concentrate on the structural topology of the project’s
components. We provide a graph model to represent this topology
as an essential tool to improve system resilience. The model is
then converted to a system dynamic model for further simulation.

Index Terms—Fault taxonomy; smart agriculture, Future In-
ternet of Things (IoT) resilience, technology interdependence
graph

I. INTRODUCTION

Efficient and sustainable agricultural systems are highly
complex and interdependent. In the past, agriculture depended
mostly on water resources, fertilized soil, weather, and local
or regional market dynamics. Contemporary agriculture is
increasingly dependent on electricity, fertilizer, transportation,
national and international markets, and, in recent years, on
emerging technologies such as the Internet of Things (IoT).
Thus, modern agriculture must be understood as a system of
integrated systems. The novel challenges that contemporary
agriculture faces include, for example, cyber-physical attacks,
the effects of climate change, legislative and regulatory con-
trol, and global financial conditions [1]. The overall food-
energy-water system is increasingly vulnerable to cascading
failures due to its highly integrated and multi-level nature [2].
This paper describes our approach to modeling the complex
set of interacting natural and engineered systems in order
to understand potential vulnerabilities and increase overall
resilience.

We structure this paper as follows. We review some concepts
and background from the relevant literature in the next section.
In Section III, we model a general FEW system with graph
theory and analyze its structure and important perturbations.
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The modeling and simulation strategy we describe here is part
of ongoing work to develop practical decision-support tools
for agricultural communities. Finally, we conclude our paper
in Section IV.

II. BACKGROUND AND CONCEPTS

Contemporary agriculture combines traditional practices
with water management, water treatment, energy, fertilizer,
and cyber systems. As part of a response to climate change
contemporary agriculture increasingly integrates renewable
energy sources, microgrids, and green ammonia production
into agricultural operations. Each of these systems has its own
structure, features, and challenges. Perturbations to subsystems
can potentially affect other components of the food-energy-
water system. In order to have a resilient FEW system, it is
imperative to understand these dependence relations. Before
we explain the specific challenges facing smart agriculture
systems, we describe some of the relevant concepts from the
literature.

A. Concepts

System resilience can be characterized in terms of two
fundamental factors, perturbations and the dynamics of the
system [3]. Recognizing the most important faults and pertur-
bations, and preventing, masking, or avoiding them is the first
step to improving system resilience. There is comprehensive
literature regarding the taxonomy of faults, perturbations,
reliability, availability, and dependability in engineering sys-
tems [4] [5] [6] [7] [8] [9] [10] [11]; however, the type,
occurrence, frequency, and severity of faults and perturbations
are not the same in each system. We identify those groups
of faults and vulnerabilities that are more common in FEW
systems below.

A system is defined loosely as an entity that maintains some
degree of individuality as it interacts with other entities [12].
In the case of FEW systems, interactions occur at their bound-
aries where the system services are offered. System services
are the results of integration and working several components



inside the system at a specific state. A service is part of the sys-
tem functionality defined in the system specification. Relations
among components define the structure of the system. In order
to offer a service at the system boundary, each of the system
components should have a specific state. The overall states
of these components define the state of the system. When
these components deviate from their defined states, an anomaly
in the service is observed at the boundary of the system. A
service failure takes place when the service provided deviates
from the correct service. Deviations from correct services can
result from errors. The cause of an error is called a fault [4].
A sudden and discontinuous state change is called disruption
while a disturbance is a continuous state change for a limited
time that leads to service failure. The manifested result of
disruption at the system boundary is a service outage, while
the result of disturbance is a service deviation that may lead to
a service outage. A perturbation is any unintended changes in
the service level resulting in disturbance and disruption caused
by internal or external faults [13], which is an equivalent term
for service failure.

The system definition given here is recursive and can be
extended to the system’s components unless the components
are atomic. Hence, an error may occur in the system compo-
nents. If the error is handled internally, the service deviation
does not manifest at the system level. An unhandled failure at
the component level typically appears as a service error at the
system boundary.

Services provided to another system help the receiving
system fulfill and offer its own services. Therefore, a faulty
service disturbs the receiving system’s normal behavior, lead-
ing to cascading errors in the systems and a service failure by
the receiving system. If failures happen at the component level
and do not dismantle the whole service, then the system may
offer its services in a degraded mode. The system specification
identifies whether the system is in a degraded mode or failure
mode. The difference between these two states identifies
system resilience. If a system can return from degraded mode
within an appropriate time frame while offering basic services
to its correct service mode, it is called resilient, while a failed
system does not return to its correct service.

The resilience of an engineered system is the system’s
capacity to return to its correct service level after some fault
within an acceptable time frame. Resilient systems usually
have some capacity to adapt, such that the next occurrence of
similar failure is less disruptive and the recovery time for the
system is faster. Figure 1 illustrates two systems, A and B, that
are resilient and vulnerable to a particular fault. As observed,
System A adapts to the fault and recovers from failures, while
System B fails. The adaptive system has a shorter degradation
service time and a faster recovery time against consequence
faults. However, the ratio of fault frequency to recovery time
is a factor that should be considered. If this ratio is greater
than 1, it means that faults happen before the system recovers
and may cause a system failure.
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Fig. 1. Resilient and non-resilient system behavior during fault

III. SYSTEM MODELING

Smart agriculture envisions the integration of green energy,
green ammonia production, water supply, and water treatment.
The energy system contains microgrids and, for example,
in the United States mid-West, renewable energy resources
such as wind turbines and solar panels. In the cases we
are modeling here, the microgrid supplies energy for other
systems, including ammonia production and water treatment
systems. The microgrid permits the sale of excess energy or
the purchasing of energy from the grid when the cost of
production is lower than the system’s own energy production
capacity offers. Ammonia is produced for two purposes: as
fertilizer and as a fuel source for electricity production when
profitable. The water supply and treatment system contains
components to receive water from various sources in order to
treat it for the purpose of irrigation and ammonia production.
The communication and information technology components
collect data from different parts of the system through sensors,
process data, provide feedback to other components, and
enforce actions accordingly.

We first modeled an abstract smart agriculture system with
graph theory. Graph theory has been one of the common for-
mal approaches for modeling resilience in engineered systems
[14] [15] [16]. A graph model expresses the corresponding
system with a graph G(V,E) such that V is a set of nodes or
vertices representing the system entities or components and
E is a set of links or edges representing the connections
between nodes. When a system contains similar nodes with
bidirectional connections, an undirected graph can model the
system; however, other solutions, such as weighted graphs and
directed graphs, are used when there is a weight/priority on a
link or links are not bi-directional.

To show the abstract model, each node in the graph rep-
resents a system; and links among nodes show connectivity
among systems. Since different types of links are involved we
use an edge-colored graph Gconn = (Vc, Ec, C, χ), such that
vi ∈ Vc is a system and en ∈ Ec is a link between two adjacent
systems vi and vj . Furthermore, C is a set of colors equivalent
to the different types of flows in the graph and χ : Ec → C is
a function to assign a color to each edge. Precisely, we can de-
fine Ec as Ec = {((vi, ci), (vj , ci)) ∈ Vc×Vc|χ(vi, vj) = ci}.
This representation allows us to integrate multiple networks



together and let us understand how a system can affect others.
We can recognize three networks: electricity, ammonia, farm
and irrigation, and water supply and treatment.

We use a directed graph to represent interdependency
among systems since some of these systems are not mutually
dependent on each other. Furthermore, the link directions
show the flow of items/objects/energy. In addition, there are
partial dependencies among subsystems. To present partial
dependencies, we use a weighted graph. Each weight shows
the extent of dependency. Weights can also be mapped to the
amount of the flow on the link. For instance, wi on a like
that shows the flow of water can be mapped to the minimum
amount of water necessary on the link to satisfy dependability.
Figure 2 shows the graph model representing a FEW essential
systems and their dependencies.

Microgrid

Water

FarmAmmonia

w1w2

w3

w4

w5

w6 w7

Fig. 2. A FEW abstract model

In a directed graph, a node’s in-degree is the number of
links points to the node. As observed in the figure, Farm has
the highest in-degree value followed by Ammonia. Higher in-
degree values show the higher dependency of a system on
others. Water and Micogrid nodes have the same in-degree
values; however, wi is different for them, which identifies the
extent of dependency on the rest of the system. In contrast,
a node with a high out-degree value is more independent of
other systems.

Since links are different, calculating other graph metrics is
not straightforward. For instance, calculating the shortest paths
among nodes is not feasible. Similarly, though the clustering
coefficient values vary between 0.5 to 0.67, the clustering
coefficient values in each separate network are zero, implying
weak resilience in each network.

IoT permits control and monitoring of each individual
agriculture system. This turns the agriculture system into a
cyber-physical system. It also provides control feedback to
other systems and increases the overall interconnectedness
of the entire system. The cybersystem is represented as an
overlay on top of the physical system. Figure 3 illustrates the
complete cyber-physical system and its interdependency. All
of these systems connect to the Internet and can be accessible
via a cloud service. In addition, all communication links are
bidirectional. Double-headed arrows in the figure represent
these links instead of one arrow for each direction.

A. Faults and Failures in FEW Systems

A FEW system combines engineered and biological sys-
tems. Typically, the farm’s biological systems are capable

Fig. 3. FEWtures cyberphysical abstract model

of withstanding a range of faults and perturbations, like
weather changes or short delays in irrigation. Consequently,
the system’s overall state changes more slowly during such
minor faults (Figure 1). However, the recovery time of many
natural systems will be slower once significant perturbations
have ceased. In engineered systems, especially those without
fault tolerance mechanisms, the system state changes quickly
when the fault presents itself as shown in Figure 1, and the
system may lose its normal functionality suddenly. Most of the
time, in engineered systems, there is no service in the modified
service area in Figure 1, while in biological systems, because
of adaptation there, a new service can appear in the modified
service area. This type of change is common in social and
ecological systems.

Faults are inevitable [17]. A fault in a system reduces
availability, reliability, and, consequently, dependability. When
multiple faults happen at the same time, the results can be
catastrophic. In interdependent systems, such as FEW, faults
propagate across sub-systems. The effect of failed/degraded
service is often amplified in the receiving subsystem/system,
resulting in cascading failures of systems. This is where the
overall system structure matters.

When systems are more interconnected, their structural
topology and interdependency usually become more complex.
This complexity can affect the system’s overall function. For
instance, the topology of a power grid can impact the stability
of power transmission, which can affect water treatment sys-
tems’ operation and the production of ammonia fertilizer for
agriculture. These, in turn, can impact profitability.

Previous studies have demonstrated the ways that a local
failure in an interdependent system can propagate from one
system to another, escalating failures [18], [19]. In addition,
many systems are designed with a focus on local consider-
ations only. When such systems are aggregated, they tend
to encounter unanticipated demands and transformation of
services in order to adapt to novel conditions in the overall
system. These changes can also lead to reduced robustness
and resilience [20]. Therefore, it is generally unwise to analyze
the system resilience of aggregated systems in terms of their
separate components.

The life cycle of an engineered system has two phases:
design and operation. Design faults can happen during the
development process, while failures can occur from aging



components during the operation phase. Additionally, faults
that arise during development can lay dormant and trigger
service failure during operation. However, for the purposes
of this paper, we will not address design faults.

Faults fall into two categories: internal and external. During
the operational phase, systems interact with several elements in
their physical environment. These elements include the natu-
ral environment, users (operators/farmers), intruders (animals,
pests, and people), and the infrastructure that the system is
part of (e.g., power grids and the economy). These external
elements can pose a threat to the system, referred to as external
faults, and can trigger challenges for the system. They can
activate dormant faults, escalate internal faults, and ultimately
lead to errors and service failure.

Within the physical environment of a FEW system, there
are a range of potential challenges, including weather patterns,
climate change, water resources, and contamination. In terms
of infrastructure, the system may rely on the economy, trans-
portation, power grid, and communication systems/Internet.
Any potential sources of harm, such as disease, pests, wild
animals, and adversaries, are categorized as intruders.

Internal faults arise within the system and are typically
manifested at the system boundary as service failures. Any
failures due to aging components are also considered to be
internal faults.

Faults can be classified based on their origin as either
human-made or natural. Natural faults occur without hu-
man intervention, such as environmental factors like weather
events. On the other hand, environmental contamination is pre-
dominantly caused by human activity. Faults in infrastructure
can be either natural or human-made as well. For instance, a
wind-induced collapse of an antenna is a natural fault, whereas
the same antenna being destroyed in a terrorist attack is a
human-made fault.

Human-made faults can be categorized further based on
the objective of disruptions into malicious and non-malicious.
Each group can also be subdivided into deliberate or accidental
according to the intent of the actor. However, faults with ma-
licious objectives are deliberate [4]. Human-made, malicious,
deliberate perturbations are also known as an attack.

Faults can be classified based on their consequences, dura-
tion, and frequency, and each attribute affects the system’s
proper functioning differently. While these attributes have
subjective values and require clear definitions in the system
specification, their impact on the system varies significantly.
Fault consequences can be minor, severe, or catastrophic and
can be quantified in terms of costs, time, number of casualties,
and other factors. Ultimately, a fault’s consequence will result
in a degradation of the service level provided by the system.
A catastrophic consequence pushes the system service level to
the modified service area in Figure 1. In addition, fault severity
can change the slope of the graph in the degradation period
of Figure 1. Faults can have severe consequences, causing
service disruption and pushing the system into a state of no
or modified service in a short time. The duration of a fault
determines the length of the degradation period, while the

frequency of faults affects the recovery period. A catastrophic
fault, such as a strong earthquake, can rapidly push the system
into a modified or no-service state. In contrast, a plant disease
or drought may have the same effect but over an extended
period. The difference between the expected correct service
level and the actual system performance indicates the extent
of the harm.

Identifying all faults in a system is not feasible. The
resources to prevent and mitigate error and faults are lim-
ited [21]. Therefore, resources are usually assigned to avoid
faults that have severe consequences or a high frequency
of occurrence. This is calculated as a risk to the system.
Though calculating risks is applicable in simple systems, it is
challenging in complex systems since the logical combination
of various faults should be considered.

B. Simulation Model and Analysis

We use Stella [22] to model relationships among the compo-
nent sub-systems of a FEW system. Stella supports system dy-
namics, discrete event, and agent-based simulation techniques.
We use system dynamic and discrete event techniques to study
the effect of external faults on the overall performance of
the system. The high-level model of the system is illustrated
in Figure 4. As mentioned in III, our system has four main
components. We assume that the microgrid is a separate
component designed only for the FEW operation and it is not
connected to the wider electric grid. This assumption simplifies
the study of faults in the system resilience.

Fig. 4. Simulation model

We consider operational cost as 1 cent per KWh [23]. In
this simulation, we do not account for ramp time, which is
the time it takes for a plant to start producing electricity
when it is turned on. We also do not consider the minimum
run time, which is the shortest duration that a plant can
generate electricity. The time unit used for wind turbines
and solar panels is days. We assume that wind turbines can
generate electricity for 24 hours a day, and solar panels
can generate electricity for 12 hours a day. The amount of
electricity generated during the production time follows a



normal distribution that can be adjusted. The farm module
requires electricity to pump water for irrigation. The system
determines the amount of water required for irrigation and
ammonia production, which serves as fertilizer for different
types of crops per acre. The system allows for the adjustment
of these parameters. However, the model has a maximum
capacity limit for irrigation, which is also adjustable. The
module simulates the use of ammonia for fertilization and
its consumption in the module. Additionally, the module also
simulates the deficiency of water and ammonia, which can be
considered a fault in the system. This deficiency can decrease
the yield of crops.

The water module in the system simulates pumping water
from wells or surface water. The pumping capacity is limited
and can be adjusted in the model. Additionally, the cost of
pumping water increases linearly with the water level in the
wells. When water is pumped from the well, the water level
decreases. If the rate of incoming water flow is less than the
outflow, it can lead to a decrease in water level, resulting
in higher pumping costs until it is no longer economically
viable. This scenario can create an external fault in the system.
Moreover, if the water level falls to a critical level, it can
damage the aquifer, requiring pumping to be stopped for a
period, which is adjustable in the model. The pumped water
is used for irrigation and ammonia production.

While pumps are typically maintained and repaired before
planting season, it is possible that pumps fail during the
growing season. Pump failure at the beginning of the season
is costly since it damages to the crop yield compared to later
in the season when crops are fully grown. This type of fault
is also implemented in the model.

The ammonia module simulates a solid oxide electrolysis
cell (SOEC) with an exothermal Harber-Bosch Reactor. This
technology has about 20% energy saving compared to the
conventional Harber-Bosch technology [24]. We consider the
same energy consumption pattern in this simulation. We also
assume producing one tone of ammonia per day requires 334
kW electricity [25].

The ammonia module consists of four key components: an
air separation unit, a solid oxide electrolysis module, a gas
compressor, and a Harber-Bosch reactor. The solid oxide elec-
trolysis module is the most electricity-intensive component,
requiring approximately 315 KW per day, as well as water.
The availability of electricity and water directly influences
ammonia production. Insufficient ammonia supply can lead
to decreased crop yield. The ammonia demand for crops is
adjusted according to the crop type. Any surplus ammonia
can be sold or used to generate electricity.

We run a simulation of the model for a sample farm under
normal operating conditions where resources are sufficient.
However, we also impose some external faults on the model
during the simulation. These faults include failures of micro-
grid components such as PV panels and wind turbines, as
well as the water component where the water level in wells
is reduced, and the irrigation requirements are changed. As
a result of these failures, the amount of pumping water and

Simulation Parameter Value Failure distribution
Wind turbine 10 linear

PV Panel 25 linear
Ammonia production 1 tone/day external

Water (ammonia) 1588 liters external
Fertilization period 180 fixed

Crops ammonia demand Normal dist. external
No. Crops 3 (adjustable) fixed

Unit of planting Acre fixed
Irrigation Normal dist. external

Pumping capacity 5000 liters/day linear/external
Irrigation capacity 2000 liters/day fixed

Duration 365 days NA
No. of Runs 10 NA

TABLE I
SIMULATION PARAMETERS

ammonia production changes. Table I shows the simulation
parameters and the type of failure distribution imposed on
the model. The external values in the table show that faults
happen outside the module, but they affect the module. The
fixed values show constant values during the simulation, but
they are adjustable.

Figure 5 shows electricity production with %95 confidence
interval. Ammonia production requires a fixed amount of water
and electricity, while irrigation is a periodic process, and the
amount of water may change in each period due to any failure
in the microgrid and water modules, including the water level
in wells. It explains more variability on top of the graph.

Fig. 5. Electricity Production

Figure 6 illustrates the draining water process with %95
confidence interval. To produce ammonia, a fixed amount of
water is required, so the graph shows a straight line for the
period when water is pumped for ammonia production. Values
below 1588 liters per day indicate a fault, which could be due
to pumping failure, electricity production failure, or changes
in the water level. Furthermore, irrigation takes priority over
ammonia production, meaning that if there is not enough water
for both irrigation and ammonia production, the water will be
redirected to the irrigation system instead. This policy explains
changes in Figure 7. The ammonia system needs a certain
amount of water, but sometimes it receives less water due to



faults or failures in the system. The mean value on the graph
is close to the top, but there are notable differences between
the mean and the bottom of the graph. These differences
demonstrate how faults and failures in the system impact the
amount of water needed for ammonia production. Additionally,
even with sufficient resources for normal operation, ammonia
production may not be consistent in the face of minor faults
or failures.

Fig. 6. Water draining from surface and ground resources

Fig. 7. Water flow for Ammonia production

IV. CONCLUSION

In this paper, we explain common faults and perturbations
for a food-energy-water system and present a model that per-
mits simulation of some of these challenges. This framework
will allow for more policies and scenarios to be added to future
iterations of the simulator. Our next step, is to use graph theory
to consider the ways that failures of internal components affect
the resilience of the overall system. The overarching goal
of the project is to provide decision-support tools that allow
communities and policymakers to simulate possible courses of
action for designing resilience into complex smart agriculture
systems.
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