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Dedicated to Demetrios Christodoulou on the occasion of his 70th birthday

ABSTRACT. In this work we give a complete picture of how to in a direct simple way define the mass
at null infinity in harmonic coordinates in three different ways that we show satisfy the Bondi mass loss
law. The first and second way involve only the limit of metric (Trautman mass) respectively the null second
fundamental forms along asymptotically characteristic surfaces (asymptotic Hawking mass) that only depend
on the ADM mass. The last involves construction of special characteristic coordinates at null infinity (Bondi
mass). The results here rely on asymptotics of the metric derived in [27].

1. INTRODUCTION

The first definition of mass at null infinity was given by Trautman [36]. In Trautman’s definition, the
mass is defined as the integral of the so called superpotential which is expressed in terms of the metric and
its first order derivatives over the spheres receding to null infinity, see §1.4 for precise definition. We refer
the readers to [37, 38, 3, 16] and [5, §3.1] and references therein for more details.

In 1960, Bondi [6] introduced a new approach which was based on the outgoing null rays to study the
gravitational waves. Later, Bondi, Metzner and van der Burg [7] considered the axisymmetric spacetimes.
Soon after, Sachs [33] generalized the formalism to non axisymmetric spacetimes. In the Bondi-Sachs for-
malism, the coordinates which are called Bondi-Sachs coordinates, are adapted to the null geodesics of the
space time. With respect to such a coordinate system, only 6 metric quantities are needed to describe the
spacetime, and the Bondi mass and radiated energy at null infinity are defined in terms of certain lower order
terms of these metric components. Hintz-Vasy [18] showed the existence of the Bondi-Sachs coordinates for
a specific class of initial data and identified the Bondi mass in a generalized wave coordinates.

Christodoulou [11] introduced an alternative approach to defining the mass at null infinity without the
need to use the Bondi-Sachs coordinates. The definition was given as the limit of the Hawking mass of a
family of spheres that converge to a round metric sphere along the outgoing null hypersurfaces towards null
infinity. Christodoulou proved that the limit of the Hawking mass exists and satisfies a mass loss law for the
initial data used in [14] by analyzing the null structure Einstein equations. Later on, the limit of Hawking
mass of suitable spheres was analyzed in the settings of the work [4, 24].

These three masses are defined completely differently and each has been analyzed in several settings.
As summarized in [5], in the setting where the Bondi-Sachs formalism can be carried out, the limit of the
Hawking mass along suitable family of spheres recovers the Trautman mass and Bondi mass. However, the
notion of the mass and radiated energy at null infinity in harmonic coordinates remains to be clarified. In
this work we give a complete picture of how to define the mass at null infinity in harmonic coordinates in
the different ways that we show satisfy the Bondi mass loss law and therefore coincide.

1.1. Einstein vacuum equations in harmonic coordinates. Einstein’s equations in harmonic are a
system of nonlinear wave equations

Oy 9w = Fiun(9)(99.9g),  where Oy = *°0.0p, (L1)
for a Lorentzian metric g.g, that in addition satisfy the preserved wave coordinate condition

da ( |g|g°‘5) =0, where |g| = |det (g)|. (1.2)
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Choquet-Bruhat [9] proved local existence in these coordinates. Christodoulou-Klainerman [14] proved global
existence for Einstein’s vacuum equations R, = 0 for small asymptotically flat initial data:

gij’t:o =(1+ Mrfl) dij + o(rilf'y), atgij’t:o = 0(7“7277)7 r=|x, 0<vy<1, (1.3)

where M > 0 by the positive mass theorem [35, 40]. The proof avoids using coordinates since it was
believed the metric in harmonic coordinates would blow up for large times. John [19, 20] had noticed that
solutions to some nonlinear wave equations blow up for small data, whereas Klainerman [22, 23], see also
Christodoulou [10], came up with the “null condition”, that guaranteed global existence for small data.
However Einstein’s equations do not satisfy the null condition. The null condition provide a cancellation
of the nonlinear terms so that solutions decay like solutions of linear equations. Hormander introduced a
simplified asymptotic system, by neglecting angular derivatives which we expect decay faster due to the
rotational invariance, to study blowup. Lindblad [26] showed that the asymptotic system corresponding to
the quasilinear part of Einstein’s equations does not blow up and gave an example of a nonlinear equation
of this form that have global solutions that do not decay as much. Lindblad-Rodnianski [28] introduced the
weak null condition requiring that the corresponding asymptotic system have global solutions and showed
that Einstein’s equations in wave coordinates satisfy the weak null condition which was used in [29, 30]
to prove global existence. Starting from the L? estimates in [29, 30], Lindblad [27] derived more detailed
asymptotics that we will rely on. We expect the result of this manuscript to be true in the presence of matter
since these asymptotics can also be derived by directly using a change of coordinates which is equivalent to
generalized wave coordinates as in Kauffmann-Lindblad [21] and [8, 17].

1.2. The characteristic surfaces. In order to unravel the effect of the quasilinear terms in (1.1) one can
change to characteristic coordinates as in [14], but this loses regularity and is not explicit. Instead Lindblad
[27] used the asymptotics of the metric to determine the characteristic surfaces asymptotically and used this
to construct coordinates. Due to the wave coordinate condition (1.2) the outgoing light cones of a solution
with asymptotically flat data (1.3) approach those of the Schwarzschild metric with the same mass M. In
[27] it was shown that there is a solution to the eikonal equation that approaches the one for Schwarzschild

9P 0au dgu = 0, u—u'=t—r7 when r>t/2 — o0, where r*=r + Mlnr + O(M/r). (1.4)

1.3. The asymptotics of the metric. In [27] the precise asymptotics of the metric was given. Asymptot-
ically the metric is Minkowski metric m,,, plus
hu,j(t,rw)NHW(F—t,w)/(t—i—r)—i—KW(Wft%,w)/(t—i—r), r=r+ Mlnr, w=x/|z|.
Here H is concentrated close to the outgoing light cones § = 7— ¢ constant, |H (§,w)| <e(1+4 |§])~" where
~v' = ~ — Ce for some constant C' and small constant £, and K is homogeneous of degree 0 with a log
singularity at the light cone |K(s,w)| <eln|s| for the nontangential components. H is the radiation field
of the free curved wave operator, the left of (1.1), and K is the backscattering of the wave operator with a
source term F),,, ~ Ps(d,h,0,h) in the right of (1.1), where Ps is the norm of the components tangential to
the spheres. In the wave zone
- > 1 t+7+¢q
Ko (470.0) ~ o)) [ Sm (FE

r—t

t_?_i_q)n((j,w)d(j, when |t —7|<<t+T,

where L, =m,,, L”, in a null frame L=(1,w), L= (1, —w) and orthonormal S, S2 € T(S?), we have
n(q,w) = —Ps(07H,07H)(q,w), where Ps(D,E)=—DapE*P/2, A ,Be€{S,S}. (1.5)

Remark. In this manuscript e, e,® refer to the quantities expressed in the coordinates (? = t,Tw) where
¥ =1+ M Inr, modified asymptotically Schwarzschild null coordinates y? as defined in 2.1 and the Bondi-
Sachs coordinates respectively, unless otherwise specified.

1.4. The Trautman mass and radiated energy. We will use the surface u = t — 7 constant instead of
the null cones to define the Trautman mass and radiated energy at null infinity in terms of the asymptotics
of the metric components in wave coordinates.
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We let 0, = Azgy and g = AgA;gO"B, where A} = 0z¥/0x" and T = rw where 7= 7+ Mlnr. Let
Sz 7 ={(t,%);t=u+7} be a sphere, following [36, 37, 38, 5] we define the Trautman four-momentum as

Here dSg, =ngk,7?dS(w) with n,=(dr),=(0,w;), k= (dt)5=(1,0,0,0), and the superpotential U**" is

077 = /]glg* U where U = /|313°"5°178,5°7 0-Gpo-
Here the square brackets denote the antisymmetric part of a tensor, i.e., T al = Yoo (=1)TT e e
where the sum is taken over all permutations o of 1,...,l and (—1)? is 1 for even permutations and —1 for

odd permutations. A direct computation implies
Uesr = —:\O"B”, where \PH — 5l,(|§|(§o"8§“ - go‘”gﬂ”))
Therefore with L, = (—1,w;) and L, = (-1, —w;) we can write

1 ~
Mrff(ﬂ)zﬂ S2m%(ﬂ,w)d5’(u)), where m$(u,w) = lim (ﬁ%)xaﬁ'yLyLB)(ﬂ — 7, Tw).

T—00

The Trautman radiated four-momentum! is defined as

F—o0 2T

ES(@) = lim i/ 11727 dS.

w,r

Here dSp = ngr?dS(w) with ng = (0,w;) and 7 is Landau-Lifshitz pseudotensor [25, §101],

- 1~ - ) T
7P = —2G*P + —0, " where G*F = R — 590‘5}3.7

1]
which is a symmetric. We write
o[~ 1 o[~ o[~ . 2~ ~ %Z
Ef(u)=— | Am%}(W,w)dw where AmS(u,w)= lim 7|g|7™"
2 §2 T—00 T

Remark. Many known gravitational pseudotensors can be derived from the above superpotentials, including
the mixed Einstein pseudotensor of energy and momentum and the symmetric Landau-Lifshitz pseudotensor.
We refer the readers to [3, 16, 37] for a more detailed discussion of different pseusotensors and their relations.

We will refer to M2 (w) as the Trautman mass and to E3 () as the radiated energy at null infinity. Using
the asymptotics in [27] we prove in subsection 4.4

Theorem 1.1. The Trautman four-momentum ME(w) and Trautman radiated four momentum E$(u) are
well defined and satisfy the mass loss law

M (ug) — M$(uy) = — /u2 Ef(u) du.

uy

Moreover the radiated energy EY at null infinity can be expressed in terms of n in (1.5) as
E%(ﬂ):/ n(—u,w)dS(w)/8x,
S2

and the Trautman mass MY(@) — M, the ADM mass, as & — —oco and MP(w) — 0 as u — .

IFor the original definition of the radiated four-momentum [36, 37, 38], Trautman uses the mixed Einstein pseudotensor of
energy and momentum. In [16] it is noted that the symmetric Landau-Lifshitz pseudotensor has the same total energy and
momentum as the mixed Einstein pseudotensor.
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1.5. The asymptotic Hawking mass and radiated energy. We will use the asymptotically null surfaces
u* =t —r* constant where r* = r+ M Inr+ O(M /r) instead of null cones to define the asymptotic Hawking
mass and the radiated energy at null infinity.

Following [11, 13] define the radius of a surface S by 7(S)=\/Area(S)/4r. Let L and L be the outgoing

respectively incoming null normals to S satisfying g(f) ZAL)* —2. L and L are unique up to the transformation
L—aL and L— a L. The null second fundamental form and the conjugate null second fundamental form
are defined by y(X,Y)=g(Vx L,Y) respectively x(X,Y)=g(VxL,Y), for any vectors X,Y tangent to S at
a point, where Vi is covariant differentiation. The Hawking mass

MH(S):T(S)(l—i-/strxtrKdS/lﬁw),

is invariant under the transformation since x — ax and x — x/a. If trxtry <0 we can fix L and L by
try+trx=0. Let x and X be the traceless parts. The incoming and outgoing energy fluxes are

E(5)= /S X*dS/16m,  and  E(S)= /S %S/ 16m.

We use the family of spheres Sy« , ={(t,z);t =u* + r*(r), |z|=r} to define the asymptotic Hawking mass
and the radiated energy at null infinity as follows

Mapg(u*) = lim My (Sy=r) and Eapg(u®) = lim E(Sy~.),
T—00

T—00

with r(S)Qg converging to a round metric where ¢ is the restriction of g on the spheres Sy ;.

Remark 1.2. As pointed out in [34], it is absolutely essential in the limit process that the spheres Sy« ,converge
to a round metric sphere. Otherwise the limit of the Hawking mass has nothing to do with the Bondi mass,
in general. This is somehow related to the undesirable fact that the Hawking mass of any spherical surface
in Euclidean space is negative unless it is a metric sphere where it is zero.

With the asymptotics results in [27] we prove in subsection 5.4:

Theorem 1.3. The asymptotic Hawking mass Mapg(u*) and the radiated energy Eap(u*) are well defined
and in fact with n in (1.5)

Map (v M——/_u /S2 (n,w)dS(w)dn, and Eap(u”) = g/”(—U*aw)dS(W)'

Therefore, they satisfy the mass loss law

d
du MAH(U*) = —EAH(U*).

Moreover, Map(u*) — M, the ADM mass, as u* — —oo and Mapg(u*) =— 0 as u* — oo.

1.6. The Bondi-Sachs coordinates. The definition of Bondi mass introduced in 1962 in [7, 33] requires
the existence of the so called Bondi-Sachs coordinates. In this manuscript we will construct the Bondi-Sachs
coordinates ¥ = (u,T, 7>, 7*) under which we denote the solution to (1.1) by g. The Bondi-Sachs coordinates
7’ = (u,7,7°,7") are based on a family of outgoing null hypersurfaces 7' = u = const. The two angular
coordinates g, (a,b,c,... = 3,4), are constant along the null rays, i.e. gaﬁaﬁuaayaz 0. The coordinate
72 =T, which varies along the null rays, is chosen to be an areal coordinate such that det[g,,] = 7'q, where
q(y®) is the determinant of the unit sphere metric g,; associated with the angular coordinates 7. In these
coordinates, the metric takes the Bondi-Sachs form (see Proposition 7.1)

4
GpgdyPdy? = —?ewdzﬁ — 2e*’ dudr + 7 hay, (dya -U “du) (C@b -U bdu)-

1.7. The Bondi mass and radiated energy. Once we write the metric in the Bondi-Sachs form as above,
following [31] we define the mass aspect M4 and news tensor N, as follows

My (u,g®) := — lim (V( ryt) — *)

T—00

1 . o — e
Nab(uvyc) = iaucab(uvyc) where Cab(uuyc) = ,hm ’f‘(h ( Y ) Qab(y ))

r—00
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The Bondi mass Mp? radiated energy Ep are defined by

1 _
Mp(u) = o MA(u y*)dS(y*) and Ep(u / |N|? dS (5"
where dS(y®) = /q(y*)dy*dy* is the volume form associated to the unit sphere metric q,, and |[N|?>=

qacqbdNabNCd. We W111 prove the existence of Mp(u) and Fg(u) and the Bondi mass loss law in subsection
7.2

Theorem 1.4. Let M 4, Nop, M, E be defined as above, then we have

Mat) =01 = o [ [ atn ) dndS(ae)

The radiated energy is expressed as

Bo(w) = o [ nl-uy) d5G).

They satisfy the Bondi mass loss law

%MB(’UJ) = —EB(U).

Moreover, Mp(u)— M as u——o0 where M is the ADM mass and Mp(u)—0 as u — oo.

Remark 1.5. According to Theorem 1.1, 1.3 and 1.4, we see that the masses and radiated energies at null
infinity defined in the above three ways are equivalent. We also note that these three different ways rely on
the same collections of the asymptotics in [27]. In [27] it was shown that [ [o, n(n,w)dS(w)dn/8m = M
and we can conclude that the total radiated energy is equal to the ADM mass. In particular, this implies
that if n = 0 then M = 0, and then by the positive mass theorem [35, 40] the spacetime is Minkowski space.

Acknowledgments. We would like to thank Igor Rodnianski for many important discussions and initial
collaboration. We would also like to thank Mihalis Dafermos and Volker Schlue for useful discussions. H. L.
was supported in part by Simons Foundation Collaboration Grant 638955.

2. THE METRIC IN MODIFIED ASYMPTOTICALLY SCHWARZSCHILD NULL COORDINATES

In this section we introduce the modified asymptotically Schwarzschild null coordinates and review some
results concerning the asymptotics of the metric established in [27].

2.1. Modified asymptotically Schwarzschild null coordinates. Suppose gog = Mmag + hgﬁ + haﬁ
where h); = %%ﬂx(#) and x(s) = 1 when s > 1/2 and 0 when s < 1/4. Then the inverse metric

g°% =m®® + h5? + b’ where hy” = M(So‘ﬂx(prt) and hSP = —m®*h},m"? + O(h?).
We introduce the modified asymptotically Schwarzschild null coordinates y? = (v* = ¢t + r*,u* =t —
™, 5%, 7). Here we let 7 = |z, w = £ € §* and §* = (°,7") be local coordinates on S? and define

r* =r+ Mlnr 4+ O(M/r) which is slightly different from ¥ = r 4+ M Inr by solving
ar* 1+ M/r
a P = (1 — M/r

In what follows indices 3P, % ... will stand for all the modified asymptotically Schwarzschild null coordinates
whereas 7% 7% . . . stand for the coordinates on the sphere only. We will now calculate the changes of variables

1/2 M
) =14+ 00/,

2The Bondi energy-momentum vector for the outgoing null hypersurfaces u = const is defined as [7, 33, 15, 1] the average
of the Bondi mass aspect M4 over the unit round sphere weighted by a vector N® = (1, N*) where N*(1 < i < 3) are the [ = 1
spherical harmonics. That is, N? = (sin O cos ¢, sin O sin ¢, cos ) in the natural spherical coordinates (6, ¢) for a unit round
sphere. More specifically, the Bondi energy-momentum vector is defined by

M (u) / Ma(u,5%)N*d5(5%).

The time component M}% is referred as the Bondi energy in [2, 34, 1] and the Bondi mass in [7, 33, 15] respectively. In this
manuscript we adopt the latter definition.
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e = Agau and 0, = A\fﬁgp. We define L= L0, = 0y + 0,«, L'=L"0,, = 0y — 0y, L, = —0,u* and

L, = —0,v", then we have
1 * 1 i ’ 1 * 1 i /

where w = z/r, x = rw, and
1 * 1 * va * * Ta
3# - —iLuaL* - iLuaL* + Xuafga - —Luau* - LM&,* + Auaga.

Here we have Egﬁﬁ = 6% and A = O(r), A\ﬁ =0(1/r).
Under the coordinates (v*,u*, 7%, 4*), we denote the corresponding metric by g. The inverse of the metric
then satisfies gP? = gO‘BAgA%. We have in the region r > ¢/2

e e M. e B, M1 _

g'u'u:h'i)'u, gvu:_2(1+_)+h'i)u, /g\'ua: i)% /g\uu:h%u7 /gfua:hvliz? /g\ab (1__)_2 ab hab
r ror

where gy, is the unit sphere metric on S? associated with the angular coordinates (7% 7*) and 7%¢G, =6¢. In

fact this follows from decomposing the leading part m+hg into a time part, a radial part and a sphere part

M Mo Mo o

(m*? + h§")éamp = —(1+ — om0 + (1 = —=)w'w! &y + (1 — 7)(5” —w'w! )&, (2.1)
and composing with the change of variables in the radial part.
2.2. Asymptotics result. Let (E Z) be the asymptotically Schwarzschild coordinates with

t=t, T =T, where w' = '/, r=r+Mlnr, r=|z|.

We write Egﬂ—l—?z}w = hQ 5 +h.,z where ﬁgﬁ = (lT-t)
from [27], which will be used frequently in this manuscript. The first proposition is the sharp decay estimates
in asymtotically Schwarzschild coordinates

Proposition 2.1 ([27, Proposition 17]). For |[I|<N—6 with v'=~v—Ce, g=7—t and () =+/1+ ¢> we have

= 0ap and ¢ = r—1t. We now restate several propositions

~~ 250(¢,7) 5 1 t (t+7) (t+7)
2 < =0 here  SO(t,7) = - 1 <= .
| R (1+t+7)(1+gp)t =% 14+t+7 (1+]q))"’ where (t,7) T n((t—?}) ~ 5(<t—?})
For v >t/2 we have
ZITL 1< ° - 2.2
02" Rl r|+10Z'64 PRl 5] < : (2.3)

W P [+ )

~ o~ ~ ~ 1+ Ej_ 1—e
ZTRL )+ |21 64PRY S —— — (=) 2.4
|2 hrrl+ | a5l 3 (Ut It a7/ (24)

where ¢, =max{0,q}, ¢ =max{0,—q}. Here 7L1UV :E}lﬂUaVﬁ where Uy =mqsUP and UVE{L, L, A, B}, the
null frame associated to the coordinates (t, a:) and Z! stands for a product of |I| of the vector fields

(D50, T'05 — 7055, T'Or+ 105, S =10;+ 705}, where T%=(t=1t,7') = (t,7w’). (2.5)
Here and in what follows we focus on the region {7 > t/2} N {r* > ¢/2}.

Remark 2.2. In view of Proposition 2.1 we have the sharp decay estimates for the metric components in
modified asymptotically Schwarzschild null coordinates. For r* > t/2, with ¢* = —u*,0 < v < 1 and
v =~ — Ce we see that for [I| < N —6

2

€ (t+r*)
(1+t+7° )14 gf)t-Ce ln(<t—r*>)’ (2:6)

e

Z*Iﬁv*u* + Z*I Tﬁv*a < . 2.7
I+q* ==
B9 4 | 24T (12 Guph®® c c ( ) . 2.8
| (rhd ) 127 (P qanhi)] < (It i+ )7 I e\ 4 (2:8)
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Here Z*! stands for a product of |I] of the vector fields
{Opray T 0pes — 2 0pes, T 0pe 4 t*Opui, 1704 + %0y}, where z** = (t*, 1)

Il
—
\.W

<

*
S
.
~—
—

[\

e
N

The second one establishes the estimates for L derivatives

Proposition 2.3 ([27, Proposition 18]). With 5,%/: 1 ifU=V=Land 0 otherwise and |I| < N —6 we have

1 ~ZIT e(1+q- ) o e(1+q4)77
“ 10y + 0)(TZ hi )| < e L LA 2.10
T|( : + )(T UV)|N (1+t+ﬁ2+ry_cg uv (1+t+;")2 ( )
Remark 2.4. Correspondingly in modified asymptotically Schwarzschild null coordinates we have
1 v < (L4 g2)170F
- . * r7k v u < _
. |Op (r*Z**hy )] < (It 14 17)2F-Ce for |I| <N —6. (2.11)

The third one provides us with the asymtotics for the metric in asymptotically Scwarzschild coordinates
Proposition 2.5 ([27, Proposition 20, 22|). Let Hi;(q,w,T) = Thi (F — q,7w),then the limit
H%O[})(ng) = Jlm H’}U (av W, ?/)7
T—>00

evists and satisfies H¥S = HY, and HiP(q,w) = 6B H S (g, w) = 0. Moreover, for |a| +k < N — 6 and
[T+ |K| =k and 7> /2

|02 ((1+1@)05)  HIZ @ w)| S e +d) ",

aQ ~ (e ovd 00 [~ 1 +§— v
}%SJ‘?tKH%U(q,Wa?) - 5w(q5§)J(—aa) HTI‘U (q,w)} S E(W)

’

Let
n(q,w) = 6P PV (G, w)VED (G,w)  where Vg (G,w) = 0:HIF (G, w), (2.12)

for the component hi;(t,7w) we have when 7> 1

_ M ©9 4Ty Hi(Gw) ~
hl t :2T ¢ —1 :1 (f) d — = R
L) =22 @ -0+ [ 2 (e ) a(w) dns 5
Here x°(s) =1 when s > 2 and x°(s) = 0 when s < 1, and for ||+ k = |I| < N — 7 we see that
a k oo [~ ~ \—~' 711 1+fq\; "
o+ a0 R @) Se0+T0)7 s 7RI Se gt )

(L+t+7)t"

Remark 2.6. In modified asymptotically Schwarzschild null coordinates, since |¢* —q] < M /r it follows from
Proposition 2.5 that the following limits

HY 2 (¢%, %) = lim rhy (v", —¢*,5%), HLY (¢",7%) = lim 7R (v*, —¢*, 5%),
r*T—00 T —00
HE (", 5%) = lim r*hY (%, —¢*, %), Hi2(g*, %)= lim r*hy"9(v*, —¢*, 5%,
r*—00 r*—00
- * . 37 *
H{% (q",9%)= lim r**hi*(v", =", ")

exist and satisfy ﬁf;o“* (¢*,y*) = ﬁf;a(q*, y) = f]\abﬁfgo(q*, y*) = 0. Moreover for |a] + k < N — 6 we have

o * k75 * *\—~' * *
|00 (L +1q")0g= ) HYL (", 9")| S e+ q)7",  (pq) #v*,0%),
and when r* > 1

HiZd (4, §°) ot _HES (4T | s

/ﬁiz*u* (U*7_q*7/y\a): - —|—7€u*v*7 ’\71; u (U*7_q*7/y\a) - +RE
PO ﬁu*a * ~a . . ﬁv*a * ~a .
h'i) u (v*7_q*,ga): loo (*qg Y )+Ru a, h'i; a(v*7_q*,ga): loo (:]va )+Rv a,

r r
ﬁab * a N
htllb(v*7_q*7§a)_ 100(:]3,y )+Rab7
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where the remainders R satisty

. * )
|Z*1Rab| < €(1+q—)

o ~ 5(1+q*_)'7,
Z*IR’U u Z*IRu u <
| | + | | ~ (1+t+’l"*)3+’7,,

S Gty
~ 5(1—|—qi)7/

Z*IRu al < .

+ | [BS Ariar)T 7

Let n(q*,y") = n(¢*, w(y®)), then we have
n(q",§") = 3Gl V' (¢", 7V (7. 5%) with V=0, H(¢",5"). (2.13)
As for the component ﬁi’*”*, we have when r* > 1

To*v* ox % 2M e *
R (0t ) = — (x(q)—l)—/
q

002 'U*+77
—ln(

H” v (g%, w) -
* d 1o AN VT R’U v .
r* . T u*—l—n)n(q ,w) n r

Here for |a| + k= |I| < N -7, ﬁf;;’* and the remainder RV™"" satisfy

(1+q2)"

|05((+ 1999, ) B (0" )] S e+ a1) ™, Seq i

The last proposition gives a relation between M and n.

Proposition 2.7 ([27, Proposition 28]). We have

/M /S (G, w )d = (2.14)

In what follows we write A = O(B) if A < CB and A = Ox(B) if Y, 1<, |27 A|+|2*T A| < CB with Zand
Z* defined in (2.5) and (2.9) respectively for some universal constant C. We define o =min{+/,1— 3¢} >0.

2.3. Wave coordinate condition in modified asymptotically Schwarzschild null coordinates. Let
N be some fixed large integer (N = 9 works). We express the wave coordinate condition in modified
asymptotically Schwarzschild null coordinates.

1 1 N
0a (9" V1] = (= 5Lade — 5L + As0g:) (97 V/1gl) = 0. (2.15)
2.3.1. Contraction with L.

Proposition 2.8. We have

1 St
500 () + =— = s (2.16)

Proof. Contracting (2.15) with L3 we obtain
L30a(9°"Vlgl) = —%L%L’;@y (9*"Vldl) — %L*ﬁL’;@L* (9" Vgl) + Ly Ac05: (9°°V/19l) = 0
Here and in what follows the repeated indices ¢, d are summed over a,b. We first analyze the first term
i (67V10]) = 50 (Eaas™ VIgl) + 00 () Eag® g
- _%ag Ry +w 5m]\§p L59%%\/]g] + O 2+O_) = —%ag(m*“*) + % + 02(73%)

where we used the estimate dr-(1/|g]) = Oz2(er™!). Here and in what follows the repeated indices 4, j are
summed over 1,2,3. We note that the error term is of order O2(er~277) because it only depends on the
metric. For the second term, we have

1 * Tk « 1 * * a * * « * * Ot
— Tt (7)== 30 (g™ Vlal) + L0 (L) g™ Vigl + 0 (E3) g™ I

M 1 ~ e M 1 M M 5 M
=———5ay<h;’“>—T—2+5ay<h;’“>+—+—+oz S

) 9,2 | 9,2 (T2+a ) = r2to )
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Before analyzing the last term, we calculate the Christoffle symbols fgb on sphere under the coordinates y*:

= oz 9xP 9%y v a e
= " 555 55 Baeoa el Aa:
As we have AC Aﬁ = (67 — wiw’)3;00%, we sce that

AT, = —AGA205 A% = —0p A% — A%w 55050 (0i6') = —Opp A% — A%w 8,5 A9, (w;6™)

Py, | ! 89T,
=~ Ay — Ay A 5,58 = —op Ay - 22,
Finally, we compute
L3 4505 (9°V/1ol) = 05 (LA “5\/|g|) — 05 (L) Asg™/Ig] - 59°7 /1]
5 ij _ w w AR wz5ia5g *
=—p T%%g g1+ (A5TG + =) L9V Il
2 M — L*a v € Ev*u
:_;(14- 1—— W gl + t/fhl 27#1;[39 5,/|g|—|—02(r2+0):_ 1r + Oof 2+U)
Gathering our estimates yield the lemma. 0
2.3.2. Contraction with A®.
Proposition 2.9. We have
1 Tu*a 1 Tv*a 251}*& 1 ~ac Toru* % Tac
O (A1) + 50 (AT ) + L4 5,20 05 (b)) + V. hi¢ = Oof 3+0) (2.17)

Proof. Contracting (2.15) with Ag yields

n ey 1 Ta 7 ey n Aa pe o

A30q (g Bx/lgl) = —5As L0 (9 o Igl) - —A L,0r ( Igl) + A ALy (g o Igl) =0
As for the first term, since we have 8T/Alg = —Eg/r, we see that

1~ * a 1 Ta 7% a * «
—iAgLaaL*(g 8 |g|) = —faL*(A A |g|) + 3L* L, A 5\/@"’ 3L* A,@Q |91

g

= faL*(hu ")+ Oal 7).

Next we calculate the second term

1~ 1 Ta 7+« * a a Ot
— S AsL,0 (5 191) = 500 (8420 Vigl) + 500 (L) B Vil + 500 (L) A9 T
_ 18 Ev*a A11)*a 1o} €
=9 - (hy ) + or + Q(E)
Finally,
A A5 0y (g“ﬁ/@) AGAS 57 0y (\/E)+E"E25ac (h‘fﬂ\/@)
1 o
= 55005 () + A3 405 (127 Vlgl) + Oa( ).
We write
A A¢ 0y (h?ﬁ |g|) = Oy (Egﬁgh“ﬂ\/g ) A 05 (AR /g — A%05 (A< /g
- S ) LIS 1
= O () + (AL AQTg, + o0 + A 40T, + =02 )hlﬂm +02(577)
S ~ae hv a hv a 5 e h'u a c
=V.hS +i+ + Oqf 3+U) V. hic+ + 02 (557

where Y is the covariant derivative on sphere. Putting all together yields the conclusion. O
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2.3.3. Contraction with L.

Proposition 2.10. We have
’};U*u* A’U*’U*

1 1 1 1 Turoty
25L*(’7‘fh)+ . 500 (hi ")

~ 1 . o~ N
= Vo) — 300 (4G h00) = Oal( ). (218)

In order to prove this proposition, we now need the following lemmas.

Lemma 2.11. We have
€

M o1 M. e 1 1. oo g o

O (VgD = 5 = 500 () + 00 (hY™) + 50 (#h7) = 3 0p (W7 Qb Gaa) + O(57)-

Proof. We first notice that h{,,, = hlﬁUO‘Vﬁ Given the facts that 20,(\/|9]) = V199" 0aguv, V19| =
1+ ship+Ox(er™2 ) and hi = hi. . + Os(er™'77) = —RY 03(5r 1 7), we obtain

o (VIaD) = V191 (g + 59000 (h1)) = Vgl (g — 500 (1) — 5 (b ) + 500 (101

1 ~ ~ —~
g1 ( — —hL*L* O (hi- ) — —5L* (hacTQchhlde2qda)> + O 2+cr)

M

1 1 5
e T72 — iaL*(hi*EJ —8L*(h” “ ) + 28L* (t/i‘hl) — 78L* (hac’l”2qcbh1 r qda) + 02(

r2+to ) 0

Lemma 2.12. We have

~ ~ o~ 2M N €
O (hiepr) + O (WY ™) = =hi ™ Op (Y) + = =01 (B ") + Oa(

r2+o )

Proof. Since we express gng = ggﬁ + h}lﬁ and ¢g*% = 98‘5 + h‘fﬁ, we see that

N .M M
he? = —monl,m"? + mee (B + hg,#)mw/(7auﬁ/ + b )mP P 4 Os( 2+U)

Therefore

o~ % ’ ’ M M
h11; u* ha,@L* * maﬂhtymVﬂL’;L*ﬁ iy LB mlW(T(Sa/M —+ ha;u)(T(SV,@/ + h ) + 03( 2+0)

We analyze the first term
« v * Tk * 1 ] * UV 1 v
m by Ly Dy = =h (D" 4 (5 = o)) (L + (0 = )wsd™)

M

9
+ 7(h1L*L* + hp e = 2hp ) + Os(—5—

= _hi*L* 2+o’ )

Now we turn to the second term. Using the null frame (L = 0, + 0,., L= 0y — 0,, A, B), we rewrite LO‘/ S s

L' 8,5, I hY, ” Lﬁlh},ﬂ, as follows
a/ 1 1 a/ 1
L hfll’u - _7L hlLL_ 7L hﬁ"’ A#h}@, L 50/# = _iLuagL: =Ly,
/ 1
Lﬁ h’yﬁ/ :—*Ll/hLL L hLL+A hAL? Lﬁ 5Uﬁ/ :—iLU(sLL:—LU.
We see that
o ’ v M 1 M 1 1 1 1 M 1 M 1 2M g
L L m (==0ar + har ) (==bup + hyg) = =Shphiy = ——hip = ——hp = —5 + O03(-557)
Thus we find
~ o 1 2M 2M €
h’l +h/1*L* :_ihiLhiL_ThiL +03( 2-‘1-0')
and
To*ut 71 1 1 Totu* Toru* 2M 7v*u*
O (W "+ hpe )= —hy O (hpp) — 6L* (hLL)+O2( 2+g) —hi " O (") + TaL* (h1 ™) +Oa( 2+g)

O
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Proof of Proposition 2.10. Contracting with L'; we see that

% a 1 — a 1 % 7k a * e «
50 (9°V/191) = =5 Ll (0°°Vlol) = SLaLadi (9°°V/1gl) + Ly A5 (97 Vlgl) =0

We first analyze the last two expressions

1 1 1. e M -
—5LsL o = ——op (LI (LN a8 gl = ——,. (vt - 24
SLsLur (9°2V/191) = =500 (LsLag™ VIol) + 00 (L) Lsg™ VIl = 500 () =~ + Oa( )
and
L%A\gagc (90‘5 |g|) — agc (L*nggaﬁ |g|) _ a/\c A\c _* af |g o aAC L* A‘C af |g|
~oe 15 OSw 1§ I o 54— i
=~ (hY °) + (AqTG, + fjﬁ 9PV gl + 9= Biadipg™ + Oa 2+O_)
S~ hil) u” h'tl) v*
:_WC(hl ) + P +O2(T2+‘7)'

Then it remains to compute the term —%L*BL*Q(?L* (go‘ﬁ | g|) Now we compute

—%L%L*aay (g“ﬂ Igl) = —%% ( LsL, Igl) - % +02(T2%).

Using Lemma 2.11 and Lemma 2.12, we further calculate

1 * * o M 1 A'U*u* M A'U*u* 1/\,0*“* A’U*u* 1 *u*
0 (L Lag ™V lgl) = 5= 0 ()= 0 ()= B 0 (R )= 37 0 (VgD +0s ()

2M

1
— + 8L* (t/fhl) — —8[,* (hacr QCbhl r Qda) + 02( 2+U)
Putting all together finishes the proof. O
3. CONSTRUCTION OF OUTGOING CHARACTERISTIC SURFACES
In [27] we show that the eikonal equation
9P dau dgu = 0, in r>|t/2, (3.1)

has a unique solution with asymptotic data at infinity u ~ v* =1t — r*, as t — oc.

Remark 3.1. In the construction of u coordinate, we may change the asymptotic data imposed at infinity,

ie., we may require u ~ u* + f(7*,7*). This leads to the transformation at future null infinity #+ : u —

u —I— f@,7*) where (7°,7*) are the angular coordinates in the Bondi-Sachs coordinate system associated to

u whose construction will be given in Subsection 6.1. So the changes of asymptotic data for u of this type
generate the supertranslations which is an infinite dimensional subgroup of the asymptotic symmetry group
at null infinity—Bondi-Metzner-Sachs group [32, 39, 31].

Proposition 3.2 ([27, Proposition 26]). The eikonal equation (3.1) has a solution uw= t + u* satisfying

o L+ ("= [t -\
Z‘]‘<2|Z Iu| < CIE(W) , > |t|/2 (32)

Remark 3.3. Following the proof of Proposition 26 in [27], we can prove Proposition 3.2 for |I| < 3. We
commutate the vector fields X € X = {S* = t9; + 2*0,-:, Q;, O} through the equation (3.1). Let

X=X —6xs and Ly :Q)N(j—zéxs*, where dxg+=1 if~X= S% and =0 otherwise. In fact, when |I| = 3 we
consider the equation 9; XY Zt = —H(g,u)/2 where L* = g*?9gu and
H(g,u) = Lx Ly Lz9(du, Ou)
+ 2Lx Ly g(8Zu, Ou) + 2Lx Lz(0Y u, Ou) + 2Ly Lz9(0Xu, Ou) + 2Lx g(Y Zu, Ou)
+ 2Ly (80X Zu, Ou) + 2L7g(OXY u, du) + 2Lx g(0Zu, OY u) + 2Ly g(0Zu, OX u)
+2L79(0Xu, 0Y ) 4 29(0XY u, 0Zu) + 29(0X Zu, 0Y u) + 29(dY Zu, dXu)
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We notice that only the new term L XZyZZgo(Bu, Ou) needs additional analysis. Since we already know
that 0Xu* =0 and Lx Ly go(Ou*, du*) = 0, we obtain

szyZZgo(au*, 6u*) = X(ZyZZgo(au*, Bu*)) — 2£~y£~Zgo(8)~(u*, 8u*) =0

Moreover, we have Z@tgo = Zggo =0 and Zs*go = k3go — 2(k1 — K2)J, Where k1 ~ Mlnr/r Ko ~ K3 ~
M/r and go(du, dv) = g P, uv. Using Go(0XTu*,0w) = 0 for |I| < 2 we obtain Lyg,(0X u*,dw) =
igo(ﬁYX u*, w) — go(aXIu*,an) = 0 for |I] < 1 and then ﬁxﬁygo(au ,0w) = —Eygo(aXu ,0w) —
LyGy(0u*,0Xw) = 0. Hence
|Lx Ly Lzg0(0u*,00)] < |01.
Using Lx7,(0v,0w) = X (g (dv, dw)) — Go(dXv, dw) — Go(dv, 0Xw) and the expression for Lg- gy we have
|Lx Ly Lzg0(01,01)| < |00l |0 il + (|Pa] + [§Xal)(|da] + Y ) + 9| |pXY 4.

Finally the estimates for the remaining terms in H(g,u) and thus the bounds of Z*7 with |I| = 3 follow as
in Proposition 26 in [27]. Then we have

00 2774 = O(-1-), and |9y Z7"a| + 105 27"l = O(), for |1 < 2.
r g = < /,«O'

The estimate for Oz Z*14 is not precise enough and we need to sharpen it. We first record three lemmas
in [27], which will be of use when refining the expressions for 9z Z*!1.

Lemma 3.4 ([27, Lemma 21)). If Z = 8, then with h$"=g*? — g% and L* = ¢*#dsu we have

07 Zt = —h1z(0u, Ou) (3.3)
with the notation hyz(U,V) = h U Vs where the Lie derivative R 1z = EZh B s given by
WL Do Ogw = (ZhSP)0au Opw + h$P 00w [Z, 8)w + hSP[Z, Dalu Dpw. (3.4)
Lemma 3.5 ([27, Lemma 25]). We have
hya, (Ou, Ou) = 9,(h*" ") + 20,(h* )it + D (W ") (8,11)2 + O 2+g) (3.5)
Lemma 3.6 ([27, Lemma 24]). If Q=2'0; — 270; then with k*¥/"= k*w; — k*w; we have
(Lok)(Ou, dv) = (Qk)(Ou, dv) + k([Q, O]u, dv) + k(au, [, 0)v),
kP05, Qu = k*Y"0u + (k*0; — k™ 9;)u. (3.7)
Now we are ready to refine dr- Z*1i.
Proposition 3.7. The eikonal equation (3.1) has a solution u= u + u* satisfying
o710 = ZT () + O( 1M) for Z€{8,Qy} and |I| <2. (3.8)
Proof. Putting (2.16), (3.3) and (3.5) together, we obtain
0; 0yt = fhv Y oS,
2 r2+o
It follows from Remark 2.4 that
00 = 30 () + Ol ).
Since
L = ¢ 9auds = (=2 + O(=))ur + O=15)0ur + O 575050, (3.9)
we find

° 1 Toru*
8Z8tu: Eaz(hl )+O(T‘2+U)

Therefore we can conclude that
€

rlto )

1o
Orit = by + O
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If we commutate the vector fields Z € {9, Qi; = 2'9; —279;} through the equation 05 Ot = —%hlat (Ou, Ou),
using proposition 3.2, Remark 3.3 and Lemma 3.6 and then integrating along the integral curves of L yield
B 1 ~ ot €
atZIUZQZI(hl )+O(m)
Then (3.8) follows from the fact that Op = 20; + Jr-. O

4. THE TRAUTMAN MASS

4.1. The asymtotically Schwarzschild coordinates. In this section we will use the asymptotically
Schwarzschild coordinates (¢, ) with

t=t, T =T, where w® = 2'/r, r=r+Mlnr, r=|z.
Then
0 =0, 0= (wiwﬂ'u + %) n ;(5“ - wiwj))agj - (517‘ + %(5“ ~ wiwd) + gwiwﬂ')aﬁ
In particular, _ _ _ _
o=+ D0 Lo - o. - T(Lon - Toy).
|| r |zl || || r\ |z |Z|

Denote the corresponding metric components by go.g. We see that
8&00‘ = Aaﬁafﬁ,

where the matrix A has the form
Mlnr

AO‘B = 6a3 + (6” — wiwj)émélgj + %wioﬂéméﬂj,
r

where the sums are over 7, j = 1,2,3 only. As a consequence, we have that
3°? = AapApug"”.
Expanding the metric
g =m* — M* Jr + hi"
and using that |h1| < r~!Inr we obtain

2M Inr 2

In“r Inr

)+ O(Thl)

M . o oM . .
§P = mP — 508 4 p 4 (0 — w'w)dai0p; + —w'w! baid; + O(—;
T T T
In?r

(69 — w'w?)Snibg; + O(

).

Lemma 4.1. Relative to the asymptotically Schwarzschild coordinates the metric components §*° verify

. M., 2M(Inr —1
5 = (14 Moo o 2007 2 1) )

M ws  2M(lnr —1
= (14 My pos y 2M(nr 1) i
T T T

2
In“r

; (6% — wiw?)dai05; + P +O( —

in the region r > t/2. Here the sum is overi,j =1,2,3 only.
Next we examine the wave coordinate expression Oza (gaﬁ | §|) evaluated in z-coordinates.

Lemma 4.2. Relative to the asymptotically Schwarzschild coordinates the wave coordinate expression satisfy

. - Mlnr | 1
O (3°7/13]) = —2=5wldjs + O(5).

Proof. We have
05 (5 V/131) = (A7) 0un (Aaw Assl A7 9"V 191) = (A1) D (Aaw Aps A1) 9"V 1],

where we used that the wave coordinate condition is satisfied in the = coordinates. Here the expression
Oun (AavAps|A|71) is already at most of the order of MInr/r?. Therefore, ignoring the terms of the order

of M2In?r /r3 allows us to replace the above expression by

O (M”° Ao Ags| A1) .
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Replacing the matrix A by its expansion

Mlor 1 M1 M In?
nT(ézJ—wle)5ai5ﬁj+O(;)a Al =1+2 nr+7+0( I;;)’

Aaﬁ = 5&6 +

and ignoring the terms of the order of M/r? we obtain

M1 . .y M1
2aﬂ-( BT - wmﬂ)éjﬁ) - 2m”'86,,( ”).
r r
The proof follows since again up to the terms of order M/r? we have
Mw'l i -y M In Mw’ 1 M1 ;
(M s ) 22 g, g5, M o MIr s 0

The same calculation also gives

Lemma 4.3. We have

B~ _ . 1 Tl 1
Or (5°7131) = Ass A 200 (5lg]) + O(5) = jﬁa (Vlsl) +0().

0 (0V1d1) = ~2 0 0 1 0Ch), ome (3°7101/VT0) = 0D,

4.2. The Landau-Lifshitz pseudotensor. In view of Proposition 3.2 the characteristic hypersurfaces of
the metric g become asymptotic to the null cones of the Schwarzschild metric, we recast the Einstein equations
in the form explicitly involving the asymptotically Schwarzschild coordinates (t~= t,x) as opposed to the
original Minkowski (¢, ) harmonic coordinates.

Let Sg7={(t,7);t=u+7} be a sphere, following [36, 37, 38, 5] we define the Trautman four-momentum

_ 1 -
Mg (@) = Jim /5 U*A7 dSg.,.

Here dSpy =ngk,72dS(w) with n,=(dr),=(0,w;), k= (dt)s=(1,0,0,0), and the superpotential U*7 is
0% = V/lglg** U5 where U7 = /131557 6,5770- 3,0

Here the square brackets denote the antisymmetric part of a tensor, i.e., T@ @l = Yoo (=17 e e
where the sum is taken over all permutations o of 1,...,1l and (—1)? is 1 for even permutations and —1 for
odd permutations. A direct computation implies

sy — _j\al?#’ where \¥PH — (|g|( pro_ ga,ugﬁy))'

Therefore we can write
-1 ~
M’%(UJ:i m%(u,w)dS(w),
47T §2

where with L, = (—1,w; and L, = (-1, —w;)
m(t,w) = hrn (M)2 ()\O"@VL,YL/;) (u—7,Tw).

The Trautman radiated four-momentum is defined as

o 1 ~~a
p3(a) = Jim o [ gl as,.

Here dSs = ngr2dS(w) with ng = (0,w;) and 77 is Landau-Lifshitz pseudotensor [25, §101], which is a
symmetric pseudotensor satisfying

N 1~ - - 5 1 oB
790 = 2G04 G A0 whete G = R — 3R

7]

We write

AmT(u w)dS(w) where Am$ (W, w) = lim 7|g[7* =
27 700 T

Ef(u) =
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It can be shown that the Einstein-vacuum equations R,5(g) = 0 can be written in the form

oNeBu
SlraB
|g|7T - (935” )
where
Bl — 6(2 (|§|(§a5§#v _ gaugﬁu)) 7 Bl — _5\04##37
xlj

and 77 is the Landau-Lifshitz pseudo tensor

70 = (21,105 — I0,T0, — 17, T0s) (" g™ — g*" g
+ P (DT, + 10,105 — T0,T9, — T9,105) + g"7g"* (0, I05 — %

L + - EL - Lt
]
'yrué)’

where f’fjl, are the Christoffel symbols of §. Alternatively, with G = 13]G,

19177 =05 G0 G = 05 G050 G+ 5 5 G155 G 050 G = (5751 05 G 0 G 457 G0 s G 02 G )
O 5 5 1 aps ~af~ - - = =
+ G0 G 00 G + (2577 = G775 ) (205000 — GroGa0) O G O G
The tensor 77 = 77 is symmetric and due to the anti-symmetry of B g divergence free

90 (|9)7*7) = 0.

Integrating the above identity in the region {(£,Z): 1 < §=7 —t < G, |T| < R} we obtain
g7 ;.

(4.1)

/ alFLs = [ 7P L + o
[Z|<R, q=q1 |Z|<R, 3= |Z|=R, 1 < 4<q2
Using that | §|7®# = OA*P7 /07 we have

/~ o |g|7~raBLﬁ:/~ 0 AL,
|| <R, ¢=q |Z|<R,q=q

As usual we use the decomposition
- 1 - 1 - - -
v NPT = —§L78Q“ﬁ7 - 5LY3LAQ57 + A, 0407 + B, OpA*P7.

where (L, L, A, B) is the null frame associated to the asymptotically Schwarzschild coordinates (¢,). By

anti-symmetry of ABY
L, O )P L = 0.

Therefore,
) yapBy 1 YaBy JapBy Tafy
NPTy = on (AL Ly ) + Ay Lpda AT + B, Lsdp P,

[ZI<R, =q1 7| <R, 3=0 7| <R, 3=0

On the surface ¢ = ¢1 we introduce coordinates (s,w) with s = 2(¢t+7+q1) so that d;, = 0, and the volume
L "rd o
= - (APVL L) sdsd
2y fs (i to) st
1 - R -
/ (AQBWLYLB) (R,w)R%dw — / / (AaﬂmyLﬂ) sdsdw.  (4.2)
s2 0 Js2

form is s2dw. Then

2 Jnn 0752

2

2

On the other hand, using that 9aLg = Ak05:.75/7 = AP /7 and that 57 is anti symmetric,
(4.3)

- - 1 - -
A Lgda\*?Y = A, 04 (Ls\*P) — ;A,YAﬁ)\aﬁ’Y = A, 04 (LsA*P).

We now need the following lemma
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Lemma 4.4. Let A, B be orthonormal vector fields on S?, independent of 7; 0zA = 0=B = 0. Then
|0A| + |0B| < 1/7, (4.4)
and with x4 = A*0z = A¥Oz we have
Oa(AY) = —w' /7 + (044, B)B, da(BY) = (04B, A)A". (4.5)
Moreover, if s tangential to S? then
Y F = 9 F" = 0, F" = A*94Fy + B*opF,
satisfies
/&2 djp F dw = 0. (4.6)

On the other hand if F is not tangential then
2
/ (A4 + B*Op)Fy dw = :/ Wiy dw. (4.7)
S2 T Js2
Using that wy = (L, — L,) and by anti-symmetry of ;\O‘ﬂVLBL = 0 we obtain

/ A, LpdaX®" + B,Lgdp\°?Y dw = / SngAaBW dw.
S2 s2

Combining this with (4.2) we finally obtain

- 1 -
O APV L5 = —7/ NPV L) (R, G, w)R2dw.
/|E|<R,Zi—q~1 ’ ’ 2 SQ( L ﬁ) '

Substituting this into (4.1) we obtain

Y aBy ~ 2 _ YaBy ~ 2 _ ~ i T
/Sz(x L,YLB)(R,ql,w)Rdw /S()\ LYLB)(R,qg,w)Rdw 2/| 917 %

Z|=R, 1 <q<q2

Assume for a moment that the following limits exist
m%(q,w) = lim R? (S\O‘BWL,YLB) (R,q,w), AmS(q,w) = lim R%g|7“'7;/R,
R—o0 R—o0
then we have the following analog of the Bondi mass loss formula

M3 @) = M @) - [ " Ep@aa (48)

q1
In what follows we will establish existence of the above limits together with non-positivity of Am.

4.3. Existence of the Trautman mass. Here we are concerned with establishing existence of the limit
mi(§,w) = lim (7)? (AL Lg ) (7,G.w)
T—>00
and thus the Trautman mass M.

Proposition 4.5. The Trautman four-momentum

a1
MT(U):E -

m(,w)dS(w)

is well defined.

Proof. We consider the quantity S\O‘BWLYLB and show that for sufficiently large r > t/2
INPVL Lg| < Cr2

Moreover, from our discussion and analysis in [27] it will be clear that the quantities defining the 2 behavior
A all have well defined limits as r — co. To estimate /\O"BVLYL/; we first note that by Lemma 4.3 we have

Yo 9 ~1(~af~ ~ay~ g ~o ~ ~ 1
AL Lg =L Lym= (19109 Bgmm — goghn)) = gl LLs ( 050 (V1915%7) — 370z (/1917 7))+O(T—2)-

\f
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According to Lemma 4.1

2M(Inr —1 n’r

3 o 1
)(6” —w'w?)daidg; + A + O( =

=(1+ %)mf“’ + )- (4.9)

Using that
(09 — wiw?)8ai05, LP = (69 — w'w?)0aidp; I =0

and the crude estimates |dg| + |9g| < er~'*¢, we obtain
ANPIL L= (1+ — \|/g|_ L Lg (mwam 1915°7) = mP" 0z ( |g|g°”))

\|/g|— o (n1# 05 (v/1915°) = 1050 (VIgl3"7) ) + 0(%2)'

We first analyze the expression

L, Ly (m 05 (V1g15°7) =m0 (\/1915™)) = L 0u(+/1915°) = Ls0n(V/1915™).
We write

L 91(v/1915%") = —Ls 81.(v/1913°") +2C30c(v/1913°7) — 205 (V/19137).

Here and in what follows repeated index C is summed over C = A, B. Therefore

L, Ly (m 05 (v/[g15°) — m™ 00 (v/[gla™) ) = ~2Ly 00/ [916°7) + 20506 (V/1913") — 205 (v/[gla"*).
We analyze the expression
§*P) = B ) )52 5B

205 9c(v/1915°7) = 2(1 + — )Cﬂac( gl m®”) + 4 Cpo(Vlgl (05 — w'w?)§767")

+2Cﬂac(\/|9|h‘f‘ﬂ) +0(5=)

M, o (lnr o i, 3\sadsBi

=21+ yeae(Vigh) + 4P (00 (Il €9) — Vil (0 — )% 0eC)

+20c(v/191 h77Cp) — 2V/g] h?ﬁacog FO( )

Here we used that (§;; —w'w’ )3 377 is the orthogonal projection on S2. In particular, (6;; —w'w?)§* §%1Cy =
C% and by Lemma 4.4

M(lnr—1
r

Oa(AR) = —wF /7 + (04 A, B)B". (4.10)
Thus,

1(V1914%) = Vgl (65 — ') 5719, Ag
S k (4.11)
= A"04(V/1gD) + V191 (044" — (8i; — w'w?)6M 5704 A5) = A*04(V/I9]) — w?

Furthermore by Proposition 2.1 we have the following estimates

ﬁ[\;| Q

| h BAB|< |5A\/|9|_ = |04(h7 Ag)| <

We remark that the last estimate above is very sensitive since its not true for each term in ((?Ah?ﬁ )Az +
hePOsAp. As a result,

2 > Cpoc(v/Iglg™”) = -8
C=A,B

Mn 4
2L igie 4 2 =185 + O

)= -8

1 Mlnr o 4,
= wigio 4 = hﬂoﬂég—i—O( 5)-

Using Lemma 4.3 we further compute

Mlnr
o) =87 2 Wb +O( ).

_Zafa (gaﬁ
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Finally, with the help of the estimate |9, (1/]g])| < <5 we obtain

~Q ~Q 1
—2L 0.(v/1915"") = —2L; 01.(5°") + O(5)
2M1nr

M., i i o B o 1
= —2L; 0(1+—)m*”) —28L( (67 — wiw?)s 5ﬂﬂgﬁ)—2aL(hlﬁLﬁ)+0(T—2)

o 1
= —201(h" Ly) + O(3).
Gathering our estimates we obtain
Y saf B sy 4,08 ap 1
Ly Ly (m 05 (V1915™7) =m0 (/1913)) = 18P 835 = 2008 Ly) + OC )

2 . N 1
= = hYPLy =200 (h7 Ly) + O( ),

where in the last line we used that w’/d;3 = (Lg — Ly)/2 and |h$? Lg| < Cer—'. We now note that

2 4 o 2 o 1
hYPLy +200(hY7Ly) = ~0r(rhy") Ly = O(3),
by the results in Proposition 2.3. Therefore,
~Q ~Q 1
L, Ly (m 05 (V191 3°%) =m0 (/191 3°)) = O(-5).

To achieve the desired result for S\O‘ﬁ’YLYLﬁ it remains to show that the expression
~a ~Q 1
L, Ly (11050 (191 3°) = 105 (v 191377 ) = O(5).
Given the fact that |(h1)pr| < Cer™177 the term
o 1
m" 0z (V19137 L, Ls = O( 57

It is clear that we only need to analyze the term h ( | gl go‘ﬁLﬁ) Since

Ce — _ Ce o Ce
we see that 1
nhio (VI913°7 L) = O(=5). 0

4.4. Existence of the news function Amy. We now establish existence of the limit
AmS(q,w) = 2 lim 72|g| 7w,
T—>00
Proposition 4.6.
~ 1 o~
Am(q,w) = L L* lim 7|079*(F, q,w).
4 T—00

Here 4cp = hip — %5cp(h}4A + hk ) is the traceless part of of the angular part of the metric g. Using
Proposition 2.5 we can identify Am$ with the expression.

~ ’ ’ 1 _
AmT(q,w) = 4L°‘5CC 6P o HES0HES = iLo‘n(q,w).
Combining Propositions 4.5, 4.6 with the analog of the Bondi mass formula stated in (4.8) we obtain
Theorem 4.7. N
- . 1 q2 ~ -
M7 (q1) = M{(q2) — 8_/ / Ln(q,w) dw dg.
T Jq Js?

Remark 4.8. Note that since
Ce
~1+]ql’

the News function is easily integrable with respect to the variable g.

| 0gH 3% <
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Proof of Proposition 4.6. Recall that

S~ Sa 14 Sav > 1 ~aff ~ v > ~ow > >
|17 = 020G P0G — 00 G 00 G + 59 PGur05 G 1 0n G — G G2, 050 GV 050 GN

~Bv ~ S 5 ~ o~ Sav S 1 ~QU ~ ~af ~v ~ ~ ~ o~ 5 5
— 3% 43035 G100 GO + Gung" 05u G 05GP +- §(2g 37 = 375" (20,16G~p — GovGup) v G 022 G,
with G = /|§|§g*”. Recall that by Lemma 4.2
~ Inr
_ oaB
07 G = 0(7) (4.12)

We also use the crude estimate

10:G| < G

S

Based on this we can replace

1 - . - - - -
|g| 7F = imaﬁm”aﬂgwaﬂg& - (m“”mmaﬁgﬁ“aﬁg” + mﬁ”mmafag““apg”)

- - 1 ~ 5 1
+ M 050 G 075 GPA + 3 (2mmPr —mPm ) (2m51me ) — sy ) O30 GHP O30 GOV O(

()

Taking into account that

5 5 C
[0aG] +10LG] < 5, (4.13)

(1 +lah=’

and using that modulo tangential derivatives 0z« is L0z we can further write

af

N

1 . . . . . .

K 5maﬁwL(;Luaag"#aq~g5A — (M LY L505GP105G™° 4 miy, LP Ls0;G9:G7°)

1 o 1

* ZL LP(2myummsp — My m1,10) 05G"° 05G°7 + O(Wﬂﬂ))
Using the expression (4.9) for the metric g

2

M 2M(Inr — 1), .. S 1
g = (14~ )mH + #(5” — Wi )R 4 4 O 1;27“)_
We easily see that?
E Y —
S T
Moreover, using the wave coordinate condition
Ce
J7q < -
060 < et 1 g
we conclude that .
5 €
|05GLT| <

A [T
In the above we used the fact that g7 = O(1/r). Using that m,, = —(L,L, + L, L.,)/2+ A, A, + B,B,
this allows us to conclude that

1 _ _ _ _

| 9] 7B — —5( — L#L“&;gﬁ“aggg — L#LﬁLgagga‘uaggLL)—l—

o

SRE(RaT)
1 5 1 ~ - ~

= S LA (03G10) + {LLP (203G, 050" — (" 93G,u)?) + O

1 - -
* ZLaLﬁ(QmMm'm — Mgy Myup) 03GM 7G*7 + O

)

S
A7)
Here we used that we can expand any vector in the null frame V¢ = —(L*Fp + L“F,)/2 + A®F4 + B*Fp.

We can write ) ) ) )
203611, = —01.G1L + 200G, C* L — 2mH° 035G, L .

3The € loss occurs only due to the presence of the logarithmic terms.
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Using (4.12) and (4.13) we obtain that

= Ce
105611 < i

Based on this we obtain
en 1 ., ~ ~ ~ 1 1, .
917 = {1717 (20Gep0,0 "~ (0 9yGcn)?) + O — SLL10G + O

AR T 2 ’

1
Here éc p is a tensor
Gop = Gop — %5CD(Q~AA +GBB).
Remembering that G, = V/13]das Wwe obtain

05645 = 0:(V1)Fas + V13 9:(3)

Here )
In“r

S - 1 - - .
Ycp = gcp — §5CD(9AA +3gpB) =9+ O( 3

R 1
), AJep =hép — iéCD(h,laxA +hip).
In the above we used (4.9). Therefore we obtain

1
P ()
4.5. The ADM mass. It remains to show that the Trautman mass as ¢ — oo tends to the ADM mass of
initial data which in our setting is M. It follows from the results in the previous section that all components
of h! tend to 0 faster than 7—1 as 7 — oo so the limit of the mass as 7 — oo only depend on h?w = M0, /r.
In fact a direct calculation implies the limit is exactly M. That this constant is positive would follow from
proving that the Bondi mass tend to 0 as ¢ — —oo. This in turn would follow from Proposition 2.7.

gl = SLLPI0R P + O ) 0

5. THE ASYMPTOTIC HAWKING MASS

In this section we will use the modified asymptotically Schwarzschild null coordinates y? = (v*,u*,y
as defined in subsection 2.1.

5.1. The definition of the asymptotic Hawklng mass and radiated energy. We define the radius
of a surface S to be r(S)=/Area(S)/4w. Let L and L be the outgoing respectlvely 1nc0m1ng null normals
to S satisfying g(L L) —2 L and L are unique up to the transformation L—alL and L— a ‘L. The null
second fundamental form and the conjugate null second fundamental form are defined to be the tensors

(X, Y)=g(VxL,Y), respectively  x(X,Y)=g(VxL,Y),

for any vectors X, Y tangent to S at a point, where Vx is covariant differentiation. Under the transformation
above x—ax and x— a’lx so the Hawking mass of 5,

MH(S)—T(S)(l—i-/strxtrKdS/lﬁw),

is invariant. If try try <0 we can fix L and L by trx+ try =0. Let x and X be the traceless parts. The
incoming respectively outgoing energy flux through S are

E(5)= /S X*dS/16m,  and  E(S)= /S %S/ 16m.

Owing to Proposition 3.2 the outgoing characteristic surfaces of g is asymptotic the null cones uv* =t —r*
constant, we use the family of spheres Sy, ={(t,z);t=u"+7r*(r), |z|=7r} to define the asymptotic Hawking
mass and the radiated energy at null infinity as follows

Mag(u*) = lim My(Sys,) and Eag(u™) = lim E(Sy«,),
T—00

T—00
with T(S)2g converging to a round metric where ¢ is the restriction of g on the spheres Sy ;.

In order for the limit of the Hawking mass to exist as well as the energy to be well defined we must have
that 7(S) trx ~ 2 and 7(S) try ~ —2, as r(S) — oo. In order for the mass to be defined we also require that
the rescaled spheres S! (scaled by r(S) so that the radius is 1) converge to a round sphere, i.e. that the
Gaussian curvature r(S)?K~1, as r(S) — oo.
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5.2. The radiated energy at null infinity. Assume that 7(S)? ¢ converges to a round metric which we
will prove in next subsection. We now prove the radiated energy at infinity is well defined.

Proposition 5.1. The rdiated energy at null infinity is given by
1
Eap(u®) :—/ n(—u*,w)dS(w). (5.1)
S2

81

Proof. Since Lg(X,Y) =g(V; X)Y)+g(X,V;Y) and ViX:VXL— [X, L] and since x is symmetric we have

2X(X7Y):£9(X7Y)+9(X7 [Y,i;])—l—g([X,L],Y), (5'2)

2X(X7Y):L9(X7Y)+Q(X7 [Y,L])—l—g([X,i/],Y) (5'3)

Since g = m+ h?+ h' this is true for the surface measures
gap=d*6ap+hig, and det(gap)=d*+d*5*Phyz+ O((h')?), (5.4)
where d = (1+ M/r)'/?and {A, B} are orthonormal vector fields on S? associated to the coordinates z, i.e.
A = A*Q,k. Since r 64Bh)p — 0 it follows from our estimates that \/det (gap) = d*+ O(r=1=7"). Hence
dSysr=y/det (gap) r*dS(w)~ r?dS(w) and r(Sys,)~r.

Let us define L and L by Le= go"@iﬁ and L®= go‘ﬂLﬁ, where ﬁz = —Ll- = aw;, for i =1,2,3, and
Lo= ar, Ly= at. The condition that they are outgoing respectively incoming null normal is then equivalent
to ¢9°7% + 2¢%7w; + gY¥ww; = 0 respectively g°912 — 2¢% 1w, + g¥w;w; = 0. Completion of the squares
gives (74 11)%*= (1 —11)*= 73, where 19 = (712 — gijwiwj/g00)1/2 and 71 = g%w;/¢g". Hence 7+ 7= —279 and
T—1=—-27m. If we set a=2b/(7+ 1) we get g(L, i/) =a? (gOOTI— gO (T — T)w; — gijwiwj) =202¢% L+ Lis

normal to the hyperplanes ¢ constant and L — L is the normal to the spheres Sy, in these hyperplanes. If

we set a = (—90075)71/2 we get Q(LL) =-2.

It follows that L = dL*+O(h') and L = dL'+O(h'), where L' = 8+ 8y, L' = 9, — 8, and d = (14 M/r)'/2
Moreover, this is true also for the derivatives. We therefore have x ~ x* and x ~ x* where x*(X,Y) =
dg(VxL',Y) and x*(X,Y)=dg(VxL",Y). Since [A, '] = —r~(dr/dr*)A = —r~* A+ O(r?), we obtain

X*(A,B)=dLg(A,B)/2 —dg(A,B)/r + O(r™?), and x*(A,B)=dLg(A, B)/2+dg(A, B)/r+O(r ?),
by (5.2)-(5.3). With trk= §4Pkap, where §4P is the inverse of gap, we have
trx* (A, B) = d det (g(A, B)) 'L det (g(A, B))/2 — 2d/r + O(r~2).

Here we used (5.4) and the identity Z detA = detAtr(A~1ZA). Hence

trx* (A, B) =d 'L 6P hlyp/2 — 2d/r + O(h'OR') + O(r~?),

trx* (A, B) = d 'L 6*Bhl 5/ 2 + 2d/r + O(R'ORY) + O(r~2).
Hence with X" (A4, B) = x*(A, B) — trx* g(A, B)/2 we have
(A, B) = I'h' (A, B)/2 + O(h'oh') + O(r~2), and X*(A, B) = L'h'(A, B)/2 + O(h'dh') + O(r~2).

where 31143 = hlp — 0ap6°Phl, /2. Since we shown that r§“Pd,-hip — 0 and that rh! has a limit as
r— oo along the curves (u* + 7*(r),rw) in Remark 2.6 it follows that

T2|X*|2N T2(8q* ill)AB (8q* }ALI)AB_> 2n(_u*7w). 0
5.3. The convergence to a round metric sphere.
Proposition 5.2. T(S)Qg converging to a round metric where ¢ is the restriction of g on the spheres Sy~

Proof. By Gauss equation ([13]) K + trytry/2 — (x, x)/2= §'4PPRapcp, where g€ is the inverse of the
restriction of the metric to the sphere S. That r(S)2K ~1 follows if we show that r(S)?§4“4PPRagcp~ 0.
We now calculate the curvature components in modified asymptotically Schwarzschild null coordinates:

D 8f g pac af 9 i c i 'S - -~
Rig)? = P 0ee - Mo | Bgys, Big,, - F(g), Do)y
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and

5 _Ol(g)r,. . OT(9)",. . N .
R(g)abed = Gap (;Jb — Jap (;Zb +T(9) %L (9 avg — T(9)%.T(9) dag-

Since g=g°+h' with g9 ;= map+Mdas/r and the inverse metric g~ = (¢°) '+ h1+ O(M? /7?), we calculate

~T(g") % (9% = F(MGars  —T(0")oabs T(9")urab = 9(r)Gan/2 where f(r),g(r) =7+ O1(1)
i‘\(go)abc = (TQ + MT)f(m)ava i‘\(go)cab = f(m)cab, Eabcd(go) = O(r).
Next we compute

. _ . - 1,0h},  Ohl,. Ohj -
_ 0 1 _ 0 - ab av* bv* \ _ 0 .
F(g)abv* - F(g )abv + F(h )ab'u - F(g )ab'u + 2( av* + a/\b 8%‘1 ) F(g )abv + 01(1)7

f(g)abu* = f(go)abu* + 611,*/};(111;/2 + 01(1)7 f(g)abc = f(go)abc + Ol (7‘)

and

L(9)"a = 3" "L (9)par = T(9°) uy + Dur gy, + O1(r' ),
L(9)"% = G PT(9)pas = T(9")" + 01(1),  T(9)% = GPT(8")pas = T(9°) s+ O1(r71).
Therefore
034(T(9)"ap) = 054 (T(9°)"p) + Opadushiyy /2 + Oa ('),
050 (T(9)"n) = 03 (T(g°)"w) + O1(1), 054 (T(9) ) = 05 (T(g°) ) + O2(r™1).
Finally we conclude that
R(9)3134 = R(¢°)3434 + (TqA443u*fAl§3 + 7"533&*%4)/2 - (7"71\34371*?%4 + T§343u*71§4)/2 +0(r*=7)
=73 det(Gup ) O (t/fhl)/2 +0(r*=7) = 0(r*7).

where we used ¢23 = det(qup) *qua, ¢4 = det(Gup) 1333, 34 = — det(Gup) 134 and r_QqA“bﬁlllb = th! in the
second step and Remark 2.2 in the last step. Due to the symmetry of theARiemann curvature tensor we see
that R(g)abea = O(r*~7). Since ¢* is the inverse of gap = (1+M/r)r*qup+hl, we have ¢ = r=2g"* + O(r~3)
and thus g“cgbdﬁ(g)abcd = O(r=279). This proves that the rescaled spheres converge to a round sphere. [

5.4. The limit of the Hawking mass along the asymptotically null hypersurfaces. We now establish
the existence of the asymptotic Hawking mass

MAH(’U,*) = hrn M'H(Su*ﬂn).
T—>00

Proposition 5.3.

Man) = lim M(Ss) =30 = o [~ [ ) s (5.5)
In view of (5.1) and the above proposition, we establish the following Bondi mass loss formula
Theorem 5.4.
L Man(u) = ~Ban(u). (5.6)

Moreover we see that M (u*)=M as u* =t —r* ——o0 and by Proposition 2.7 M (u*)=0 as u* =t —r* —oo.

Proof of Proposition 5.3. In order to obtain the explicit expression for Mapm(u*), we need to refine the
expressions for try, try. Recall that the outgoing and incoming null normals L, L to the surfaces Sy, are
expressed in terms of 7,7, a as defined in the proof of proposition 5.1. A direct computation implies

M

i M
:—1—|———f(hoo—l—hjwle)—l—hlwz—FOl( o ) = 1+7+01( 1+O’>
M 00 z‘j 0i € M ?ff*v* €
M 7 M 1 U*u* A’U*’U* £
a:1+ 2T hljwzw]+01( 1+a') 1+§+8(2h _hl )+01( 1+a')
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Suppose {A, B} are orthonormal vector fields on S? associated to the coordinates , i.e. A = A¥9,x, we have

*+01( ))L*+01( )L+ 04 ( O,

rlto 1+g)

i (_ hyv +01(%))L*+ (1+g+ hfgv B h7f4v L0y 1+0>)L* ( h'u A0, 1+U))8A-
Recall that
2\(A, B) = Lg(A, B)+9(A,[B, L)) +g([A, L], B), and 2x(A,B) = Lg(A, B)+g(A, [B,L])+9([A, L], B).
With trk = 48k p, where g4 is the inverse of gap = g(A, B), we have
try = det (g(A, B)) "L det ((4, B))/2 + §*P (g(A, [B, L)) + g([4, L], B)) /2,
try = det (g(A, B)) 'L det (9(A, B))/2 + 47 (9(A.[B.L) + g([A. L]. B)) /2.
Here we used the identity Z detA = detAtr(A=1ZA). A direct calculation yields
L det(gap) = —2Mr~ 24+ O(er=277), dadet(gap) = O(er279),
L' det(gap) = 2Mr =% + L'tkh' + L" det(hlyg) + O(er™>77),
Therefore
Ldet(gap) = —2Mr~2 4+ O(er—27°), and  Ldet(gap) = 2Mr~2 + L'thh* + L* deth! + O(er—27).
and
trx = —Mr2 4 647 (g(A, [B. L]) + g(|A. L], B)) 2+ O(er=>),
trx = Mr=* 4 L'thh' /2 + L' det(hy) /2 + 47 (9(A, [B, L]) + 9(A, L]. B)) /2 + O(er=*77).
where we used det(gap) ' =1+0(er—1). It remains to control the commutators terms. We compute
L0 (Mo

r o or2
. dr O 1M M?
9(A,[B,L]) = g(A, — o *7) _(;_T_2+O(T_3))QA87

9(A,[B,C)) = (A, (Fpe — Vo)D) = (Fpe — Yep)9ap.

g(A, [Bv L*]) = g(A7

Here Y‘S B = m(Wa 0B, D) where Y is the covariant differentiation on sphere and then J' are the associated
frame-Christoffel symbol and homogeneous functions of degree —1 with respect to the radial variable r. Then

1,4 . . 2 M hYY Ry
= A [B, L ALlLB) =22 _ _ o
2né (g( 7[ ? ]) +g([ ’ ]7 )) r T2 4T 2T + (T2+g)
1 a5 . . 2 M 3R WY <o ~pec D oD £
Y (9(A,[B, L]) + g([A, L], B)) = ot s T g ~Ochi T -y (VDC—FCD%LO(E)
2 M 3R Ry o
= — — — — - hU
r + r? 4r + 2r Vohi +0( 2+‘7)

Here we used the fact that ]?‘gD =m(Ys.0p,D) = 8c(m(D, D))/2 = 0. Hence

2 2M  RvV R £
try==-—-——5)— —— — @)
X = r r2 4r 2r * (T2+U ),
2 2M 3Ry hv w kb L det(hlg) e
frx = T T r? 4r _WC 2 + 2 + O(TQJ“’)
Using (2.18) we obtain
2 2M  OphYYT RV Ry €
try = — - 4+ _ 9
X r i 72 2 4r 2r N (7‘2+‘7)
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Here we used these facts Yoh!C = Vohv™¢, 0p (h9r2Guhtr2Gu,) = 0 (hY gh'4B) 4+ Og(er—277) and
hY ghtAE 4+ 2deth! = (t4h!)2. Hence

4 8M AR Ry £
trxtrzz—T—Q—i——-i- L4 ;2 +O(r3+")'

73 r

Since dSy«, = \/det(gap)r?dS(w) = (14+M/r+O(er=177))r2dS(w) and r(Sy=,) = 7+ O(e), It follows that

My (Sysr) = T(Su*_rr)(l—l—‘/ try try dSu*7T/167T)

u*r

M 1 T B 1 [ €
= (T+O(E))< r +F/ TaL*hl +h1 dS( )+O( 1-‘1—0')) —M—g/_U*n(T],W)dn‘i-O(F),

where we used the asymptotics result for the metric component ﬁ”*”* in Remark 2.6. Therefore

Map(u*) = lim Mz(Sy-, M——/ / n(n,w)dS(w)dn O
T—>00 —u* SZ

Remark 5.5. According to the proof of Proposition 5.3, we find that the existence of the limit Mg (u*) of

the Hawking mass along the asymptotically null hypersurfaces does not require the null infinity to extend all

the way back to the spatial infinity. Suppose the null infinity could be extended back to the spatial infinity,

the past limit lim, oo Mapg(u*) equals to the ADM mass.

6. BONDI-SACHS COORDINATES

In this section, our goal is to construct the Bondi-Sachs coordinates 7” = (u,7, 7>, 7*) under which we
denote the metric by g. The Bondi-Sachs coordinates 3 = (u,7,7°,7") are based on a family of outgoing
null hypersurfaces 7' = u = const. The two angular coordinates 7%, (a,b,c, ... = 3,4), are constant along
the null rays, i.e. gaﬂaﬁuaayaz 0. The coordinate 2 = 7, which varies along the null rays, is chosen to be
an areal coordinate such that det[g,,] = 7*q, where q(7?) is the determinant of the unit sphere metric g,,
associated with the angular coordinates 7*. In these coordinates, the metric takes the Bondi-Sachs form

v
Gy 7P Ay = —?ewdzﬁ —2e*Pdudr + 7 hgy (dya -U “du) (C@b -U bdu)-

We have already constructed u coordinate in section 3, it remains to construct the angular coordinates y®
and areal coordinate 7.

6.1. Construction of angular coordinates. Since {u = const} are null hypersurfaces, for any point
P, it must be at some null geodesic. After reparametrization, we see that P must be at some X(s) =
(s,u*(s),5°(s),7*(s)) = X(s;u,5°,7*) where we use the notation X (s;u,7°,7*) to emphasize that the in-
tegral curve X (s) of the vector field gP905.udgy /g° 9054u satisfies that (u*(s),7%(s), 7% (s)) = (u, 7%, 7*) as
s — oo. Therefore, for any point P € X (s;u,7°,7*), we define (7°,7%) to be the angular coordinates in
Bondi-Sachs coordinates. Using the estimate

§°05u Y4+ O(er™377)
gV 05u  —1+O0(er—1)

= B+ O(),

and integrating along the curve X (s;u,7°,7") yield

o0 5aqf).
g [T ot
o GV 905au rlto

We now have new angular coordinates 7% (v*, u*, 7, 7*) = y®+y*(v*,u*, 5>, 7*) which we use in Bondi-Sachs
coordinate system and then we derive the system for the derivatives of 7. According to the construction,

9°P 0, udpy® = 0. (6.1)
Differentiating (6.1) gives
9P 00u 83 27" = — g2 00 057" — g** 00 Zu 57", (6.2)
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where the Lie derivative g%ﬁ = L79*P is given by
g%ﬁaau dpw = (Zg“?)0ou 05w + g*P o [Z, 05w + g*P[Z, Du]u Dpw. (6.3)
Hence with the notation gz(U,V) = gZ'@U Vs and using the facts 0Zu* = 0, goz(U,V)=0for Z € Z =
{4, 0}, (6.1) respectively (6.2) become
655“ =0, (6.4)
07 29" = —h12(0u, 07") — g*? 0. 21 057" — 07 Z7".
In order to estimate this system we need the following lemmas.

Lemma 6.1. If |Qy%] < 1/20 we have

a Coe
|6U*y |— 1+g| ty | r2to’ (66)
Proof. Using (3.2) and (3.8) we know that
€ iAﬁl’*“* € € €
aypu: (O(Tl"'a)’ 1+ 2 +O(r1+g)7 O(F)a O(F))v (67)
and
Do = (av*ga, Bueif®, 88 +agbga). (6.8)
Since g*?0,udsy® =GP0z udzy® = 0, with the estimates of g and the assumption |Qy?| < 1/20 we obtain
€
(—2+ 0(;))81, y* + O( 1+O_)8ty +O( 2+U) =0.
This finishes the proof of the lemma. O
Lemma 6.2. If |Qy*| < 1/20 we have
ca Coe oa Coe ca Coe
10£0e9° | < == 1100-9° + 5 1009° [ + - (6.9)
Proof. 1f Z = 0;, we have 0;0;y* = 0 and by (6.7) and (6.8)
« —a X oq € oq €
h1z(Ou, 07") = (9:h§")0audsy® = (9h}")Dgpudyey® = O( )0u=y* + O(W)aty + O(r2+0)'
By Proposition 3.2 and (3.8)
. 5 B, (hv™ ™) 5 € €
Opdhit = (O(), To—+0(), 0(=), 0(=)).
Hence by (6.8)
o BN 5
9" 060,10 057" = G"10gp Oy 05" = O(=)dv-4* + O( 1+g)5ty +0( 2+g)
Then this lemma follows from (6.5) with Z = 9; and the assumption |Qy?| < 1/20. O
Lemma 6.3. If |Qy%] < 1/20 we have
) C'053 oq CO€|Q:IJG| CQE
|8ZQy | S T||8U*y |+ 1+U |a | T2 + ’I“2+U' (610)

Proof. The estimates for(Qh?ﬁ)aauagya and ¢*%9,Q1 07 are similar to those in the proof of Lemma 6.2.
Therefore we are left with h’9qu[Z, 35]7%, h°[Z, 9a]u 857" and 8; Q7. By Lemma 3.6, if Q=2'9; — 27,

heP10s, Qu = k*Y"0u + (k*78; — k*0;)u,
with h?mr: k%w; — k®w,;. By (6.7) and (6.8) we conclude that
« —a « —a £
105000 (2,915 + 105”12, 0aJu 057 = O(C)0i® + O )04i" + O 5104

In view of (3.9), we have 9;Qy* = O(er™277)95Qy* = O(er—277). O
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Proposition 6.4. If e > 0 is sufficiently small we have for r > t/2 and r > 2 with constants Cy = 2CyC,
for some universal constant C,

2008

0= 97| < oy (6.11)
ca Cie

0% < 3ogs (6.12)
ca Che

99°] < 3o (6.13)

Proof. We can prove this by assuming these estimates are true and show that they imply better estimates if
¢ is sufficiently small. First from (6.6) and the assumed bound (6.12), we prove (6.11) with 2Cj replaced by
3C/2 if € is sufficiently small such that 2C3C,e <1/2. From the construction of 7* we see that 9;§%, Q§* —0
as v* —oo. If we integrate (6.5) with Z=09; and use the assumed bound (6.11) and (6.12) we obtain
800(250800 +eCyCy + C()) < 3015/4

/]"1"1‘(7 - /]al-‘r(T ’
if € is sufficiently small such that 2C2e + eC; < 1/2 which proves (6.12). If we integrate (6.5) with Z = Q
and use the assumed bound (6.11), (6.12) and (6.13) we obtain

eCy(26C2CH + 2eCoCy + Cp) - 3Cie/4

10| <

|Qy | < rlto - plto
if € is sufficiently small such that 2CZe + 2eCy < 1/2 which proves (6.13). O
We now turn to higher order derivatives of y°.
Proposition 6.5. We have
I eca| €
Y el = 0G5 (6.14)

Proof. Following the proof of Proposition 3.2 we commutate the vector fields X € X = {S* = td; +
¥ 0w, Qij, O¢} through the equation (6.4). Let X=X —0xs- and ZX:£X+26X5*, where dxg+=1 if X= 57
and = 0 otherwise. Then X (k(du,dv) = (Lxk)(Ou,v)+ k(0Xu, )+ k(Ou,0Xv) and dXu = 0. Since
g(0u, 0y*) = 0 we get 8Z)~(Zy“ = —H(g,u,y") where

H(g,u,5") = LxL79(du, dy") + Lx g(du,0Zy") + Lxg(0Zu, dy*) + Lz9(du, 0Xy")
+ Lz9(0Xu, 87%) + g(0X Zu, 05%) + 9(0Zu, dXG") + g(0Xu, DZ7").

Here ng—zxgo—i— Exhl, where Z@tgo—Zng—O and ES «go=rkago— 2(k1— K2)gy. Here k1 ~Mlnr/r, ko~
tiz ~ M/r and g, (u, dv) = g P,u P;v. Since 90(0X T u, 7%) = O(er—277) and 7, (X Tu, 7*) = O(er—277)
for |I| < 1, we have £x go(0X u,dy*) = O(er—277) for |I| < 1. Moreover, Lxgo(0u 07*) = X (go(du, d5%)) —
Go(0Xw, 05") — go(du, X 7). Tt follows that [LL go(du, d7*)| = O(er—2-)|QXg"| + O(er—2-7), for |I| <2.
Hence

|Lx Lz9(0u, 05)+Lx g(0Zu, 05" +Lz9(0Xu, 05" +9(0X Zu, 05" )| = O( 2+g>(|QXy“|+|ﬂZy“|)+0< ——).

Then it remains to control the terms containing second order derivatives of 7*
|Lx9(du,0ZF%) + L79(du, 0XF*) + g(0Zu, dXF") + g(0Xu, 0ZF")|

= 0(%) (100 X5"| + 101 Z5"]) + O() (10:X7"| + 10:Z5"]) + O (12X7°] +1225"]) + Ol 5.

140 2+o0

We have 8; X7® = —Lx g(u, 95%) — g(dXu, dg%), so |0; X7°| = O(er™ *ff). By (3.9)

01 X7°| < 107 X5°| + O Hg)lath |+0< — )Xy,

Therefore we conclude
0; X Z%| = O

g
() (106X + 19 Z3"1) + O (12X5° +1925°1) + O(—75).

where we used the facts that QX7 = O(1), ,X7* = 0 and 8ZX2371 = O(er=2?79). We repeat the proof of
Proposition 6.4 and the conclusion follows. O
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We now refine 9; 279 with |I| < 1.
Proposition 6.6. If Z € {9,,Q;;} and |I| <1 we have

0z = ;Zl(h” DR " 21(F ) + O ). (6.15)

2+o’

Proof. We analyze (6.5) with Z = 0; to find that

. 1
07 01" = 20«0y 00y — Oy (RY ) — “baAbatu + O( 3+0)
Using (2.17) and (3.8) we obtain
°oa o0 ea 1 Tv*a 2hv ¢ v Tac
0704y — 20+ 010" = an(hl )+ +V, h +O( 3+U)

Along an integral curve (v*(s),u*(s),7%(s)) of the vector field L, we have the following equation with
H = [720,-0vdn = O(.%)

d Ho ca\ _ H 1 Tov*a € _1 To*a
(o) = e (00 () + 1)0(5r5) = 500 (B ) +

Using the asymptotics results in Remark 2.6 and integrating backward along the mtegral curve we conclude

2h1} a
+ VR + O(—

r3+o )

D h” oD W 79 4 O(—— (6.16)

r2+o )

Once we have (6.16), Proposition 3.2, Remark 3.3 and Proposition 6.5 at our disposal, we are able to express
0:Zy” with Z € {04, Q;;} more precisely. In fact we have the following equations

07 07" = —hag, (Ou, 00,y*) — g(004, 00,y™) + 0, (07 0r ")

1 e 20,(RY
=«%@wﬁ”5@wwﬁ%+—%%J+@th+0<MJ
oa °a ~ °a oa 1 Tv*a 2Q /ﬁv*a ac
07 0:) "= —h1g(Ou, 00,y™) — g(0N, 00:y™) + (07 0:y™) + 500 QURY?) + %) QY79 + O(——

where we used (3.8), (2.16) and (2.17). Then we repeat the proof of (6.16). O

3+cr )

6.2. Construction of areal coordinate. We now construct the areal coordinate such that det[g,,] = 7q,
where q(7y®) is the determinant of the unit sphere metric g, associated with the angular coordinates 7°.
Since g takes the Bondi-Sachs form, we have g,.g = 62 and thus det[g,,] = 1/ det[g*’]. Then we define

7 = (det[g™] detlgy,)) " = (detlg,.g) " (6.17)
By Proposition 6.5 and 6.6 we have 95 y* = (O1(r277), (R 4+ 1%V e 4 O (r=277)) /2,62 + dgy*) and
_ 097" 8y 1 M. . ~ 0O Oy €
ab ab 27 ab ac be
= = 1-—— h A —~ 0 )7
=g" P Oy r2(( T)q +7r7hy +q 6yc+q ayc"' 1(7,2-1-0)
€
ap = qab + y a/\ (Qab) + 02( 2+Qg)
Then we find
_ 1 M 3:& Gocl Yy €
cb __ bd ~cbod
qacd ) ((1 — )+ qachl + Gacq” By + qacq PG + Gy 05 (qac) + O1(—5 r2+o ))
1 — M r ~ Te¢ ~ ~c a ~ /\ ay ~c
/ (I2 + 7‘2Qach1b + Qacq 8/\(1 + Gac bda +4q bydaAd (Qac) + Ol( r2to ))
Therefore
— —c 1_MT2 ~ Ta AAcay ~a 1 ~ Tec ~ Tda €
det[q,.g] = (Tiél/) (1+ 2 QubhS+ 2Gacq a5 + 75" 0ga (quv) — 2T2qach1b7"2%dh‘f + O1(m)),
and

M 3M? 1, ~ 1. 0y* 1
r= T+*+f—|—7“(—fr2qabhab cd %Y

~ab ¢ ~ [P Te ~ Tda €
R i 1 el s — 4 bydayd(qab))+r(§rzqachlbrqudhgl +01(5, )). (6.18)
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From the expression of 7 (6.18), it is clear that

and 957 = O(—). (6.19)

M
I =1-—+0( 1+c,) e

As for 07, we need more delicate analysis. First given that %054 (guy) = 2f§c and using (6.15) we get
1o . A P . ~ 1 od | Te .
— S0l 00 — (30 ()00 (@ur) = —5 (00O + T D)

2
= =00 (Vi) = =5 (a4 T Fhi") +0( 7).

2
In order to handle the term 0 (TQqAabﬁ‘fb), we need the following lemma
Lemma 6.7. We have

Opr (2Guph?®) = 0 (#hhY) + O (12 Guchr2Goahd®) + O(—— (6.20)

2+o’ )

Proof. As we can see in the proof of Lemma 2.12, we have

. .M M
hlﬂ _ _mauh}wmuﬂ + e (75(1,“ + h}l,#)mHV(76UB, + hlllﬁ,) BB + 01( 2+U)

Then we repeat the calculation in the proof of Lemma 2.12 and obtain
2M 4M 4M
trht = m*Phl, = —(1+ T)maﬁhfﬁ + 5t hoo + MapmuhPhY + 0(—

2M ps 4M M, oM o
_(1+7)(—h1LL+T2‘Iabh b) 7,2 hLL+ hLL+T qach1 r dehl +

1 2M M
hip=—hiLr— _(hlLL)Q - hLL+ O1( 2+U)

2+cr )

1
~(hip1)*+ O (

2 2+U)’

where we used the notations hlUV = nl ﬂUO‘Vﬂ and higy = h{ U V. In view of the facts that hUV =
—hipy + O1(r~t79) if U, = maﬂUﬂ and V, = ma,@Vﬂ and hig=y+ = higy + O1(r~'77), we conclude that
s tap , 2M b 2~ Sda 3
thh' = trh' + hip = —r*Guph{® + Tzt 72 Guch 1 Goahi® + Ol(m)-
Applying L proves the lemma. O
Therefore by (2.18) we conclude that

M oAU R R 29, ¥,he c

opT=—-14 — — — Z (0] .

Lt L R 2 p TG

6.3. The Jacobian. We now give the Jacobian of the mapping from the coordinates 7? to the Bondi-Sachs

coordinates yP. According to Propositions 3.2, 3.7, 6.5, 6.6, and identities (6.19), (6.21)

(6.21)

€ ﬁ}’“ 5 €
O = (O(=5), 1+ 5=+ 0(=), 0(=), 0(=)),
_ 1 M € 1. €
Op7 = (5 - 5. +O0l=), 307, 0(=), O(=)) .
_ € 1~ NS~ € IS
Do — (O(mo)’ S TR 4O, 140 1+O_) O(THU)),
—4 _ € v*3 7e3 € £
07 = (O(z) 500+ 5 v B+ O(55), O(5), 1+ 0(7))
where R
_ M rOp(hy"U7) R YT g2y Y, Rob €
8;*7“-—14—7—1— 4 9 D) +O(T1+‘7)
Then we have
g _ e M i () RV Y Vahs? e )
710y Oy ==2(14+0(=75) ) 0u0r + (1= . - S +0( 1+0)) 62
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7. THE BoNDI MASS
7.1. The Bondi-Sachs metric. Now we can establish the following expression for the Bondi-Sachs metric

Proposition 7.1. We have

o M rop- (ﬁi’*”*) ?ﬁl’*”* T2YA70YA7d?Lid € € _
dpcrqz—(l——— - %) Jau? = 2(14+0( ) ) dud
Ipg®Y Y r 4 . T TOG))d Oz ) dudr (7.1)
M
((1 + 7)qab -Tr qachl qddb —+ O( 1+U>) (dya _ Uad’u,) (dyb _ Ubdu),
where U* = —%Wchi“ +O(=+=)-
Proof. Taking matrix inversion to (6.23) yields (7.1). O

Remark 7.2. The existence of a compactification with smooth future null infinity .# T, i.e., the conformally
rescaled metric can extend smoothly across .# 7, is a delicate issue as it is sensitive to the choice of conformal
factor and the smooth structure near .+ [39]. The Bondi-Sachs coordinates constructed above allows us to
obtain C'° regularity of .#+ where 0 < § < 1, which is consistent with the result in [18]. More specifically, we
let coordinates (u,p =71, 7% 7*) be a smooth coordinate system near .#+ and choose p? as the conformal
factor. Then we find that

P°9(0u, 0u) € C*°, p%9(84,05x) € C*° and p°G(Du, Bp), p°G(Dye,0p) € CH°
which implies p?g € C*® and thus #* is of the class C%. We also note that the work by Christodoulou

stron, suggests that the conformally compactification is generically at most of class Y with o < 1.
12 gly sugg h h fi 1y pactification is g ically fcl Ch with 1

Then by Proposition 7.1 we see that in the Bondi-Sachs coordinates 7% = (u,7,7°,%?), the metric takes

the following Bondi-Sachs form
Gp AP dy? = VTP du® — 2¢% dudr + P hay(dg® — Udu)(dy’ — UPdu),
where
?2(9 . /f;v*v* —Ev*v* =30 & Ecd 1 1

V=7 —-M — Li 1 )_ T41 4T Wcjd ! +O(?7)7 and  hap=qup— T qach’l o +O(2 1+g) (7.2)
Here we used the fact that r =7 — M /2 + O(7?) which is implied by the definition of 7 (6.18).

The mass aspect M4 and news tensor N, are defined as follows

Ma(u,y%) === lim (V(u,7,7%) —7),
T— 00

1 . N =
Nop(u, 7)== §8ucab(uvyc) where  Cop(u,¥°) := lm T(hap(u, 7, 7°) — o (T°))-

T—00

The Bondi mass Mp and radiated energy Ep are defined by
1 — 1 _
Ma(w) = o [ Maug")dS@*) and Ea(w =, [ INPdS@),
™ Js2 47 2

where dS(7%)=+/q(7%)dg>dy* is the volume form of the unit sphere metric g,, and [N>=7°¢"*NapNeq.
7.2. Bondi mass loss law. We will prove the existence of Mp(u) and Ep(u) and the Bondi mass loss law.

Theorem 7.3. Let M4, Ny, Mp, Ep be defined as above, then the Bondi mass is given by

1
Mo = - [ Matugyin =21 = o [ [t dndS(ae) (73)
and the radiated energy is equal to
1 =\ JQ (750

Bo(w) = 5= [ nl-u5) dSG). (7.4)
where n(q¢;y*)= qacqde“bVCd/2 with Vb= Og Hlb defined in (2.13).They satisfy the Bondi mass loss law

d
@MB(U) = —E(u). (7.5)

Moreover, Mp(u)— M as u——o0 where M is the ADM mass and Mp(u)—0 as u — oo.
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Proof. By Remark 2.6 we write with ¢* = —u* =r* —t

Sabge s ff@b(*@“) L

hlb(vu —q ,/y\a) + O(T*ngg)’

B g 2 v—|—77 Y HUY (q%,9%)  2M 1

w05 = 2 (Y gy + T T B e po ),
-

where x¢(s)=1 when s>2, x°(s)=0 when s <1. Plugging these expressions for ﬁf*”*and ﬁ‘fb into (7.2) gives

o~ o~

1 00 ; Cd a E[Cdi 1
V:?—M+§/n(n,§“)dn+%+0( ) and By = g, — 2 = e +0(55)-
o

Therefore we conclude

1 . o —a o G o Ac o —a °ca
My(u,7*) = M — - lim (/ n(n, g —y*) dn+ Y.V aH (@ — u, 5" — ))

T—00 G—u

1 . o e o o 1 o . §C§ﬁcd _u,fa
:M—*hm(/an(n,y — ) dn+ V. VaH (i —u,y —y)):M—*/n(n,y)dn— " (—u ")

T—00 —u 2 —u 2

where we used the fact that §C§dHCd = %C%dﬁ“l + O(T~7). Then the Bondi mass Mpg(u) is given by

Mp(u) = jﬂ MA(uy)dq_M—m/SQ/ n(n,5%) dndS(7), (7.6)

where we used the fact that the integral of the spherical divergence WchH ed gver the sphere is 0. Since
Can(u,7%) = = lim G Bl = .5 = §*)a, = ~TueH*(~u, 7"V,
with Veb(g*, 7%) = Bq*ﬁ“b(q*,gja) defined in (2.13) we obtain
Naa,7%) = 5800V (~15°).

Therefore with (2.13) the radiated energy flux is equal to

1 Q(a 1 —ac—| Q(—a
Botw) = o= [ INFdS") = o [ e NuaNun dS(0)

1 1 (7.7)
- - = f}ab‘/}cd ) d§ A\ — 7/ L, A d? 7).
167 s, JacTsa (—u,5)dS(F*) = Szn( u, y*) dS(y*)
By (7.6) and (7.7) we establish the mass loss formula
d
@MB(’U,) = —EB(U). (78)
Moreover, since n(n,g®) is integrable in 7, we see that Mp(u) — M as u — —oo. By Proposition 2.7 we
know that [* Ep(u)du = M and thus Mp(u) — 0 as u — oo. O
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