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Abstract. In this work we give a complete picture of how to in a direct simple way define the mass
at null infinity in harmonic coordinates in three different ways that we show satisfy the Bondi mass loss
law. The first and second way involve only the limit of metric (Trautman mass) respectively the null second
fundamental forms along asymptotically characteristic surfaces (asymptotic Hawking mass) that only depend
on the ADM mass. The last involves construction of special characteristic coordinates at null infinity (Bondi
mass). The results here rely on asymptotics of the metric derived in [27].

1. Introduction

The first definition of mass at null infinity was given by Trautman [36]. In Trautman’s definition, the
mass is defined as the integral of the so called superpotential which is expressed in terms of the metric and
its first order derivatives over the spheres receding to null infinity, see §1.4 for precise definition. We refer
the readers to [37, 38, 3, 16] and [5, §3.1] and references therein for more details.

In 1960, Bondi [6] introduced a new approach which was based on the outgoing null rays to study the
gravitational waves. Later, Bondi, Metzner and van der Burg [7] considered the axisymmetric spacetimes.
Soon after, Sachs [33] generalized the formalism to non axisymmetric spacetimes. In the Bondi-Sachs for-
malism, the coordinates which are called Bondi-Sachs coordinates, are adapted to the null geodesics of the
space time. With respect to such a coordinate system, only 6 metric quantities are needed to describe the
spacetime, and the Bondi mass and radiated energy at null infinity are defined in terms of certain lower order
terms of these metric components. Hintz-Vasy [18] showed the existence of the Bondi-Sachs coordinates for
a specific class of initial data and identified the Bondi mass in a generalized wave coordinates.

Christodoulou [11] introduced an alternative approach to defining the mass at null infinity without the
need to use the Bondi-Sachs coordinates. The definition was given as the limit of the Hawking mass of a
family of spheres that converge to a round metric sphere along the outgoing null hypersurfaces towards null
infinity. Christodoulou proved that the limit of the Hawking mass exists and satisfies a mass loss law for the
initial data used in [14] by analyzing the null structure Einstein equations. Later on, the limit of Hawking
mass of suitable spheres was analyzed in the settings of the work [4, 24].

These three masses are defined completely differently and each has been analyzed in several settings.
As summarized in [5], in the setting where the Bondi-Sachs formalism can be carried out, the limit of the
Hawking mass along suitable family of spheres recovers the Trautman mass and Bondi mass. However, the
notion of the mass and radiated energy at null infinity in harmonic coordinates remains to be clarified. In
this work we give a complete picture of how to define the mass at null infinity in harmonic coordinates in
the different ways that we show satisfy the Bondi mass loss law and therefore coincide.

1.1. Einstein vacuum equations in harmonic coordinates. Einstein’s equations in harmonic are a
system of nonlinear wave equations

�̃g gμν = Fμν(g)(∂g, ∂g), where �̃g =
∑

gαβ∂α∂β , (1.1)

for a Lorentzian metric gαβ , that in addition satisfy the preserved wave coordinate condition

∂α
(√

|g|gαβ
)
= 0, where |g| = | det

(
g
)
|. (1.2)

1

http://arxiv.org/abs/2107.01487v2


2 LILI HE AND HANS LINDBLAD

Choquet-Bruhat [9] proved local existence in these coordinates. Christodoulou-Klainerman [14] proved global
existence for Einstein’s vacuum equations Rμν = 0 for small asymptotically flat initial data:

gij
∣∣
t=0

= (1 +Mr−1) δij + o(r−1−γ), ∂tgij
∣∣
t=0

= o(r−2−γ), r = |x|, 0 < γ < 1, (1.3)

where M > 0 by the positive mass theorem [35, 40]. The proof avoids using coordinates since it was
believed the metric in harmonic coordinates would blow up for large times. John [19, 20] had noticed that
solutions to some nonlinear wave equations blow up for small data, whereas Klainerman [22, 23], see also
Christodoulou [10], came up with the “null condition”, that guaranteed global existence for small data.
However Einstein’s equations do not satisfy the null condition. The null condition provide a cancellation
of the nonlinear terms so that solutions decay like solutions of linear equations. Hörmander introduced a
simplified asymptotic system, by neglecting angular derivatives which we expect decay faster due to the
rotational invariance, to study blowup. Lindblad [26] showed that the asymptotic system corresponding to
the quasilinear part of Einstein’s equations does not blow up and gave an example of a nonlinear equation
of this form that have global solutions that do not decay as much. Lindblad-Rodnianski [28] introduced the
weak null condition requiring that the corresponding asymptotic system have global solutions and showed
that Einstein’s equations in wave coordinates satisfy the weak null condition which was used in [29, 30]
to prove global existence. Starting from the L2 estimates in [29, 30], Lindblad [27] derived more detailed
asymptotics that we will rely on. We expect the result of this manuscript to be true in the presence of matter
since these asymptotics can also be derived by directly using a change of coordinates which is equivalent to
generalized wave coordinates as in Kauffmann-Lindblad [21] and [8, 17].

1.2. The characteristic surfaces. In order to unravel the effect of the quasilinear terms in (1.1) one can
change to characteristic coordinates as in [14], but this loses regularity and is not explicit. Instead Lindblad
[27] used the asymptotics of the metric to determine the characteristic surfaces asymptotically and used this
to construct coordinates. Due to the wave coordinate condition (1.2) the outgoing light cones of a solution
with asymptotically flat data (1.3) approach those of the Schwarzschild metric with the same mass M . In
[27] it was shown that there is a solution to the eikonal equation that approaches the one for Schwarzschild

gαβ∂αu ∂βu = 0, u → u∗= t− r∗, when r > t/2 → ∞, where r∗= r +M ln r +O(M/r). (1.4)

1.3. The asymptotics of the metric. In [27] the precise asymptotics of the metric was given. Asymptot-
ically the metric is Minkowski metric mμν plus

hμν(t, rω) ∼ Hμν(r̃− t, ω)/(t+ r) +Kμν

(
t+r̃

|r̃−t|+1 , ω
)
/(t+ r), r̃= r +M ln r, ω=x/|x|.

Here H is concentrated close to the outgoing light cones q̃ = r̃− t constant, |H(q̃, ω)| ≤ ε(1+ |q̃|)−γ′

where
γ′ = γ − Cε for some constant C and small constant ε, and K is homogeneous of degree 0 with a log
singularity at the light cone |K(s, ω)| ≤ ε ln |s| for the nontangential components. H is the radiation field
of the free curved wave operator, the left of (1.1), and K is the backscattering of the wave operator with a
source term Fμν ∼ PS(∂μh, ∂νh) in the right of (1.1), where PS is the norm of the components tangential to
the spheres. In the wave zone

Kμν

(
t+r̃

|r̃−t|+1 , ω
)
∼ Lμ(ω)Lν(ω)

∫ ∞

r̃−t

1

2
ln

( t+ r̃ + q̃

t− r̃ + q̃

)
n
(
q̃, ω

)
dq̃, when |t− r̃| << t+ r̃,

where Lμ=mμνL
ν, in a null frame L=(1, ω), L=(1,−ω) and orthonormal S1, S2∈T (S2), we have

n(q̃, ω) = −PS
(
∂q̃H, ∂q̃H

)
(q̃, ω), where PS(D,E) = −DAB EAB/ 2, A,B ∈ {S1, S2}. (1.5)

Remark. In this manuscript •̃, •̂, • refer to the quantities expressed in the coordinates (t̃ = t, r̃ω) where
r̃ = r +M ln r, modified asymptotically Schwarzschild null coordinates ŷp as defined in 2.1 and the Bondi-
Sachs coordinates respectively, unless otherwise specified.

1.4. The Trautman mass and radiated energy. We will use the surface ũ = t̃ − r̃ constant instead of
the null cones to define the Trautman mass and radiated energy at null infinity in terms of the asymptotics
of the metric components in wave coordinates.
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We let ∂μ = Aν
μ∂̃ν and g̃μν = Aμ

αA
ν
βg

αβ, where Aν
μ = ∂x̃ν/∂xμ and x̃ = r̃ω where r̃= r+M ln r. Let

Sũ,r̃ ={(t̃, x̃); t̃= ũ+r̃} be a sphere, following [36, 37, 38, 5] we define the Trautman four-momentum as

Mα
T (ũ) = lim

r→∞

1

4π

∫
Sũ,r̃

Ũ
αβγ dSβγ .

Here dSβγ=n[βkγ]r̃
2dS(ω) with nγ=(dr̃)γ=(0, ωi), kβ=(dt̃)β=(1, 0, 0, 0), and the superpotential Ũαβγ is

Ũ
αβγ =

√
|g̃|g̃αμŨβγ

μ where Ũ
βγ
μ =

√
|g̃|g̃αμg̃σ[ρδγμg̃

β]τ ∂̃τ g̃ρσ.

Here the square brackets denote the antisymmetric part of a tensor, i.e., T [a1···al] =
∑

σ(−1)σT aσ(1)···aσ(l)

where the sum is taken over all permutations σ of 1, . . . , l and (−1)σ is 1 for even permutations and −1 for
odd permutations. A direct computation implies

Ũ
αβγ = −λ̃αβμ, where λ̃αβμ = ∂̃ν

(
|g̃|(g̃αβ g̃μν − g̃αμg̃βν)

)
.

Therefore with Lα = (−1, ωi) and Lα = (−1,−ωi) we can write

Mα
T (ũ)=

1

4π

∫
S2

mα
T (ũ, ω)dS(ω), where mα

T (ũ, ω) = lim
r̃→∞

(r̃)2
(
λ̃αβγLγLβ

)
(ũ− r̃, r̃ω).

The Trautman radiated four-momentum1 is defined as

Eα
T (ũ) = lim

r̃→∞

1

2π

∫
Sũ,r

|g̃|π̃αβ dSβ .

Here dSβ = nβ r̃
2dS(ω) with nβ = (0, ωi) and π̃αβ is Landau-Lifshitz pseudotensor [25, §101],

π̃αβ = −2G̃αβ +
1

|g̃|
∂̃μλ̃

αβμ where G̃αβ = R̃αβ −
1

2
g̃αβR̃.,

which is a symmetric. We write

Eα
T (ũ) =

1

2π

∫
S2

Δmα
T (ũ, ω) dω where Δmα

T (ũ, ω) = lim
r̃→∞

r̃2|g̃|π̃αi x̃i

r̃
.

Remark. Many known gravitational pseudotensors can be derived from the above superpotentials, including
the mixed Einstein pseudotensor of energy and momentum and the symmetric Landau-Lifshitz pseudotensor.
We refer the readers to [3, 16, 37] for a more detailed discussion of different pseusotensors and their relations.

We will refer to M0
T (ũ) as the Trautman mass and to E0

T (ũ) as the radiated energy at null infinity. Using
the asymptotics in [27] we prove in subsection 4.4

Theorem 1.1. The Trautman four-momentum Mα
T (ũ) and Trautman radiated four momentum Eα

T (ũ) are
well defined and satisfy the mass loss law

Mα
T (ũ2)−Mα

T (ũ1) = −

∫ ũ2

ũ1

Eα
T (ũ) dũ.

Moreover the radiated energy E0
T at null infinity can be expressed in terms of n in (1.5) as

E0
T (ũ)=

∫
S2

n(−ũ, ω)dS(ω)/8π,

and the Trautman mass M0
T (ũ) → M , the ADM mass, as ũ → −∞ and M0

T (ũ) → 0 as ũ → ∞.

1For the original definition of the radiated four-momentum [36, 37, 38], Trautman uses the mixed Einstein pseudotensor of
energy and momentum. In [16] it is noted that the symmetric Landau-Lifshitz pseudotensor has the same total energy and
momentum as the mixed Einstein pseudotensor.
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1.5. The asymptotic Hawking mass and radiated energy. We will use the asymptotically null surfaces
u∗ = t− r∗ constant where r∗ = r+M ln r+O(M/r) instead of null cones to define the asymptotic Hawking
mass and the radiated energy at null infinity.

Following [11, 13] define the radius of a surface S by r(S)=
√
Area(S)/4π. Let L̂ and L̂ be the outgoing

respectively incoming null normals to S satisfying g(L̂, L̂)=−2. L̂ and L̂ are unique up to the transformation

L̂→aL̂ and L̂→ a−1L̂. The null second fundamental form and the conjugate null second fundamental form

are defined by χ(X,Y )= g(∇X L̂, Y ) respectively χ(X,Y )= g(∇XL̂, Y ), for any vectors X,Y tangent to S at
a point, where ∇X is covariant differentiation. The Hawking mass

MH(S)= r(S)
(
1+

∫
S

trχ trχdS/16π
)
,

is invariant under the transformation since χ→ aχ and χ→ χ/a. If trχ trχ < 0 we can fix L̂ and L̂ by
trχ+ trχ=0. Let χ̂ and χ̂ be the traceless parts. The incoming and outgoing energy fluxes are

E(S)=

∫
S

χ̂2dS/16π, and E(S)=

∫
S

χ̂2dS/16π.

We use the family of spheres Su∗,r = {(t, x); t= u∗ + r∗(r), |x|= r} to define the asymptotic Hawking mass
and the radiated energy at null infinity as follows

MAH(u∗) = lim
r→∞

MH(Su∗,r) and EAH(u∗) = lim
r→∞

E(Su∗,r),

with r(S)2/g converging to a round metric where /g is the restriction of g on the spheres Su∗,r.

Remark 1.2. As pointed out in [34], it is absolutely essential in the limit process that the spheres Su∗,rconverge
to a round metric sphere. Otherwise the limit of the Hawking mass has nothing to do with the Bondi mass,
in general. This is somehow related to the undesirable fact that the Hawking mass of any spherical surface
in Euclidean space is negative unless it is a metric sphere where it is zero.

With the asymptotics results in [27] we prove in subsection 5.4:

Theorem 1.3. The asymptotic Hawking mass MAH(u∗) and the radiated energy EAH(u∗) are well defined
and in fact with n in (1.5)

MAH(u∗) = M −
1

8π

∫ ∞

−u∗

∫
S2

n(η, ω) dS(ω)dη, and EAH(u∗) =
1

8π

∫
S2

n(−u∗, ω)dS(ω).

Therefore, they satisfy the mass loss law

d

du∗
MAH(u∗) = −EAH(u∗).

Moreover, MAH(u∗) → M , the ADM mass, as u∗ → −∞ and MAH(u∗) =→ 0 as u∗ → ∞.

1.6. The Bondi-Sachs coordinates. The definition of Bondi mass introduced in 1962 in [7, 33] requires
the existence of the so called Bondi-Sachs coordinates. In this manuscript we will construct the Bondi-Sachs
coordinates yp = (u, r, y3, y4) under which we denote the solution to (1.1) by g. The Bondi-Sachs coordinates
yp = (u, r, y3, y4) are based on a family of outgoing null hypersurfaces y1 = u = const. The two angular
coordinates ya, (a, b, c, ... = 3, 4), are constant along the null rays, i.e. gαβ∂βu∂αy

a= 0. The coordinate
y2 = r, which varies along the null rays, is chosen to be an areal coordinate such that det[gab] = r4q, where
q(ya) is the determinant of the unit sphere metric qab associated with the angular coordinates ya. In these
coordinates, the metric takes the Bondi-Sachs form (see Proposition 7.1)

gpqdy
pdyq = −

V

r
e2βdu2 − 2e2βdudr + r2hab

(
dya − Uadu

)(
dyb − U bdu

)
.

1.7. The Bondi mass and radiated energy. Once we write the metric in the Bondi-Sachs form as above,
following [31] we define the mass aspect MA and news tensor Nab as follows

MA(u, y
a) := − lim

r→∞

(
V (u, r, ya)− r

)
,

Nab(u, y
c) :=

1

2
∂uCab(u, y

c) where Cab(u, y
c) := lim

r→∞
r(hab(u, r, y

c)− qab(y
c)).
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The Bondi mass MB
2 radiated energy EB are defined by

MB(u) =
1

4π

∫
S2

MA(u, y
a)dS(ya) and EB(u) =

1

4π

∫
S2

|N |2 dS(ya).

where dS(ya) =
√
q(ya)dy3dy4 is the volume form associated to the unit sphere metric qab and |N |2 =

qacqbdNabNcd. We will prove the existence of MB(u) and EB(u) and the Bondi mass loss law in subsection
7.2

Theorem 1.4. Let MA, Nab,MB, E be defined as above, then we have

MB(u) = M −
1

8π

∫
S2

∫ ∞

−u

n(η, ya) dηdS(ya).

The radiated energy is expressed as

EB(u) =
1

8π

∫
S2

n(−u, ya) dS(ya).

They satisfy the Bondi mass loss law
d

du
MB(u) = −EB(u).

Moreover, MB(u)→M as u→−∞ where M is the ADM mass and MB(u)→0 as u → ∞.

Remark 1.5. According to Theorem 1.1, 1.3 and 1.4, we see that the masses and radiated energies at null
infinity defined in the above three ways are equivalent. We also note that these three different ways rely on
the same collections of the asymptotics in [27]. In [27] it was shown that

∫∞
−∞

∫
S2
n(η, ω) dS(ω)dη/8π = M ,

and we can conclude that the total radiated energy is equal to the ADM mass. In particular, this implies
that if n = 0 then M = 0, and then by the positive mass theorem [35, 40] the spacetime is Minkowski space.

Acknowledgments. We would like to thank Igor Rodnianski for many important discussions and initial
collaboration. We would also like to thank Mihalis Dafermos and Volker Schlue for useful discussions. H. L.
was supported in part by Simons Foundation Collaboration Grant 638955.

2. The metric in modified asymptotically Schwarzschild null coordinates

In this section we introduce the modified asymptotically Schwarzschild null coordinates and review some
results concerning the asymptotics of the metric established in [27].

2.1. Modified asymptotically Schwarzschild null coordinates. Suppose gαβ = mαβ + h0
αβ + h1

αβ

where h0
αβ = M

r δαβχ(
r

1+t ) and χ(s) = 1 when s ≥ 1/2 and 0 when s ≤ 1/4. Then the inverse metric

gαβ = mαβ + hαβ
0 + hαβ

1 where hαβ
0 = −M

r δαβχ( r
1+t ) and hαβ

1 = −mαμh1
μνm

νβ +O(h2).

We introduce the modified asymptotically Schwarzschild null coordinates ŷp = (v∗ = t + r∗, u∗ = t −
r∗, ŷ3, ŷ4). Here we let r = |x|, ω = x

r ∈ S2 and ŷa = (ŷ3, ŷ4) be local coordinates on S2 and define
r∗ = r +M ln r +O(M/r) which is slightly different from r̃ = r +M ln r by solving

dr∗

dr
= ρ′(r) =

(1 +M/r

1−M/r

)1/2

= 1 +
M

r
+O(M2/r2).

In what follows indices ŷp, ŷq, . . . will stand for all the modified asymptotically Schwarzschild null coordinates
whereas ŷa, ŷb, . . . stand for the coordinates on the sphere only. We will now calculate the changes of variables

2The Bondi energy-momentum vector for the outgoing null hypersurfaces u = const is defined as [7, 33, 15, 1] the average

of the Bondi mass aspect MA over the unit round sphere weighted by a vector Nα = (1, N i) where N i(1 ≤ i ≤ 3) are the l = 1
spherical harmonics. That is, N i = (sin θ cosϕ, sin θ sinϕ, cos θ) in the natural spherical coordinates (θ, ϕ) for a unit round
sphere. More specifically, the Bondi energy-momentum vector is defined by

Mα

B(u) =
1

4π

∫
S2

MA(u, ya)NαdS(ya).

The time component M0

B
is referred as the Bondi energy in [2, 34, 1] and the Bondi mass in [7, 33, 15] respectively. In this

manuscript we adopt the latter definition.
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∂ŷp = Âμ
p∂μ and ∂μ = Âp

μ∂ŷp . We define L∗= L∗
μ
∂μ = ∂t + ∂r∗ , L

∗= L∗
μ
∂μ = ∂t−∂r∗ , L

∗
μ = −∂μu

∗ and

L∗μ= −∂μv
∗, then we have

∂v∗ =
1

2
L∗ =

1

2
(∂t + (ωi/ρ′)∂i), ∂u∗ =

1

2
L∗ =

1

2
(∂t − (ωi/ρ′)∂i), ∂ŷa = Âμ

a∂μ,

where ω = x/r, x = rω, and

∂μ = −
1

2
L∗μ∂L∗ −

1

2
L∗μ∂L∗ + X̂a

μ∂x̂a = −L∗μ∂u∗ − L∗μ∂v∗ + Âa
μ∂ŷa .

Here we have Âμ
aÂ

b
μ = δba and Âμ

a = O(r), Âa
μ = O(1/r).

Under the coordinates (v∗, u∗, ŷ3, ŷ4), we denote the corresponding metric by ĝ. The inverse of the metric

then satisfies ĝpq = gαβÂp
αÂ

q
β . We have in the region r > t/2

ĝv
∗v∗

= ĥv∗v∗

1 , ĝv
∗u∗

= −2(1+
M

r
) + ĥv∗u∗

1 , ĝv
∗a= ĥv∗a

1 , ĝu
∗u∗

= ĥu∗u∗

1 , ĝu
∗a= ĥu∗a

1 , ĝab= (1−
M

r
)
1

r2
q̂ ab+ ĥab

1 .

where q̂ab is the unit sphere metric on S2 associated with the angular coordinates (ŷ3, ŷ4) and q̂ acq̂cb=δab . In
fact this follows from decomposing the leading part m+h0 into a time part, a radial part and a sphere part(

mαβ + hαβ
0

)
ξαηβ = −(1 +

M

r
)ξ0η0 + (1 −

M

r
)ωiωjξiηj + (1−

M

r
)
(
δij − ωiωj

)
ξiηj , (2.1)

and composing with the change of variables in the radial part.

2.2. Asymptotics result. Let (t̃, x̃) be the asymptotically Schwarzschild coordinates with

t̃ = t, x̃i = r̃ωi, where ωi = xi/r, r̃ = r +M ln r, r = |x|.

We write h̃0
αβ+h̃1

αβ = h0
αβ+h1

αβ where h̃0
αβ = χ( r̃

1+t )
M
r̃ δαβ and q̃ = r̃−t. We now restate several propositions

from [27], which will be used frequently in this manuscript. The first proposition is the sharp decay estimates
in asymtotically Schwarzschild coordinates

Proposition 2.1 ([27, Proposition 17]). For |I|≤N− 6 with γ′= γ−Cε, q̃= r̃−t and 〈q̃〉=
√

1+ q̃2 we have

|Z̃I h̃1| �
ε2S0(t, r̃)

(1+t+r̃)(1+q̃+)1−Cε
+

ε

1+t+r̃

1

(1+| q̃|)γ′
, where S0(t, r̃) =

t

r̃
ln
(〈 t+ r̃ 〉

〈 t− r̃〉

)
�

1

ε

(〈 t+ r̃〉

〈 t− r̃〉

)ε

.

For r̃ ≥ t/2we have

|Z̃I h̃1
TU | �

ε

(1 + t+ r̃)(1 + q̃+)γ
′
, (2.2)

|∂Z̃I h̃1
LT |+ |∂Z̃IδABh̃1

AB| �
ε

(1 + t+ r̃)2−ε(1 + | q̃|)ε(1 + q̃+)γ
′
, (2.3)

|Z̃I h̃1
LT |+ |Z̃IδABh̃1

AB| �
ε

(1+ t+ r̃)1+γ′
+

ε

1+ t+ r̃

( 1+ q̃−
1+ t+ r̃

)1−ε

, (2.4)

where q̃+=max{0, q̃}, q̃−=max{0,−q̃}. Here h̃1
UV = h̃1

αβUαVβ where Uα=mαβU
βand U,V∈{L,L,A,B}, the

null frame associated to the coordinates (t, x), and Z̃I stands for a product of |I| of the vector fields

{∂x̃α , x̃i∂x̃j − x̃i∂x̃j , x̃i∂t̃ + t̃∂x̃i , S̃ = t̃∂t̃ + x̃i∂x̃i}, where x̃α = (t̃ = t, x̃i) = (t, r̃ωi). (2.5)

Here and in what follows we focus on the region {r̃ > t/2} ∩ {r∗ > t/2}.

Remark 2.2. In view of Proposition 2.1 we have the sharp decay estimates for the metric components in
modified asymptotically Schwarzschild null coordinates. For r∗ > t/2, with q∗ = −u∗, 0 < γ < 1 and
γ′ = γ − Cε we see that for |I| ≤ N − 6

|Z∗I ĥv∗v∗

| �
ε2

(1 + t+ r∗)(1 + q∗+)
1−Cε

ln
( 〈 t+ r∗ 〉

〈 t− r∗〉

)
, (2.6)

|Z∗I ĥv∗u∗

1 |+ |Z∗I(rĥv∗a
1 )| �

ε

(1 + t+ r∗)(1 + q∗+)
γ′
, (2.7)

|Z∗I ĥu∗u∗

1 |+ |Z∗I(rĥu∗a
1 )|+ |Z∗I(r2q̂abĥ

ab
1 )| �

ε

(1+ t+ r∗)1+γ′
+

ε

1+ t+ r∗

( 1+ q∗−
1+ t+ r∗

)1−ε

. (2.8)
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Here Z∗I stands for a product of |I| of the vector fields

{∂x∗α , x∗i∂x∗j − x∗i∂x∗j , x∗i∂t∗ + t∗∂x∗i , t∗∂t∗ + x∗i∂x∗i}, where x∗α = (t∗, x∗i) = (t, r∗ωi). (2.9)

The second one establishes the estimates for L derivatives

Proposition 2.3 ([27, Proposition 18]). With δ
LL
UV=1 if U=V=L and 0 otherwise and |I| ≤ N − 6 we have

1

r
|(∂t + ∂r̃)(r̃Z̃

I h̃1
UV )| �

ε(1 + q̃−)
γ−Cε

(1+ t+ r̃)2+γ−Cε
+ δ

LL
UV

ε(1 + q̃+)
−γ

(1+ t+ r̃)2
. (2.10)

Remark 2.4. Correspondingly in modified asymptotically Schwarzschild null coordinates we have

1

r
|∂L∗(r∗Z∗I ĥv∗u∗

1 )| �
ε(1 + q∗−)

γ−Cε

(1+ t+ r∗)2+γ−Cε
for |I| ≤ N − 6. (2.11)

The third one provides us with the asymtotics for the metric in asymptotically Scwarzschild coordinates

Proposition 2.5 ([27, Proposition 20, 22]). Let H1
TU (q̃, ω, r̃) = r̃h1

TU (r̃ − q̃, r̃ω),then the limit

H1∞
TU (q̃, ω) = lim

r̃→∞
H1

TU (q̃, ω, r̃),

exists and satisfies H1∞
TU =H1∞

UT , and H1∞
LT (q̃, ω) = δABH1∞

AB (q̃, ω) = 0. Moreover, for |α| + k ≤ N − 6 and
|J |+ |K| = k and r̃ > t/2 ∣∣ ∂α

ω

(
(1 + | q̃|)∂q̃

)k
H1∞

TU (q̃, ω)
∣∣ � ε(1 + q̃+)

−γ′

,∣∣∂α
ω S̃

J∂K
t H1

TU (q̃, ω, r̃)− ∂α
ω (q̃ ∂q̃)

J (−∂q̃)
KH1∞

TU (q̃, ω)
∣∣ � ε

( 1 + q̃−
1 + t+ r̃

)γ′

.

Let

n(q̃, ω) = 1
2δ

CDδC
′D′

V∞CC′(q̃, ω)V∞DD′(q̃, ω) where V∞TU (q̃, ω) = ∂q̃H
1∞
TU (q̃, ω), (2.12)

for the component h1
LL(t, r̃ω) we have when r̃ � 1

h1
LL(t, r̃ω) = 2

M

r̃
(χe(q̃)− 1) +

∫ ∞

r̃−t

2

r̃
ln

( t+ r̃ + η

t− r̃ + η

)
n
(
η, ω

)
dη +

H1
LL(q̃, ω)

r̃
+ R̃.

Here χe(s) = 1 when s ≥ 2 and χe(s) = 0 when s ≤ 1, and for |α|+ k = |I| ≤ N − 7 we see that

∣∣ ∂α
ω

(
(1 + | q̃|)∂q̃

)k
H1∞

LL (q̃, ω)
∣∣ � ε(1 + q̃+)

−γ′

, |Z̃IR̃| � ε
(1 + q̃−)

γ′

(1 + t+ r̃)1+γ′
.

Remark 2.6. In modified asymptotically Schwarzschild null coordinates, since |q∗− q̃| � M/r it follows from
Proposition 2.5 that the following limits

Ĥv∗u∗

1∞ (q∗, ŷa)= lim
r∗→∞

r∗ĥv∗u∗

1 (v∗,−q∗, ŷa), Ĥu∗u∗

1∞ (q∗, ŷa)= lim
r∗→∞

r∗ĥu∗u∗

1 (v∗,−q∗, ŷa),

Ĥu∗a
1∞ (q∗, ŷa)= lim

r∗→∞
r∗2ĥu∗a

1 (v∗,−q∗, ŷa), Ĥv∗a
1∞ (q∗, ŷa)= lim

r∗→∞
r∗2ĥv∗a

1 (v∗,−q∗, ŷa),

Ĥab
1∞(q∗, ŷa)= lim

r∗→∞
r∗3ĥab

1 (v∗,−q∗, ŷa)

exist and satisfy Ĥu∗u∗

1∞ (q∗, ŷa) = Ĥu∗a
1∞ (q∗, ŷa)= q̂abĤ

ab
1∞(q∗, ŷa) = 0. Moreover for |α|+ k ≤ N − 6 we have∣∣ ∂α

ŷa

(
(1 + | q∗)∂q∗

)k
Ĥpq

1∞(q∗, ŷa)
∣∣ � ε(1 + q∗+)

−γ′

, (p, q) 
= v∗, v∗),

and when r∗ � 1

ĥv∗u∗

1 (v∗,−q∗, ŷa)=
Ĥv∗u∗

1∞ (q∗, ŷa)

r∗
+R̂u∗v∗

, ĥv∗u∗

1 (v∗,−q∗, ŷa)=
Ĥu∗u∗

1∞ (q∗, ŷa)

r∗
+R̂u∗u∗

ĥv∗u∗

1 (v∗,−q∗, ŷa)=
Ĥu∗a

1∞ (q∗, ŷa)

r∗2
+R̂u∗a, ĥv∗a

1 (v∗,−q∗, ŷa)=
Ĥv∗a

1∞ (q∗, ŷa)

r∗2
+R̂v∗a,

ĥab
1 (v∗,−q∗, ŷa)=

Ĥab
1∞(q∗, ŷa)

r∗3
+R̂ab,
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where the remainders R̂ satisfy

|Z∗IR̂v∗u∗

|+ |Z∗IR̂u∗u∗

| �
ε(1+q∗−)

γ′

(1+t+r∗)1+γ′
, |Z∗IR̂ab| �

ε(1+q∗−)
γ′

(1+t+r∗)3+γ′
,

|Z∗IR̂v∗a|+ |Z∗IR̂u∗a| �
ε(1+q∗−)

γ′

(1+t+r∗)2+γ′
.

Let n(q∗, ŷa) = n(q∗, ω(ŷa)), then we have

n(q∗, ŷa) = 1
2 q̂abq̂a′b′ V̂

aa′

(q∗, ŷa)V̂ bb′(q∗, ŷa) with V̂ ab = ∂q∗Ĥ
ab(q∗, ŷa). (2.13)

As for the component ĥv∗v∗

1 , we have when r∗ � 1

ĥv∗v∗

1 (v∗, u∗, ŷa) = −
2M

r∗
(χe(q∗)− 1)−

∫ ∞

q∗

2

r∗
ln

( v∗ + η

u∗ + η

)
n
(
q∗, ω

)
dη +

Ĥv∗v∗

1∞ (q∗, ω)

r∗
+Rv∗v∗

.

Here for |α|+ k = |I| ≤ N − 7, Ĥv∗v∗

1∞ and the remainder Rv∗v∗

satisfy

∣∣ ∂α
ω

(
(1 + | q∗)∂q∗

)k
Ĥv∗v∗

1∞ (q∗, ω)
∣∣ � ε(1 + q∗+)

−γ′

, |Z∗IRv∗v∗

| � ε
(1 + q∗−)

γ′

(1 + t+ r∗)1+γ′
.

The last proposition gives a relation between M and n.

Proposition 2.7 ([27, Proposition 28]). We have

1

2

∫ +∞

−∞

∫
S2

n(q̃, ω)
dS(ω)

4π
dq̃= M. (2.14)

In what follows we write A = O(B) if A ≤ CB and A = Ok(B) if
∑
|I|≤k |Z̃

IA|+ |Z∗IA| ≤ CB with Z̃ and

Z∗ defined in (2.5) and (2.9) respectively for some universal constant C. We define σ=min{γ′, 1− 3ε}>0.

2.3. Wave coordinate condition in modified asymptotically Schwarzschild null coordinates. Let
N be some fixed large integer (N = 9 works). We express the wave coordinate condition in modified
asymptotically Schwarzschild null coordinates.

∂α

(
gαβ

√
|g|

)
=

(
−

1

2
L∗α∂L∗ −

1

2
L∗α∂L∗ + Âa

α∂ŷa

)(
gαβ

√
|g|

)
= 0. (2.15)

2.3.1. Contraction with L∗.

Proposition 2.8. We have

1

2
∂L∗(ĥu∗u∗

1 ) +
ĥv∗u∗

1

r
= O2(

ε

r2+σ
). (2.16)

Proof. Contracting (2.15) with L∗β we obtain

L∗β∂α
(
gαβ

√
|g|

)
= −

1

2
L∗βL

∗
α∂L∗

(
gαβ

√
|g|

)
−

1

2
L∗βL

∗
α∂L∗

(
gαβ

√
|g|

)
+ L∗βÂ

c
α∂ŷc

(
gαβ

√
|g|

)
= 0.

Here and in what follows the repeated indices c, d are summed over a, b. We first analyze the first term

−
1

2
L∗βL

∗
α∂L∗

(
gαβ

√
|g|

)
= −

1

2
∂L∗

(
L∗βL

∗
αg

αβ
√
|g|

)
+ ∂L∗(L∗α)L

∗
βg

αβ
√
|g|

= −
1

2
∂L∗(ĥu∗u∗

1 ) + ωiδiα
M

r2
1

ρ′
L∗βg

αβ
√
|g|+O2(

ε

r2+σ
) = −

1

2
∂L∗(ĥu∗u∗

1 ) +
M

r2
+O2(

ε

r2+σ
)

where we used the estimate ∂L∗(
√
|g|) = O2(εr

−1). Here and in what follows the repeated indices i, j are
summed over 1, 2, 3. We note that the error term is of order O2(εr

−2−σ) because it only depends on the
metric. For the second term, we have

−
1

2
L∗βL

∗
α∂L∗

(
gαβ

√
|g|

)
= −

1

2
∂L∗

(
L∗βL

∗
αg

αβ
√
|g|

)
+

1

2
∂L∗(L∗α)L

∗
βg

αβ
√
|g|+

1

2
∂L∗(L∗β)L

∗
αg

αβ
√
|g|

= −
M

r2
−

1

2
∂L∗(ĥv∗u∗

1 )−
M

r2
+

1

2
∂L∗(ĥv∗u∗

1 ) +
M

2r2
+

M

2r2
+O2(

ε

r2+σ
) = −

M

r2
+O2(

ε

r2+σ
).
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Before analyzing the last term, we calculate the Christoffle symbols Γ̂c
ab on sphere under the coordinates ŷa:

Γ̂c
ab = −

∂xα

∂ŷa
∂xβ

∂ŷb
∂2ŷc

∂xα∂xβ
= −Âα

a∂ŷbÂc
α.

As we have Âc
αÂ

β
c = (δji − ωiω

j)δjαδ
iβ , we see that

Âc
βΓ̂

a
cb = −Âc

βÂ
α
c ∂ŷbÂa

α = −∂ŷbÂa
β − Âa

αω
jδjβ∂ŷb(ωiδ

iα) = −∂ŷbÂa
β − Âa

αω
jδjβÂ

μ
b ∂μ(ωiδ

iα)

= −∂ŷbÂa
β − Âa

αω
jδjβÂ

μ
b

δlk − ωkω
l

r
δlμδ

kα = −∂ŷbÂa
β −

δabω
jδjβ
r

.

Finally, we compute

L∗βÂ
c
α∂ŷc

(
gαβ

√
|g|

)
= ∂ŷc

(
L∗βÂ

c
αg

αβ
√
|g|

)
− ∂ŷc(L∗β)Â

c
αg

αβ
√
|g| − ∂ŷc(Âc

α)L
∗
βg

αβ
√
|g|

= −ρ′
δij − ωiωj

r
δiαδjβg

αβ
√
|g|+ (Âd

αΓ̂
c
dc +

ωiδiαδ
c
c

r
)L∗βg

αβ
√
|g|

= −
2

r
(1 +

M

r
)(1 −

M

r
)
√

|g|+
ρ′

r
/trh1 +

2

r

L∗α − L∗α
2ρ′

L∗βg
αβ

√
|g|+O2(

ε

r2+σ
) = −

ĥv∗u∗

1

r
+O2(

ε

r2+σ
).

Gathering our estimates yield the lemma. �

2.3.2. Contraction with Âa.

Proposition 2.9. We have

1

2
∂L∗(ĥu∗a

1 ) +
1

2
∂L∗(ĥv∗a

1 ) +
2ĥv∗a

1

r
+

1

2r2
q̂ ac∂ŷc(ĥv∗u∗

1 ) + /̂∇cĥ
ac
1 = O2(

ε

r3+σ
). (2.17)

Proof. Contracting (2.15) with Âa
β yields

Âa
β∂α

(
gαβ

√
|g|

)
= −

1

2
Âa

βL
∗
α∂L∗

(
gαβ

√
|g|

)
−

1

2
Âa

βL
∗
α∂L∗

(
gαβ

√
|g|

)
+ Âa

βÂ
c
α∂ŷc

(
gαβ

√
|g|

)
= 0.

As for the first term, since we have ∂rÂ
a
α = −Âa

α/r, we see that

−
1

2
Âa

βL
∗
α∂L∗

(
gαβ

√
|g|

)
= −

1

2
∂L∗

(
Âa

βL
∗
αg

αβ
√
|g|

)
+

1

2
∂L∗(L∗α)Â

a
βg

αβ
√
|g|+

1

2
∂L∗(L∗α)Â

a
βg

αβ
√
|g|

=
1

2
∂L∗(ĥu∗a

1 ) +O2(
ε

r3+σ
).

Next we calculate the second term

−
1

2
Âa

βL
∗
α∂L∗

(
gαβ

√
|g|

)
= −

1

2
∂L∗

(
Âa

βL
∗
αg

αβ
√
|g|

)
+

1

2
∂L∗(L∗α)Â

a
βg

αβ
√
|g|+

1

2
∂L∗(L∗α)Â

a
βg

αβ
√
|g|

=
1

2
∂L∗(ĥv∗a

1 ) +
ĥv∗a
1

2r
+O2(

ε

r3+σ
).

Finally,

Âa
βÂ

c
α∂ŷc

(
gαβ

√
|g|

)
= Âa

βÂ
c
αg

αβ
0 ∂ŷc

(√
|g|

)
+ Âa

βÂ
c
α∂ŷc

(
hαβ
1

√
|g|

)
=

1

2r2
q̂ ac∂ŷc(ĥv∗u∗

1 ) + Âa
βÂ

c
α∂ŷc

(
hαβ
1

√
|g|

)
+O2(

ε

r3+σ
).

We write

Âa
βÂ

c
α∂ŷc

(
hαβ
1

√
|g|

)
= ∂ŷc

(
Âa

βÂ
c
αh

αβ
1

√
|g|

)
− Âc

α∂ŷc(Âa
β)h

αβ
1

√
|g| − Âa

β∂ŷc(Âc
α)h

αβ
1

√
|g|

= ∂ŷc(ĥac
1 ) +

(
Âc

αÂ
d
βΓ̂

a
dc +

δacω
jδjβ
r

+ Âa
βÂ

d
αΓ̂

c
dc +

δccω
jδjα
r

)
hαβ
1

√
|g|+O2(

1

r3+σ
)

= /̂∇cĥ
ac
1 +

ĥv∗a
1

2r
+

ĥv∗a
1

r
+O2(

ε

r3+σ
) = /̂∇cĥ

ac
1 +

3ĥv∗a
1

2r
+O2(

ε

r3+σ
)

where /̂∇ is the covariant derivative on sphere. Putting all together yields the conclusion. �
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2.3.3. Contraction with L∗.

Proposition 2.10. We have

1

2
∂L∗(/trh1) +

ĥv∗u∗

1

r
−

1

2
∂L∗(ĥv∗v∗

1 )−
ĥv∗v∗

1

r
− /̂∇c(ĥ

v∗c
1 )−

1

4
∂L∗(ĥac

1 r2q̂cbĥ
bd
1 r2q̂da) = O2(

ε

r2+σ
). (2.18)

In order to prove this proposition, we now need the following lemmas.

Lemma 2.11. We have

∂L∗(
√
|g|) =

M

r2
−

1

2
∂L∗(h1

L∗L∗) +
M

r
∂L∗(ĥv∗u∗

1 ) +
1

2
∂L∗(/trh1)−

1

4
∂L∗(ĥac

1 r2q̂cbĥ
bd
1 r2q̂da) +O2(

ε

r2+σ
).

Proof. We first notice that h1
UV = h1

αβU
αV β . Given the facts that 2∂α(

√
|g|) =

√
|g|gμν∂αgμν ,

√
|g| =

1 + M
r − 1

2h
1
LL+O2(εr

−2−σ) and h1
LL= h1

L∗L∗ +O3(εr
−1−σ) = −ĥv∗u∗

1 +O3(εr
−1−σ), we obtain

∂L∗(
√
|g|) =

√
|g|

(M
r2

+
1

2
gαβ∂L∗(h1

αβ)
)
=

√
|g|

(M
r2

−
1

2
∂L∗(h1

L∗L∗)−
M

2r
∂L∗(h1

L∗L∗) +
1

2
∂L∗(/trh1)

)
+

√
|g|

(
−

1

4
h1
L∗L∗∂L∗(h1

L∗L∗)−
1

4
∂L∗(ĥac

1 r2q̂cbĥ
bd
1 r2q̂da)

)
+O2(

ε

r2+σ
)

=
M

r2
−

1

2
∂L∗(h1

L∗L∗) +
M

r
∂L∗(ĥv∗u∗

1 ) +
1

2
∂L∗(/trh1)−

1

4
∂L∗(ĥac

1 r2q̂cbĥ
bd
1 r2q̂da) +O2(

ε

r2+σ
). �

Lemma 2.12. We have

∂L∗(h1
L∗L∗) + ∂L∗(ĥv∗u∗

1 ) = −ĥv∗u∗

1 ∂L∗(ĥv∗u∗

1 ) +
2M

r
∂L∗(ĥv∗u∗

1 ) +O2(
ε

r2+σ
).

Proof. Since we express gαβ = g0αβ + h1
αβ and gαβ = gαβ0 + hαβ

1 , we see that

hαβ
1 = −mαμh1

μνm
νβ +mαα′

(
M

r
δα′μ + h1

α′μ)m
μν(

M

r
δνβ′ + h1

νβ′)mβ′β +O3(
ε

r2+σ
).

Therefore

ĥv∗u∗

1 = hαβ
1 L∗αL

∗
β = −mαμh1

μνm
νβL∗αL

∗
β + Lα

′

Lβ′

mμν(
M

r
δα′μ + h1

α′μ)(
M

r
δνβ′ + h1

νβ′) +O3(
ε

r2+σ
).

We analyze the first term

−mαμh1
μνm

νβL∗αL
∗
β = −h1

μν(L
∗μ + (

1

ρ′
− ρ′)ωjδ

jμ)(L∗
ν
+ (ρ′ −

1

ρ′
)ωjδ

jν)

= −h1
L∗L∗ +

M

r
(h1

L∗L∗ + h1
L∗L∗ − 2h1

L∗L∗) +O3(
ε

r2+σ
).

Now we turn to the second term. Using the null frame (L = ∂t + ∂r, L= ∂t − ∂r, A,B), we rewrite Lα
′

δα′μ,

Lβ′

δνβ′ , Lα
′

h1
α′μ, L

β′

h1
νβ′ as follows

Lα
′

h1
α′μ = −

1

2
Lμh

1
LL−

1

2
Lμh

1
LL+Aμh

1
AL, Lα

′

δα′μ = −
1

2
LμδLL= −Lμ,

Lβ′

h1
νβ′ = −

1

2
Lνh

1
LL −

1

2
Lνh

1
LL +Aνh

1
AL, Lβ′

δνβ′ = −
1

2
LνδLL = −Lν .

We see that

Lα
′

Lβ′

mμν(
M

r
δα′μ + h1

α′μ)(
M

r
δνβ′ + h1

νβ′) = −
1

2
h1
LLh

1
LL−

M

r
h1
LL −

M

r
h1
LL−

2M

r2
+O3(

ε

r2+σ
).

Thus we find

ĥv∗u∗

1 + h1
L∗L∗ = −

1

2
h1
LLh

1
LL−

2M

r
h1
LL−

2M

r2
+O3(

ε

r2+σ
)

and

∂L∗(ĥv∗u∗

1 +h1
L∗L∗)= −h1

LL∂L∗(h1
LL)−

2M

r
∂L∗(h1

LL)+O2(
ε

r2+σ
) = −ĥv∗u∗

1 ∂L∗(ĥv∗u∗

1 )+
2M

r
∂L∗(ĥv∗u∗

1 )+O2(
ε

r2+σ
).

�
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Proof of Proposition 2.10. Contracting with L∗β we see that

L∗β∂α

(
gαβ

√
|g|

)
= −

1

2
L∗βL

∗
α∂L∗

(
gαβ

√
|g|

)
−

1

2
L∗βL

∗
α∂L∗

(
gαβ

√
|g|

)
+ L∗βÂ

c
α∂ŷc

(
gαβ

√
|g|

)
= 0.

We first analyze the last two expressions

−
1

2
L∗βL

∗
α∂L∗

(
gαβ

√
|g|

)
= −

1

2
∂L∗

(
L∗βL

∗
αg

αβ
√
|g|

)
+ ∂L∗(L∗α)L

∗
βg

αβ
√
|g| = −

1

2
∂L∗(ĥv∗v∗

1 )−
M

r2
+O2(

ε

r2+σ
)

and

L∗βÂ
c
α∂ŷc

(
gαβ

√
|g|

)
= ∂ŷc

(
L∗βÂ

c
αg

αβ
√
|g|

)
− ∂ŷc(Âc

α)L
∗
βg

αβ
√
|g| − ∂ŷc(L∗β)Â

c
αg

αβ
√
|g|

= −∂ŷc(ĥv∗c
1 ) + (Âd

αΓ̂
c
dc +

δccω
jδjβ
r

)L∗βg
αβ

√
|g|+ ρ′

δij − ωiωj

r
δiαδjβg

αβ +O2(
ε

r2+σ
)

= − /̂∇c(ĥ
v∗c
1 ) +

ĥv∗u∗

1

r
−

ĥv∗v∗

1

r
+O2(

ε

r2+σ
).

Then it remains to compute the term − 1
2L
∗
βL
∗
α∂L∗

(
gαβ

√
|g|

)
. Now we compute

−
1

2
L∗βL

∗
α∂L∗

(
gαβ

√
|g|

)
= −

1

2
∂L∗

(
L∗βL

∗
αg

αβ
√
|g|

)
−

M

r2
+O2(

ε

r2+σ
).

Using Lemma 2.11 and Lemma 2.12, we further calculate

−
1

2
∂L∗

(
L∗βL

∗
αg

αβ
√

|g|
)
=

M

r2
−
1

2
∂L∗(ĥv∗u∗

1 )−
M

2r
∂L∗(ĥv∗u∗

1 )−
1

4
ĥv∗u∗

1 ∂L∗(ĥv∗u∗

1 )−
1

2
ĝv

∗u∗

∂L∗(
√
|g|)+O2(

ε

r2+σ
)

=
2M

r2
+

1

2
∂L∗(/trh1)−

1

4
∂L∗(ĥac

1 r2q̂cbĥ
bd
1 r2q̂da) +O2(

ε

r2+σ
).

Putting all together finishes the proof. �

3. Construction of outgoing characteristic surfaces

In [27] we show that the eikonal equation

gαβ∂αu ∂βu = 0, in r > |t|/2, (3.1)

has a unique solution with asymptotic data at infinity u ∼ u∗= t− r∗, as t → ∞.

Remark 3.1. In the construction of u coordinate, we may change the asymptotic data imposed at infinity,
i.e., we may require u ∼ u∗ + f(ŷ3, ŷ4). This leads to the transformation at future null infinity I + : u →
u+ f(y3, y4) where (y3, y4) are the angular coordinates in the Bondi-Sachs coordinate system associated to
u whose construction will be given in Subsection 6.1. So the changes of asymptotic data for u of this type
generate the supertranslations which is an infinite dimensional subgroup of the asymptotic symmetry group
at null infinity—Bondi-Metzner-Sachs group [32, 39, 31].

Proposition 3.2 ([27, Proposition 26]). The eikonal equation (3.1) has a solution u= ů+ u∗ satisfying∑
|I|≤2

|Z∗I ů| ≤ C1ε
(1 + (r∗− |t|)−

1 + t+ | q∗|

)γ′

, r > |t|/2. (3.2)

Remark 3.3. Following the proof of Proposition 26 in [27], we can prove Proposition 3.2 for |I| ≤ 3. We
commutate the vector fields X ∈ X = {S∗ = t∂t + x∗i∂x∗i, Ωij , ∂t} through the equation (3.1). Let

X̃=X−δXS∗ and L̃X =LX+2δXS∗ , where δXS∗= 1 if X= S∗, and = 0 otherwise. In fact, when |I| = 3 we

consider the equation ∂L̃X̃Ỹ Z̃ũ = −H(g, u)/2 where L̃α = gαβ∂βu and

H(g, u) = L̃X L̃Y L̃Zg(∂u, ∂u)

+ 2L̃X L̃Y g(∂Z̃u, ∂u) + 2L̃X L̃Zg(∂Ỹ u, ∂u) + 2L̃Y L̃Zg(∂X̃u, ∂u) + 2L̃Xg(∂Ỹ Z̃u, ∂u)

+ 2L̃Y g(∂X̃Z̃u, ∂u) + 2L̃Zg(∂X̃Ỹ u, ∂u) + 2L̃Xg(∂Z̃u, ∂Ỹ u) + 2L̃Y g(∂Z̃u, ∂X̃u)

+ 2L̃Zg(∂X̃u, ∂Ỹ u) + 2g(∂X̃Ỹ u, ∂Z̃u) + 2g(∂X̃Z̃u, ∂Ỹ u) + 2g(∂Ỹ Z̃u, ∂X̃u)
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We notice that only the new term L̃X L̃Y L̃Zg0(∂u, ∂u) needs additional analysis. Since we already know

that ∂X̃u∗ = 0 and L̃X L̃Y g0(∂u
∗, ∂u∗) = 0, we obtain

L̃X L̃Y L̃Zg0(∂u
∗, ∂u∗) = X

(
L̃Y L̃Zg0(∂u

∗, ∂u∗)
)
− 2L̃Y L̃Zg0(∂X̃u∗, ∂u∗) = 0.

Moreover, we have L̃∂t
g0 = L̃Ωg0 = 0 and L̃S∗g0 = κ3g0− 2(κ1− κ2)g0 where κ1 ∼ M ln r/r, κ2 ∼ κ3 ∼

M/r and g0(∂u, ∂v) = gij0 ∂/iu ∂/jv. Using g0(∂X̃
Iu∗, ∂w) = 0 for |I| ≤ 2 we obtain L̃Y g0(∂X̃

Iu∗, ∂w) =

−g0(∂Ỹ X̃Iu∗, ∂w) − g0(∂X̃
Iu∗, ∂Ỹ w) = 0 for |I| ≤ 1 and then L̃X L̃Y g0(∂u

∗, ∂w) = −L̃Y g0(∂X̃u∗, ∂w) −

L̃Y g0(∂u
∗, ∂X̃w) = 0. Hence

|L̃X L̃Y L̃Zg0(∂u
∗, ∂ů)| � |∂L∗ ů|.

Using L̃Xg0(∂v, ∂w) = X(g0(∂v, ∂w))− g0(∂X̃v, ∂w) − g0(∂v, ∂X̃w) and the expression for L̃S∗g0 we have

|L̃X L̃Y L̃Zg0(∂ů, ∂ů)| � |∂L∗ ů||∂L∗ ů|+ (|/∂ů|+ |/∂X̃ů|)(|/∂ů|+ |/∂Ỹ ů|) + |/∂ů||/∂X̃Ỹ ů|.

Finally the estimates for the remaining terms in H(g, u) and thus the bounds of Z∗I ů with |I| = 3 follow as
in Proposition 26 in [27]. Then we have

|∂L∗Z∗I ů| = O(
ε

r1+σ
), and |∂L∗Z∗I ů|+ |∂ŷaZ∗I ů| = O(

ε

rσ
), for |I| ≤ 2.

The estimate for ∂L∗Z∗I ů is not precise enough and we need to sharpen it. We first record three lemmas

in [27], which will be of use when refining the expressions for ∂L∗Z∗I ů.

Lemma 3.4 ([27, Lemma 21]). If Z = ∂t then with hαβ
1 =gαβ− gαβ0 and L̃α = gαβ∂βu we have

∂L̃Zů = − 1
2h1Z(∂u, ∂u) (3.3)

with the notation h1Z(U, V ) = hαβ
1ZUαVβ where the Lie derivative hαβ

1Z = LZh
αβ
1 is given by

hαβ
1Z∂αu ∂βw = (Zhαβ

1 )∂αu ∂βw + hαβ
1 ∂αu [Z, ∂β]w + hαβ

1 [Z, ∂α]u ∂βw. (3.4)

Lemma 3.5 ([27, Lemma 25]). We have

h1∂t
(∂u, ∂u) = ∂t(ĥ

u∗u∗

1 ) + 2∂t(ĥ
u∗u∗

1 )∂tů+ ∂t(ĥ
u∗u∗

1 )(∂tů)
2 +O(

ε

r2+σ
). (3.5)

Lemma 3.6 ([27, Lemma 24]). If Ω=xi∂j − xj∂i then with kαΩ/r= kαiωj − kαjωi we have

(LΩk)(∂u, ∂v) = (Ωk)(∂u, ∂v) + k([Ω, ∂]u, ∂v) + k(∂u, [Ω, ∂]v), (3.6)

kαβ[∂β ,Ω]u = kαΩ/r∂ru+
(
kαi∂j − kαj∂i

)
u. (3.7)

Now we are ready to refine ∂L∗Z∗I ů.

Proposition 3.7. The eikonal equation (3.1) has a solution u= ů+ u∗ satisfying

∂L∗ZI ů = ZI(ĥv∗u∗

1 ) +O(
ε

r1+σ
) for Z ∈ {∂t,Ωij} and |I| ≤ 2. (3.8)

Proof. Putting (2.16), (3.3) and (3.5) together, we obtain

∂L̃∂tů =
1

2

ĥv∗u∗

1

r
+O(

ε

r2+σ
).

It follows from Remark 2.4 that

∂L̃∂tů = −
1

2
∂L∗(ĥv∗u∗

1 ) +O(
ε

r2+σ
).

Since

L̃ = gαβ∂αu∂β = (−2 +O(
ε

rσ
))∂v∗ +O(

ε

r1+σ
)∂u∗ + O(

ε

r2+σ
)∂x̂a , (3.9)

we find

∂L̃∂tů =
1

2
∂L̃(ĥ

v∗u∗

1 ) +O(
ε

r2+σ
).

Therefore we can conclude that

∂tů =
1

2
ĥv∗u∗

1 +O(
ε

r1+σ
).
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If we commutate the vector fields Z ∈ {∂t,Ωij = xi∂j−xj∂i} through the equation ∂L̃∂tů = − 1
2h1∂t

(∂u, ∂u),

using proposition 3.2, Remark 3.3 and Lemma 3.6 and then integrating along the integral curves of L̃ yield

∂tZ
I ů =

1

2
ZI(ĥv∗u∗

1 ) +O(
ε

r1+σ
).

Then (3.8) follows from the fact that ∂L∗ = 2∂t + ∂L∗ . �

4. The Trautman mass

4.1. The asymtotically Schwarzschild coordinates. In this section we will use the asymptotically
Schwarzschild coordinates (t̃, x̃) with

t̃ = t, x̃i = r̃ωi, where ωi = xi/r, r̃ = r +M ln r, r = |x|.

Then

∂t = ∂t̃, ∂xi =
(
ωiωj(1 +

M

r
) +

r̃

r
(δij − ωiωj)

)
∂x̃j =

(
δij +

r̃ − r

r
(δij − ωiωj) +

M

r
ωiωj

)
∂x̃j .

In particular,

xi

|x|
∂xi = (1 +

M

r
)
x̃i

|x̃|
∂x̃i ,

xi

|x|
∂xk −

xk

|x|
∂xi =

r̃

r

( x̃i

|x̃|
∂x̃k −

x̃k

|x̃|
∂x̃i

)
.

Denote the corresponding metric components by g̃αβ . We see that

∂xα = Aαβ∂x̃β ,

where the matrix A has the form

Aαβ = δαβ +
M ln r

r
(δij − ωiωj)δαiδβj +

M

r
ωiωjδαiδβj,

where the sums are over i, j = 1, 2, 3 only. As a consequence, we have that

g̃αβ = AαμAβνg
μν .

Expanding the metric

gμν = mμν −Mδμν/r + hμν
1

and using that |h1| ≤ r−1 ln r we obtain

g̃αβ = mαβ −
M

r
δαβ + hαβ

1 +
2M ln r

r
(δij − ωiωj)δαiδβj +

2M

r
ωiωjδαiδβj +O(

ln2 r

r2
) +O(

ln r

r
h1)

= (1 +
M

r
)mαβ + hαβ

1 +
2M(ln r − 1)

r
(δij − ωiωj)δαiδβj +O(

ln2 r

r2
).

Lemma 4.1. Relative to the asymptotically Schwarzschild coordinates the metric components g̃αβverify

g̃αβ = (1 +
M

r
)mαβ +

2M(ln r − 1)

r
(δij − ωiωj)δαiδβj + hαβ

1 +O(
ln2 r

r2
),

in the region r > t/2. Here the sum is over i, j = 1, 2, 3 only.

Next we examine the wave coordinate expression ∂x̃α

(
g̃αβ

√
|g̃|

)
evaluated in x̃-coordinates.

Lemma 4.2. Relative to the asymptotically Schwarzschild coordinates the wave coordinate expression satisfy

∂x̃α

(
g̃αβ

√
|g̃|

)
= −2

M ln r

r2
ωjδjβ +O(

1

r2
).

Proof. We have

∂x̃α

(
g̃αβ

√
|g̃|

)
= (A−1)αμ∂xμ

(
AανAβδ|A|

−1gνδ
√
|g|

)
= (A−1)αμ∂xμ

(
AανAβδ|A|

−1
)
gνδ

√
|g|,

where we used that the wave coordinate condition is satisfied in the x coordinates. Here the expression
∂xμ

(
AανAβδ|A|

−1
)
is already at most of the order of M ln r/r2. Therefore, ignoring the terms of the order

of M2ln2 r/r3 allows us to replace the above expression by

∂xα

(
mνδAανAβδ|A|

−1
)
.
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Replacing the matrix A by its expansion

Aαβ = δαβ +
M ln r

r
(δij − ωiωj)δαiδβj +O(

1

r
), |A| = 1 + 2

M ln r

r
+

M

r
+O(

ln2 r

r2
),

and ignoring the terms of the order of M/r2 we obtain

2∂xi

(M ln r

r
(δij − ωiωj)δjβ

)
− 2mνβ∂ν

(M ln r

r

)
.

The proof follows since again up to the terms of order M/r2 we have

− 2
(Mωi ln r

r2
(δij − ωiωj)δjβ

)
− 2

M ln r

r2
2ωjδjβ + 2δjβ

Mωj ln r

r2
= −2

M ln r

r2
ωjδjβ . �

The same calculation also gives

Lemma 4.3. We have

∂x̃α

(
g̃αβ|g̃|

)
= Aβδ|A|

−2∂xν

(
gνδ|g|

)
+O(

1

r2
) =

g̃αβ√
|g|

∂x̃α

(√
|g|

)
+O(

1

r2
),

∂x̃α

(
g̃αβ

√
|g|

)
= −4

M ln r

r2
ωjδjβ +O(

1

r2
), ∂x̃α

(
g̃αβ|g̃|/

√
|g|

)
= O(

1

r2
).

4.2. The Landau-Lifshitz pseudotensor. In view of Proposition 3.2 the characteristic hypersurfaces of
the metric g become asymptotic to the null cones of the Schwarzschild metric, we recast the Einstein equations
in the form explicitly involving the asymptotically Schwarzschild coordinates (t̃ = t, x̃) as opposed to the
original Minkowski (t, x) harmonic coordinates.

Let Sũ,r̃={(t̃, x̃); t̃= ũ+r̃} be a sphere, following [36, 37, 38, 5] we define the Trautman four-momentum

Mα
T (ũ) = lim

r→∞

1

4π

∫
Sũ,r̃

Ũ
αβγ dSβγ .

Here dSβγ=n[βkγ]r̃
2dS(ω) with nγ=(dr̃)γ=(0, ωi), kβ=(dt̃)β=(1, 0, 0, 0), and the superpotential Ũαβγ is

Ũ
αβγ =

√
|g̃|g̃αμŨβγ

μ where Ũ
βγ
μ =

√
|g̃|g̃αμg̃σ[ρδγμg̃

β]τ ∂̃τ g̃ρσ.

Here the square brackets denote the antisymmetric part of a tensor, i.e., T [a1···al] =
∑

σ(−1)σT aσ(1)···aσ(l)

where the sum is taken over all permutations σ of 1, . . . , l and (−1)σ is 1 for even permutations and −1 for
odd permutations. A direct computation implies

Ũ
αβγ = −λ̃αβμ, where λ̃αβμ = ∂̃ν

(
|g̃|(g̃αβ g̃μν − g̃αμg̃βν)

)
.

Therefore we can write

Mα
T (ũ)=

1

4π

∫
S2

mα
T (ũ, ω)dS(ω),

where with Lα = (−1, ωi and Lα = (−1,−ωi)

mα
T (ũ, ω) = lim

r̃→∞
(r̃)2

(
λ̃αβγLγLβ

)
(ũ− r̃, r̃ω).

The Trautman radiated four-momentum is defined as

Eα
T (ũ) = lim

r̃→∞

1

2π

∫
Sũ,r

|g̃|π̃αβ dSβ .

Here dSβ = nβ r̃
2dS(ω) with nβ = (0, ωi) and π̃αβ is Landau-Lifshitz pseudotensor [25, §101], which is a

symmetric pseudotensor satisfying

π̃αβ = −2G̃αβ +
1

|g̃|
∂̃μλ̃

αβμ where G̃αβ = R̃αβ −
1

2
g̃αβR̃.

We write

Eα
T (ũ) =

1

2π

∫
S2

Δmα
T (ũ, ω) dS(ω) where Δmα

T (ũ, ω) = lim
r̃→∞

r̃2|g̃|π̃αi x̃i

r̃
.
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It can be shown that the Einstein-vacuum equations Rαβ(g) = 0 can be written in the form

|g̃|π̃αβ =
∂λ̃αβμ

∂x̃μ
,

where

λ̃αβμ =
∂

∂x̃ν

(
|g̃|(g̃αβ g̃μν − g̃αμg̃βν)

)
, λ̃αβμ = −λ̃αμβ ,

and π̃αβ is the Landau-Lifshitz pseudo tensor

π̃αβ = (2Γ̃γ
μνΓ̃

δ
γδ − Γ̃γ

μδΓ̃
δ
νγ − Γ̃γ

μγ Γ̃
δ
νδ)(g̃

αν g̃βμ − g̃αβ g̃μν) + g̃αγ g̃μν(Γ̃β
γδΓ̃

δ
μν + Γ̃β

μνΓ̃
δ
γδ − Γ̃β

μδΓ̃
δ
γν − Γ̃β

γνΓ̃
δ
μδ)

+ g̃βγ g̃μν(Γ̃α
γδΓ̃

δ
μν + Γ̃α

μνΓ̃
δ
γδ − Γ̃α

μδΓ̃
δ
γν − Γ̃α

γνΓ̃
δ
μδ) + g̃μγ g̃νδ(Γ̃α

μν Γ̃
β
γδ − Γ̃α

μγ Γ̃
β
νδ),

where Γ̃α
μν are the Christoffel symbols of g̃. Alternatively, with G̃αβ =

√
|g̃|g̃αβ ,

|g̃|π̃αβ=∂x̃μ G̃αβ∂x̃ν G̃μν−∂x̃μ G̃αμ∂x̃ν G̃βν+ 1
2 g̃

αβ g̃μν∂x̃δ G̃γμ∂x̃γ G̃δν−
(
g̃αγg̃μν∂x̃δ G̃βμ∂x̃γ G̃δν+g̃βγg̃μν∂x̃δ G̃αμ∂x̃γ G̃δν

)
+ g̃μν g̃

γδ∂x̃γ G̃αμ∂x̃δ G̃βν +
1

8
(2g̃αμg̃βν − g̃αβ g̃μν)(2g̃γδg̃ρσ − g̃γρg̃δσ)∂x̃μ G̃γρ∂x̃ν G̃δσ.

The tensor π̃αβ = π̃βα is symmetric and due to the anti-symmetry of λ̃αβγ is divergence free

∂x̃β

(
|g̃|π̃αβ

)
= 0.

Integrating the above identity in the region {(t̃, x̃) : q̃1 ≤ q̃ = r̃ − t̃ ≤ q̃2, |x̃| ≤ R} we obtain∫
|x̃|≤R, q̃=q̃1

|g̃|π̃αβLβ =

∫
|x̃|≤R, q̃=q̃2

|g̃|π̃αβLβ +
1

R

∫
|x̃|=R, q̃1≤ q̃≤q̃2

|g̃|π̃αix̃i. (4.1)

Using that | g̃|π̃αβ = ∂λ̃αβγ/∂x̃γ we have∫
|x̃|≤R, q̃=q̃1

|g̃|π̃αβLβ =

∫
|x̃|≤R, q̃=q̃1

∂x̃γ λ̃αβγLβ .

As usual we use the decomposition

∂x̃γ λ̃αβγ = −
1

2
Lγ∂Lλ̃

αβγ −
1

2
Lγ∂Lλ̃

αβγ +Aγ∂Aλ̃
αβγ +Bγ∂Bλ̃

αβγ .

where (L,L,A,B) is the null frame associated to the asymptotically Schwarzschild coordinates (t̃, x̃). By

anti-symmetry of λ̃αβγ

Lγ∂Lλ̃
αβγLβ = 0.

Therefore,∫
|x̃|≤R, q̃=q̃1

∂x̃γ λ̃αβγLβ = −
1

2

∫
|x̃|≤R, q̃=q̃1

∂L

(
λ̃αβγLγLβ

)
+

∫
|x̃|≤R, q̃=q̃1

AγLβ∂Aλ̃
αβγ +BγLβ∂B λ̃

αβγ .

On the surface q̃ = q̃1 we introduce coordinates (s, ω) with s = 1
2 (t+ r̃+ q̃1) so that ∂L = ∂s and the volume

form is s2dω. Then

1

2

∫
|x̃|≤R, q̃=q̃1

∂L

(
λ̃αβγLγLβ

)
=

1

2

∫ R

0

∫
S2

d

ds

(
λ̃αβγLγLβ

)
s2dsdω

=
1

2

∫
S2

(
λ̃αβγLγLβ

)
(R,ω)R2dω −

∫ R

0

∫
S2

(
λ̃αβγLγLβ

)
sdsdω. (4.2)

On the other hand, using that ∂ALβ = Ak∂x̃k x̃β/r̃ = Aβ/r̃ and that λ̃αβγ is anti symmetric,

AγLβ∂Aλ̃
αβγ = Aγ∂A

(
Lβλ̃

αβγ
)
−

1

s
AγAβ λ̃

αβγ = Aγ∂A
(
Lβλ̃

αβγ
)
. (4.3)

We now need the following lemma
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Lemma 4.4. Let A,B be orthonormal vector fields on S2, independent of r̃; ∂r̃A = ∂r̃B = 0. Then

|∂A|+ |∂B| � 1/r̃, (4.4)

and with ∂A = Ak∂x̃k = Ak∂x̃k we have

∂A(A

) = −ω
/r̃ + 〈∂AA,B〉B
, ∂A(B


) = 〈∂AB,A〉A
. (4.5)

Moreover, if F
k
is tangential to S2 then

div/ F = ∂kF
k
= ∂kF

k
= Ak∂AF k +Bk∂BF k

satisfies ∫
S2

div/ F dω = 0. (4.6)

On the other hand if F is not tangential then∫
S2

(A
∂A +B
∂B)F
 dω =
2

r̃

∫
S2

ω
F
 dω. (4.7)

Using that ωγ = 1
2 (Lγ − Lγ) and by anti-symmetry of λ̃αβγLβLγ = 0 we obtain∫

S2

AγLβ∂Aλ̃
αβγ +BγLβ∂Bλ̃

αβγ dω = −

∫
S2

1

s
LγLβλ̃

αβγ dω.

Combining this with (4.2) we finally obtain∫
|x̃|≤R, q̃=q̃1

∂x̃γ λ̃αβγLβ = −
1

2

∫
S2

(
λ̃αβγLγLβ

)
(R, q̃1, ω)R

2dω.

Substituting this into (4.1) we obtain∫
S2

(
λ̃αβγLγLβ

)
(R, q̃1, ω)R

2dω =

∫
S2

(
λ̃αβγLγLβ

)
(R, q̃2, ω)R

2dω − 2

∫
|x̃|=R, q̃1≤ q̃≤q̃2

|g̃|π̃αi x̃i

R
.

Assume for a moment that the following limits exist

mα
T (q̃, ω) = lim

R→∞
R2

(
λ̃αβγLγLβ

)
(R, q̃, ω), Δmα

T (q̃, ω) = lim
R→∞

R2|g̃|π̃αix̃i/R,

then we have the following analog of the Bondi mass loss formula

Mα
T (q̃1) = Ma

T (q̃2)−

∫ q̃2

q̃1

Eα
T (q̃)dq̃. (4.8)

In what follows we will establish existence of the above limits together with non-positivity of ΔmT .

4.3. Existence of the Trautman mass. Here we are concerned with establishing existence of the limit

mα
T (q̃, ω) = lim

r̃→∞
(r̃)2

(
λ̃αβγLγLβ

)
(r̃, q̃, ω)

and thus the Trautman mass M0
T .

Proposition 4.5. The Trautman four-momentum

Mα
T (ũ)=

1

4π

∫
S2

mα
T (ũ, ω)dS(ω)

is well defined.

Proof. We consider the quantity λ̃αβγLγLβ and show that for sufficiently large r > t/2

|λ̃αβγLγLβ | ≤ Cr−2.

Moreover, from our discussion and analysis in [27] it will be clear that the quantities defining the r−2 behavior

λ̃ all have well defined limits as r → ∞. To estimate λ̃αβγLγLβ we first note that by Lemma 4.3 we have

λ̃αβγLγLβ = LγLβ
∂

∂x̃μ

(
|g̃|(g̃αβ g̃γμ − g̃αγ g̃βμ)

)
=

|g̃|√
|g|

LγLβ

(
g̃γμ∂x̃μ(

√
|g|g̃αβ)− g̃βμ∂x̃μ(

√
|g|g̃αγ)

)
+O(

1

r2
).
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According to Lemma 4.1

g̃αβ = (1 +
M

r
)mμν +

2M(ln r − 1)

r
(δij − ωiωj)δαiδβj + hμν

1 +O(
ln2 r

r2
). (4.9)

Using that

(δij − ωiωj)δαiδβjL
β = (δij − ωiωj)δαiδβjL

β = 0

and the crude estimates |∂g|+ |∂g̃| ≤ εr−1+ε, we obtain

λ̃αβγLγLβ = (1 +
M

r
)

|g̃|√
|g|

LγLβ

(
mγμ∂x̃μ(

√
|g|g̃αβ)−mβμ∂x̃μ(

√
|g|g̃αγ)

)

+
|g̃|√
|g|

LγLβ

(
hγμ
1 ∂x̃μ(

√
|g|g̃αβ)− hβμ

1 ∂x̃μ(
√
|g|g̃αγ)

)
+O(

1

r2
).

We first analyze the expression

LγLβ

(
mγμ∂x̃μ(

√
|g|g̃αβ)−mβμ∂x̃μ(

√
|g|g̃αγ)

)
= Lβ ∂L(

√
|g|g̃αβ)− Lβ∂L(

√
|g|g̃αβ).

We write

Lβ ∂L(
√
|g|g̃αβ) = −Lβ ∂L(

√
|g|g̃αβ) + 2Cβ∂C(

√
|g|g̃αβ)− 2∂x̃β (

√
|g|g̃αβ).

Here and in what follows repeated index C is summed over C = A,B. Therefore

LγLβ

(
mγμ∂x̃μ(

√
|g|g̃αβ)−mβμ∂x̃μ(

√
|g|g̃αγ)

)
= −2Lβ ∂L(

√
|g|g̃αβ) + 2Cβ∂C(

√
|g|g̃αβ)− 2∂x̃β (

√
|g|g̃αβ).

We analyze the expression

2Cβ ∂C(
√
|g|g̃αβ) = 2(1 +

M

r
)Cβ∂C(

√
|g|mαβ) + 4

M(ln r − 1)

r
Cβ∂C(

√
|g| (δij − ωiωj)δαjδβi)

+ 2Cβ∂C(
√
|g|hαβ

1 ) +O(
1

r3−ε
)

= 2(1 +
M

r
)Cα∂C(

√
|g|) + 4

M(ln r − 1)

r

(
∂C(

√
|g|Cα)−

√
|g| (δij − ωiωj)δαjδβi∂CCβ

)
+ 2∂C(

√
|g|hαβ

1 Cβ)− 2
√
|g|hαβ

1 ∂CCβ +O(
1

r3−ε
).

Here we used that (δij−ωiωj)δαjδβi is the orthogonal projection on S
2. In particular, (δij−ωiωj)δαjδβiCβ =

Cα and by Lemma 4.4

∂A(A
k) = −ωk/r̃ + 〈∂AA,B〉Bk. (4.10)

Thus,

∂A(
√
|g|Ak)−

√
|g| (δij − ωiωj)δkjδβi∂AAβ

= Ak∂A(
√

|g|) +
√
|g|

(
∂AA

k − (δij − ωiωj)δkjδβi∂AAβ

)
= Ak∂A(

√
|g|)−

ωk

r̃
.

(4.11)

Furthermore by Proposition 2.1 we have the following estimates

|hαβ
1 Aβ | ≤

Cε

r̃
, | ∂A

√
|g|| ≤

Cε

r̃2
, | ∂A(h

αβ
1 Aβ)| ≤

Cε

r̃2
.

We remark that the last estimate above is very sensitive since its not true for each term in (∂Ah
αβ
1 )Aβ +

hαβ
1 ∂AAβ . As a result,

2
∑

C=A,B

Cβ∂C(
√
|g|g̃αβ) = −8

M ln r

rr̃
ωjδjα +

4

r̃
hαβ
1 ωjδjβ +O(

1

r2
) = −8

M ln r

r2
ωjδjα +

4

r
hαβ
1 ωjδjβ +O(

1

r2
).

Using Lemma 4.3 we further compute

−2∂x̃α

(
g̃αβ

√
|g|

)
= 8

M ln r

r2
ωjδjβ + O(

1

r2
).
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Finally, with the help of the estimate |∂L(
√
|g|)| ≤ Cε

r−2 we obtain

−2Lβ ∂L(
√
|g|g̃αβ) = −2Lβ ∂L(g̃

αβ) +O(
1

r2
)

= −2Lβ ∂L((1+
M

r
)mαβ)− 2∂L

(2M ln r

r
(δij− ωiωj)δαiδβjLβ

)
− 2 ∂L(h

αβ
1 Lβ) +O(

1

r2
)

= −2 ∂L(h
αβ
1 Lβ) +O(

1

r2
).

Gathering our estimates we obtain

LγLβ

(
mγμ∂x̃μ(

√
|g|g̃αβ)−mβμ∂x̃μ(

√
|g|g̃αγ)

)
=

4

r
hαβ
1 ωjδjβ − 2 ∂L(h

αβ
1 Lβ) +O(

1

r2
)

= −
2

r
hαβ
1 Lβ − 2 ∂L(h

αβ
1 Lβ) +O(

1

r2
),

where in the last line we used that ωjδjβ = (Lβ − Lβ)/2 and |hαβ
1 Lβ | ≤ Cεr−1. We now note that

2

r
hαβ
1 Lβ + 2 ∂L(h

αβ
1 Lβ) =

2

r
∂L(rh

αβ
1 )Lβ = O

( 1

r2
)
,

by the results in Proposition 2.3. Therefore,

LγLβ

(
mγμ∂x̃μ(

√
| g| g̃αβ)−mβμ∂x̃μ(

√
| g| g̃αγ)

)
= O(

1

r2
).

To achieve the desired result for λ̃αβγLγLβ it remains to show that the expression

LγLβ

(
hγμ
1 ∂x̃μ(

√
| g| g̃αβ)− hβμ

1 ∂x̃μ(
√
| g| g̃αγ)

)
= O(

1

r2
).

Given the fact that |(h1)LT | ≤ Cεr−1−σ , the term

hβμ
1 ∂x̃μ(

√
| g| g̃αγ)LγLβ = O(

1

r2+σ
).

It is clear that we only need to analyze the term h1
LL∂L

(√
| g| g̃αβLβ

)
. Since

|h1
LL| ≤

Cε

r
, |∂

√
| g|| ≤

Cε

r
, |∂g̃αβLβ| ≤

Cε

r
,

we see that

h1
LL∂L

(√
| g| g̃αβLβ

)
= O(

1

r2
). �

4.4. Existence of the news function ΔmT . We now establish existence of the limit

Δmα
T (q̃, ω) = 2 lim

r̃→∞
r̃2|g̃| π̃αiωi.

Proposition 4.6.

Δmα
T (q̃, ω) =

1

4
Lα lim

r̃→∞
r̃2|∂q̃ γ̂|

2(r̃, q̃, ω).

Here γ̂CD = h1
CD − 1

2δCD(h1
AA + h1

BB) is the traceless part of of the angular part of the metric g. Using
Proposition 2.5 we can identify Δmα

T with the expression.

Δmα
T (q̃, ω) =

1

4
LαδCC′

δDD′

∂q̃H
1∞
CD∂q̃H

1∞
C′D′ =

1

2
Lαn(q̃, ω).

Combining Propositions 4.5, 4.6 with the analog of the Bondi mass formula stated in (4.8) we obtain

Theorem 4.7.

Mα
T (q̃1) = Mα

T (q̃2)−
1

8π

∫ q̃2

q̃1

∫
S2

Lαn(q̃, ω) dω dq̃.

Remark 4.8. Note that since

| ∂q̃H
1∞
AB | ≤

Cε

1 + | q̃|
,

the News function is easily integrable with respect to the variable q̃.
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Proof of Proposition 4.6. Recall that

| g̃|π̃αβ = ∂x̃ν G̃αβ∂x̃λ G̃νλ − ∂x̃ν G̃αν∂x̃λ G̃βλ +
1

2
g̃αβ g̃νλ∂x̃δ G̃νμ∂x̃μ G̃δλ − g̃αν g̃λμ∂x̃δ G̃βμ∂x̃ν G̃λδ

− g̃βν g̃λμ∂x̃δ G̃αμ∂x̃ν G̃λδ + g̃νλg̃
μδ∂x̃μ G̃αν∂x̃δ G̃βλ +

1

8
(2g̃αν g̃βλ − g̃αβ g̃νλ)(2g̃μδ g̃γρ − g̃δγ g̃μρ)∂x̃ν G̃μρ∂x̃λ G̃δγ ,

with G̃αβ =
√
|g̃|g̃αβ. Recall that by Lemma 4.2

∂x̃α G̃αβ = O(
ln r

r2
). (4.12)

We also use the crude estimate

|∂x̃G̃| ≤
Cε

r1−ε(1 + |q̃|)1+ε
.

Based on this we can replace

| g̃| π̃αβ =
1

2
mαβmνλ∂x̃δ G̃νμ∂x̃μ G̃δλ − (mανmλμ∂x̃δ G̃βμ∂x̃ν G̃λδ +mβνmλμ∂x̃δ G̃αμ∂x̃ν G̃λδ)

+mνλm
μδ∂x̃μ G̃αν∂x̃δ G̃βλ+

1

8
(2mανmβλ−mαβmνλ)(2mμδmγρ−mδγmμρ)∂x̃ν G̃μρ∂x̃λ G̃δγ+O(

1

r3−2ε(1+|q̃|)
).

Taking into account that

|∂AG̃|+ |∂LG̃| ≤
C

r2−ε(1 + | q̃|)ε
, (4.13)

and using that modulo tangential derivatives ∂x̃α is Lα∂q̃ we can further write

| g̃| π̃αβ =
1

2
mαβmνλLδLμ∂q̃G̃

νμ∂q̃G̃
δλ − (mλμL

αLδ∂q̃G̃
βμ∂q̃G̃

λδ +mλμL
βLδ∂q̃G̃

αμ∂q̃G̃
λδ)

+
1

4
LαLβ(2mμδmγρ −mδγmμρ)∂q̃ G̃

μρ∂q̃G̃
δγ +O(

1

r3−2ε(1 + | q̃|)
).

Using the expression (4.9) for the metric g

g̃αβ = (1 +
M

r
)mμν +

2M(ln r − 1)

r
(δij − ωiωj)δαiδβj + hμν

1 +O(
ln2 r

r2
).

We easily see that3

| ∂q̃G̃
λμTμ| ≤

Cε

r(1 + | q̃|)1−ε
.

Moreover, using the wave coordinate condition

| ∂q̃ g̃LT | ≤
Cε

r2−ε(1 + | q̃|)ε
,

we conclude that

| ∂q̃G̃LT | ≤
Cε

r2−ε(1 + | q̃|)ε
.

In the above we used the fact that g̃LT = O(1/r). Using that mμν = −(LμLν + LμLν)/2 + AμAν + BμBν

this allows us to conclude that

| g̃| π̃αβ = −
1

2

(
− LμL

α∂q̃G̃
βμ∂q̃G̃LL − LμL

βLδ∂q̃G̃
αμ∂q̃G̃LL

)
+

+
1

4
LαLβ(2mμδmγρ −mδγmμρ)∂q̃G̃

μρ∂q̃G̃
δγ +O(

1

r3−2ε(1 + | q̃|)
)

= −
1

2
LαLβ(∂q̃G̃LL)

2 +
1

4
LαLβ

(
2∂q̃G̃μν∂q̃G̃

μν − (mμν∂q̃G̃μν)
2
)
+O(

1

r3−2ε(1 + | q̃|)
).

Here we used that we can expand any vector in the null frame V α = −(LαFL + LαFL)/2 +AαFA +BαFB .
We can write

−2∂q̃G̃LL= −∂LG̃LL+ 2∂C G̃μνC
μLν − 2mμδ∂x̃δ G̃μνL

ν .

3The ε loss occurs only due to the presence of the logarithmic terms.
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Using (4.12) and (4.13) we obtain that

| ∂q̃G̃LL| ≤
Cε

r2−ε
.

Based on this we obtain

|g̃| π̃αβ =
1

4
LαLβ

(
2∂q̃G̃CD∂q̃G̃

CD− (δCD∂q̃G̃CD)2
)
+O(

1

r3−2ε(1+|q̃|)
) =

1

2
LαLβ|∂q̃Ĝ|

2 +O(
1

r3−2ε(1+|q̃|)
).

Here ˆ̃GCD is a tensor
ˆ̃GCD = G̃CD −

1

2
δCD(G̃AA + G̃BB).

Remembering that G̃αβ =
√
|g̃|g̃αβ we obtain

∂q̃
ˆ̃GAB = ∂q̃(

√
|g̃|)ˆ̃γAB +

√
|g̃| ∂q̃(ˆ̃γ).

Here

ˆ̃γCD = g̃CD −
1

2
δCD(g̃AA + g̃BB) = γ̂ +O(

ln2 r

r2
), γ̂CD = h1

CD −
1

2
δCD(h1

AA + h1
BB).

In the above we used (4.9). Therefore we obtain

| g̃|π̃αβ =
1

2
LαLβ|∂q̃ γ̂|

2 +O(
1

r3−2ε(1 + | q̃|)
). �

4.5. The ADM mass. It remains to show that the Trautman mass as q̃ → ∞ tends to the ADM mass of
initial data which in our setting is M . It follows from the results in the previous section that all components
of h1 tend to 0 faster than r−1 as r → ∞ so the limit of the mass as r → ∞ only depend on h0

μν = Mδμν/r.
In fact a direct calculation implies the limit is exactly M . That this constant is positive would follow from
proving that the Bondi mass tend to 0 as q̃ → −∞. This in turn would follow from Proposition 2.7.

5. The asymptotic Hawking mass

In this section we will use the modified asymptotically Schwarzschild null coordinates ŷp = (v∗, u∗, ŷ3, ŷ4)
as defined in subsection 2.1.

5.1. The definition of the asymptotic Hawking mass and radiated energy. We define the radius
of a surface S to be r(S)=

√
Area(S)/4π. Let L̂ and L̂ be the outgoing respectively incoming null normals

to S satisfying g(L̂, L̂)=−2. L̂ and L̂ are unique up to the transformation L̂→aL̂ and L̂→ a−1L̂. The null
second fundamental form and the conjugate null second fundamental form are defined to be the tensors

χ(X,Y )=g(∇X L̂, Y ), respectively χ(X,Y )=g(∇X L̂, Y ),

for any vectors X,Y tangent to S at a point, where ∇X is covariant differentiation. Under the transformation
above χ→aχ and χ→a−1χ so the Hawking mass of S,

MH(S)= r(S)
(
1+

∫
S

trχ trχdS/16π
)
,

is invariant. If trχ trχ< 0 we can fix L̂ and L̂ by trχ+ trχ= 0. Let χ̂ and χ̂ be the traceless parts. The
incoming respectively outgoing energy flux throughS are

E(S)=

∫
S

χ̂2dS/16π, and E(S)=

∫
S

χ̂2dS/16π.

Owing to Proposition 3.2 the outgoing characteristic surfaces of g is asymptotic the null cones u∗ = t− r∗

constant, we use the family of spheres Su∗,r ={(t, x); t=u∗+r∗(r), |x|=r} to define the asymptotic Hawking
mass and the radiated energy at null infinity as follows

MAH(u∗) = lim
r→∞

MH(Su∗,r) and EAH(u∗) = lim
r→∞

E(Su∗,r),

with r(S)2/g converging to a round metric where /g is the restriction of g on the spheres Su∗,r.
In order for the limit of the Hawking mass to exist as well as the energy to be well defined we must have

that r(S) trχ∼ 2 and r(S) trχ∼ −2, as r(S)→∞. In order for the mass to be defined we also require that

the rescaled spheres S1 (scaled by r(S) so that the radius is 1) converge to a round sphere, i.e. that the
Gaussian curvature r(S)2K∼1, as r(S)→∞.
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5.2. The radiated energy at null infinity. Assume that r(S)2/g converges to a round metric which we
will prove in next subsection. We now prove the radiated energy at infinity is well defined.

Proposition 5.1. The rdiated energy at null infinity is given by

EAH(u∗) =
1

8π

∫
S2

n(−u∗, ω)dS(ω). (5.1)

Proof. Since L̂ g(X,Y )=g(∇L̂X,Y )+g(X,∇L̂Y ) and ∇L̂X=∇X L̂−[X, L̂] and since χ is symmetric we have

2χ(X,Y ) = L̂ g(X,Y ) + g(X, [Y, L̂]) + g([X, L̂], Y ), (5.2)

2χ(X,Y ) = L̂ g(X,Y ) + g(X, [Y, L̂]) + g([X, L̂], Y ). (5.3)

Since g = m+ h0+ h1 this is true for the surface measures

gAB= d 2δAB+ h1
AB, and det (gAB)= d 4+ d 2δABh1

AB+O
(
(h1)2

)
, (5.4)

where d=(1+M/r)1/2and {A,B} are orthonormal vector fields on S2 associated to the coordinates x, i.e.

A = Ak∂xk . Since r δABh1
AB → 0 it follows from our estimates that

√
det (gAB) = d 2+ O(r−1−γ′

). Hence

dSu∗,r=
√
det (gAB) r

2dS(ω)∼ r2dS(ω) and r(Su∗,r)∼r.

Let us define L̂ and L̂ by L̂α= gαβL̂β and L̂α= gαβL̂β , where L̂i = −L̂i = aωi, for i = 1, 2, 3, and

L̂0= aτ , L̂0= aτ . The condition that they are outgoing respectively incoming null normal is then equivalent
to g00τ2+ 2g0iτωi + gijωiωj = 0 respectively g00τ2− 2g0iτωi + gijωiωj = 0. Completion of the squares

gives (τ+ τ1)
2= (τ−τ1)

2= τ20, where τ0 =
(
τ21 − gijωiωj/g

00)1/2and τ1 = g0iωi/g
00. Hence τ+ τ = −2τ0 and

τ − τ = −2τ1. If we set a= 2b/(τ+ τ ) we get g(L̂, L̂)=a2
(
g00ττ− g0i(τ − τ )ωi − gijωiωj

)
= 2b2g00. L̂+ L̂ is

normal to the hyperplanes t constant and L̂ − L̂ is the normal to the spheres Su∗,r in these hyperplanes. If

we set a = (−g00τ20 )
−1/2 we get g(L̂, L̂) = −2.

It follows that L̂ = dL∗+O(h1) and L̂ = dL∗+O(h1), where L∗= ∂t+∂r∗ , L
∗= ∂t−∂r∗ and d = (1+M/r)1/2.

Moreover, this is true also for the derivatives. We therefore have χ ∼ χ∗ and χ ∼ χ∗, where χ∗(X,Y ) =

dg(∇XL∗, Y ) and χ∗(X,Y )=dg(∇XL∗, Y ). Since [A,L∗] = −r−1(dr/dr∗)A = −r−1A+O(r−2), we obtain

χ∗(A,B)= dL∗g(A,B)/2− dg(A,B)/r +O(r−2), and χ∗(A,B)= dL∗g(A,B)/2 + dg(A,B)/r +O(r−2),

by (5.2)-(5.3). With trk= g/ABkAB, where g/AB is the inverse of gAB, we have

trχ∗(A,B) = d det (g(A,B))
−1

L∗ det (g(A,B))/2− 2d/r +O(r−2).

Here we used (5.4) and the identity Z detA = detA tr(A−1ZA). Hence

trχ∗(A,B) = d−1L∗ δABh1
AB/ 2− 2d/r +O

(
h1∂h1

)
+O(r−2),

trχ∗(A,B) = d−1L∗ δABh1
AB/ 2 + 2d/r +O

(
h1∂h1

)
+O(r−2).

Hence with χ̂∗(A,B) = χ∗(A,B)− trχ∗ g(A,B)/2 we have

χ̂∗(A,B) = L∗ĥ1(A,B)/2 +O
(
h1∂h1

)
+O(r−2), and χ̂∗(A,B) = L∗ĥ1(A,B)/2 +O

(
h1∂h1

)
+O(r−2).

where ĥ1
AB = h1

AB − δAB δCDh1
CD/2. Since we shown that r δCD∂q∗h

1
CD → 0 and that rĥ1 has a limit as

r→∞ along the curves (u∗ + r∗(r), rω) in Remark 2.6 it follows that

r2|χ̂∗|2∼ r2(∂q∗ ĥ
1)AB (∂q∗ ĥ

1)AB→ 2n(−u∗, ω). �

5.3. The convergence to a round metric sphere.

Proposition 5.2. r(S)2/g converging to a round metric where /g is the restriction of g on the spheres Su∗,r

Proof. By Gauss equation ([13])K+ trχtrχ/2 − (χ, χ)/2= g/ACg/BDRABCD, where g/AC is the inverse of the

restriction of the metric to the sphere S. That r(S)2K∼1 follows if we show that r(S)2g/ACg/BDRABCD∼ 0.
We now calculate the curvature components in modified asymptotically Schwarzschild null coordinates:

R̂(g) p
abc =

∂Γ̂(g)pac
∂x̂b

−
∂Γ̂(g)pbc
∂x̂a

+ Γ̂(g)qacΓ̂(g)
p
bq − Γ̂(g)qbcΓ̂(g)

p
aq,



22 LILI HE AND HANS LINDBLAD

and

R̂(g)abcd = ĝdp
∂Γ̂(g)pac

∂x̂b
− ĝdp

∂Γ̂(g)pbc
∂x̂a

+ Γ̂(g)qacΓ̂(g)dbq − Γ̂(g)qbcΓ̂(g)daq.

Since g=g0+h1with g0αβ= mαβ+Mδαβ/r and the inverse metric g−1= (g0)−1+h1+O(M2/r2), we calculate

−Γ̂(g0)v
∗

ab, Γ̂(g
0)u

∗

ab = f(r)q̂ab, −Γ̂(g0)v∗ab, Γ̂(g
0)u∗ab = g(r)q̂ab/2 where f(r), g(r) = r +O1(1)

Γ̂(g0)abc = (r2 +Mr)Γ̂(m)abc, Γ̂(g0)cab = Γ̂(m)cab, R̂abcd(g
0) = O(r).

Next we compute

Γ̂(g)abv∗ = Γ̂(g0)abv∗ + Γ̂(h1)abv∗ = Γ̂(g0)abv∗ +
1

2
(
∂ĥ1

ab

∂v∗
+

∂ĥ1
av∗

∂x̂b
−

∂ĥ1
bv∗

∂x̂a
) = Γ̂(g0)abv∗ +O1(1),

Γ̂(g)abu∗ = Γ̂(g0)abu∗ + ∂u∗ ĥ1
ab/2 +O1(1), Γ̂(g)abc = Γ̂(g0)abc +O1(r).

and

Γ̂(g)v
∗

ab = ĝv
∗pΓ̂(g)pab = Γ̂(g0)v

∗

ab + ∂u∗ ĥ1
ab + O1(r

1−σ),

Γ̂(g)u
∗

ab = ĝu
∗pΓ̂(g)pab = Γ̂(g0)u

∗

ab +O1(1), Γ̂(g)cab = ĝcpΓ̂(g0)pab = Γ̂(g0)cab + O1(r
−1).

Therefore

∂x̂d

(
Γ̂(g)v

∗

ab

)
= ∂x̂d

(
Γ̂(g0)v

∗

ab

)
+ ∂x̂d∂u∗ ĥ1

ab/2 +O1(r
1−σ),

∂x̂d

(
Γ̂(g)u

∗

ab

)
= ∂x̂d

(
Γ̂(g0)u

∗

ab

)
+O1(1), ∂x̂d

(
Γ̂(g)cab

)
= ∂x̂d

(
Γ̂(g0)cab

)
+O1(r

−1).

Finally we conclude that

R̂(g)3434 = R̂(g0)3434 +
(
rq̂44∂u∗ ĥ1

33 + rq̂33∂u∗ ĥ1
44

)
/2−

(
rq̂34∂u∗ ĥ1

34 + rq̂34∂u∗ ĥ1
34

)
/2 +O(r2−σ)

= r3 det(q̂ab)∂u∗(/trh1)/2 +O(r2−σ) = O(r2−σ).

where we used q̂ 33= det(q̂ab)
−1q̂44, q̂

44= det(q̂ab)
−1q̂33, q̂

34= − det(q̂ab)
−1q̂34 and r−2q̂ abĥ1

ab = /trh1 in the
second step and Remark 2.2 in the last step. Due to the symmetry of the Riemann curvature tensor we see

that R̂(g)abcd = O(r2−σ). Since /g
ab is the inverse of ĝab= (1+M/r)r2q̂ab+ĥ

1
ab we have /g

ab= r−2q̂ab+O(r−3)

and thus /g
ac
/g
bdR̂(g)abcd = O(r−2−σ). This proves that the rescaled spheres converge to a round sphere. �

5.4. The limit of the Hawking mass along the asymptotically null hypersurfaces. We now establish
the existence of the asymptotic Hawking mass

MAH(u∗) = lim
r→∞

MH(Su∗,r).

Proposition 5.3.

MAH(u∗) = lim
r→∞

MH(Su∗,r) = M −
1

8π

∫ ∞

−u∗

∫
S2

n(η, ω) dS(ω)dη. (5.5)

In view of (5.1) and the above proposition, we establish the following Bondi mass loss formula

Theorem 5.4.
d

du∗
MAH(u∗) = −EAH(u∗). (5.6)

Moreover we see that M(u∗)=M as u∗ = t− r∗→−∞ and by Proposition 2.7 M(u∗)=0 as u∗= t− r∗→∞.

Proof of Proposition 5.3. In order to obtain the explicit expression for MAH(u∗), we need to refine the

expressions for trχ, trχ. Recall that the outgoing and incoming null normals L̂, L̂ to the surfaces Su∗,r are
expressed in terms of τ, τ , a as defined in the proof of proposition 5.1. A direct computation implies

τ = −1 +
M

r
−

1

2
(h00

1 + hij
1 ωiωj) + h0i

1 ωi +O1(
ε

r1+σ
) = −1 +

M

r
+O1(

ε

r1+σ
),

τ = −1 +
M

r
−

1

2
(h00

1 + hij
1 ωiωj)− h0i

1 ωi +O1(
ε

r1+σ
) = −1 +

M

r
−

ĥv∗v∗

1

2
+O1(

ε

r1+σ
),

a = 1 +
M

2r
−

1

2
hij
1 ωiωj +O1(

ε

r1+σ
) = 1 +

M

2r
+

1

8
(2ĥv∗u∗

1 − ĥv∗v∗

1 ) +O1(
ε

r1+σ
).
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Suppose {A,B} are orthonormal vector fields on S2 associated to the coordinates x, i.e. A = Ak∂xk , we have

L̂ =
(
1 +

M

2r
−

ĥv∗v∗

1

8
−

ĥv∗u∗

1

4
+O1(

ε

r1+σ
)
)
L∗ +O1(

ε

r1+σ
)L∗ +O1(

ε

r1+σ
)∂A,

L̂ =
(
−

ĥv∗v∗

1

4
+O1(

ε

r1+σ
)
)
L∗ +

(
1 +

M

2r
+

ĥv∗v∗

1

8
−

ĥu∗v∗

1

4
+O1(

ε

r1+σ
)
)
L∗ +

(
− ĥv∗A

1 +O1(
ε

r1+σ
)
)
∂A.

Recall that

2χ(A,B) = L̂ g(A,B)+g(A, [B, L̂])+g([A, L̂], B), and 2χ(A,B) = L̂ g(A,B)+g(A, [B, L̂])+g([A, L̂], B).

With trk= g/ABkAB, where g/AB is the inverse of gAB = g(A,B), we have

trχ = det (g(A,B))−1L̂ det (g(A,B))/2 + g/AB
(
g(A, [B, L̂]) + g([A, L̂], B)

)
/2,

trχ = det (g(A,B))
−1

L̂ det (g(A,B))/2 + g/AB
(
g(A, [B, L̂]) + g([A, L̂], B)

)
/2.

Here we used the identity Z detA = detA tr(A−1ZA). A direct calculation yields

L∗ det(gAB) = −2Mr−2 +O(εr−2−σ), ∂A det(gAB) = O(εr−2−σ),

L∗ det(gAB) = 2Mr−2 + L∗ /trh1 + L∗ det(h1
AB) +O(εr−2−σ),

Therefore

L̂det(gAB) = −2Mr−2 +O(εr−2−σ), and L̂det(gAB) = 2Mr−2 + L∗ /trh1 + L∗ deth1 +O(εr−2−σ).

and

trχ = −Mr−2 + g/AB
(
g(A, [B, L̂]) + g([A, L̂], B)

)
/2 +O(εr−2−σ),

trχ = Mr−2 + L∗ /trh1/2 + L∗ det(h1
AB)/2 + g/AB

(
g(A, [B, L̂]) + g([A, L̂].B)

)
/2 +O(εr−2−σ).

where we used det(gAB)
−1=1+O(εr−1). It remains to control the commutators terms. We compute

g(A, [B,L∗]) = g(A,
dr

dr∗
∂B
r
) =

(1
r
−

M

r2
+O(

M2

r3
)
)
gAB,

g(A, [B,L∗]) = g(A,−
dr

dr∗
∂B
r
) = −

(1
r
−

M

r2
+O(

M2

r3
)
)
gAB,

g(A, [B,C]) = g(A, (/Γ
D
BC − /Γ

D
CB)D) = (/Γ

D
BC − /Γ

D
CB)gAD.

Here /Γ
C
AB = m( /∇∂A

∂B, D) where /∇ is the covariant differentiation on sphere and then /Γ are the associated
frame-Christoffel symbol and homogeneous functions of degree −1 with respect to the radial variable r. Then

1

2
g/AB

(
g(A, [B, L̂]) + g([A, L̂], B)

)
=

2

r
−

M

r2
−

ĥv∗v∗

1

4r
−

ĥv∗u∗

1

2r
+O(

ε

r2+σ
),

1

2
g/AB

(
g(A, [B, L̂]) + g([A, L̂], B)

)
= −

2

r
+

M

r2
−

3ĥv∗v∗

1

4r
+

ĥv∗u∗

1

2r
− ∂C ĥ

v∗C
1 − ĥv∗C

1 (/Γ
D
DC − /Γ

D
CD) +O(

ε

r2+σ
)

= −
2

r
+

M

r2
−

3ĥv∗v∗

1

4r
+

ĥv∗u∗

1

2r
− /∇C ĥ

v∗C
1 +O(

ε

r2+σ
).

Here we used the fact that /Γ
D
CD = m( /∇∂C

∂D, D) = ∂C(m(D,D))/2 = 0. Hence

trχ =
2

r
−

2M

r2
−

ĥv∗v∗

1

4r
−

ĥv∗u∗

1

2r
+O(

ε

r2+σ
),

trχ = −
2

r
+

2M

r2
−

3ĥv∗v∗

1

4r
+

ĥv∗u∗

1

2r
− /∇C ĥ

v∗C
1 +

L∗ /trh1

2
+

L∗ det(h1
AB)

2
+O(

ε

r2+σ
).

Using (2.18) we obtain

trχ = −
2

r
+

2M

r2
+

∂L∗ ĥv∗v∗

1

2
+

ĥv∗v∗

1

4r
−

ĥv∗u∗

1

2r
+O(

ε

r2+σ
).
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Here we used these facts /∇C ĥ
v∗C
1 = ∇̂cĥ

v∗c
1 , ∂L∗(ĥac

1 r2q̂cbĥ
bd
1 r2q̂da) = ∂L∗(h1

ABh
1AB) + O2(εr

−2−σ) and

h1
ABh

1AB + 2deth1 = (/trh1)2. Hence

trχtrχ = −
4

r2
+

8M

r3
+

∂L∗ ĥv∗v∗

1

r
+

ĥv∗v∗

1

r2
+O(

ε

r3+σ
).

Since dSu∗,r =
√
det(gAB)r

2dS(ω) = (1+M/r+O(εr−1−σ))r2dS(ω) and r(Su∗,r) = r+O(ε), It follows that

MH(Su∗,r) = r(Su∗,r)
(
1+

∫
Su∗,r

trχ trχdSu∗,r/16π
)

=
(
r +O(ε)

)(M
r

+
1

16π

∫
Su∗,r

r∂L∗ ĥv∗v∗

1 + ĥv∗v∗

1 dS(ω) +O(
ε

r1+σ
)
)
= M −

1

8π

∫ ∞

−u∗

n(η, ω) dη +O(
ε

rσ
),

where we used the asymptotics result for the metric component ĥv∗v∗

1 in Remark 2.6. Therefore

MAH(u∗) = lim
r→∞

MH(Su∗,r) = M −
1

8π

∫ ∞

−u∗

∫
S2

n(η, ω) dS(ω)dη. �

Remark 5.5. According to the proof of Proposition 5.3, we find that the existence of the limit MAH(u∗) of
the Hawking mass along the asymptotically null hypersurfaces does not require the null infinity to extend all
the way back to the spatial infinity. Suppose the null infinity could be extended back to the spatial infinity,
the past limit limu∗→−∞MAH(u∗) equals to the ADM mass.

6. Bondi-Sachs coordinates

In this section, our goal is to construct the Bondi-Sachs coordinates yp = (u, r, y3, y4) under which we
denote the metric by g. The Bondi-Sachs coordinates yp = (u, r, y3, y4) are based on a family of outgoing
null hypersurfaces y1 = u = const. The two angular coordinates ya, (a, b, c, ... = 3, 4), are constant along
the null rays, i.e. gαβ∂βu∂αy

a=0. The coordinate y2 = r, which varies along the null rays, is chosen to be
an areal coordinate such that det[gab] = r4q, where q(ya) is the determinant of the unit sphere metric qab
associated with the angular coordinates ya. In these coordinates, the metric takes the Bondi-Sachs form

gpqdy
pdyq = −

V

r
e2βdu2 − 2e2βdudr + r2hab

(
dya − Uadu

)(
dyb − U bdu

)
.

We have already constructed u coordinate in section 3, it remains to construct the angular coordinates ya

and areal coordinate r.

6.1. Construction of angular coordinates. Since {u = const} are null hypersurfaces, for any point
P , it must be at some null geodesic. After reparametrization, we see that P must be at some X(s) =
(s, u∗(s), ŷ3(s), ŷ4(s)) = X(s;u, y3, y4) where we use the notation X(s;u, y3, y4) to emphasize that the in-
tegral curve X(s) of the vector field ĝpq∂ŷqu∂ŷp/ĝv

∗q∂ŷqu satisfies that (u∗(s), ŷ3(s), ŷ4(s)) → (u, y3, y4) as
s → ∞. Therefore, for any point P ∈ X(s;u, y3, y4), we define (y3, y4) to be the angular coordinates in
Bondi-Sachs coordinates. Using the estimate

ĝaq∂ŷqu

ĝv∗q∂ŷqu
=

ĥu∗a +O(εr−3−σ)

−1 +O(εr−1)
= −ĥu∗a +O(

ε

r3+σ
),

and integrating along the curve X(s;u, y3, y4) yield

ẙa := ya − ŷa =

∫ ∞

v∗

ĝaq∂ŷqu

ĝv∗q∂ŷqu
ds = O(

ε

r1+σ
).

We now have new angular coordinates ya(v∗, u∗, ŷ3, ŷ4) = ŷa+ ẙa(v∗, u∗, ŷ3, ŷ4) which we use in Bondi-Sachs
coordinate system and then we derive the system for the derivatives of ya. According to the construction,

gαβ∂αu∂βy
a = 0. (6.1)

Differentiating (6.1) gives

gαβ∂αu ∂βZya = −gαβZ ∂αu ∂βy
a − gαβ∂αZu ∂βy

a, (6.2)
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where the Lie derivative gαβZ = LZg
αβ is given by

gαβZ ∂αu ∂βw = (Zgαβ)∂αu ∂βw + gαβ∂αu [Z, ∂β]w + gαβ[Z, ∂α]u ∂βw. (6.3)

Hence with the notation gZ(U, V ) = gαβZ UαVβ and using the facts ∂Zu∗ = 0, g0Z(U, V ) = 0 for Z ∈ Z =
{Ωij , ∂t}, (6.1) respectively (6.2) become

∂L̃y
a = 0, (6.4)

∂L̃Zẙa = −h1Z(∂u, ∂y
a)− gαβ∂αZů ∂βy

a − ∂L̃Zŷa. (6.5)

In order to estimate this system we need the following lemmas.

Lemma 6.1. If |Ωẙa| ≤ 1/20 we have

|∂v∗ ẙa| ≤
C0ε

r1+σ
|∂tẙ

a|+
C0ε

r2+σ
. (6.6)

Proof. Using (3.2) and (3.8) we know that

∂ŷpu =
(
O(

ε

r1+σ
), 1 +

ĥv∗u∗

1

2
+O(

ε

r1+σ
), O(

ε

rσ
), O(

ε

rσ
)
)
, (6.7)

and

∂ŷpya =
(
∂v∗ ẙa, ∂u∗ ẙa, δab + ∂ŷb ẙa

)
. (6.8)

Since gαβ∂αu∂βy
a= ĝpq∂ŷpu∂ŷqya = 0, with the estimates of ĝ and the assumption |Ωẙa| ≤ 1/20 we obtain(

−2 +O(
ε

r
)
)
∂v∗ ẙa +O(

ε

r1+σ
)∂tẙ

a +O(
ε

r2+σ
) = 0.

This finishes the proof of the lemma. �

Lemma 6.2. If |Ωẙa| ≤ 1/20 we have

|∂L̃∂tẙ
a| ≤

C0ε

r
||∂v∗ ẙa|+

C0ε

r1+σ
|∂tẙ

a|+
C0ε

r2+σ
. (6.9)

Proof. If Z = ∂t, we have ∂L̃∂tŷ
a = 0 and by (6.7) and (6.8)

h1Z(∂u, ∂y
a) = (∂th

αβ
1 )∂αu∂βy

a = (∂tĥ
pq
1 )∂ŷpu∂ŷqya = O(

ε

r
)∂v∗ ẙa +O(

ε

r1+σ
)∂tẙ

a +O(
ε

r2+σ
).

By Proposition 3.2 and (3.8)

∂ŷp∂tů =
(
O(

ε

r1+σ
),

∂t(ĥ
v∗u∗

1 )

2
+O(

ε

r1+σ
), O(

ε

rσ
), O(

ε

rσ
)
)
,

Hence by (6.8)

gαβ∂α∂tů ∂βy
a = ĝpq∂ŷp∂tů∂ŷqya = O(

ε

r
)∂v∗ ẙa +O(

ε

r1+σ
)∂tẙ

a +O(
ε

r2+σ
).

Then this lemma follows from (6.5) with Z = ∂t and the assumption |Ωẙa| ≤ 1/20. �

Lemma 6.3. If |Ωẙa| ≤ 1/20 we have

|∂L̃Ωẙ
a| ≤

C0ε

r
||∂v∗ ẙa|+

C0ε

r1+σ
|∂tẙ

a|+
C0ε|Ωẙ

a|

r2
+

C0ε

r2+σ
. (6.10)

Proof. The estimates for(Ωhαβ
1 )∂αu∂βy

a and gαβ∂αΩů ∂βy
a are similar to those in the proof of Lemma 6.2.

Therefore we are left with hαβ
1 ∂αu [Z, ∂β]y

a, hαβ
1 [Z, ∂α]u ∂βy

a and ∂L̃Ωŷ
a. By Lemma 3.6, if Ω=xi∂j − xj∂i

hαβ
1 [∂β ,Ω]u = kαΩ/r∂ru+

(
kαi∂j − kαj∂i

)
u,

with h
αΩ/r
1 = kαiωj − kαjωi. By (6.7) and (6.8) we conclude that

|hαβ
1 ∂αu [Z, ∂β ]y

a|+ |hαβ
1 [Z, ∂α]u ∂βy

a| = O(
ε

r
)∂v∗ ẙa +O(

ε

r1+σ
)∂tẙ

a +O(
ε

r2
)|Ωẙa|.

In view of (3.9), we have ∂L̃Ωŷ
a = O(εr−2−σ)∂ŷcΩŷa = O(εr−2−σ). �
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Proposition 6.4. If ε > 0 is sufficiently small we have for r > t/2 and r > 2 with constants C1 = 2C0Cσ

for some universal constant Cσ

|∂v∗ ẙa| ≤
2C0ε

r2+σ
, (6.11)

|∂tẙ
a| ≤

C1ε

r1+σ
, (6.12)

|Ωẙa| ≤
C1ε

r1+σ
. (6.13)

Proof. We can prove this by assuming these estimates are true and show that they imply better estimates if
ε is sufficiently small. First from (6.6) and the assumed bound (6.12), we prove (6.11) with 2C0 replaced by
3C0/2 if ε is sufficiently small such that 2C2

0Cσε≤1/2. From the construction of ya we see that ∂tẙ
a,Ωẙa→0

as v∗→∞. If we integrate (6.5) with Z=∂t and use the assumed bound (6.11) and (6.12) we obtain

|∂tẙ
a| ≤

εCσ(2εC
2
0C0 + εC0C1 + C0)

r1+σ
≤

3C1ε/4

r1+σ
,

if ε is sufficiently small such that 2C2
0ε+ εC1 ≤ 1/2 which proves (6.12). If we integrate (6.5) with Z = Ω

and use the assumed bound (6.11), (6.12) and (6.13) we obtain

|Ωẙa| ≤
εCσ(2εC

2
0C0 + 2εC0C1 + C0)

r1+σ
≤

3C1ε/4

r1+σ
,

if ε is sufficiently small such that 2C2
0ε+ 2εC1 ≤ 1/2 which proves (6.13). �

We now turn to higher order derivatives of ẙa.

Proposition 6.5. We have ∑
|I|≤2

|Z∗I ẙa| = O(
ε

r1+σ
). (6.14)

Proof. Following the proof of Proposition 3.2 we commutate the vector fields X ∈ X = {S∗ = t∂t +

x∗i∂x∗i , Ωij , ∂t} through the equation (6.4). Let X̃=X−δXS∗ and L̃X=LX+2δXS∗ , where δXS∗=1 if X= S∗,

and = 0 otherwise. Then X
(
k(∂u, ∂v

)
= (L̃Xk)(∂u, ∂v)+ k(∂X̃u, ∂v)+ k(∂u, ∂X̃v) and ∂X̃u∗= 0. Since

g(∂u, ∂ya) = 0 we get ∂L̃X̃Z̃ya = −H(g, u, ya) where

H(g, u, ya) = L̃X L̃Zg(∂u, ∂y
a) + L̃Xg(∂u, ∂Z̃ya) + L̃Xg(∂Z̃u, ∂ya) + L̃Zg(∂u, ∂X̃ya)

+ L̃Zg(∂X̃u, ∂ya) + g(∂X̃Z̃u, ∂ya) + g(∂Z̃u, ∂X̃ya) + g(∂X̃u, ∂Z̃ya).

Here L̃Xg= L̃Xg0+ L̃Xh1, where L̃∂t
g0= L̃Ωg0=0 and L̃S∗g0=κ3g0− 2(κ1− κ2)g0. Here κ1∼M ln r/r, κ2∼

κ3∼M/r and g0(∂u, ∂v)= gij0 ∂/iu ∂/jv. Since g0(∂X̃
Iu, ∂ya) = O(εr−2−σ) and g0(∂X̃

Iu, ∂ya) = O(εr−2−σ)

for |I| ≤ 1, we have L̃Xg0(∂X̃
Iu, ∂ya) = O(εr−2−σ) for |I| ≤ 1. Moreover, L̃Xg0(∂u, ∂y

a) = X(g0(∂u, ∂y
a))−

g0(∂X̃u, ∂ya) − g0(∂u, ∂X̃ya). It follows that |L̃I
Xg0(∂u, ∂y

a)| = O(εr−2−σ)|ΩX̃ya| + O(εr−2−σ), for |I|≤2.
Hence

|L̃X L̃Zg(∂u, ∂y
a)+L̃Xg(∂Z̃u, ∂ya)+L̃Zg(∂X̃u, ∂ya)+g(∂X̃Z̃u, ∂ya)|= O(

ε

r2+σ
)
(
|ΩX̃ya|+|ΩZ̃ya|

)
+O(

ε

r2+σ
).

Then it remains to control the terms containing second order derivatives of ya

|L̃Xg(∂u, ∂Z̃ya) + L̃Zg(∂u, ∂X̃ya) + g(∂Z̃u, ∂X̃ya) + g(∂X̃u, ∂Z̃ya)|

= O(
ε

r
)
(
|∂L∗X̃ya|+ |∂L∗Z̃ya|

)
+O(

ε

r1+σ
)
(
|∂tX̃ya|+ |∂tZ̃y

a|
)
+O(

ε

r2+σ
)
(
|ΩX̃ya|+ |ΩZ̃ya|

)
+O(

ε

r2+σ
).

We have ∂L̃X̃ya = −L̃Xg(∂u, ∂ya)− g(∂X̃u, ∂ya), so |∂L̃X̃ya| = O(εr−2−σ). By (3.9)

|∂L∗X̃ya| � |∂L̃X̃ya|+O(
ε

r1+σ
)|∂tX̃ya|+O(

ε

r2+σ
)|ΩX̃ya|.

Therefore we conclude

|∂L̃X̃Z̃ẙa| = O(
ε

r1+σ
)
(
|∂tX̃ỹa|+ |∂tZ̃ỹa|

)
+O(

ε

r2+σ
)
(
|ΩX̃ỹa|+ |ΩZ̃ỹa|

)
+O(

ε

r2+σ
).

where we used the facts that ΩX̃ŷa = O(1), ∂tX̃ŷa = 0 and ∂L̃X̃Z̃ŷa = O(εr−2−σ). We repeat the proof of
Proposition 6.4 and the conclusion follows. �
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We now refine ∂tZ
I ẙa with |I| ≤ 1.

Proposition 6.6. If Z ∈ {∂t,Ωij} and |I| ≤ 1 we have

∂tZ
I ẙa =

1

2
ZI(ĥv∗a

1 ) +
r∗

2
ZI( /̂∇cĥ

ac
1 ) +O(

ε

r2+σ
). (6.15)

Proof. We analyze (6.5) with Z = ∂t to find that

∂L̃∂tẙ
a = 2∂v∗∂tů∂tẙ

a − ∂t(ĥ
u∗a
1 )−

1

r2
q̂ ab∂ŷb∂tů+O(

ε

r3+σ
).

Using (2.17) and (3.8) we obtain

∂L̃∂tẙ
a − 2∂v∗∂tů∂tẙ

a =
1

2
∂L∗(ĥv∗a

1 ) +
2ĥv∗a

1

r
+ /̂∇cĥ

ac
1 +O(

ε

r3+σ
).

Along an integral curve (v∗(s), u∗(s), ŷa(s)) of the vector field L̃, we have the following equation with
H =

∫∞
s

2∂v∗∂tů dη = O( 1
rσ )

d

ds

(
eH∂tẙ

a
)
= eH

(1
2
∂L∗(ĥv∗a

1 ) +
2ĥv∗a

1

r
+ /̂∇cĥ

ac
1

)
O(

ε

r3+σ
) =

1

2
∂L∗(ĥv∗a

1 ) +
2ĥv∗a

1

r
+ /̂∇cĥ

ac
1 +O(

ε

r3+σ
).

Using the asymptotics results in Remark 2.6 and integrating backward along the integral curve we conclude

∂tẙ
a =

1

2
ĥv∗a
1 +

r∗

2
/̂∇cĥ

ac
1 + O(

ε

r2+σ
). (6.16)

Once we have (6.16), Proposition 3.2, Remark 3.3 and Proposition 6.5 at our disposal, we are able to express
∂tZẙa with Z ∈ {∂t,Ωij} more precisely. In fact we have the following equations

∂L̃∂
2
t ẙ

a = −h1∂t
(∂u, ∂∂tẙ

a)− g(∂∂tů, ∂∂tẙ
a) + ∂t

(
∂L̃∂tẙ

a
)

= 4∂v∗∂tů∂
2
t ẙ

a +
1

2
∂L∗∂t(ĥ

v∗a
1 ) +

2∂t(ĥ
v∗a
1 )

r
+ ∂t( /̂∇cĥ

ac
1 ) +O(

ε

r3+σ
),

∂L̃∂tΩẙ
a= −h1Ω(∂u, ∂∂tẙ

a)− g(∂Ωũ, ∂∂tẙ
a)+ Ω

(
∂L̃∂tẙ

a
)
+

1

2
∂L∗Ω(ĥv∗a

1 ) +
2Ω(ĥv∗a

1 )

r
+Ω( /̂∇cĥ

ac
1 ) +O(

ε

r3+σ
).

where we used (3.8), (2.16) and (2.17). Then we repeat the proof of (6.16). �

6.2. Construction of areal coordinate. We now construct the areal coordinate such that det[gab] = r4q,
where q(ya) is the determinant of the unit sphere metric qab associated with the angular coordinates ya.
Since g takes the Bondi-Sachs form, we have gacg

cb = δba and thus det[gab] = 1/ det[gab]. Then we define

r =
(
det[gab] det[qab]

)−1/4
=

(
det[qacg

cb]
)−1/4

. (6.17)

By Proposition 6.5 and 6.6 we have ∂ŷpya =
(
O1(r

−2−σ), (ĥv∗a
1 + r∗∇̂cĥ

ca
1 +O1(r

−2−σ))/2, δac + ∂ŷc ẙa
)
and

gab = ĝpq
∂ya

∂ŷp
∂yb

∂ŷq
=

1

r2

(
(1−

M

r
)q̂ ab + r2ĥab

1 + q̂ ac ∂ẙ
b

∂ŷc
+ q̂ bc ∂ẙ

a

∂ŷc
+O1(

ε

r2+σ
)
)
,

qab = q̂ab + ẙc∂ŷc(q̂ab) +O2(
ε

r2+2σ
).

Then we find

qacg
cb =

1

r2

(
(1 −

M

r
)I2 + r2q̂acĥ

cb
1 + q̂acq̂

cd ∂ẙ
b

∂ŷd
+ q̂acq̂

bd ∂ẙ
c

∂ŷd
+ q̂ cbẙd∂ŷd(q̂ac) +O1(

ε

r2+σ
)
)

=
1−M/r

r2

(
I2 + r2q̂acĥ

cb
1 + q̂acq̂

cd ∂ẙ
b

∂ŷd
+ q̂acq̂

bd ∂ẙ
c

∂ŷd
+ q̂ cbẙd∂ŷd(q̂ac) +O1(

ε

r2+σ
)
)
.

Therefore

det[qacg
cb] =

(1−M/r)2

r4

(
1+ r2q̂abĥ

ab
1 + 2q̂acq̂

cd ∂ẙ
a

∂ŷd
+ q̂ abẙd∂ŷd(q̂ab)−

1

2
r2q̂acĥ

cb
1 r2q̂bdĥ

da
1 +O1(

ε

r2+σ
)
)
,

and

r= r+
M

2
+
3M2

8r
+r

(
−
1

4
r2q̂abĥ

ab
1 −

1

2
q̂acq̂

cd ∂ẙ
a

∂ŷd
−
1

4
q̂ abẙd∂ŷd(q̂ab)

)
+r

(1
8
r2q̂acĥ

cb
1 r2q̂bdĥ

da
1 +O1(

ε

r2+σ
)
)
. (6.18)
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From the expression of r (6.18), it is clear that

∂L∗r = 1−
M

r
+O(

ε

r1+σ
) and ∂ŷar = O(

ε

rσ
). (6.19)

As for ∂L∗r, we need more delicate analysis. First given that q̂ ab∂ŷd(q̂ab) = 2Γ̂c
dc and using (6.15) we get

−
1

2
q̂acq̂

cd∂L∗∂ŷd ẙa −
1

4
q̂ ab∂L∗ (̊yd)∂ŷd(q̂ab) = −

1

2
(∂L∗∂ŷd ẙd + Γ̂c

dc∂L∗ ẙd)

= −
1

2
∂L∗( /̂∇dẙ

d) = −
1

2

(
/̂∇aĥ

v∗a
1 + r∗ /̂∇a /̂∇bĥ

ab
1

)
+O(

ε

r2+σ
).

In order to handle the term ∂L∗(r2q̂abĥ
ab
1 ), we need the following lemma

Lemma 6.7. We have

∂L∗(r2q̂abĥ
ab
1 ) = −∂L∗(/trh1) + ∂L∗(r2 q̂acĥ

cb
1 r2q̂bdĥ

da
1 ) +O(

ε

r2+σ
). (6.20)

Proof. As we can see in the proof of Lemma 2.12, we have

hαβ
1 = −mαμh1

μνm
νβ +mαα′

(
M

r
δα′μ + h1

α′μ)m
μν(

M

r
δνβ′ + h1

νβ′)mβ′β +O1(
ε

r2+σ
).

Then we repeat the calculation in the proof of Lemma 2.12 and obtain

trh1 = mαβh1
αβ = −(1 +

2M

r
)mαβh

αβ
1 +

4M

r2
+

4M

r
h1
00 +mαβmμνh

αμ
1 hβν

1 +O(
ε

r2+σ
)

= −
(
1+

2M

r

)(
−h1LL+ r2q̂abĥ

ab
1

)
+

4M

r2
+

M

r
h1
LL+

2M

r
h1
LL+ r2q̂acĥ

cb
1 r2q̂bdĥ

da
1 +

1

2
(h1L∗L∗)2+O1(

ε

r2+σ
),

h1
LL= −h1LL−

1

2
(h1

LL)
2 −

2M

r2
−

M

r
h1
LL+O1(

ε

r2+σ
).

where we used the notations h1
UV = h1

αβU
αV β and h1UV = hαβ

1 UαVβ . In view of the facts that h1
UV =

−h1UV +O1(r
−1−σ) if Uα = mαβU

β and Vα = mαβV
β and h1U∗V ∗ = h1UV +O1(r

−1−σ), we conclude that

/trh1 = trh1 + h1
LL= −r2q̂abĥ

ab
1 +

2M

r2
+ r2q̂acĥ

cb
1 r2q̂bdĥ

da
1 +O1(

ε

r2+σ
).

Applying L∗ proves the lemma. �

Therefore by (2.18) we conclude that

∂L∗r = −1 +
M

r
+

r∂L∗(ĥv∗v∗

1 )

4
+

ĥv∗v∗

1

2
−

ĥv∗u∗

1

2
−

r2 /̂∇a /̂∇bĥ
ab
1

2
+O(

ε

r1+σ
). (6.21)

6.3. The Jacobian. We now give the Jacobian of the mapping from the coordinates ŷp to the Bondi-Sachs
coordinates yp. According to Propositions 3.2, 3.7, 6.5, 6.6, and identities (6.19), (6.21)

∂ŷpu =
(
O(

ε

r1+σ
), 1 +

ĥv∗u∗

1

2
+O(

ε

r1+σ
), O(

ε

rσ
), O(

ε

rσ
)
)
,

∂ŷpr =
(1
2
−

M

2r
+O(

ε

r1+σ
),

1

2
∂L∗r, O(

ε

rσ
), O(

ε

rσ
)
)
,

∂ŷpy3 =
(
O(

ε

r2+σ
),

1

2
ĥv∗2
1 +

r∗

2
/̂∇cĥ

c2
1 +O(

ε

r2+σ
), 1 +O(

ε

r1+σ
), O(

ε

r1+σ
)
)
,

∂ŷpy4 =
(
O(

ε

r2+σ
),

1

2
ĥv∗3
1 +

r∗

2
/̂∇cĥ

c3
1 +O(

ε

r2+σ
), O(

ε

r1+σ
), 1 +O(

ε

r1+σ
)
)
,

(6.22)

where

∂L∗r = −1 +
M

r
+

r∂L∗(ĥv∗v∗

1 )

4
+

ĥv∗v∗

1

2
−

ĥv∗u∗

1

2
−

r2 /̂∇a /̂∇bĥ
ab
1

2
+O(

ε

r1+σ
).

Then we have

gpq∂yp∂yq =−2
(
1+O(

ε

r1+σ )
)
∂u∂r +

(
1−

M

r
−
r∂L∗(ĥv∗v∗

1 )

4
−
ĥv∗v∗

1

4
+
r2 /̂∇c /̂∇dĥ

cd
1

2
+O(

ε

r1+σ )
)
∂2
r

+ 2
(
−
1

2
r /̂∇cĥ

ca
1 +O(

ε

r2+σ )
)
∂r∂ya +

1

r2

(
(1−

M

r
)q̂ ab + r2ĥab

1 +O(
ε

r1+σ )
)
∂ya∂yb .

(6.23)
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7. The Bondi Mass

7.1. The Bondi-Sachs metric. Now we can establish the following expression for the Bondi-Sachs metric

Proposition 7.1. We have

gpqdy
pdyq = −

(
1−

M

r
−
r∂L∗(ĥv∗v∗

1 )

4
−
ĥv∗v∗

1

4
+
r2 /̂∇c /̂∇dĥ

cd
1

2
+O(

ε

r1+σ )
)
du2 − 2

(
1+O(

ε

r1+σ )
)
dudr

+ r2
(
(1 +

M

r
)q̂ab − r2q̂acĥ

cd
1 q̂db +O(

ε

r1+σ )
)(

dya − Uadu
)(

dyb − U bdu
)
,

(7.1)

where Ua = − r
2
/̂∇cĥ

ca
1 +O( ε

r2+σ ).

Proof. Taking matrix inversion to (6.23) yields (7.1). �

Remark 7.2. The existence of a compactification with smooth future null infinity I +, i.e., the conformally
rescaled metric can extend smoothly across I

+, is a delicate issue as it is sensitive to the choice of conformal
factor and the smooth structure near I + [39]. The Bondi-Sachs coordinates constructed above allows us to
obtain C1,δ regularity of I + where 0 < δ < 1, which is consistent with the result in [18]. More specifically, we
let coordinates (u, ρ = r−1, y3, y4) be a smooth coordinate system near I + and choose ρ2 as the conformal
factor. Then we find that

ρ2g(∂u, ∂u) ∈ C3,δ, ρ2g(∂u, ∂ya) ∈ C2,δ and ρ2g(∂u, ∂ρ), ρ2g(∂ya , ∂yb) ∈ C1,δ

which implies ρ2g ∈ C1,δ and thus I
+ is of the class C1,δ. We also note that the work by Christodoulou

[12] strongly suggests that the conformally compactification is generically at most of class C1,α with α < 1.

Then by Proposition 7.1 we see that in the Bondi-Sachs coordinates yα = (u, r, y3, y4), the metric takes
the following Bondi-Sachs form

gpqdy
pdyq = −V r−1e2βdu2 − 2e2βdudr + r2hab(dy

a − Uadu)(dyb − U bdu),

where

V= r −M −
r2∂L∗(ĥv∗v∗

1 )

4
−

rĥv∗v∗

1

4
+

r3 /̂∇c /̂∇dĥ
cd
1

2
+O(

1

rσ
), and hab= qab− r2qacĥ

cd
1 qdb +O(

1

r1+σ ). (7.2)

Here we used the fact that r = r −M/2 +O(r−σ) which is implied by the definition of r (6.18).
The mass aspect MA and news tensor Nab are defined as follows

MA(u, y
a) := − lim

r→∞

(
V (u, r, ya)− r

)
,

Nab(u, y
c) :=

1

2
∂uCab(u, y

c) where Cab(u, y
c) := lim

r→∞
r(hab(u, r, y

c)− qab(y
c)).

The Bondi mass MB and radiated energy EB are defined by

MB(u) =
1

4π

∫
S2

MA(u, y
a)dS(ya) and EB(u) =

1

4π

∫
S2

|N |2 dS(ya),

where dS(ya)=
√
q(ya)dy3dy4 is the volume form of the unit sphere metric qab and |N|2=qacqbdNabNcd.

7.2. Bondi mass loss law. We will prove the existence of MB(u) and EB(u) and the Bondi mass loss law.

Theorem 7.3. Let MA, Nab,MB, EB be defined as above, then the Bondi mass is given by

MB(u) =
1

4π

∫
S2

MA(u, y
a)dq = M −

1

16π

∫
S2

∫ ∞

−u

n(η, ya) dηdS(ya), (7.3)

and the radiated energy is equal to

EB(u) =
1

8π

∫
S2

n(−u, ya) dS(ya). (7.4)

where n(q∗, ŷa)= q̂acq̂bdV
abV̂ cd/2 with V̂ ab=∂q∗Ĥ

ab
1∞ defined in (2.13).They satisfy the Bondi mass loss law

d

du
MB(u) = −E(u). (7.5)

Moreover, MB(u)→M as u→−∞ where M is the ADM mass and MB(u)→0 as u → ∞.
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Proof. By Remark 2.6 we write with q∗ = −u∗ = r∗ − t

ĥab
1 (v∗,−q∗, ŷa) =

Ĥab
1∞(q∗, ŷa)

r∗3
+O(

1

r∗3+σ ),

ĥv∗v∗

1 (v∗,−q∗, ŷa) = −
2

r∗

∫ ∞

q∗
ln
( v∗+ η

u∗+ η

)
n(η, ŷa) dη +

Ĥv∗v∗

1∞ (q∗, ŷa)

r∗
+

2M

r∗

(
1−χe(q∗)

)
+O(

1

r∗1+σ ),

where χe(s)=1 when s≥2, χe(s)=0 when s≤1. Plugging these expressions for ĥv∗v∗

1 and ĥab
1 into (7.2) gives

V= r −M +
1

2

∫ ∞

q∗
n(η, ŷa) dη +

/̂∇c /̂∇dĤ
cd(q∗, ŷa)

2
+O(

1

rσ
), and hab = qab −

qacĤ
cdqdb
r

+O(
1

r1+σ ).

Therefore we conclude

MA(u, y
a) = M −

1

2
lim
r→∞

(∫ ∞

ů−u

n(η, ya − ẙa) dη + /̂∇c /̂∇dĤ
cd(̊u− u, ya − ẙa)

)

= M −
1

2
lim
r→∞

(∫ ∞

ů−u

n(η, ya− ẙa) dη+ /∇c /∇dĤ
cd(̊u−u, ya− ẙa)

)
= M −

1

2

∫ ∞

−u

n(η, ya) dη−
/∇c /∇dĤ

cd(−u, ya)

2
.

where we used the fact that /∇c /∇dH
cd = /̂∇c /̂∇dĤ

cd +O(r−σ). Then the Bondi mass MB(u) is given by

MB(u) =
1

4π

∫
S2

MA(u, y
a)dq = M −

1

16π

∫
S2

∫ ∞

−u

n(η, ya) dηdS(ya), (7.6)

where we used the fact that the integral of the spherical divergence /∇c /∇dĤ
cd over the sphere is 0. Since

Cab(u, y
a) = − lim

r→∞
qacĤ

cd(̊u − u, ya − ẙa)qdb = −qacĤ
cd(−u, ya)qdb,

with V̂ ab(q∗, ŷa) = ∂q∗Ĥ
ab(q∗, ŷa) defined in (2.13) we obtain

Nab(u, y
a) =

1

2
qacqdbV̂

cd(−u, ya).

Therefore with (2.13) the radiated energy flux is equal to

EB(u) =
1

4π

∫
S2

|N |2 dS(ya) =
1

4π

∫
S2

qacqbdNcdNab dS(y
a)

=
1

16π

∫
S2

qacqbdV̂
abV̂ cd(−u, ya) dS(ya) =

1

8π

∫
S2

n(−u, ya) dS(ya).

(7.7)

By (7.6) and (7.7) we establish the mass loss formula

d

du
MB(u) = −EB(u). (7.8)

Moreover, since n(η, ya) is integrable in η, we see that MB(u) → M as u → −∞. By Proposition 2.7 we
know that

∫∞
−∞EB(u) du = M and thus MB(u) → 0 as u → ∞. �
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