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We demonstrate that working with a correct phase-space electronic Hamiltonian captures electronic inertial
effects. In particular, we show that phase space surface hopping dynamics do not suffer (at least to very
high order) from non-physical non-adiabatic transitions between electronic eigenstates during the course of
pure nuclear translational and rotational motion. This work opens up many new avenues for quantitatively
investigating complex phenomena, including angular momentum transfer between chiral phonons and electrons
as well as chiral-induced spin selectivity effects.

I. INTRODUCTION

The Born-Oppenheimer (BO) approximation1 is per-
haps the most fundamental concept in chemistry, stip-
ulating that one can effectively freeze the nuclei when
describe the electrons circulating in molecules and mate-
rials. Mathematically, based on the fact that nuclei are
much heavier than electrons, the molecular wavefunction
is separated into a product of nuclear and electronic con-
tributions. As a practical matter, first, the electronic
Hamiltonian is solved with clamped nuclei at different
nuclear configurations to generate the ground state elec-
tronic adiabats ϕj(r;R):

Ĥel(R) |ϕj(r;R)ð = Ej(R) |ϕj(r;R)ð . (1)

Second, the nuclear dynamics are propagated on the elec-
tronic potential energy surface. This approximation sig-
nificantly simplifies molecular reactions and has led to
numerous successes in predicting molecular properties us-
ing first-principle computational tools because, according
to an exact Born-Huang expansion2, the exact molecular
wavefunction is a sum over many surfaces:

Ψ(R, r) =
∑

j

Çj(R)ϕj(r;R), (2)

where Çj(R) represents the nuclear wavefunction on the
j-th adiabatic electronic surface.

A. Curve Crossings vs. Electronic Inertial Effects

Notwithstanding its many successes, the adiabatic BO
separation described above can break down in various

a)Electronic mail: xzbian@princeton.edu
b)Electronic mail: subotnik@princeton.edu

scenarios3. When nuclei move quickly enough, the iner-
tia of electrons can prevent them from instantaneously
following the nuclear motion, which of course in turn in-
fluences the nuclear dynamics as well. Now, although not
very well appreciated, this breakdown of the BO approxi-
mation largely comes in two flavors. On the one hand, the
BO approximation can fail dramatically in the close of
vicinity of conical intersections4,5 and curve-crossings6,7,
especially for long-distance electron transfer events when
two electronic states come close together in energy8. In
analogy to electronic structure theory9, one might call
the above failures examples of “static correlation” be-
tween nuclei and electrons, and over the years, there has
been a great deal of theoretical effort devoted to model-
ing such dynamics. On the dynamics front, there are now
many different versions of Ehrenfest dynamics10,11 and
surface hopping dynamics12,13; on the electronic struc-
ture front, multi-reference electronic structure has been
a major focus of advances over the last few decades14.

On the other hand, and slightly less well-known, the
BO approximation also loses accuracy in other settings
even when two states are far apart, though the errors
here are usually small or weak. In such a case, a per-
turbative analysis reveals that correcting a BO wave-
function requires small contributions for many different
electronic states. In analogy with electronic structure
theory, one might call these failures examples of “dynam-
ical correlation.”15 On this front, there has been much
less theoretical focus over the years, though there have
been important advances – most importantly in the small
molecule community16–18. In the simplest case, one can
understand these dynamical correlation effects of “elec-
tronic inertia”–which is present even for the hydrogen
atom. If one freezes the hydrogen nucleus (effectively
ignoring the mass of the electron [as compared with the
nucleus]), one finds that the electronic energy levels are of

the form En = −mee
4

8ϵ2
0
h2

1
n2 . However, if one properly pulls

out the center of mass of the hydrogen (and takes into ac-
count the finite mass of the electron), the result is slightly
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2

different, En = − µe4

8ϵ2
0
h2

1
n2 . Thus, in this case, accounting

for electronic mass means simply replacing the raw elec-
tronic mass with the reduced mass µ = (M−1 +m−1

e )−1

as far as the energy; more interestingly, however, this re-
placement also allows for electronic momentum, which is
always lacking in standard BO theory19.

Beyond the hydrogen atom, problems in dynamical
nuclear-electronic correlation have been easily identified
by high-resolution rovibrational spectroscopy for small
molecules20,21. As one might expect, early theoretical
attempts to address this drawback introduced a mass
correction to the nuclear mass that arises from perturba-
tion theory, which works well for diatomic and triatomic
molecular systems22,23. However, these approaches are
difficult to generalize for realistically sized molecules, es-
pecially in a fashion that matches a given electronic struc-
ture level of theory. Notably, Scherrer et al. derived a
more general and rigorous position-dependent mass cor-
rection based on the exact factorization approach, which
is applicable to polyatomic molecules; future work will
need to determine if such a method can be applied to
real-time molecular dynamics (though likely on in the
adiabatic regime if at all).

More recently, the role of electronic inertial effects has
attracted attention among a community of solid state
chemists and physicists investigating chiral phonons.
Over the last few years, experiments have suggested that
chiral phonon modes, which carry angular momentum25,
exhibit large phonon induced magnetic fields in terms of
electron spin polarization26–29. However, classical elec-
tromagnetic theory, which states that rotating charges
generate magnetic fields, usually fails to explain these
experimental results by several orders of magnitude.
To date, a few effective theories have been proposed
to explained such extraordinary spin-phonon interaction
phenomenon30–33. For example, Geilhufe have pointed
out that the large effective phonon magnetic moment
may originate from electronic inertia effects, appearing
as a Coriolis-type coupling between electrons and the ro-
tating nuclei:

Hs−ph ∝ ωn · Je, (3)

where ωn is the nuclear angular speed and Je represents
the electronic angular momentum. The form of spin-
phonon coupling in Eq. 3 is quite intuitive as electrons
should feel can extra Coriolis force in a non-inertial nu-
clear rotating frame (which was realized long ago)34,35.
Unfortunately, however, extending this Coriolis-type cou-
pling to a complete understanding of spin-chiral phonons
has failed for two reasons. First, a Coriolis-type cou-
pling is usually restricted by theorists to pure rotational
motion, whereas nuclei may also undergo translational
and vibrational motions simultaneously. Second, for
spin-related problems, multiple electronic states are of-
ten close in energy, making other non-adiabatic effects as
significant as (or likely much more significant than) elec-
tronic inertia effects. Overall, there is a strong need to
develop new computational tools that extend the Corio-

lis force to realistic molecules and allow for ab initio dy-
namics simulations capable of quantitatively handling the
electronic inertia effects over a broad range of systems,
all the way from small molecules to clusters or layers of
materials with spin-orbit coupling. Note that, in the con-
text of BO dynamics, one has to include an extra nuclear
Berry force to conserve the total angular momentum36;
and in the context of Ehrenfest dynamics, one important
correction already derived by Takatsuka37 and Krishna38

is that a non-Abelian Berry Curvature must be added to
the nuclear dynamics, which is essential for maintaining
momentum conservation39.

B. Electronic inertial effects from a standard surface
hopping perspective

Although surface hopping simulations have histori-
cally been applied to study static correlation problems
(with strong non-adiabatic effects in localized regions)
rather than dynamic correlation problems (with weak
non-adiabatic effects in delocalized regions), the theoret-
ical chemistry community has already indirectly learned
quite a lot about electronic inertial effects within the con-
text of a Tully’s surface hopping calculation in a basis of
BO states. Within the surface hopping scheme40, one
propagates classical nuclear trajectories on a single (ac-
tive) electronic potential energy surface (here labeled by
j):

Ṙ =
P

M
, (4)

Ṗ = −∇REj , (5)

and propagates quantum electronic amplitudes {cj}
for each nuclear trajectory according to the electronic
Schrodinger’s equation:

ċj = −
i

ℏ
Ejcj −

∑

k

Ṙ · djkck. (6)

Here, we define the derivative coupling vector as djk =
ïϕj |∇R |ϕkð. Nuclear trajectories stochastically hop to
another surface (say, k) with rate

gj→k = max

[

2∆tRe

(

Ṙ · djk

Äkj
Äjj

)

, 0

]

(7)

based on their electronic amplitudes. Here ∆t is the dis-
crete propagation time interval and Äjk = cjc

∗

k.
At this point, a straightforward question arises: Are

electronic inertia effects incorporated in the surface hop-
ping approach? At first glance, the answer appears to
be no, because classical nuclei move on BO adiabatic
surfaces for standard surface hopping dynamics (and
BO theory ignores electronic inertia as described above).
Nevertheless, it is well known that, if one runs a trajec-
tory where all atoms translate together, surface hopping
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will still predict a nonzero hopping rate. Physically, a hop
is predicted because, even if all of the atoms are translat-
ing together, there is no guarantee that the electrons are
translating; and after all, the electrons have some inertia.
Thus, surface hopping would seem to include electronic
inertial effects to some extent. Mathematically, all of this
is summed up by the fact that the derivative coupling is
nonzero in the direction of a translation:

∑

I

dI³jk ̸= 0, (8)

where I represents the atomic index and ³ = x, y, z labels
a Cartesian direction. Note that a similar condition holds
for rotations,

∑

I´µ

ϵ³´µR
I´dIµjk ̸= 0. (9)

so that pure rotations can also lead to non-adiabatic tran-
sitions (and again there must be some electronic inertial
effects).

Now, ironically, almost all previous work in semiclassi-
cal surface hopping calculations has sought to remove any
trace of electronic inertial effects from a non-adiabatic
simulation41,42. After all, for an isolated atom, it is easy
to show that there is no hopping if one removes the center
of mass coordinate, suggesting that any hop must be su-
perfluous. Finally, at the time of a hop, it is well known
that the nuclear momentum should be rescaled along the
direction of the derivative coupling vector. However, it
was long ago noticed that, according to Eq. 8 and Eq. 9,
when hopping, such momentum rescaling will not con-
serve the total nuclear linear and angular momentum for
a single trajectory. For all of these reasons, most chemists
have imagined that inertial effects must be something of
an annoyance when it comes to surface hopping and non-
adiabatic dynamics. In fact, over the last thirty years,
simple methods have been derived (including by one of
the authors43–45) to remove the translational and rota-
tional parts of the derivative coupling vector by intro-
ducing electron translation factors (ETF) and electron
rotation factors (ERF):

djk → djk − djk,ETF − djk,ERF (10)

By projecting away the messier parts of the derivative
coupling, one would seemingly restore nuclear momen-
tum conservation at a hop, forbid hopping from pure
molecular rotations and translations, and effectively elim-
inate any and all electronic inertia effects.

C. Path Forward and Outline

In retrospect, and with a clear vision of electronic iner-
tial effects now more apparent, all of the attempts above
to correct surface hopping now appear quite misguided.
These approaches disregard important electronic inertial

effects. And at the end of the day, surface hopping still
runs along BO state and thus incorrectly conserves the
nuclear (but not total) linear and angular momentum,
a failure which is especially important for time-reversal
and spin symmetry breaking systems36. If one wishes to
improve upon Tully’s surface hopping algorithm, clearly
a new paradigm is needed (and with an eye on how to
include electronic inertial effects).

To that end, in this paper, we will explore a recently
proposed semiclassical phase-space formalism that pa-
rameterizes the electronic Hamiltonian by nuclear mo-
mentum and position, ĤPS(R,P ), going beyond the BO
formalism (where the electronic Hamiltonian is param-

eterized by position alone, ĤBO(R)). We will show
that such an approach for simulating real-time dynamics
can correctly account for electronic inertia effects. This
phase-space formalism can furthermore be easily merged
with semiclassical non-adiabatic dynamics algorithms,
creating a phase-space surface hopping approach that
is applicable in both strongly and weakly non-adiabatic
limits (or, in the language of quantum chemistry, sys-
tems with static or dynamic electron-nuclear correla-
tions). Moreover, this phase-space approach adds only a
small computational costs to a Hartree-Fock (HF) or den-
sity functional theory (DFT) calculation using a linear
combination of atomic orbitals (LCAOs), which should
allow for first-principles calculations for realistic-sized
systems. As such, the present paper should serve as a
strong endorsement of a phase-space approach to elec-
tronic structure theory and a reminder that electronic
structure packages should not fear to go beyond the BO
approximation.

The paper is organized as follows: In Sec. II, we re-
view the phase-space approach and highlight how and
why one can and should build an electronic Hamilto-
nian parameterized by both R and P . In Sec. III, we
then demonstrate that phase-space methods account for
electronic inertial effects insofar as the method prevents
an unphysical non-adiabatic transition when a molecular
system undergoes pure translations and rotations (unlike
the case of standard BO surface hopping). In Sec. IV, we
next provide several numerical examples in model molec-
ular systems to support our theory. Finally, in Sec. V, we
discuss future applications and directions for the phase-
space approach.

II. REVIEW OF THE SEMICLASSICAL PHASE-SPACE
SURFACE HOPPING APPROACH

A. History

The idea of semiclassical phase-space surface hop-
ping formalism originates with Berry’s superadiabatic
basis46,47. For a time-dependent Hamiltonian Ĥ(t), the
system wavefunction can be expressed in the (zeroth-
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order) adiabatic basis:

|Ψ(t)ð =
∑

j

c0j (t)
∣

∣È0
j (t)

〉

(11)

where

Ĥ(t)
∣

∣È0
j (t)

〉

= E0
j (t)

∣

∣È0
j (t)

〉

. (12)

Then the time-dependent Schrodinger’s equation in the
zeroth-order adiabats can be written as:

ċ0j = −
i

ℏ
E0

j c
0
j −

∑

k

Tjkc
0
k. (13)

where

Tjk =
〈

È0
j

∣

∣

d

dt

∣

∣È0
k

〉

. (14)

Berry proposed that one can diagonalize the zeroth-order
time-dependent Hamiltonian

H1
jk(t) = E0

k¶jk − Tjk (15)

to generate first-order adiabats:

Ĥ1(t)
∣

∣È1
j (t)

〉

= E1
j (t)

∣

∣È1
j (t)

〉

. (16)

This diagonalization can then be performed iteratively
again and again to generate even higher-order adiabats.
In principle, motion along a superadiabatic basis should
reduce the number of non-adiabatic transitions.

In 2008, Shenvi48 took a big step forward by suggest-
ing that one could run Tully’s non-adiabatic surface hop-
ping algorithm along superadiabats instead of the usual
adiabatic (Born-Oppenheimer) states. In the language
of Berry, Shenvi suggested a phase-space surface hop-
ping (PSSH) formalism along eigenstates of Berry’s first-
order adiabatic Hamiltonian (the zeroth-order basis cor-
responding to BO coordinate-space adiabats). Mathe-
matically, the first-order adiabatic Hamiltonian (or what
we now call simply a phase-space Hamiltonian) can be
written as:

HPS,jk(R,P ) = Ej +
∑

l

(P ¶jl − iℏdjl)(P ¶lk − iℏdlk)

2M
.

(17)
and depends on both classical nuclear coordinates and
momentum. Diagonalizing the phase-space Hamiltonian
leads to phase-space adiabats:

ĤPS

∣

∣ÈPS
j (R,P )

〉

= EPS
j (R,P )

∣

∣ÈPS
j (R,P )

〉

, (18)

Shenvi suggested running nuclear dynamics based on
Hamiltonian’s equations of motion along these surfaces:

Ṙ = ∇PE
PS
j , (19)

Ṗ = −∇RE
PS
j , (20)

and propagating the electronic amplitudes (for surface
hopping) as well along these same phase-space adiabats:

ċj =
∑

k

−
i

ℏ

〈

ÈPS
j

∣

∣

(

Ĥel − iℏ
d

dt

)

∣

∣ÈPS
k

〉

ck. (21)

As explained by Tully originally40, for surface hopping
dynamics, the algorithm that minimizes the number of
hops is usually the most accurate49; hence the name,
“fewest switches surface hopping”. The same urge to min-
imize the number of hops applies equally well to the elec-
tronic basis: if one can find a basis where non-adiabatic
transitions strictly vanish, then the proposed coupled
nuclear-electronic dynamics can be simulated with only
one surface without any unnatural hopping. One might
hope that such a process would reach the exact factor-
ization limit.50 For this reason, given the construction of
the phase-space basis, Shenvi had strong hopes that the
PSSH algorithm would revolutionize our framework for
understanding non-adiabatic motion. However, in prac-
tice, Shenvi’s PSSH suffers from three problems. First,
propagating nuclear dynamics on phase-space adiabats is
expensive, as it requires one to calculate derivatives of the
derivative couplings when evaluating a nuclear force at
each time step. Second, the algorithm is not numerically
stable because the phase-space adiabatic energy diverges
in the vicinity of conical intersections. Third and finally,
the derivative coupling is not well-defined when the adia-
batic surfaces are degenerate, so the algorithm cannot be
applied to problems with spin and Kramers’ degeneracy.
Therefore, despite its conceptual strengths and empiri-
cal successes in several model Hamiltonians51, as far as
we are aware, the phase-space Hamiltonian in Eq. 17 has
never been implemented for first principle simulations.

B. A new phase-space electronic Hamiltonian

Following Berry’s seminal work on superadiabats and
Shenvi’s surface hopping approach, we have now demon-
strated that one can build several classes of phase-space
electronic Hamiltonians with different approximations
for the derivative coupling in Eq. 1752, and all in such
a way that the approximated derivative coupling can be
included prior to diagonalization (so that there is only
one diagonalization, as in standard BO theory). These
approaches have already led to promising results in the
calculations of vibrational circular dichroism spectrum53

as well as better vibrational energies in systems with
“heavy” electrons and/or “light” nuclei54.

To define our new phase-space Hamiltonian, let us con-
sider a mean-field LCAO-based electronic structure rou-
tine where the electronic Hamiltonian (or the Fock oper-
ator) can be expressed by a set of one-electron AO basis
|µð , |¿ð with matrix elements:

Hel,µ¿ = ïµ| Ĥel |¿ð . (22)
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5

In such framework, a simple guess for the phase-space
electronic Hamiltonian is:

HPS,µ¿ = Hel,µ¿ +
∑

Ã

(P ¶µÃ − iℏΓµÃ)(P ¶Ã¿ − iℏΓÃ¿)

2M
.

(23)

where Γµ¿ = ïµ| Γ̂ |¿ð is the key quantity representing
the approximate “derivative coupling” introduced in the
Hamiltonian. Then, by solving the phase-space electronic
Hamiltonian in Eq. 23, one can obtain the phase-space
adiabatic molecular orbitals (MO):

∑

¿

HPS,µ¿ϕj¿ =
∑

¿

EPS
j Sµ¿ϕj¿ (24)

where Sµ¿ = ïµ|¿ð represents the overlap matrix between
AO basis and ϕj¿ represents the MO coefficient.

In practice, a flowchart for phase-space surface hop-
ping is then very straightforward. Just as in FSSH, one
initializes a trajectory with a given set of electronic am-
plitudes {cj} and a classical position and momentum
(R,P ). Thereafter, one propagates the nuclei according
to Eqs 19-20, and the electrons according to Eq. 25,

ċj =
∑

k

−
i

ℏ

〈

ÈPS
j

∣

∣

(

Ĥel − iℏ
d

dt

)

∣

∣ÈPS
k

〉

ck

=
∑

k

−
i

ℏ

(

HPS
jk − iℏTPS

jk

)

ck.

(25)

Here HPS
jk =

〈

ÈPS
j

∣

∣ Ĥel

∣

∣ÈPS
k

〉

represents the standard
electronic Hamiltonian evaluated in a phase-space adi-
abatic basis; note this this matrix is not diagonal (as the
phase space adiabats differ from the BO adiabats that di-
agonalize Ĥel). The phase-space time-derivative matrix

TPS
jk =

〈

ÈPS
j

∣

∣

d

dt

∣

∣ÈPS
k

〉

(26)

can be efficiently calculated using various methods al-
ready developed.55–58.

We would then posit that the hopping rate would be
(as compared with Eq. 7):

gj→k = max

[

2∆tRe

((

−
i

ℏ
HPS

jk + TPS
jk

)

Äkj
Äjj

)

, 0

]

(27)
By defining the phase-space positional derivative cou-
pling djk =

〈

ÈPS
j

∣

∣∇R

∣

∣ÈPS
k

〉

, the rescaling direction is

chosen to be the direction Re
(

(djk · P )d∗

jk

)

from which

one can prove that a hop does not change the total lin-
ear or angular momentum of a given system (to the ℏ

2

order)59,60. Note that, for a several model problems in
the literature (where one can guess the correct form of
the phase-space Hamiltonian61,62), this approach gives
quantitatively accurate results. Future work will neces-
sarily need to perform further benchmarks on non-model
systems. For the present paper, however, our focus is to
analyze the nature of such a hopping procedure for the

most obvious cases: a translating system and a rotating
system.

To quantify the effect of such bulk motion vis a vis
hopping, the key is to define and analyze the proper Γ̂

operator.

1. Translations

Clearly, one intuitive choice for Γ̂ is to use the deriva-
tive between AO basis vectors:

Γµ¿
?
= dµ¿ = ïµ|∇R |¿ð . (28)

After all, if the evolution of AO basis functions is ac-
counted for, one effectively solves the electronic Hamil-
tonian in a nuclear moving frame63 where electronic in-
ertia effects should not exist. Unfortunately, however,
there are two problems making Eq. 28 not practical, and
these need to be addressed.

The first problem is that dµ¿ is not anti-symmetric due
to the non-orthonormality of AO basis. The phase-space
Hamiltonian is therefore not strictly Hermitian and be-
comes problematic to solve numerically. To fix this prob-
lem, we can choose to anti-symmetrize the AO derivative
coupling by considering:

Γ
′

µ¿ =
dµ¿ − d∗

¿µ

2
. (29)

Note that Γ
′
µ¿ = dµ¿ when µ and ¿ are orbitals local-

ized on the same atom. Furthermore, one can show that
the anti-symmetric component Γ

′
µ¿ carries the relevant

information of a basis evolving by molecular translation
(see Appendix A). More importantly, it is easy to show
that Γ

′
µ¿ satisfies:

∑

I

−iℏΓ
′I³
µ¿ + ïµ| p̂³e |¿ð = 0, (30)

which represents an important property for a derivative
coupling-like term. The condition in Eq. 30 is a direct
consequence of enforcing the phase convention64:

(

P̂n + p̂e

)

|µð = 0, (31)

which states mathematically that the AO basis moves
together with nuclear position.

2. Rotations

A second problem arises during molecular rotations.
In principle, one would like to have a similar phase con-
vention for rotations as in Eq. 3164

(

Ĵn + Ĵe

)

|µð = 0. (32)

However, the AO basis in a typical electronic structure
calculation is defined in the lab frame such that the basis
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functions do not rotate with the nuclei when the molecule
is rotating. Here, in order to capture also the effects of
evolving basis during rotations, our solution is to con-
struct an extra term:

Γµ¿ = Γ
′

µ¿ + Γ
′′

µ¿ , (33)

by enforcing the convention in Eq. 32, i.e.
∑

I´µ

−iℏϵ³´µR
I´ΓIµ

µ¿ + ïµ| Ĵ³
e |¿ð = 0. (34)

Note that the translation condition in Eq. 30 must still
be satisfied when including the Γ

′′ term
∑

I

−iℏΓI³
µ¿ + ïµ| p̂³e |¿ð = 0, (35)

In Appendix B, we give an explicit formula for a Γ
′′
µ¿

matrix so that the total Γµ¿ matrix satisfies Eq. 34 and
Eq. 35.

3. A basis-free formulation

While the phase-space electronic Hamiltonian ap-
proach described above (in Eqs. 23 and 33) relies on an
AO basis implementation, it is crucial to emphasize that
the entire approach can in fact be extended to a com-
pletely basis-free formulation that does not depend on
the specific properties of the AO basis65. In this basis-
free formulation, the Γ̂ operator is defined by partitioning
all of three-dimensional space according to the molecular
geometry and masses of each nuclei. For concreteness,
such a formulation is reviewed in the Appendix C.

Most importantly, in a basis-free implementation, the
translational and rotational properties of the matrix ele-
ments in Eqs. 34 and 35 are enforced for the entire Γ̂ op-
erator in the same manner. In other words, in a basis-free
implementation of a phase-space electronic Hamiltonian,
the Hamiltonian takes the form

ĤPS = Hel +
(P − iℏΓ̂)2

2M
. (36)

and the Γ̂ operator satisfies:
∑

I

−iℏΓ̂I³ + p̂³e = 0, (37)

∑

I´µ

−iℏϵ³´µR
I´Γ̂Iµ + Ĵ³

e = 0. (38)

As we will show below, Eqs. 37 and 38 (or AO basis
equivalence Eqs. 34 and 35) are the only constraints
that we need to hold in order to find cancellation of non-
adiabatic transitions under rotations and translations.
Although the basis-free formulation represents a more
general (and numerically more stable) approach to the
phase-space electronic Hamiltonian, in this manuscript,
we will use the AO implementation for our results (which
are quite easy to apply for very small systems).

C. Successes

Before concluding this section, let us make several re-
marks regarding the phase-space Hamiltonian in Eq. 23:

• First, the phase-space Hamiltonian in Eq. 23 is
computationally efficient (unlike Eq. 17). The
Hamiltonian differs from the zeroth-order elec-
tronic Hamiltonian only by terms involving one-
electron integrals Γµ¿ , and adding a one-electron
term introduces only a small (relative) additional
cost for typical electronic structure calculations.
Note that this framework can also be straightfor-
wardly extended to excited-state methods, such as
configuration interaction and multireference meth-
ods.

• Second, the operator ĤPS is always well-defined,
i.e., constructing this operator requires knowledge
of only the molecular geometry and the AO basis
(and, in the basis-free version, one does not require
knowledge of the AO basis either). In particular,
the Hamiltonian is well-defined even in the pres-
ence of both globally degenerate states and/or lo-
calized curve crossings; the algorithm never blows
up (unlike Eq. 17 which invokes the true derivative
coupling).

• Third, the new phase-space Hamiltonian is phys-
ically meaningful and incorporates how localized
AO basis evolve with moving nuclei during atomic
translations and rotations. As one would inevitably
desire, the Hamiltonian depends only the rela-
tive (not absolute) position and orientation of the
molecule. Mathematically, this fact is summed up
by the fact the operator Γ̂ satisfies

Γµ¿(R0) = Γµ¿(R0 +∆R) (39)

and

ΓRµR¿(RR0) = RΓµ¿(R0). (40)

where ∆R represents a constant translation on all
nuclei and R represents a rotation operator in real-
space. In a basis-free formulation, translational in-
variance can be expressed as

Γ̂(R, r̂, p̂, ŝ) = Γ̂(R+∆R, r̂ +∆R, p̂, ŝ) (41)

and rotational invariance can be expressed as

Γ̂(RR,Rr̂,Rp̂,Rŝ) = RΓ̂(R, r̂, p̂, ŝ) (42)

• Fourth, using Eqs. 37, 38, 39 and 40, it is not dif-
ficult to prove that dynamics along a phase-space
adiabatic surface conserve the total (nuclear + elec-
tronic) linear and angular momentum.52
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• Fifth, in the case of a single hydrogen atom, the
phase-space Hamiltonian exactly reproduces the re-
sults from solving the electronic Hamiltonian in
the molecular (electron + nucleus) center of mass
frame, further suggesting that it provides more ac-
curate solutions than the BO approximation.54

III. MOLECULAR TRANSLATION AND ROTATIONS IN
THE CONTEXT OF PHASE-SPACE SURFACE HOPPING

Let us now discuss non-adiabatic transitions within the
phase-space formalism, which is the central goal of this
article. For this discussion, there is no need to worry
about whether we work with single electronic states or
many body states; all we need are the general equations
in Eqs. 37, 38 to make the point. Let us imagine that we
diagonalize a phase-space Hamiltonian to generate a set
of states {|Èjð}, so-called phase-space adiabatic states:

ĤPS |Èjð = Ej |Èjð . (43)

Within a surface hopping framework, non-adiabatic
transitions are described by the changes in quantum elec-
tronic amplitudes along a classical nuclear trajectory.
The time evolution of the quantum amplitudes follows
Eq. 6, such that:

∂cj
∂t

=
∑

k

−
i

ℏ
ïÈj |

(

Ĥel − iℏ
d

dt

)

|Èkð ck (44)

= −
i

ℏ
Ejcj −

∑

k

i

ℏ
ïÈj |

(

Ĥel − ĤPS

)

|Èkð ck (45)

−
∑

k

(

Ṙ · ïÈj |∇R |Èkð+ Ṗ · ïÈj |∇P |Èkð
)

ck.

The second term in Eq. 45 can be further expressed as:

−
∑

k

i

ℏ
ïÈj |

(

Ĥel − ĤPS

)

|Èkð ck

=
∑

k,l

(

P

M
· Γjk − iℏ

Γjl · Γlk

2M

)

ck.

(46)

where Γjk = ïÈj | Γ̂ |Èkð.

A. Translations

Consider now a molecular translation where the nu-
clear velocity ṘI³ is a constant for all nuclei I along di-
rection the ³, and where the acceleration should remain
zero, i.e, Ṗ I³ = 0. According to Eq. 41, the phase-space
Hamiltonian is translationally invariant. From the trans-
lational invariance of the subsequent phase-space adia-
bats |Èjð, i.e.,

ïÈj |
(

P̂n + p̂e

)

|Èkð = 0, (47)

the third term on the right hand side of Eq. 45 can be
rewritten as:

−
∑

kI³

(

ṘI³ ïÈj |∇RIα |Èkð+ Ṗ I³ ïÈj |∇P Iα |Èkð
)

ck

=
i

ℏ

∑

kI³

ṘI³ ïÈj | p̂
³
e |Èkð ck.

(48)
At this point, we can plug Eq. 37 into Eq. 46, so that the
first term on the right of Eq. 46 becomes

∑

I³

P I³

M
ΓI³
jk = −

i

ℏ

∑

I³

ṘI³ ïÈj | p̂e |Èkð (49)

Clearly, Eq. 48 cancels Eq. 49. Thus, according to Eq.
45, Ä̇jj = 0+O(ℏ); in other words, there is no change of
the population on electronic state j to the zeroth-order
in ℏ. Note that we have assumed P I³/M = ṘI³ in
Eq. 49. Clearly, this equality which is not strictly true
in the phase-space formalism, but these two quantities
differ only by first and higher order ℏ terms, so that the
conclusion above still holds.

B. Rotations

Let us next turn to the case of molecular rotations. For
a molecule undergoing a rigid rotational motion with a
constant angular velocity ω, one can express the nuclear
momentum of the I-th atom as:

P I

M
= ω ×RI . (50)

Within an AO basis formulation, the first-order Γ term
in the phase-space Hamiltonian Eq. 23 can be easily put
into a familiar form:

−iℏ ïµ|
P

M
· Γ̂ |¿ð = −iℏ

∑

I

(

ω ×RI
)

· ïµ| Γ̂I |¿ð

= −iℏ
∑

I

ω ·
(

RI × ïµ| Γ̂I |¿ð
)

= −ω · ïµ| Ĵe |¿ð ,

(51)

Here, we have used the rotational invariant condition for
Γ̂ in Eq. 34. We find that the Γ̂ · P term recovers the
Coriolis-type coupling in Eq. 3 (in AO basis) which arises
from the electronic inertia effects in rotating molecules,
as suggested in Ref. 31,34,35.

Consider now the very general case of a rigid molecular
rotation. Similar to Eq. 50, for rigid molecular rotations
with angular speed ω, we express the change of nuclear
momentum as:

Ṗ I =M(ω × ṘI) = ω × P I . (52)

Then, we can rewrite the third term on the right hand
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side of Eq. 45 as:
∑

I

(

ṘI · ïÈj |∇RI |Èkð+ Ṗ I · ïÈj |∇P I |Èkð
)

=
∑

I

(ω ×RI) · ïÈj |∇RI |Èkð+ (ω × P I) · ïÈj |∇P I |Èkð

=
∑

I

ω ·
(

RI × ïÈj |∇RI |Èkð) + P I × ïÈj |∇P I |Èkð
)

= −
i

ℏ

∑

I

ω · ïÈj | Ĵe |Èkð .

(53)
Here, we have used the rotational invariance of the phase-
space Hamiltonian (from Eq. 42) which leads to rotation-
ally invariant phase-space adiabats satisfying:

ïÈj |

(

∑

I

RI ×−iℏ∇RI + P I ×−iℏ∇P I + Ĵe

)

|Èkð = 0.

(54)
Lastly, for the first term in Eq. 46, we have

∑

I

P I

M
· ΓI

jk = −
i

ℏ

∑

I

ω ·
(

RI × Γ
I
jk

)

= −
i

ℏ

∑

I

ω · ïÈj | Ĵe |Èkð .

(55)

Again, if we plug Eq. 53 and Eq. 55 into Eq. 45, we find
that non-adiabatic transitions vanish to first order in ℏ

for a rigid molecular rotation.
The cancellation of non-adiabatic transitions under

phase-space adiabatic basis during molecular translations
and rotations reveals the power of a phase-space ap-
proach. In the context of surface hopping dynamics,
fewer non-adiabatic transition almost always indicates
better results.

IV. NUMERICAL EXAMPLES

In this section, we present numerical examples to illus-
trate our theory above.

A. Traveling H-atom

We begin with the simplest case of a traveling hydrogen
atom. We initialized the hydrogen atom on its ground
1s state with a translational nuclear velocity of Ṙ = 1
atomic unit (au) along the z-direction. For the electronic
part, we truncated the electronic Hilbert space to include
only the lowest five adiabatic electronic states (the exact
1s, 2s and 2p atomic orbitals). We then propagated the
electronic Schrodinger equation both in an adiabatic ba-
sis and a phase-space adiabatic basis (defined by Eq. 43),
following Eq. 6 and Eq. 44, respectively. For the nuclear
part, we employed the classical path approximation, as-
suming that the nuclear motion remains constant during
propagation.

0 5 10 15 20

t/a.u.

0.00

0.25

0.50

0.75

1.00

P

Adiabats

|c1s|
2 |c2s|

2 |c2px
|2 |c2pz

|2 |c2py
|2

0 5 10 15 20

t/a.u.

0.00

0.25

0.50

0.75

1.00

P

Phase-space Adiabats

|cPS
0 |2 |cPS

1 |2 |cPS
2 |2 |cPS

3 |2 |cPS
4 |2

(a)

(b)

FIG. 1. Electronic amplitudes for a hydrogen atom moving
along the z-direction with a constant momentum of Ṙ = 1 au
in (a) the adiabatic basis and (b) the phase-space adiabatic
basis.

We plot the electronic amplitudes in the adiabatic ba-
sis in Fig. 1(a). As expected, the electronic amplitudes
oscillate dramatically between the 1s and 2pz atomic adi-
abatic states due to the non-zero derivative coupling be-
tween them. In Fig. 1(b), in contrast, the electronic am-
plitude in the phase-space adiabatic basis remain con-
stant during propagation.

B. Spin-Free Rigid Rotations of H+

2

Let us next consider the case of rigid rotations, focus-
ing on a simple example: a H+

2 molecule. We employ
the cc-pVDZ basis set for the H+

2 molecule and place the
molecular ion in the xy-plane. We let the molecule ro-
tate around the z-axis with a constant angular velocity
of É = 1 au. During the nuclear propagation, we keep
the bond length a constant R = 2 au to eliminate rovi-
brational couplings.

In Fig. 2(a), we plot the electronic amplitudes in the
adiabatic basis for the rigid rotating trajectory. The
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oscillating behavior of the adiabatic electronic ampli-
tudes indicates continuous non-adiabatic transitions. In
Fig.2(b) and (c), we present the electronic amplitudes in

the phase-space adiabats, considering only Γ̂
′ and both

Γ̂
′ and Γ̂

′′ in the phase-space Hamiltonian. We find that
including only the translational Γ̂′ term does not elimi-
nate the non-adiabatic transitions; it is necessary to also
account for the rotation of atomic orbitals with respect
to nuclear motion by considering the Γ̂

′′ term.

C. Rotations and Spin

Finally, let us turn to the case with electronic spin. To
couple the spin DoFs with nuclei and electrons, we have
included a one-electron Breit-Pauli spin-orbit coupling
(SOC) operator in the electronic Hamiltonian:

ĤSO =
¼³2

0

2

∑

I

ZI

|r̂ −RI |3
(

(r̂ −RI)× p̂)
)

· ŝ. (56)

with an additional parameter ¼ = 104 to amplify the
strength of the SOC. We initialized the H+

2 molecule on
the ground spin-adiabatic state with the spin pointing
towards x direction. Then we propagated electronic am-
plitudes with the same rigid rotational nuclear trajectory
as in Fig. 2. In Fig. 3(a), we show that the electronic am-
plitudes fluctuate in the spin-adiabatic basis as expected.
In contrast, in Fig. 3(b), the amplitudes in phase-space
adiabatic basis remain constant. In Fig. 3(c), the time-
dependent spin expectation values indicate how the spin
vector is “rotating” with nuclear motion.

0 5 10 15 20

t/a.u.

0.00

0.25

0.50

0.75

1.00

P

Adiabats

0 5 10 15 20

t/a.u.

0.00

0.25

0.50

0.75

1.00

P

Phase-space Adiabats (Γ′)

0 5 10 15 20

t/a.u.

0.00

0.25

0.50

0.75

1.00

P

Phase-space Adiabats (Γ′+Γ
′′)

|c0|
2

|c1|
2

|c2|
2

|c3|
2

|c4|
2

|c5|
2

|c6|
2

|c7|
2

|c8|
2

|c9|
2

(a)

(b)

(c)

FIG. 2. Electronic amplitudes of an H
+

2 molecule during rigid
rotational motion with a constant angular velocity of ω = 1

au in (a) the adiabatic basis, (b) the phase-space adiabatic

basis with only the Γ̂
′ contribution, and (c) the phase-space

adiabatic basis with both Γ̂
′ and Γ̂

′′ contributions
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2

0 5 10 15 20
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Phase-space Adiabats

|cPS
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2 |2 |cPS
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−0.50

−0.25

0.00

0.25

0.50

〈Ŝ
〉

Spin Expectation Value

〈Ŝx〉 〈Ŝy〉 〈Ŝz〉

(a)

(b)

(c)

FIG. 3. Electronic amplitudes of an H
+

2 molecule with the
same nuclear trajectory as in Fig. 2 in (a) the spin-adiabatic
basis and (b) the phase-space adiabatic basis, considering
spin-orbit coupling. The expectation value of the spin is plot-
ted in (c). In (a) and (b) only five most populated states are
shown in the legends.

These results are very encouraging because non-
adiabatic effects can be very important when consider-
ing spin DoFs. For example, for the H+

2 molecule dis-
cussed above (a system with an odd number of elec-
trons), the spin-adiabats are at least two-fold degenerate
according to Kramers’ theorem. In such case, when the
SOC is strong and the molecule is rotating (as shown in
Fig. 3(a)), the expectation value of the spin must change
physically, and within a surface hopping picture, this
change must be represented in a basis of spin-adiabats
that is also rotating and changing. Propagating such
dynamics effectively is difficult for two reasons. On the
one hand, to maintain angular momentum conservation,
one would like to invoke a Berry force but defining the
on-diagonal Berry curvature within a pair of Kramers’
degenerate surfaces requires an artificial gauge that can
affect our results. On the other hand, it is unclear how to
surface hop non-adiabatically between degenerate states
in a unique way and we certainly want to avoid many
hops back and forth; usually, fewer hops is better40.
Thus, a phase-space approach allows one to avoid many
of the pitfalls of degeneracy that plague the surface hop-
ping algorithm66–68.

0.00 0.02 0.04 0.06 0.08 0.10

ω/a.u.

−1.20

−1.15

−1.10

−1.05

−1.00

E
/

a.
u

.

EPS
0

EPS
1

FIG. 4. The lowest two phase-space energy surfaces as a func-
tion of angular speed ω for a H

+

2 under rigid rotational motion.

To emphasize just how strongly the phase-space for-
malism avoids the gauge problem, in Fig. 4, we plot the
lowest two phase-space adiabatic energies as functions of
angular speed É for the H+

2 molecule. Note that Kramers’
degeneracy is lifted at non-zero nuclear velocities due to
the Coriolis type coupling introduced in our phase-space
formalism. Thus, single surface dynamics is straightfor-
ward in this formalism (and meaningful because one con-
serves angular momentum), and there is no problem ap-
plying a surface hopping algorithm.
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V. DISCUSSION AND CONCLUSIONS

In this work, we have demonstrated, both analyti-
cally and numerically, the effectiveness of our new phase-
space formalism in capturing electronic inertial effects
across several molecular model systems. The semiclas-
sical phase-space electronic Hamiltonian approach offers
a new perspective on the fundamental translational and
rotational motions of molecules, laying a solid founda-
tion for its application to more complex real-time, non-
adiabatic molecular dynamics. Furthermore, in a recent
paper, we have shown that this phase-space approach also
accurately captures electronic inertia effects in molecular
vibrations, yielding significantly improved vibrational en-
ergy prediction54. Given these successes, we believe the
phase-space approach has the potential to replace tradi-
tional semiclassical BO approaches in the near future.

Now, for the reader well versed in nonadiabatic dynam-
ics and surface hopping, we must be clear in our assess-
ment of the algorithm. On the one hand, our hope is the
present algorithm can treat subtle problems long ignored
by FSSH, in particular linear and angular momentum
conservation, electronic inertia effects, and gauge prob-
lems when spin DoF and degeneracy are present. On the
other hand, we must emphasize that the present approach
cannot ameliorate the more well-known failures of FSSH,
i.e. the decoherence problem and the questions of veloc-
ity reversal and forbidden hops. For these problems, one
will still need to implement solutions in the literature69–71

(e.g., our group has developed the A-FSSH approach for
decoherence)72 . It is possible that certain corrections
will work better for PSSH versus FSSH (or vice versa),
but we would venture such a scenario is unlikely – after
all, the PS surfaces are still very similar to the BO sur-
faces. In any event, much more empirical data will be
needed. As a sidenote, we mention that a phase-space
approach to Ehrenfest data has also be been presented
in Ref. 59; future benchmarking will also be necessary
to test such an algorithm for future Ehrenfest-like non-
adiabatic approaches73–76.

Looking forward, there are many exciting directions
that we aim to apply our phase-space approach to,
where electronic inertia effects could play a significant
role, especially in the condensed phase. First, as men-
tioned in the introduction, one clear application is the
spin-phonon problem, where our phase-space approach
could be used to study the angular momentum trans-
fer between nuclei and electrons through real-time non-
adiabatic dynamics. Second, the semiclassical phase-
space approach can be extended to more general electron-
phonon problems77, as it offers a more accurate descrip-
tion of non-adiabatic effects. Such studies could indeed
provide insight into the role of non-adiabatic effects in
phenomena like superconductivity78. Third and finally,
by integrating the semiclassical phase-space formalism
with surface hopping algorithms, we can explore electron
transfer problems that involve spin DoFs. These sim-
ulation could offer a microscopic understanding of the

chiral-induced spin selectivity (CISS) effect79–81 poten-
tially resolving long-standing questions in this area.
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Appendix A: Molecular translations and the anti-Hermitian
part of dµν

Let us consider a molecule at position R, where the
overlap matrix elements between two AO basis functions
are given by:

Sµ¿(R) = ïµ(R)|¿(R)ð . (A1)

Now, suppose all nuclei in the molecule are translated
by a displacement dR. We can expand the AO basis
functions to first order with respect to this displacement
as:

|µ(R+ dR)ð = |µ(R)ð+

∣

∣

∣

∣

∂µ(R)

∂R

〉

·∆R (A2)

Thus, the overlap matrix at the translated position R+
∆R becomes (to the first order):

Sµ¿(R+∆R) = Sµ¿(R) +
(

dµ¿ + d∗
¿µ

)

·∆R. (A3)

Since the overlap matrix elements should remain un-
changed under pure molecular translations, we have the
condition:

Sµ¿(R+∆R) = Sµ¿(R). (A4)

which implies the following relation:
∑

I

dI
µ¿ + dI∗

¿µ = 0. (A5)

If we express the total derivative coupling between the
AO basis in terms of its Hermitian and anti-Hermitian
components, i.e., (dµ¿ + d∗

¿µ)/2 and (dµ¿ − d∗
¿µ)/2, it

becomes clear that only the anti-Hermitian component
is relevant during molecular translations (Eq. 29).

Appendix B: Explicit definitions of the Γ
′′ term in AO basis

As stated in the main text, including only the anti-
Hermitian components of the AO derivative coupling Γ

′

is insufficient for describing molecular rotations; an addi-
tional ERF correction term Γ

′′ must also be considered
for conservation of angular momentum. The explicit def-
inition for Γ′′ that we employ can be expressed in an AO
basis as:

Γ
′′A
µ¿ = ·Iµ¿

(

RI −R0
µ¿

)

×
(

K−1
µ¿ Jµ¿

)

, (B1)
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where we assume µ and ¿ are AO basis centered around
J and K, and

·Iµ¿ = exp

(

−¸
2|(RI −RJ)|2|(RI −RK)|2

|(RI −RJ)|2 + |(RJ −RK)|2

)

, (B2)

R0
µ¿ =

∑

I

·Iµ¿R
I/
∑

I

·Iµ¿ , (B3)

Kµ¿ = −
∑

I

·Iµ¿
(

(RI −R0
µ¿)

¦(RI −R0
µ¿)
)

I

+
∑

I

·Iµ¿(R
I −R0

µ¿)(R
I −R0

µ¿)
¦,

(B4)

Jµ¿ =
1

iℏ
ïµ|

1

2

(

l̂(J) + l̂(K)
)

+ ŝ |¿ð . (B5)

Here ·Iµ¿ represents a semi-local function that ensures the
locality of Γ′′, and ¸ is the parameter controls the degree
of locality. In this manuscript, we did not apply any
locality constraint, i.e., we set ·Iµ¿ = 1 as the molecular

systems are relatively simple. In Eq. C8, l̂(J) = (r̂ −

RJ) × p̂ and l̂(K) = (r̂ −RK) × p̂ are electron angular
momentum operators around atoms J and K. It is then
straightforward to prove that Γ

′′ satisfies the conditions
in Eq. 34 and Eq. 40. For further details and discussion,
we refer readers to Refs. 52,82.

Appendix C: Basis-free definition of the Γ̂ operator

More generally, one can also define a basis-free expres-
sion for the Γ̂ operator as follows:

Γ̂ = Γ̂
′ + Γ̂

′′. (C1)

The translational component Γ̂
′ is defined as:

Γ̂
′I =

1

2iℏ

(

ΘI(r̂)p̂+ p̂ΘI(r̂)
)

(C2)

where ΘI(r̂) represents a space-partitioning operator
that determines how much the electron is influenced by
the momentum of nucleus I based on the electron’s spa-
tial position. There are many ways to define the ΘI(r̂)
operator, and one example is

ΘI(r̂) =
M Ie−|r̂−R

I |2/Ã2
I

∑

J M
Je−|r̂−RJ |2/Ã2

J

. (C3)

Here ÃI is a parameter that controls the locality of the
momentum coupling.

Similarly, for the rotational component Γ̂
′′, we have

Γ̂
′′I =

∑

JK

·IJK
(

RI −R0
JK

)

×
(

K−1
JK ĴJ¶JK

)

, (C4)

where

·IJK = exp

(

−¸
2|(RI −RJ)|2|(RI −RK)|2

|(RI −RJ)|2 + |(RJ −RK)|2

)

, (C5)

R0
JK =

∑

I

·IJKRI/
∑

I

·IJK , (C6)

KJK = −
∑

I

·IJK
(

(RI −R0
JK)¦(RI −R0

JK)
)

I

+
∑

I

·IJK(RI −R0
JK)(RI −R0

JK)¦,
(C7)

ĴI =
1

2iℏ

(

(r̂ −RI)×ΘI(r̂)p̂+ (r̂ −RI)× p̂ΘI(r̂) + 2ŝ
)

(C8)
For more details, see Ref. 65.
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