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ASYMPTOTICS AND SCATTERING FOR WAVE KLEIN-GORDON SYSTEMS

XUANTAO CHEN AND HANS LINDBLAD

ABSTRACT. We study the coupled wave-Klein-Gordon systems, introduced in [15] and [10], to model the nonlinear
effects from the Einstein-Klein-Gordon equation in harmonic coordinates. We first go over a slightly simplified
version of global existence based on [15], and then derive the asymptotic behavior of the system. The asymptotics
of the Klein-Gordon field consist of a modified phase times a homogeneous function, and the asymptotics of the
wave equation consist of a radiation field in the wave zone and an interior homogeneous solution coupled to the
Klein-Gordon asymptotics. We then consider the inverse problem, the scattering from infinity. We show that
given the type of asymptotic behavior at infinity, there exist solutions of the system that present the exact same
behavior.

1. INTRODUCTION

1.1. The systems. We study the coupled nonlinear wave-Klein-Gordon system

— Ou = (810)* + ¢,

(1.1)
—Up+ ¢ = uo,
and
_ _ 2 2
(1.2) Ou = (0r9)” + 97,

—0¢ + ¢ = H*u0,05¢

in Ry x R? = {(t,z): t > 0, € R3}, where H*” is a symmetric tensor defined so that H% are constants for
a,b € {0,1,2,3} (in our coordinate system). The wave operator [J = —9? + Zf’zl 0? is the Laplace-Beltrami
operator on the Minkowski spacetime.

The latter system was studied as a model system for the Einstein-Klein-Gordon (self-gravitating massive
field) system in wave coordinates:

1
gaﬁaaaﬁguv = Fu(9)(9g, dg) + Oud 0u9 + §9uu¢27
9°P0,056 — ¢ = 0.

The nonlinear term F),,(g)(0g,0g) is semilinear and possesses the weak null structure, a concept introduced
in [23] to study the Einstein vacuum equation in wave coordinates. The model focuses on the remaining
nonlinearities, especially the interaction between the metric and the massive field. It turns out that this model
indeed describes the main behavior of the interaction, and the proof of small data global existence of this
model leads to the proof of the stability of the Minkowski solution of the Einstein-Klein-Gordon system by
LeFloch-Ma [16] and Ionescu-Pausader [11] using different methods.

In this paper, we study the asymptotic behavior of the systems. After deriving the asymptotic behavior,
we then study the backward problem (scattering from infinity), i.e., given such an asymptotic expansion at
infinity, we consider if there exists a solution presenting the exact behavior at the infinity. For completeness,
in the asymptotics part, we first give a slightly simplified version of small data global existence for (1.1) based
on the proof in [15], and then show the following main theorem.

We state the theorem for compactly supported initial data, but we shall remark later that a similar result
holds for the non-compact case.

(1.3)

Theorem 1.1 (Asymptotic behavior). Consider the system (1.1) or (1.2) with compactly supported initial
data. Without loss of generality, we impose the initial data at t = 2, and assume the initial data is supported
in {|x| < 1}. Then, for system (1.1), with some smallness assumption (say, of size €) on the initial data, we
have

(1.4) u= U;y) +O0(p (1= [y = UI(Oy) +O0(et™ M (t—r)7 ), t—r>4
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or some nomogeneous juncition ana sma > whnere r = |\x =X = — ||, an
f homog function U(y) and small 6 > 0, wh x|, y = x/t, p=/t? — |z|?, and

(1.5) ¢ =p 3(ePmsVWMeg (y) 4 et sUWMPG_(y)) 4 O(et™7*H0), t—r >4
where the functions a+(y) decay fast when |y| — 1. In the region {t —r < 4}, we have |¢| < Cet="*t0. The
radiation field of u, defined as F(q,w) := lim, oo ru(r — q,rw) where w is the angular variable, exists and
satisfies
F(r—t
(1.6) u_(r’“)‘ < Ce(l+t+7)2(t—r).
r

We also have the expansion
(1.7) F(r—tw) = A(w) + O((t — r)7*).

for some function A(w). Similar results hold for system (1.2) with the modified phase function p — %U(y) Inp
for the Klein-Gordon field replaced by p*, a function that only depends on U(y) and the constants H*. Along
each hyperboloidal ray (i.e. with y fized), p* differs from p by O(e1ln p).

The homogeneous function U (y) is related to a4 (y) through the equation

) =2p2(1+ (1= y*) Hay(y)a—(y).

We have the following properties of U(y).

(1.8) —O(¥

Lemma 1.1. The function U(y) is uniquely determined by ax(y), and the limit lim,_,; U(|y|w)(1 — |y|2)~1/2

exists, which is ezactly the function A(w) above. Moreover, this holds with vector fields, i.e. limy,_, QU (y)(1—

ly|2)~ Y2 exists, where Q is boost or rotation vector fields, as long as |I| does not exceed the regularity from the
initial data.

We then study the scattering from infinity problem. We want to find solutions with the same type of pre-
scribed asymptotic behavior. By a set of scattering data, we mean (a(y), F/(r —t,w)), where a4 (y) correspond
to the homogeneous functions in the asymptotic expansion of the Klein-Gordon field, and F(r — t,w) is the
radiation field of the wave field.

In view of the asymptotics result, we need to require that the radiation field satisfies the following expansion:

(L9)  Flgw) = AWw) +O((t—r)™%) asg— —o0, F(g,w)=O0((r—1)~"%) as g— +oo
where A(w) is determined by a4 (y) as in the remark above. Here we allow more generality by replacing the §

in the forward problem with some o < 1/6.
We have the following theorem:

Theorem 1.2 (Scattering from infinity). Consider a set of scattering data (a+(y), F(r —t,w)) where ay(y)
decay well as |y| — 1, say |[VFas(y)| < Ce(1 — |y|?)! for some | > Ny and k < Ny, and F(q,w) satisfies
(1.10)

(409)*05(F(g,w) — AW))| < Celg) ™", ¢ <0, (a9,)" O F(q.w)| < Celg)™, ¢>0, k+|B] <Ny

for some positive integer Ny > 8 and o € (0, §). Note that ay(y) determine U(y) and A(w) from above. Then
there exists a solution (u,®) of (1.1) with the property that

(1.11) U= U,(oy) +O0(ep™ (1 — [y[A)?) = U,(oy) + 0@t t—r)7HY), t—r >4,
(1.12) = p 2 (VW Meg (y) 4 emHTO MR (y)) + O@t™), t>,

and F(q,w) is the radiation field of u.

We remark here that a similar result can be obtained for the system (1.2) by the same method.

The radiation field F for a linear wave equation goes back to Friedlander [7]; see also [9]. Similar asymptotics
for nonlinear wave equations with modified behavior at infinity, in particular for Einstein’s equations was done
in Lindblad [19]. Also there the asymptotics for the wave equation consists of a radiation field and an interior
homogeneous function, and moreover the asymptotic behavior is also logarithmically modified. Asymptotics
for linear Klein-Gordon can be found in [9] and for nonlinear Klein-Gordon in one space dimension in Delort
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[4, 5] see also [25]. Asymptotics for Klein-Gordon with variable coefficient nonlinearities was first studied in
Lindblad-Soffer [27] and Sterbenz [32], with further results in [21, 22, 20, 29]. Scattering from infinity for Klein-
Gordon in one space dimension was first done in Lindblad-Soffer [26]. Scattering from infinity for semilinear
wave equations with modified behavior at infinity was first done in Lindblad-Schlue [24], and for quasilinear
wave equations by [35, 34]. Peeling estimates for Maxwell-Klein-Gordon with vanishing mass were done in [28]
using a fractional Morawetz, and this was used to derive asymptotics for the Maxwell-Klein-Gordon system in
[3] and scattering in [8]. Asymptotics for nonlinear wave equations was also studied in [1, 2, 33]. The scattering
from infinity problem on the Fourier side for the wave-Klein-Gordon system was studied by Ouyang [31], which
follows the space-time resonance method used in [10, 11]. To our knowledge, our paper is the first result on
either asymptotics or scattering on the physical side for a combined nonlinear wave-Klein-Gordon system with
the asymptotics for wave and Klein-Gordon fields affecting each other, which provides an explicit construction
of approximate solutions.

1.2. Heuristics for Asymptotics. For completeness, we provide a short proof of global existence in the
semilinear case based on the proof in [15]. With the presence of the massive field, one cannot use the scaling
vector field for commutation. It turns out to be natural to consider the hyperboloidal foliation, first used in
[12]. The conformal energy estimate derived in [30] is used to deal with L? estimate of the wave component.
The use of conformal estimates improves the half-order growth of the higher-order energy of the Klein-Gordon
field in the original work [15], as is also recently pointed out in [18]. The proof of the asymptotics requires the
decay estimates obtained from the global existence result.
We now discuss the asymptotics. Recall that by [9], the solution of the linear Klein-Gordon equation

(1.13) (-O0+1)p=0
in 3 space dimensions has an asymptotic expansion of the form
(1.14) o~ p 2 eai(y) +e P (y), y=a/t, t>lal,

with a4 (y) decay fast when |y| — 1, and the solution decays sufficiently fast when in the exterior t > |x|.

1.2.1. The semilinear model. Before studying (1.1), we first consider a simple coupled system:
(1.15) (041 =0, —Ou=(0¢)*+ ¢°

Note that the derivative 0;¢ presents the same type of asymptotics as ¢, so for simplicity we only consider the

source term ¢ here. In view of the asymptotics for the Klein-Gordon equation above, the wave equation can
be modeled by

(1.16) —Ou=2p"ay (y)a_(y) + p~*(e*PaZ (y) + e **a’ ().
We expect terms with oscillating factors e*2" provide extra cancellation, so the leading behavior is given by
(1.17) —Ouy = 2p %ay (y)a—(y).
As in [12], in polar hyperbolic coordinates p and y = x/t the wave operator can be written as
(1.18) —O0=092+3p"'9, — p 21\,

where A, is the Laplace-Beltrami operator on the unit hyperboloid t?2— |z|? = 1 with respect to the natural
metric |dz|?— dt?. Making the ansatz

(1.19) ur =U(y)/p,

we get

(1.20) —Ouy = p~>(Ay + DU (y) = 2p a4 (y)a-(y).
This suggests that u indeed behaves like U(y)/p if we can solve

(1.21) (D + DU (Y) = 2a: (y)a_(y).

However, this is not an ideal problem to solve directly, both because of the equation itself and that the function
U(y)/p is not good in terms of the differentiability near the light cone {t = r}, which comes from the singularity
of the source 2p~3a (y)a_(y) at the origin. As such, we instead solve the wave equation starting at {t = 2} with
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vanishing initial data. Let P(y) = 2t3p73a, (y)a_(y) = 2(1 — |y|>)~*2a, (y)a_(y) so that —Cuy = t=3P(y).
Using the representation formula and a change of variable used in [15], we have

(1.22) 1(t,x) =1 //t /S2 <M) do(n)dA.

Recall that P(y) is zero when |y| > 1; this implies that the integrand is zero when A < (1 —r/t). Therefore,
when 2/t < 3(1 —r/t), i.e., t — 7 > 4, we have the integrand being zero for A < 2/t, so

(1.23) 1(t, ) 47715/ /S2 <M> do(n)dA

which is now of the form U(z/t)/p, where

(1.24) Uly) = ’y‘ v / /S <y_(1A_A)”> dor(n)d)

Hence we have u; = U(y)/p in the region {t —r > 4}. Compared with U(y)/p, w1 is much smoother near
the light cone. It is not hard to show the existence of the radiation field, which is the main part of u; when
t—r <A4.

We still need to deal with the oscillating part. We need to estimate uét where

(1.25) —Ouf = pSe=20ad (y)

with vanishing initial data. We will use an integration by part argument to show that we can get one more
power of decay in ¢, at the expense of an unfavorable factor near the light cone (1 —7/t)~!. As a result, we can
show the estimate

(1.26) luy| St A4 (E—r)y)7h

This corresponds to p~2 decay along hyperboloidal rays, which is one order better than .
Now we turn to our model (1.1). The Klein-Gordon field does not satisfy the expansion (1.14) anymore. To
get modified behavior, we first write the equation in hyperboloidal coordinates (p,y). One has

(1.27) PO+ d=ub+h, d=p2¢

where h consists of terms that decay faster, which can be seen from the decay estimates obtained in the global
existence proof. Solving this equation gives a phase correction compared with the linear solution:

(1.28) ¢~ p2 (3 S udrg (y) - emirts [udeg_(y)),

We note that ay(y) may be different from above. We need to determine, in this case, the behavior of the
wave component u. Notably, the leading (i.e. non-oscillating) contribution from the expansion above is again
2p~3a (y)a_(y) where the phase correction from u is not present. Therefore, for this part we can use the same
estimate. The oscillating parts are now with the correction factor, but the integration by part argument still
applies.

This means that we can decompose u as a leading part in the interior, U(y)/p, and a remainder which is
bounded by p~2+° along hyperboloidal rays. (Note that, however, the remainder is not ignorable towards null
infinity.) Therefore, we can in fact prove the following asymptotics of the Klein-Gordon field:

(1.29) ¢ ~ p2 (P 3VWMPg (y) 4 eIV NP (y)),

In the case of compactly supported initial data, we can let the solution be supported in the region {t —r > 1}.
We note that in this case, when integrating along the hyperboloidal ray, we have the integration start at the
boundary t —r =1, i.e. p=(1— ]y\2)_%. This provides improved control of the Klein-Gordon field as |y| — 1,
i.e. higher power of (1 — |y|?). In fact, one can apply this integration iteratively to get better and better decay
in (1 — |y|?), at the expense of losing two order derivatives (recall we need the control of the hyperboloidal
Laplacian).
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1.2.2. The quasilinear model. We now point out its relation with the quasilinear model, (1.2). For the quasi-
linear model, we can decompose the quasilinear part in (p,y) coordinates

(1.30) HPu 0,03 = HPPu 03¢ + 2H 10,0y, ¢ + HYYiu.0,,0,,¢ + Ry

where R; is given by transition matrices and can be shown to behave well. Combining this with our decompo-
sition of linear Klein-Gordon equation, we get

(1.31) (1—HPu3d +d=h, =p2o,

where h again denotes a collection of terms that behaves well. This is similar, as there will also be a phase
correction (one needs to be more careful here, however, as H?Pu is merely bounded by ¢ in the region {t —r > 1}
because of the singular behavior of HP?. This issue was first resolved in [15] in another version). One can also
improve the decay as |y| — 1.

1.2.3. Non-compact data. In this part, we discuss a little bit about the results on the exterior problem. Apart
from the work [10] which does not require compactness of the data from the beginning, we also note the existence
proof by LeFloch-Ma [17]. In this case, the solution is nontrivial outside the cone {t —r = 1}. Along this light
cone, they utilized the structure of the Klein-Gordon equation to get the following improved decay estimates:

(1.32) T, )] < Cet™2F0, ¢ —|z| = 1.

This implies |®4| < Ce(1 — |y|?)*/*~% when p ~ (1 — |y|2)_% We see that in this case, we cannot obtain
arbitrarily good decay of ay(y) as we want, but we can still get enough decay of them to apply the method
used in this work.

Another observation on the exterior problem is from the work on a related massive Maxwell-Klein-Gordon
model [13]. In the exterior of a light cone they showed the same decay rate for the following quantities of the
Klein-Gordon field:

(T+mdol, QA +r)Lgl, (14 |r—t])|Lo|

where @ is the angular derivative, L = 0; + 0,, and L = 0; — 9,. This type of decay estimates is similar to the
structure of solutions to a wave equation. For wave equations this can be easily obtained from the vector-field
method with the use of the scaling vector field (which is not included in the symmetry of the Klein-Gordon
equation). While it is not clear yet if the proof in [13] applies to our model, the different behavior of the
Klein-Gordon fields in the interior and exterior might lead to further simplifications of the exterior proof.

1.3. Heuristics for Scattering from infinity. We now assume the same type of asymptotic behavior as we
get in the forward problem. Again, for simplicity, we only consider the source term ¢? as the treatment of the
term (9;¢)? is similar. We look for solutions where the Klein-Gordon component behaves like
(1.33) ¢~ p 2 (0TI (y) 4 TN _(y)),
and the wave component u ~ U(y)/p towards timelike infinity. We see from above that U(y) is in fact
determined by a4 (y), so we should only give ai(y) as the scattering data. In the forward problem we have
good decay of a+(y), e.g. |ax(y)| < (1 — |y[?)>/*? for non-compact data and any rate for compact data. We
can reduce the number of partial derivatives to make the decay rate optimal, but here it would be enough
to illustrate the idea by assuming sufficiently fast decay of a4 (y). This assumption also gets rid of the worse
behavior as |y| — 1 in the quasilinear case, and as a result, the proof for the system (1.2) will be similar and
below we focus on (1.1).

As in the forward problem, the function U(y)/p is not well-behaved near the light cone, and it is not a good
approximation in this zone either. Therefore, we consider an approximate solution given by the equation

(1.34) —Ouy = 2p a4 (y)a—(y)

with vanishing initial data at {¢ = 2}. We have already studied this equation, and we know that u; = U(y)/p
when ¢ —r > 4. For technical reasons we use u; instead of U(y)/p to define the phase, i.e. define ¢g as

(1.35) go = p 2 (P72 S g (y) + et s [ mdrg_(y)).

Apart from uq, we also have the part of the wave component governed by the oscillating source. We denote
the part by uso, so that

(1.36) ~Ouy = p=3 (2071 ba (y)? 4 e 20H b a_(y)?)
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with vanishing data at {t = 2}. Since a+(y) and u; are now given, we also have established estimates of us.
We further introduce us so that!

(1.37) —D(u1 + ug + ’LL3) = (8t¢0)2 + qb%

again with vanishing data. Note that the source term of ug decays faster as it is the remainder after one
subtracts the leading parts. We denote

(1.38) ug := u1 + ug + ug + Yo,

where
— Fi —t F _

(1.39) o = X ((r t>> < o(r —t,w) n W(r 2t,w)> |
T r r

with x(s) being a cutoff function supported in {s < 1/4}. We now explain the field Fy and F;. We need these
because apart from the contribution of ui, us and ug to the radiation field, there should also be other parts
(e.g. the initial data) of the wave component that affect the radiation field. Therefore, we include a piece of
information on the radiation field in our scattering data, called the free radiation field in our context, given by
a function Fy(q,w) of ¢ = r — ¢ and w. Therefore, Fy is the original prescribed radiation field subtracted by
the radiation field of uq, us and us. We also consider a second-order approximation by introducing a function
Fy(r — t,w) satisfying the differential equation J,F)(¢q,w) = Ay Fo(g,w) and F;(0,w) = 0. This is needed for
us to close the argument.

Therefore, when considering the scattering from infinity problem, we have two pieces of independent scatter-
ing data (a+(y), Fo(q,w)). In view of the decay in the forward problem, we make the assumption that Fy(g,w)
(and its higher order versions) decay in g at the rate (q)~1*® for some a > 0.

Following the idea in [24] and [8] for massless problems, we seek to establish the estimate of the perturbation
part. We consider a large time 7T, and solve the system backward. We let the perturbation part vanish for
the “initial” data at time 7' so that the solution behaves like the desired asymptotics at time 7. Denote the
perturbation part by vy and wrp, so that u = ug + vy and ¢ = ¢g + wr solve the system (1.1). Then we derive

—Ovr = 2(0ro)Oswr + (Bpwr)? + 2¢0wr + wh + Tboy,

1.40
(1.40) —Owr + wr = (uz + uz + o) Po + vowr + Govr + vrwr + Ry

where Ry = O(t_%) decays well. For the term (ug + us + ¥01)o, we note that ue, us and 1 all have decay in
the interior better than p~!. For the wave equation we have

X

M 2ar 7 o
Ty (@)%,
which is good. We will see that these terms without wr and vy determine the behavior of the system (1.40).
We seek to work in some energy space, and argue that vy and wp converge as T — oco. Because the right-hand

side of the system (1.40) contains nonlinearity of the unknown functions, we need to estimate them with energy
estimates.

(1.41) Don| <

1.4. Energy estimates. We discuss the energy estimates in this part. For the system (1.40), one may use the
standard energy estimate (but the backward version, also using that vy and wy vanish at time T)
T

(1.42) ([ 1orP 4 milsPds)t < [ -0+ m) flliageayds, m=0.1
t=t1 t1
and the yields a term e.g. for the second equation
T
(1.43) / [[(u2 + uz + 1o1)do + uowr + ¢ovr + vrwr + Ro||p2((1=s))ds-
t1

Note again that the term (ug + uz + vo1)¢o and Ry are known and one can show that the L? norm of them

decays in time, say at the rate t~1=*. We also pretend at this stage that the term quadratic in perturbation,
3

i.e. vprwr, is ignorable. Then in view of |ug| < et~ and |¢o| < et~ 2, we get the estimate

T
(L) ([ ourl + P} S s+ [ e iy + ool eayds + Lover order
t=t1 t1

n fact, us would be zero if we only consider the term ¢3. The presence of uz comes from the lower order terms in (9;¢0)>.
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One can expect the decay of ||vp||z2 to be 1/2-power better than ||wrp||z2 (one get a term like t_%||8wT||L2 in
the estimate of vy instead of ¢t~1||Owr||;2), so heuristically we get the estimate

T
(1.45) ||8wT||L2({t:t1}) + ||wT||L2({t:t1}) S €(t1)_>\ + / 5t_1||wT||L2({t:s})dS + Lower order.
t1
We note that in forward problems, similar integrals appear frequently, and one gets logarithmic growth of the
energy as a result. However, there is no such issue for backward problems: using Gronwall argument and the
energy vanishes at time 7', one gets

(1.46) NOwr || 2(r=try) + lwrll L2 ey S elt) ™,

so this is not causing problems. One also sees from this that the decay of the norm of known terms (e.g.
Ry) determines the decay of the energy we can get. In particular, if one does not introduce the second-order
approximation g, but only the Fj part, the decay would not be enough for us to close the argument in our
work. One can then also use this argument between time 77 and T5 for 0 := vo — v; and W := wy — wy to show
the convergence.

However, in order to argue that nonlinear terms in (1.40) are ignorable, we also need to derive L> estimates.
Recall that for wave-Klein-Gordon coupled systems, one cannot commute the system with the scaling vector
field, and the constant time slices do not work well for massive systems. Instead, it is more natural to foliate
the interior by hyperboloids, on which we have a version of Klainerman-Sobolev inequality to help us derive
the L™ estimates from L? bounds. The energy hierarchy then presents a similar behavior.

Nevertheless, since we are now solving the backward problem, the solution will not be supported in the interior
of any forward light cone, which makes it necessary to have something more than the standard hyperboloid
foliations. We consider the following foliation: truncate the hyperboloid at {t —r =r?}, 0 < o < 1, and then
extend each slice to the exterior using the constant time slice. In this way, the parameter p extended to the
exterior {t —r < r?}. Note that now in the exterior, the ordinary time ¢ and the parameter p is related by

o 2 _
t =t(p) ~ p¥(1+9) s0 p ~ t%, and dt ~ pi+o 1d,0. We denote the whole slice extended from the part of
H, = {t* — |z|* = p?} by %,, and H, = ¥, N H,, ¥ = ¥,\H,. Then one has its corresponding version of
energy estimates:

D=

1 P
(1.47) Ew(p1,vr)? S Ew(p2,vr)? +/

2 P2 2y
||DvT||L2(gp)dp+/ p+o Ol 2y dp,
P1

P1

N[ =
N[=

P2 P2 2
(148)  Exc(p1,wr)? < Ew(p2,wr) +/ H(—D+1)wTHL2(ﬁp)dﬂ+/ pTe M |(=O+ Dwr |25 dp,
P

1 1
Because of the observations similar to what we did above for constant time foliations, one can at most expect
the energy decay

(1.49) Eu(p,vr)? < Cep™2™®,  Egglp,wr)? < Cep it

The Klainerman-Sobolev inequality on hyperboloids takes care of the L™ estimates in the interior and the
nonlinear terms are indeed ignorable there. In spite of this, one does not have such an estimate in the exterior.
Instead, one can derive the L> decay using Sobolev estimates on spheres to get |wr| < er™'p~'*® when
t —r > r?. In view of the energy estimate above and the system, in the exterior we need to control a term

involving the L? norm of vpwy. This requires a control of, e.g., the integral
T 2 1 1
(1.50) / o1 o2 lIrwr o s do

where we have to control the L? norm of vy itself using Hardy’s inequality. This appears in the energy estimate
of wy, so we need to bound this by the rate p~!7®. We have

2 2 : 7 2
(1.51) M or | g2 frwr| o n) S €2pThr T pTaTpTIHY S 2p et ma R

Njot

2
T T2 et —%4—1%7—1—2@ < —1+a, and we get 0 > (a+1/2)/(3/2—a).
To make this hold, we can e.g. let 0 < a < % and o = %, which is what we use in the proof. This deals with

the control of nonlinear terms in the exterior, and now we can close the argument.

so the integral decays at the rate p
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2. NOTATIONS

2.1. Hyperboloidal coordinates. We will frequently use the hyperboloidal coordinates p = v/t2 — r2 where
r = |z|, and y = x/t, so |y| = |x|/t. We also define the angular variables w; = z;/|z|.

The p-hyperboloid is defined by H, = {(t,z): t* — |z|> = p?}. For simplicity, we often write f(z,t) by
flp,y) = f(t(p,y),z(p,y)) as we often work in the latter coordinates.

In (p,y;) coordinates, we have

t ' )
0p= =0y +—0;, Oy =———5 ((yiyj +9i5)0; + yi0y) .
2 ,ot P Yy (1—|y|2)%(( j 7)0; t)
We also have the dual frame

t i .
dp=~dt — =da’, dy' = "%
p p t

In this way, for a symmetric (2,0)-tensor 7, we can define the quantities TP°, TPY and T,

We will define the truncated hyperboloids H, in Section 6.
2.2. Vector fields. The Minkowski commuting vector fields

Z = {04, = t0; + ;0,5 = 2;,0; — x;0;, S = t0; + x;0;}.

We also define its subsets
(2.1) 0={0n,00=0,1,2,3}, L={Q,i=1,2,3}, Q={Qp,a=0,1,2,3,=1,2,3}

We use the multi-index notation: for I = (a1, a9, -+ ,an), J = (1,82, -, Bm), we define

Zl =70 752 ... 7om
where Zy,--- Z, € Z, and similarly
'L — 830---8§3Lf1 L 9l = 530..@?39?1...9%7

where I = (ap, a1,00,a3), J = (Ji, -+ ,Jm), O, - ,03 € 0, L1,--+ , Ly, € L, Qq,--- ,Qy, € Q. The size of
a multi-index I = (81,82, , Bm) is defined as |I| := >, B;. We also define |(I1, J1, Iz, Jo)| := |I1]| + || +
[L2| + | J2]-

Note that the rotation and boost vector fields are tangent to the hyperboloids H,, and we have the following
relation between 0,, and vector fields:

Oy, = ﬁ (20 + Ze).

Moreover, the Laplacian-Beltrami operator on the unit hyperboloid A, can be expressed as

2 3 J
(2.3) Dy = 0 +> > 02
i=1

j=1i=1

(2.2)

The following commutation relations are useful: [0;, Qo;] = 0;;0;, (05, k] = 0;0k — i1, 0;.

2.3. Integration. It is convenient to consider the integral of a function u(¢,z) on hyperboloids with respect

to the measure dx:
/ udr == / u(\/p? + |z|?, x) dx,
H, R3

and then we can define the L? norm by

_ 2 1
ullzir,) = ( /H ful? d)

P

Remark 2.1. In [15] and many its subsequent works, the coordinate _(,0, x) is used. The corresponding coordinate

basis is {52-,5,)}, where 9; := t~1Q;, and 5,) = f@t. The derivative 0, is related to O, with the difference tangent
to the hyperboloid:

(2.4) 5,) = ap - ,0_1% wi QOi-

2We use the Einstein summation convention. Also, when the repeated index is spatial, we define the expression to be the sum
regardless of whether it is upper or lower, as the spatial part of the Minkowski metric is Euclidean.
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3. EXISTENCE PROOF FOR SEMILINEAR MODEL

We start with the proof of the global existence of the following system:
(3.1) —Ou = (89)° + ¢*, —0¢+ ¢ = ug.

We impose the initial data on {t = 2}, and suppose that the data is supported in |z| < 1. By local theory, we
can alternatively impose the initial value on {p = 2} (see e.g. [14]).

3.1. Bootstrap assumption. We have the standard energy estimate on hyperboloid: define the energy

Bralp.0)i= [ (2) 100 + 3 0of + ol da

:/H (?)2 (19,61 + D 10i6l*) +72 3 19401 + [0 da

1<J

(3.2)

This is energy flux induced on the hyperboloids with the multiplier ;. We have (see proof in e.g. [15])

=

. p
Exa(p,9)? < Exc(po,¢)? + [ [[(=0O+ 1|12, ds.
P0

For the wave component, we use the conformal energy introduced in [30]. Let K = %81&/ + 2r0,.. We define
Econ(p,u) ::/ \Ku]z+Z]p5iu\2+4uKu+4]u\2dx :/ \Ku+2u]2+2\p5iu]2da:.
Hp i HP 7

Using pK as the multiplier, one has the following estimate:

p
1
< Econ(pOau)§ + 2/ SHDUHL2(Hs)dS‘
o

N

Econ (P, u)

We also define the higher order energy:
EKG;k(pa ¢) = Z EKG;k(/L 8ILJ¢)7 Econ,k (p7 u) = Z Econ (p7 8ILJU)’
]+ J|<k HI+[J|<k

Fix an integer N > 9. We consider initial data satisfying the smallness condition

(33) EKG;N(zau)% + ECOH;N(27U)% <e.
Let p* be the maximal hyperboloidal time such that
(34) EKG;N(P, ¢)% < C’b 505, Econ;N(p, u)% < C’b 5P%+5

holds for all p € [2, p*], where C}, is a constant that we will determine. In the remaining part of this section,
the symbol “<” represents an implicit constant independent of Cj,. We shall improve these bounds and hence
show that p* = co.

The bootstrap assumptions give weak decay estimates in view of the following Klainerman-Sobolev inequality
(see [9] or [15]):

Proposition 3.1 (Klainerman-Sobolev inequality on hyperboloids). Let f be a function supported in {|z| <
t—1}. Then

3
S}ilptﬂf\ <C Z HLJfHLZ(Hp)

g |J]<2

for some constant C'.
Therefore, we get the following weak decay estimates:
(3.5) 0'L7¢] S Coet 20" = Chep™2 (o), |1+ 1J| < N =2,
For the wave component, we first present terms that are bounded by the conformal energy.

Lemma 3.2. We have

(NI

_ 1 _
ot 1u||L2(H,,) < 2Econ(p,u)?, ||p2t 1apuHL?(Hp) < 6Econ(psu)?.
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Proof. The first estimate follows from applying the standard Hardy inequality to the function u(y/p? + |z|?, x),
and replacing the factor |z|~! by 7! as [z| < t on H,. For the second estimate, we notice that Ku + 2u =
pOpu+ >, x'0;u + 2u, and hence we have

SIS

10t Bpull 2,y < 15 (Eu+ 2u)ll 20, + o Dol 2o,y + 21l 2, < 6Beon(p,w)?,

where we use the first estimate in the last inequality. O

Therefore, we have the bound

lot™'0" L' ullpa(n,) < 20y 2™, 19t Bpullizn,) < 6Chep2 ™, |1+ ]J] < N.

To get the decay for derivatives in d, direction, we need estimates of the commutator.
Lemma 3.3. We have [Qq;,S] = 0 and [Q;;,S] = 0. Therefore, we have [Qg,0,] = 0.
Proof. We have

[Q0i, 5] = (t0; + 2i00) (10, + > 2;0;) — (10, + > 50;)(t0; + 2:0,)
j

J

= (t0; + i00) ()0, + Y _(t0; + 2:00)(w)0;) — (10, + > _ ;0;)(1)0; — (tdy + Y _ x;0;) ()0,
J J J
= z;0; +t0; — t0; — ;0 = O.

The verification for the second identity is similar and we omit it. The last result follows from 9, = —1S and
Qupp = 0. U

We are now ready to estimate the decay for 0, derivatives. Using the Klainerman-Sobolev inequality and
|L(t71)| < 71, we have

2 2
3.0 1P 1 /
(36) supt2|=-0,0'L7u| S > LT (-0,0'L70) |2,y S0P ILH()L20,0" L ull 12
o t t t
i |J"]<2 |1 |+]J5]<2
1 / 1 1
DY HzapLJZaILJUHLZ(Hp) S Eeonn(psu)? S Cpep2 ™, 1[4+ ]J| < N -2,
|J31<2
Therefore we have |9,0' L7 u| < Cyep~29¢~2 . Similarly we can get 10,0 L7 ¢| < Chet™2 p° for [I|+1]J] < N-2.
3.2. Decay estimates. We now perform the L°°-L°° estimates to improve the decay of both components. We

need the following lemma, which follows from Lemma 4.5 and Remark 4.2. This is in fact proven in [15, Prop
3.1].

Lemma 3.4. If u is the solution to —Ou = F with vanishing initial data, with F supported in {t —r > 1} and
|F| < Cet™3%7 for some 0 < a < 3, then |u| < Cet™19(1 — D)2 = et~ L(t —r).

Commuting the equation with vector fields, we have
~00'Lu = 00" L ¢ - 90" L2+ 0" L7 - 912172

where the right hand side means a sum of terms of this form, where |I1| + |I2| < || and |J1| + |J2] < |J].
Then using the weak decay for the right hand side, we get |[00'L7u| < C’gs%_?’pz‘s < C§€2t_3+26, so by
considering the part governed by this source term (with zero initial data) using Lemma 3.4, and the free part
from initial data (which behaves better), we get [0/ L7u| < Cyet =1 (t — 1)20 = Chet=1p?° (p/t)%.
Now we try to improve the decay of the Klein-Gordon field. We have the decomposition of the wave operator:

(3.7) —O0=092+3p"'9, — p 21\,
so one can show for ¢ = pgqﬁ that
20+ =ud +p A LDyh + 29).
Let &3 = €T(9,® & i®). Then we have the equation for ®:
(3.8) 8,01 = TP (ud + p~ 2 (Ao + 39)).
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Since ® = —%(e?®, — e~ "PP_), we get
(3.9) 9,0 = :F%ucbi + %emﬁu@; +eFPp V(AL b+ 2.

We consider @ for example. We have
(3.10) 9,0, = —%uCIhr + %e—%ﬂucp_ + e 2Ny + 20).
This implies that
(3.11) Oy (€310 (@, + Jue=2#_) ) = h(p,y),
where

L _ ) L lu —ip+i [u -

(3.12) hp.y) = e 20y (e2 100 ud_) 4 o3 [ TR (A g + §9).

In view of the relation A, =" Qiﬁ and the weak decay estimates above, we have

a<p
_ _ 7 _ 3
B(py)| S Cie®p™ 2 (p/t)? + CRe?p™ 2% (p/t) 2+ + Coep™ > (p/1)>.
Since everything is supported in {t —r > 1}, we have p > t/p. Integrating along the hyperboloidal ray, we
get

3
2

_ 7 _
(@] < (1P| + [ull@—])]p—z + [ul|@—| + CFe®p™ 2 (p/1)2*0 + Crep™ 2 (p/1)
<ecy(z/t) + ng2p—1+35(p/t)g+25 4 C§€2P—1+55(p/t)g+5 + Cbap_1+5(p/t)% < Cbg(p/t)g_(s’

where ¢4 (y) is a function compactly supported in {|y| < 1}. Clearly we can get the same estimate for ®_.

Therefore we obtain |¢p| < C’bep_%(p/t)%_‘s. Note that if we commute the equation with O once, we get
—0(0¢) + 0¢ = u(9¢) + (Ou)¢. The last term behaves well in view of the weak decay estimates of derivatives

3
2

of u, hence ignorable, so we can do the same thing for d¢ to get |0¢| < Crep™ (p/t)%_‘;.
To get the estimate with vector fields, we do the induction. Suppose we have the estimate |0/ L7 ¢|+|00" L/ ¢| <

C’bs,o_%“’“*15@/75)%_‘s for |[I| +|J] < k — 1. We improve the wave component first. We have |00L7u| <
C2e2p=3+2k-12(p/1)>=2°, This gives the improved estimate by using Lemma 3.4 with & replaced by cj_1¢, i.e.,
(3.13) ]E?ILJu] < Cbat_l(t — 7‘)2%*1€ = Cb&?t_lpzc’“le(/)/15)20’“*16

for |I| 4+ |J| < k — 1. Note that for k = 0 which we have already dealt with, we get |u| < Cypet~1.
Now for the Klein-Gordon equation, we have

—00'L ¢+ 0"L7 ¢ =ud'L7 ¢+ > oL oL ¢
[T |+ 2| <] Ja |+ T2 | <[]
[Ty |+ Jo | <|T|+]|J|

Then similarly we have for &/ := p%OILJQS that
9, (eé J o) (‘Pi" + %ue‘%’)@i"])) =" (p,y),
where
(3.14) h'(p,y) = Ze—2wap(e§f wow)dey ol 7y 4 e=iets Julew)de , =2 DI LT 4 39117 )
+ p3 3 N L2y 92 L2,

[+ 2| <] Ja |+ T2 | <[]
[T1]4+|J1|<|I[+]J]

Then
_ _ 7 _ 3 _ 7
K5 (0, 9)] S CRe?p™ 242 (p/t)? + Ce?p™ 2T (p/t) 274 + Coep ™0 (p/t)2 + Cie?p™ 1Hox 15 (p /)2~ 0F20k1e
for |I| + |J| < N — 4. Therefore, similar to the zero-order case, we get |0/ L' ¢| < Cbsp_%”ck*la(p/t)%_‘s. As

above, we can commute the equation with 9 once to get the same decay estimate for |09’ L7 ¢|. This closes the
induction once we make ¢, > 3ci_1 (we shall let ¢, > 4c¢i_q for later use).
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3.3. Improved energy estimate. We now improve the bootstrap bounds. For zeroth order energy we have
1 1 r ro_ 1
Exco(p, )2 < Exco(2,0)2 +/ [ ull oo @)Dl 2 (m,yds S € + C'b€/ s Exaio(s, )2 ds,
2 2
so by Gronwall’s inequality we get E(¢, p)% < Cep®©r. For the wave component we have
1 1 P t s
(3.15)  Eeono(psu)2 S Eeono(2,u)2 + i sllzoe e 1012 (ary) + 1| Ol poe a1, |17, 0|2 21, ) s

p 1
< e+ Cye? / 572590 s,
2

=

1
< e+ Ce?p2tCCe . We want to prove

1 _1 1
EKG;k(p7 ¢)2 +p 2 con,k(pau)z ,S (5 + Cbez)p(Ck+CCb)€a

where C represents some constant, and may change for different &, but is independent of Cj. From above we
know that this holds when £ = 0. Now suppose it holds for £ — 1. Then we have

$0 Econ(u, p)

N[

1
(3.16) Erax(9)? S Erxcr(2,0)
P
+ Z /||8IILJIU||L°°(HS)||812LJ2¢||L2(HS)+||611LJIU||L2(HS)||612LJ2¢||L°°(HS)dS
(1, T, J1,J) | <k * 2
[I1]|+|J1|<E/2

p
Se+ Cbs/ s (Exg(s, ¢)% + (€ + Cye?)(s¥er—18Fer1e+0Cey)
2

572 (Beonk(,5)2 + (2 + Cpe?)(s2 Form1etdan=tCCey) g,

P 1 3 1 1
< C ey 2+ 5 2FEq,. 2ds + C Cpe? st
Se+ b€/2 S KG,k(fS, })2 + s Con,k(s’ u)2ds + Ce (e + Cpe )(4ck—1 + CCb)Ep

and

i 1 Pt s
I Bumslpo)? S Bt 3 [Tl 00" L 0l 1500 L0,
(I, Ia,J1,J2)| <k 2
1|+ J1]<k/2

+ 8|01 L || o () |0 L2 ¢ | 211, s

p
<e+ C’bs/ S(S_gEk(QS, s)% + (e + C’b€2)8_%Jr?’ck*lesc’“*lﬁccba)ds
2
p
5 e+ Cb€/ 8_%Ek(¢, S)%dS + Cb€(€ + C«b€2)p%+4ck71€+ccb€‘
2

Therefore, adding two estimates together, we have for Ek(,o)% = Eraux(p, qb)% + p_%Ecomk(p, u)%

N|—=

Ex(p)

Then using Gronwall’s inequality, we get
Ek(p)% < C(E + (E + Cb62)p4ck,1a+CCba)pC’Cba < C(E + Cb€2)p4ck,1E+CC'ba7

so as long as 4cp_1 < ¢, we close the induction argument.

Then if we set C big and let ¢ < C”_zc, we can improve the bootstrap assumptions by replacing the
2CCY

p
Se+ C’be/ s_lEk(s)%ds + (g + Cpe?)plen-16+CChe,
2

coefficient Cpe by %C’bs. Therefore, we have proved the global existence.

4. SEMILINEAR MODEL

In this section, we prove Theorem 1.1. From above we know that the global solution exists, and we have the
following decay estimates:

5

(4.1) 6 +10,6] S ep™2(p/t)2 %, |u| S et
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(4.2) 07 L7 ¢ +10,0'L7¢| S ep™ 20 (p/t)2 70, |L7u| Set™p°, ||+ ]J] < N—4

(4.3) 0,0'L7u| < ep™ 0 (p/t)2,  |I]+]J| < N -2

for some small § > 0.
From this we also get the estimates of the derivatives in y coordinates Using (2.2) and (2.3), we have
%

L 148 e ol — 1 g2 il_e _3
(4.9) Oyl S et =y 72p7 0 10,0l S el — [yD)i™2p 20, [Ay0] S ep 2 (p/t)
Proposition 4.1. We have
(4.5) 10:0" L7 u| S et ™Y1+ [t — 7)), |I|+|J| <N -4

Proof. This holds immediately from (4.3) when r < % When % < r < t we use the decomposition —[u =
%(8t+ar)(8t—ar)(ru)+%2&wu, and integrate along t—r = const backward to hit the boundary {r = £}U{p = 2}.
We then using |Ou| < £2t73 to get

t+r
lw(t —r) (0 — Oy)(ru)| < Jw(t —r) (0 — 8t)(ru)]|(2(t_r) t—r) + /( ) e2rtSBw(t —r)ds
’ 3(t—r

where we can take the weight function w(t — ) = (1 + |t — 7[)! 7. Then using the decay we have, we get
0 — Or)ul S+ [E—r[) e+ 2071 Set L+ [t — )7

Since (9 + 9p)u = £, 0pu + H%w@iu behaves better, we get the estimate for |I| = |J| = 0. The case with
vector fields holds similarly. O

4.1. The Klein-Gordon field. We now give an asymptotic description of the Klein-Gordon field.
Proposition 4.2. Suppose (u, ) solves the system, and the decay estimates above hold. Then
6= p3 (02T He0 0, () £ hipg) +pm3 (03T OVPa_(y) 4 h_ ().
in the region {t —r > 1}, with the estimate
lax (@) S = lyP)i~0, |hslpy)l Sep™ (1= [y)i 2.
for |y| < 1. A similar expansion holds for 0,¢.
Proof. Recall in (3.11), we have
d, <e% f“(p’y)dp(<1>+ + %ue_%p@_)) = h(p,y)
for &4 defined there, where
(4.6) h(p,y) = te~2r9 (62 Julpy)dpy @y 4 e—ip+%IU(p,y)dpp—1/2(A ¢+ 3¢).
Using the decay estimates above, we have the bound |h(p,y)| < ep 2+5(p/t) =0 Then we integrate along the

direction of d,. Again we note that everything is zero when t —r < 1, ie. p < Gf—}gl) , so the integration

1
starts at p = p(y) = max{2, (}i’—}zi) *}. We have

(47) Dy = - <<I>+(2,y) + i€_4iU(2,y)<I>—(2,y)> em3 Julowyde | </ h(p, )dp> e~z ulew)ide
p(y)

[e%S) 1 )
(/ h(T,y d7'> e~ 3 Julpy)dp _ = —dipy g
o 4
In this way, we have already written ® as

Dy = by(y)e 2 UDY 4 (py),

with required decay.
Repeating the same steps for ®_, and using ® = —( WP, — e PP _), we obtain the expression of ¢. O

Lemma 4.3. ]Qiﬁai(y)] <e(l—y? ) 0. As a result, |Vax(y)| < e(1 — |yf? ) = for |y| < 1.
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Proof. We have e.g.
(4.8)

ay(y) = (20) by (y) = —(20) 7" <<1>+(2,y) + 36_4%(2711)@—(2,@/) +/

p(y)

(e}

h(p, y)d,o> L ply) ~ (- )z,

Recall the vector fields and V,, are related by (2.2), and the rotation can be expressed by boost vector fields:
Qij = FQo5 — %Q()i. Then the estimates follow directly by applying the y derivatives and using the decay
estimates with vector fields. O

4.2. Wave equation with model source. We now have
¢2 _ 2p—3a+(y)a_ (y) + p—3 <e2ip—ifudpa+(y)2 + e—2i+ifudpa_ (y)2) +R

when t — r > 1, and we know that ¢ vanishes outside this region. This appears as the source term of the wave

equation. The remainder R satisfies |R| < p~4+9(1 — ]y\2)3_%6. This is better than t~4+° when ¢t — r > 1.
For technical reasons we still use this expression when t — r <1, i.e. let

R=-2p"ay(y)a(y) —p~° (62"”‘” oay (y)? +e 2] “d”a—(y)2>

in this region, where |R| < e2p73(1 — \y[z)%_% < 275%20 gince t — r < 1. Therefore we have |R| < e2t~4+0
everywhere in {t > r}.

Remark 4.1. For the other source term of the wave equation, (0;¢)%, we can commute the Klein-Gordon
equation with Oy to get (o) + 8t<;5 = u(@tqﬁ) (Opu)p. Using (4.5), the last term here satisfies the decay

|(Oru)p| < e2p=2+0 =3 (t)d < 52/)_§+6( )2 379, This is the same decay rate as the term with Ay in (4.6), so
we can get a similar asymptotic expansion. Therefore, we focus on the part ¢2.

We decompose the source into several parts.

4.2.1. The non-oscillating source. We consider —Ju; = t=3P(x/t) the equation with vanishing initial data on
{t = 2}, where

t? 1

Py) = —sa+(y)a-(y) = ———=a+(y)a-(y)-

P (1 —[yP)2

Using the estimates above we have |P(y)| < €2(1 — |y[?)272, and |[VP(y)| < €2(1 — |y[2)'=%.
We first study the asymptotic behavior of u; towards null infinity. We have |P(z/t)| < €2(p/t)*=*. Then in

view of P(z/t) is nonzero only when ¢ > r, we have

_3 2 —5425 2-26
@) P(/t) e +t+T) (t—r),
where x4 := max{z,0}. Decomposing the wave operator in d; + 9, and 9y — 0, direction, we get
10 — 0,) (0% + 0r) (rur)| S 2L+t + ) 2t — )22 4 AL ).

To establish the bound for A, u;, we recall that A, = > Qf Therefore, we have

i<j
D( wul =p 3297,] a’+ ))
1<J

Then, using Lemma 4.3 and Lemma 3.4, we get |Ayui| < e?(1 4+t +7)71
For any point in the region {¢t > r/2}, we integrate along 9; — 0, direction to t — r = 0. We have

(3 + 0) (ru)| S e+t +7r) 200 — )32 pe(1 4+t 4+7)72(t — 7).
Now integrating along 0; + 0, direction over r € [r1, 72|, we have
Irus(r1, ¢, w) — roug (re, ¢y w)| <e(1+2r +¢2) 232 1 e(1+ 20 +¢-) Y,
where ¢ = r — t, and ¢ = max{—¢q,0}. This means that Tlggo rui(r,q,w) exists. Denote the limit by F(q,w),

and we have
‘TUl(T,q,W) - Fl(qaw)’ S; 6(1 +t+ T)_lq_’
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We now turn to the behavior of u; in the interior. Using the representation formula, and the change of

variables A = s/t, n = (1 — A\)~!t~!z, we have
t —
ui(t,z) = if 1 / s3p (X2 do(z)ds
4?1' t_ 5 |Z| =t—sg
-3
(4.9) 1 T /|z| o )\)t (At)"°P ( Y; ) do(z)dA
t—(1—X
—Wﬂ /82(1 _ AP (L/\}”) do(n)dA
%

Notice that if A near O satisfies 1 — A —r/t > A, ie, A < %(1 — 7), then the integrand is zero in view of the
support of P. Therefore, if 2/t < %(1 —r/t), i.e., t —r > 4, we can replace the lower bound 2/t by %(1 —r/t).
As a result, in the region {t —r > 4} we have u; =t 'U(z/t), where

- é él—mn /71632(1 —AATP (w) drn)dd

We will need to deal with this type of integral several times in this work. We first analyze the support. Since
P(y) is nonzero only when [y| < 1, we need to have |3 —(1— A)n|? < A% if the integrand is nonzero. Expanding

T T 2 : |£_“"3|2 o |y—7]|2 . . _
the square, we get 2(1—F-n)A—|¥—n|* > 0,ie. A > 2({_%_7” = 3(1=y7) Using the shorthand notation y = z/t.

We will need the following lemma.

Lemma 4.4. For |y| < 1 and n € S?, we have

) < 21
T 2(l-y-n)
Proof. Notice that 2(1 —y-n) = (1 — |y|*) + |y — n|*>. Then we have

—(1 — <1

ly—mnl* ly —n|? 1

20—y-n) (-l +ly—n? T 1
and the upper bound follows directly. The lower bound holds once we apply the inequality |y —n| > 1 — |y| to
the last expression. O
Lemma 4.5. Suppose Q is a function satisfying |Q(z)| < €2(1 — |2]?)® for |z| < 1, where —% <a<l, and
~, B, p,v > 0. Then

@10) [ ]ly o 3 1 (LU (02 - ly— (- NaP)’ o = ol (1 =y )~ dhdo(o)

2 (1 _ Iyl)—'}'—r»'+2;9+u )

Proof. Without loss of generality we can assume z/|z| = (1,0,0). For £ > & we split the integral of \ using

'R
1= IL{A>1} + ]]_{Aql}. For the first part, using Lemma 4.4, we have

/ /y- ATTQ ( ( ol ) A2 —ly— =) =l A=y )™ L x> 1ydAdo(n)

2(1—y-m)
_ — (1= Ng2\° 5 )
< 3y (1 _ 1y =( n R S
) /52 /;(g wlﬁ)’\ (1 22 (A =y = @ =Nnl*) ly =0 (1 =y n) ™" L5 13dAdo(n)
u-n
- -h@ Py
<g /52 /Iy - 3—y— 2&( 2_|y—(1 )| )“ (1—y-n) "+ H{Azé}d)‘do'(’f?}

2(1-y'm)

a+f o
552 L2 /Iy—ﬂl2 (2(1 —y-nA—ly—n ) (1-y-n) vta dA\do(n)

S 82/ 1-y- n}min{a+ﬁ,0} (1—y- n)—rﬁ-% do(n) < e2 (1— |y|)min{a+.3,ﬂ}—b'+% )
52
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We now estimate the other part, which requires extra work. For [y| = 7 < %, a similar estimate as above gives
ly—n|?
I—y-n
bounded away from 1. Therefore, we focus on the case when [y| = 7 > %. We want to estimate

a uniform bound (instead of %, we have as the lower bound for the integral over A inside), since |y| is

/ /w ni2 MATTQ (%l\)’q) (W =y = @ = Nn*)ly = nl* (1 — y - )™ Ly c1ydAdo(n)

2(1-y'm)

_ — (1= \)n|? .
<g /@\/ly n|2 3’)‘(1 |y )‘2 )"'?') (2_|y_(1—,\)n|2)5|y_n|ﬂ(1—y.n) H{Aq%}d)‘do'(??)

The integrand is now nonnegative, so we change the order of integration here. In view of the lemma above,

the lower limit of A should be %(1 — |y]), and 7 need to satisfy |y — (1 — A\)p|? < A%2. Under the assumption
that /|z| = (1,0,0), this is equivalent to 7; > Lgllglj(rll—_)%% > 27, with 9 = (m1,m2,m3). Also in this case, we have
do(n) = 2nny|dm| since S = 2m(1 — n;) where S is the area of the part of sphere with z component greater

than 7. In addition, we have |y — n| = /|y|? —2|y|m +1 = (2|y|)? 1{ 1+||3|| —171. Note that in this case we
also have 1 — A > 2. Therefore

_ y—(1=XNn\“ v
/SZ/W . 37(1_| (AQ }nl) (2= ly— A=) ly—nl (1 —y-n) Lpr<1ydAdo(n)

2(1-ym)

(1=l : (1— M)A ' L P =2l = Nm 4+ (- &
: %(1—|y|) Iy|§+1_—2,\ 32

1+ |y|?
2|y|

13
(@2l = Ny — (1 + 92— 20))® 2l ¢ ( _ m) dnnd)

1 13

_ 7 e 1 + 1_|_ yQ 3
sa-pp [0 e [ el - - 12T (L)
7(1—|y|) 'g'mﬁjy |y|

1 o+
_, [3 o ly|2 +1 -2
Sa-l™ [1 @- e - A}aﬂ*/ (n _Pr1-2)
| 1a-lyl) ( ) Ly1241-22 ! 2ly|(1—A

2ly[(1=4)

2 2 . o

_(1+|y| ClwlF41 ZA) dnyd)
2[y| 2ly|(1 - A)

=

D T2 a1 — A= (alal(1 — X) — (o 1 o ayyetB (L [WDANE
S [ XTIl ) i) -l 12 (Gt ) s

1

— B S 1
S@—lu)™ ﬁ(l S (201 — [y)A — (1 = [8)*) " (1 - ) EABa
U=y

1
_ Byq [B
< (1 o Iyl) V+0:+.3+2+ /

/\—3—’}‘—2&-1-fi A 1 st d\
. 2 {A—5(—1y])
z(1=lyl)

1

E:§

S (1 — |y|)vHethra ﬂ( | I),\—Q—'}'—a+ﬁ+%d,\§ (1= |y|) "7V +25+0
z(1-]y

where we used [y| =% > §. O

Remark 4.2. In view of the estimates, the bound actually holds once 5 + % <a+vy+landa+pB+1>0.
The above lemma provides a way to estimate the decay of solutions to inhomogeneous wave equations, in view
of the representation formula appeared in (4.9).

Corollary 4.6. The function ff(y) is uniformly bounded for |y| < 1.

L U U
We also define U(y) = (1 — |y|?)2U(y) so that Jpﬁl — Jtﬁl
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Now we know that when t —r > 4, we have u; = %. This determines the radiation field Fj(q,w) for
q < —4:
U (190)
Fi(gw)= _ lim  (t+q)—— = lim U(jylw).
gq=const, t—o0 t ly|—1

This also implies the existence of the limit on the right hand side, as we have already shown the existence of
the radiation field in the beginning of this section. Therefore, we have Fij(¢q,w) = A(w) for some function A
when ¢ < —4.

4.2.2. Source with oscillation. We also need to deal with terms with nontrivial phases. We study the equation

—Ouf = 3P (x/t)e2iprelon) = 73 P(x/t) XV E—lalP (/P -z, D)

with vanishing initial data on {t = 2}. Using the representation formula again, we have

t ) _
(4.11) uf (t,z) = %/ ; ! / ™32V —le—2P+2ip(y/s* =2 255 p <a: —c
™ = 8 Jiz|=t—s

S

+8 N
U
Q
—~
|
~—
U
0

1 T _(1-N\)n _
:i/ /(1_)\)t—1)\—3e2it NETE (I N+ 2ip(t )\2—|f—(1—>\)n2,t(;’\)’)P< n
m )2 S2

We have, in fact, shown the absolute convergence of this integral for t —r > 4 above. Therefore, we now change
the order of integration. By the same analysis of the support, we have (recall y = x/t)

1 \/)\2 )\)7]’2 ; 2 |ly—(1— 2
4.12 -3 2it\/ N2 =ly—(1=M)n|
( ) u2 (t,2) T 4rt /SQ /y n\2 2t 1 —y-n e )

. ity N =ly—(1=N)n?, L= <y—(1)\—>\)77> d\do(n)

where we used 9y (A2 — |y — (1 — A\)n|?) = 2 — 2y - n. Now integrating by parts, we have

VA =ly—(1-Mnf?
(4'13) (t x 47‘( 21t2 /gz /y n\z

N ((1 _ /\)/\—3 \/)‘ _1|y__y(1n_ )‘)77| e2i<p(t\/)\2—\y—(1—A)n\2,&;W’)P (y - (1)\_ )‘)77>> do(n)dA

1 1 . 2 2 . 2 2 y—(1-N)n
- )\—3 1 — \)e2itV/ X2 =ly—(1=N)nl2+2ip(tr/ A2 —[y—(1-N)n|?, £=2T)
* i 20 (1= Ne ’

.\/V—Iy—(l—A)n|2P<y—(1—A)n> 1

I—y-n
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ly—nl?
2(1-yn)’

We see that the second term is zero. We now focus on the first term, and note that when A >
everything is differentiable. We have

N <(1 A3 VA2 =Ly = (L= M0 iy /3o—fy=(a—njaP =020 <?/—(1—A)77>>
)\

:(_3)\—4(1 —\) — )\—3) \//\2 —ly—(1- /\)77|2e2igp(t\/)\2—|y—(1—)\)n|2,w)P (y — (1)\_ )‘)77>

+ (1= A7 ! it/ N —ly= (=N, =0 <y—(1—A)T7>
VA2 =y = (1= NP A

(4.14) F(1—A)A3 VA _ly__y(ln_ M ripten/ === 2520 p <y : (1A_ m)

t—x- 77 —(1=)
( N T e A T — NP2, LAy

+ w (ty/ N =Ty = (L= NP7, w0 - =)

P — 02 (1 _
)\)A?’\//\ y— (=Nl op (v = (=N v,

1—y-n A A2
=:A+B+C+Cy+ D,

where V¢ means the gradient of ¢(p,y) with respect to the second component. (In particular it is not
differentiating y in the equation above)

In our case, we have ¢(p,y) = —% u(p,y)dp, we have Vyp = [ Vyu(p,y)dp, so |00 = |u| < et™!, and
Vel S ep’(1 — |y|?)~2 using (4.1) and (4.4). We also recall that |P(y)| < €2(1 — |y[>)*>~%, and |[VP(y)| <
e2(1 — |y|*)* 2. We have

+(1

[

2 _ 1_ 2 _
(115) 4] S22 (31— )+ ah) VA 1|y_y ; I N5 (32— (1= )
1 5_95
<€2)\—5+85 )\2_ o 1_)\ 2\ 3
S 71_%77( ly — (1= Nnl*)
_ 1 _ 2-26
R 3\/A2—|y—(1—A)77I2)\ TN ==l
3_
ST (02— — (1 Ny ?)
A2 — M2 oy —
417 ol g en sV Lo sy gyl
3
<yt ol o gy ey
= n( [y — (1= M)nl*)
(4.18)
2-26 - 1
C1] S AT (2 — Jy — (1= )" (/N2 =Ty = (L= Anl2) AT (2 = Jy = (1= )
2—-26

SEL = NATE (N2 —Jy — (L= N)n?)"

(119) (0] < A3 VA _]L’y_ y( ; = s (32 gy 0 ) (VX =Ty =1 - /\)17|2)5

“ily—n
AN =ly— (1 =X : | v |

_3
SN (32— (1 - A)p2)P 20
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Now we can use Lemma 4.5 to get

- —1+0
// o |Al+1B| +[C1| + |Ca| + | D] dXdo(n) S (1_2) <1__> .

t
2(1 9”7

This shows that |uj | < et~ (t — )" when t —r > 4. When ¢ —r < 4, we simply use the bound |uj | < et™L.
The estimate of u, accounting for the other oscillating source term is the same, so we obtain the estimate
of ug = u;' + u, . This also indicates that the corresponding radiation field F5(¢,w), whose existence follows
similarly as for F(q,w), decays at the rate (14 ¢_)~1+°.

4.2.3. Remainder terms. We consider —Jug = R with vanishing initial data. Recall we have |R| < g2t=4+9,
Then a quick use of Lemma 4.5 yields [ug| < e2¢t72F0(1 — £)=1H0 = g2¢=1(¢t — ) 7110 0 it affects little in the
interior. Again, for t — r < 4 we use the bound |ug| < %!, The radiation field F3(g,w) then satisfies the
decay |F3(q,w)| S e*(1 +q¢-) '

4.2.4. Homogeneous equation. We finally consider the equation —[Juy = 0 with the initial data set of u. In
this case we have |uy| < et='(1 4 |t —7|)7!, so again no effect in the interior. The radiation field |Fy(q,w)| <
£(1 4+ q_)~" also enjoys good decay.

4.3. Asymptotics for Klein-Gordon field. We have proved the first part of the theorem. We now have
lu — %| < ug| 4 Jus| + Jug] S et — )70 < gp2F9 when t — r > 4. We have also shown that
[®s] < el —[y?)i

Now we rewrite the equation (3.10) as

Uly . . 3 U
0,94 = _% ,(o )(I)+ + 5 92 _2%@— + e_l'gr"_lp(Ay‘l5 + Eqb) + (u — M)qhﬂ
Then
ap(e% (y )1np<1> + i —2ip+5U(y) 1npuq>_) — %e—%ﬁap(e%U(y) 1npu<1>_) + e—ipp—1/2(Ay¢ + ng) + (u — —U(y)){hr.

We denote the right hand side by h(p,y). Then |h(p,y)| < ep=2H0(1 — [y[2 ) 9 using the decay we have®,
Again, we want to integrate along the hyperboloidal ray, but this time we start the integration at ¢t — r = 4,

also written as p = p(y). Along this we have |®.| < e(1 — |y|2)%_5
Then

‘p:ﬁ(y)

=/ ﬁ(p,y)dp—/ (p,y)dp,
oY) p

(4'20) 6% (y )lnp@ 4= 1 2ip+%U(y)lnpuq>_ - (6% (y )lnp@ 4= 1 —2ip+%U(y)lnpu(I)_)
4 4

so we have

(4.21) esVWMrg =T (y) + hy(p,y)

»N@

where [by ()| < (1 — |y2)i72°, and |hy (p,y)| S ep™ (1 — |y[2 ) ~9. Similarly for ®_. Therefore we get
p=p 2 (ei”_%U(y) MeE (y) + e sV e g (y)) +R,
where |R| < Ezp_%Jr‘S(l — ]y\2)%_% S e2¢t~2+9_ This finishes the case when t — r > 4. For t — r < 4 we have

6] Sep~2(p/t)3 2 L ep? Bt t0 < oy it

3Here we use the decay | Ay | < Ep7%+6(1 —ly| )776 for which we only have it with 2 replaced by % at this stage, but this can
also be shown by dealing with commutators like the existence proof.
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5. QUASILINEAR SYSTEM
We now discuss the coupled system (1.2)
—Ou = (0:0)* + ¢*, —0¢+ ¢ = H* uda0¢.

In [15] a complete proof of the small data global existence is given (see also [17] for non-compactly supported
data). The new difficulty of this model is the worse behavior near the light cone: the equation can be rewritten
as

(5.1) ~0¢ + ¢ = HPPud¢ + 2Hud,0y, ¢ + HYY9udy,0,,¢ + Ry

where R; is the difference when changing the coordinates, i.e.

(5.2) Ry = H*Pu0,03¢ — HPPud3¢ — HYY1ud,,0,, 6.

Recall that dp = %dt— %dazi, dyt = —%dt—k%dazi. Therefore, we have the estimate |H?| < 1_‘1y|2, |HPYi| < p7 L,

|HYYi| < t72. Compared with the semilinear model, we have an H?? factor in the term which is expected to
be on the phase correction, and this factor is unfavorable near the light cone.
We can further write the equation as

3 ) .
(L= HPPu)OR(p26) + p26 = —p 2(Dyd+ | @) + 202 HPud,0,,6 + p2 HYiud,, 0,6 + p* (R1 + Ro)

where Ry = pruaﬁqb - p_%pruag(p%gb).
Now we consider the change of variable p* = [(1 — pru)_%d,o with p* = p on {t —r = 1}, so that
Opr = (1— pru)%ap. One can also show that p* ~ p. Then we get
1 3 _ s
(5.3) 85*@ + P = Eap(pru)(?pCI) — p_%(Ay(b + Zqﬁ) + Qp%pr’uapayi¢ + p%Hylyﬂuc‘)yiOyj¢ + p%(R1 + Ry).

We have the estimate
|Ra| S 1H*u(8a83p) 0| + |H* u(8aB5y:) Dy, 0],
where o, 3 represent the rectangular coordinates. Note that |0?p| < Z—i, so this causes much worse behavior
near the light cone compared with the semilinear case. We also have

_3 _ _
|[Ro| S 072 [Hul(p™H9p0| + p7210)).
Suppose we have the weak decay estimates
(5.4) 'L S epm (U~ yP)", 0L u| SetmzpTH I+ 1] < My,
for some a > 0. Then using Lemma 3.4 we get |L7u| < et™1(t —r)?. We also have
p . _3 1 _5 _3 1
(5:5)  10,L70| S TIAL ¢l + p~ [LL7 9| S ep 2= JyP)* 2 Fep 2 (L= [y Sep2 (L - JyP) T
for |J| < Ny — 1, using p > (1 — |y|2)_% in the relevant region t —r > 1. Therefore, also using |0y, ¢| <
(1= ly*)~*|20], we have
(5:6) 1R ST ) 21— )T (- ) S T )",
(5.7) P2 Bl S 29 (1~ Jy)".
We also need to estimate other terms on the right hand side of (5.3). We have |9,u| < 7|0pu| +ep™!|Lu| <
»375_%,0‘S +ep it 1pd < ep_%Jr‘S(l — |y|2)% Therefore we have

_3 _1, 3 1 _3 1
(5.8) |0,(HPu)0,®| < ep™ 20 (1— [y*) " (p2]0,0| + p2[g]) S e2p 220 (1 — [y|*)*Fa.
We also have the estimate
3 . 3 4, 1 _
(5.9) |02 Hudydy, 0| S ep2p™ 't IW!@)W! SePp (1 — JyP)

using (5.5), and

3 3 _ _ a1
(5.10) |p2 HY¥5udy, 0y, 6| S eprt2(1—|y|*) 7> D |17 S 272 T0(1 — |y)* 2.
[7]<2
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We want to apply a similar integration argument to (5.3) as in previous sections. We will get an integral like
P .
(5.11) / S—§+26(1 - ‘y’2)a+i + 3—2-1-26(1 - ‘y’2)a + 3—3-1-6(1 - \y[2)“_%ds
p(y)

when controlling p%(b. So in view of the bound p(y) ~ (1 — \y[z)_%, we derive |¢] < Ep_%(l — ]y\2)“+%_6. Hence
we improve the bounds in terms of the decay in (1 — |y|?).
The same idea also works for higher orders, as we have

—00'LY ¢+ 0'L7 ¢ = H*Pudodpd! L7 ¢ — [HPudn05,0' L7,

and we can apply the same argument to 0/L7¢. The commutator term produces terms with fewer vector
fields, and this allows an induction argument to deal with the small decay loss in p, which is standard. The
commutator term behaves well in the decay in the homogeneous variable y when |y| — 1. Nevertheless, in view
of the way we control the derivative in p, We lose two order derivatives in this process.

Therefore, we can show that |07¢| < p~2 (1 — |y[2)*T 273, |0/ L7¢| < ep 379(1 — [y|2)+23 for |I] + |J| <
N; — 2. We can then apply this argument iteratively to get even better decay, at the expense of two order
derivatives each time. This explains how to deal with the new difficulty, and the proof of global existence
follows similarly as the semilinear case.

Now we turn to the asymptotics. In the last step of the integration along (rescaled) hyperboloidal rays, we
can instead use the same way as in the semilinear case to obtain the asymptotic expansion

3 ip* —ip*
¢=p (" ar(y) + e a(y)) + hip,y),
where we can derive good bounds, e.g. |a+(y)| < e(1—|y[?)3, |h(p,y)| < &?p—%H( — |y|*)~ 3

The wave component. Again, in [15] the improvement of the derivative of the wave field was not established,
and one can improve this by the conformal energy and integration along the null characteristics to get

(5.12) 10,17 u) S ep™ 20 (pft)2,  |OL u| S et (1 + |t — )T,
We have
(5.13) 0" = 2p " a(y)a—(y) + p (€ ar(y)® + e a(y)) + R.

Again, this only holds when ¢ —r > 1, but we use this expression everywhere in {t < r} and put the error in R.

Solving —Ouy = p~3a (y)a_(y) is the same as in the previous section. We have u; = U(y)/p for some U (y)
in the region {t —r > 4}. For the remainder we have the estimate |R| < €2p_%(1 - |y|2)3,0_g+5(1 - |y|2)% <
€2P_4+5(1 - \912)% < £24—4+0

For the oscillating part, we again consider the equation —Du; = p 32" aﬁ_(y). We rewrite this as —Dugr =
t=3e2” P(y). Then we have |P(y)| < &2(1 — |y|2)%

We can apply the same integration by part argument as in the semilinear case, with the phase function
o(p,y) = [(1 — HPPu(p, y))2dp — p. We have Dpp = (1 — HPPy)z — 1, Oyp=— [ 3(1— pru)_%(prayiu +
Oy, (HPP)u)dp. Therefore, since |HPPu| < Ce, we have |0, S [HPPu| S e, and [Vyp| Se(1 — |y|2)_%p5 using
IV H?| S (1= Jy*) 7% and [Vyu] S ep™' (1 [y[*) 72

The only difference in the argument is that now for Cy, Cy in (4.14), where the derivative falls on the
phase function, we get more singular behavior near the light cone (which corresponds to negative powers of
(A2 — F—-(1- )\)77] ) in the integral). However, this is not a problem as we have good decay of the same factor
prov1ded by the source term (the Klein-Gordon field). Precisely, we have

2 T 2 T _(1_ z —
(5.14) C1+Co=(1— A\~ s/ _1|__(1n_ M it ”—f—ﬂ—A)”PvW’PC (1A m)
t—x-n

(aw

L—(1-N)n
_0pp(ty/A2 — [T — (1 NP2, =572

- Z_(1-\ —24
+VW@¢V—5—G—»m%t&>%-Aﬂ)

4Recall in Lemma 4.5, we require that a cannot be too worse. i.e. close to —1. However, once « satisfies this condition, the
value of o does not affect the outcome of the estimate.
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Then using the bound for P(y), we have

o15) jexl g - = EECEA s EE2IE i ey
S e P VUL
(516) |Cal £ 21— a3 YA _E—%(.ln_ Ml Lo (; My — _(3—2_W>
(/A =T — (L= WPy o™
SO—aN IO = = (=i

We then use Lemma 4.5 to get

! -1 ~146
- <2(1-" 3 r s
/S2 /fﬂ |C1| + |C2|ldXdo(n) S e (1 t) +e <1 > .

t
2(1-%m)

Therefore we get |ug| < e2t72(1— )71 +&2t72H9(1— 1)=1+9 < 2%¢=1(¢t — ) 7110 again in the region {t —r > 4}.

The asymptotics for the Klein-Gordon field. We conclude this section with a similar argument to derive
the asymptotics of the Klein-Gordon field. We have shown that u; = U(y)/p when ¢t —r > 4. Therefore
lu—U(y)/p| < |ug| + |us| + |ug| S et (t —r)71H9 < gp~2+9 in this region.

We revisit the Klein-Gordon equation —[¢ — Haﬁuaaaggb + ¢ = 0. We have —[¢ — HQBM&I@MS +¢=

P
Ho8(u — Y95, 050,

o
In this case we can consider a similar rescaled coordinate p* = [(1 — H pp@)_%dp. Compared with above
we get an additional term H5(u — %)&185(;5 that behaves well. Therefore we can get

¢=p 2 (e ar(y) + e 7 a(y) + k(p,y)

in {t —r > 4}, where |a(y)| < e(1 —|y*)?, and |k(p,y)| < Ep_%+6(1 - ]y\2)§ When t —r < 4, the behavior of
¢ is good similar to the semilinear case.

6. SCATTERING FROM INFINITY OF THE SEMILINEAR MODEL

We consider the scattering from infinity problem of the wave-Klein-Gordon system
(6.1) ~Ou=(2¢)* +¢*, 0+ ¢ =up.

In view of the asymptotics result, we assign a pair of homogeneous functions a4 (y). Recall that then the
function U(y) describing the interior asymptotics is determined. We let u; solve the equation®

(6.2) —Ouy =2p7° (14 (1 = [y) Has (y)a—(y)

with vanishing data at {t = 2}. In the forward problem we have already shown that uy = U(y)/p when t—r > 4.

®Note that here we take the contribution from (0:¢)? into account, which we did not consider in the introduction part for
simplicity.
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We need a bit of calculation on 0;¢g. Using 0; = %8,) — %y - Vy, We have

t 1 t 3 5 ioifu —ip+[u
+ F (P_g ( P — ;u1> eirmalmieg  (y) + <—i + ;u1> 6_2p+2fu1dpa—(y)>> - Vo
_3 io—2 [u _ 1, o+t [
= p 3 (el mdn (1= ) hay (y) — RS ML~ Jy2)Hia(y))

i (s e Py 4 punas (0)
+eita ey — [y2) 7
We then let uo solve the equation
64)  ~Oup=p® (0= mdo(1 — (1~ )~ )ad (y) + 200 (1 — (1~ [y?) a2 ()
with vanishing initial data at {¢ = 2}, and u3 such that, again with vanishing data,
(6.5) ~O(u1 + u2 + us) = 9§ + (Dpo)*.

In the asymptotics part we have also derived estimates for the same type of equations as (6.4).
We consider the following approximate solutions

(6.6) uo = up + ug + uz + () L) | (Eny Al
(6.7) do = p3 (PB g, (y) + T mda_(y)).

Note that since u; = U(y)/p when t —r > 4, the phase correction equals i%U (y) In p towards timelike infinity.
The free radiation field F{y corresponds to the part of the radiation field other than uq, us and ug, and Fj is a
second-order approximation determined by 20,F1(q,w) = Ay Fo(q,w) and F1(0,w) = 0. We impose the decay
condition for Fjy:

(6.8) |(49)* 0 Folq.w)[(a)' ™ < Ce, k+[B] < N +2

for some 0 < a < 1/6. This is the type of decay we get in the forward problem. Also in view of the result in
the forward problem, we can assume good decay of a+(y) as |y| — 1, e.g. |VFas(y)| < Ce(1 — |y|?)! for some
[ > N and for kK < N + 2.

In this section, we prove the following theorem, which implies Theorem 1.2.

Theorem 6.1. Given the functions ay(y) and Fy(q,w) satisfying the conditions, we can define the approximate
solutions (ug, ¢o) as explained above. Then there exists a solution (u,®) of (1.1), such that u and ¢ present the
desired behavior, i.e. the same behavior as the approximate solutions, at infinity, and the remainder v = u — ug
and w = ¢ — ¢g satisfy the estimate

3
2

(6.9) lv| < Cap_2+°‘+26(p/t)%, lw| < Cap_%+a+26(p/t) . whent—r>r2,

N[ =

(6.10) lv] < Cet™s Tiot30, lw| < Cet= 1719325 when t —r < ro.
6.1. Estimates of the approximate solutions.

6.1.1. Estimates of uy. We first derive the estimates of u;. Since

(6.11) [0'S*QT(p PRI S D> -y
[I1 ]+ 12| <[]

_ Mal=11a]
2

p 30T F(y))

S A=y M Y97 Fy),
I<IT+]

gives the control of the source term of the wave equation of 97 SKQ7u;, we see that |0/ SEQ7uy| < 2t as the
right hand side is bounded by Ce?t~3.
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We want to estimate 97Q’ J urdp. For example, we have

t 1 t 1 1
0,07 /uldp = 8t/QJu1dp = 2Qu; — Zy . /VyQJuldp =207y —
p p

Let Y = (1— |y|2)%8y, P=(1- |y|2)_%p8 =(1- |y|2)_%5, @ =Y or P. Then one can show that
o / wdp| S p7 ST (IR — [y ) QR w | + p7 | / YIQuydpl, |11 > 1.
[11]+[12|<|1]-1
We also have
1 i
(6.12) QUAIS (L —ly) =127, [YTfIs -y =l fl.

Then since |Z1uy| < €271, we get
[7]—
(6.13) \8IQJ/u1dp\ <e?p M1 - \y[z)_% In p.

6.1.2. Estimates of ¢o. We now estimate the approximate solution of the Klein-Gordon equation.

[1]=(k=1)

3_ Hij—(k=1) ’
Lemma 6.1. We have [01Q7¢g| < €D k< g P2 (I p)k(1 — |y|?) 2 2|11 41] Q" as(y)].
Proof. Note that Qp = 0. First we have

(614) Q7 gy = Q7 (p73 (e 3 S mdrg, (y) 4 mitE S mdeq_(y))

= Z p—% <eip—§fu1dp <—;/Q‘hu1d,o> <_; /ijluldp> ija+(y)>
Jitdot+Jp=J
-|-p_% <e—z’p+§fu1dp <%/Q‘huldp> <%/QJk1U1dp> QJka_(y)> ,

and the case when |[I| = 0 follows. The case when partial derivatives are present follows similarly as the
calculation for uq. O

In the interior of the light cone, i.e. {t > r}, we have

3
(6:15)  — Do+ do = p205(p20) + 9o — 0 *(Bydo + J0)
= p RO 4 1) (i g (y) 4 et S mdeg_(y)
— 2 (T3 (A (y) + 0y () + TR (Aya(y) +a(y)))

Since

) @pur)eiom S e

8g(eip—%fu1dp) _ _eip—%fuldp + 2Z~(_%)uleip—%fu1dp + (_%ul)2eip—%fu1dp + (

= (~14ur = quf = p ' Su)eln 2 S,

and similarly for the other one, we have

(616)  — Db + 6o = p 3033 60) + b0 — p (g + - 60)

= p~2(ug — ZU% - %P_15u1)(62p_5 Jwideq | (y) 4+ e7irtz [udeg_(y))

— % (eip—%fuldp(Ay(a+(y)) +ai(y) + e—ip—i—%fuldp(Ay(a_(y)) + a_(y)))

= wago — p 3P Ay (y) +as(y) + (G (om) + S (pSu))as ()

7 ; i 1
—prremirti S mdn(A L (y) 4 a_(y) + (5 (pwr)?

A ‘(PSm))a—(y)) =: u1¢0 — Ro.

L
2
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Similar to the estimate of 9'Q7 ¢y, we can show that, using Dy =73 e 3 Q?xﬁ and the estimates of uq,
(6.17) RIS Y o) - ) 19 s ().
| |<]J[+2
6.1.3. The free radiation field. Here as in [24], we choose F} so that
(618) 2F1/(q,w) = AwFO(Q7w)7 Fl(0,0J) =0.
Then from the decay assumption of Fj, we have |(<q>8q)k8£F1(q,w)|(q>_o‘ < Ce. We also denote gy :=
X(M)M + X(M)w It is straightforward to verify that

T T

(t—r)
Tody | < XCg) kg 1 kg
(6.19) 0| S X [(@aalRew)| + s (000 R0, w)|
k+[BI<IT|+| ]|
Under the choice of F, we also have the following estimate in [24]:
; () k ;
6200 'O ST Y (@@ R+ @) iR w))

BI+E<|T]+|J]+2

Therefore, using the decay conditions, we have

(6.21) 1072 or| S et +r)"Ha) T, 10727 Ol S et + 1) g
in their support.

6.1.4. The estimate of us and us.

Lemma 6.2. We have

(6.22) 1070 ug| + |07 ug| < et + |t — ) 71O

Proof. We commute the equations of up and ug with 8'Q”. Recall uy satisfies

(6.23) Oy = =2 (2ot e (1 = (1 ) ad (y) + 2 (1 — (1 [y2) a2 (y))

For simplicity we only derive the estimate of the a4 (y) part. Again by direct computation, we have

(6.24) 7 (o3 (2= mde(1 - (1= [y )t (v)))

= Z p3 <e2ip_if“1dp (—i/QJluld,o> <—i/QJ2u1dp> <—i/QJ’“1u1dp>
J

Ji+dot - Jp=
Q1= (1= ) e w)?) )

Each summand here has an oscillation factor, so we can then use the integration by part argument as in Section
4.2.2. Note that we do not have perfect functions of y here, but it is not hard to see that the argument still
works (we will get a new term with the estimate similar to C; there). Then by linearity we get the estimate of
Q7uy. This concludes the case when |I| = 0. If 9! is present with || > 0, the only term that is not one order
better in p is when all 0, parts fall on the phase ¢'?. In this case we get a term

(20)M p=3e2io=ifmdn(1 _ |y 2)='2' (1 — (1 = |y[2)"V)a2 (y),

which is the same type of term where we can use integration by parts. The remaining terms can be bounded
by

> -y w07 =)l W),

k<|J| | |<[T|+]J]

which is then bounded by t~*(Int)’I provided the condition on a-(y). The estimate for uz also follows as the
source term behaves like these remaining terms. O
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Remark 6.1. This shows that the radiation field of 0'Q7uy and 8'Q7us, which clearly exist, satisfy the decay
(14 q_)~'*9 in the interior. Moreover, using the argument in [9, Section 6.2], we have these radiation fields
correspond to the radiation field of uy and uz applied with vector fields. Therefore, if we denote the radiation
field of ug + ug by F(q,w), then we have the bound

(6.25) (90)* S F (q,w)| S (1 +q-) 1.
This shows the equivalence between conditions (6.8) and (1.10).

6.2. The system. We consider the system

(6.26) ~O(uo +v) = (9o + Ow)* + (b0 +w)?,  ~O(do +w) + (¢o +w) = (ug +v)(¢o +w).
This implies

(6.27) —0v = 2(9s0) Opw + (yw)? + 2¢ow + w* + Doy,

and

(6.28) —Ow 4+ w = (ug + u3 + ¥o1)do + upw + ov + vw + Ry.

Now let T' > 2. We consider the functions vy and wr such that the following equations hold:
(6.29) — Ovr = x(t/T) (2(0s¢0)dywr + (Opwr)? + 2¢0wr + wi + Oor)
' — Dwr +wr = x(t/T) ((u2 + uz + Yo1) ¢o + uowr + Govr + vrwr + Ro) .

with vanishing initial data at ¢ = 7". As in [24], the cutoff in time is used for technical reasons that we want vy
and wr to be zero near t = T after applying vector fields d/Q7. Since x(¢/T) = 0 when t > T'/4, we see that
vy and wy are zero functions near (and after) ¢ = T, so in particular they (and their derivatives) vanish on the
hyperboloid Hp (which is in the future of {t = T'}).

Applying vector fields to the equations, we get

—DOIQJ’UT = OIQJ(X(t/T)(Q(atqbo)ath + (6{(0’]“)2 + 2¢0wT + w% + DT/JOI))

(6.30) I nd I nd
-0 Q' wr + wr = 0°N (X(t/T)((UQ + usz + ¢01)(Z§0 + upwr + Govr + vrwr + Ro)),

Lemma 6.3. We have |Z!(x(4))| < x(55) in the relevant region. By relevant region we mean the region where
vr and wr are nonzero.

Proof. Notice that vp and wr is zero when ¢ > T'/2, and supported in |z| < T'/2 near ¢t = T'/2. Therefore, by
the finite speed of propagation, we have in the relevant region that ¢t +r < T. Since taking derivative of x
means t ~ T, we have r < T. Then the estimate follows in view of the expressions of vector fields. O

6.3. Energy estimates. We consider the following foliation: the interior part Eﬁ) - H p of the slice X, is

defined as the restriction of H, in the region where t —r > 2. Then we extend it to the exterior by constant
time slices. We denote the constant time part by ¢, which means the exterior part of %, 80 Xp =32, U XS,

The hyperboloidal part ]?Ip intersects with 3¢ at a point ((p), z(p)) on {t—r = re }. Since t(p)—r(p) = r(p)%

and t(p)2—r(p)? = p* where 7(p) = |z(p)|, we have p = 27‘(/))% + r(p). This determines the function r(p), and

hence t(p), and we have t(p) ~ r(p) ~ p%. By implicit function theorem, we also have r/(p) = 2,0/(3(7"(;)))%—1—1) ~
1 _1 1
ph, #(p) = (1= L(r(0))~2)r'(p) ~ pb.
Under this notation, we also see that vy and wp vanish near Y.
We define the energy

(6.31) Eulp )= [ No/00usP + B+ | |0sPds,
f, e
(6:32) Bc(pnf) = [ 1p/00P + i +10Pdo+ [ jofP +|fPas,

and their higher-order versions

(6.33) Buk(p: /)= Y BEulp0'2'f), Exculp,f)= ) FExalp.0'Q’f).
(| +]J|<k H|+[T|<k
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We make the bootstrap assumptions that
(6.34) Ewr(p, vr)z < Chep™ 2 tothd, Era:x(p, wr)z < Chep Ttk < N, forallT<p<T.

where Cp is some constant which we will determine later. This clearly holds when p =T'. We then improve
this bound to show that T"= 2. From now on, the notation “<” means the existence of a constant that does
not depend on (.

We now state the backward energy estimate for our foliation.

Proposition 6.4. For p; < p2, we have the energy estimate

N

(6.35) ([ !(p/t)atf!2+\aif\2+m2\f\2dx+/ \8f!2+m2\f\2d:c)

1 Pl
1
2
S </~ |(p/1)3ef 1P + [ f|* +m?| f|*dx +/ OfI* + m2|f|2d<v>
Hp, 222

P2 P2
+/ ||(—D+m2)f||L2(gﬂ)dp+/ P311(=0 +m2) 1] 255 dp,
p1 p1

where m = 0 or 1. Note that same as H,, we use the measure dx to define the L? norm on ]?Ip.

Proof. By standard energy identity induced in our region, we get

[ 1or0o s+ (i 4 ml g Pde+ [ JosE 4wl

Hp
- / (o/0f P + (3 f > + m?| fPde + /
Hp, se
P2 P2
—I—/ B 8tf(—D+m2)f'(S/t)d:L‘dt+/ Orf (=0 + m?) fdadt.
14 Hs P ¢

[Of 2+ m?| f|*da
2

In the interior part we have ds = 7dt, and in the exterior part dt ~ s3ds. Hence, The last line is bounded by
P2 1
/p -4 1) L g 16/ iy + 11(-0 M) 1112 5) 106 125 55 s

Denote E(p) = pr [(p/t)0cf1? + 10: f|* + m?| f12dx + [s. |0f* + m?| f|*dz. Then we have

1d 1 d 2 1 2 1
25t 4 (B = | £ )| (160402 laqz, + o410+ mA) sy ) Blo)
SO
d 1 1
%(E(P) 2)| SNEB+mA) fll 2,y + 310+ m?) fll 2z da,
and the estimate follows. O

We want to establish the estimates for vy and wp. Notice that everything is zero after ¢ = T'/2. Therefore,
everything is zero on X7 for p > 97'5. Then the energy estimates read

(6.36) Eu(p,vr)? < Eyi(T,vr)?

T/2
+ / Z HaIQJ (2(8t(250)8th + (8th)2 + 2¢owr + w% + DT/JOl) ‘ ‘Lz(ﬁs,dx) ds
P I+ TI<k

3
274
+ / S% Z H@IQJ (2(8t¢0)8tZUT + (aﬂUT)z + 2(;50’[07“ + w% + D¢01) ‘ |L2(E§) ds
P [I]+|J|<k
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and
(6.37) Erck(p,wr)? < Egew(T,wr)
T/2
+/ Z H(‘)IQJ ((ug+U3+¢01)¢0+quT+¢ovT—l—?JTwT—i-R())HLZ(ﬁS)dS
P I+ I|<k

3
2T4
# [ s ST ([0 (s o)+ wowr + Govr + vrwr + Ro)| s, ds
P

[N
[N

[T+ J| <k
6.3.1. L? estimates of approzimate solutions. For energy estimates, we need to control the L? norms of quan-
1
tities involving approximate solutions. We first consider the estimate in the interior {¢t —r > rz}. In view of

the support of ¥g1, we have r > % p wherever ¢y # 0. Therefore we have

N

(6.38) 11027 (@00l 2z, S 1ot +7) 7D pagars 2 pany S 2077 < / 1 (r‘z‘“)2r2dr>
V3P
< Ep—2+20¢(p—1—2a)% < Ep—gm_
Similarly, we have using Int ~ Inp in the interior (in fact, one should be able to replace the |t — r| by ¢
because of the decay of ¢g in (1 — |y|?))
(6.39) !\3IQJ(¢01¢O)HL2(1§,,) <3t + )2 {g) " (In p)\JIHLz(ﬁp)
1
4 ) 2

_ _3_ _ _3_
S22 ()l 1) 72| g,y S €207 H (I ) /ﬁ 3202 dy
0

<, 52p_2+2a(ln p)|J\(p—2a)% S E2[0—2—1—11(111 p)\J|‘

~

We also have

5 _
(6.40) 10797 (w2 + us)b0) o 7., < 11375 (¢ =)0 )l oz
2 _2+25(lnp)|‘”+%,

10p3
< g2 _2+25(ln p)"” / (r3r2dr | <e¥p
0

1
4 2

P

_T _ 1
10797 Roll > 7.y S llet™2 (W p) V] o5 ) S ep™ (I p) 12,
(t

(6.41)
>):

We now estimate the part in {t —r < r%} We have, using r ~ ¢ in the support of x/(
2

i _: BE (q>2o‘dwdr>

—r
2r

(6:42) 110 Oon)lzzsy S e+ 1)@ ety 5 ([

b :
—6/ \2a —6,20+1y1 -5+ W44q
S et gy Ydgdw | Se(tTUt*T)2 =€t 2 5%

—t

We also have the following estimates
5 t 2
<%tz (Int)! (/ ) 1dwdr>
t—2t2

_ _3
(6.43) (1077 ((u2 + uz + vo1)do)l| L2 (zg) S [l Yint)l e lz2(zgnie<ry)
<t i) ~ e2p 3 p),

(6.44) 1077 Ro| 25y < et~ ()l / ldwdr)? Set™ i (Int)) ~ ep~ 3 (Inp)ll.
t—2t2
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6.3.2. Sobolev inequalities. We need Sobolev inequalities on hyperboloids and constant time slices to derive
decay estimates. In the interior, we have the truncated version of the Klainerman-Sobolev inequality on
hyperboloids:

Proposition 6.5. We have

3
(6.45) supt2|f| < C Y L fll o
H, <2

This version follows from the proof of Proposition 4 in [6].
In the exterior we shall use rotation vector fields.

Lemma 6.6. Suppose lim, .00 Y| 71<2 Is, \Q f2dw = 0. Then
(6.46) o) S (r0) 2 S0 / QT2 + (0,0 2 da
7]<2 |z|>r

Proof. Using Sobolev embedding on the unit sphere, we have

r0w|2<2/ 0! f|2dw<2/ </ L f rw|dw>dr

17]<2 17]<2
<Z/ / Lr-o.0f fdwdr<2/ QLI +10:.9L f13)r*r2dwdr
7]<2 g 7]<2 x‘>’“0
0™ S [ 0L+l
i1<2”1%1270
as required. ]

We also need a version that does not use the norm of f itself for the wave component.

Lemma 6.7. Suppose f is spatially compactly supported. Then

(6.47) [ 1w Paw <200 [ jofP
S2 |z|>70
Proof. We have

/ | (row) Pdw = / (F(row) — F(Rw))? + 2/ (row) f (Rw) — f2(Rw) do
S2 S2

2

< /S2 </T:%87,fdr> dw—k/Sz %f(row)2 + 2f?(Rw)dw

For R big enough, we have f(Rw) =0, so

e 2 00 9
Lvortassa [ ([Tosar) av=s [ ([ rosar) a
S2 S2 o 2 v
= 2/ (/ r_zdr> (/ |8rf|27'2d’f'> dw < 2(7‘0)_1/ 10, f|2r2drdw
S2 70 ro o

< 2(rg)! / 10, f . 0
|z[>70

Then applying Sobolev embedding on the unit sphere, we get
Lemma 6.8. We have

(6.48) £ (row) 2 < (1) Z/ 10,91 f2da.

i71<2 7 %1270
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6.3.3. Hardy-type estimate. The energy of vr gives control of derivatives of vy. We also need to estimate the
L? norm of vy itself. For this we derive Hardy-type estimates.

Lemma 6.9 (Hardy estimates). Let f be a real-valued spatially compactly supported function. We have
(649) H _lfHLZ(H < 2Ew(,0, f)7 HT_linz(Zg) < 8Ew(p, f)

Proof. Define f,(z) = f(y/p?+ |z|?,x). Note that when the hyperboloid intersects with the exterior slice, we

4

have r = r(p) ~ p3. Then one has

/w(m |<E|2 / / ol d“’d’“‘/ Gl d”‘Z/ /T(p iy 0, fp drde

(6.50) o 1
2 2 2 2
(p) /S2 Folr=r(pydw + 5/82/0 ;2 r drdw+2/82/0 |0y f|“r*drdw,
so we get
2
(6.51) / de < 27’(,0)/ fgdw +4/ |0y fo|*dx.
jal<r(p) 2] St jal<r(p)

For the first term on the right hand side, we use Lemma 6.7. We then get

/ (@) 4, o 4/ 0] dm+4/ 10,1, 2de.
wl<r(p)  |Z| lz|<r(p)

Recall the definition of f,, we have 0, f, = w'0; f. Hence we have
1P 17,y < 2Bu(p, f)-

This proves the first estimate. For the exterior estlmate, one has

2 ') [e'e)
(6.52) / f—zda;: / f2drdw = / rf? () dw — 2 / fO, fdrdw
j2|>r(p) || sz Jr(p) 52 (o)

2

1
< / r(p) frdw +/ st + 2|0, f |2 dz,
S’r(p) |~’U|ZT’(P) 2 ‘ ’

so we get similarly that

1P £l[72(sg) < 2r(p) /S |f1Pdw + 410f[[72(s5) < 8110fIl12(s),

r(p)
where we again used Lemma 6.7 for the last inequality. 0
Therefore, by the energy decay assumptions, we have

_ _34n _ _3.44

(6.53) Yo o vl g,y S Coep TN 010" ur |y S CrepT2 TR

[+[J|<k [+ <k

6.3.4. Interior estimate. By the bootstrap bounds, the estimate from Hardy’s inequality (6.53), and Proposition
6.5, we have the following decay estimates:

suptg]t_lc‘)IQJvT\ < Cpep~ 2 Tt (k+2)3, I+ |J] <k
Hp

supt%\(‘)IQ‘]wT] < Chep 1Hot 20 1 11| < k
H,

for k< N — 2.
We need to estimate

Ly ik = / > 10797 (2(01¢0)dpwr + (Brwr)? + 200wy + wh + Doy | |L2 ds
P I+
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and
T/ IyJ
IkG ik = / Z 10" Q7 ((uz + us + vo1)¢0 + vowr + ¢ovr + vrwr + RO)HB(HS) ds.
P+ <k
We have

T/2
Luji S / S 60llpe (i 10727 wrl a7,y + 11E/9)00 ]| oo 7 || (/500" 2w o 1.
P |I|+]J|<k

¢ S
+ Z "alngl(bOHLOO(ﬁs)HaIQQJQ'lUTHLQ(FIS) + ‘lgatahQJl(bO"Lw(ﬁs)"ZatabgthHLz(ﬁs)
|(11,J1,12,J2)|<k
|I2]+]J2|<k—1

2 a0 M el e, 1(8/D20 X |,
[(I1,J1,12,J2)|<k

+ Z "ahQleT"Lw(fjs)HaHQthHLZ(ﬁS) + Z HaIQJ(szm)HLZ(ﬁS)dS
[(I1,J1,12,J2)|<k [1]+[J]|<k

T/2
_3 _ _3 _ _ _5 _ _5
5/ Cb€28 5 1+oe+k6_|_0b€2s 2(1n8)k8 14+a+(k 1)64-05628 2+a+(k+2)68 1+a+k6+€s stas
p

S (CF2 4 e)p2tothd,

and

T/2
IrG ik 5/ Z H(‘)IQJRoHLz(HS) + 110797 ((ug + us +¢01)8129J2¢0)HL2(1§S)

P I+II<k

D S
[(I1,J1,12,J2)|<k
* HahQJlanbwTHLz(ﬁs) + HahQJl‘ﬁOaIZQJZ’UT’‘Lz(ﬁfs) + H@IlQ‘thabQ‘th\’Lz(ﬁs)ds
T/2

S Ces™*(In 3)k+%d«9 + 0?57 (In s)k+% + Ce?s7 21 (In s)*

p

s
+ HUOHLOO(ﬁs) Z HaIQJwTHLQ(ﬁS) + H(t/s)(bOHLoo(ﬁs) Z H;aIQJUTHLQ(ﬁS)
[1]+[J]|<k T T<k

S
2 0 ol g 07wl o i,y +11E/5)0" Q7 ol 7, 15O 0r i,

[(I1,J1,12,J2)|<k
[I2]+|J2|<k—1

t p
+ Z ||8119‘]1UT||L°<>(I§S)||@IZQJ2wT||L2(1§S) + ||;6129‘]2wT||L°°(1§S)||¥8119J1UT||L2(ﬁS)dS

|(I1,J1,12,J2)|<k
[T1]|+|J1|<K/2

T
< /2 Ces™2+0(In s)F 4 Cye2s~ 2ok | 02~ 2ot (k=) )k | (0262 =3+2a+(2h+2)5 g
p
< (Ce+ CEe?)p~ e,
6.3.5. Exterior estimates. Recall we have the energy bound
1 _3 1 _
Ewrlp,vr)? < Chep 270 Freai(pywr)? < Cyep 1Hotko,

We then apply Lemma 6.8 for the wave component d’Q”vp, and Lemma 6.6 for the Klein-Gordon component
1
o'Q7wr. We get in the region {t —r < r2} that

|aIQJUT| < Cbgp—%+a+(k+2)6r—% < Cb€p_%3+a+(k+2)6, on E;,
\8IQJwT] < Cbgp—1+a+(k+2)5T_1 < Cbgp—%+a+(k+2)5
for |I|+|J| <k <N —2.

e
, on Xp
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We want to control

3
274
Iw,e;k = / 8% Z HOIQJ (2(6t¢0)6th + (6{[07“)2 + 2¢qwr + w% + DT/)(H) | ‘LQ(ES) ds

P [+ T|<k

and

Y

o

1

IkGex = / s3 E 11077 ((uz + us + 1bo1)bo + uowr + dovr + vrwr + RO)HL2(Z§) ds.
r |1+]7]<k

Then using the decay of Q7 ¢y and 0'Q7w, we have

3
271
7
Tper S / 53 Z (es7(In s)k“H@IQJwTHLz(ES) + Cbas_§+o‘+(k+3)5\]E?IQJwTHLz(ES)
P [+ J|<k+1
|J|<k

11, 2
+es 3 T3%)ds

3
274
8 _ _ 10,2 _
5/ Cb€2s—3+a+k6(lns)k+1 —I—CI?€2S 3+2a+(2k+3)0 +es 3 T < (01?62 _|_€)p 2+2a
p

In the exterior region {t —r < 7‘%}, where (t — r)4 is bounded by 7‘%, the decay of ¢q is very good, so for
example we have |0/ L/ ¢g| < et=2 and is zero when r > t. Then we have

3
274
(6.54) IkGen < / 53 > 110797 (w2 + us + vo1)¢0)l|2(se) + 110727 Roll 2 (s
p

[T+ <k
+ > |Iro" Q7 o | oo (e | Ir 102 Q2 0p || 25y
|(I1,J1,12,J2)|<k
+ > ol g 10" wel 2 gse) + > 107 Q" ug || oo (261107 Q2w | L2 (s2e)
[T]+]J|<k [(I1,J1,12,J2)|<k
|I2|+|J2|<k—-1
+ Z 107 Q7 v || oo (52610272 wr || p2(sey + (|10 QM wr|| oo (e | [P~ 02 Q20| | oo e
[(I1,J1,12,J2)|<k
[11|+[J1]<k/2

~

271
< / 53 (e2s3(Ins)k + es (Ins)k + 6(8%)_1(Cb68_%+a+k5) + C’bezs_%s_H‘”k&
p

4 _ _ _13 _ _ _3
+ 05628_3 (ln S)kS 14+a+(k—1)68 + C{?Ezs & +a+(k+2)58 14+a+ké + 05628 14+a+(k+2) s 2+a+k5)ds
3
4

~

2T
8 17 13
< / €2S_§ (ln S)k + Cb€2s—2+oc+k6 + 05628—F+2a+(2k+2)6 + 05628—?+2a+(2k+2)6ds
p
_ _T
S (6 + 0562)(p 1+a+ko +p 6+2a).

Recall 0 < a < %, so the decay is given by p~1T%+*9 since ¢ is small. These estimates imply that there exists
a constant C' such that

(6.55) Eu(p,vr)2 < (CC2E2 + Ce)p™ 2T Erc(p,wr)? < (CCR2 + Ce)ptoth < N

for T < p < 2. Therefore, if we pick some C} big and € < c;”c_égc , we can improve the bootstrap assumption, so
b

T = 2 and the estimates hold for all 2 < p < T. We also note that the choice Cj is independent of T, and we
now allow the implicit constant in the notation “<” to be dependent on Cj.
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6.4. Taking the limit. We want to show that the limit as 7" — oo exists. Let 75 > T;. We denote v; := vr,,
w; = wr,. Consider the difference 0 := vy — v; and W := wy — w;. We have
(6.56) — 00 = x(t/T)(2(8; o) Dsws + (Bywa)? + 2dows + w3 + Doy )

— x(t/T1)(2(0e o) Opw1 + (Opwn)? + 2dow1 + wi + Oebor),

(6.57) —Ow +w = x(t/T2)((u2 + uz + Yo1)Po + uows + Govz + vows + Ry)
— X(t/T1)((u2 + uz + o1)po + vowi + pov1 + viws + Rp).
Then we get

(6.58) — 00 = (x(t/T2) — x(t/T1))(Do1 + 2(drdo)dywr + (Bpwr)? + 2dowr + wi)
+ X (t/T2)((20¢h0) Outh + 2601 + ((Dw2)? — (Dpwr)?) + (wh — w)),

(6.59) —0Ow+w = (x(t/T2) — x(t/T1))((u2 + us + Yo1)Po + Ro + uowi + ¢pov1 + viwy)
+ x(t/T2)(uow + ¢o¥ + (vowa — viwy)).

We then consider the energy estimate between X, and Y7,. Note that v; and w; vanish near X7,. We also
have established the bounds

(6.60) Excc(pw)? + Exarlpown)? Sep T Bup(p,01)? + Buglp,v2)? S epm2tothe
for all p < T7y, as well as the corresponding decay estimates. We have for £k < N — 2 that

1 e
Eui(p,0)2 S By (Th,v2)2 Z /
)

” 10707 (Owor + 2(9r¢0)Bwr + (Bywr)? + 260w + wi)ll o g,
|1+ | <k 1

+ 550707 (Tbor + 2(3eo)pwr + (Dewn)? + 2owr + w?)|| 2 (o) ds
Ty
- / 16727 ((20000) O + 26010 + ((Jpw2)? — (Dpw1)?) + (w5 — wi))ll 27
P

+ S%||8]QJ((281§¢0)6151@ + 2¢0’LZ) + ((8{[02)2 — (atU)1)2) + (w% - wl))||L2 (2¢)

Ty

SE(Tl)—S-‘ra-i-ké_’_/ . es —§tathks gg
(T1)4/16

Ty 1
+/ ol oo 7, > ||3IQJ12)||L2(§S) + 53 @ol| oo () > 1077|125
p [+ J|<k [T+ J|<k

Y 10RO ol e i 1B oy + 57110727 o o ()07 Q70 2

|(I1,J1,12,J2)|<k
[I2|+]J2|<k—1

* Z ||8IIQJ2(101 +w2)||Lm(ﬁs)||8129J2,LZ)||L2(FIS)
|(I1,J1,12,J2)|<k

T SN [ T G R [ B [ e
[(I1,J1,12,J2)|<k

+ 53 ST (10107 (wa + wy)l| oo () [102Q720| | 2 520y ds

[Ty |+|J1|<k+1
[I2|+|J2| <k+1

< e(Ty) 7Bk | o(qy) ek
Ty 3 ! 0
+/ es7z Y (10770 o) + 1(5/000" Qb gy + D 110700 2 sgy)
’ H|+[J|<k =t

_3 ~ N 4 N
tesT2(s)t Y (10" o + (/000D gy + Y 110707Q7 D] |2 (sg)
|+ J|<k—1 |17]<1
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- . i
+es 2 TOrEE0N (1077 o + 11(s/0)00" QTR o )
1T 1<k

/ Tl
+esasTs et N IO ]| o seyds < e(Ty) 72T 4 / es™2 Ec(s, )2 ds,

[T|+]J|<E p
['|<1
and
L Ay L
EKG;k(pvw)Q 5 EKG;k(lew)Q
Ty
+ 3 Z H(‘)IQJ((UQ—FU?, + 1o1)¢0 + Ro + uowi + ¢ov1 —l—?}lwl)HLQ(ﬁs)
TOENE 114171k

1
+53|107Q7 ((ug + us + vo1)do + Ro + uowi + govy + viw1)||p2(se)ds

T
—I—/ Z ||61QJ(U(]’£Z)+¢0’[)—|— (vawa —Ul’wl))HLQ(ﬁs) —I—s%HaIQJ(qu—I—gbOU—I— (vows —UlU)l))HLQ(E;)dS

P+ |<k
T
§E(T1)_1+a+k5—|-/ \ 68_2+a+k6d8
(T1)1/16
n IoJ L IyJ »
+ > woll poo (7,107 QW 12 7,y + 55 || oo (2e) [107 Q7D L2 (s
P+ <k
~ 1 N
D 10RO ol e |19 g 55110" 2 | ) [ 10720 2
[(I1,J1,12,J2)|<k
2| +[J2|<k—1
_ N 1 — ~
+ > IR ol e |l O] o )+ 57 IrOT QT o[ oo gy [P OR8] 25
|(I1,J1,12,J2)|<k
+ Z ||T6]19J1w1||Loo(ﬁS)||T_1aIZQJ2@||L2(ﬁS) + ||8IlQJ1U1||Loo(ﬁs)||8129J2w||L2(1§S)

[(I1,J1,12,J2)|<k

1 _ ~ ~
ts3 Y (0" wn e g IR0 2y + (107 Q01| Lo ) 10720720 2 5e) ) s
[(I1,J1,12,J2)|<k

Ty
S () etk g g(my)ataetikd / s Exq(s, )% + 572 Ey(s,0) 2 ds.
P

Note that the estimate of the integrals from (7} 1)%/ 16 (which is a number less than the minimal value of p
where ¥, intersects with the support of x(t/72) — x(t/11)) to T; are the same as the estimate we did before.

Ay L Ay L

Then with Ek(p)% = p%Ew;k(p,v)z + Exak(p,0)2, we have for p < T that

=

T
Er(p)2 < s(Tl)_%Jr%‘”%k‘S —I—/ ss_lEk(s)% +es(In S)kEk_l(S)%dS.

P
When k£ =0, the E;_1 term does not appear. In this case,

Eo(p)2 < e(Ty/p)C5(T1) 71 50 as T} — oo.
Then it is straightforward to show by induction that

Ei(p)? S e(Ty/p) ()3 Tio+iM | <N —2
Then by Sobolev embeddings, we have for |I| + |J| < N — 4 that

sup ‘819‘]1@‘ + ’aIQJ@’ 5 E(Tl)—%+%a+%(k+2)6+05
p(tvx)STl

which tends to zero as Ty > T7 — o0o. This shows the existence of the limit w = limp_.o, wr and v = limp_, o, v,
and that (v + up, w + ¢g) gives a solution of the system.
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