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In Memory of Martin Davis

Wesley Calvert, Valentina Harizanov,
Eugenio G. Omodeo, Alberto Policriti,
and Alexandra Shlapentokh

In 1950, Martin David Dav-
is found the culture in his
PhD program at Princeton
deeply alienating, and he
wanted to be out of there.
So he solved an open prob-
lem of Kleene (establish-
ing the backbone for a ma-
jor branch of modern com-
putability theory), wrote
down his initial steps to-
ward the eventually success-
ful solution of a Hilbert
problem, and graduated.
Davis’s solution to the
problem of Kleene became
the hyperarithmetical hierarchy, which we will explain in
Section 1. His work on Hilbert’s Tenth Problem included
what would later be called his “daring hypothesis” [17]: a
conjecture, later verified, that the computably enumerable

Figure 1. Martin in the late
1940s.
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sets were exactly the Diophantine sets, as we will discuss
in Section 2.

In spite of the economic restrictions which his family
had to face, as immigrants who arrived shortly before the
Great Depression, Davis received a high-quality education.
He arrived at City College of New York as a freshman in
1944 and soon became interested in the foundations of
real analysis and in logic. He approached Post, who in-
troduced him to the writings by Church and Kleene on
algorithmic unsolvability and to Hilbert's Tenth Problem,
which would soon become Davis's “lifelong obsession.”
When Davis had to choose where to undertake graduate
studies, Post advised him to go to Princeton, where, as
Davis later expressed it, the “culture clash” between his
Jewish working-class background and the “genteel Prince-
ton atmosphere” made him eager to finish quickly. In fact,
he got his PhD in just two years, under the guidance of
Church, in 1950.
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Figure 2. Martin, mlddle W|th his friends Jacob T. and Judith
Schwartz.
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Davis's first position was at the University of Illinois
at Urbana-Champaign, but “the Korean war and the hot
breath of the draft” led him to leave that job for the Con-
trol Systems Laboratory. He later moved to the Institute
for Advanced Study, the University of California at Davis,
the Ohio State University, the Rensselaer Polytechnic Insti-
tute, Yeshiva University, and New York University. Certain
summer projects funded by military and civilian research
agencies enabled him to make crucial achievements (“It
was in the summer of 1959 that Hilary and I really hit the
jackpot,” he says, to describe the original, raw discovery
of what would become known as the celebrated Davis-
Putnam-Robinson theorem). Over the course of his ca-
reer, Davis supervised a total of 25 PhD students, includ-
ing scholars now known for work in mathematics, com-
puter science, and philosophy.

Davis's expository books
have become classics and
have been translated into
various languages: Com-
putability and Unsolvability;
A First Course in Functional
Analysis, Applied Nonstan-
dard Analysis; Computability,
Complexity, and Languages:
Fundamentals of Theoretical
Computer Science (with Ron
Sigal and Elaine ]. Weyu-
ker); and The Universal Computer: The Road from Leibniz
to Turing. His 1993 Lecture Notes in Logic are a true jewel.

His many honors and awards include the Steele Prize,
the Chauvenet Prize (with Reuben Hersch), Fellowship
of the AAAS, a Guggenheim Foundation Fellowship, the
Herbrand Award of the International Conference on Auto-
mated Deduction; and the Pioneering Achievement Award
from the ACM SIG on Design Automation.

Martin Davis left two rather comprehensive autobio-
graphic accounts [8, 9] and long interviews [15, 16]. For
this reason, the present note will primarily focus on his
scientific achievements.

Figure 3. Martin ready to give
an answer, late 1990s.

1. Computability

Computably enumerable sets and universal Turing ma-
chines. Modern computability theory started in 1936
with Turing’s seminal paper on computable numbers with
an application to the Entscheidungsproblem, a decision
problem of Hilbert and Ackermann for which Turing pro-
vided a negative solution. Turing introduced what to-
day we would call a Turing machine (he called it an a-
machine), which is essentially an abstraction of a com-
puter. Turing’s and other formalisms for an intuitive con-
cept of an effectively calculable function, developed by
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Godel, Kleene, Church, Post, and others, had profound
significance for the emerging science of computing.

One of the main concepts in computability theory (also
called recursion theory) is that of a computable function
and computable relation. A function f : N* — N is com-
putable if there is a Turing machine that on every input
a;, ..., a, halts and outputs a value f(ay,...,a,). Addition
and multiplication on natural numbers are computable
functions (operations). A set of natural numbers is com-
putable if its characteristic function is computable. For ex-
ample, the set of prime numbers is computable. All finite
sets are computable. Clearly, the complement of a com-
putable set is computable. Computable n-ary relations
are defined similarly. It can be shown that there is a com-
putable bijection h : N?> — N, thus allowing algorithmic
coding of pairs and, more generally, finite tuples of natu-
ral numbers by natural numbers. Decidable problems are
encoded by computable relations.

A function f : D — N, where D C N", is partial com-
putable if there is a Turing machine that on every input in
the domain D of f halts and outputs its value, while on
every input in N” that is not in the domain of f it does not
halt, thus computing forever. Clearly, computable func-
tions are partial computable functions that are total. Par-
tial computable functions coincide with partial recursive
functions defined by Kleene, starting with some basic func-
tions and applying the operations of composition, primi-
tive recursion, and unbounded search.

Since each Turing machine is a finite list of instructions,
Turing machines can be algorithmically enumerated with-
out repetitions as:

My, M, M,, ...

A Turing machine on a given input may halt and output its
value, or it may compute forever. For each Turing machine
M,, we denote the n-ary partial function it computes by

gogn) and its domain by We(n). Hence

@51
is a computable enumeration of all n-ary partial com-
putable functions. For n = 1, we omit the superscript.
Moreover, there is a binary partial computable function
1 such that ¢(e, x) = @.(x).

The above enumeration gives rise to a universal Turing
machine, which can simulate any Turing machine on any
input and leads to the idea of a stored-program computer.
Davis wrote about the universal Turing machine in a num-
ber of papers starting in 1956. His lecture in 2012 entitled
“Universality is ubiquitous” is available at https://www
.youtube.com/watch?v=ZVTgtODXONc.

In a written version, Davis stated: “Turing’s concept of
‘universal machine’ will be discussed as an abstraction, as

o5, ..
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embodied in physical devices, as present in nature, and in
connection with the artificial intelligence project.”

In addition to his large body of expository work on uni-
versal Turing machines, Davis was also an early technical
contributor to the subject. Turing had constructed a uni-
versal machine, but had not dealt with universal Turing
machines as a class of objects. John McCarthy and Claude
Shannon posed the problem of giving a definition of uni-
versal Turing machines, which would deal, for instance,
with the simplicity of the encoding by which the universal
machine simulates arbitrary machines. Davis solved this
problem in [3], as we explain next.

Definition 1. Let S be a set. We say that S is computably
enumerable (also called recursively enumerable) if and only
if S is empty or is the range of a computable function.

It is not hard to see that a set is computably enumer-
able if and only if it is the domain W, of some partial com-
putable (equivalently, partial recursive) function ¢,. If W
is nonempty, then W, can be computably enumerated by
the procedure that simultaneously runs

M,(0), M, (1), ..., My(K), ..

and enumerates those k for which M,(k) halts, as soon as
the halting occurs. Here, simultaneously means that at
each step we add a new input and also run all activated in-
puts for an additional computational step. The converse,
that every computably enumerable set is some W, is also
true.

Since we can computably enumerate the Turing ma-
chines, we can also computably enumerate the com-
putably enumerable sets by

W, Wi, Ws, ....

Clearly, every computable set is computably enumer-
able since a decision algorithm can be transformed into
an enumeration algorithm. Computable sets are exactly
computably enumerable sets that also have computably
enumerable complements.

Definition 2. [3]

(1) Wesay thataset S is c.e. complete if and only if it is com-
putably enumerable and for any computably enumer-
able set W, there is a computable function o : N — N
with x € W if and only if o(x) € S.

(2) We define ), to be the set of all initial configurations
of M from which M will eventually halt.

(3) We say that M is universal if and only if &, is a com-
putably enumerable set that is c.e. complete.

Davis proved that a machine which is universal in this
sense does, indeed, simulate all Turing machines. How-
ever, having universal machines defined as a class, rather
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than simply observed as a phenomenon, opened the door
to lines of thinking that involve quantification over all uni-
versal Turing machines, such as the foundational work of
Solomonoff and Kolmogorov on information theory (Kol-
mogorov complexity), and the theory of algorithmic ran-
domness arising, in part, from it.

The diagonal halting set H consists of all inputs e on
which the Turing machine with index e halts. That is,

H = {e : M, halts on input e}.

It can be shown that the set H is computably enumer-
able. It is not computable since its complement is not
computably enumerable. If the complement H were com-
putably enumerable, then for some e;, we would have
H= W,,- Then

eoeHc)eoeWgO@eoelTI,

which is a contradiction.

It can also be shown that a set A is computably enumer-
able if and only if there is a computable binary relation R
such that for every a,

a € A< (Ix)R(a, x).

We can relativize all of these notions using Turing’s no-
tion of an oracle machine. A machine with an oracle for
a set S is a Turing machine which carries out its compu-
tation with the additional resource of read-only access to
the characteristic function of the set S. In this way, even
if a set U is not computable, it may be computable with
an oracle for another set—-for instance, its complement.
The halting set relative to S (also called the jump of S and
denoted S') is defined exactly as before, but replacing the
machines with machines with oracle S.

The hyperarithmetical hierarchy. In his 1950 PhD thesis
at Princeton, Martin addressed a problem posed by Kleene.
It was already known that every formula of classical pred-
icate logic is equivalent to a formula consisting of a block
of quantifiers (“for all” and “there exists”), followed by
a quantifier-free formula. Kleene noted that the optimal
form of such an equivalent formula corresponds to the
degree of unsolvability of satisfying that formula. For in-
stance, Turing’s halting problem is equivalent to the prob-
lem of satisfying a particular sentence with a single existen-
tial quantifier, but not to the satisfaction of any quantifier-
free formula.

This gives rise to a hierarchy of formulas—and, equiva-
lently, of decision problems, according to the number of
quantifiers, and whether those quantifiers are “for all” or
“there exists”. Since there is no computational difference
between determining the existence of a single element and
determining the existence of a finite tuple of elements, we
consider only alternations of quantifiers.

VoLuMmE 71, NUMBER 7



Definition 3 (The Arithmetical Hierarchy). Let S C N

(1) We say that S is Z{ if and only if there is a com-
putable set T C N"™*! such that @ € S if and only
if 3x[(x,a) € T1].

(2) We say that S is TI? if and only if there is a com-
putable set T C N"™*! such that @ € S if and only
if Vx [(x,a) € T1.

(3) We say that S is £, if and only if there is a IT9 set
T C Nm*lguch thata € Sifand only if 3x[(x, @) € T].

(4) We say that S is T2, if and only if there is a =9 set
T € N™*lguch thata € Sifand only if Vx [(x, @) € T].

The Z{ sets are exactly the computably enumerable sets.
The 29, sets are exactly those computably enumerable rel-
ative to the n-times iterated jump of the empty set. There
are certainly sets of natural numbers that are not =% or I19
for any n, and Kleene asked whether the hierarchy could
be continued to transfinite levels.

Davis [1] carried out this generalization by iterating the
jump starting at an arbitrary set, and also describing a uni-
form join of infinitely many jumps. In the following def-
inition, @ denotes the least transfinite ordinal, the order
type of the natural numbers.

Definition 4. Let K, = #.

(1) Let KO{+1 = K&.

(2) LetK,, be the set defined by 2*13*2 € K, if and only
if x; € Kyy(n-1)+x,-

Davis proved that this hierarchy is proper and that it ex-
tends the finite-level Kleene hierarchy to all ordinals less
than w?. After Davis’'s work, the major pieces still miss-
ing were extension to larger ordinals and the fact that the
choice of representative sets at limit levels is not unique. It
was five years later that Spector showed that, up to Turing
degree, the definition is robust. This transfinite hierarchy
is now at the core of modern computable mathematics.

Hypercomputation, neural networks, and unconven-
tional computation. A major effort of the later part of
Davis's career was devoted to defining the bounds of com-
putation. In response to a community of scholars who ap-
plied relativistic and quantum theories to propose comput-
ing devices more powerful than a Turing machine (an idea
they called “hypercomputation”), Davis responded with
unbridled skepticism.

Davis’s most significant paper on this subject [7] con-
sidered a key proposal for a hypercomputer, a certain kind
of neural network. The proposal described a model with
parameters. If those parameters range over rational num-
bers, the machine could determine membership in the
computable sets, as expected; however, if the parameters
were allowed to range over arbitrary reals, it could deter-
mine membership in arbitrary subsets of N. Davis pointed
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out that the ability of the model to determine membership
in arbitary sets followed immediately from Turing's obser-
vation that any countable set was computable relative to
some oracle, still via a Turing machine. In this way, Davis
showed that neural networks reflect computation within
the bounds of the Church-Turing Thesis—that is, equiv-
alent to a computation that can be done by a Turing ma-
chine.

Many of the hypercomputation models rely on some ac-
cess to certain full-precision real numbers, to which, Davis
pointed out, no scientific observation could give us access.

In a paper entitled, “Why there is no such discipline as
hypercomputation” (published as an introduction to a spe-
cial issue of Applied Mathematics and Computation devoted
to papers on exactly this discipline), Davis argued that if
there were a hypercomputer, we would be unable to verify
its performance, since we could only see finitely many out-
puts. Moreover, any real computer is subject not merely
to the limitation of a Turing machine—that is, the limita-
tion that only a finite time and a finite span of memory
can be used—but to a much stricter limitation of a con-
stant bound on these quantities, depending only on the
machine, and not on the algorithm or the data. While in-
vestigation of algorithms in the Turing machine context
has important meaning, both in theory and in practice,
they must finally be executed on finite state automata, a
much more limiting device.

On a personal note VH.
The first time [ met Mar-
-, tin Davis at a conference, I

: was very impressed by his
kindness, modesty, sense
of humor, and friendliness.
Later, I invited him and Vir-
ginia to visit me at George
Washington University and
give a math colloquium
talk. It was in November
2007 and his lecture was
entitled “Unsolvability and
undecidability in the Dio-
phantine realm,” an ordi-
nary title compared to his
2020 MSRI talk “Here there
be monsters.” During the
GW talk to a packed room, Davis covered many years of
work, progress, and struggles on Hilbert's Tenth Problem.
When a person in the audience asked him how he man-
aged to persist for so many years working on one problem,
he replied that his obsession with this problem “was a dis-
ease.”

Figure 4. Martin and his wife
Virginia as grandparents,
holding Katie Rose.
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Because of the advances of computer technology, Mar-
tin Davis’s 2020 talk, “Here there be monsters,” was pos-
sible when MSRI semester program on Decidability, De-
finability and Computability in Number Theory had to
be moved online. His talk was an opening one for
the program and is posted on https://www.sITmath.org
/workshops/25120#videos_workshop.

2. Hilbert's Tenth Problem

A brief history. Martin Davis was one of the four peo-
ple who collectively solved Hilbert's Tenth Problem. The
other three were Hilary Putnam, Julia Robinson, and Yuri
Matiyasevich.

The history of Hilbert’s Tenth Problem starts in 1900
when, during an ICM in Paris, David Hilbert presented a
list of 23 problems that had a great influence on mathemat-
ics in the twentieth century and continue to influence the
subject in the twenty-first. The tenth problem on the list is
to devise a process that determines whether any given Dio-
phantine (polynomial) equation with integer coefficients
has a solution in the integers.

If we are to rephrase Hilbert’s question in modern terms,
we could say that he asked for an algorithm (or a computer
program) taking as its input coefficients of a polynomial
equation in several variables over Z and generating “yes”
or “no” to the question of the existence of the roots of this
polynomial over Z.

At the time Hilbert formulated his question a formal no-
tion of an algorithm, let alone a computer program, did
not yet exist. He asked for a process terminating in a finite
number of steps, and this was later interpreted to mean an
algorithm. The theorem proved by Davis, Putnam, Robin-
son, and Matiyasevich showed that such an algorithm does
not exist.

Lagrange’s four-squares theorem from 1770 establishes
that every natural number can be expressed as the sum of
squares of four integers. Hence, the algorithmic solvability
of a Diophantine equation in the integers is equivalent to
the algorithmic solvability of a Diophantine equation in
the natural numbers.

The first step towards the solution of the problem was
made by Davis in 1949 when he showed that any com-
putably enumerable set of natural numbers has the follow-
ing form:

{a| IyVk < yAxy,...,x, : p(a,k,y,xq,...,x,) = 0},

where p(...) is a polynomial with coefficients in Z and all
variables range over Z.

Itis not hard to see that a set of natural numbers defined
using existential quantifiers and a polynomial equation is
computably enumerable. More precisely, let p(t, xy, ..., X;)
be a polynomial in n+ 1 variables and consider the follow-
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ing set S of natural numbers:
{a eN|dx; eN ... 3x, eN : p(a, xq,..., X,) = 0}

We can enumerate all (n + 1)-tuples of natural numbers
and plug them into the polynomial p. Each time the result
is 0, we add the first coordinate of the (n + 1)-tuple to S
eventually listing every element of S. The polynomial p is
called a Diophantine definition of S, and sets defined using
existential quantifiers and polynomial equations are called
Diophantine sets.

In 1953, Davis [2] established that the collection of Dio-
phantine sets is closed under unions and intersections, but
not under complements.

Observe that Davis’s formula defining all computably
enumerable sets is very similar to the characterization of
Diophantine sets (which clearly defines at least some com-
putably enumerable sets). In 1949, Davis conjectured that
every computably enumerable set is definable by an exis-
tential polynomial formula. It took 20 years for this con-
jecture to be proven.

Davis and Putnam proved that, under an additional hy-
pothesis, the bounded universal quantifier can be elimi-
nated, in favor of an “exponential Diophantine equation,”
that is, an equation where variables are allowed to appear
in the exponents. The additional hypothesis was at the
time a conjecture, but is now a theorem, and concerns the
lengths of arithmetic progressions of primes. Robinson
eliminated the need for the conjecture (Figure 5). Finally
in 1970, using Fibonacci numbers, Matiyasevich showed
that exponential Diophantine equations can be replaced
by polynomial equations.

Wovember 12, 1959

Professor Martin Davis
Rensselaer Polytechnic Institute
Hartford Graduate Division

and

Professor Hilary Putnam
Princeton University
Princeton, New Jersey

Dvan MNaridin,

Thank you for the copies of your report. I am very
pleased, surprised, and impressed with your results on
Filbert's Tenth Problem. Quite frankly, I did not think
your methods could be pushed further than in your paper
in the Journal but I':n very glad to have been wrong.

I believe I have‘'succeeded in eliminating the negd
for P. A. P. by extending and modifying your proof. I

nave this written out for my own satisfaction but it is not
yet in shape for anyone else.

Figure 5. Julia Robinson announces the possibility of getting
rid of the hypothesis made by Davis and Putnam.

It is not hard to see that the theorem proved by Davis,
Putnam, Robinson, and Matiyasevich implies a negative
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answer to Hilbert's question. Indeed, assume that an al-
gorithm requested by Hilbert exists. Let the set S defined
above be a computably enumerable set that is not com-
putable. Then we can determine whether an a € N is in
S by determining whether the polynomial p(a, xy, ..., X;)
has roots in N. Hence, if the algorithm for solving Dio-
phantine equations exists, then there is an algorithm to
determine membership in S. This contradicts our assump-
tion that S is not computable. Therefore, the algorithm
requested by Hilbert does not exist.

A In the Preface to the
‘ ] 1982 Dover edition of his
book Computability and Un-
solvability, —Davis wrote:
“One of the great pleasures
of my life came in Febru-
ary 1970, when I learned of
the work of Yuri Matiyase-
vich which completed the
proof of the crucial con-
jecture and thereby showed
that Hilbert's Tenth Problem is recursively unsolvable.”

n e

> A

Figure 6. Yuri Matiyasevich
with Martin Davis.

Other ramifications. The atomic diagram of a structure A
is the set of all atomic and negations of atomic sentences
allowing additional constants for elements of the domain,
which are true in A. A structure is computable if the char-
acteristic function of its atomic diagram is computable.
The standard model of arithmetic, N = (N, +, -, S, 0), the
natural numbers with addition, multiplication, successor
function, and zero, is a computable structure. Godel es-
tablished that all computable relations are definable in V.
For any computable relation there are two natural defining
formulas: one with a block of existential quantifiers fol-
lowed by a formula with only bounded quantifiers, Vx < y
and 3x < y, and the other one with a block of univer-
sal quantifiers followed by a formula with only bounded
quantifiers. A block of existential (universal) quantifiers
can be replaced by a single existential (universal) quanti-
fier by coding tuples of natural numbers by a single natu-
ral number. It follows from the proof of Hilbert’s Tenth
Problem that bounded quantifiers can be eliminated from
the above formulas, so a computable set is definable in V'
both by an existential and a universal formula.

“Positive aspects of a negative solution”. This was a part
of the title of the 1974 paper by Davis, Matiyasevich and
Robinson [12]. Perhaps this title was a response to some
opinions in the mathematical community that the nega-
tive answer to Hilbert's question about polynomial equa-
tions meant that the subject matter was closed. Nothing
could have been further from the truth.
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James P. Jones (and Patrick Brown, front) in Calgary, 1982.

Among other things, the authors of the 1974 article ex-
plained that in a manner of speaking the negative solu-
tion was inevitable in part because a big part of mathemat-
ics can be encoded into polynomial equations, e.g., Rie-
mann’s Hypothesis. More precisely, Riemann’s Hypothe-
sis is true if and only if a certain polynomial equation with
known coefficients has no integer solutions! Such polyno-
mials exist for many other famous problems: Goldbach’s
conjecture, consistency of ZFC, etc. Thus existence of an al-
gorithm to solve polynomial equations would resolve un-
reasonably many open questions in mathematics.

Perhaps the most positive consequence of the Davis-
Putnam-Robinson-Matiyasevich theorem is that it, to-
gether with definability results of Robinson, became a
foundation of a new field: definability and decidability
in number theory. This field seeks to understand what is
definable and decidable in the language of rings (i.e., the
language of polynomial equations) and its various dialects
over rings and fields of interest to number theory. From
its inception, this field was situated on the boundary of
several areas: number theory, algebraic geometry, model
theory, and computability theory; and it has led to some
interesting interactions between these fields.

The question of Q. Perhaps the most important question
in this new area is the analog of Hilbert’s Tenth Problem
for Q. More precisely, does there exist an algorithm that
can determine whether an arbitrary polynomial equation
in several variables with integer coefficients has solutions
in Q? One can show that a positive answer to Hilbert's
question for Z implies a positive answer to the question
over Q. However, the reverse implication is not clear.

One way to show that there is no algorithm to deter-
mine whether polynomial equations have solutions over
Q is to construct a Diophantine definition of Z over Q.
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However, there are conjectures by Mazur and others im-
plying that such a definition does not exist. The question
concerning (non)existence of this Diophantine definition
is a major problem in the area.

On a personal note AS. I first spoke to Martin (on the
phone) in the Spring of 1983 when I was deciding on
a graduate school. Martin encouraged me to come to
NYU. While there, 1 was lucky enough to take his class
on Hilbert’s Tenth Problem. Martin developed a different
method for showing that exponential equations were Dio-
phantine (polynomial) using the Pell equation in place of
Fibonacci numbers. His method and its generalizations to
norm equations served me well in many a paper.

I continued to be in touch with Martin until his death,
seeking his advice on many issues. He was mathematically
engaged until the very end. I believe his last talk took place
online. It was the opening talk for the MSRI semester on
Definability, Decidability, and Computability in Number
Theory mentioned above.

Figure 8. Participants at a meeting at the American Institute of
Mathematics on extensions of Hilbert’s Tenth Problem, 2005.

3. Automated Reasoning

Martin began to program computers in 1951, when he
was recruited to a group that developed programs for an
ORDVAC machine, in support of the military during the
Korean War.! He was assigned the task of writing, in ab-
solute binary machine language, the prototype of a system
by which ORDVAC was to navigate 100 airplanes in real
time. After this tumultuous training on concrete program-
ming that lasted roughly one year, Martin was confident
enough of his skills with computers that he managed to re-

"Martin then entered the organization, led by Frederick Seitz, named Control
Systems Laboratory. Thanks to this move and, subsequently, enjoying a two-
year ONR grant at the IAS in Princeton, he managed to avoid being inducted
into the army.
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ceive funding for a project on implementing Presburger’s
decision algorithm for integer arithmetic without multipli-
cation. Martin’s implementation of that algorithm took
place on a JOHNNIAC computer available at the Institute
for Advanced Study in Princeton in the summer of 1954.
The prover could only ascertain very simple statements
[4, 6], yet its accomplishment marked a milestone in com-
putational logic. The preface of [18] says that it produced
“what appears to be the first computer generated mathe-
matical proof,” and this accomplishment qualifies Martin
as a trailblazer of the field today known as ‘automated rea-
soning’ For some twenty-five years,” Martin continued to
contribute to that field.

In the late 1950s, the seminal report [13] on compu-
tational methods for propositional calculus arose from
his collaboration with the distinguished analytic philoso-
pher Hilary Putnam. Martin enjoyed talking with him
“all day long about everything under the sun” during the
summers of 1957, 1958, and 1959. The Davis-Putnam-
Logemann-Loveland procedure [11] (DPLL for short), still
fundamental in today’s architectures of fast Boolean satis-
fiability solvers, was rooted in that collaboration. Between
1958 and 1960, simultaneously with the Davis-Putnam
and DPLL projects, three major projects (led by Gilmore,
Dunham-Fridshal-Sward, and Wang, respectively) were de-
veloping propositional provers. It was Davis and Putnam
who set up the overall organization that, after them, would
become standard in the automation of quantification the-
ory. They adopted the Conjunctive Normal Form (CNE
a propositional conjunction of disjunctions of affirmed
or denied logical variables) in pursuing an unsatisfiabil-
ity test and embedded their rules for propositional logic
into the enhanced proof framework. Martin and Hilary
Putnam viewed a tester able to establish whether or not a
given CNF formula is truth-functionally satisfiable as a key
component in a general-purpose procedure for quantifica-
tion theory.®> This general procedure can then be applied
to obtain proofs (by contradiction) in virtually any mathe-
matical domain. It is surprising that, to this day, the DPLL-
procedure constitutes a kernel of any efficient CNF-tester.

Any propositional formula can be brought to an
equisatisfiable CNF formula in linear time, hence

28till much later, around 1990, Martin would again look at the problem of au-
tomatic proof discovery. In the paper [10] he coauthored, which presents first-
order predicate calculus under a very unusual light, he points out: “The above
very elementary examples only hint at the kinds of proof procedures which our
free variable formulation should make possible. But there is reason to believe
that they may turn out to be of interest”.

3Let us recall that in quantification theory, unlike propositional logic, the prob-
lem of validity is semidecidable (that is, computably enumerable) without being
algorithmically solvable. That is to say: while a systematic search will sooner
or later unearth the proof of a theorem, rejecting an unprovable conjecture may
turn out impossible.
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CNF-satisfiability would become paradigmatic of the
whole collection of NP-hard problems.* Martin never took
sides on the “P vs NP” problem: he argued that we have
no reliable intuition of what an algorithm of, say, com-
plexity n?’ can do. He discussed his views on the problem
at greater length in [9].

Martin and Hilary Putnam had made it clear that their
method would outperform competitors of the time: by ex-
ploiting it in a 30-minute hand computation, they in fact
validated a claim that a theorem-proving program devel-
oped by Paul C. Gilmore had been unable to validate
with a 21-minute run on an IBM 704 machine [14]. The
improvement was not due to a better handling of quan-
tifiers, but due to an improvement in the propositional
part. Later, the promise of these hand computations was
realized in computer implementations. Davis and Put-
nam’s proof procedure for finitely axiomatized theories
was implemented by Logemann and Loveland at NYU.
They found and removed a bottleneck in the propositional-
level component of the procedure. Later an implementa-
tion in LISP at Bell Labs gave further incremental improve-
ments.”

The Bell Labs implementation of Martin’s method was
named Linked Conjunct. The operating principle required
that each logical variable in an unsatisfiable CNF formula
would be paired with the same variable with the opposite
sign in another conjunct. Not long after, there would be
a proliferation of new proof search methods arising from
John Alan Robinson’s influential resolution principle.® Tt
turns out, however, that many of these refinements can be
naturally explained from the standpoint of Linked Con-
junct.

The original expectations about stand-alone theorem
provers have been retargeted over the years, to proof-
checking systems that range from highly interactive reason-
ing assistants to mere proof-script verifiers. Martin also
had a role in this change of perspective. One such contri-
bution, jointly authored with his lifelong friend and col-
league “Jack” (Jacob T. Schwartz), addressed the issue of
metamathematical extensibility in a full-blown program- and
proof-verification technology. Which mechanisms can en-
sure long-term reliable use of a proof checker that under-
goes augmentations with new symbols, schemes of nota-
tion, and extended rules of inference?

This work stemmed from Martin’s experimentation
with Richard Weyhrauch’s FOL proof checker developed at

4Cf. https://www.claymath.org/wp-content/uploads/2022/06
/pvsnp.pdf.

>The mentioned implementation at NYU improved the 30 minute hand compu-
tation time to 2 minutes (cf. [11]).

6Cf, https://www.programmazionelogica.it/2016/11/john-alan
-robinson/.
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and Franco Parlamento in Trieste in 2009.

John McCarthy’s Artificial Intelligence Laboratory.” Martin
recounts in [8]: “I found it neat to be able to sit at a key-
board and actually develop a complete formal proof, but
I was irritated by the need to pass through many painstak-
ing tiny steps to justify inferences that were quite obvious”,
and then adds: “Using the LISP source code for the linked-
conjunct theorem prover. . ., a Stanford undergraduate suc-
cessfully implemented an ‘obvious’ facility as an add-on to
FOL.”

On a personal note EO. In 1975, Martin offered a sum-
mer course on computability in the pretty Italian town
of Perugia. The dozen students in his class were initially
amazed at the discrepancy between Martin as an unpre-
tentious, easygoing person and his reputation as a distin-
guished scholar. Admiration quickly prevailed over aston-
ishment when Martin began his lectures: for the entire one-
month duration of his course, concepts remained clear,
precise, and accessible. Even when he reached his cher-
ished advanced topic: Hilbert’s Tenth Problem.

As a result of having been a student in Martin’s class in
Perugia, I was able to do my graduate work at NYU, with
Martin as my advisor for a Master’s and then a PhD de-
gree in Computer Science. A stream of Italian students
and researchers (three had been my classmates in Perugia;
Alberto Policriti and others belong to a successive gener-
ation) would, like me, reach Martin overseas in the fol-
lowing decade. This testifies to the influence that Martin’s
crystal-clear lectures, and the subtlety with which he ad-
dressed issues of philosophical relevance and depth, used
to exert on his audience—in Italy much as elsewhere.

On a personal note AP. On the evening of a beautiful
day of the fall of 1990, I was invited by Martin to his
place in the Upper West Side in New York, to a “party for

two Yuri’'s.” The two Yuri's were Yuri Gurevich and Yuri

"Martin would later cooperate, with work conceived in the same stimulat-
ing environment at Stanford University, to the launch of non-monotonic logic
formalisms.
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Matiyasevich, both in town and hosted by Martin. For Yuri
Matiyasevich, this was his first visit to the United States.

The number and (even more) the names of the people
invited to the party were—especially for a young Italian
PhD student—rather overwhelming, and I was definitely
scared when I was greeted amicably by Virginia upon my
arrival. However, every tension promptly dissolved when
Martin introduced Yuri Matiyasevich to the audience. He
started recalling what remained to be proved after his first
reduction of Hilbert's Tenth Problem and how, at the time,
he conjectured that the last pending issue (a number the-
oretic hypothesis raised by Julia Robinson around 1950)
would certainly be solved by a ... clever young Russian ...
in the near future.

Yuri Matiyasevich was then introduced to everybody as
the (constructive and positive) proof of Martin's conjec-
ture.

4. Conclusions

Recollections of contribu-
tions by Martin to com-
putability theory, Hilbert’s
Tenth Problem, and auto-
mated reasoning have been
scattered over the preced-
ing text, and many more
could be cited. For exam-
ple, in [5], Martin stretches
the algorithmic unsolvabil-
ity of Hilbert's Tenth Prob-
lem into this result: For
each proper nonempty sub-
set A of N U {8}, no algo-
rithm can establish, given
any polynomial p with in-
teger coefficients, whether
the number of distinct posi-
tive integer solutions to the
equation p = 0 belongs to
A.

Beyond the proofs of specific theorems, Martin's sci-
entific legacy included a broader contribution in the pro-
motion of formal methods and theoretical computer sci-
ence. He significantly contributed to the recognition of
computability theory as an autonomous branch of mathe-
matics. Martin developed a program in logic, and formed
a logic group, first at Yeshiva University (being able to
involve stars such as Raymond Smullyan) and then at
the Bronx campus of the Courant Institute (NYU). In the
1960s, he devoted a good deal of time and energy in
preparing an anthology of fundamental articles by Godel,
Turing, Post, Kleene, and Rosser, which he entitled The Un-

Figure 10. Announcement of a
conference by Martin in
Mexico.
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decidable. His involvement with symbolic logic originated
in the 1940s from his passionate interest in the founda-
tions of real analysis, which also led him to write a classic
book on nonstandard analysis in the 1970s and to serve
for decades as the moderator of FOM, an automated e-
mail list for discussing foundations of mathematics (see
https://cs.nyu.edu/mailman/1istinfo/fom).

Over the years, Martin lectured in several countries (to
cite a few: Italy, Japan, India, England, Russia, and Mex-
ico), and his lectures have—along with his publications—
exerted a wide influence. The centennial of Frege’s Begriff-
sschrift, Martin reports, “fundamentally changed the direc-
tion of my work” [8]. Being invited to place some contem-
porary trends in a proper historical context, he finds “try-
ing to trace the path from ideas and concepts developed
by logicians ...to their embodiment in software and hard-
ware ...endlessly fascinating” [8].

Figure 11. Martin and his wife Virginia in 2019.

BIBLIOGRAPHIC NOTE. The expository nature of this
paper has required us to keep bibliographic references
to a minimum. A version of this paper with a full bib-
liography can be found on ArXiv at arXiv:2401.10154.
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