Enhancing Solver-based Generic Side-Channel Analysis with
Machine Learning

Kaveh Shamsi
kaveh.shamsi@utdallas.edu
ECE Department, University of Texas at Dallas
Richardson, Texas, USA

Abstract

Generic side-channel attacks, unlike traditional CPA/DPA which
are specialized to individual cryptographic circuits, can take in an
arbitrary circuit or its power model and try to learn user-designated
secrets from its side-channel traces. In this paper, we explore the
use of machine learning in the context of such generic attacks.
We discuss and demonstrate the challenges of using end-to-end
(trace-to-key) learning on generic circuits with larger key sizes. We
instead propose a couple of ways to use machine learning to assist
recent pseudo-Boolean solver-based generic attacks and report their
effectiveness on FPGA power traces.

CCS Concepts

« Security and privacy — Side-channel analysis and counter-
measures.

Keywords
Circuit Learning, Side-Channel Attacks, Generic Attacks

ACM Reference Format:

Kaveh Shamsi and Guangwei Zhao. 2023. Enhancing Solver-based Generic
Side-Channel Analysis with Machine Learning. In Proceedings of the Great
Lakes Symposium on VLSI 2023 (GLSVLSI °23), June 5-7, 2023, Knoxville, TN,
USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3583781.
3590237

1 Introduction

In recent years, the growing reliance on electronic systems has
brought new security threats to the forefront. One such threat is
the possibility of side-channel attacks, where an adversary can ex-
tract sensitive information from a system by analyzing its power
consumption, electromagnetic emissions, or other unintended sig-
nals.

The field of side-channel analysis gained momentum with the
seminal work of Kocher et al. [6] with the introduction of differen-
tial power analysis (DPA). This was followed by the introduction
of other techniques such as correlation power analysis (CPA)[1],
mutual information analysis (MIA)[5], and template attacks (TA)[2]
over the years.

These frameworks were mostly developed in the context of at-
tacking cryptographic hardware, which is a special class of high
entropy circuits/functions. Generic side-channel attacks are those

® This work is licensed under a Creative Commons Attribution
o International 4.0 License.

GLSVLSI °23, June 5-7, 2023, Knoxville, TN, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0125-2/23/06.
https://doi.org/10.1145/3583781.3590237

Guangwei Zhao
guangwei.zhao@utdallas.edu
ECE Department, University of Texas at Dallas
Richardson, Texas, USA

that unlike specialized attacks can be applied to arbitrary circuits

as long as they are represented with some formalism. e.g. Boolean

circuits of the form c.(k,x) where k is an unknown secret key
vector which is the target of the attack, and x is an observable

(sometimes controllable) primary input vector. An adaptive attack

is one where the attacker can adjust their queries in response to

previously observed side-channel information.

Recently in [7] a pair of generic adaptive attacks called Pow-
erSAT attacks were proposed using pseudo-Boolean SAT solving.
These attacks were inspired by SAT-based functional attacks against
logic locking [4, 8]. These attacks use a Boolean satisfiability (SAT)
solver to find informative input patterns, query them on an oracle of
ce(k«, x) to find the value of k.. The PowerSAT attacks were devel-
oped by extending this approach to interactions with side-channel
oracles instead of functional ones.

Orthogonally, there has been an array of recent advances in side-
channel analysis using machine-learning techniques specifically
deep learning [3]. These attacks similar to traditional attacks focus
on cryptographic hardware. In this paper, we explore the use of
machine learning (ML) in the context of generic attacks. We present
the following contributions:

- We develop and deploy variants of end-to-end (trace-to-key) ML-
based side-channel analysis against a generic set of circuits: ISCAS-
85 benchmark circuits, comparators, and substitution permutation
networks. We show that these attacks become less effective as the
key size grows.

- We propose instead to use ML-based techniques to assist formal
solver-based approaches such as PowerSAT. We show using FPGA
traces how ML algorithms can be used for a) mapping hardware
traces to hamming weights and b) trace comparison, both of which
are important subroutines in PowerSAT attacks.

Organization: Section 2 discusses preliminaries, Section 3 end-to-

end ML attacks and related experiments, Section 4 the same with

hybrid attacks, and Section 5 the conclusion.

2 Preliminaries

Circuit Learning. Take a circuit ¢ : K X X — Y with K, X and
Y being the [-bit key, n-bit input, and m-bit output spaces respec-
tively. Functional oracle-guided circuit learning/deobfuscation is
the problem of finding a key k. given an oracle ¢, : X — Y such
that Vx € X, ¢o(x) = ce(kx, x).

Side-Channel Analysis. The hardware implementation of circuit
ce (k, x) emits a dynamic power side-channel signal L (ks, x, x)[t] =
f (ks x,0x)[t] + N[t] when its input changes from x by dx, where
f is the power model (function from input and key to side-channel
signal) and N is the non-input-dependent noise. CPA is based on

GLSVLSI ’23, June 5-7, 2023, Knoxville, TN, USA

finding a key k that maximizes the correlation between some power

model h(k, x, 5x) and a set of collected traces T = { L (k«, xi, 6x;)[t]}.

SAT-based Circuit Learning. The SAT-attack proposed in [8] is a
functional oracle-guided circuit learning procedure. It first builds
a miter circuit M = (ce (k1,x) # ce(kg, x)). This miter is converted
to a conjunctive normal form (CNF)-SAT formula and solved using
a SAT-solver. The input X that satisfies M is called a discriminating
input pattern (DIP) as it is an input on which there exist two keys
ki and ky under which the circuit ¢, produces different outputs. X
is queried on the functional oracle: y; = ¢, (x;). This observation
(called in input-output constraint) is reinforced back into the solver
by appending y; = ce(k, x) to M. Once the set of constraints+miter
become unsatisfiable, it can be proven that the key that satisfies
the constraints at this point must be a functionally correct key.

PowerSAT Attacks. The first variant of the PowerSAT attack,
named PowerSATeq, extends the above (uncertainty-sampling) SAT-
based circuit learning paradigm to power analysis attacks. The
attacker will instead of the functional oracle have access to a side-
channel oracle that returns traces on queries of (x, x). Also, the at-
tacker must have a power model of the circuit A (k, x, 5x). A power
miter is built by creating disagreements in the power model space

M = (he(k1, x,0x) # he(ka, x, 8x)). The io-constraints in Power-
SATeq are equality conditions of the form [Aw(t;) = (he(k, x, 6x)].
One way to derive the power model A, is to count the number of bit
flips that occur in the circuit when the input changes from x to x®dx.
This can be built by taking the sum 3’ ,,cw, w(k, x) & w(k, x + dx)
over the wires of ¢, We. Such conditions that include Boolean
functions and summations are called pseudo-Boolean (PB) formu-
lae. PB-solving has been an active area of research for a couple of
decades. One common way to solve PB formula is to convert the
summation part to adders/sorter networks that are then converted
to CNF formula and solved using conventional SAT-solvers. This is
what the PowerSAT attack in [7] used.

PowerSATdiff is a more robust variant of the PowerSAT attacks. It
operates by finding pairs of input patterns for which the comparison
of their power consumption has different directions for different
keys. This involves making two input queries, comparing their
traces, and appending the result as a constraint to the PB formula.

PowerSAT Attacks on Real Traces. PowerSAT attacks can be
mounted easily against a simulated hamming weight oracle. i.e. an
oracle that upon receiving x, dx returns a precise bit-flip count that
corresponds with the hamming weight power model used in the
attack h.. However, when it comes to practical attacks there is a
question of converting the real power trace which is a time-series
signal to a precise bit-flip count. The original PowerSATeq in [7]
did not address this question. We propose an ML-based solution to
this challenge in Section 4.

For PowerSATdiff, a direct bit-flip count derivation from the
trace is not required. Instead, the attacker only needs to determine
which one of two queried traces tr; and try correspond to a higher
bit-flip count in the circuit c.. In [7] authors proposed a couple
of ways to do this by looking for peaks/valleys in the subtraction
of the two traces from each other. In this paper, we improve the
accuracy of this approach in Section 4.

346

Kaveh Shamsi and Guangwei Zhao

S5
) Ok
key guess query set: Solver-Based Circuit- key
k., {(@;,dx;)} |Leamning (PowerSATDIff/EQ)[> f.
(a) (b)

Figure 1: a) end-to-end ML-based side-channel analysis. b) integra-
tion of ML with solver-based (PowerSAT-style) attacks.

3 ML-based Generic Side-Channel Analysis

The generic circuit learning from the side-channels problem is as
follows: Given a circuit ¢ (k, x) the goal is to interact with a trace
oracle of this circuit and use the collected traces to recover the key
k.

An end-to-end approach for using ML in this task is simple: Train
an ML model F to take in observed traces, and produce correct
keys (see Figure 1a). The training data here will be a corpus of
existing trace/key pairs collected either from a real device or some
simulation. This is precisely what many existing ML-based side-
channel analysis approaches do. DeepSCA[3] for instance takes a
few traces, passes them to a neural network with a few layers, and
outputs subkeys.

3.1 Key Partitioning

A critical question here is how the model should produce the key.
A neural network (NN) classifier can output a one-hot class among
C different classes using C different output neurons. For a generic
circuit with I key bits, such an approach requires 2! different output
neurons. This means that for circuits with non-trivial key bit counts
(10>) the model itself can become prohibitively large.

The approach used in DeepSCA to resolve this issue is to par-
tition the key into smaller chunks the same way that traditional
CPA/DPA/TA all do. The partitioning for cryptographic hardware
follows intuition. For instance, for AES, the 128-bit key is broken
down into 16 8-bit chunks. This translates to 256 different output
classes per chunk. A softmax output layer with 256 outputs can be
used for classifying each chunk. One can train 16 different models to
predict each chunk. Or alternatively one can use a few initial shared
layers that collect trace features, followed by different output layers
for the final classification.

For cryptographic circuits, the partitioning is derived intuitively
from the design and structure of the hardware. For AES, the 8-bit
chunks correspond to the 8-bit that enter each 8-bit s-box. For
generic circuits however, it is not obvious how the key should be
partitioned.

We can state the question more formally for the case of CPA. In
CPA the chunks are optimized in some given order. On each lc-bit
key chunk all 2l possible key values are explored one by one and
the trace correlation with kj. loaded into the hypothesis key vector
is computed. Given an ordering O, of the different chunks, and
partitioning Kp, an optimal partition is one in which the number of
iterations and traces needed for a correct key recovery is minimized.
It is not difficult to show that the above problem is at least NP-
hard. So finding such an optimal order is likely a very difficult
computational task.

Enhancing Solver-based Generic Side-Channel Analysis with Machine Learning

GLSVLSI ’23, June 5-7, 2023, Knoxville, TN, USA

nK=16 nK=32 nK=64 nK=128 nK=256
1.00 1
[g 0.751
és 0501 —®— spn 8-bit RF
—e— comparator 8-bit RF
0.251 ; ; ! ; : ; :
1.00 1
i3 |
Zors //: //./ //./\7\; ¢>/<:;
[~
< 050 * \ 4 ¥
0.251 1
1 2 4 6 10 16 32 1 2 4 6 10 16 32 1 2 4 6 10 16 32 1 2 4 6 10 16 32 1 2 4 6 10 16 32
nX nX nX nX nX

Figure 2: 8-bit SPN vs 8-bit comparator train-vs-test random-forest key-bit-accuracy (kba: percentage of correctly predicted key bits) for
different nX and nK parameters on simulated noise-free traces (hamming weights).

We can however apply some heuristics. If two logic cones g; and
g2 have non-intersecting input and key vectors, then the change in
the key bits of g1 will have no impact on the bit-flip-rate of g, for a
fixed (x, dx). By iterating through the different key possibilities for
g1 the local optima of the trace correlation function will provably
be the correct key for g1. Then the attack can move to g, and repeat
the process. Therefore, a somewhat sophisticated heuristic key
partitioning will be to find cones with non-intersecting sets of keys.

A less computationally intensive approach that relates to the
above approach is to search for keys that are near each other in a
graph of the circuit. One can start a BFS search from a given key and
find all the keys that are within a certain distance of it and append
them to the same partition as long as the size of the partition stays
below a certain value (e.g. 8). Note the order in which keys are
picked here will impact the final result in non-trivial ways.

3.2 Experiments: Small Key Size

We implemented the above end-to-end-ML side-channel attack
against generic circuits. Experiments were run in Python3.10 on a
Threadripper 3990X CPU with 128 threads and 256GB of memory
with a 2GB memory limit per task.

We begin with the case where key partitioning is not needed.
Namely circuits with a small number of key bits (8-bits). The power
consumption was simulated in software as the bit-flip-count (ham-
ming sum/weight). In this idealized setting, we used ML models to
map from a set of traces T to the correct 8-bit key k. for generic cir-
cuit ce (k«, x). The trace set is comprised of the noise-free hamming
weight of the circuit on nX randomly selected input+{lip patterns:
set Xg = {(xi, 0x;)}. This is repeated for nK different random key
vectors: set K4. The training data hence consists of |Kq||Xq| traces:
for each input in Xy, and for each key in Ky collect a trace and
append to T.

For each possible k.. € K4 the goal of the ML attacker is to predict
this k. by looking at | Xy traces on the Xy inputs. The number of
inputs in X captures the number of traces that the final attacker
will look at to predict the key. So a single-trace attack corresponds
to |Xg| = nX = 1. The training dataset therefore, consists of |Ky|
(input-output) samples.

We used the random-forest (RF) model from sklearn to predict
one-hot encoded 8-bit/256-possibility keys in the above setting. We

347

used RF instead of a deep NN as deep-NNs took more training time
and produced equal or subpar results on these tasks compared to
the RF. The results for select generic circuits: a) an 8-bit comparator
and b) an 8-bit single-round substitution permutation network
(SPN) can be seen in Figure 2. The SPN is generated following
the cryptographic SPN construct by taking 8 input bits x, first
XORing them with 8 key bits in a key-mixing layer mx = k & x, and
then sending the result through a substitution-box constructed by
synthesizing a random 8-bit truth-table. Finally, if multiple parallel
sboxes exist in multiple rounds, they go through a permutation
layer that shuffles the bits between each two rounds.

Training Accuracy. As can be seen from the results, the training
accuracy of the model becomes perfect as soon as the number of
input queries is increased beyond a certain level. For an SPN 2-
queries/2-traces are sufficient to with 100% accuracy determine
the key vector k from the vector of two hamming weights (1, t2),
when the model has previously seen this exact sample. Note that
what this means is that the function F(#;,t;) — k which maps
from the two observed hamming weights to a key guess becomes
unambiguous at nX > 2 for 8-bit SPN. i.e. the key of an 8-bit SPN
is fully resolvable from its noise-free flip rate on two input queries.

In other words, the training accuracy here is a measure of the
learnability of the key from bit flip counts. Per the upper row in
Figure 2 it can be seen that comparators are not as learnable as
SPNs from a small number of queries/traces. 8-bit comparators
need something on the order of 16 input queries to resolve the key.
This is in line with theory from [7] that highly entropic circuits
like SPNs not only require fewer functional queries to learn than
low entropy circuits like comparators, but this loose relationship
also holds for hamming weight queries.

For small key sizes, we can build the full mapping between traces
and keys. We can place the training data traces (t1, to, ..., t,x) into a
dictionary that maps to correct keys. If multiple trace vectors of this
form, all map to the same key vector, or if one trace vector maps to
multiple possible keys, then there is a theoretical ambiguity in the
mapping between traces and keys. i.e. the true correct key may be
unlearnable/ambiguous given the observation set.

For the 8-bit key case, we verified that there is true ambiguity for
both comparators and SPNs for nX = 1, but the ambiguity quickly
dissipates for SPNs as nX increases, whereas for comparators it

GLSVLSI ’23, June 5-7, 2023, Knoxville, TN, USA

#k=16 #k=32 #k=64

. kba- | kba- | kba- kba- kba- kba-

bench #i#ol#g train test train test train test
c432 36/7/160 0.99 0.74 1.00 0.63 1.00 0.57
c499 41/32/202 0.85 0.66 1.00 0.57 1.00 0.52
c880 60/26/383 1.00 0.81 1.00 0.65 1.00 0.57
c1355 41/32/546 0.99 0.73 1.00 0.62 1.00 0.55
c1908 33/25/880 1.00 0.76 1.00 0.65 1.00 0.56
2670 157/64/1193 0.90 0.72 1.00 0.66 1.00 0.57
c3540 50/22/1669 1.00 0.80 1.00 0.65 1.00 0.57
c5315 178/123/2307 0.97 0.77 1.00 0.66 1.00 0.58
c6288 32/32/2416 1.00 0.77 1.00 0.60 1.00 0.53
c7552 206/107/3512 1.00 0.75 1.00 0.67 1.00 0.58
spn 16/16/1766 1.00 0.74 1.00 0.60 1.00 0.54

comp 16/1/31 1.00 0.85 1.00 0.69 1.00 0.59

Table 1: End-to-end ML attacks on circuits with larger keys, using
distance-based partitioning, with dataset params nK=512, nX=32,
and a random-forest model.

takes longer. Both eventually turn into 1-to-1 mappings, i.e. fully
learnable relations.

Testing Accuracy. The testing/validation accuracy of this ap-
proach however is not impressive. The testing accuracy refers to
the accuracy of the model trained on the training data, then evalu-
ated on a set of samples that were not shown to the model during
training. We use a typical 80/20 train/test split, i.e. 20% of the data
samples during training were kept aside for testing.

In the context of our end-to-end attack, this means that there
are keys that are members of K¢, that the model was never trained
on predicting during the training. This is akin to training a clas-
sification model where certain classes were simply not present in
the dataset. As such, this type of low testing accuracy is not due to
overfitting.

The above results indicate an important limitation of end-to-end
ML attacks. If the key space is large, then all possible keys cannot be
placed in the training set Kq. Therefore, the model’s performance
on unseen keys will be in question. If the key is partitioned into
smaller chunks, then even though each full key vector is not seen,
each chunk range may be fully explored. We show shortly how,
with reasonably sized training datasets, this doesn’t perform well
either.

3.3 Experiments: Large Key Size

We implemented the above end-to-end ML approach on circuits
with more than 8 bits of keys. Here we used the distance-based
key partitioning strategy discussed earlier. The large key vector
was split into 8-bit partitions and each partition’s correct values
were used as training samples in a multi-output ML model (random-
forest).

Table 1 shows the results for this task. Here the circuits were
locked with (or inherently contained) random XOR/XNOR inser-
tion with 16, 32, 64 key bits. The training dataset parameters were
nX =32 and nK = 512 i.e. 16384 traces. As can be seen, training
accuracy remains close to perfect. The testing accuracy falls to
random guessing as the key size is increased. To put this in context,
note that CPA with fewer traces than 16384 will perform very well
with the same key sizes per [7]. PowerSATdiff attacks can provably
recover keys in this case with tens of traces/queries. Note that these
results are all in the ideal noise-free setting (traces = hamming
weight).

348

Kaveh Shamsi and Guangwei Zhao

Noisy Evaluations. Figure 3 shows results for end-to-end generic
ML in the setting where the model is trained on noise-free ideal ham-
ming weights, but then evaluated on noisy inputs (for seen/unseen
training/testing patterns). The results show how the presence of
noise can diminish the model’s performance on both seen/unseen
patterns albeit with some resiliency.

4 Hybrid Approach: ML + Solver Attacks

The above results indicate an important challenge for end-to-end
(trace-to-key) ML-based attacks: For an effective end-to-end ML
attack, the model will have to learn the relationship between circuit
hamming weights and keys. This relationship is formally captured
in he(k,x, 8x). The typical he(k,x, 5x) function consists of two
copies of a generic Boolean circuit, an array of XOR gates, followed
by some binary adder. The ML model will have to learn the inverse
of this function h~1(#) — (k, x, x). This (as also mentioned in) [3]
may be a difficult task.

More importantly, note that the ML model in these end-to-end
attacks was not even given the structure of ce/he. This means that
we are asking an ML model to reverse h., without even seeing
its description. Note that this is not a limitation imposed by the
threat model, as the threat model assumes the attacker is given
the netlist/description of ¢, and hence some insight into the power
model h,.

The question of generalizability and learnability for an ML model
here reduces to the following: given an unseen circuit c,, if one
makes N observation on the hamming weight function of c,, can
one predict the hamming weight of ¢, on an unseen new N + 1th
input? Formally, the hypothesis space for a c.-blind attacker is large
and uniform. For the c.-blind attacker there are infinitely many
circuits that produce the first N hamming weight observations that
produce divergent hamming weights on a new unseen N + 1 query.

Note that the above issue is not present in the case of a PowerSAT-
style attack. The PowerSAT attack is intimately aware of ce/he. It
can both simulate and invert these functions using a complex and
sophisticated PB-SAT-solver decision procedure. Also via complex-
ity reduction arguments, one can reason that an alternative better
way to reverse a general he, would imply an alternative better way
to solve general PB-formulae.

The above discussion serves as a motivation to perhaps com-
bine the two approaches. The ML approach’s main strength is in
the modeling of behavior that is not readily captured in the PB
formulation. Once the PB-based PowerSAT attacks are given accu-
rate queries they can perform formal reasoning to recover correct
keys. However, their basic implementations are highly sensitive
to errors. The negation of a single variable in a CNF formula can
have dramatic impacts on the status of the instance. Yet worse, in
(Power)SAT attacks, an error in one step of the attack can cascade
into more and more divergent and unpredictable behavior in future
iterations.

We propose a couple of ways to use ML to assist PowerSAT
attacks discussed herein:

Trace to Hamming Weight Bucket for PowerSATeq: The
baseline hamming weight PowerSATeq attack requires traces col-
lected from the oracle tr;[t] which are in the real-world setting
time-series signals, to be mapped to integer values compatible

Enhancing Solver-based Generic Side-Channel Analysis with Machine Learning

GLSVLSI ’23, June 5-7, 2023, Knoxville, TN, USA

c432 880 c1355 c5315 spn comp
1.01 —8— train —8— train —8— train —o— train —8— train
! —e— test —8— test —o— test —e— test —8— test 1N
0.8
8 —o—o_
~ 0.6
0.4 1 —8— train
—o— test
1 5 10 15 20 1 5 10 15 20 1 5 10 15 20 1 5 10 15 20 1 5 10 15 20 1 5 10 15 20
trN trN trN trN trN trN

Figure 3: Training on noise-free data, evaluation on noisy data. A random Gaussian noise value is added to the raw hamming vectors with
o =trN% X [max(hw) — min(hw)]. The baseline model was random-forest trained on nK = 512, nX = 32 datasets.

N
ce(k,) W
*

ce(k,z & ox) g

Figure 4: The hamming weight model in PowerSAT attacks consists
of two copies of the circuit running on x and x ® 6x. Pair-wise XOR
of the internal wires is summed through an adder. By discarding the
lower bits of the adder a natural hamming weight bucketing can be
implemented.

Y

X

ox €

Figure 5: Trace collector hardware setup. CW308 with a Spartan6 XL9
FPGA target. The Teensy3.2 board is used to convert USB commands
from the PC to FPGA x and Jx fields. Traces are collected via the
USB3 Picoscope5000 device.

with the hamming weight power model. i.e. a time-series trace
tri[t] « toracle(k., x, 5x), will have to be converted to a corre-
sponding hamming weight h, (k, x, §x) before inclusion into the
PowerSAT attack.

We can use an ML model to perform this conversion. By querying
the trace oracle on a set of Xq and Kq, we can try to learn the
mapping from traces to flip counts. This mapping should be much
easier to learn than the end-to-end relationship between traces and
keys. Note that for a non-ML approach to this problem, the attacker
needs to study different traces, find points-of-interest (poi’s) then
decide manually what values on these points correspond to exactly
how many bit flips in the device under attack (DUA).

Predicting the precise hamming weight with an ML model can
be challenging. We can instead map from traces to hamming weight

349

buckets/bins. Each bucket is a range of hamming weights bckt; :
l; < hw < h;. By dividing the full range of hamming weights into a
power of 2 we can in fact nicely integrate these bucket observations
with PowerSATeq. In the PowerSATeq model of the circuit’s power
consumption (seen in Figure 4) a bit-adder is typically used to sum
bits. By discarding the lower bits of this adder and focusing on the
u upper bits, we can effectively capture hamming weight buckets
each including a max(hw) /2" range.

Figure 6 shows the results of the above approach. Random-forest
regression and classification models were trained on 2000 traces
collected from the hardware setup shown and described in Figure 5
for the different ISCAS and SPN circuits. For the regression models,
the output is a real value whose mean square distance to the correct
integer bit-flip count is minimized. For the classifier models, the
output is an integer class corresponding to the predicted hamming
weight. During model evaluation, the predicted integer value is
rounded to the nearest bucket edge. Our experiments show a high
accuracy for many circuits with 2-8 buckets and a diminishing
accuracy for more buckets.

Note that absent trace to hamming-weight mappings, Power-
SATeq attacks cannot be mounted against real traces. The origi-
nal PowerSATeq work [7] did not address this challenge and only
demonstrated PowerSATeq attacks against simulated traces. As
such this work is the first to propose a potential automated solution
to this challenge using ML.

Trace Comparison for PowerSATdiff. Our second integration
approach is for trace comparisons in PowerSATdiff. Here, we train
an ML model first to predict hamming weights from traces the same
as our approach above. Now to compare the hamming weight of
two traces (which is a critical part of PowerSATdiff), we compare
the predicted hamming weight values from the ML model.

Note that the existing approach for trace comparison per [7] is
to take the two traces, subtract them from each other and look
for peaks or valleys in the difference. More precisely, first the
maximum of the absolute value of the difference is found p =
argmax;|trq[i] — trz2[i]|. Then the value of the difference trace at
this peak/valley is tested. A negative/positive value on this point
determines the direction of the trace comparison. An addition here
in [7] was to take the moving average of the two traces before
the subtraction. This methodology was compared to the ML-based
technique in Figure 7. As can be seen, the ML-based approach has
a higher overall accuracy in resolving comparison directions than
non-ML trace differentiation especially when the hamming weight

GLSVLSI ’23, June 5-7, 2023, Knoxville, TN, USA Kaveh Shamsi and Guangwei Zhao

spnd 1.2 spn4 2.2 c432 c499 880 c1355

e T T

0.25 1 1 . 1 1

2
=]
S

2 2 » 2 2 » 2 2 25 2 2
c1908 2670 3540 c5315 6288 7552

NN T

0.0 2 2 2 21 2 2 21 » 25 27 ol » 2 21 o4 57 21 ot 57

—— RFR —— RFC #buckets

accuracy
¥

Figure 6: Trace to hamming weight buckets ML task. The random-forest regressor/classifier (RFR/RFC) model is trained on 2000 real traces.
It is then evaluated on whether the model’s predicted value rounded to the nearest bucket matches the real hamming weight bucket as the
number of buckets increased from 2 to the full hamming weight range (number of flipping wires in the circuit).

A spn4. 12 X spn4 2 2 X c432 X 499 X 880 1 c1355
09 _.___*_M 82
: 09
8'? 07 0.9 09 09
06 06 08
' . 038
05 05 08 038 07
04
04
2 03 07 07 06 07
i 2l » 2 B 2 2 B 2 2 B » 2
8 1908 2670 ¢3540 C5315 c6288 7552
g 19 11 1 11 11 11
098 098
09 0.95 0.96
09 093 09 094 09
08 09 0.92
0.88 08 09 08
08 07 0.85 0.88
T T T T T 086 T T T
22 25 28 22 25 28 22 25 28
—— raw —— moving-average ~—— ML-RF hammmg we1ght dlfference. A

Figure 7: Trace hamming weight comparison. The accuracy of determining which of two given traces (from the FPGA hardware setup in 5)
corresponds to a higher hamming weight (more bit-flips): using existing trace differentiation methods from [7], versus comparing the output
of the trace-to-hamming-weight ML random forest regressor from Figure 6 tested on 5000 pairs of traces picked randomly from the unseen
validation trace set. The A on the x-axis captures the real hamming weight difference between the two traces. As can be seen, the closer the
hamming weight of the two traces the lower the trace comparison accuracy, but the ML approach (black lines) performs significantly better.

difference between the traces is smaller. This improved accuracy References
should translate to improved PowerSATdiff attack robustness. [1] EricBrier, Christophe Clavier, and Francis Olivier. 2004. Correlation power analysis
with a leakage model. In International workshop on cryptographic hardware and
5 Conclusion embedded systems. Springer, 16-29.
[2] Suresh Chari, Josyula R Rao, and Pankaj Rohatgi. 2002. Template attacks. In Inter-
In this paper, we showcased some of the limitations of end-to-end national Workshop on Cryptographic Hardware and Embedded Systems. Springer,
; ; fod : ; 13-28.
machine learnlng for generic side-channel .analysm. We instead [3] Debayan Das, Anupam Golder, Josef Danial, Santosh Ghosh, Arijit Raychowdhury,
proposed a couple of ways to use ML techniques to assist formal and Shreyas Sen. 2019. X-DeepSCA: Cross-device deep learning side channel
solver-based generic PowerSAT attacks. For PowerSA’I‘eq MUL-based attack. In Proceedings of the 56th Annual Design Automation Conference 2019. 1-6.
. . . [4] Mohamed El Massad, Siddharth Garg, and Mahesh V Tripunitara. 2015. Inte-
trace-to-hamming-weight mapping overcomes a challenge not ad- o -~ - "
grated Circuit (IC) Decamouflaging: Reverse Engineering Camouflaged ICs within
dressed before in the literature. For PowerSATdiff, ML-based trace Minutes.. In Network and Distributed System Security Symposium (NDSS).
comparison was shown to be more accurate than existing tech- [5] Benedikt' Gierlichs? Lejla Batina: Pim Tuyls, and Bart PreneeI: 2008. Mutual
. . s . . information analysis. In International Workshop on Cryptographic Hardware and
niques. A full exploration of the multidimensional interplay be- Embedded Systems. Springer, 426-442.

=

Paul Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential power analysis. In
Annual international cryptology conference. Springer, 388-397.

Kaveh Shamsi and Yier Jin. 2021. Circuit Deobfuscation from Power Side-Channels
using Pseudo-Boolean SAT. In 2021 IEEE/ACM International Conference On Com-
Acknowledgments puter Aided Design (ICCAD). IEEE, 1-9.

. . . Pramod Subramanyan, Sayak Ray, and Sharad Malik. 2015. Evaluating the security
This work was supported by an award from the US National Science of logic encryption algorithms. In Proc. IEEE Int. Symp. on Hardware Oriented

Foundation (NSF-SaTC-2155189). Security and Trust. IEEE, 137-143.

tween the ML techniques proposed here and the formal PowerSAT
attacks is left to future work.

)

)

350

	Abstract
	1 Introduction
	2 Preliminaries
	3 ML-based Generic Side-Channel Analysis
	3.1 Key Partitioning
	3.2 Experiments: Small Key Size
	3.3 Experiments: Large Key Size

	4 Hybrid Approach: ML + Solver Attacks
	5 Conclusion
	References

