
Enhancing Solver-based Generic Side-Channel Analysis with
Machine Learning

Kaveh Shamsi
kaveh.shamsi@utdallas.edu

ECE Department, University of Texas at Dallas

Richardson, Texas, USA

Guangwei Zhao
guangwei.zhao@utdallas.edu

ECE Department, University of Texas at Dallas

Richardson, Texas, USA

Abstract

Generic side-channel attacks, unlike traditional CPA/DPA which

are specialized to individual cryptographic circuits, can take in an

arbitrary circuit or its power model and try to learn user-designated

secrets from its side-channel traces. In this paper, we explore the

use of machine learning in the context of such generic attacks.

We discuss and demonstrate the challenges of using end-to-end

(trace-to-key) learning on generic circuits with larger key sizes. We

instead propose a couple of ways to use machine learning to assist

recent pseudo-Boolean solver-based generic attacks and report their

e�ectiveness on FPGA power traces.

CCS Concepts

• Security and privacy→ Side-channel analysis and counter-

measures.

Keywords

Circuit Learning, Side-Channel Attacks, Generic Attacks

ACM Reference Format:

Kaveh Shamsi and Guangwei Zhao. 2023. Enhancing Solver-based Generic

Side-Channel Analysis with Machine Learning. In Proceedings of the Great

Lakes Symposium on VLSI 2023 (GLSVLSI ’23), June 5–7, 2023, Knoxville, TN,

USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3583781.

3590237

1 Introduction

In recent years, the growing reliance on electronic systems has

brought new security threats to the forefront. One such threat is

the possibility of side-channel attacks, where an adversary can ex-

tract sensitive information from a system by analyzing its power

consumption, electromagnetic emissions, or other unintended sig-

nals.

The �eld of side-channel analysis gained momentum with the

seminal work of Kocher et al. [6] with the introduction of di�eren-

tial power analysis (DPA). This was followed by the introduction

of other techniques such as correlation power analysis (CPA)[1],

mutual information analysis (MIA)[5], and template attacks (TA)[2]

over the years.

These frameworks were mostly developed in the context of at-

tacking cryptographic hardware, which is a special class of high

entropy circuits/functions. Generic side-channel attacks are those

This work is licensed under a Creative Commons Attribution
International 4.0 License.

GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0125-2/23/06.
https://doi.org/10.1145/3583781.3590237

that unlike specialized attacks can be applied to arbitrary circuits

as long as they are represented with some formalism. e.g. Boolean

circuits of the form 2ě (:, G) where : is an unknown secret key

vector which is the target of the attack, and G is an observable

(sometimes controllable) primary input vector. An adaptive attack

is one where the attacker can adjust their queries in response to

previously observed side-channel information.

Recently in [7] a pair of generic adaptive attacks called Pow-

erSAT attacks were proposed using pseudo-Boolean SAT solving.

These attacks were inspired by SAT-based functional attacks against

logic locking [4, 8]. These attacks use a Boolean satis�ability (SAT)

solver to �nd informative input patterns, query them on an oracle of

2ě (:∗, G) to �nd the value of :∗. The PowerSAT attacks were devel-

oped by extending this approach to interactions with side-channel

oracles instead of functional ones.

Orthogonally, there has been an array of recent advances in side-

channel analysis using machine-learning techniques speci�cally

deep learning [3]. These attacks similar to traditional attacks focus

on cryptographic hardware. In this paper, we explore the use of

machine learning (ML) in the context of generic attacks. We present

the following contributions:

- We develop and deploy variants of end-to-end (trace-to-key) ML-

based side-channel analysis against a generic set of circuits: ISCAS-

85 benchmark circuits, comparators, and substitution permutation

networks. We show that these attacks become less e�ective as the

key size grows.

- We propose instead to use ML-based techniques to assist formal

solver-based approaches such as PowerSAT. We show using FPGA

traces how ML algorithms can be used for a) mapping hardware

traces to hammingweights and b) trace comparison, both of which

are important subroutines in PowerSAT attacks.

Organization: Section 2 discusses preliminaries, Section 3 end-to-

end ML attacks and related experiments, Section 4 the same with

hybrid attacks, and Section 5 the conclusion.

2 Preliminaries

Circuit Learning. Take a circuit 2ě : × - → . with , - and

. being the ;-bit key, =-bit input, and<-bit output spaces respec-

tively. Functional oracle-guided circuit learning/deobfuscation is

the problem of �nding a key :∗ given an oracle 2ĥ : - → . such

that ∀G ∈ -, 2ĥ (G) = 2ě (:∗, G).

Side-Channel Analysis. The hardware implementation of circuit

2ě (:, G) emits a dynamic power side-channel signalL(:∗, G, XG) [C] =

5 (:∗, G, XG) [C] + N [C] when its input changes from G by XG , where

5 is the power model (function from input and key to side-channel

signal) and N is the non-input-dependent noise. CPA is based on

GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA Kaveh Shamsi and Guangwei Zhao

�nding a key : that maximizes the correlation between some power

modelℎ(:, G, XG) and a set of collected traces) = {L(:∗, Gğ , XGğ) [C]}.

SAT-based Circuit Learning. The SAT-attack proposed in [8] is a

functional oracle-guided circuit learning procedure. It �rst builds

a miter circuit" = (2ě (:1, G) ≠ 2ě (:2, G)). This miter is converted

to a conjunctive normal form (CNF)-SAT formula and solved using

a SAT-solver. The input Ĝ that satis�es" is called a discriminating

input pattern (DIP) as it is an input on which there exist two keys

:1 and :2 under which the circuit 2ě produces di�erent outputs. Ĝ

is queried on the functional oracle: ~ğ = 2ĥ (Gğ). This observation

(called in input-output constraint) is reinforced back into the solver

by appending ~ğ = 2ě (:, G) to" . Once the set of constraints+miter

become unsatis�able, it can be proven that the key that satis�es

the constraints at this point must be a functionally correct key.

PowerSAT Attacks. The �rst variant of the PowerSAT attack,

named PowerSATeq, extends the above (uncertainty-sampling) SAT-

based circuit learning paradigm to power analysis attacks. The

attacker will instead of the functional oracle have access to a side-

channel oracle that returns traces on queries of (G, XG). Also, the at-

tacker must have a power model of the circuit ℎě (:, G, XG). A power

miter is built by creating disagreements in the power model space

%" = (ℎě (:1, G, XG) ≠ ℎě (:2, G, XG)). The io-constraints in Power-

SATeq are equality conditions of the form [ℎF (Cğ) = (ℎě (:, G, XG)].

One way to derive the power model ℎě is to count the number of bit

�ips that occur in the circuit when the input changes fromG toG⊕XG .

This can be built by taking the sum
∑
ĭ∈ēě

F (:, G) ⊕F (:, G + XG)

over the wires of 2ě , ,ě . Such conditions that include Boolean

functions and summations are called pseudo-Boolean (PB) formu-

lae. PB-solving has been an active area of research for a couple of

decades. One common way to solve PB formula is to convert the

summation part to adders/sorter networks that are then converted

to CNF formula and solved using conventional SAT-solvers. This is

what the PowerSAT attack in [7] used.

PowerSATdi� is amore robust variant of the PowerSAT attacks. It

operates by �nding pairs of input patterns for which the comparison

of their power consumption has di�erent directions for di�erent

keys. This involves making two input queries, comparing their

traces, and appending the result as a constraint to the PB formula.

PowerSAT Attacks on Real Traces. PowerSAT attacks can be

mounted easily against a simulated hamming weight oracle. i.e. an

oracle that upon receiving G, XG returns a precise bit-�ip count that

corresponds with the hamming weight power model used in the

attack ℎě . However, when it comes to practical attacks there is a

question of converting the real power trace which is a time-series

signal to a precise bit-�ip count. The original PowerSATeq in [7]

did not address this question. We propose an ML-based solution to

this challenge in Section 4.

For PowerSATdi�, a direct bit-�ip count derivation from the

trace is not required. Instead, the attacker only needs to determine

which one of two queried traces CA1 and CA2 correspond to a higher

bit-�ip count in the circuit 2ě . In [7] authors proposed a couple

of ways to do this by looking for peaks/valleys in the subtraction

of the two traces from each other. In this paper, we improve the

accuracy of this approach in Section 4.

Solver-Based Circuit-
Learning (PowerSATDiff/Eq)

DUAML-model

trace:

qu
er

y:

scope

DUAML-model

traces: scope

query set:key guess key

(a) (b)
Figure 1: a) end-to-end ML-based side-channel analysis. b) integra-

tion of ML with solver-based (PowerSAT-style) attacks.

3 ML-based Generic Side-Channel Analysis

The generic circuit learning from the side-channels problem is as

follows: Given a circuit 2ě (:, G) the goal is to interact with a trace

oracle of this circuit and use the collected traces to recover the key

: .

An end-to-end approach for usingML in this task is simple: Train

an ML model � to take in observed traces, and produce correct

keys (see Figure 1a). The training data here will be a corpus of

existing trace/key pairs collected either from a real device or some

simulation. This is precisely what many existing ML-based side-

channel analysis approaches do. DeepSCA[3] for instance takes a

few traces, passes them to a neural network with a few layers, and

outputs subkeys.

3.1 Key Partitioning
A critical question here is how the model should produce the key.

A neural network (NN) classi�er can output a one-hot class among

� di�erent classes using � di�erent output neurons. For a generic

circuit with ; key bits, such an approach requires 2Ģ di�erent output

neurons. This means that for circuits with non-trivial key bit counts

(10>) the model itself can become prohibitively large.

The approach used in DeepSCA to resolve this issue is to par-

tition the key into smaller chunks the same way that traditional

CPA/DPA/TA all do. The partitioning for cryptographic hardware

follows intuition. For instance, for AES, the 128-bit key is broken

down into 16 8-bit chunks. This translates to 256 di�erent output

classes per chunk. A softmax output layer with 256 outputs can be

used for classifying each chunk. One can train 16 di�erent models to

predict each chunk. Or alternatively one can use a few initial shared

layers that collect trace features, followed by di�erent output layers

for the �nal classi�cation.

For cryptographic circuits, the partitioning is derived intuitively

from the design and structure of the hardware. For AES, the 8-bit

chunks correspond to the 8-bit that enter each 8-bit s-box. For

generic circuits however, it is not obvious how the key should be

partitioned.

We can state the question more formally for the case of CPA. In

CPA the chunks are optimized in some given order. On each ;2-bit

key chunk all 2Ģę possible key values are explored one by one and

the trace correlation with :Ģę loaded into the hypothesis key vector

is computed. Given an ordering $ę of the di�erent chunks, and

partitioning ? , an optimal partition is one in which the number of

iterations and traces needed for a correct key recovery is minimized.

It is not di�cult to show that the above problem is at least NP-

hard. So �nding such an optimal order is likely a very di�cult

computational task.

Enhancing Solver-based Generic Side-Channel Analysis with Machine Learning GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA

0.25

0.50

0.75

1.00

k
b

a
T

ra
in

nK=16

spn 8-bit RF

comparator 8-bit RF

nK=32 nK=64 nK=128 nK=256

1 2 4 6 10 16 32

nX

0.25

0.50

0.75

1.00

k
b

a
T

es
t

1 2 4 6 10 16 32

nX
1 2 4 6 10 16 32

nX
1 2 4 6 10 16 32

nX
1 2 4 6 10 16 32

nX
Figure 2: 8-bit SPN vs 8-bit comparator train-vs-test random-forest key-bit-accuracy (kba: percentage of correctly predicted key bits) for

di�erent ĤĔ and Ĥć parameters on simulated noise-free traces (hamming weights).

We can however apply some heuristics. If two logic cones 61 and

62 have non-intersecting input and key vectors, then the change in

the key bits of 61 will have no impact on the bit-�ip-rate of 62 for a

�xed (G, XG). By iterating through the di�erent key possibilities for

61 the local optima of the trace correlation function will provably

be the correct key for 61. Then the attack can move to 62 and repeat

the process. Therefore, a somewhat sophisticated heuristic key

partitioning will be to �nd cones with non-intersecting sets of keys.

A less computationally intensive approach that relates to the

above approach is to search for keys that are near each other in a

graph of the circuit. One can start a BFS search from a given key and

�nd all the keys that are within a certain distance of it and append

them to the same partition as long as the size of the partition stays

below a certain value (e.g. 8). Note the order in which keys are

picked here will impact the �nal result in non-trivial ways.

3.2 Experiments: Small Key Size
We implemented the above end-to-end-ML side-channel attack

against generic circuits. Experiments were run in Python3.10 on a

Threadripper 3990X CPU with 128 threads and 256GB of memory

with a 2GB memory limit per task.

We begin with the case where key partitioning is not needed.

Namely circuits with a small number of key bits (8-bits). The power

consumption was simulated in software as the bit-�ip-count (ham-

ming sum/weight). In this idealized setting, we used ML models to

map from a set of traces) to the correct 8-bit key :∗ for generic cir-

cuit 2ě (:∗, G). The trace set is comprised of the noise-free hamming

weight of the circuit on =- randomly selected input+�ip patterns:

set -ħ = {(Gğ , XGğ)}. This is repeated for = di�erent random key

vectors: set ħ . The training data hence consists of | ħ | |-ħ | traces:

for each input in -ħ , and for each key in ħ collect a trace and

append to) .

For each possible :∗ ∈ ħ the goal of the ML attacker is to predict

this :∗ by looking at |-ħ | traces on the -ħ inputs. The number of

inputs in -ħ captures the number of traces that the �nal attacker

will look at to predict the key. So a single-trace attack corresponds

to |-ħ | = =- = 1. The training dataset therefore, consists of | ħ |

(input-output) samples.

We used the random-forest (RF) model from sklearn to predict

one-hot encoded 8-bit/256-possibility keys in the above setting. We

used RF instead of a deep NN as deep-NNs took more training time

and produced equal or subpar results on these tasks compared to

the RF. The results for select generic circuits: a) an 8-bit comparator

and b) an 8-bit single-round substitution permutation network

(SPN) can be seen in Figure 2. The SPN is generated following

the cryptographic SPN construct by taking 8 input bits G , �rst

XORing them with 8 key bits in a key-mixing layer<G = : ⊕ G , and

then sending the result through a substitution-box constructed by

synthesizing a random 8-bit truth-table. Finally, if multiple parallel

sboxes exist in multiple rounds, they go through a permutation

layer that shu�es the bits between each two rounds.

TrainingAccuracy. As can be seen from the results, the training

accuracy of the model becomes perfect as soon as the number of

input queries is increased beyond a certain level. For an SPN 2-

queries/2-traces are su�cient to with 100% accuracy determine

the key vector : from the vector of two hamming weights (C1, C2),

when the model has previously seen this exact sample. Note that

what this means is that the function � (C1, C2) → : which maps

from the two observed hamming weights to a key guess becomes

unambiguous at =- ≥ 2 for 8-bit SPNs. i.e. the key of an 8-bit SPN

is fully resolvable from its noise-free �ip rate on two input queries.

In other words, the training accuracy here is a measure of the

learnability of the key from bit �ip counts. Per the upper row in

Figure 2 it can be seen that comparators are not as learnable as

SPNs from a small number of queries/traces. 8-bit comparators

need something on the order of 16 input queries to resolve the key.

This is in line with theory from [7] that highly entropic circuits

like SPNs not only require fewer functional queries to learn than

low entropy circuits like comparators, but this loose relationship

also holds for hamming weight queries.

For small key sizes, we can build the full mapping between traces

and keys. We can place the training data traces (C1, C2, ..., CĤĔ) into a

dictionary that maps to correct keys. If multiple trace vectors of this

form, all map to the same key vector, or if one trace vector maps to

multiple possible keys, then there is a theoretical ambiguity in the

mapping between traces and keys. i.e. the true correct key may be

unlearnable/ambiguous given the observation set.

For the 8-bit key case, we veri�ed that there is true ambiguity for

both comparators and SPNs for =- = 1, but the ambiguity quickly

dissipates for SPNs as =- increases, whereas for comparators it

GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA Kaveh Shamsi and Guangwei Zhao

#k=16 #k=32 #k=64

bench #i/#o/#g
kba-
train

kba-
test

kba-
train

kba-
test

kba-
train

kba-
test

c432 36/7/160 0.99 0.74 1.00 0.63 1.00 0.57

c499 41/32/202 0.85 0.66 1.00 0.57 1.00 0.52

c880 60/26/383 1.00 0.81 1.00 0.65 1.00 0.57

c1355 41/32/546 0.99 0.73 1.00 0.62 1.00 0.55

c1908 33/25/880 1.00 0.76 1.00 0.65 1.00 0.56

c2670 157/64/1193 0.90 0.72 1.00 0.66 1.00 0.57

c3540 50/22/1669 1.00 0.80 1.00 0.65 1.00 0.57

c5315 178/123/2307 0.97 0.77 1.00 0.66 1.00 0.58

c6288 32/32/2416 1.00 0.77 1.00 0.60 1.00 0.53

c7552 206/107/3512 1.00 0.75 1.00 0.67 1.00 0.58

spn 16/16/1766 1.00 0.74 1.00 0.60 1.00 0.54

comp 16/1/31 1.00 0.85 1.00 0.69 1.00 0.59

Table 1: End-to-end ML attacks on circuits with larger keys, using

distance-based partitioning, with dataset params Ĥć=512, ĤĔ=32,

and a random-forest model.

takes longer. Both eventually turn into 1-to-1 mappings, i.e. fully

learnable relations.

Testing Accuracy. The testing/validation accuracy of this ap-

proach however is not impressive. The testing accuracy refers to

the accuracy of the model trained on the training data, then evalu-

ated on a set of samples that were not shown to the model during

training. We use a typical 80/20 train/test split, i.e. 20% of the data

samples during training were kept aside for testing.

In the context of our end-to-end attack, this means that there

are keys that are members of @, that the model was never trained

on predicting during the training. This is akin to training a clas-

si�cation model where certain classes were simply not present in

the dataset. As such, this type of low testing accuracy is not due to

over�tting.

The above results indicate an important limitation of end-to-end

ML attacks. If the key space is large, then all possible keys cannot be

placed in the training set @. Therefore, the model’s performance

on unseen keys will be in question. If the key is partitioned into

smaller chunks, then even though each full key vector is not seen,

each chunk range may be fully explored. We show shortly how,

with reasonably sized training datasets, this doesn’t perform well

either.

3.3 Experiments: Large Key Size
We implemented the above end-to-end ML approach on circuits

with more than 8 bits of keys. Here we used the distance-based

key partitioning strategy discussed earlier. The large key vector

was split into 8-bit partitions and each partition’s correct values

were used as training samples in a multi-output ML model (random-

forest).

Table 1 shows the results for this task. Here the circuits were

locked with (or inherently contained) random XOR/XNOR inser-

tion with 16, 32, 64 key bits. The training dataset parameters were

=- = 32 and = = 512 i.e. 16384 traces. As can be seen, training

accuracy remains close to perfect. The testing accuracy falls to

random guessing as the key size is increased. To put this in context,

note that CPA with fewer traces than 16384 will perform very well

with the same key sizes per [7]. PowerSATdi� attacks can provably

recover keys in this case with tens of traces/queries. Note that these

results are all in the ideal noise-free setting (traces = hamming

weight).

Noisy Evaluations. Figure 3 shows results for end-to-end generic

ML in the settingwhere themodel is trained on noise-free ideal ham-

ming weights, but then evaluated on noisy inputs (for seen/unseen

training/testing patterns). The results show how the presence of

noise can diminish the model’s performance on both seen/unseen

patterns albeit with some resiliency.

4 Hybrid Approach: ML + Solver Attacks

The above results indicate an important challenge for end-to-end

(trace-to-key) ML-based attacks: For an e�ective end-to-end ML

attack, the model will have to learn the relationship between circuit

hamming weights and keys. This relationship is formally captured

in ℎě (:, G, XG). The typical ℎě (:, G, XG) function consists of two

copies of a generic Boolean circuit, an array of XOR gates, followed

by some binary adder. The ML model will have to learn the inverse

of this function ℎ−1 (C) → (:, G, XG). This (as also mentioned in) [3]

may be a di�cult task.

More importantly, note that the ML model in these end-to-end

attacks was not even given the structure of 2ě /ℎě . This means that

we are asking an ML model to reverse ℎě , without even seeing

its description. Note that this is not a limitation imposed by the

threat model, as the threat model assumes the attacker is given

the netlist/description of 2ě and hence some insight into the power

model ℎě .

The question of generalizability and learnability for anMLmodel

here reduces to the following: given an unseen circuit 2ě , if one

makes # observation on the hamming weight function of 2ě , can

one predict the hamming weight of 2ě on an unseen new # + 1th

input? Formally, the hypothesis space for a 2ě -blind attacker is large

and uniform. For the 2ě -blind attacker there are in�nitely many

circuits that produce the �rst # hamming weight observations that

produce divergent hamming weights on a new unseen # + 1 query.

Note that the above issue is not present in the case of a PowerSAT-

style attack. The PowerSAT attack is intimately aware of 2ě /ℎě . It

can both simulate and invert these functions using a complex and

sophisticated PB-SAT-solver decision procedure. Also via complex-

ity reduction arguments, one can reason that an alternative better

way to reverse a general ℎě , would imply an alternative better way

to solve general PB-formulae.

The above discussion serves as a motivation to perhaps com-

bine the two approaches. The ML approach’s main strength is in

the modeling of behavior that is not readily captured in the PB

formulation. Once the PB-based PowerSAT attacks are given accu-

rate queries they can perform formal reasoning to recover correct

keys. However, their basic implementations are highly sensitive

to errors. The negation of a single variable in a CNF formula can

have dramatic impacts on the status of the instance. Yet worse, in

(Power)SAT attacks, an error in one step of the attack can cascade

into more and more divergent and unpredictable behavior in future

iterations.

We propose a couple of ways to use ML to assist PowerSAT

attacks discussed herein:

Trace to Hamming Weight Bucket for PowerSATeq: The

baseline hamming weight PowerSATeq attack requires traces col-

lected from the oracle CAğ [C] which are in the real-world setting

time-series signals, to be mapped to integer values compatible

Enhancing Solver-based Generic Side-Channel Analysis with Machine Learning GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA

1 5 10 15 20

trN

0.2

0.4

0.6

0.8

1.0

k
b

a

c432

train

test

1 5 10 15 20

trN

c880

train

test

1 5 10 15 20

trN

c1355

train

test

1 5 10 15 20

trN

c5315

train

test

1 5 10 15 20

trN

spn

train

test

1 5 10 15 20

trN

comp

train

test

Figure 3: Training on noise-free data, evaluation on noisy data. A random Gaussian noise value is added to the raw hamming vectors with

Ă = ĪĨĊ% × [ģėĮ (ℎĭ) −ģğĤ (ℎĭ)]. The baseline model was random-forest trained on Ĥć = 512, ĤĔ = 32 datasets.

bit-sum

lsb

Figure 4: The hamming weight model in PowerSAT attacks consists

of two copies of the circuit running on Į and Į ⊕ ąĮ . Pair-wise XOR

of the internal wires is summed through an adder. By discarding the

lower bits of the adder a natural hamming weight bucketing can be

implemented.

Teensy
USB-2-IO

Picoscope

CW308
FPGA

Programmer

XL9-target

Figure 5: Trace collector hardware setup. CW308with a Spartan6 XL9

FPGA target. The Teensy3.2 board is used to convert USB commands

from the PC to FPGA Į and ąĮ �elds. Traces are collected via the

USB3 Picoscope5000 device.

with the hamming weight power model. i.e. a time-series trace

CAğ [C] ← C>A02;4 (:∗, G, XG), will have to be converted to a corre-

sponding hamming weight ℎě (:, G, XG) before inclusion into the

PowerSAT attack.

We can use anMLmodel to perform this conversion. By querying

the trace oracle on a set of -@ and @, we can try to learn the

mapping from traces to �ip counts. This mapping should be much

easier to learn than the end-to-end relationship between traces and

keys. Note that for a non-ML approach to this problem, the attacker

needs to study di�erent traces, �nd points-of-interest (poi’s) then

decide manually what values on these points correspond to exactly

how many bit �ips in the device under attack (DUA).

Predicting the precise hamming weight with an ML model can

be challenging. We can instead map from traces to hamming weight

buckets/bins. Each bucket is a range of hamming weights 12:Cğ :

;ğ < ℎF < ℎğ . By dividing the full range of hamming weights into a

power of 2 we can in fact nicely integrate these bucket observations

with PowerSATeq. In the PowerSATeq model of the circuit’s power

consumption (seen in Figure 4) a bit-adder is typically used to sum

bits. By discarding the lower bits of this adder and focusing on the

D upper bits, we can e�ectively capture hamming weight buckets

each including a<0G (ℎF)/2ī range.

Figure 6 shows the results of the above approach. Random-forest

regression and classi�cation models were trained on 2000 traces

collected from the hardware setup shown and described in Figure 5

for the di�erent ISCAS and SPN circuits. For the regression models,

the output is a real value whose mean square distance to the correct

integer bit-�ip count is minimized. For the classi�er models, the

output is an integer class corresponding to the predicted hamming

weight. During model evaluation, the predicted integer value is

rounded to the nearest bucket edge. Our experiments show a high

accuracy for many circuits with 2-8 buckets and a diminishing

accuracy for more buckets.

Note that absent trace to hamming-weight mappings, Power-

SATeq attacks cannot be mounted against real traces. The origi-

nal PowerSATeq work [7] did not address this challenge and only

demonstrated PowerSATeq attacks against simulated traces. As

such this work is the �rst to propose a potential automated solution

to this challenge using ML.

Trace Comparison for PowerSATdi�. Our second integration

approach is for trace comparisons in PowerSATdi�. Here, we train

an MLmodel �rst to predict hamming weights from traces the same

as our approach above. Now to compare the hamming weight of

two traces (which is a critical part of PowerSATdi�), we compare

the predicted hamming weight values from the ML model.

Note that the existing approach for trace comparison per [7] is

to take the two traces, subtract them from each other and look

for peaks or valleys in the di�erence. More precisely, �rst the

maximum of the absolute value of the di�erence is found ? =

argmaxğ |CA1 [8] − CA2 [8] |. Then the value of the di�erence trace at

this peak/valley is tested. A negative/positive value on this point

determines the direction of the trace comparison. An addition here

in [7] was to take the moving average of the two traces before

the subtraction. This methodology was compared to the ML-based

technique in Figure 7. As can be seen, the ML-based approach has

a higher overall accuracy in resolving comparison directions than

non-ML trace di�erentiation especially when the hamming weight

GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA Kaveh Shamsi and Guangwei Zhao

21 23
0.00

0.25

0.50

0.75

1.00

spn4 1 2

21 23

spn4 2 2

21 23

c432

21 23

c499

21 23 25

c880

21 23 25

c1355

21 23 25

c2670

21 23 25 27

c3540

21 23 25

c5315

21 24 27

c6288

21 24 27

c7552

0.0 0.2 0.4 0.6 0.8 1.0

#buckets

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

21 23 25
0.00

0.25

0.50

0.75

1.00

c1908

RFR RFC

Figure 6: Trace to hamming weight buckets ML task. The random-forest regressor/classi�er (RFR/RFC) model is trained on 2000 real traces.

It is then evaluated on whether the model’s predicted value rounded to the nearest bucket matches the real hamming weight bucket as the

number of buckets increased from 2 to the full hamming weight range (number of �ipping wires in the circuit).

21 23 25

1

0.4

0.5

0.6

0.7
0.8
0.9

spn4 1 2

21 23 25

1

0.3

0.4

0.5

0.6
0.7
0.8
0.9

spn4 2 2

21 23 25

1

0.7

0.8

0.9

c432

21 23 25

1

0.7

0.8

0.9

c499

21 23 25

1

0.6

0.7

0.8

0.9

c880

21 23 25

1

0.7

0.8

0.9

c1355

22 25

1

0.7

0.8

0.9

c2670

22 25 28

1

0.85

0.88

0.9

0.93

0.95

0.98

c3540

22 25 28

1

0.8

0.9

c5315

22 25 28

1

0.86

0.88

0.9

0.92

0.94

0.96

0.98

c6288

22 25 28

1

0.8

0.9

c7552

0.0 0.2 0.4 0.6 0.8 1.0

hamming weight difference: ∆

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

22 25 28

1

0.8

0.9

c1908

raw moving-average ML-RF

Figure 7: Trace hamming weight comparison. The accuracy of determining which of two given traces (from the FPGA hardware setup in 5)

corresponds to a higher hamming weight (more bit-�ips): using existing trace di�erentiation methods from [7], versus comparing the output

of the trace-to-hamming-weight ML random forest regressor from Figure 6 tested on 5000 pairs of traces picked randomly from the unseen

validation trace set. The � on the x-axis captures the real hamming weight di�erence between the two traces. As can be seen, the closer the

hamming weight of the two traces the lower the trace comparison accuracy, but the ML approach (black lines) performs signi�cantly better.

di�erence between the traces is smaller. This improved accuracy

should translate to improved PowerSATdi� attack robustness.

5 Conclusion

In this paper, we showcased some of the limitations of end-to-end

machine learning for generic side-channel analysis. We instead

proposed a couple of ways to use ML techniques to assist formal

solver-based generic PowerSAT attacks. For PowerSATeq ML-based

trace-to-hamming-weight mapping overcomes a challenge not ad-

dressed before in the literature. For PowerSATdi�, ML-based trace

comparison was shown to be more accurate than existing tech-

niques. A full exploration of the multidimensional interplay be-

tween the ML techniques proposed here and the formal PowerSAT

attacks is left to future work.

Acknowledgments

This work was supported by an award from the US National Science

Foundation (NSF-SaTC-2155189).

References
[1] Eric Brier, Christophe Clavier, and Francis Olivier. 2004. Correlation power analysis

with a leakage model. In International workshop on cryptographic hardware and
embedded systems. Springer, 16–29.

[2] Suresh Chari, Josyula R Rao, and Pankaj Rohatgi. 2002. Template attacks. In Inter-
national Workshop on Cryptographic Hardware and Embedded Systems. Springer,
13–28.

[3] Debayan Das, Anupam Golder, Josef Danial, Santosh Ghosh, Arijit Raychowdhury,
and Shreyas Sen. 2019. X-DeepSCA: Cross-device deep learning side channel
attack. In Proceedings of the 56th Annual Design Automation Conference 2019. 1–6.

[4] Mohamed El Massad, Siddharth Garg, and Mahesh V Tripunitara. 2015. Inte-
grated Circuit (IC) Decamou�aging: Reverse Engineering Camou�aged ICs within
Minutes.. In Network and Distributed System Security Symposium (NDSS).

[5] Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. 2008. Mutual
information analysis. In International Workshop on Cryptographic Hardware and
Embedded Systems. Springer, 426–442.

[6] Paul Kocher, Joshua Ja�e, and Benjamin Jun. 1999. Di�erential power analysis. In
Annual international cryptology conference. Springer, 388–397.

[7] Kaveh Shamsi and Yier Jin. 2021. Circuit Deobfuscation from Power Side-Channels
using Pseudo-Boolean SAT. In 2021 IEEE/ACM International Conference On Com-
puter Aided Design (ICCAD). IEEE, 1–9.

[8] Pramod Subramanyan, Sayak Ray, and Sharad Malik. 2015. Evaluating the security
of logic encryption algorithms. In Proc. IEEE Int. Symp. on Hardware Oriented
Security and Trust. IEEE, 137–143.

	Abstract
	1 Introduction
	2 Preliminaries
	3 ML-based Generic Side-Channel Analysis
	3.1 Key Partitioning
	3.2 Experiments: Small Key Size
	3.3 Experiments: Large Key Size

	4 Hybrid Approach: ML + Solver Attacks
	5 Conclusion
	References

