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ABSTRACT

Hardware Trojans, i.e. malicious circuitry inserted into a design
by an untrusted foundry or designer, pose a threat to the fabless
semiconductor industry. The detection of hardware Trojans has
been the subject of numerous studies over the years. In this pa-
per, we discuss a novel approach to Trojan detection: using the
framework of oracle-guided circuit learning (OGCL) or deobfusca-
tion, which has traditionally been used for assessing the security
of circuit obfuscation schemes. We show how arbitrary functional
Trojan detection can polynomially be reduced to OGCL, yielding
a more formal and versatile framework than traditional heuristic
techniques. This formulation can also be used to locate Trojans and
can be easily extended to side-channel or hybrid detection by using
non-functional OGCL. The main challenge with this approach is
its worst-case-exponential space complexity when using baseline
Boolean satisfiability (SAT)-based circuit deobfuscation. To this
end, we propose some novel techniques based on AIISAT, cube
generalization, and quantified Boolean Formula (QBF) solving. We
present a set of experiments on benchmark circuits to showcase
the validity and performance of our framework.
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1 INTRODUCTION

The globalization of Integrated Circuit (IC) production has intro-
duced some new security and privacy concerns. The disclosure of
the physical design to untrusted parties, hardware Trojans are the
major two. Hardware Trojans are malicious modifications of the
design at some point in the production process with the aim of
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altering the original functionality, reducing performance, or leak-
ing critical information [13]. Researchers have been addressing the
issue of hardware Trojans using various techniques over the years.
These techniques mainly aim to either detect the Trojan or make it
harder to insert Trojans into the design in the first place.

One of the primary techniques for post-silicon non-invasive
(i.e. not involving physical reverse engineering) Trojan detection
is functional testing. Stealthy Trojans are generally designed to
activate under rare specific conditions, and as such attach to rare
nets/nodes of the circuit. Logic testing for Trojan detection aims
to activate these rare nets by testing vectors not typically visited
by traditional automatic test pattern generations (ATPG). Applying
such patterns to the primary inputs and observing the output to
detect any mismatches can help identify Trojan-infested chips[3].
Various specialized ATPG, model checking-based [5] and SAT-based
approaches have been used to this end. Power and electromagnetic
(EM) side channels [7] and laser probing have also been used as
semi-invasive post-silicon techniques.

In this work, we have explored a novel approach to Trojan detec-
tion: using the framework of oracle-guided circuit learning (OGCL)
(or deobfuscation) to detect Trojans. Oracle-guided circuit learning
is the problem of finding a set of unknowns/keys in an ambiguous
circuit by making adaptive queries to an oracle of that circuit. This
problem has been studied in the circuit obfuscation domain for
some years now, in which an attacker tries to recover the full de-
sign of an ambiguous obfuscated circuit by modeling the ambiguity
as unknowns in a circuit learning problem. SAT-based techniques
here have been shown to be very promising [6, 12]. Along this line,
the paper delivers the following novel contributions:

e We formulate golden-IC-free Trojan detection as an oracle-
guided circuit learning problem. We show how using proba-
ble Trojan models (PTM): circuit gadgets that can capture
the potential existence of many Trojans in the circuit, a cir-
cuit learning procedure can be used to prove or disprove not
just the existence of such a Trojan, but also their potential
location and activation conditions.
The main challenge with off-the-shelf circuit learning proce-
dures for use in Trojan detection is their linearly growing
space complexity (in the number of queries) when applied
in this way. We propose several novel techniques including
using AlISAT solving, cube generalization and merging, and
Quantified Boolean Formula (QBF) solving.
e We implement our algorithms and evaluate them against a
set of benchmark circuits and present the results showing
an alignment with our theoretical analysis.

The rest of the paper is organized as follows: Section 2 provides
preliminaries, Section 3 provides the main methodology, Section
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(a)
Figure 1: Trojan example: (a) Trojan-less circuit (b): combinational
Trojan with AND/fixed-comparator trigger and an XOR-based pay-
load. (c) Sequential Trojan n-bit counter-based trigger with XOR
Payload.

4 presents methods for space efficiency, Section 5 presents experi-
ments and Section 6 concludes the paper.

2 PRELIMINARIES

Trojan Model: The original/golden circuit c4(x) : X — Y imple-
ments a Boolean function from the n-bit input space X to the m-bit
outputs space Y, and has a circuit graph Gg. A gate-level hardware
Trojan is a malicious modification of the circuit graph G, to G;.
This typically involves a trigger function T(w) attached to some
nets w, and a payload P. If the payload alters the functionality of ¢4
at its observable functional outputs to c;, then the Trojan is active.
Fig. 1 shows examples of combinational and sequential Trojans.
More details on hardware classification can be found in [13].

Signal Probability Estimation and Rare Nets. To have a
stealthy Trojan it needs to activate in rare specific conditions. To
achieve this the attacker typically needs to attach the trigger to
signals with low transition probabilities [8]. For modeling potential
Trojans, this fact needs to be kept in mind. Calculating the precise
signal probabilities for the internal nets is #P-complete (practically
even harder than NP-complete problems). One can approximate sig-
nal probabilities with pattern simulation, or propagating probability
values under the (wrong) assumption of statistical independence
for inputs of each gate in the circuit and propagation rules [9].

Oracle-Guided Circuit Learning (OGCL). Given an obfus-
cated/ambiguous circuit ¢, : K X X — Y with [ hidden/“key” in-
puts K = {0, 1}! and n primary inputs X = {0, 1}" and m outputs
Y = {0,1}™, and an oracle/target circuit ¢, : X — Y, oracle-guided
circuit learning/deobfuscation is the problem of finding a value
for the hidden inputs k. such that the ambiguous circuit becomes
equivalent to the oracle Vx € X ce(k+, x) = co(x). In the sequential
version of this problem, c, and ¢, can be sequential circuits. This
problem has many applications. Specifically, in hardware security
it is used extensively to study the security of logic obfuscation
schemes [6, 11, 12].

SAT-based OGCL. A powerful framework for generic combi-
national circuit learning is the SAT-based approach first presented
in [6, 12]. Here the attacker/learner proceeds by building a miter
condition M = (ce(k1, x) # ce(k2,x)). This condition is converted
to a conjunctive-normal-form (CNF) SAT problem and solved using
a modern SAT solver. If M is satisfiable using some X, kAI, l€2, this
means that an input pattern x exists for which there are two possi-
ble keys that produce different outputs, i.e. there is ambiguity in
the learner’s hypothesis on x. This input is queried on the oracle,
§ = ¢o(%). The resulting input-output observation is appended to
M as a constraint. F «— M A [(ce(k1,%) = §) A (ce(k2, %) = 1))]-
The process continues until the constraints+miter condition F be-
comes UNSAT. At this point, there is no ambiguity left over the
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Algorithm 1: Given an oracle ¢, and the locked net list c,
returns a correct key k. € K. if ¢, € {ce(k,.)|k € K}.

1 Function SATOGCirLearn(ce, co as black-box oracle):

2 F « true

3 M — ce(ki,x) # ce(kz, x)

4 while F A M is satisfiable do

5 %, K1, Ky « SAT(F A M)

6 7 — co(X)

7 F — FA(ce(k,®) =9) A (ce(ka, %) = 9)
8 K1, k < SAT(F)

9 return k; as correct key k.

functionality of ¢, and a provably functionally correct key can be
extracted from F. Algorithm 1 shows the procedure.

Power OGCL. In [10] PowerSAT was proposed which is an
OGCL algorithm for learning circuits from power side-channel
(hamming sum) queries rather than functional ones. The algo-
rithm operates similarly to the functional case except the func-
tional miter is replaced with a power model analog which returns
power-discriminating input patterns (PDIPs). These create disagree-
ments between the (hamming sum) power model (which are psuedo-
Boolean expressions) for different keys. Input-power pairs are re-
inforced back into the solver. A differential version, PowerSATdiff,
was also proposed which mines for pairs of power queries via a
differential miter and uses this observed power comparison direc-
tion as constraints on the key. This improves the robustness of the
procedure to hamming sum querying noise.

3 TROJAN DETECTION VIA OGCL

The post-silicon functional Trojan detection task can be mapped to
oracle-guided circuit learning (OGCL) as follows: The defender has
a chip ¢, that he suspects may have a Trojan inside. He also has the
original golden design c, (not a golden IC). The defender can detect
a potential Trojan, by first building a circuit model c.(k, x), for
which the choice of the unknown/key inputs k captures the presence or
absence of a particular Trojan in the circuit. It follows that there must
exist a hidden/key variable assignment k., for which Vx ce(ks, x) =
¢cg(x), i.e the model must include the golden circuit. This is so
that OGCL run against a Trojan-free circuit ¢; = ¢4 will properly
conclude returning a key indicating the absence of Trojans. If the
OGCL procedure is instead run against a Trojan-infested design c;
as the oracle instead of cg» the hope is that this will lead to some
discernible deviation in the process.

3.1 Possible Trojan Model (PTM)

The keyed circuit model c, (k, x) here is built in a way such that the
choice of the key k captures the presence or absence of a Trojan.
How to construct such a circuit? Since there is not just one pos-
sible Trojan to capture/model, there are many ways to construct
many different such ¢, (k, x)s. We propose to do this by taking the
original design cg, and inserting circuit gadgets that we term possi-
ble/probable Trojan models (PTMs) into it. An example of a PTM
is seen in Fig. 2a. Here by setting the key variable kq¢; to 0, the
original circuit’s functionality is unchanged. If k4c;=1, then on a
particular combination of the input nets R, the comparator will
trigger and as a result, a wire value will flip. So the choice of kact
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Figure 2: Possible Trojan models (PTMs). (a) captures a fixed comparator potentially unleashing a payload on the original net when k;¢; = 1
(b) comparator to an unknown value, k,c; = 1 indicates presence, and the K, vectors indicate the activation location. (c¢) unknown-value
comparator with an unknown location. K,,,,, indicate input location. (d) combination of a comparator with sequential counter and MUX

payload. (e)Multi-payload PTM composition.

models whether a comparator-triggered Trojan is present on those
particular wires or not. We can develop an array of such PTMs:

Fixed Comparator: Seen in Fig. 2a models the presence of a Trojan
that checks to see if a set of input wires Rpe;s match a fixed pattern,
and if so triggers a single XOR payload. This takes up a single
hidden/key variable kg4c; which if equal to 1, indicates the presence
of such a Trojan. The query complexity for detecting a single such
Trojan is O(1).

Unknown-Value Comparator: Seen in Fig. 2b, models not just
the presence of a comparator Trojan, but also, the value that is
being compared to is left as an unknown vector k¢,. Therefore, any
comparator (comparison with any vector k¢,) Trojan that is present
in the oracle, that is connected to the same input wires as this PTM
can be modeled and therefore detected using OGCL. The query
complexity of provably detecting such a Trojan is at most O(2").

Unknown-Value and Unknown-Span Comparator: Seen in Fig.
2c, models a comparator with an unknown value connected to
an unknown subset of the wires Ryes of size n. The connection
ambiguity is modeled by key-controlled MUX gates added to the
inputs of the comparator.

Sequential Counter: Seen in Fig. 2d shows an example of a sequen-
tial counter PTM. This captures the presence of a Trojan that can
count a certain number of activations on a particular comparator
and trigger the payload. The inclusion of such a PTM in the circuit
makes the c, model sequential, therefore necessitating a sequential
OGCL procedure such as the model-checking attack in [11].

Multi-Payload PTM As shown in Fig. 2e, a PTM can have multiple
payload locations that activate based on key bits. This can help
model the ambiguity in (and determine via OGCL) the location of
the possible payload in the Trojan-infested circuit. One can design
a large PTM with many potential payload positions. p different
payload locations can often increase the query complexity of the
detection by p times, although this is not a rule.

PTM Span. As seen in the above examples, any PTM has a
known possible function space. Each PTM can model a certain set
of Trojans present in the circuit. Since the exact Trojan is unknown
to the learner, the larger and more expressive the space of possible
Trojans can be for ce, the higher the success probability of the OGCL
Trojan detection procedure (at the cost of higher query complexity).

3.2 SAT-based Circuit Learning against PTMs

Trojan within PTM Span. We now explore what happens when
an OGCL procedure such as the SAT-attack from Algorithm 1 is
run against a ce, ¢; pair of circuits. First, consider the case where
the Trojan happens to fall in the space of possible functions of ce.
ie. ct(.) € {ce(k,.)|k € K} = Ce. Here, the SAT-based OGCL goes
through its iterations, interacting with the c; chip in an adaptive
manner and lands on a candidate key that makes the miter UNSAT.
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Figure 3: The returned keys from the OGCL procedure will indicate
whether a Trojan was present in the circuit in a particular location
(bottom) or not (top).

The io-constraints will be satisfiable and a provably functionally
correct key will be extracted. We can take this key and analyze it.
For instance, if a k¢ bit in the key corresponds to the activation
of a particular PTM, and that bit happens to be 1 when returned by
the OGCL, this could indicate a Trojan presence.

Does this prove the existence of a Trojan? The answer is yes
except for one case. The only case in which an attack may return a
kacr=1 on a Trojan-free circuit, is if the PTM happens to not impact
the observable (output in functional, and power in power OGCL
respectively). This can occur if the PTM’s output is triggered on
some condition, but this output does not propagate to an observable.

The above case, however, can be avoided in two ways: 1) we
ensure to insert PTM payloads that do in fact alter the circuit’s
functionality. 2) we can perform a looseness check to see if both
0 and 1 are possible choices for a given activation key bit without
violating the io-constraints F.

We can generalize the above into the following lemma:

LEMMA 3.1. If the circuit under test is Trojan-infested and has
functionality c; where c; € {ce(k,.)|k € K} where c; deviates from
the original functionality cg, and cq € {ce(k,.)|k € K}, then the
SAT-based OGCL procedure will terminate properly with a correct
key that can help determine if the circuit under test is functionally
equivalent to the golden design cy.

Trojan outside PTM Span. Now let us consider the converse
case. When the Trojan-infested chip has functionality ¢; not mod-
eled by the PTM ¢; ¢ C,. Here, there are two possible outcomes:

1) The SAT-based OGCL concludes with an UNSAT miter+io-
constraints and terminates. However, when the correct key is to be



GLSVLSI ’24, June 12-14, 2024, Clearwater, FL, USA

Algorithm 2: Given an circuit under test c¢; and the golden
circuit model ¢ tries to detect likely Trojans.

1 Function 0GCLTrojDetect (cy golden model, c; as black-box):

2 for i € Rounds do

3 ce < InsertlikelyPTMs(cy)

4 F « true

5 M — ce(ky,x) # ce(ks,x)

6 while F A M is satisfiable do

7 %, K1, Ky — SAT(F A M)

8 g —cr (%)

9 F «— FA(ce(k1,x) =19) A (ce(ka,x) =7)
10 if F satisfiable with k, then

1 L TrojPresent,TrojLoc « AnalyzeKey (k)
12 else

13 UNSAT constraints.

14 L TrojPresent « true

extracted in the final step from the io-constraints F, the solver re-
turns an UNSAT status. i.e. there exists no key k that can satisfy the
io-constraints A;eq(cr(xi) = ce(k, xi)). In such a case, if the PTM
model was constructed properly, this is proof of Trojan presence.
The reason is simple. The PTM model ¢, was constructed in a way
as to include the original functionality, i.e. cg € Ce. Therefore, a
SAT-based OGCL interacting with ¢; = ¢; would never result in an
UNSAT io-constraint. This must mean that ¢; # ¢4. i.e. the OGCL
procedure is not talking to a function equivalent to the golden
circuit cg.

2) The trickier case with a Trojan outside of C, is when the
SAT-based OCGL concludes early with an UNSAT miter, and a SAT
io-constraint and a key. This can happen due to the fact that there
can exist input-output constraints c;(x;) = ce(k, x;), where even
though ¢; ¢ C., the constraints are still satisfiable, it is just that
the constraints knock the miter UNSAT early. In such a case the
returned key can be studied. If it suggests a Trojan presence then a
Trojan presence is proven. If however, the returned key does not
suggest a Trojan presence, this is not proof of Trojan absence. In
this case, other than noticing the early termination by its large
deviation from the expected query count for a PTM class, we can
have a true false negative that cannot be avoided without using
more expressive PTMs.

The overall flow for the procedure can be seen in Algorithm 2.

3.3 Intelligent PTM Insertion

We now know that the more expressive and the larger the space
of C, the lower the probability of Trojans evading the detection.
At the same time, the more expressive the PTM, the more work
the SAT-based OGCL will have to perform. Note that certain PTMs
can raise the query complexity of SAT-based OGCL exponentially.
Unknown-value comparator PTMs with n inputs, yield OGCL query-
complexities of O(2") (this is similar to the deobfuscation of point-
function schemes[15]). Note however, that this is not a unique issue
of our approach, but that simply the minimum query complexity of
detecting combinational n-bit comparator Trojans with unknown
activation patterns is O(2") using any functional testing method.
As such, in the detection process, it is important to insert PTMs
prudently. In our proof-of-concept experimentation, we use signal
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Figure 4: Flow of Semi online OGCL: From trojan pattern and cube
generation to trojan detection test and localize the trojan with QBF
using PTM.
probability estimation to find rare nets. We attach PTMs to these
rare nets to capture more plausible Trojans.

3.4 Multiple PTM Composition

One can insert multiple PTMs into the circuit to capture multiple
types of Trojans in the same circuit model c.. Note that each PTM
has key bits that capture its absence. That means that inserting a
new PTM does not violate the cg € Ce inclusion rule, therefore, as
long as a Trojan-infested chip’s behavior c; falls within C, detec-
tion will be guaranteed in finite time.

When multiple PTMs are used, the OGCL procedure will return
a longer key vector whose various bits belong to different PTMs.
It is possible to study these bits individually and try to use this
information to determine where the Trojan was inserted. Per Fig. 3,
two PTMs are inserted into the circuit with activation key bits k1
and ky. If the OGCL returns kz=1 after interacting with the circuit
under test, this can mean that the corresponding PTM’s Trojan
was present but not the other. For the outside-span case c¢; ¢ Ce,
such determinations cannot be made conclusively. It is possible for
outside-span Trojan behavior to end up asserting the activation
key bits of a differently located PTM.

4 IMPROVING SPACE EFFICIENCY
WITH SEMI-ONLINE OGCL

The main challenge with using the SAT-based OGCL in Algorithm
1in our flow is its space complexity. The baseline SAT-based OGCL
algorithm repeatedly appends circuit copies to the CNF causing it
to grow linearly in size. For n bit PTMs this leads to an exponential
O(2") space complexity, which is a lot more problematic than expo-
nential time complexity. Note that the more advanced KC2 OGCL
algorithm [11] which simplifies key conditions on the fly can help
here. But we propose a couple of additional solutions herein.

One reason for the growth in the space usage of the SAT-based
OGCL is its online nature. Each query is immediately appended to
the solver and a new query is generated via another SAT call. We
can break this slightly, and instead generate a ton of patterns with a
given CNF snapshot before extending it with additional constraints.

AlISAT Pattern Enumeration. We can create a new miter (see
Fig. 4) one that compares the output of the PTM-inserted circuit
with the original golden circuit c. (k,x) # c4(x). In the extreme,
we can use an all-solutions SAT (AIISAT) [14] loop to generate
all the patterns x for which c, can deviate from cy. Testing the
circuit on all these patterns and observing no deviation proves in-
span Trojan absence. This immediately cools space complexity, as
modern AlISAT solvers have sub-exponential space complexities.
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The loss of the fully online procedure is not a great disadvantage,
as both techniques detect within span Trojans.

Pattern to Cube via Generalization. In addition to AIISAT,
we can use cubes instead of individual patterns. Cubes here are
input vectors with “don’t-care” bits. e.g. 00xx, which is a single
cube that captures 4 different input patterns. Once we satisfy the
above miter with %, ¢ (k, X) # cg(fc), we can use the method of
cube generalization used extensively in model-checking [4] to go
from this concrete pattern x to a cube x, that satisfies the same
constraint. Generalization techniques typically work by inverting
the condition making it UNSAT, and then trying to drop literals
from a set of solver assumptions to see if the UNSAT status of the
problem remains. UNSAT-Cores returned by modern SAT solvers,
which capture literals that were relevant to the UNSAT result are
used here. We use a procedure similar to the one in [4] in our
experiments. Once a cube (e.g. x = 00d) is generated we can ban
it from the solver by adding a ban-clause (X7 + x2) and repeating
the process. This procedure is in fact a form of accelerated AlISAT
enumeration.

Cube Merging. After a cube is generated, it captures a set of
test vectors. We can merge multiple cubes into bigger (looser, with
more don’t care bits) cubes using cube minimization algorithms.
e.g.: 00d and 01d can be merged into 0dd. We use a Binary Decision
Diagram (BDD) engine for this where cubes are added to a BDD
which automatically merges them, and then all the BDD minterms
are enumerated which returns the merged cube list. The final set
of cubes can represent an exponential number of patterns that can
be individually queried in a batch fashion.

Trojan Localization using Cube Conditions and QBF. Dur-
ing testing, if a deviation from the original circuit is detected we
can use this offending input-output constraint to localize the Tro-
jan. However, including non-offending cubes which agree with
the golden design, into the constraint can improve the accuracy of
this localization. We can include a cube constraint of the form e.g.
ce(k,00dd) = 100 if we use a Quantified Boolean Formula (QBF)
solver instead of the baseline SAT solver. QBF solvers allow for spec-
ifying universal quantifiers, hence the above constraint becomes
Vx1, x2 ce(k,00x1x2) = 100. QBF solving is much more complex
than SAT but modern QBF solvers perform quite well here as we
will see in our experiments. Figure 4 represents the flow of this
semi-online method from pattern generation to Trojan detection
and localization.

Localization by Activation Key Cube Analysis. Our QBF
solver can return an enumerated list of cube solutions to the key
k from the above observation condition. Per Fig. 5 we can study
the activation key bits in these key cubes to derive the probability
of Trojan presence, by counting the number of 1s and 0s under
each activation key bit over the set of cubes while keeping track of
don’t-care bits. A probability of 1 or 0 proves presence or absence
at a particular location. Intermediate values not equal to 0.5 capture
non-zero information learned about the Trojan location.

5 EXPERIMENTS

We implemented our proposed methods in C++ and Python on a
set of different benchmark circuits. We detected rare nets using
signal probability rule propagation. We used neos [2] for SAT and
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Figure 5: Probability calculation for a PTM payload (k,:; having
trojan using the results from QBF-based solving.

PowerSAT OGCL. Tests were run on single threads of an Intel i7
3GHz 16GB memory machine running Ubuntu 20.

Online OGCL: We first evaluated the online SAT-based OGCL
against Trojan-free circuits. This for n-bit p-payload comparators
yielded a routine O(p.2") (point-function deobfuscation) query
complexity which is in line with theory. Of course, false positive
rates for in-span Trojans here were zero. We then ran the OGCL
procedure with the Trojan-infested ¢; and multi-payload PTMs. In
this case, we observed a 100% Trojan presence detection upon ter-
mination. Trojan location detection as measured by activation key
bits that were set to 1 was not 100%. This could be due to different
Trojans masking each other’s locations, or some Trojans not hav-
ing an impact on the output functionality in our proof-of-concept
implementation. In Table 1 SAT-OGCL Trojan detection time and
required iteration for different Trojan-inserted benchmarks against
different PTM models are reported.

We also experimented with power side-channel-based OGCL
for Trojan detection using PowerSATeq and PowerSATDIff from
the framework of [2]. We generated fixed comparators of differ-
ent sizes and patterns as the c;. Then c, was instantiated as an
unknown-value comparator. Following the same observations from
[10] PowerSAT attack recovered n-bit vectors from comparators.
These values were then compared to the golden model’s comparison
vector with a 100% detection accuracy. In Table, 2 Trojan detection
with PowerSAT results have been reported.

QBF Solving Time with Non-Offending Cubes

0 5 10 15 20 30 50
Number of non-offending Cubes

Figure 6: Runtime of the QBF solver for c432 as more non-offending
cubes are added and as the number of possible PTM payloads in-
creases.

Semi-Online OGCL: We implemented the semi-online OGCL
flow from section 4 and figure 4. After extracting each pattern, it
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Figure 7: Measurement of Trojan presence probability from the enu-
merated QBF solutions. The red box on the x-axis indicates the true
Trojan location, whose probability went up after including good
cubes.
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True Payload location 1 True Payload location 2 True Payload location 3

3inp-tri 4inp-tri 6inp-tri 8 inp-tri 3inp-tri 4inp-tri 6inp-tri 8 inp-tri 3inp-tri 4inp-tri 6inp-tri 8 inp-tri

Bench | Rpes | Possible Payloads | T(s) | iter | T(s) | iter | T(s) | iter | T(s) | iter || T(s) | iter | T(s) | iter | T(s) | iter | T(s) | iter || T(s) | iter | T(s) | iter | T(s) | iter | T(s) | iter
8 10 0.17 | 55 | 0.15 | 45 0.19 | 55 0.19 65 0.14| 42 | 0.11| 30 | 0.18 | 55 0.16 55 0.09| 14 | 0.1 16 |0.18 | 55 0.11 24

c432 9 20 011 21 [013| 23 [0.17 | 63 0.20 65 0.13| 46 | 0.19 | 81 | 3.92| 407 | 8.88 | 584 012 | 46 | 014 | 62 [0.15| 62 1.22 | 241
10 30 0.40 | 32 | 10.5 | 409 | 15.7 | 507 | 21.7 | 614 3.48 | 238 | 7.81 | 367 | 44.1 | 841 121 | 1467 || 3.04 | 229 | 1.31 | 153 | 1.50 | 153 | 4.95 | 303

8 10 0.75 | 86 | 0.98 | 129 | 4.89 | 315 | 8.89 | 415 1.95 | 219 | 9.26 | 431 | 552 | 1378 | 4.51 | 345 0.27 | 32 [ 029 | 29 |882| 428 | 546 | 346

c880 9 20 0.86 | 115 | 1.19 | 115 | 1.27 | 125 | 1.23 | 125 014 9 [020| 13 | 183 | 1622 | 222 | 1885 || 0.19 | 11 [0.24 | 15 | 046 | 52 | 0.71 87
10 30 18.1 | 429 | 18.1 | 429 | 313 | 1825 | 314 | 1825 || 0.18 | 23 | 16.5 | 47 | 3.88 | 25 128 | 1355 (| 0.30 [ 20 | 9.32 | 360 |0.76 | 79 14.2 | 455

8 10 039] 9 |036| 15 | 10.6 | 184 | 8.64 | 184 034] 7 052 6 |9.80| 184 | 10.5 | 184 052 5 [030| 14 |10.7 | 184 | 8.14 | 184

1908 9 20 040 | 7 |1.14| 80 |43.4 | 203 | 373 | 243 0.82 | 60 | 1.20 | 83 | 40.3 | 243 | 41.5 | 243 037 | 18 | 252 | 125 | 40.6 | 243 | 36.6 | 243
10 30 0.48 | 16 | 0.42 7 206 | 347 | 198 | 347 0.45| 23 [ 0.50 | 10 | 214 | 347 | 216 | 347 030 | 4 |0.44 8 200 | 327 | 190 | 347
8 10 6.89 | 354 | 2.60 | 216 | 153 | 1519 | 162 | 1619 || 24.8 | 672 | 21.8 | 632 | 50.8 | 864 164 | 1619 (| 3.11 | 237 | 44 961 | 1.70 | 165 152 | 1619

2670 9 20 3.26 | 262 | 21.9 | 689 | 15.4 | 599 | 317 | 2635 || 3.13 | 279 | 8.68 | 429 | 0.72 | 76 | 1220 | to 4.73 1 276 | 16.8 | 598 | 35.2 | 750 35 750
10 30 109 | 899 | 130 | 1037 | 574 | 2325 | 1284 | 3451 85 | 863 | 11.4 | 312 | 123 | 982 95 905 109 | 899 | 130 | 1037 | 574 | 2325 | 1284 | 3451

8 10 116 | 6 147 | 38 |6.69| 261 | 2.13 41 1.06 | 8 1.68 | 42 | 834 | 359 | 2.80 | 119 1.02| 6 1.41 42 | 7.86 | 359 | 2.77 | 119

c5315 9 20 145 | 16 | 1.48 16 |226| 56 2.14 52 1.09 | 25 | 2.07 | 85 | 10.9 | 353 | 3.80 | 171 137 16 | 1.27 | 21 234 | 85 391 | 171
10 30 2.74 | 87 | 236 | 87 95 871 62 681 1.01 | 15 [ 1.63 | 26 | 9.15| 266 | 15.2 | 383 118 | 15 [ 136 | 26 |8.61 | 265 | 16.1 | 383

Table 1: Results of online SAT-based OGCL for detecting Trojans in ISCAS combinational benchmark circuits. R,,¢;s is the number of rare nets
input to the comparator PTM, each having multiple possible payloads. Three tests were conducted for each benchmark circuit by inserting the
Trojan in three different positions (True Payload) with varying trigger sizes for the Trojan. Time (T) and required iteration (query) counts are
reported. The runtime limit was set to 30 minutes for each benchmark. ‘to’ represents time-out cases.

Comparator size=9 PowerSATdiff PowerSATeq

Bench Gates in/out T(s) iter T(s) iter
c432 160 36/7 53 52 1.89 59
c880 383 60/26 51 72 16 109
c2670 1193 157/63 120 56 32 96
c1908 880 33/25 110 42 12.94 50
c1355 546 41/32 26 11 5.2 11
¢5315 2307 178 /123 to 13 9.22 9

¢3540 1669 50/22 190 17 11 20

Table 2: Trojan detection using PowerSAT-OGCL. As can be seen
PowerSAT query counts (iterations) are much lower than the O(2")
for the functional case.

Functional-miter Power-miter
Bench | Rpets |Payloads | Patterns | cubes | T(s) |red.(%)|Patterns | cubes | T(s) |red.(%)
c432 9 9 512 107 | 1.01 | 79.10 512 51 | 0.49 | 90.01
c880 9 20 257 79 | 0.87 | 69.26 512 32 [ 0.77 | 93.75
¢3540 14 13 972 284 [15.02| 70.78 1024 85 ]9.66 | 91.69
2670 10 28 324 217 | 6.20 | 33.02 1024 183 [30.08| 82.12
c1908 15 28 680 400 |15.95| 41.17 512 93 |3.00 | 81.83
c1355 9 10 512 170 | 0.34 | 66.79 512 109 | 1.49 | 79.17
c5315 12 26 1024 210 | 9.14 | 79.49 4096 105 [22.61| 97.43

Table 3: Statistics and runtime for testing patterns and cube gen-
eration for different benchmarks for functional and power miters.
Reduction percentage for pattern to cube compression are shown.
is generalized, and then banned in the solver by adding a clause,
until all cubes are enumerated. Then the cubes are merged using
cudd’s BDD engine. The number of cubes before and after merging
is reported in Table 3. We see a very big reduction in patterns
when merged into cubes for both functional and power miter-based
pattern generation.

We took these cubes for the c432 circuit and tested them against
the Trojan infested (c;) which yielded a perfect detection accuracy
for the in-span Trojan. As for localization, Fig. 6 and Fig. 7 show
the runtime and accuracy of Trojan localization as non-offending
cubes are inserted into the equation using the dyngbf [1]QBF solver
which can return enumerated cube solutions which can be analyzed
for Trojan localization.

6 CONCLUSION

In this work, we presented a novel approach to Trojan detection and
localization using oracle-guided circuit learning from both patterns
and power and improved their space efficiency by using AIISAT and
QBF techniques. These enable the reuse of OGCL tools/research
in the hardware Trojan detection problem, in addition to being
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more expressive and powerful than simple ATPG-based, heuristic,
or pure machine-learning alternatives.
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