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ABSTRACT

Hardware Trojans, i.e. malicious circuitry inserted into a design

by an untrusted foundry or designer, pose a threat to the fabless

semiconductor industry. The detection of hardware Trojans has

been the subject of numerous studies over the years. In this pa-

per, we discuss a novel approach to Trojan detection: using the

framework of oracle-guided circuit learning (OGCL) or deobfusca-

tion, which has traditionally been used for assessing the security

of circuit obfuscation schemes. We show how arbitrary functional

Trojan detection can polynomially be reduced to OGCL, yielding

a more formal and versatile framework than traditional heuristic

techniques. This formulation can also be used to locate Trojans and

can be easily extended to side-channel or hybrid detection by using

non-functional OGCL. The main challenge with this approach is

its worst-case-exponential space complexity when using baseline

Boolean satis�ability (SAT)-based circuit deobfuscation. To this

end, we propose some novel techniques based on AllSAT, cube

generalization, and quanti�ed Boolean Formula (QBF) solving. We

present a set of experiments on benchmark circuits to showcase

the validity and performance of our framework.
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1 INTRODUCTION

The globalization of Integrated Circuit (IC) production has intro-

duced some new security and privacy concerns. The disclosure of

the physical design to untrusted parties, hardware Trojans are the

major two. Hardware Trojans are malicious modi�cations of the

design at some point in the production process with the aim of
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altering the original functionality, reducing performance, or leak-

ing critical information [13]. Researchers have been addressing the

issue of hardware Trojans using various techniques over the years.

These techniques mainly aim to either detect the Trojan or make it

harder to insert Trojans into the design in the �rst place.

One of the primary techniques for post-silicon non-invasive

(i.e. not involving physical reverse engineering) Trojan detection

is functional testing. Stealthy Trojans are generally designed to

activate under rare speci�c conditions, and as such attach to rare

nets/nodes of the circuit. Logic testing for Trojan detection aims

to activate these rare nets by testing vectors not typically visited

by traditional automatic test pattern generations (ATPG). Applying

such patterns to the primary inputs and observing the output to

detect any mismatches can help identify Trojan-infested chips[3].

Various specialized ATPG, model checking-based [5] and SAT-based

approaches have been used to this end. Power and electromagnetic

(EM) side channels [7] and laser probing have also been used as

semi-invasive post-silicon techniques.

In this work, we have explored a novel approach to Trojan detec-

tion: using the framework of oracle-guided circuit learning (OGCL)

(or deobfuscation) to detect Trojans. Oracle-guided circuit learning

is the problem of �nding a set of unknowns/keys in an ambiguous

circuit by making adaptive queries to an oracle of that circuit. This

problem has been studied in the circuit obfuscation domain for

some years now, in which an attacker tries to recover the full de-

sign of an ambiguous obfuscated circuit by modeling the ambiguity

as unknowns in a circuit learning problem. SAT-based techniques

here have been shown to be very promising [6, 12]. Along this line,

the paper delivers the following novel contributions:

• We formulate golden-IC-free Trojan detection as an oracle-

guided circuit learning problem. We show how using proba-

ble Trojan models (PTM): circuit gadgets that can capture

the potential existence of many Trojans in the circuit, a cir-

cuit learning procedure can be used to prove or disprove not

just the existence of such a Trojan, but also their potential

location and activation conditions.

• The main challenge with o�-the-shelf circuit learning proce-

dures for use in Trojan detection is their linearly growing

space complexity (in the number of queries) when applied

in this way. We propose several novel techniques including

using AllSAT solving, cube generalization and merging, and

Quanti�ed Boolean Formula (QBF) solving.

• We implement our algorithms and evaluate them against a

set of benchmark circuits and present the results showing

an alignment with our theoretical analysis.

The rest of the paper is organized as follows: Section 2 provides

preliminaries, Section 3 provides the main methodology, Section
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Figure 1: Trojan example: (a) Trojan-less circuit (b): combinational

Trojan with AND/�xed-comparator trigger and an XOR-based pay-

load. (c) Sequential Trojan n-bit counter-based trigger with XOR

Payload.

4 presents methods for space e�ciency, Section 5 presents experi-

ments and Section 6 concludes the paper.

2 PRELIMINARIES

Trojan Model: The original/golden circuit 26 (G) : - → . imple-

ments a Boolean function from the =-bit input space - to the<-bit

outputs space . , and has a circuit graph �6 . A gate-level hardware

Trojan is a malicious modi�cation of the circuit graph �6 to �C .

This typically involves a trigger function ) (F) attached to some

netsF , and a payload % . If the payload alters the functionality of 26
at its observable functional outputs to 2C , then the Trojan is active.

Fig. 1 shows examples of combinational and sequential Trojans.

More details on hardware classi�cation can be found in [13].

Signal Probability Estimation and Rare Nets. To have a

stealthy Trojan it needs to activate in rare speci�c conditions. To

achieve this the attacker typically needs to attach the trigger to

signals with low transition probabilities [8]. For modeling potential

Trojans, this fact needs to be kept in mind. Calculating the precise

signal probabilities for the internal nets is #P-complete (practically

even harder than NP-complete problems). One can approximate sig-

nal probabilities with pattern simulation, or propagating probability

values under the (wrong) assumption of statistical independence

for inputs of each gate in the circuit and propagation rules [9].

Oracle-Guided Circuit Learning (OGCL). Given an obfus-

cated/ambiguous circuit 24 :  × - → . with ; hidden/“key” in-

puts  = {0, 1}; and = primary inputs - = {0, 1}= and< outputs

. = {0, 1}< , and an oracle/target circuit 2> : - → . , oracle-guided

circuit learning/deobfuscation is the problem of �nding a value

for the hidden inputs :∗ such that the ambiguous circuit becomes

equivalent to the oracle ∀G ∈ - 24 (:∗, G) = 2> (G). In the sequential

version of this problem, 24 and 2> can be sequential circuits. This

problem has many applications. Speci�cally, in hardware security

it is used extensively to study the security of logic obfuscation

schemes [6, 11, 12].

SAT-based OGCL. A powerful framework for generic combi-

national circuit learning is the SAT-based approach �rst presented

in [6, 12]. Here the attacker/learner proceeds by building a miter

condition" = (24 (:1, G) ≠ 24 (:2, G)). This condition is converted

to a conjunctive-normal-form (CNF) SAT problem and solved using

a modern SAT solver. If " is satis�able using some Ĝ, :̂1, :̂2, this

means that an input pattern Ĝ exists for which there are two possi-

ble keys that produce di�erent outputs, i.e. there is ambiguity in

the learner’s hypothesis on Ĝ . This input is queried on the oracle,

~̂ = 2> (Ĝ). The resulting input-output observation is appended to

" as a constraint. � ← " ' [(24 (:1, Ĝ) = ~̂) ' (24 (:2, Ĝ) = ~̂))].

The process continues until the constraints+miter condition � be-

comes UNSAT. At this point, there is no ambiguity left over the

Algorithm 1: Given an oracle 2ĥ and the locked net list 2ě

returns a correct key :∗ ∈  ∗ if 2ĥ ∈ {2ě (:, .) |: ∈  }.

1 Function SATOGCirLearn(2ě , 2ĥ as black-box oracle):

2 � ← CAD4

3 " ← 2ě (:1, G ) ≠ 2ě (:2, G )

4 while � '" is satis�able do

5 Ĝ , :̂1, :̂2 ← SAT(� '")

6 ~̂ ← 2ĥ (Ĝ )

7 � ← � ' (2ě (:1, Ĝ ) = ~̂) ' (2ě (:2, Ĝ ) = ~̂)

8 :̂1, :̂2 ← SAT(�)

9 return :̂1 as correct key :∗

functionality of 24 and a provably functionally correct key can be

extracted from � . Algorithm 1 shows the procedure.

Power OGCL. In [10] PowerSAT was proposed which is an

OGCL algorithm for learning circuits from power side-channel

(hamming sum) queries rather than functional ones. The algo-

rithm operates similarly to the functional case except the func-

tional miter is replaced with a power model analog which returns

power-discriminating input patterns (PDIPs). These create disagree-

ments between the (hamming sum) powermodel (which are psuedo-

Boolean expressions) for di�erent keys. Input-power pairs are re-

inforced back into the solver. A di�erential version, PowerSATdi�,

was also proposed which mines for pairs of power queries via a

di�erential miter and uses this observed power comparison direc-

tion as constraints on the key. This improves the robustness of the

procedure to hamming sum querying noise.

3 TROJAN DETECTION VIA OGCL

The post-silicon functional Trojan detection task can be mapped to

oracle-guided circuit learning (OGCL) as follows: The defender has

a chip 2C that he suspects may have a Trojan inside. He also has the

original golden design 26 (not a golden IC). The defender can detect

a potential Trojan, by �rst building a circuit model 24 (:, G), for

which the choice of the unknown/key inputs : captures the presence or

absence of a particular Trojan in the circuit. It follows that there must

exist a hidden/key variable assignment :∗ for which ∀G 24 (:∗, G) =

26 (G), i.e the model must include the golden circuit. This is so

that OGCL run against a Trojan-free circuit 2′C ≡ 26 will properly

conclude returning a key indicating the absence of Trojans. If the

OGCL procedure is instead run against a Trojan-infested design 2C
as the oracle instead of 26 , the hope is that this will lead to some

discernible deviation in the process.

3.1 Possible Trojan Model (PTM)

The keyed circuit model 24 (:, G) here is built in a way such that the

choice of the key : captures the presence or absence of a Trojan.

How to construct such a circuit? Since there is not just one pos-

sible Trojan to capture/model, there are many ways to construct

many di�erent such 24 (:, G)s. We propose to do this by taking the

original design 26 , and inserting circuit gadgets that we term possi-

ble/probable Trojan models (PTMs) into it. An example of a PTM

is seen in Fig. 2a. Here by setting the key variable :02C to 0, the

original circuit’s functionality is unchanged. If :02C=1, then on a

particular combination of the input nets ', the comparator will

trigger and as a result, a wire value will �ip. So the choice of :02C
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Figure 2: Possible Trojan models (PTMs). (a) captures a �xed comparator potentially unleashing a payload on the original net when :ėęĪ = 1

(b) comparator to an unknown value, :ėęĪ = 1 indicates presence, and the  ęĬ vectors indicate the activation location. (c) unknown-value

comparator with an unknown location.  ģĤ indicate input location. (d) combination of a comparator with sequential counter and MUX

payload. (e)Multi-payload PTM composition.

models whether a comparator-triggered Trojan is present on those

particular wires or not. We can develop an array of such PTMs:

Fixed Comparator : Seen in Fig. 2a models the presence of a Trojan

that checks to see if a set of input wires '=4CB match a �xed pattern,

and if so triggers a single XOR payload. This takes up a single

hidden/key variable :02C which if equal to 1, indicates the presence

of such a Trojan. The query complexity for detecting a single such

Trojan is $ (1).

Unknown-Value Comparator: Seen in Fig. 2b, models not just

the presence of a comparator Trojan, but also, the value that is

being compared to is left as an unknown vector :2E . Therefore, any

comparator (comparison with any vector :2E ) Trojan that is present

in the oracle, that is connected to the same input wires as this PTM

can be modeled and therefore detected using OGCL. The query

complexity of provably detecting such a Trojan is at most $ (2=).

Unknown-Value and Unknown-Span Comparator: Seen in Fig.

2c, models a comparator with an unknown value connected to

an unknown subset of the wires '=4CB of size =. The connection

ambiguity is modeled by key-controlled MUX gates added to the

inputs of the comparator.

Sequential Counter : Seen in Fig. 2d shows an example of a sequen-

tial counter PTM. This captures the presence of a Trojan that can

count a certain number of activations on a particular comparator

and trigger the payload. The inclusion of such a PTM in the circuit

makes the 24 model sequential, therefore necessitating a sequential

OGCL procedure such as the model-checking attack in [11].

Multi-Payload PTM As shown in Fig. 2e, a PTM can have multiple

payload locations that activate based on key bits. This can help

model the ambiguity in (and determine via OGCL) the location of

the possible payload in the Trojan-infested circuit. One can design

a large PTM with many potential payload positions. ? di�erent

payload locations can often increase the query complexity of the

detection by ? times, although this is not a rule.

PTM Span. As seen in the above examples, any PTM has a

known possible function space. Each PTM can model a certain set

of Trojans present in the circuit. Since the exact Trojan is unknown

to the learner, the larger and more expressive the space of possible

Trojans can be for 24 , the higher the success probability of the OGCL

Trojan detection procedure (at the cost of higher query complexity).

3.2 SAT-based Circuit Learning against PTMs

Trojan within PTM Span. We now explore what happens when

an OGCL procedure such as the SAT-attack from Algorithm 1 is

run against a 24 , 2C pair of circuits. First, consider the case where

the Trojan happens to fall in the space of possible functions of 24 .

i.e. 2C (.) ∈ {24 (:, .) |: ∈  } = C4 . Here, the SAT-based OGCL goes

through its iterations, interacting with the 2C chip in an adaptive

manner and lands on a candidate key that makes the miter UNSAT.

 

 

 

 

 

 

 

 

Figure 3: The returned keys from the OGCL procedure will indicate

whether a Trojan was present in the circuit in a particular location

(bottom) or not (top).

The io-constraints will be satis�able and a provably functionally

correct key will be extracted. We can take this key and analyze it.

For instance, if a :02C bit in the key corresponds to the activation

of a particular PTM, and that bit happens to be 1 when returned by

the OGCL, this could indicate a Trojan presence.

Does this prove the existence of a Trojan? The answer is yes

except for one case. The only case in which an attack may return a

:02C=1 on a Trojan-free circuit, is if the PTM happens to not impact

the observable (output in functional, and power in power OGCL

respectively). This can occur if the PTM’s output is triggered on

some condition, but this output does not propagate to an observable.

The above case, however, can be avoided in two ways: 1) we

ensure to insert PTM payloads that do in fact alter the circuit’s

functionality. 2) we can perform a looseness check to see if both

0 and 1 are possible choices for a given activation key bit without

violating the io-constraints � .

We can generalize the above into the following lemma:

Lemma 3.1. If the circuit under test is Trojan-infested and has

functionality 2C where 2C ∈ {24 (:, .) |: ∈  } where 2C deviates from

the original functionality 26 , and 26 ∈ {24 (:, .) |: ∈  }, then the

SAT-based OGCL procedure will terminate properly with a correct

key that can help determine if the circuit under test is functionally

equivalent to the golden design 26 .

Trojan outside PTM Span. Now let us consider the converse

case. When the Trojan-infested chip has functionality 2C not mod-

eled by the PTM 2C ∉ C4 . Here, there are two possible outcomes:

1) The SAT-based OGCL concludes with an UNSAT miter+io-

constraints and terminates. However, when the correct key is to be
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Algorithm 2: Given an circuit under test 2Ī and the golden

circuit model 2ĝ tries to detect likely Trojans.

1 Function OGCLTrojDetect(2ĝ golden model, 2Ī as black-box):

2 for 8 ∈ '>D=3B do

3 2ě ← InsertLikelyPTMs(2ĝ)

4 � ← CAD4

5 " ← 2ě (:1, G ) ≠ 2ě (:2, G )

6 while � '" is satis�able do

7 Ĝ , :̂1, :̂2 ← SAT(� '")

8 ~̂ ← 2Ī (Ĝ )

9 � ← � ' (2ě (:1, Ĝ ) = ~̂) ' (2ě (:2, Ĝ ) = ~̂)

10 if � satis�able with :∗ then

11 )A> 9%A4B4=C,)A> 9!>2 ← AnalyzeKey(:∗)

12 else

13 UNSAT constraints.

14 )A> 9%A4B4=C ← CAD4

extracted in the �nal step from the io-constraints � , the solver re-

turns an UNSAT status. i.e. there exists no key : that can satisfy the

io-constraints
∧
8∈@ (2C (G8 ) = 24 (:, G8 )). In such a case, if the PTM

model was constructed properly, this is proof of Trojan presence.

The reason is simple. The PTM model 24 was constructed in a way

as to include the original functionality, i.e. 26 ∈ C4 . Therefore, a

SAT-based OGCL interacting with 2C ≡ 26 would never result in an

UNSAT io-constraint. This must mean that 2C ≠ 26 . i.e. the OGCL

procedure is not talking to a function equivalent to the golden

circuit 26 .

2) The trickier case with a Trojan outside of C4 is when the

SAT-based OCGL concludes early with an UNSAT miter, and a SAT

io-constraint and a key. This can happen due to the fact that there

can exist input-output constraints 2C (G8 ) = 24 (:, G8 ), where even

though 2C ∉ C4 , the constraints are still satis�able, it is just that

the constraints knock the miter UNSAT early. In such a case the

returned key can be studied. If it suggests a Trojan presence then a

Trojan presence is proven. If however, the returned key does not

suggest a Trojan presence, this is not proof of Trojan absence. In

this case, other than noticing the early termination by its large

deviation from the expected query count for a PTM class, we can

have a true false negative that cannot be avoided without using

more expressive PTMs.

The overall �ow for the procedure can be seen in Algorithm 2.

3.3 Intelligent PTM Insertion

We now know that the more expressive and the larger the space

of C4 the lower the probability of Trojans evading the detection.

At the same time, the more expressive the PTM, the more work

the SAT-based OGCL will have to perform. Note that certain PTMs

can raise the query complexity of SAT-based OGCL exponentially.

Unknown-value comparator PTMswith= inputs, yield OGCL query-

complexities of $ (2=) (this is similar to the deobfuscation of point-

function schemes[15]). Note however, that this is not a unique issue

of our approach, but that simply the minimum query complexity of

detecting combinational =-bit comparator Trojans with unknown

activation patterns is $ (2=) using any functional testing method.

As such, in the detection process, it is important to insert PTMs

prudently. In our proof-of-concept experimentation, we use signal

generalization
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Figure 4: Flow of Semi online OGCL: From trojan pattern and cube

generation to trojan detection test and localize the trojan with QBF

using PTM.

probability estimation to �nd rare nets. We attach PTMs to these

rare nets to capture more plausible Trojans.

3.4 Multiple PTM Composition

One can insert multiple PTMs into the circuit to capture multiple

types of Trojans in the same circuit model 24 . Note that each PTM

has key bits that capture its absence. That means that inserting a

new PTM does not violate the 26 ∈ C4 inclusion rule, therefore, as

long as a Trojan-infested chip’s behavior 2C falls within C4 , detec-

tion will be guaranteed in �nite time.

When multiple PTMs are used, the OGCL procedure will return

a longer key vector whose various bits belong to di�erent PTMs.

It is possible to study these bits individually and try to use this

information to determine where the Trojan was inserted. Per Fig. 3,

two PTMs are inserted into the circuit with activation key bits :1
and :2. If the OGCL returns :2=1 after interacting with the circuit

under test, this can mean that the corresponding PTM’s Trojan

was present but not the other. For the outside-span case 2C ∉ C4 ,

such determinations cannot be made conclusively. It is possible for

outside-span Trojan behavior to end up asserting the activation

key bits of a di�erently located PTM.

4 IMPROVING SPACE EFFICIENCY
WITH SEMI-ONLINE OGCL

The main challenge with using the SAT-based OGCL in Algorithm

1 in our �ow is its space complexity. The baseline SAT-based OGCL

algorithm repeatedly appends circuit copies to the CNF causing it

to grow linearly in size. For = bit PTMs this leads to an exponential

$ (2=) space complexity, which is a lot more problematic than expo-

nential time complexity. Note that the more advanced KC2 OGCL

algorithm [11] which simpli�es key conditions on the �y can help

here. But we propose a couple of additional solutions herein.

One reason for the growth in the space usage of the SAT-based

OGCL is its online nature. Each query is immediately appended to

the solver and a new query is generated via another SAT call. We

can break this slightly, and instead generate a ton of patterns with a

given CNF snapshot before extending it with additional constraints.

AllSAT Pattern Enumeration. We can create a new miter (see

Fig. 4) one that compares the output of the PTM-inserted circuit

with the original golden circuit 24 (:, G) ≠ 26 (G). In the extreme,

we can use an all-solutions SAT (AllSAT) [14] loop to generate

all the patterns G for which 24 can deviate from 26 . Testing the

circuit on all these patterns and observing no deviation proves in-

span Trojan absence. This immediately cools space complexity, as

modern AllSAT solvers have sub-exponential space complexities.
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The loss of the fully online procedure is not a great disadvantage,

as both techniques detect within span Trojans.

Pattern to Cube via Generalization. In addition to AllSAT,

we can use cubes instead of individual patterns. Cubes here are

input vectors with “don’t-care” bits. e.g. 00xx, which is a single

cube that captures 4 di�erent input patterns. Once we satisfy the

above miter with Ĝ, 24 (:, Ĝ) ≠ 26 (Ĝ), we can use the method of

cube generalization used extensively in model-checking [4] to go

from this concrete pattern Ĝ to a cube Ĝ2 that satis�es the same

constraint. Generalization techniques typically work by inverting

the condition making it UNSAT, and then trying to drop literals

from a set of solver assumptions to see if the UNSAT status of the

problem remains. UNSAT-Cores returned by modern SAT solvers,

which capture literals that were relevant to the UNSAT result are

used here. We use a procedure similar to the one in [4] in our

experiments. Once a cube (e.g. G = 003) is generated we can ban

it from the solver by adding a ban-clause (G1 + G2) and repeating

the process. This procedure is in fact a form of accelerated AllSAT

enumeration.

Cube Merging. After a cube is generated, it captures a set of

test vectors. We can merge multiple cubes into bigger (looser, with

more don’t care bits) cubes using cube minimization algorithms.

e.g. : 003 and 013 can be merged into 033 . We use a Binary Decision

Diagram (BDD) engine for this where cubes are added to a BDD

which automatically merges them, and then all the BDD minterms

are enumerated which returns the merged cube list. The �nal set

of cubes can represent an exponential number of patterns that can

be individually queried in a batch fashion.

Trojan Localization using Cube Conditions and QBF. Dur-

ing testing, if a deviation from the original circuit is detected we

can use this o�ending input-output constraint to localize the Tro-

jan. However, including non-o�ending cubes which agree with

the golden design, into the constraint can improve the accuracy of

this localization. We can include a cube constraint of the form e.g.

24 (:, 0033) = 100 if we use a Quanti�ed Boolean Formula (QBF)

solver instead of the baseline SAT solver. QBF solvers allow for spec-

ifying universal quanti�ers, hence the above constraint becomes

∀G1, G2 24 (:, 00G1G2) = 100. QBF solving is much more complex

than SAT but modern QBF solvers perform quite well here as we

will see in our experiments. Figure 4 represents the �ow of this

semi-online method from pattern generation to Trojan detection

and localization.

Localization by Activation Key Cube Analysis. Our QBF

solver can return an enumerated list of cube solutions to the key

: from the above observation condition. Per Fig. 5 we can study

the activation key bits in these key cubes to derive the probability

of Trojan presence, by counting the number of 1s and 0s under

each activation key bit over the set of cubes while keeping track of

don’t-care bits. A probability of 1 or 0 proves presence or absence

at a particular location. Intermediate values not equal to 0.5 capture

non-zero information learned about the Trojan location.

5 EXPERIMENTS

We implemented our proposed methods in C++ and Python on a

set of di�erent benchmark circuits. We detected rare nets using

signal probability rule propagation. We used neos [2] for SAT and

X 1 0 0 X
1 1 0 0 X
1 0 0 1 1

Figure 5: Probability calculation for a PTM payload (:ėęĪ having

trojan using the results from QBF-based solving.

PowerSAT OGCL. Tests were run on single threads of an Intel i7

3GHz 16GB memory machine running Ubuntu 20.

Online OGCL: We �rst evaluated the online SAT-based OGCL

against Trojan-free circuits. This for =-bit ?-payload comparators

yielded a routine $ (?.2=) (point-function deobfuscation) query

complexity which is in line with theory. Of course, false positive

rates for in-span Trojans here were zero. We then ran the OGCL

procedure with the Trojan-infested 2C and multi-payload PTMs. In

this case, we observed a 100% Trojan presence detection upon ter-

mination. Trojan location detection as measured by activation key

bits that were set to 1 was not 100%. This could be due to di�erent

Trojans masking each other’s locations, or some Trojans not hav-

ing an impact on the output functionality in our proof-of-concept

implementation. In Table 1 SAT-OGCL Trojan detection time and

required iteration for di�erent Trojan-inserted benchmarks against

di�erent PTM models are reported.

We also experimented with power side-channel-based OGCL

for Trojan detection using PowerSATeq and PowerSATDi� from

the framework of [2]. We generated �xed comparators of di�er-

ent sizes and patterns as the 26 . Then 24 was instantiated as an

unknown-value comparator. Following the same observations from

[10] PowerSAT attack recovered =-bit vectors from comparators.

These values were then compared to the goldenmodel’s comparison

vector with a 100% detection accuracy. In Table, 2 Trojan detection

with PowerSAT results have been reported.
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Figure 6: Runtime of the QBF solver for c432 as more non-o�ending

cubes are added and as the number of possible PTM payloads in-

creases.

Semi-Online OGCL:We implemented the semi-online OGCL

�ow from section 4 and �gure 4. After extracting each pattern, it
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Figure 7: Measurement of Trojan presence probability from the enu-

merated QBF solutions. The red box on the x-axis indicates the true

Trojan location, whose probability went up after including good

cubes.
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True Payload location 1 True Payload location 2 True Payload location 3

3inp-tri 4inp-tri 6inp-tri 8 inp-tri 3inp-tri 4inp-tri 6inp-tri 8 inp-tri 3inp-tri 4inp-tri 6inp-tri 8 inp-tri

Bench 'ĤěĪ Possible Payloads T(s) iter T(s) iter T(s) iter T(s) iter T(s) iter T(s) iter T(s) iter T(s) iter T(s) iter T(s) iter T(s) iter T(s) iter

c432
8 10 0.17 55 0.15 45 0.19 55 0.19 65 0.14 42 0.11 30 0.18 55 0.16 55 0.09 14 0.1 16 0.18 55 0.11 24
9 20 0.11 21 0.13 23 0.17 63 0.20 65 0.13 46 0.19 81 3.92 407 8.88 584 0.12 46 0.14 62 0.15 62 1.22 241
10 30 0.40 32 10.5 409 15.7 507 21.7 614 3.48 238 7.81 367 44.1 841 121 1467 3.04 229 1.31 153 1.50 153 4.95 303

8 10 0.75 86 0.98 129 4.89 315 8.89 415 1.95 219 9.26 431 552 1378 4.51 345 0.27 32 0.29 29 8.82 428 5.46 346
c880 9 20 0.86 115 1.19 115 1.27 125 1.23 125 0.14 9 0.20 13 183 1622 222 1885 0.19 11 0.24 15 0.46 52 0.71 87

10 30 18.1 429 18.1 429 313 1825 314 1825 0.18 23 16.5 47 3.88 25 128 1355 0.30 20 9.32 360 0.76 79 14.2 455

8 10 0.39 9 0.36 15 10.6 184 8.64 184 0.34 7 0.52 6 9.80 184 10.5 184 0.52 5 0.30 14 10.7 184 8.14 184
c1908 9 20 0.40 7 1.14 80 43.4 203 37.3 243 0.82 60 1.20 83 40.3 243 41.5 243 0.37 18 2.52 125 40.6 243 36.6 243

10 30 0.48 16 0.42 7 206 347 198 347 0.45 23 0.50 10 214 347 216 347 0.30 4 0.44 8 200 327 190 347

8 10 6.89 354 2.60 216 153 1519 162 1619 24.8 672 21.8 632 50.8 864 164 1619 3.11 237 44 961 1.70 165 152 1619
c2670 9 20 3.26 262 21.9 689 15.4 599 317 2635 3.13 279 8.68 429 0.72 76 1220 to 4.73 276 16.8 598 35.2 750 35 750

10 30 109 899 130 1037 574 2325 1284 3451 85 863 11.4 312 123 982 95 905 109 899 130 1037 574 2325 1284 3451

8 10 1.16 6 1.47 38 6.69 261 2.13 41 1.06 8 1.68 42 8.34 359 2.80 119 1.02 6 1.41 42 7.86 359 2.77 119
c5315 9 20 1.45 16 1.48 16 2.26 56 2.14 52 1.09 25 2.07 85 10.9 353 3.80 171 1.37 16 1.27 21 2.34 85 3.91 171

10 30 2.74 87 2.36 87 95 871 62 681 1.01 15 1.63 26 9.15 266 15.2 383 1.18 15 1.36 26 8.61 265 16.1 383

Table 1: Results of online SAT-based OGCL for detecting Trojans in ISCAS combinational benchmark circuits. 'ĤěĪĩ is the number of rare nets

input to the comparator PTM, each having multiple possible payloads. Three tests were conducted for each benchmark circuit by inserting the

Trojan in three di�erent positions (True Payload) with varying trigger sizes for the Trojan. Time (T) and required iteration (query) counts are

reported. The runtime limit was set to 30 minutes for each benchmark. ‘to’ represents time-out cases.

Comparator size=9 PowerSATdi� PowerSATeq

Bench Gates in/out T(s) iter T(s) iter

c432 160 36/7 5.3 52 1.89 59
c880 383 60/26 51 72 16 109
c2670 1193 157/63 120 56 32 96
c1908 880 33/25 110 42 12.94 50
c1355 546 41/32 26 11 5.2 11
c5315 2307 178 /123 to 13 9.22 9
c3540 1669 50/22 190 17 11 20

Table 2: Trojan detection using PowerSAT-OGCL. As can be seen

PowerSAT query counts (iterations) are much lower than the$ (2Ĥ )

for the functional case.

Functional-miter Power-miter

Bench 'ĤěĪĩ Payloads Patterns cubes T(s) red.(%) Patterns cubes T(s) red.(%)

c432 9 9 512 107 1.01 79.10 512 51 0.49 90.01
c880 9 20 257 79 0.87 69.26 512 32 0.77 93.75
c3540 14 13 972 284 15.02 70.78 1024 85 9.66 91.69
c2670 10 28 324 217 6.20 33.02 1024 183 30.08 82.12
c1908 15 28 680 400 15.95 41.17 512 93 3.00 81.83
c1355 9 10 512 170 0.34 66.79 512 109 1.49 79.17
c5315 12 26 1024 210 9.14 79.49 4096 105 22.61 97.43

Table 3: Statistics and runtime for testing patterns and cube gen-

eration for di�erent benchmarks for functional and power miters.

Reduction percentage for pattern to cube compression are shown.

is generalized, and then banned in the solver by adding a clause,

until all cubes are enumerated. Then the cubes are merged using

cudd’s BDD engine. The number of cubes before and after merging

is reported in Table 3. We see a very big reduction in patterns

when merged into cubes for both functional and power miter-based

pattern generation.

We took these cubes for the c432 circuit and tested them against

the Trojan infested (2C ) which yielded a perfect detection accuracy

for the in-span Trojan. As for localization, Fig. 6 and Fig. 7 show

the runtime and accuracy of Trojan localization as non-o�ending

cubes are inserted into the equation using the dynqbf [1]QBF solver

which can return enumerated cube solutions which can be analyzed

for Trojan localization.

6 CONCLUSION

In this work, we presented a novel approach to Trojan detection and

localization using oracle-guided circuit learning from both patterns

and power and improved their space e�ciency by using AllSAT and

QBF techniques. These enable the reuse of OGCL tools/research

in the hardware Trojan detection problem, in addition to being

more expressive and powerful than simple ATPG-based, heuristic,

or pure machine-learning alternatives.
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