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Abstract

Quiet-Sun regions cover most of the Sun's surface; their magnetic fields contribute significantly to solar
chromospheric and coronal heating. However, characterizing the magnetic fields of the quiet Sun is challenging
due to their weak polarization signal. The 4 m Daniel K. Inouye Solar Telescope (DKIST) is expected to improve
our understanding of quiet-Sun magnetism. In this paper, we assess the diagnostic capability of the Diffraction
Limited Near Infrared Spectropolarimeter (DL-NIRSP) instrument on DKIST for the energy transport processes in
the quiet-Sun photosphere. To this end, we synthesize high-resolution, high-cadence Stokes profiles of the Fe I
630 nm lines using a realistic magnetohydrodynamic simulation, degrade them to emulate the DKIST/DL-NIRSP
observations, and subsequently infer the vector magnetic and velocity fields. For the assessment, we first verify that
a widely used flow tracking algorithm, the Differential Affine Velocity Estimator for Vector Magnetograms, works
well for estimating the large-scale (>200 km) photospheric velocity fields with these high-resolution data. We then
examine how the accuracy of the inferred velocity depends on the temporal resolution. Finally, we investigate the
reliability of the Poynting flux estimate and its dependence on the model assumptions. The results suggest that the
unsigned Poynting flux, estimated with existing schemes, can account for about 71.4% and 52.6% of the reference
ground truth at t =log 0.0 and t = -log 1. However, the net Poynting flux tends to be significantly
underestimated. The error mainly arises from the underestimated contribution of the horizontal motion. We discuss
the implications for DKIST observations.

Unified Astronomy Thesaurus concepts: Quiet Sun (1322); The Sun (1693); Solar physics (1476); Solar
photosphere (1518); Solar magnetic fields (1503); Spectropolarimetry (1973)

1. Introduction

The quiet Sun refers to the region outside the sunspots and
active regions, which occupies most of the solar surface at all
times. The magnetic fields are organized as a complex network
entrained between the convective cells. While the mean
magnetic flux density is low, the total unsigned magnetic flux
is comparable to that of the active regions, and the flux
emergence rate is larger than that of the active regions (M. Goic
et al. 2014, 2016).

The quiet-Sun magnetic fields provide important contribu-
tions to the energy budget in the solar atmosphere. New and
existing magnetic fields frequently interact with each other and
with convective flows, which can lead to ubiquitous nanoflares
and magnetohydrodynamic (MHD) waves (D. B. Jess et al.
2023). MHD simulations of the quiet Sun suggest that these
interactions can provide enough energy to heat the chromo-
sphere and corona (M. Rempel 2014; A. J. Finley et al. 2022).
Recent observations from Solar Orbiter (D. Berghmans &
D. M. Long 2021) indicate that the solar atmosphere above the
quiet Sun is in fact very dynamic at small scales.

Since the discovery of sunspot magnetic fields
(G. E. Hale 1908), a lot of effort has been made to extract
information from the solar spectra, for example, by inverting

the radiative transfer equation (J. C. del Toro Iniesta & B. Ruiz
Cobo 2016) or by using radio methods (C. E. Alissandrakis &
D. E. Gary 2021). Spectropolarimetry, which measures the
wavelength-dependent Stokes parameters (I, Q, U, V ) in
magnetically sensitive spectral lines, is one of the most
powerful methods of diagnosing the solar magnetic field. The
shape of Stokes profiles contains information about temper-
ature, the magnetic field, and other MHD state variables of the
solar atmosphere. These parameters can be inferred by solving
the polarized radiative transfer equations, a process known as
“inversion.”
The quiet-Sun magnetic fields are challenging to infer because

of their relatively low mean flux density and thus their weak
polarization signal (L. Bellot Rubio & D. Orozco Suárez 2019).
The study of quiet-Sun energy transport is further limited by the
spatial and temporal resolution of observations. According to
MHD simulations of the quiet Sun, 50% of the energy resides on
a scale smaller than 100 km. A sampling rate of 8 km or smaller is
needed to properly recover the spectral energy distribution
(M. Rempel 2014), which requires a 10m class telescope aperture
at the optical wavelengths. For the typical quiet Sun, slit-based
spectrographs often require long integration time and thus tens of
minutes to assemble a raster. The average lifetime of internetwork
magnetic elements, however, is only about 10 minutes (A. G. de
Wijn et al. 2008; G. P. Zhou et al. 2010). The quiet-Sun magnetic
fields will have significantly evolved during the scan.
Despite these difficulties, efforts have been made in

estimating the energy flux through the quiet-Sun photosphere.
Using observations from the Hinode satellite, F. Giannattasio
et al. (2020) studied the supergranular spatial and temporal
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scales and found that the energy flux is sufficient in sustaining
the magnetic fields in the network. In contrast, D. Tilipman
et al. (2023) found the energy flux inferred from the SUNRISE
mission data hardly matches the radiative loss of the solar
corona at the granular scales.

The 4 m Daniel K. Inouye Solar Telescope (DKIST;
T. R. Rimmele et al. 2020) is expected to improve our
understanding of small-scale magnetism and energy transport
via its high-resolution spectropolarimetric observations
(M. P. Rast et al. 2021). The Diffraction Limited Near Infrared
Spectropolarimeter (DL-NIRSP; S. A. Jaeggli et al. 2022), one
of the first-light instruments of DKIST, can measure Stokes
parameters at an effective resolution of 0.03 (∼22 km) with
high spectral resolution and polarimetric accuracy. Using an
integral field unit, it can obtain spectropolarimetric information
of a 2D field of view (FOV) at the same time, at a fast cadence
of several seconds.

In this paper, we will investigate how well DL-NIRSP
observations can characterize the energy transport in the quiet
Sun. We will use a realistic MHD simulation to create synthetic
DL-NIRSP observations for the solar photosphere. Subse-
quently, we will use an inversion algorithm to infer the depth-
dependent vector magnetic fields, and finally use these
magnetic maps to estimate the velocity fields and the Poynting
flux. The derived quantities will be compared with the MHD
ground truth.

The rest of the paper is organized as follows. In Section 2,
we describe the MHD model, the Stokes synthesis and
inversion algorithm, and the flow tracking algorithm for
velocity estimation. In Section 3, we focus on validating the
flow tracking method on high-resolution data. In Section 4, we
present the results of estimating energy transport from the
emulated observation data. In Section 5, we discuss our results
and analyze the possible causes for discrepancies. In Section 6,
we draw our conclusions.

2. Data and Method

2.1. MHD Simulation

To simulate DL-NIRSP's high-resolution observations, we
use the MPS/University of Chicago Radiative MHD
(MURaM; A. Vögler et al. 2005) simulation, which is widely
used in solar dynamo studies. The MURaM code solves
realistic equations of state with partial ionization and radiative
transfer in 3D to simulate relevant atmospheric parameters. The
simulations can produce small-scale magnetic features that well
resemble high-resolution observations of the solar photosphere
(S. Danilovic et al. 2010). The model atmospheres are
calculated in a Cartesian coordinate frame.

The model used here is from the quiet-Sun magnetoconvec-
tion run O16bM from M. Rempel (2014). It is initialized with a
distribution of mixed-polarity fields with an average magnetic
flux density of 〈B〉 ∼ 120 G at t =log 0500 , where τ500
represents the optical depth at continuum wavelength 500 nm.
Hereafter we use τ to represent τ500. The computation box
contains 1536 × 1536 × 128 pixels with a pixel size of 16 km
in the horizontal direction and 12 km in the vertical direction.
The temporal step is 2 s. These high-resolution simulations
have also been used to understand the instrument influences for
Hinode/Spectropolarimeter (M. van Noort 2012) and SUN-
RISE/IMaX (D. Orozco Suárez et al. 2010).

In this paper, we analyze the MURaM simulation with a
cadence of Δt = 2 s, which is the highest cadence made
available to us. We choose a region of interest of
512 × 512 × 128 pixels from the center of the simulation
box. For each frame, we make use of the following MHD
variables: temperature T, gas density ρ, gas pressure Pg,
electron pressure Pe, vector velocity field v, and vector
magnetic field B. Examples of the temperature, vertical field
Bz, and vertical velocity vz maps at t= 2 s at t =log 0.0 and
−1.0 are shown in Figure 1. Vigorous convective patterns are
more pronounced at t =log 0 compared to t = -log 1. The
rms magnetic field (Brms) is 198.4 G at t =log 0 compared to
the Brms equal to 129.3 G at t = -log 1.

2.2. Stokes Synthesis and Inversion

Many inversion methods have been developed to extract
information from Stokes observations (J. C. del Toro Iniesta &
B. Ruiz Cobo 2016). One widely used algorithm is Stokes
Inversion Based on Response Functions (SIR; B. Ruiz Cobo &
J. C. del Toro Iniesta 1992), which is capable of inferring
depth-dependent physical properties from multiple spectral
lines. Given a set of MHD state variables along the line of sight
(LOS), SIR can also forward-model the emergent Stokes
profiles. SIR operates under the assumption of hydrostatic
equilibrium and local thermodynamic equilibrium (LTE).
In the synthesis mode, SIR numerically solves the polarized

radiative transfer equation in magnetically sensitive lines:
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where I = (I, Q, U, V ) is the Stokes vector with a polarization
signal induced by the Zeeman effect, K is the total absorption
matrix, S = (SI, SQ, SU, SV) = (Bν(T), 0, 0, 0) is the source
function vector, and Bν(T) is the Planck function. Here K and S
are evaluated under the assumption of LTE. To simplify the
problem, we synthesize four Stokes profiles only at the disk
center with a spectral sampling rate of 8.95 mÅ over a spectral
window of 2.459Å, which covers −655.9 to 1803.9 mÅ from
the rest wavelength of the line core of Fe I at 630.15 nm. These
parameters are typical for DKIST/DL-NIRSP observations.
Furthermore, we convolve the synthesized spectra with the
theoretical point-spread function (PSF) of DKIST/DL-NIRSP
and resample the pixel size to 0.03 (about 22 km) to emulate a
DL-NIRSP observation using High-Res mode ( f/62), which
has a resolution at the diffraction limit (0.03; S. A. Jaeggli et al.
2022). We do not add noise to the synthetic spectra for this
study. The effect of noise can be important (e.g., C. Quintero
Noda et al. 2023); however we will defer its investigation to
future work.
In the inversion mode, SIR modifies the initial model

atmosphere iteratively until the synthetic Stokes profiles match
the observed ones. It returns the τ-dependent temperature, LOS
velocity, magnetic field strength, inclination, and azimuth
angles along the LOS. The fitting is performed by introducing
perturbations to the initial guess of the atmosphere, and
minimizing the χ2 between the observed and modeled Stokes
profiles:
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where ν is the number of free parameters, k is the index of the
four Stokes parameters, i is the index of the wavelength points,
and ωk and σk are the weights and uncertainties for each Stokes
parameter. In order to reduce the number of free parameters, the
parameters are evaluated only at several “nodes,” i.e., grid
points with fixed τ, and the values at the remaining τ grid
points are approximated by interpolation. To extract the
information from degraded Stokes profiles, we invert the
spectra with the node configuration listed in Table 1 (C. Quin-
tero Noda et al. 2023). The weights for Stokes (I, Q, U, V ) in
chi-square evaluation are (2, 20, 20, 5), respectively.

We note that the inferred variables are typically a function of
τ. A 2D map generally represents a slice with constant τ with
varying geometric height z. Such is the limitation of many
inversion algorithms (including SIR), which assume hydro-
static equilibrium and lack an absolute height scale along the
LOS (A. Pastor Yabar et al. 2019).

2.3. Resolving 180° Azimuthal Ambiguity

For the Zeeman effect, magnetic fields with azimuths
differing by 180° produce exactly the same linear polarization
state. Additional assumptions are required to resolve this

ambiguity (T. R. Metcalf et al. 2006; K. D. Leka et al. 2009).
One widely used algorithm is the minimum energy method
(T. R. Metcalf 1994). It disambiguates the magnetic field by
minimizing the summed absolute divergence of the magnetic
field and the vertical electric current density:

∣ · ∣ ∣ ∣ ( )å ål=  +BE J 3z

where λ is a weighting factor that controls the relative
importance of the vertical electric current density. The vertical
derivative in the divergence of the magnetic field is obtained

Figure 1. Overview of MURaM simulation at t =log 0 (top) and t = -log 1 (bottom) at t = 2 s. From left to right, the maps are for the temperature T, vertical
magnetic field Bz, and vertical velocity vl. The black dashed box marks the region of interest in this work.

Table 1
Summary of SIR Algorithm Configuration

Nodes

Parameters Cycle 1 Cycle 2 Cycle 3 Cycle 4

Temperature 2 3 5 5
Microturbulence 1 1 1 1
LOS velocity 1 2 3 5
Magnetic field strength 1 2 3 5
Inclination 1 2 3 5
Azimuth 1 2 2 2
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from a potential field calculated directly from the vertical
magnetic field Bz.

In our study, we apply this algorithm to the magnetic fields
inverted by SIR at t =log 0 and t = -log 1.0, assuming the
B vectors fall on a geometric height. As we shall see, the
assumption is not strictly valid, but is a necessary simplifying
step. We set λ = 0.5 as it gives a smooth solution.

2.4. Velocity Fields and Poynting Flux Estimate

The temporal change of magnetic energy Em in a solar
atmospheric volume V with boundary S can be calculated with
an equation that involves the electric field E, magnetic field B,
current density J, and velocity field v:

∮ · · ( ) ( )òp
= ´ - ´E B n v J B

dE

dt
dS

c
dV

1

4

1
, 4m

S V

where n is the normal unit vector of the boundary. The first
term on the right-hand side is the vertical Poynting flux (Sz),
which measures the flow of electromagnetic energy through the
boundary. In practice, we only consider the Poynting flux
through the bottom boundary, which is usually the photo-
sphere. The second term on the right-hand side is the power of
the work done by the Lorentz force, which converts kinetic
energy to magnetic energy. The second term is usually ignored
under the force-free condition. We will examine this approach
in Section 5.3.

The electric field E may be measured via the Stark effect or
may be estimated by using the ideal Ohm's law (E = −v × B).
The former method has been recognized to be critically
affected by the low sensitivity of observations (T. Moran &
P. Foukal 1991). The latter method requires knowledge of the
full vector velocity field. While the LOS velocity vl can be
directly estimated from the Doppler effect, the full vector
velocity field v needs to be estimated from flow tracking
methods (e.g., B. T. Welsch et al. 2007; P. W. Schuck 2008).
For example, the velocity can be inferred by taking advantage
of the physical relation between v and B via the induction
equation (e.g., K. Kusano et al. 2002; D. W. Longcope 2004;
B. T. Welsch et al. 2004; P. W. Schuck 2006, 2008), in
particular the normal component of its ideal version:
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where the subscript h denotes the horizontal component that is
parallel to the photosphere. Given a time sequence of B maps,
one may infer the velocity fields v using Equation (5). The
problem is generally not well posed and requires additional
constraints.

The Differential Affine Velocity Estimator for Vector
Magnetograms (DAVE4VM; P. W. Schuck 2008) is a widely
used, local flow tracking method. It estimates the plasma
velocities by minimizing the L2 norm of the residual
(difference of the left- and right-hand sides) of Equation (5)
within a windowed subregion. Recently, the algorithm has been
modified to include the observed Doppler velocity vl as an
additional constraint. Termed DAVE4VMwDV (with Doppler
Velocity; P. W. Schuck 2025, in preparation), the global loss

function L now reads
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where B and vl are the observational input, and v is the output.
Here λ is a scalar multiplier that controls the importance of the
L2 term, the subscript w denotes the window, σX refers to the
uncertainty of variable X (∂tBz or vl), and the unit vector ĥ
specifies the LOS direction. The operator ∇h acts on the
horizontal components alone. In practice, we use a three-point
stencil to calculate the time derivative, and a five-point stencil
for the spatial derivatives, specifically
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where we quoteΔt as the cadence of the output. We opt for this
numerical scheme so that the inferred velocity can be
cotemporal with the magnetogram: both are needed for the
Poynting flux estimate. Appendix B provides some discussion
on this choice.
The algorithm requires several free parameters: the degree of

Legendre expansion for horizontal velocity d and vertical
velocity dr, the window size w, and the relative weighting
factor λ. These parameters can be empirically optimized to
reduce L.
The inferred vector velocity field from DAVE4VMwDV

then allows us to estimate the vertical Poynting flux Sz passing
through the photosphere via a surface integral:
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Here the Poynting flux is typically divided into two terms. The
emerging term Sz

em corresponds to the first integral, which
measures the energy transport due to the emergence (vertical
transport) of magnetic flux tubes. The shearing term Sz

sh

corresponds to the second integral, which measures the energy
transport resulting from the horizontal flow that shears the
magnetic field.

3. DAVE4VMwDV on Simulation Data

The DAVE4VM algorithm was originally tested on an MHD
simulation with a 348 km grid size (P. W. Schuck 2008). It has
been applied widely on existing, low-resolution magnetograms
with ∼1″ resolution (∼720 km), and mostly on active regions
with stronger magnetic fields. Its performance in high-
resolution, quiet-Sun regions has not been demonstrated.

3.1. Performance of DAVE4VMwDV at Different Optical
Depths

In this section, we investigate the performance of
DAVE4VMwDV at different optical depths, similar to the
analysis on real data. Hereafter we choose to focus on two
layers, t =log 0 and t = -log 1, because these two layers
roughly bracket the range of formation height for the Fe I

4
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630 nm lines. These two layers correspond to the height of
approximately h= 0 km and h= 135 km above the photo-
sphere according to the widely adopted solar atmospheric
model FALC (J. M. Fontenla et al. 2006). To extract the maps
from the MURaM simulation, we interpolate the magnetic and
velocity fields to the τ space.

To quantify the overall performance, we evaluate the
Pearson and Spearman correlation coefficients between all
three components of the inferred velocity (vDV) and the
MURaM ground-truth velocity (vGT). We further consider three
other metrics following the analyses in C. J. Schrijver et al.
(2006) and B. Tremblay & R. Attie (2020): the spatially
averaged relative error

[ ] ( )
·

( )=
-

v v
v v
v v

E , , 9rel DV GT
DV GT

2

DV GT

the vector correlation coefficient
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v v
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and the cosine similarity index, which measures the average
cosine of the angle between the ground-truth velocity and
inferred velocity

   
[ ] · ( )=v v

v v
v v

A , . 11DV GT
DV GT

DV 2 GT 2

The perfect inferred velocities should have Erel = 0, C= 1.0,
and A= 1.0.
In this test, we use the vector magnetic fields and Doppler

velocity at t= 2 s as input for each optical depth. The time
derivative of ∂Bz/∂t at t= 2 s is calculated from Bz at t= 0 s
and t= 4 s. The uncertainties for ∂Bz/∂t are set as the
difference between ∂Bz/∂t and the ideal induction equation
(nonideal effects owing to, e.g., intrinsic numerical errors of the

simulation or spatial/spectral binning), and the uncertainty for
vl is taken to be a typical observational value 200 m s−1. For the
DAVE4VMwDV free parameters, we set the window size to
w= 15, and the degree of Legendre expansion in the horizontal
and vertical directions is d= 5 and dr = 7 for t =log 0.0 and
d= 3 and dr = 5 for t = -log 1.0, respectively. The choice of
free parameters is discussed in Appendix A.1.
The maps of the inferred velocity field are shown in

Figure 2. Both layers show the expected convective flow
pattern: diverging in the granular cell centers and converging in
the intergranular lanes. The inferred velocities are generally
smoother than the ground-truth velocities (see Figure 1). Some
fine structures, in particular narrow downflow lanes extending
from the intergranular lane to the granular cell center, are not
well reproduced.
The scatter plots between the inferred and the ground-truth

velocities at the two optical depths are shown in Figure 3. The
inferred velocity at t =log 0 has Erel = 0.28, C= 0.95, and
A= 0.95, while the inferred velocity at t = -log 1 has
Erel = 0.23, C= 0.97, and A= 0.96. It appears that
DAVE4VMwDV has better performance on the higher layer,
which has less vigorous convection and thus less complex
spatial structure.
Despite all three components of the inferred velocities

having Pearson/Spearman coefficients greater than 0.9 at both
layers, the slopes between the inferred velocities and ground-
truth velocities are smaller than 1, suggesting an overall
underestimation of the flow fields. The mean magnitudes
of the inferred velocity = + +v v v vx y z

2 2 2 at t =log 0 and
t = -log 1 are 3.4 km s−1 and 2.9 km s−1, respectively,

compared to 3.8 km s−1 and 3.1 km s−1 from the ground truth.

3.2. The Effect of Temporal Resolution on Velocity Estimates

We apply DAVE4VMwDV on MURaM data with five
different cadences to investigate the effect of temporal

Figure 2. The inferred velocity field at t =log 0 (left) and t = -log 1 (right) with input temporal resolution of Δt = 2 s. The horizontal arrows indicate the direction
and amplitude of the horizontal velocity. The vertical velocities are plotted as the background.
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resolution. The input parameters are the magnetograms and
Dopplergram at t0 = 32 s at t =log 0 and t = -log 1. The
time derivatives of the vertical magnetic field are calculated
from the vertical magnetic fields at t1 = [30, 28, 24, 16, 0] s and
t2 = [34, 36, 40, 48, 64] s, so that the nominal cadences are
Δt = [2, 4, 8, 16, 32] s.

The histograms of the velocity magnitudes inferred with the
various cadences are shown in Figure 4. The overall magnitude
is always smaller than the ground truth, even in the case of the
highest cadence. As the cadence decreases (greater Δt), the
distribution of the inferred velocity magnitude becomes
narrower, and deviates more from the ground truth for both

Figure 3. 2D histograms of the inferred velocity field and the reference velocity field at t =log 0 (top) and t = -log 1 (bottom). From left to right, we show the
histograms for vx, vy, and vz. The Spearman coefficient (ρ), Pearson coefficient (r), and slope (S) are also shown on the plots.

Figure 4. Histograms of the magnitude of the ground-truth velocity (blue) and inferred velocity (orange) from magnetograms with different temporal resolution. Top:
histograms for t =log 0. Bottom: histograms for t = -log 1. From left to right, we show the results with Δt = [2, 4, 8, 16, 32] s.
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layers. In the case with Δt = 32 s, the average velocity
magnitude decreases to 3.0 km s−1 and 2.3 km s−1 at t =log 0
and t = -log 1, compared to the ground-truth values of
3.7 km s−1 and 3.1 km s−1.

Figure 5 shows the performance metrics Erel, C, and A for the
velocity at t =log 0 (black) and t = -log 1 (red). The model
performance is consistently better at the higher layer as
previously mentioned. As Δt increases, all three metrics
become worse. We posit that the worsening performance after
Δt� 4 s may be attributed to the violation of the Courant–
Friedrichs–Lewy (CFL) condition. The average horizontal

velocities are vh = 2.9 km s−1 and 2.8 km s−1 at t =log 0
and −1, respectively. For the MURaM horizontal grid size of
16 km, a cadence of Δt = 2.5 s or better is required.

3.3. Estimation of Poynting Flux

Based on the velocity inferred by DAVE4VMwDV, we may
estimate the Poynting flux through the surface with
Equation (8). The estimated Poynting fluxes are listed in
Table 2. The ground truth and the estimated Poynting flux
maps are shown in the left and middle columns of Figure 6,
respectively. The inference results qualitatively recover the
pattern of ground truth, with large Sz values concentrated near
the intergranular lanes.
While Poynting flux of both signs exists near the

intergranular lanes, there are overall more negative occur-
rences. In contrast, the granular cell centers have relatively
uniform but weak positive Poynting flux. From t =log 0 to
−1, the fractional area occupied by large Poynting flux
decreases with height, and the pattern becomes less structured,
reminiscent of the flow maps.
The average unsigned Poynting flux is greater at the lower

layer: the value for t =log 0 is 2.8 × 108 erg cm−2 s−1, while
that for t = -log 1 is 0.8 × 108 erg cm−2 s−1. Quite interest-
ingly, the net Poynting flux is greater at the higher layer: the
value for t =log 0 is 3.7 × 106 erg cm−2 s−1, while that for

t = -log 1 is 3.0 × 107 erg cm−2 s−1, almost an order of
magnitude larger. This is because the convection is stronger in
the lower layer so that the magnitude of vertical velocity is
larger bringing more downward Poynting flux, which cancels
out the upward Poynting flux.
We compare the inferred values to the ground truth. The

estimated unsigned Poynting flux can recover 96.4% and
84.2% of the ground-truth unsigned Poynting flux at t =log 0
and t = -log 1, respectively. However, the estimated net
Poynting fluxes at these two layers are −1.6 ×
107 erg cm−2 s−1 and 7.4 × 106 erg cm−2 s−1, respectively.
They are quite far from the ground truth in magnitude, and
have the wrong sign for t =log 0.0. We will discuss below the
cause of the mismatch.
The last column of Figure 6 shows the 2D histograms of

Poynting flux between the ground truth and our estimate. While
there is overall reasonable correlation between the two
variables, significant scatter is apparent for both heights. To
investigate the origin of the scatter, we consider the
Poynting flux in regions with |B|� 3σB and regions with
∣ ∣ s s<B 3 separately, whereB B stands for the standard devia-
tion in the FOV. The stronger-field region represents 34.4%

Figure 5. Variation of metrics Erel, C, and A (from top to bottom) with respect
to cadence Δt. The black lines represent the metrics at t =log 0.0, and the red
lines represent the metrics at t = -log 1.0.

Table 2
Summary of Estimated Poynting Flux

Optical Depth Source á ñSz ∣ ∣á ñSz á ñSz
em á ñSz

sh ∣ ∣á ñSz
sh

t =log 0.0 MURaM, Ground Truth 3.7 278.9 −68.4 72.1 201.1
MURaM, DAVE4VMwDV −16.2 269.4 −68.1 51.9 175.5
Emulation, DAVE4VMwDV −10.5 150.5 −23.0 12.5 95.2

t = -log 1.0 MURaM, Ground Truth 30.2 75.7 −27.8 58.0 75.3
MURaM, DAVE4VMwDV 7.4 64.0 −24.7 32.2 53.6
Emulation, DAVE4VMwDV −8.6 36.2 −13.7 5.1 22.7

Note. The unit for all values is 106 erg cm−2 s−1. The quantities from left to right are the net Poynting flux á ñSz , average unsigned Poynting flux ∣ ∣á ñSz , average
emergence term of Poynting flux á ñSz

em , average shearing term of Poynting flux á ñSz
sh , and average unsigned shearing term of Poynting flux ∣ ∣á ñSz

sh .
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and 50.5% of the total unsigned Poynting flux at t =log 0 and
t = -log 1, respectively. In the weak-field regions, the

Pearson correlation coefficients between the inferred and the
ground-truth velocities are 0.91 and 0.85 for the lower and
higher layers, respectively. Counterintuitively, the correlation
coefficients in the stronger-field regions are only 0.78 and 0.36,
suggesting that the scatter mostly results from the stronger-field
pixels.

We note that a large fraction of pixels are below the one-to-
one line. In weak-field regions, the net Poynting fluxes are
−4.3 × 106 erg cm−2 s−1 and 6.0 × 106 erg cm−2 s−1 at the
two layers, which are smaller compared to the ground-truth
values of 8.6 × 105 erg cm−2 s−1 and 9.1 × 106 erg cm−2 s−1.
The Poynting flux in stronger-field regions is significantly
greater and also underestimated, which accounts for the
majority of the discrepancy. The net Poynting fluxes in the
stronger-field regions are −3.5 × 108 erg cm−2 s−1 and
7.3 × 107 erg cm−2 s−1 at the two layers, compared to the
ground-truth values of 1.3 × 108 erg cm−2 s−1 and
9.8 × 108 erg cm−2 s−1.

We further decompose the Poynting flux into an emerging
term and a shearing term. The values of these two terms are
also listed in Table 2. The ground truth, net emerging term, and
net shearing term have different signs at both layers. These two
terms almost cancel each other out at t =log 0.0. In contrast,
the shearing term dominates the emergence term at

t = -log 1.0: the absolute value is about twice as large. We
find that the estimated net emerging Poynting flux can

reproduce 99.6% and 88.8% of the ground truth at t =log 0
and t = -log 1, respectively. But the estimate can only
reproduce 72.0% and 55.5% of the net shearing term. The
underestimation of the shearing term accounts for the majority
of the mismatch of the Poynting flux.

4. Estimated Energy Transport from Emulated
Observation

Above, we focused on the performance of DAVE4VMwDV
on MHD simulation data. In this section, we examine the
capability of estimating energy transport in the emulated DL-
NIRSP observation. As we shall see, most of the conclusions in
the previous section qualitatively hold.

4.1. Stokes Synthesis and MHD Variable Inference

To emulate the DL-NIRSP observation, we first synthesize
the four Stokes profiles from the MURaM simulation with SIR
and then degrade the profiles with the theoretical PSF of DL-
NIRSP in the High-Res mode and a two-pixel binning. Figure 7
shows an example of the synthesized data in the original and
degraded resolution. After degradation, the contrast in the
continuum image decreases by 9%. In the Stokes V map, the
original mixed-polarity features in the intergranular lane
become weaker due to cancellation; lanes with stronger signals
become wider.

Figure 6. Comparison between Poynting flux from MHD simulation (left) and DAVE4VMwDV (middle) at t =log 0 (top) and t = -log 1 (bottom). The right
column shows the 2D histogram between the reference and estimated Poynting flux. The Spearman coefficient (ρ), Pearson coefficient (r), and linear fitting (red
dashed line) between the ground truth and estimated Poynting flux are shown on the 2D histogram.
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The comparison between the input MURaM parameters and
the inferred parameters with SIR at t =log 0 and t = -log 1
is shown in Figure 8.

At t =log 0, the inferred temperature map and LOS
velocity map have no appreciable difference from the
ground-truth MURaM map. They both show typical granular
structure: high temperature and upflows in granular cell centers,
with low temperature and downflows in intergranular lanes.
The continuum bright points in intergranular lanes are also
captured. The inferred magnetic field strength shows a
network-like pattern similar to the ground truth, though fine-
scale structures are diminished. We will discuss below the
response of the inferred magnetic field to spatial scales. The
inferred inclination captures the large-scale pattern with more
vertical magnetic fields filling the intergranular lanes. The
small-scale mixed-polarity pattern, for example, the region
centered at (X, Y) = (3″, 3″) in the black dashed box, is largely
missing.

At t = -log 1, the inferred temperature map appears to be
overall brighter than the ground-truth map. The average
inferred temperature is 5122 K, about 58 K higher than the
ground truth, which is similar to findings of previous work
(C. Quintero Noda et al. 2023). The difference between the
inferred and ground-truth LOS velocity maps, on the other
hand, appears to be minimal. The inferred magnetic field
strength shows a similar pattern to ground truth, albeit one that
is somewhat blurry. The average field strength in the strong-
field region (B > 100 G) is 195 G, compared to the ground-
truth value of 230 G. The inferred inclination fails to capture
the small-scale mixed polarities, similar to the lower layer.

We compare the distributions of the total (|B|), vertical (Bz),
and horizontal (Bh) magnetic fields in Figure 9. The deviation
between the ground truth and the inversion results appears to be
more pronounced for strong-field pixels and for the higher layer
at t = -log 1. At t =log 0, the largest deviation appears to be
an underestimate of Bh for values above 500 G. For

t = -log 1, the inferred fields are generally significantly
weaker than the ground truth.
Inaccuracies may also originate from the azimuthal dis-

ambiguation step. Figure 10 illustrates the cosine of the
azimuth ( fcos ) from the MURaM model (left), versus the
inferred results after the application of the ME0 algorithm
(right). As evidenced by the large mismatch, the performance
of the ME0 algorithm is not satisfactory. In the granular lanes,
for example, in the region centered at (X, Y) = (4″, 3″) in the
black box, fine-scale structures where the sign of fcos changes
within several pixels are not reproduced. The results in granular
cell centers, for example, in the granular cell centered at (X,
Y) = (1.5, 2.5), where f is expected to vary smoothly, are
somewhat better, though patches with completely opposite
signs also exist. The solution of the ME0 disambiguation
algorithm is known to be unsatisfactory for the quiet Sun:
similar conclusions can be found in recent work (e.g., D. Tili-
pman et al. 2023).

4.2. Poynting Flux from Emulated Observation

We use the inverted magnetic field and Doppler velocity
maps to infer the 3D velocity field with DAVE4VMwDV. As
shown in Section 3, higher cadence is preferred. To access the
best performance of existing schemes, we will use the inferred
vector magnetic fields and Doppler velocity at t = 2 s as input
for each optical depth. The time derivative of ∂Bz/∂t at t = 2 s
is calculated from Bz at t = 0 s and t = 4 s. We set window size
w = 15 and degree of expansion d = 3 and dr = 5 for

t =log 0, and set w = 15, d = 1, and dr = 5 for t = -log 1.
The choice of parameters is discussed in Appendix A. We then
estimate the Poynting flux with the inferred velocity and
Equation (8).
The velocity fields inferred from the emulated magneto-

grams are shown in Figure 11. Similar to the results for the
velocity inferred from the ground-truth magnetograms in the
previous section, convective patterns are well recovered for
both layers. The flow direction in the granular cell center, on
the other hand, appears to be more random and disordered,
unlike the consistent diverging flows seen previously. Com-
pared to the distribution of the ground-truth velocity, the
inferred velocities at both layers have a narrower distribution
and smaller magnitude. The average magnitude of the inferred
velocity is 2.6 km s−1 and 2.2 km s−1 at t =log 0.0 and

t = -log 1.0, respectively, compared to 3.8 km s−1 and
3.1 km s−1 from the ground truth.
The estimated Poynting fluxes from emulated magnetograms

at the two layers are listed in Table 2. Below, we examine the
estimated emergence term (Sz

em) and shearing term of the
Poynting flux (Sz

sh) separately as they are differently affected by
the azimuth disambiguation procedure. The emergence term is
only related to the square of the horizontal magnetic field (Bh

2),
so it is not affected by the ambiguity resolution. The shearing
term, on the other hand, relates to the vector horizontal
magnetic field by vh · Bh, and can change the sign if the
azimuth has the wrong sign. We also examine the unsigned
shearing term of the Poynting flux (∣ ∣Sz

sh ) for completeness. The
estimates of these three quantities and their comparison with
the ground truth are shown in Figures 12 and 13.
At t =log 0, the estimated emergence term captures the

main features that it is negative in the intergranular lane and
positive in the granular cell, though many fine-scale structures
do not exhibit this. For the estimated shearing term, both the

Figure 7. Original (left) and degraded (right) synthetic Stokes profiles. Upper
panels show the continuum intensity I/Ic, and lower panels show the circular
polarization V/Ic in the wing of the Fe I 630.15 nm line.
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unsigned and signed versions show qualitative agreement with
the ground truth: strong values are concentrated along the
granular lanes. The absolute values of all three are under-
estimated overall, as evidenced by the histogram. The signed
shearing term, in addition, tends to be more negative than the
ground truth. The histograms show an obvious skew toward the
negative side. As expected, the estimated Poynting fluxes are
always smaller than the ground truth. For the shearing term, the
negative fluxes are more consistent with ground truth than the
positive fluxes, resulting in an overall underestimation. The
inferred unsigned Poynting flux is 2.0 × 108 erg cm−2 s−1,
which is 53.9% of the ground truth. The emergence term of
Poynting flux is 33.6% of the ground truth, while the shearing
term of Poynting flux is only 17.3%. The unsigned shearing
term of Poynting flux is 9.5 × 107 erg cm−2 s−1, which is
44.6% of the ground truth. The net Poynting flux is

−1.1 × 107 erg cm−2 s−1, which has a wrong sign and is far
from the ground-truth value of 3.7 × 106 erg cm−2 s−1.
Most conclusions for t =log 0 hold true for t = -log 1,

while the underestimation becomes more severe. For the
shearing term, a large fraction of the strong-flux pixels are not
recovered. The predominant positive shearing term is also
missing. The distribution of Sz

sh is much narrower around 0
compared to the ground truth, with too few positive pixels and
a small excess of negative pixels.

5. Discussion

In Section 3, we show that DAVE4VMwDV has reasonable
performance when applied to the high-resolution simulation
data directly. However, the Poynting flux is significantly
underestimated. As expected, the case is more severe for the
emulated observation case, and we find the main culprit is the

Figure 8. Comparison between the ground-truth atmosphere (first and third columns) and that inferred with SIR (second and fourth columns). The left two columns
show the comparison at t =log 0 and the right two columns show the comparison at t = -log 1. From top to bottom, we show the temperature, LOS velocity,
magnetic field strength, and inclination. An example of a mixed-polarity region is marked with black dashed boxes.
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shearing term. We investigate below the quality of the inferred
magnetic and velocity fields in an attempt to address the
“missing Poynting flux.”

5.1. Quality of Inferred Velocity

DAVE4VMwDV infers the velocity field from magneto-
grams by minimizing the residual of the ideal induction
equation. In our work, we apply DAVE4VMwDV on
magnetograms, i.e., magnetic field maps, at the same optical
depth where the spatial derivatives are poorly defined. Thus,
the ideal induction equation does not strictly hold, particularly
at small spatial scales, where the τ surface is corrugated.
Below, we assess how well the ideal assumption is satisfied and
how it affects the inferred velocity at spatial scales.

To this end, we evaluate the power spectral density (PSD) of
the inferred variables. For a square FOV in Cartesian
coordinates (i.e., nx = ny = N and Δx = Δy), the PSD(k) as
a function of the wavenumber is computed as

( ) ∣ ˜ ( )∣ ( )
[ ]
å= D

Î +

¢

¢

k N x f kPSD , 12
k k k dk,

2

where f̃ is the 2D Fourier transform for an arbitrary spatial

function f, and = +k k kx y
2 2 is the square root of the

wavenumber in the x-direction (kx) and y-direction (ky).
The PSDs for the two terms of the induction equation,

∂Bz/∂t and ( ) ´ E z, and the three components of velocity at
t =log 0 and t = -log 1 are shown in Figure 14. The values

are normalized by their maxima. As seen in the top row, the
two terms of the induction equation from the MHD simulation
at the same optical depth are not entirely consistent, especially
in the scale d < 120 km (top row, black and red curves). This is
because the maps (B and v) we use are at the same τ surface,
which may correspond to different z at different times. The
spatial derivatives made in a constant-τ surface may also
contribute to the mismatch. This significantly affects the quality
of inferred velocity based on the sampled ground-truth
magnetograms: a large discrepancy of PSD in the small-scale
regime (d < 150 km). The agreement is somewhat worse for

t = -log 1 compared to t =log 0.
For the performance of DAVE4VMwDV on emulated

observations, we only plot the PSD for ∂Bz/∂t in Figure 14.
At t =log 0, the PSD deviates significantly from the ground
truth even at large spatial scales (top row, blue curves). Quite
interestingly, the mismatch does not appear to affect much the
accuracy of the inferred velocity field on a large scale. The
PSDs of all three components of the DAVE4VMwDV velocity
closely follow the ground truth for d < 300 km. Again, the
results are similar but better for t = -log 1. In particular, the
PSD of ∂Bz/∂t agrees well with the reference at scales
d > 250 km.
To quantify the Poynting flux response with respect to the

scale of the velocity, we decompose the ground-truth velocity
fields according to their spatial scales:
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= +v v v

v v v ,
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where the superscripts h and l represent the high-frequency part
and the low-frequency part of the quantity. The Poynting fluxes
can then be decomposed in a similar fashion as they are linear
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The relation between the two terms of Sz
l is shown in Figure 15.

The upper panel shows the variation of the absolute values of
á ñSz

em and á ñSz
sh with respect to the scale of the velocities d. The

shearing term of the Poynting flux has a steep slope: the small-
scale velocity plays an important role. At t =log 0.0, the two
terms almost cancel each other out, and the net Poynting flux
tends to be negative for large-scale velocity. The result at

t = -log 1.0 differs from that at t =log 0.0 mainly for small
scales d < 400 km. The magnitude of the shearing term is about
twice that of the emergence term, which results in a clear net
positive Poynting flux.
The bottom panels of Figure 15 show the ratio of Sz

l to the
ground-truth Sz with respect to the scale of the velocity d. To
recover 80% of the shearing term of the Poynting flux, the
horizontal velocity vh should have scales d > 156 km and

Figure 9. Comparison of the distributions of the ground truth (black) and
inverted magnetic field (red). Left: histograms of quantities at t =log 0. Right:
histograms of quantities at t = -log 1. The figure shows the distribution of the
magnetic field strength |B|, vertical magnetic field Bz, and horizontal magnetic
field Bh. The inversion results have lower resolution and thus fewer pixels, and
the histograms are all normalized for comparison.
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d > 145 km at t =log 0 and −1.0, while a vertical velocity vz
with d > 834 km and d > 625 km can recover 80% of the
emergence term of the Poynting flux at t =log 0 and −1.0. At a
scale of d > 150 km, the shear term is 80.8% and 79.1% of the
ground-truth value at t =log 0.0 and −1.0, respectively, and the
emergence term is 100% and 100%, respectively, which are close
to the calculations of DAVE4VMwDV in Section 3.

We point out that the simulation output itself, which we use
as the ground truth, may not strictly adhere to the ideal
induction equation due to numerical diffusion. We compare
∂Bz/∂t and ( ( )) ´ ´v B z on constant-z slices. While the
overall agreement is better than that for the constant-τ slices
shown in the first row of Figure 14, the scatter becomes
significantly greater below about the 100 km scale. This
suggests that the numerical effect of the input likely also
contributes to the discrepancy. For real-Sun observations, such
nonideal effects may come from small-scale, turbulent magn-
etic fields and velocities, which manifest as a second-order term

in the induction equation that cannot be averaged to zero. It
remains to be seen whether high-resolution observations from
DKIST can help alleviate the issue.
One interesting takeaway from Figure 15 is that the

induction equation (i.e., ∂Bz/∂t and (∇× E)z) is dominated
by the spatial scale of a few hundred kilometers in this quiet-
Sun simulation. As the geometric height of the input
magnetograms (constant τ) varies, one does not expect the
induction equation to be well satisfied numerically beyond such
size. Since DAVE4VMwDV solves for the induction equation
“locally” by minimizing the residual within a small window, it
might be more suited for quiet-Sun calculations compared to
other, more “global” algorithms.

5.2. The Limitation in Stokes Inversion

The second factor that can affect the estimate of Poynting flux
is the magnetograms inverted with SIR. From Equation (8), the

Figure 10. Comparison of the cosine of the azimuth between ground truth (upper row) and the one inferred with SIR after disambiguation (bottom row). From left to
right we show the comparison at t =log 0 and t = -log 1. Two dashed black boxes mark regions discussed in Section 4.1.
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emergence term of the Poynting flux ∣ ∣ µS Bz h
em 2 and the shearing

term ∣ ∣ ∣ ∣µS B Bz h z
sh . As demonstrated in Figure 9, the

inaccuracies of the inferred magnetic field can affect the
downstream velocity and the Poynting estimates.

One likely factor is the fact that we reduce the spatial
resolution of the Stokes profiles before inversion, which is
known to affect the retrieved magnetic field distribution (e.g.,
I. Milic et al. 2024). The other factor is the inversion algorithm
itself, for example, the node-based representation of the
variables. As stated in Section 2, to reduce the number of
free parameters, SIR perturbs the initial atmosphere only in the
location of nodes and approximates the remaining atmosphere
with cubic spline interpolation. In our work, we apply five
nodes in the atmosphere range in [ ]t = -log 4.2, 1.0 . The
locations of nodes in the range [ ]t = -log 2.0, 0 (the typical
range of formation height for the Fe I 630 nm lines) are

t = -log 0.3 and −1.6. As the structure of the atmosphere is
unknown a priori, the ground-truth stratification may not be
faithfully represented by a five-node function.
To investigate the effect of these factors, we conduct two more

inversion experiments. For the first experiment, we keep the same
configuration in Table 1 for SIR, but use synthetic Stokes without
degradation. This experiment aims to assess the effects of the PSF
and rebinning. For the second experiment, we use the SIR
configuration listed in Table 3 on the same input without
degradation. We increase the number of nodes for the magnetic
field strength, inclination, and azimuth to 14, 14, and 5. The
locations of nodes for magnetic field strength and inclination in
the range [ ]t = -log 2, 0 are [−0.2, −0.6, −1.0, −1.4, −1.8].
The histograms of the total, vertical, and horizontal magnetic

fields from the two experiments, along with the reference
values at optical depths t =log 0.0 and −1.0, are shown in
Figure 16. For the first experiment (blue lines), the distributions

Figure 11. Velocities inferred from inverted magnetograms at t =log 0.0 (left) and t = -log 1.0 (right). Top: the inferred velocity field. The horizontal arrows
indicate the direction and amplitude of the horizontal velocity. The vertical velocities are plotted as the background. Bottom: histograms of the magnitude of the
ground-truth velocity (blue) and inferred velocity (orange).
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of the inverted magnetic field still deviate from the reference
value. But at t =log 0, the relative number of pixels with |B|
> 800 G and Bh > 750 G is now greater than the reference,
which is the opposite of the result of inversion on degraded
data. At t = -log 1, there are also deviations for |B| in the
range of [250, 750]G and Bh > 250 G. The distribution of Bz is

smaller than the reference. The result of this experiment
suggests that the degradation alone cannot fully account for the
mismatch in the magnetic field distribution. The inversion
process itself must also contribute.
For the inversion experiment with additional nodes, the

distributions of the inverted magnetic fields are greater than the

Figure 12. Comparison between MURaM and estimated Poynting flux at t =log 0. Top: ground-truth value of the Poynting flux. Middle: estimated Poynting flux
with inferred magnetic and velocity fields. Bottom: histograms of Poynting flux from ground truth (black) and estimate (red). From left to right are the emergence
term, shearing term, and unsigned shearing term of the Poynting flux.
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reference at t =log 0.0. At t = -log 1.0, the distributions of
B and Bz are closer to the reference distributions. But the
distribution of Bh is greater than the reference at Bh > 700 G.
This suggests that fitting with more nodes may recover a more
accurate distribution (A. Pastor Yabar et al. 2019). In practice,
the optimal number of nodes cannot be determined a priori.
Overfitting may be a concern.

The PSDs of magnetic field strength for the two experiments,
the inversion from the emulated observation, and the reference
are shown in Figure 17. Compared to the reference, the overall
quality of the inferred magnetic field strength is reasonable on
larger spatial scales (d  200 km), and disagreement becomes
obvious on smaller scales. Additionally, the result of the
emulated observation displays an excess in PSD at the largest

Figure 13. Same as Figure 12, but for t = -log 1.
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scale (d  4 × 103 km), about half of the domain size. The
reason for such an excess is unclear.

To investigate the effect of inversion on estimating
Poynting flux, we calculate the Poynting flux with inferred
magnetograms and ground-truth velocities. Since there is still a
problem in disambiguation, we only consider the emergence
term (Sz

em) and the absolute value of the shearing term (∣ ∣Sz
sh ).

The comparison between the two experiments and ground truth
is shown in the last two rows of Figure 16. At t =log 0.0, as a
result of greater relative numbers of large Bz and Bh in both
experiments, the probability density distributions of Sz

em and
∣ ∣Sz

sh of the two experiments are greater than the reference,
especially in the negative part of Sz

em. The results at
t = -log 1.0 are different since, given the deviation in the

distribution of the magnetic field, Sz
em and ∣ ∣Sz

sh both have
smaller density than the reference for the first experiment. For
the second experiment, the probability density distributions are
close to the reference for both Sz

em and ∣ ∣Sz
sh . The average

emergence terms of the Poynting fluxes are 106.1% and
147.0% of the reference at t =log 0.0, and 92.8% and 99.3%
of the reference at t = -log 1.0 for the two experiments,
respectively. The average unsigned shearing terms of the
Poynting fluxes are 116.9% and 127.1% of the reference at

t =log 0.0, and 78.3% and 105.9% of the reference at
t = -log 1.0 for the two experiments, respectively. The results

suggest that the missing magnetic flux and the overestimated
magnetic flux from the inversion can result in a missing
Poynting flux and an overestimated Poynting flux.

Figure 14. PSD for selected inferred variables as a function of scale d at optical depth t =log 0 (left) and t = -log 1 (right). From top to bottom: PSD of two terms
in the induction equation, vx, vy, and vz. In the top panel, the black line represents the ground-truth time derivative of the vertical magnetic field, the red line represents
the vertical component of the curl of the electric field E = −v × B, and the blue line represents the time derivative of the inferred vertical magnetic field. In the second
to the last row, the black line represents the ground-truth velocity, the red line represents the velocity inferred directly from the MURaM magnetograms (Section 3),
and the blue line represents the result from the velocity inferred from the emulated observation (Section 4). The PSDs of variables inferred from degraded synthetic
data do not reach the smallest scales in the figure due to their lower resolution. The vertical dashed lines highlight the spatial scale, below which large discrepancies
exist between the ground truth and the inference.
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5.3. Energy Transport in Quiet-Sun Photosphere

Studying the energy transport in the quiet-Sun photosphere
is difficult. Besides the difficulties in observation and inversion
of Stokes profiles, another concern is that due to the weaker
magnetic fields, the plasma β = 8πp/B2 in the quiet-Sun
photosphere varies more rapidly in space compared to that in
active regions. The dynamic characteristics and the importance
of the Poynting flux in energy transfer may change drastically
with height. To demonstrate this, we plot the median plasma β
as a function of the logarithm median optical depth tá ñlog at
each height in the top panel of Figure 18. The median plasma β
in the [ ]tá ñ Î -log 0, 2 layer has a value of about 104,
suggesting that the plasma kinematics dominate the magnetic
fields. The behavior is quite different for regions with stronger
magnetic fields (e.g., granular lanes). The plasma β, where
the magnetic field strength is greater than three times the
standard deviation at each height (B > 3σB), has a value
below 10.

In the middle panel of Figure 18, we show the net Poynting
flux density variation with height. The net Poynting flux
increases with height in the range [ ]tá ñ = -log 1, 0.5 and the

Figure 15. The response of the emergence term Sz
em and shearing term Sz

sh of
Poynting flux to the scale of velocity at t =log 0 (left) and t = -log 1 (right).
Top: the response of the absolute values to scale. Bottom: the response of the
ratio of the value to ground truth. The red and blue lines represent the shearing
term and emergence term, respectively.

Figure 16. Comparison of the distributions of quantities from the reference
magnetic field (black), the inverted magnetic field with the configuration in
Table 1 (blue), and that with the configuration in Table 3 (red) at t =log 0.0
(left) and t = -log 1.0 (right). From top to bottom, we show the distribution of
the magnetic field strength |B|, the vertical magnetic field Bz, the horizontal
magnetic field Bh, the emergence term of the Poynting flux Sz

em, and the
unsigned shearing term of the Poynting flux |Sz

sh |.

Table 3
Summary of SIR Algorithm Configurations for Experiment Two

Nodes

Parameters Cycle 1 Cycle 2 Cycle 3 Cycle 4

Temperature 2 3 5 5
Microturbulence 1 1 1 1
LOS velocity 1 2 3 5
Magnetic field strength 1 2 3 14
Inclination 1 2 3 14
Azimuth 1 2 2 5
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value changes from −4.0 × 106 erg cm−2 s−1 to 2.6 ×
107 erg cm−2 s−1. The net Poynting flux gradually decreases
in the atmosphere higher than tá ñ = -log 0.5.

In the bottom panel of Figure 18, we calculate the
contribution to energy change by Poynting flux. We calculate
the ratio ò between the Poynting flux at a certain height z and
the total magnetic energy change above height z, as a function
of tá ñlog for each z:

/

( ) ( )= S z

dE dt
. 15z

m

Here, the calculation is done on the entire box so the Poynting
flux through the side boundary can be ignored. We also ignore

the Poynting flux leaving the top boundary because its value is
small (M. Rempel 2014). At the height with tá ñ =log 0.0,
Poynting flux only contributes 11.2% of the change of
magnetic energy. This changes drastically at tá ñ = -log 1.0:
Poynting flux contributes 87.3% of the magnetic energy
change, suggesting that it is the main source of magnetic
energy change in the typically observed photospheric layer
even under the non-force-free condition.

5.4. Implications on Observations

In a recent work, D. Tilipman et al. (2023) studied the
Poynting flux in the quiet-Sun photosphere with real observa-
tions from the balloon-borne SUNRISE/IMaX data. They used
two different codes based on deep learning and correlation
tracking to infer the velocity and calculate the Poynting flux at

t »log 0. They found that there is not enough Poynting flux
except in strong-field regions. Similar to our study on emulated
observations, they found that the shearing term of Poynting
flux is underestimated. The emergence term dominates both the
total and unsigned Poynting flux, though the mean value was
positive in their observation while it is negative in our study.
The difference in sign may be attributed to the strong magnetic
field in the upflow region of their region of interest, while the
emergence term of Poynting flux is concentrated on the
intergranular lane. The fraction of emergence term on the
unsigned Poynting flux is 99% in their observation; the fraction
is 92% in our study. The small difference may be attributed to
the use of different flow tracking methods. The ability of
different flow tracking methods to estimate Poynting flux
requires more investigation.
The work of D. Tilipman et al. (2023) used a Milne–

Eddington inversion code, which assumes a constant magnetic
field with height. Such a simplifying assumption is appropriate
due to the limited spectral resolution of SUNRISE/IMaX.
However, according to the MURaM simulation (Figure 18), the
Poynting flux in the quiet Sun has a large variation with height.
A single Poynting flux estimate at t »log 0 is not necessarily
representative.

6. Conclusion

In this work, we assess the diagnostic capability of the DL-
NIRSP instrument on DKIST for the energy transport processes
in the quiet-Sun photosphere with the realistic numerical MHD
simulation code MURaM. We first validate the widely used and
recently modified flow tracking algorithm DAVE4VMwDV
high-resolution data. We then synthesize and degrade high
spatial and temporal resolution Stokes profiles of the Fe I
630 nm lines to emulate the observation made by DKIST/DL-
NIRSP and infer the vector magnetic field maps. Finally, we
examine the estimated Poynting flux from the emulated
observation.
Our main findings are as follows:

1. DAVE4VMwDV works reasonably well on inferring the
photospheric velocity on high-resolution data, especially
the large-scale (d > 150 km) velocity. At smaller scales,
the corrugated τ surface results in the induction equation
being poorly satisfied via numerical differentiation; the
accuracy of the velocity inference thus suffers. For the
emulated observation, the ill-satisfied induction equation
does not impact the large-scale velocity much.

Figure 17. Comparison of the PSD of magnetic field strength from the
reference magnetic field (black), inversion from the emulated observation
(green), the inverted magnetic field with the configuration in Table 1 (blue),
and that with the configuration in Table 3 (red) at t =log 0.0 (left) and

t = -log 1.0 (right).

Figure 18. Top: plasma β in the region of interest with respect to height. The
black, blue, and red lines represent the plasma β averaged among all the pixels,
pixels with B > 3σB, and pixels with B < 3σB in the region of interest,
respectively. Middle: variation of net Poynting flux density with height.
Bottom: fraction of energy transported by the Poynting flux relative to energy
converted by the Lorentz force.

18

The Astrophysical Journal, 979:139 (21pp), 2025 February 1 Liu et al.



2. The temporal resolution of input magnetograms can
affect the performance of DAVE4VMwDV. To get a
reasonable velocity estimate, we suggest the input
magnetograms and Dopplergrams have /D D > á ñx t v .

3. The Poynting flux calculated with the inferred velocity
similarly matches the ground truth better at larger spatial
scales. The average value is underestimated in both
simulation and emulated observation. In the emulated
observation, the estimated unsigned Poynting flux is
about 72.5% and 61.3% of the reference ground truth at

t =log 0.0 and t = -log 1.0. The net Poynting flux is
−1.3 × 107 erg cm−2 s−1 and −8.5 × 106 erg cm−2 s−1,
compared to ground truth: 3.7 × 106 erg cm−2 s−1 and
3.0 × 107 erg cm−2 s−1.

4. The main difference comes from the underestimated
shearing term. The estimated net emerging Poynting flux
can reproduce 99.6% and 88.8% of the ground-truth net
emerging Poynting flux, while the net shearing Poynting
flux is only 72.0% and 55.5% of the ground truth.

5. The net shearing term of the Poynting flux is more
difficult to estimate than the net emergence term of the
Poynting flux. To recover 80% of the shearing term of the
Poynting flux, the inferred horizontal velocity field
should have a spatial scale d > 156 km and
d > 145 km at t =log 0 and −1. To recover 80% of
the emergence term of the Poynting flux, the inferred
vertical velocity field should have a spatial scale
d > 834 km and d > 625 km.

Estimating energy transport on the photosphere of the quiet
Sun is difficult. The inferences of the magnetic field and the
velocity field must both be improved for a better estimate of the
Poynting flux. For magnetic field inversion, new advances have
been made by including the more realistic magnetohydrostatic
equilibrium assumption (compared to the commonly used
hydrostatic equilibrium; A. Pastor Yabar et al. 2019), or using
deep learning algorithms (A. Asensio Ramos & C. J. Dìaz
Baso 2019; K. E. Yang et al. 2024). These methods can resolve
azimuthal ambiguity, and provide an absolute spatial scale
along the LOS, which produces magnetic field maps on a
constant geometric height. The latter makes the application of
velocity tracking a self-consistent approach, and can also
reduce the effect of the p-mode that would imprint on the τ
surface (M. Rempel 2024, private communication). To
demonstrate the possible improvement, we apply
DAVE4VMwDV on the MURaM simulation at two constant
geometric heights with tá ñ =log 0.02 and tá ñ = -log 1.02.
At these two heights, 82.9% and 74.5% of the shearing term
can be recovered, which shows an about 10% and 20% increase
as compared to the results for the constant-τ surfaces.

For velocity inference, new algorithms based on deep
learning, such as DeepVel (A. Asensio Ramos et al. 2017),
have shown much potential. High spectral and spatial
resolution observations from DKIST and multi-spectral-line
Stokes inversions will also allow for estimates of the velocity
field or electric field at multiple heights simultaneously. This is
expected to improve the study on the energy transport in the
solar atmosphere above the quiet Sun.

In addition, the signal-to-noise level is another important
factor in estimating the Poynting flux. C. Quintero Noda et al.
(2023) studied the effect of noise on Stokes inversion. Their
study suggested that the inversion of data with a noise level on
the order of or lower than 5 × 10−4 of the continuum intensity

can provide more reliable information for the vector magnetic
fields. The details of how noise affects the Poynting flux
estimate will be investigated in the future.
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Appendix A
Optimization of DAVE4VMwDV

Besides the magnetogram and Dopplergram input,
DAVE4VMwDV has three free parameters: the window size
w for optimization, the maximum degree of Legendre
polynomials d for velocity expansion inside the window, and
the relative weighting λ for term L2 defined in Equation (6). In
this work, we optimize these parameters using the methods
described in X. Sun et al. (2023). The initial parameters are
w = 15, d = 3, and dr = 5.

A.1. DAVE4VMwDV on MHD Simulation

We first use the “L-curve,” which displays the trade-off
between the two terms as λ varies (e.g., P. C. Hansen & D. P.
O’Leary 1993), to determine λ. Figure 19 shows the curves of
normalized (L1, L2) with varied λ at t =log 0 and t = -log 1
for the application to the MHD data. The point λ = 0 represents
the case of DAVE4VM, where the Doppler constraint is not
considered. At t =log 0.0, both L1 and L2 decrease as λ
increases, while at t = -log 1.0, the curve resembles an

Figure 19. Parameter selection for DAVE4VMwDV for MHD data at
t =log 0 (left) and t = -log 1 (right). Top: L-curve displaying the trade-off

between the two loss function terms L1 and L2 in DAVE4VMwDV. The values
next to the black dots represent the weighting λ of each test. Bottom: the
variation of the loss function term L1 with respect to the degree of Legendre
expansion in the horizontal direction d.
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inverse L and both L1 and L2 are small at large λ. Therefore we
choose λ = 1.0.

We then choose the degree of Legendre expansion in the
horizontal direction d by comparing the values of L1 at different
d. The variation of L1 with respect to the degree of Legendre
expansion in the horizontal direction d at the two layers is
shown in the bottom panels of Figure 19. The degree of
Legendre expansion in the vertical direction dr is set as
dr = d + 2. At these two layers, we choose d = 5 and d = 3
because they have the smallest L1.

A.2. DAVE4VMwDV on Emulated Observation

Figure 20 shows the L-curves with λ that varies from 0 to 1
for the application on the emulated observation at t =log 0
and t = -log 1.

The L-curves for t =log 0 and t = -log 1 have similar
shapes: as the weighting λ increases, the Doppler residual L2
decreases drastically first and then decreases at a slower pace,
while the induction term L1 has the inverse trend. A λ = 0.35 is
finally selected for both heights as it provides a reasonable
compromise: L2 drops by factors of 3 and 5 as compared to
DAVE4VM, while the increases in L1 are only 25% and 35%,
respectively.

The variation of L1 with respect to the degree of Legendre
expansion in the horizontal direction d at the two layers is
shown in the bottom panels of Figure 20. The degree of
Legendre expansion in the horizontal direction dr is set to 5.
The variation of L1 for d = [1, 2, 3] at t =log 0 and

t = -log 1 is plotted in Figure 20.

As shown in the left panel, at t =log 0.0, L1 decreases with
respect to d and d = 3 gives the smallest value for L1,
suggesting the best fit for the induction equation. However, in
the case of t = -log 1.0 (right panel), L1 shows a different
variation from the case of t =log 0.0. In this case, d = 1 gives
the best fit to the induction equation.

Appendix B
DAVE4VMwDV on Successive Frames

In the literature, the velocity is often estimated from two
successive frames of observation to maximize the output
cadence. For two frames at t0 and t1 = t0 + Δt, where Δt is the
cadence of the observation, the output is designated to the
average time stamp, t = t0 + Δt/2. The time derivative of a
function f is calculated as

( ) ( ) ( )¶
¶

=
+ D -

D= +D

f

t

f t t f t

t
. B1

t t t
2

0 0

0

The input vector magnetograms and Doppler velocity are the
average of two frames

( ) ( ) ( )+
D

=
+ D +

f t
t f t t f t

2 2
, B20

0 0⎛
⎝

⎞
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where f can represent Bx, By, Bz, or vl.
We posited earlier that the poor performance of

DAVE4VMwDV might be due to the violation of the CFL
condition. Our choice of temporal difference limits the time
difference of the input at 4 s, twice that of the MURaM
simulation snapshots. In this section, we apply
DAVE4VMwDV on MURaM data at t0 = 32 s and
t1 = 34 s, i.e., the highest possible cadence, to estimate the
velocity at t = 33 s. For Poynting flux calculation, the other
inputs are the average magnetogram and Dopplergram of these
two time steps. We quantify the overall performance by
evaluating the coefficients listed in Section 3.1. The ground-
truth velocity is the averaged velocity from the simulation at t0
and t1.
Figure 21 shows the scatter plots between the inferred and

the ground-truth velocities at the two optical depths. The
inferred velocity at t =log 0 has Erel = 0.28, C = 0.96, and
A = 0.95, while the inferred velocity at t = -log 1 has
Erel = 0.23, C = 0.97, and A = 0.97. Compared to the case
with Δt = 2 s in Section 3.1, the performance is slightly
increased. The slopes are closer to 1 for vx and vy. Similar to the
findings in Section 3.3, the net shearing term of the Poynting
flux is underestimated for both layers. The estimated net
shearing Poynting flux can reproduce 70.0% and 57.8% of the
ground truth at t =log 0 and t = -log 1, respectively. The
estimated net emergence Poynting flux can reproduce 98.5%
and 90.4% of the ground truth at t =log 0 and t = -log 1,
respectively.

Figure 20. Same as Figure 19, but for the emulated observation.
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