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INTRODUCTION

At no other time in history has the importance of under-
standing and reducing the impacts of extreme heat on health
been so vital. Climate change, an aging population, urban
growth, and global sustainability challenges only bolster the
need for interdisciplinary approaches that bring novel
insights to extreme heat challenges for the betterment of pub-
lic health. To understand environmental impacts more holis-
tically on human heat stress and strain in a changing climate,
ample opportunities for collaboration exist between biome-
teorologists and thermal physiologists. Although thermal
physiologists work at the individual level, human biometeor-
ologists, who study interactions between atmospheric proc-
esses and humans, apply various multiscalar techniques
across climate science and epidemiology to understand expo-
sures and impacts based on population-level characteristics.
This Viewpoint underscores the importance of cross-discipli-
nary work and understanding across thermal physiology, bio-
meteorology, and climate/atmospheric sciences in supporting
real-world solutions to extreme heat challenges facing the
globe—solutions that are applicable to cities, stakeholders,
and people.

This Viewpoint approaches the problem of extreme heat
challenges to human health from multiple angles, yet pre-
dominantly brings in critical insight from climate/meteoro-
logical perspectives across scales, data, and applications to
heat and health. We provide an explainer for various types of
biometeorological data, from weather and climate to unique
urban or personal sensing systems, and how they can aid in
creating enhanced impact of the work of thermal physiolo-
gists. We note limitations in spatiotemporal scales and
assumptions of common data techniques, and further sum-
marize impactful examples of interdisciplinary, synergistic
endeavors that have advanced knowledge of human adaptive
capacity to the heat. Finally, we call on more physiologists
and biometeorologists to partner, particularly those focusing
on urban-to-global climate change, to advance heat-health
solutions that protect the most at-risk populations to better
drive decision-making and heat resilience efforts.

HEAT: A LONG-STANDING, WIDESPREAD,
INCREASINGLY SERIOUS GLOBAL
CHALLENGE

According to the Intergovernmental Panel on Climate
Change (IPCC), the globe has seen an increase in excessively
warm days and nights since 1950, and it is “virtually certain”
(99%–100% probability) that this increase, both in frequency
and magnitude, will continue throughout the century.
Statements of such certainty are rare and indicate robust evi-
dence and high agreement of climate studies on global tem-
peratures. The robust certainty underscores the importance
of improving the knowledge of causal heat exposure path-
ways to support evidence-based decisions to protect health
and support adaptation. Climate change attribution studies
already show exacerbation of recent heat events due to cli-
mate change (1, 2), causing higher heat-related deaths (3).
Attribution studies also support impact-based decision-mak-
ing, adaptation, and policymoving forward (4, 5).

Deadly and record-breaking heat waves have affected
nearly every continent in 2023, but the presence of heat
waves and their impacts on human health and society at
large are not new. A glance back at prominent heatwaves
highlights widespread loss of life: the European heatwaves of
2003 [70,000 lives lost (6)] and 2022 [60,000 lives lost (7)], the
India nationwide heatwave of 2015 [2,500 people perishing
(8)], and the North American heatwaves and droughts of 1995
[700 victims (9)] and 2021 [1,400 victims (1, 10)]. These num-
bers do not account for the substantial heat-relatedmorbidity
associated with these events. New methods and measure-
ments have arisen to help better quantify heat exposures in
space and time, enhancing our ability to connect heat to
human health. However, human-level factors (e.g., exposure,
age) are rarely examined in conjunction with weather and cli-
mate data in a spatiotemporally appropriate way, whether
under contemporary or projected climates. Such incongru-
ence can limit confidence in selecting effective real-world
interventions to reduce health impacts (11), yet scientists are
also striving to answer such significant questions within their
knowledge domains and under existing data constraints.
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What meteorological and climate data and methods exist
to support thermal physiologists in their heat and health
research? Where can thermal physiology align with biome-
teorology and bioclimatology to support meaningful heat
adaptation research efforts? And what are the current limi-
tations in each discipline to prioritize as future research
foci to advance public health protection during extreme
heat events? Here, we seek to engage physiologists on the
diversity in environmental data (climate and weather)
available or that can be collected across space and time for
these interdisciplinary research applications.

A PRIMER FOR APPLIED PHYSIOLOGISTS:
BIOMETEOROLOGICAL AND
BIOCLIMATOLOGICAL OBSERVATIONS AND
DATASETS FOR HEAT STRESS
QUANTIFICATION

Numerous weather and climate datasets are available to
quantify where and when dangerous environmental condi-
tions exist, as measured at the individual level by thermophy-
siological studies, thus expanding the application of such
studies. These datasets include data collected at different
spatial and temporal scales, which creates varying modes of
usefulness for applying thermophysiological insights. Most
datasets, whether observation- or model-based, include at
least three of the environmental variables that affect human
thermal balance: air temperature, humidity, and wind speed;
solar radiation measurements are often not part of such
observational datasets. Solar radiation levels at the earth’s
surface, a critical component of the human energy balance,
can be modeled or obtained from databases such as the
National Solar Radiation Database (12). Here, we provide an
overview of various weather and climate datasets and how
they can be applied in a heat-health study, which is also sum-
marized in Table 1.

Weather Station Observations

Observations have been regularly taken at thousands of
ground-based weather stations over the past century,
while some more primitive records go back multiple cen-
turies (13). These data are archived and freely available on
national and global scales through entities such as the
National Centers for Environmental Information (NCEI),
Hadley Center’s Integrated Surface Dataset (HadISD),
and the Global Historical Climatology Network (GHCN).
Modern official observations are automated from the sen-
sors, usually located at airports or other open spaces with
minimal modification over time and recorded hourly.
Typically, the placement of these stations should mean
that these historical observations do not include urban
heat island (UHI) effects (experienced by urban popula-
tions) on the station’s ambient environment. However,
recent studies have shown this not to be the case in all
instances depending on station location. For example, the
airport weather station in Phoenix, Arizona is within the
urban area. This station shows intense increases in aver-
age mean daytime air temperature since 1950 and a
decreased diurnal range (nighttime UHI), whereas a rural
station shows a shallower air temperature increase and no

significant change in the diurnal range (14). This phenom-
enon is called “urban-induced warming” and is important to
account for when studying heat exposures to urban dwellers.
State mesonets and urban micronets—networks of sensors to
fill in gaps across states or even blocks across the cityscape—
are becoming more popular, collecting similar data as airport
observations (more likely to collect radiation) and at similar
or finer time scales. Finally, researchers should use caution or
avoid the use of crowd-sourced weather data from personal
weather stations as quality assurance and control procedures
cannot be ensured.

Gridded Data Products

Past weather data can also be represented on a spatially
continuous grid for continuous spatiotemporal coverage.
NASA’s Daymet product ingests station observations and
statistically interpolates between these data points to create a
1 km � 1 km grid of maximum and minimum temperatures,
water vapor pressure, and shortwave radiation daily (15).
Atmospheric reanalysis products combine the gridded struc-
ture of the models used in weather forecasting with ground-
truth observations from weather station measurements to
create a spatially continuous data set of atmospheric condi-
tions in the past. A spatiotemporally continuous data set can
be produced by rerunning a previous weather model and
inputting observations at set times and locations to help tune
the simulation toward the most correct solution. Some rean-
alysis products, such as the European Centre for Medium-
Range Forecasting (ECMWF)’s 5th reanalysis (ERA5), have
begun to output heat stress metrics such as wet-bulb temper-
ature (Tw), wet bulb globe temperature (WBGT), and the
Universal Thermal Climate Index (UTCI) as main results
from themodel run for immediate use (16).

Climate Models

Climate models are complex computer simulations that
allow for coupling and interaction between all components
of the climate system (land, atmosphere, ocean, ice, etc.) at
various levels to predict how the given system evolves due to
the transfer of energy and mass through the components.
Projections of future climatic conditions are developed using
future scenarios of socioeconomic production and associated
greenhouse gas emissions. These scenarios, known as shared
socioeconomic pathways (SSPs), impart differing amounts of
radiative forcing (wherein higher forcing generally equates
to higher global average temperatures) on the climate sys-
tem based on the future trajectories of the world economic
system (called a Representative Concentration Pathway,
RCP). Together, a projected scenario is denoted by an “SSP-
RCP.” For example, SSP2-4.5 indicates a middle-of-the-road
emissions scenario with 4.5 Wm�2 higher radiative forcing
by 2100 compared to preindustrial levels, which may be
likely considering existing net-zero commitments (17). The
latest Coupled Model Intercomparison Project (CMIP),
which provides the climate model output for IPCC reports,
includes over 100 climate models, each running the differ-
ent SSP-RCP scenarios to provide a range of future climates.

Overall, these hundreds of scenarios project possible future
average climate warming by end-of-century, ranging from
1.0�C in the SSP1-1.9 scenario to as high as 5.7�C in the SSP5-
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8.5 scenario (13). Understanding these potential pathways is
essential to allow physiologists to interpret the possible
futures that exist when it comes to heat exposures and neces-
sary heat adaptation strategies. For example, without adapta-
tion and following a high-emissions pathway, the IPCC
reports that equatorial locations (e.g., Amazonia, Indonesia,
Central Africa) will see 365 days/year by end-of-century with
conditions that may cause heatmortality (13).

Climatemodels are not 100% accurate as uncertainty stems
from the scenario used, natural variability of the climate, and
internal model structure, but they have proven to perform
well at reproducing the trajectory of the mean state of global
temperature increases over the past few decades. They are
gridded products, much like those described earlier, with
trade-offs between spatial and temporal resolution due to
compute time and data storage restrictions. Temporally, most

climate model projections publicly available for research pro-
vide multihourly (e.g., 3- or 6-h data), daily, or monthly data
out to at least 2100 at spatial scales of tens of kilometers [i.e.,
�1��1.25� (�100� 100 km2) atmosphere/land grid]. Model
outputs can be updated to finer spatial scales via a process
known as downscaling based on user needs.

SYNERGISTIC ENDEAVORS ADVANCING
KNOWLEDGE OF HEAT ADAPTATION

The wealth of climate and weather data spanning the past,
present, and future can provide context to the empirically
derived, individual-level connections between a person and
their environment to support heat and health research. “Heat
exposure pathways” are affected by climate region (e.g.,
humid vs. dry climates), environmental contexts (e.g., indoor,

Table 1. Descriptions of environmental data sources that can be used in studies linking biometeorology and thermal
physiology

Data Type Description Examples Spatial Scale Temporal Scale

Weather station
observations

Automated measures of
temperature, humidity,
and wind (sometimes
solar radiation)

Airport weather observations,
US state mesonets, city-scale
urban micronets

Point-scale measure-
ments which may or
may not be represen-
tative of weather
conditions further
away from measure-
ment station

Standard observations
are taken at least
once an hour, but
some systems may
produce more fre-
quent observations
in their datasets

Gridded products
Interpolated
observations

Statistical interpolation of
unevenly spaced
weather observations to
provide a continuous
grid of weather data.

Temperature is always
included while other
variables are dependent
on product used.

NASA Daymet; NOAA
nClimGrid; Hadley Center
HadCRUT

Varies between prod-
ucts (e.g., Daymet—1
km; HadCRUT—5�)

Typically daily (maxi-
mum, minimum, av-
erage) or monthly
(average)

Atmospheric reanalysis The post hoc re-run of a
numerical weather pre-
diction model where
observations of the
observed weather are
included at set temporal
intervals to create a
spatially continuous,
better ground-truth ver-
sion of the weather that
occurred.

European Center for Medium-
Range Weather Forecasting’s
5th Reanalysis (ERA5);
NASA’s Modern-Era
Retrospective analysis for
Research and Applications,
Version 2 (MERRA-2); NCEP
Climate Forecast System
Version 2 (CFS v2)

10 s to 100 s of
kilometers

Hourly, daily, or
monthly

Climate model data Historical and future pro-
jections of climate
based on interactions
between coupled Earth
systems and predictions
of future socioeconomic
and greenhouse gas
emission pathways

Composition of coupled model
intercomparison project
(CMIP) models used by the
Intergovernmental Panel on
Climate Change (IPCC)—e.g.,
Community Earth System
Model (CESM; National
Center for Atmospheric
Research, USA), Canadian
Earth System Model
(CanESM; Canada), Max
Planck Institute-Earth System
Model (MPI-ESM; Germany)

10 s to 100 s of
kilometers

3- or 6-hourly, daily,
monthly

Personal exposure data Measurements of the am-
bient environment at
the location of an indi-
vidual user, usually air
temperature and
humidity

Example sensors might include
Kestrel Drops, iButtons, and
Hobo dataloggers. Care
should be taken to determine
how to properly take indoor
vs. outdoor measurements to
avoid poor data quality

Point-based measure-
ment either in one
location (e.g., in
home) or sometimes
on a person (exposed
to air)

User- and sensor-
dictated, though re-
solution of an
archived dataset
will depend on the
sensor’s data stor-
age capabilities
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outdoor, building type, vegetation), population diversity and
vulnerability (e.g., age, physiologic susceptibilities), and
adaptive capacity (including behavior change and technology
use) (18). Yet little is known regarding personal exposures
and city-to-person-level adaptation strategies to modulate
heat stress to avoid dangerous health consequences (19).
Climate change, together with urban-induced warming,
amplifies overheating in cities, increasing indoor energy
demands (20). Outdoor climate and weather data are essen-
tial to inform indoor heat exposures and energy use during
heatwaves using building energy models (21, 22). Yet ecologi-
cally valid data concerning heat exposures across built and
environmental contexts alongside behavior, health impacts,
and perception are virtually absent from the literature, as are
studies and data (both climate and health) on the heat bur-
den in low- and middle-income countries (LMICs), even
though they are most affected by heat and have a lower
capacity to adapt (23).

Numerous studies in the last two decades have called for
more research on personal and household level heat expo-
sures and impacts to fill a critical gap in our understanding of
indoor heat exposure and vulnerability (24–27). Heat expo-
sure can be measured at a personal level through the use of
low-cost, small-scale sensors or mobile phone technology
and at a household level with low-cost sensors (28); however,
current data collectionmethods (such as quantifying thermal
conditions with appropriate instrumentation) are inconsis-
tent and do not account for the three dimensions of exposure
(intensity, duration, and frequency) along with physiological
outcomes; most research has focused on heat intensity (18,
29). Importantly, researchers are exploring new ways to con-
duct remote environmental and personal data collection to
evaluate the ecological validity of controlled laboratory
measurements (30)––such studies are excellent opportuni-
ties for collaboration in the biometeorology and physiologi-
cal communities. Future research bridging climate sciences
and thermophysiology can transform traditional personal
heat exposure methods to seamlessly integrate many physi-
ological, behavioral, and environmental variables of inter-
est. Such work can also inform heat chamber studies using
real-world situations and adaptive strategies to inform
advancedmonitoring protocols.

New information around adaptive capacity and behavior
in the heat (together resulting in ‘heat resilience’) can and
should support cities, governments, communities, and peo-
ple in heat safety and protection. Yet how can we ensure that
actionable information is translated to those it can benefit
most? Heat vulnerability research has long-asked such ques-
tions, with a push to make heat and health research more rel-
evant for policy- and city-level actions through heat metrics
for evaluation (31).

Understanding the Limits of Human Tolerance to
Extreme Heat

Due to anthropogenic climate change, current environ-
mental conditions are increasingly challenging the limits of
human tolerance to the heat in some parts of the world.
Various physiology-based metrics have been applied to pro-
ject future heat stress. For the past decade, the singular psy-
chometric Tw threshold of 35�C, introduced by Sherwood and

Huber (32), has been the conventional method for assessing
the adaptability limits of humans exposed to extreme heat
with climate change. This conservative limit is based on sim-
ple biophysical principles under which dry and evaporative
heat transfer are not possible. Unable to dissipate heat, it is
assumed the body reaches a core temperature at or higher
than that associated with the onset of heat stroke after 6 h.
The authors showed that this limit would be surpassed by
end-of-century on regular timescales under 6�C of global
mean surface temperature (GMST) rise. This work has been
oft-cited in themedia to describe the dangers of extreme heat
associated with climate change but has also been cited in the
literature to determine the future habitability of regions of
South Asia (33) and current regional exceedance of this
threshold (34). However, as noted by Huber (35), this limit
was always understood to be an upper limit for fully
hydrated, perfectly sweating (and thus healthy) people in the
shade with no human agency to seek cooling. Indeed, the
real-world limits are likely lower, as shown by Vanos et al.
(36), who introduced modeled physiological survival limits
using the Tw, whereby the 35�C Tw overestimates risk by
13.1�C under dry conditions for older populations [vs. being
nearly equal (0.9�C lower) for humid conditions in healthy
young populations]. Continued progression of such research
provides ample opportunity for themophysiologists to engage
with climate scientists to perform in chamber settings at a Tw

of 35�C based on different combinations of temperature and
humidity, with or without solar radiation, and varying winds
over the time scales of climate model output (e.g., 3- or 6-h)
for different types of people (36).

Empirical testing of the 35�C Tw limit did not occur until
(37) published on critical wet-bulb limits across a range of
extreme heat conditions in a population of young, healthy,
yet unacclimated subjects in Central Pennsylvania, USA. The
authors found that those subjects, doing minimal work,
began to experience uncompensable heat stress at Tw �
30.6�C in warm, humid conditions with a linear decrease in
critical Tw with increasing temperature and decreasing rela-
tive humidity, indicating the critical role the interaction of
temperature and humidity play in physiological heat strain
(11). The onset of cardiovascular drift occurred in less severe
environments in the same population (38). These new limits
(37) have been used in larger biometeorological studies look-
ing at past threshold exceedance, especially in South Asia
(39, 40), as well as an update to future threshold exceedance,
adaptive possibilities, and regional habitability (41, 42).
Thermal physiology and climate research can align in this
space and model the impacts of adaptation strategies, such
as behavior (43) and personal cooling strategies (44), at expo-
sures near the limit of human heat tolerance.

Public Health Guidance on Fan Usage

Most of the populated world is still decades from pro-
longed exposures to levels of heat exceeding human toler-
ance, yet heat still causes illness and death at alarming rates
across the globe today. Although air conditioning (AC) can be
a great equalizer in heat safety, it can be cost-prohibitive to
install and its use is unsustainable (19). Electric fans can
provide a cheaper alternative to cooling during extreme
heat events. World Health Organization (WHO) guidelines
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advocated for fan use for cooling for air temperatures up to
35�C, after which the WHO argued that fan use would
increase dry heat gain and be rendered ineffective and even
harmful. Morris et al. (45) used biophysical modeling based
on previous empirical research to show that fans could safely
be used at temperatures ranging from 37�C to 39�C depend-
ing on age and medication taken. Using this new physiologi-
cally based data and past weather observations, they found
that fan usage would be safe for all groups of people for a ma-
jority of extreme heat days from 2007 to 2019. Parsons et al.
(46) then used these updated fan use thresholds in a United
States-wide study, finding that areas with high social vulner-
ability (i.e., those who would be less likely to afford the costs
associated with air conditioning and thus more dependent
on electric fan use), as defined by the US Centers for Disease
Control, are already experiencing conditions deemed unsafe
for using fans as a cooling mechanism during heatwaves.
This study provides another data point indicating that a pub-
lic health crisis is already in progress in some of the most at-
risk communities in the United States (46).

CALL TO ACTION TO PHYSIOLOGISTS

What can be done to further the collaboration between
thermal physiologists and biometeorologists? Current com-
puting power and data storage limits mean that large-scale
weather and climate databases will not reach the spatial or
temporal resolution of individuals going about their daily
routines. Although evolving personal and household heat ex-
posure methods and data are gaining traction, results that
will guide public health recommendations and implementa-
tion will focus more on population-level characteristics,
which are more applicable to the scales at which weather and
climate data can provide adequate exposure assessments.

More data from diverse populations will help better under-
stand how climatic and physiological variability may work in
tandem to enhance acclimatization and adaptation to envi-
ronmental conditions. Although we currently have critical
environmental limits to heat tolerance for young, healthy,
unacclimated people in a specific region (e.g., Ref. 37), study-
ing diverse populations globally and across the lifespan is
essential. Much of the thermal physiology data that biome-
teorologists attempt to apply to a global population is under-
pinned by data collected from predominantly white men in
high-income countries. The National Institutes of Health has
made strides in ensuring sexual diversity in funded studies,
but more work is needed. Is the male US military recruit,
which is used as the model for measuring heat stress with the
WBGT, representative of the woman fetching water from the
stream in South Asia who is more chronically exposed to
moist heat stress? Likely not. More thermophysiological stud-
ies are needed to understand such nuances so that climate
projections using the WBGT are not only applied to one type
of person. Global climate change-induced impacts will dis-
proportionately affect those living in LMICs where there is a
lack of physiological and epidemiological data. It is impera-
tive to work with those who live in these places to gather
insight and show how physiological variability (or, per-
haps, lack thereof) may play a role in adapting or thriving
in a changing climate.

CONCLUSIONS AND FUTURE
OPPORTUNITIES

Thermal physiologists and biometeorologists represent
two disciplines amongmany that are working at the intersec-
tions of climate change and human health and whose work
can be co-beneficial in supporting evidence-based public
health interventions during extreme heat events. Thermal
physiologists can describe direct impacts on the human body
undergoing heat stress and strain. At the same time, biome-
teorologists can use these data to quantify periods of environ-
mental exposure across weather and climate time scales for
more generalized public health guidance. Although scale
incongruence will continue to be a limitation for the foresee-
able future, there are still ample opportunities for fruitful col-
laboration between the fields. However, knowledge transfer
and cross-disciplinary training are needed to form fully
fledged answers to these research questions. We call on ther-
mal physiologists and biometeorologists to ask new ques-
tions, get curious, and foster cross-disciplinary ties together
and with others to advance heat-health solutions––solutions
that protect the most at-risk populations and can better drive
decision-making and heat resilience. In the face of an aging
and urbanizing global population within a changing climate,
we argue that enhanced use-inspired research among physi-
ologists, climate scientists, biometeorologists, and the most
relevant end-users (e.g., public health agencies and govern-
ments) is a necessity to shift the needle in health protection
from extreme heat.
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