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Abstract—Null Convention Logic (NCL) is a popular 
asynchronous design paradigm that, in contrast to its synchronous 
counterpart, demonstrates robustness, ultra-low power 
performance, and ease of design reuse, while avoiding the complex 
clock management issues. Despite these advantages, the lack of 
mature computer-aided design tools has limited the widespread 
adoption of the domain across the industry. To address this gap, 
we present herein a novel framework, ASCEND, to facilitate the 
automated synthesis of NCL circuits with enhanced optimization 
capabilities. ASCEND includes multiple NCL protocol and 
equivalence verification schemes, as well as supports the synthesis 
of a pareto-optimal design in terms of throughput or area, 
contingent upon the target requirement. The performance and 
efficacy of the framework have been validated using multiple 
IWLS and ISCAS benchmark circuits. 
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I. INTRODUCTION 
The conventional synchronous domain has been dominating 

the digital IC design industry for years, owing to its compliance 
with the growing consumer demands for miniaturized, reliable, 
and fast-operating electronic devices. The clocked domain has, 
however, reached a point where the potential for further 
advancements is significantly restricted by a variety of design 
constraints, with clock management being the foremost concern. 
Several clock-related issues, such as clock skew, clock 
distribution, and clock jitter, arise that require substantial 
mitigation, making the design significantly expensive in terms 
of area and power consumption. For instance, addressing clock 
skew demands complex timing analysis, which becomes 
extremely challenging due to fabrication and manufacturing 
variations. In addition, the significantly large capacitance 
associated with the clock line makes it exceedingly power 
hungry. Large buffer trees are employed to minimize 
capacitance in distribution, which further results in an increase 
in power as well as area overhead.  

In recent times, the Quasi-Delay Insensitive (QDI) 
asynchronous clockless domain has emerged as a promising 
alternative, overcoming the major challenges associated with the 
synchronous domain [1]. Null Convention Logic (NCL) [2] is 
one such commercially successful QDI paradigms. NCL circuits 
are robust, energy efficient, provides ease of design reuse, and 
demonstrates less electromagnetic interference. The inherent 
robustness and resilience against process, voltage, and 
temperature (PVT) variations render them an excellent choice 

for a variety of distinctive applications, such as energy-
harvesting- and/or self-powered IoT applications, low-power 
and low-maintenance applications, radiation intensive adverse 
environmental applications, among others. Despite the fact that 
NCL circuits have garnered a growing industrial interest, their 
widespread adoption has been mostly impeded by the following: 
1) the lack of mature electronic design automation (EDA) tools 
to facilitate automated synthesis, optimization, mapping, testing, 
and verification, 2) a lack of human resources with the requisite 
design expertise, and 3) increased area footprint due to 
architectural constraints [3]. The synchronous-like framework 
of NCL has motivated researchers to utilize similar design flows 
and processes to automate the synthesis of such circuits. NCL_D 
[4] and NCL_X [5] are two earlier commercial NCL design 
flows, which use standard synchronous computer-aided design 
(CAD) tools for NCL logic synthesis. The NCL_D flow is more 
restrictive due to the imposed delay-insensitivity (DI) 
constraints, which restrict the potential for optimization, 
resulting in a significantly larger area overhead. Conversely, the 
NCL_X flow enables a more relaxed implementation of the 
logic unit, thereby improving the circuit’s overall delay and area 
utilization. However, this is accomplished at the cost of a larger 
and slower completion detection unit. Numerous NCL 
optimization schemes were developed in the subsequent years, 
both at the gate and module levels, with the primary focus to 
reduce area by striking an optimal balance between restrictive 
and non-restrictive implementations [6-8]. UNCLE [9] is a more 
recent EDA tool that integrates several optimization schemes, 
including some of the ones previously referenced, into the flow 
to synthesize optimized NCL circuits. 

Herein, we propose a novel EDA framework, Advanced 
Synthesis, Circuit ExploratioN, and Design Optimization for 
NCL (ASCEND), to facilitate the automated synthesis of NCL 
circuits with enhanced optimization capabilities. Following are 
the major contributions and unique features of ASCEND:  

i) integrates the first ever enhanced optimization scheme, 
which is primarily focused on the synthesis of throughput-
optimized NCL circuits within a unified design flow;  

ii) intelligently combines and builds upon several existing 
NCL optimization schemes, yielding smaller and faster circuits;  

iii)  incorporates multiple functions to enhance the 
optimization flexibility by allowing for less restrictive and 
independent optimization of logic and delay insensitivity; 

iv) empowers the user to make a well-informed decision 
regarding the synthesis of a pareto-optimal design in terms of 
throughput or area, contingent upon the target requirement;  

v) includes multiple optional testing and debugging features 
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to validate the functional correctness, observability, and input-
completeness of the synthesized NCL circuits. 

The remainder of the paper is organized as follows: Section 
II presents a brief NCL overview; Section III details the 
ASCEND design flow; Section IV demonstrates the tool and 
presents the synthesis results; and Section V concludes the paper 
and discusses the scope of future work.  

II. NCL OVERVIEW 
A. NCL Framework 

Fig. 1 depicts the NCL framework. Each stage within an 
NCL pipeline consists of two sets of registers, one 
combinational logic (C/L) unit, and one completion detection 
(C/D) unit. NCL mostly employs a dual-rail one-hot (1-of-2) 
data  encoding scheme, where each dual-rail variable can have 
one of the three valid values: DATA0 ({𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙1, 𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙0} = 01), 
DATA1 ({𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙1, 𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙0} = 10 ), and NULL ({𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙1, 𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙0} =
00), which correspond to Boolean logic ‘0’, Boolean logic ‘1’, 
and a spacer value that indicates the unavailability of DATA, 
respectively. In a properly functioning circuit, the two rails of a 
given bit must never be asserted simultaneously, i.e., 
{𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙1, 𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙0}  ≠ 11. A quad-rail logic (1-of-4) is less prevalent, 
but it is also feasible. NCL primarily employs a four-phased 
handshaking protocol to regulate and synchronize the flow of 
input wavefronts. In each stage, the registration and the C/D unit 
utilize local request (Ki) and acknowledgment (Ko) signals to 
maintain an alternating sequence of NULL and DATA. The 
NULL spacer helps in distinguishing two distinct DATA 
wavefronts in the absence of a global clock reference. NCL 
gates, frequently referred to as threshold gates, are utilized to 
implement NCL registers, C/L unit, and C/D unit. A set of 27 
fundamental threshold gates collectively implements all unique 
functions consisting of up to four variables. A threshold gate can 
be unweighted or weighted. An unweighted gate is represented 
as THmn, where m and n indicate the gate’s threshold and the 
number of inputs, respectively, where 1≤ m ≤ n. The threshold 
determines the minimum number of inputs required to be 
asserted to assert the gate output. A weighted gate is represented 
as THmnWw1… wN, where wN is the integer weight value of input 
N. NCL gates have state holding capability, referred to as 
hysteresis, which ensures that that once a gate is asserted, it will 
not be deasserted until all inputs are deasserted. This is a key 
feature to preserve the delay insensitivity within the pipeline.   
B. Input Completeness, Observability, and Relaxation 

The NCL C/L unit must be input-complete and observable 
to preserve delay-insensitivity [1]. In an input-complete NCL 
C/L unit, the circuit's outputs are allowed to transition from 
NULL-to-DATA (DATA-to-NULL) only after all its inputs 
have transitioned from NULL-to-DATA (DATA-to-NULL). 
Seitz's "weak conditions" for delay-insensitive signaling impose 
a less stringent requirement [10], allowing certain outputs in a 

multi-output C/L circuit to transition to DATA (NULL) without 
requiring a complete DATA (NULL) set at the inputs. This is 
permissible as long as it is not possible to compute a complete 
DATA (NULL) set at the output before the arrival of a complete 
input set. Observability requires each gate transition to be 
detectable at the output, i.e., any gate that undergoes a transition 
must also cause a transition in at least one primary output. Note 
that an input-complete NCL circuit ensures the observability of 
each primary input. Nowick introduced the concept of 
relaxation in [6], illustrating that it is feasible for an NCL C/L 
to replace certain input-complete functions with their equivalent 
relaxed (input-incomplete) functions and still remain input-
complete and observable as a whole. Figs. 2a and 2b show the 
NCL implementation of an input-complete (strict) and input-
incomplete (relaxed) 4-input NCL AND function, respectively. 
While the strict implementation of the AND function requires 
93 transistors and two levels of gate delays, the relaxed 
implementation requires 30 transistors and one level of gate 
delay. This indicates the potential of relaxation to significantly 
reduce the delay and area overhead in NCL circuits. 

III. ASCEND DESIGN FLOW 
The ASCEND design flow is outlined in Fig. 3. The input to 

the tool is a Hardware Description Language (HDL) 
implementation of the specification synchronous/Boolean 
circuit. The specification first goes through an initial RTL 
synthesis process to generate an optimized netlist, Bool34_opt, 
consisting of up to 4-input fundamental Boolean functions only 
(i.e., OR, NOR, AND, NAND, XOR, XNOR, NOT), targeting 
an NCL gate library. The ABC tool [11] is utilized to perform 
the mapping and optimization in this stage. The tool then 
diverges into two paths, one prioritizes the synthesis of a 
throughput optimized NCL circuit, while the other prioritizes 
area optimization, as illustrated next.  
A. Area and Throughput Optimized NCL Synthesis 

a) ASCEND Enhanced Throughput Optimization: In our 
novel ASCEND Enhanced Throughput optimization, the 
algorithm leverages multiple optimization strategies, namely 
intelligent gate merging, explicit completeness, and iterative 
relaxation, yielding a faster NCL circuit than any of the existing 
methods. Integrating this throughput optimization scheme into 
the design flow is a major contribution, which advances 
ASCEND compared to previous design flows, and has been 
internally developed and extensively validated, as detailed in 
[12]. This is a three-stage process, as summarized below: 
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Fig. 1. NCL Framework [3]. 
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Fig. 2. a) Strict 4-input NCL AND; b) relaxed 4-input NCL AND function. 



i. The first stage is referred to as the iterative relaxation stage, 
during which a modified version of Nowick's relaxation 
algorithm, targeting latency optimization, is applied iteratively. 
All the functions in Bool34_opt are considered as strict (i.e., 
input-complete) and the circuit’s critical paths are identified 
prior to applying the iterative relaxation algorithm. The 
objective of the algorithm is to reduce the critical path gate delay 
by relaxing as many 3 and 4-input functions in the critical 
path(s) as possible during each iteration. The strict 
implementation of any 3 or 4-input function in NCL, with the 
exception of XOR and XNOR, necessitates a gate delay 1-level 
longer than its equivalent relaxed implementation. A categorical 
weight assignment scheme is implemented to prioritize 
relaxation of critical path functions with 3- and 4-inputs. The 
optimal set of functions that can be relaxed in the identified 
critical path(s) is then determined using a unate covering 
problem algorithm. Subsequently, the critical paths are 
recalculated, and the steps are iterated upon until no further 
relaxation is possible.  

ii. The second stage is referred to as the intelligent merging 
stage, during which the partially relaxed circuit from stage 1 is 
further optimized for throughput, utilizing our novel iterative 
merging algorithm. The algorithm initially identifies clusters of 
Boolean functions in the critical path(s) that may be merged, 
then subsequently evaluates the tradeoffs associated with these 
possible merges, taking into account several constraints 
particular to NCL. The merged functions are relaxed to further 
reduce the delay in critical path(s), which can compromise the 

circuit’s input-completeness and observability. To prevent this, 
signals that are not observable through any path in the C/L 
circuit are explicitly made observable through the C/D unit by 
generating completion signals from each unobservable function. 
Since this synthesis step prioritizes throughput optimization, a 
merging that necessitates the generation of explicit signals is 
only permissible if it reduces the critical path delay or does not 
increase the completion unit's delay due to the added signals. 
After each merging, the critical path(s) are recalculated, and the 
procedure is repeated until there are no mergeable functions.  

iii. This third stage is the area optimization stage. While the 
first two stages target relaxation and merging on the critical path 
functions for throughput optimization, this stage applies the 
techniques to merge and relax as many remaining functions as 
possible from non-critical paths, to optimize for area.  

b) NCL_X based Area Optimization: This is the alternate 
synthesis path that targets the synthesis of area-optimized NCL 
circuits. Kondratyev’s NCL with explicit completeness 
architecture, NCL_X [5], is integrated herein within the design 
flow. In this phase of synthesis, all the functions in Bool34_opt 
are implemented in a relaxed manner, causing the C/L to be 
neither input-complete nor observable. This relaxed 
implementation significantly reduces the area and delay as 
compared to regular NCL implementations. However, this 
cannot outperform the ASCEND throughput optimized 
synthesis in terms of delay, as can be seen from Table I. This is 
because the overall delay of an NCL circuit is determined by 
both the C/L unit as well as the C/D circuitry. In NCL_X, a 
large number of explicit signals are required to be generated in 
each stage, which are combined by an additional C/D unit per 
stage, to make the C/L functions observable and the overall 
circuit input-complete. This significantly increases the 
completion delay of the synthesized circuit, which in turn 
increases the overall circuit delay. 
B. Evaluation and Verification of the Synhtesized Logic with 

Graphical Debugging Features 
Post logic synthesis, the resource evaluation metrics, such as 

the number of input-complete gates, number of relaxed gates, 
overall critical path delay, total transistor counts, etc., of both 
optimizations are presented to the user for a well-informed 
selection based on the target application and requirements. 
Additionally, throughout the entire logic synthesis phase, the 
initial specification circuit undergoes a significant 
transformation. This may result in the implementation (i.e., 
synthesized circuit) appearing significantly different from its 
specification counterpart. The tool conducts a logic equivalence 
check at this point, which is based on extensive simulation, to 
guarantee that the specification and the implementation are 
logically equivalent. The user is informed of the verification's 
success or failure via text transcripts. This also enables the 
designers to detect any corner case bugs within the processes. In 
addition, the synthesized circuit comprises a variety of 
functions, some of which are strict and others that are relaxed. 
A bug in the synthesis process can impact circuit’s input-
completeness or observability property, hence compromising its 
delay-insensitivity. To detect such bugs, the tool includes an 
automated verification scheme that validates the input-
completeness and observability of the synthesized NCL circuits. 
In addition, the tool can generate a graphical image, highlighting 
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the input-complete gates, relaxed gates, gate-to-gate 
connections, critical paths from primary inputs to primary 
outputs, etc., for debugging, in case the verification fails. 
C. Dual-Rail Expansion and Inclusion of Registration and 

Completion Units 
A dual-rail expansion is performed post logic synthesis, 

where each wire is converted to a dual-rail signal and each gate 
function gets replaced by the corresponding NCL 
implementation using threshold gates. The registers and the 
completion detection circuitry are added at this point. The 
complete NCL circuit is presented as a Verilog HDL model. A 
final functional check is performed to verify the synthesized 
NCL implementation’s functionality. The check performs tests 
to guarantee the correct propagation of NULL and DATA 
through the stages, the generation of correct request and 
acknowledgment signals by the stages during NULL/DATA 
propagation, and the generation of non-illegal dual-rail signals, 
among others. 

IV. TOOL DEMONSTRATION AND SYNTHESIS RESULTS 
ICSAS’85 [13] and IWLS [14] combinational benchmark 

circuits were utilized to demonstrate the performance of the 
proposed ASCEND tool. The throughput and area optimized 
NCL versions of all the benchmark circuits were effectively 
synthesized by the tool. Due to page constraints, Table I presents 
the synthesis results of 6 of the 64 benchmark circuits of varying 
size and complexity. The NCL Funcs. column shows the total 
number of NCL gate functions in the synthesized circuit, with 
the percentage of relaxed functions calculated as the value 
within the parenthesis. The Total Delay column represents the 
combined worst case number of gate delays in the circuit’s C/L 
and C/D logic, i.e., Total Delay = C/L delay+ C/D delay. The 
speed of an NCL circuit is estimated in terms of gate delays as 2 
× Total Delay [12]. The #Transistors column indicates the 
number of transistors required to implement each NCL circuit’s 
completion and combinational logic. Table I suggests that the 
ASCEND enhanced throughput optimization can produce NCL 
circuits that are ~8% faster than NCL_X on average, with term1 
exhibiting 13.3% faster operation. NCL_X based area optimized 
synthesis requires 152, 2,856, 1,185, and 6,653 fewer transistors 
for term1, frg2, c5315, and too_large circuits, respectively, as 
compared to the throughput optimized synthesis. However, it is 
interesting to note that NCL_X based synthesis requires 1,526 
and 3,880 more transistors for c1355 and c7552, respectively. 

This suggests that the integration of our novel ASCEND 
enhanced throughput optimization scheme within the synthesis 
flow, enables our tool to produce NCL circuits that are always 
faster and even smaller in certain instances. This underscores the 
efficacy of our tool, which generates a comprehensive synthesis 
report that includes all evaluation metrics for both optimizations, 
enabling users to make more informed tradeoffs.  

V. CONCLUSIONS 
In this paper, we have presented and demonstrated 

ASCEND, a novel EDA framework, to facilitate the automated 
synthesis of NCL circuits with multi-faceted enhanced 
optimization capabilities. The tool offers outstanding prospects 
for future research to advance development, assisting current 
researchers in their endeavors to create industry-standard 
support tools for optimized NCL asynchronous circuits. 
Currently, work is in progress in the following areas: i) 
integrating transistor level SPICE simulation data for NCL 
primitive cells to precisely evaluate the delay and energy 
utilization; ii) replacing simulation-based testing with NCL 
formal verification schemes; and iii) developing an RTL Netlist 
viewer for the post-optimization synthesized NCL circuits.  
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TABLE I.  SYNTHESIS RESULTS 

Circuit 

ASCEND Enhanced 
Throughput Optimization 

NCL_X based Area 
Optimization 

NCL 
Funcs. 

Total 
Delay 

#Transi
stors 

NCL 
Funcs. 

Total 
Delay 

#Trans
istors 

term1 250 
(39%) 13 7060 192  15 6908 

c1355 170 
(89%) 13 6282 170 14 7808 

frg2 905 
(34%) 14 27534 681 15 24678 

c5315 1170 
(44%) 25 34421 876 27 33236 

c7552 1121 
(48%) 26 34300 992 28 38180 

too_large 2667 
(60%) 15 81973 2059   16 75320 
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