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Abstract—Null Convention Logic (NCL) is a popular
asynchronous design paradigm that, in contrast to its synchronous
counterpart, demonstrates robustness, ultra-low power
performance, and ease of design reuse, while avoiding the complex
clock management issues. Despite these advantages, the lack of
mature computer-aided design tools has limited the widespread
adoption of the domain across the industry. To address this gap,
we present herein a novel framework, ASCEND, to facilitate the
automated synthesis of NCL circuits with enhanced optimization
capabilities. ASCEND includes multiple NCL protocol and
equivalence verification schemes, as well as supports the synthesis
of a pareto-optimal design in terms of throughput or area,
contingent upon the target requirement. The performance and
efficacy of the framework have been validated using multiple
IWLS and ISCAS benchmark circuits.

Keywords—Null  Convention Logic, Electronic Design
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L INTRODUCTION

The conventional synchronous domain has been dominating
the digital IC design industry for years, owing to its compliance
with the growing consumer demands for miniaturized, reliable,
and fast-operating electronic devices. The clocked domain has,
however, reached a point where the potential for further
advancements is significantly restricted by a variety of design
constraints, with clock management being the foremost concern.
Several clock-related issues, such as clock skew, clock
distribution, and clock jitter, arise that require substantial
mitigation, making the design significantly expensive in terms
of area and power consumption. For instance, addressing clock
skew demands complex timing analysis, which becomes
extremely challenging due to fabrication and manufacturing
variations. In addition, the significantly large capacitance
associated with the clock line makes it exceedingly power
hungry. Large buffer trees are employed to minimize
capacitance in distribution, which further results in an increase
in power as well as area overhead.

In recent times, the Quasi-Delay Insensitive (QDI)
asynchronous clockless domain has emerged as a promising
alternative, overcoming the major challenges associated with the
synchronous domain [1]. Null Convention Logic (NCL) [2] is
one such commercially successful QDI paradigms. NCL circuits
are robust, energy efficient, provides ease of design reuse, and
demonstrates less electromagnetic interference. The inherent
robustness and resilience against process, voltage, and
temperature (PVT) variations render them an excellent choice
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for a variety of distinctive applications, such as energy-
harvesting- and/or self-powered IoT applications, low-power
and low-maintenance applications, radiation intensive adverse
environmental applications, among others. Despite the fact that
NCL circuits have garnered a growing industrial interest, their
widespread adoption has been mostly impeded by the following:
1) the lack of mature electronic design automation (EDA) tools
to facilitate automated synthesis, optimization, mapping, testing,
and verification, 2) a lack of human resources with the requisite
design expertise, and 3) increased area footprint due to
architectural constraints [3]. The synchronous-like framework
of NCL has motivated researchers to utilize similar design flows
and processes to automate the synthesis of such circuits. NCL_D
[4] and NCL_X [5] are two earlier commercial NCL design
flows, which use standard synchronous computer-aided design
(CAD) tools for NCL logic synthesis. The NCL_D flow is more
restrictive due to the imposed delay-insensitivity (DI)
constraints, which restrict the potential for optimization,
resulting in a significantly larger area overhead. Conversely, the
NCL_X flow enables a more relaxed implementation of the
logic unit, thereby improving the circuit’s overall delay and area
utilization. However, this is accomplished at the cost of a larger
and slower completion detection unit. Numerous NCL
optimization schemes were developed in the subsequent years,
both at the gate and module levels, with the primary focus to
reduce area by striking an optimal balance between restrictive
and non-restrictive implementations [6-8]. UNCLE [9] is a more
recent EDA tool that integrates several optimization schemes,
including some of the ones previously referenced, into the flow
to synthesize optimized NCL circuits.

Herein, we propose a novel EDA framework, Advanced
Synthesis, Circuit ExploratioN, and Design Optimization for
NCL (ASCEND), to facilitate the automated synthesis of NCL
circuits with enhanced optimization capabilities. Following are
the major contributions and unique features of ASCEND:

i) integrates the first ever enhanced optimization scheme,
which is primarily focused on the synthesis of throughput-
optimized NCL circuits within a unified design flow;

ii) intelligently combines and builds upon several existing
NCL optimization schemes, yielding smaller and faster circuits;

iil) incorporates multiple functions to enhance the
optimization flexibility by allowing for less restrictive and
independent optimization of logic and delay insensitivity;

iv) empowers the user to make a well-informed decision
regarding the synthesis of a pareto-optimal design in terms of
throughput or area, contingent upon the target requirement;

v) includes multiple optional testing and debugging features



to validate the functional correctness, observability, and input-
completeness of the synthesized NCL circuits.

The remainder of the paper is organized as follows: Section
I presents a brief NCL overview; Section III details the
ASCEND design flow; Section IV demonstrates the tool and
presents the synthesis results; and Section V concludes the paper
and discusses the scope of future work.

II. NCL OVERVIEW

A. NCL Framework

Fig. 1 depicts the NCL framework. Each stage within an
NCL pipeline consists of two sets of registers, one
combinational logic (C/L) unit, and one completion detection
(C/D) unit. NCL mostly employs a dual-rail one-hot (/-0f-2)
data encoding scheme, where each dual-rail variable can have
one of the three valid values: DATAO ({railt,rail’} = 01),
DATAL ({railt,rail®} = 10), and NULL ({rail’,rail®} =
00), which correspond to Boolean logic ‘0’, Boolean logic ‘1°,
and a spacer value that indicates the unavailability of DATA,
respectively. In a properly functioning circuit, the two rails of a
given bit must never be asserted simultancously, i.e.,
{rail*, rail®} # 11. A quad-rail logic (/-of-4) is less prevalent,
but it is also feasible. NCL primarily employs a four-phased
handshaking protocol to regulate and synchronize the flow of
input wavefronts. In each stage, the registration and the C/D unit
utilize local request (Ki7) and acknowledgment (Ko) signals to
maintain an alternating sequence of NULL and DATA. The
NULL spacer helps in distinguishing two distinct DATA
wavefronts in the absence of a global clock reference. NCL
gates, frequently referred to as threshold gates, are utilized to
implement NCL registers, C/L unit, and C/D unit. A set of 27
fundamental threshold gates collectively implements all unique
functions consisting of up to four variables. A threshold gate can
be unweighted or weighted. An unweighted gate is represented
as THmn, where m and n indicate the gate’s threshold and the
number of inputs, respectively, where /< m < n. The threshold
determines the minimum number of inputs required to be
asserted to assert the gate output. A weighted gate is represented
as THmnWw; ... wy, where wyis the integer weight value of input
N. NCL gates have state holding capability, referred to as
hysteresis, which ensures that that once a gate is asserted, it will
not be deasserted until all inputs are deasserted. This is a key
feature to preserve the delay insensitivity within the pipeline.

B. Input Completeness, Observability, and Relaxation

The NCL C/L unit must be input-complete and observable
to preserve delay-insensitivity [1]. In an input-complete NCL
C/L unit, the circuit's outputs are allowed to transition from
NULL-to-DATA (DATA-to-NULL) only after all its inputs
have transitioned from NULL-to-DATA (DATA-to-NULL).
Seitz's "weak conditions" for delay-insensitive signaling impose
a less stringent requirement [10], allowing certain outputs in a
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Fig. 1. NCL Framework [3].
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multi-output C/L circuit to transition to DATA (NULL) without
requiring a complete DATA (NULL) set at the inputs. This is
permissible as long as it is not possible to compute a complete
DATA (NULL) set at the output before the arrival of a complete
input set. Observability requires each gate transition to be
detectable at the output, i.e., any gate that undergoes a transition
must also cause a transition in at least one primary output. Note
that an input-complete NCL circuit ensures the observability of
each primary input. Nowick introduced the concept of
relaxation in [6], illustrating that it is feasible for an NCL C/L
to replace certain input-complete functions with their equivalent
relaxed (input-incomplete) functions and still remain input-
complete and observable as a whole. Figs. 2a and 2b show the
NCL implementation of an input-complete (strict) and input-
incomplete (relaxed) 4-input NCL AND function, respectively.
While the strict implementation of the AND function requires
93 transistors and two levels of gate delays, the relaxed
implementation requires 30 transistors and one level of gate
delay. This indicates the potential of relaxation to significantly
reduce the delay and area overhead in NCL circuits.

III. ASCEND DESIGN FLOW

The ASCEND design flow is outlined in Fig. 3. The input to
the tool is a Hardware Description Language (HDL)
implementation of the specification synchronous/Boolean
circuit. The specification first goes through an initial RTL
synthesis process to generate an optimized netlist, Bool34_opt,
consisting of up to 4-input fundamental Boolean functions only
(i.e., OR, NOR, AND, NAND, XOR, XNOR, NOT), targeting
an NCL gate library. The ABC tool [11] is utilized to perform
the mapping and optimization in this stage. The tool then
diverges into two paths, one prioritizes the synthesis of a
throughput optimized NCL circuit, while the other prioritizes
area optimization, as illustrated next.

A. Area and Throughput Optimized NCL Synthesis

a) ASCEND Enhanced Throughput Optimization: In our
novel ASCEND Enhanced Throughput optimization, the
algorithm leverages multiple optimization strategies, namely
intelligent gate merging, explicit completeness, and iterative
relaxation, yielding a faster NCL circuit than any of the existing
methods. Integrating this throughput optimization scheme into
the design flow is a major contribution, which advances
ASCEND compared to previous design flows, and has been
internally developed and extensively validated, as detailed in
[12]. This is a three-stage process, as summarized below:
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Fig. 2. a) Strict 4-input NCL AND; b) relaxed 4-input NCL AND function.



i. The first stage is referred to as the iterative relaxation stage,
during which a modified version of Nowick's relaxation
algorithm, targeting latency optimization, is applied iteratively.
All the functions in Bool34 opt are considered as strict (i.e.,
input-complete) and the circuit’s critical paths are identified
prior to applying the iterative relaxation algorithm. The
objective of the algorithm is to reduce the critical path gate delay
by relaxing as many 3 and 4-input functions in the critical
path(s) as possible during each iteration. The strict
implementation of any 3 or 4-input function in NCL, with the
exception of XOR and XNOR, necessitates a gate delay 1-level
longer than its equivalent relaxed implementation. A categorical
weight assignment scheme is implemented to prioritize
relaxation of critical path functions with 3- and 4-inputs. The
optimal set of functions that can be relaxed in the identified
critical path(s) is then determined using a unate covering
problem algorithm. Subsequently, the critical paths are
recalculated, and the steps are iterated upon until no further
relaxation is possible.

ii. The second stage is referred to as the intelligent merging
stage, during which the partially relaxed circuit from stage 1 is
further optimized for throughput, utilizing our novel iterative
merging algorithm. The algorithm initially identifies clusters of
Boolean functions in the critical path(s) that may be merged,
then subsequently evaluates the tradeoffs associated with these
possible merges, taking into account several constraints
particular to NCL. The merged functions are relaxed to further
reduce the delay in critical path(s), which can compromise the
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Fig. 3. ASCEND Design Flow

circuit’s input-completeness and observability. To prevent this,
signals that are not observable through any path in the C/L
circuit are explicitly made observable through the C/D unit by
generating completion signals from each unobservable function.
Since this synthesis step prioritizes throughput optimization, a
merging that necessitates the generation of explicit signals is
only permissible if it reduces the critical path delay or does not
increase the completion unit's delay due to the added signals.
After each merging, the critical path(s) are recalculated, and the
procedure is repeated until there are no mergeable functions.

iii. This third stage is the area optimization stage. While the
first two stages target relaxation and merging on the critical path
functions for throughput optimization, this stage applies the
techniques to merge and relax as many remaining functions as
possible from non-critical paths, to optimize for area.

b) NCL X based Area Optimization: This is the alternate
synthesis path that targets the synthesis of area-optimized NCL
circuits. Kondratyev’s NCL with explicit completeness
architecture, NCL_X [5], is integrated herein within the design
flow. In this phase of synthesis, all the functions in Bool34 opt
are implemented in a relaxed manner, causing the C/L to be
neither input-complete nor observable. This relaxed
implementation significantly reduces the area and delay as
compared to regular NCL implementations. However, this
cannot outperform the ASCEND throughput optimized
synthesis in terms of delay, as can be seen from Table I. This is
because the overall delay of an NCL circuit is determined by
both the C/L unit as well as the C/D circuitry. In NCL X, a
large number of explicit signals are required to be generated in
each stage, which are combined by an additional C/D unit per
stage, to make the C/L functions observable and the overall
circuit input-complete. This significantly increases the
completion delay of the synthesized circuit, which in turn
increases the overall circuit delay.

B. Evaluation and Verification of the Synhtesized Logic with
Graphical Debugging Features

Post logic synthesis, the resource evaluation metrics, such as
the number of input-complete gates, number of relaxed gates,
overall critical path delay, total transistor counts, etc., of both
optimizations are presented to the user for a well-informed
selection based on the target application and requirements.
Additionally, throughout the entire logic synthesis phase, the
initial ~ specification circuit undergoes a  significant
transformation. This may result in the implementation (i.e.,
synthesized circuit) appearing significantly different from its
specification counterpart. The tool conducts a logic equivalence
check at this point, which is based on extensive simulation, to
guarantee that the specification and the implementation are
logically equivalent. The user is informed of the verification's
success or failure via text transcripts. This also enables the
designers to detect any corner case bugs within the processes. In
addition, the synthesized circuit comprises a variety of
functions, some of which are strict and others that are relaxed.
A bug in the synthesis process can impact circuit’s input-
completeness or observability property, hence compromising its
delay-insensitivity. To detect such bugs, the tool includes an
automated verification scheme that validates the input-
completeness and observability of the synthesized NCL circuits.
In addition, the tool can generate a graphical image, highlighting



the input-complete gates, relaxed gates, gate-to-gate
connections, critical paths from primary inputs to primary
outputs, etc., for debugging, in case the verification fails.

C. Dual-Rail Expansion and Inclusion of Registration and
Completion Units

A dual-rail expansion is performed post logic synthesis,
where each wire is converted to a dual-rail signal and each gate
function gets replaced by the corresponding NCL
implementation using threshold gates. The registers and the
completion detection circuitry are added at this point. The
complete NCL circuit is presented as a Verilog HDL model. A
final functional check is performed to verify the synthesized
NCL implementation’s functionality. The check performs tests
to guarantee the correct propagation of NULL and DATA
through the stages, the generation of correct request and
acknowledgment signals by the stages during NULL/DATA
propagation, and the generation of non-illegal dual-rail signals,
among others.

IV. ToOL DEMONSTRATION AND SYNTHESIS RESULTS

ICSAS’85 [13] and IWLS [14] combinational benchmark
circuits were utilized to demonstrate the performance of the
proposed ASCEND tool. The throughput and area optimized
NCL versions of all the benchmark circuits were effectively
synthesized by the tool. Due to page constraints, Table I presents
the synthesis results of 6 of the 64 benchmark circuits of varying
size and complexity. The NCL Funcs. column shows the total
number of NCL gate functions in the synthesized circuit, with
the percentage of relaxed functions calculated as the value
within the parenthesis. The Total Delay column represents the
combined worst case number of gate delays in the circuit’s C/L
and C/D logic, i.e., Total Delay = C/L delay+ C/D delay. The
speed of an NCL circuit is estimated in terms of gate delays as 2
x Total Delay [12]. The #Transistors column indicates the
number of transistors required to implement each NCL circuit’s
completion and combinational logic. Table I suggests that the
ASCEND enhanced throughput optimization can produce NCL
circuits that are ~8% faster than NCL_X on average, with term1
exhibiting 13.3% faster operation. NCL_X based area optimized
synthesis requires 152, 2,856, 1,185, and 6,653 fewer transistors
for terml, frg2, c5315, and too_large circuits, respectively, as
compared to the throughput optimized synthesis. However, it is
interesting to note that NCL X based synthesis requires 1,526
and 3,880 more transistors for c/355 and c¢7552, respectively.

TABLE I. SYNTHESIS RESULTS
ASCEND Enhanced NCL_X based Area
Cireuit Throughput Optimization Optimization
NCL Total #Transi NCL Total  #Trans
Funcs. Delay stors Funcs. Delay istors
250
term1 (39%) 13 7060 192 15 6908
170
c1355 (89%) 13 6282 170 14 7808
905
frg2 (34%) 14 27534 681 15 24678
1170
¢5315 (44%) 25 34421 876 27 33236
1121
c7552 (48%) 26 34300 992 28 38180
2667
too_large (60%) 15 81973 2059 16 75320

This suggests that the integration of our novel ASCEND
enhanced throughput optimization scheme within the synthesis
flow, enables our tool to produce NCL circuits that are always
faster and even smaller in certain instances. This underscores the
efficacy of our tool, which generates a comprehensive synthesis
report that includes all evaluation metrics for both optimizations,
enabling users to make more informed tradeoffs.

V. CONCLUSIONS

In this paper, we have presented and demonstrated
ASCEND, a novel EDA framework, to facilitate the automated
synthesis of NCL circuits with multi-faceted enhanced
optimization capabilities. The tool offers outstanding prospects
for future research to advance development, assisting current
researchers in their endeavors to create industry-standard
support tools for optimized NCL asynchronous circuits.
Currently, work is in progress in the following areas: 1)
integrating transistor level SPICE simulation data for NCL
primitive cells to precisely evaluate the delay and energy
utilization; ii) replacing simulation-based testing with NCL
formal verification schemes; and iii) developing an RTL Netlist
viewer for the post-optimization synthesized NCL circuits.
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