WWW.aging-us.com

AGING 2024, Vol. 16, No. 17

Research Perspective
Longitudinal activity monitoring and lifespan: quantifying

the interface

Su | laoY", Poorbita Kundu®", Han Chen?, James R. Carey?, Hans-Georg Miiller?

!Department of Statistics, University of California, Davis, CA 95616, USA
2Department of Entomology, University of California, Davis, CA 95616, USA
*Equal contribution

Correspondence to: Hans-Georg Miiller; email: hgmueller@ucdavis.edu
Keywords: age-at-death, force of mortality, functional data analysis, longitudinal data, mediterranean fruit fly
Received: July 23, 2024 Accepted: August 13, 2024 Published: September 9, 2024

Copyright: © 2024 lao et al. This is an open access article distributed under the terms of the Creative Commons Attribution
License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
author and source are credited.

ABSTRACT

Understanding the relationship between activity over the entire lifespan and longevity is an important facet of
aging research. We present a comprehensive framework for the statistical analysis of longitudinal activity and
behavioral monitoring and their relationship with age-at-death at the individual level, highlighting the
importance of advanced methodological approaches in aging research. The focus is on animal models, where
continuous monitoring activity in terms of movement, reproduction and behaviors over the entire lifespan is
feasible at the individual level. We specifically demonstrate the methodology with data on activity monitoring
for Mediterranean fruit flies. Advanced statistical methodologies to explore the interface between activity and
age-at-death include functional principal component analysis, concurrent regression, Fréchet regression and
point processes. While the focus of this perspective is on relating age-at-death with data on movement,
reproduction, behavior and nutrition of Mediterranean fruit flies, the methodology equally pertains to data
from other species, including human data.

INTRODUCTION The longitudinal monitoring data we consider here
encompass three key areas of life history: Activity
In recent years there has been a surge in the availability (quantified as counts of movements per time unit) [6],
of complex longitudinal data capturing various aspects reproduction (quantified as egg-laying per day for

of organismal life history. Relating such data to female flies) [7] and longitudinal behaviors

individual lifespan and age-at-death is of paramount
interest for the study of aging and longevity. We provide
an overview of advanced statistical methodologies that
are particularly well-suited for analyzing such data, with
a focus on understanding the complex relationships
between age-at-death and activity, reproduction and
diet at the individual level. While we illustrate the
methodology with data for lifetime monitoring of
Mediterranean fruit flies, it is generic and easily adapts
to other species. The methods are interpretable and enjoy
broad applicability, including for human longitudinal
aging and activity monitoring data [1-5].

(quantified as frequency of each behavior per time
unit) [8]. Of central interest is the prediction of
remaining lifespan for an individual who has survived
to a current age a, based on the available life history
(activity, diet etc.) data from birth to a for the
individual, i.e., the longitudinal monitoring data
available in the time interval [0, «]. Predicting the
exact remaining lifespan for an individual at current
age a is futile, but it is possible to predict the
distribution of remaining lifetime for an individual
[9] by utilizing Fréchet regression [10], as we
demonstrate below.
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Of interest is also the modeling of the longitudinally
observed activity or egg-laying data to elucidate
patterns and modes of variation of activity, using
covariance and functional principal component
modeling [11-13], where we specifically demonstrate
the applicability of product functional principal
component analysis [14] to jointly model two
components of the activity data, intra-day activity
measured in hours within each day and age-dependent
activity, where age is measured in days, giving rise to a
function-valued stochastic process [6].

Providing another perspective, we demonstrate the
modeling of daily egg-laying data for female medflies
with a global Cox point process model [15] that can be
coupled with a functional linear model [16] to quantify
the relationship between longevity and reproductive
activity [7, 17]. To study the effect of the current level
of reproduction on the immediate reproductive rate, we
demonstrate below the application of a concurrent
regression [ 18] approach.

Another type of important life history data in aging
research are age-varying behavioral data, where several
categories of behaviors are observed simultaneously and
one aims to establish patterns of behavior change as
individuals age [8, 19-21]. Riemannian functional
principal component analysis [22] is shown to be
uniquely suited or the simultaneous longitudinal study
of several behavioral components, accounting for the
complex compositional and longitudinal nature of such
data.

We note that these approaches can all be adapted to
human longitudinal aging data when available, offering
a statistical toolkit for researchers investigating human
aging and longevity. The statistical methods for the
most part are grounded in functional data analysis,
which aims at flexible modeling of trajectories and
longitudinal data [23-26], allowing for biological
interpretations and facilitating the detection of patterns
of aging and their relation with longevity.

RESULTS
Activity monitoring, diet and longevity

Movement activity profiles of mediterranean fruit flies

We illustrate the analysis of activity patterns and their
relationship with diet and longevity with the movement
activity profiles of 96 female adult Mediterranean fruit
flies (medflies). The experiment utilized the Monitor-
LAM?2S5 system to obtain repeated observations of the
24-hour locomotory activity for the 96 medflies, where
each fly was fed with one of three agar-based gel diets
that differed in their sugar and yeast hydrolysate content

(50%, 20% and 10% and labeled C50, C20 and C10).
Each diet group consisted of 32 female medflies. Each
fly was placed in its own glass tube (25 mm diameter,
125 mm length) and the activity count, defined as the
number of times a fly passed through an infrared beam
placed in the middle of the tube, was recorded for each
minute until the death of the fly; a full description with
further details can be found in Chen et al. [6].

Predicting remaining lifetime

Predicting the exact remaining lifetime for an
individual still alive at a specific age a is futile due to
the high random variation of individual age-at-death.
A more feasible target is to predict the distribution of
remaining lifetime for an individual alive at age a. We
demonstrate this by demonstrating the effect of diet by
predicting the distribution of remaining lifetime with
Fréchet regression (see Appendix) for individuals
in each of the diet groups C50, C20 and C10, where
the predicted distribution of remaining lifetime is
conditional on an individual still being alive at age a,
where a varies. Of course, the larger the value of a, the
more compressed the remaining lifetime distribution
is, as remaining lifetime is becoming shorter with
increasing age a.

The target to be predicted is the remaining lifetime
distribution at current age alive a, while the predictors
are (a, C20, C50), in addition to current age alive a
these are indicators for diet groups C20 and C50, where
C20 =1 if a fly is in diet group C20 and otherwise C20
= 0 and analogously for C50; if both C20 =0 and C50 =
0, the fly is in diet group C10. The results for the
predicted remaining lifetime distributions are shown in
terms of the densities of these distributions in Figure 1.
As expected, the densities of the predicted remaining
lifetime distributions shift to the left as the current age
alive a increases, consistent with the expectation of
shorter remaining lifetimes for older individuals. This
pattern is observed for all diet groups, however there are
variations in the magnitude and shape of the shift.
Specifically, in the C10 diet group, the density peak
shifts from approximately 70 days at a = 1 (i.e., right
after eclosion) to around 40 days as current age alive a
increases to 30 days. At a = 30 days, the density values
for the next 10 days shoot up rapidly, indicating
elevated risk of death within the first 10 days after
surviving past 30 days.

Predicted remaining lifetime distributions can be
equivalently visualized as mortality rate (force of
mortality, hazard function). Hazard functions can be
derived from the density functions of the remaining
lifetime distributions or alternatively directly estimated
from lifetable data, with proper adjustments for right
tail estimation [27, 28]. Figure 2 illustrates that, as
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expected, the mortality risk (represented by higher
values of the log hazard function) increases with
increasing current age alive a for all diet groups. Across
all diet groups, higher ages alive a are associated with
elevated mortality risk at all subsequent ages, in line
with expected increased mortality risk in older
populations. Among the three diet groups, the C10-fed
medflies are subject to the highest mortality risk at older
ages a, while the C20-fed medflies are seen to have a
relatively lower mortality risk. However, the overall

patterns of mortality risk across diet groups do not show
substantial differences.

Focusing on the diet group C20, which according to
Figure 2 is associated with the lowest mortality risk, we
further examine the effect of current alive age a on the
remaining lifetime distribution when also adjusting for
the overall movement activity from time 0 until age a.
Within each cohort surviving beyond age a, we classify
the subjects into “high” (above median) or “low”

Current alive age a2 I

1 30

C10 |

C20 C50
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0 15 30 45 60 75 90 0 15 30 45 60 75 90 0 15 30 45 60 75 90
Remaining lifetime (days)

Figure 1. Remaining lifetime distribution for different diet groups. Predicted remaining lifetime distributions (visualized as
densities) at different values of current alive age a, where a varies from a = 1 (blue) to a = 30 (red), for three different diet groups C10, C20,
C50 (yeast hydrolysate content 10%, 20% and 50%), using global Fréchet regression (4) (see Appendix).
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Figure 2. Log mortality rates for different diet groups. Log mortality rates (log hazard functions) of predicted remaining lifetime
distributions across varying current alive ages a at which a subject is still alive for different diet groups; see equation (4) in the Appendix.
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(below median) activity groups and implement global
Fréchet regression (see (2) in the Appendix) with the
remaining lifetime distribution as response and
predictors a and activity group (coded as an indicator
variable). Figure 3 indicates a movement of the density
peak towards the left and upward with increasing
currently alive age a that is more pronounced for the
“high” activity group, which means there is a higher
immediate death rate for this group. With increasing age
a, the densities tend to have higher and sharper peaks,
followed by a steadier decline. The global Fréchet
regression models are fitted using the R function
GloDenReg in the frechet package [29].

Analysis of continuous activity monitoring data
Continuous activity monitoring data can be viewed as a
function-valued stochastic process X(s, #), representing
the activity count at age ¢ (in days), which is the time
index of the process and within-day hour s, which is the
argument of the function observed at each age ¢. A key
methodology 1is functional principal component
analysis [30-32], which can be implemented with two-
dimensional eigenfunctions [6] or, as we demonstrate
here, with product eigenfunctions; for background see
Chen et al. [14] and the Appendix). Figure 4 shows the
first four eigenfunction surfaces for the product
approach (see equation (5) in the Appendix), which is
based on separate modeling of the hour and day
dimensions, capturing potentially distinct patterns of
variation for each of the day (age) and hour (within
day) time scales.

Current alive age a N
1

The eigenfunction products delineate the main modes of
variation for these processes, decomposing the total
variation into interpretable components. Here the first
eigenfunction surface ¢1(?)y1(s) (upper left) illustrates a
contrast between movement activity early (0-8 am) and
late in the day (after 8 am), with diminishing contrast at
older ages. The second eigenfunction surface @a(f)y1(s)
(upper right) highlights a contrasting pattern between
activity at early and late ages (before and after 12 days),
while the third eigenfunction surface ¢i(¢)y2(s) (bottom
left) shows another contrast that divides the intra-day
functions into periods before and after 4 pm. The fourth
eigenfunction surface  ¢(¥)ya(s) (bottom  right)
emphasizes a reversal of the contrast between early and
late activity at younger ages (before 4 pm until age 15
days) and late activity at older ages (after 4 pm beyond
age 15), but overall does not explain much of the
variation. Using the functional principal component
scores for this product approach, one can further
investigate the relationship between remaining lifetime
and activity patterns; see [6] for more details.
Implementations of these methods are available in the R
package fdarep [33] via functions Dense2dFPCA and
DenseProductFPCA.

Reproduction and longevity
Cost of reproduction
The well-known cost of reproduction hypothesis in

biodemography and life history analysis is still
somewhat controversial due to a lack of clearly

30

[ low

high

0 15 30 45 60 75

90
Remaining lifetime (days)

0 15 30 45 60 75 90

Figure 3. Remaining lifetime distribution for different activity levels. Predicted remaining lifetime distributions (visualized as
densities) at varying alive ages a at which a subject is still alive and low (below median)/high (above median) activity levels, using global
Fréchet regression (see (4) in the Appendix). Only C20-fed (yeast hydrolysate content 20%) flies are included in the analysis.
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identifiable proximal factors. The general idea is that
finite resources must be split between maintenance to
extend lifespan and reproduction, both of which
require protein sources [7, 34, 35], implying that high
reproductive activity could be associated with reduced
remaining lifespan. There is some evidence for a
regulatory mechanism whereby lifespan is determined
by remaining egg-laying potential; if this potential is
low because eggs have been depleted then the
remaining lifespan tends to be short and vice versa
[17].

To study cost of reproduction related questions for
cohorts of flies where reproduction can be measured as
longitudinally measured daily egg-laying requires
dedicated statistical methodology. We demonstrate this
for a study of 473 female adult Mediterranean fruit flies
who survived past age 35 days. The experiment was
conducted at temperature 26 = 2°C, relative humidity 80
+ 10%, and a 12:12 light:dark cycle. The medflies were
placed in their own cages (6.5 x 6.5 x 12 cm plastic
bottles kept horizontally) with a lid replaced by a fine
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mesh through which flies would lay their eggs that, in
turn, would fall to a dish lined with a damp, black cloth.
These oviposition dishes were collected daily for egg
counting. On average, the daily number of eggs laid by
female Mediterranean fruit flies tends to peak between
10 and 15 days after emergence and subsequently
declines with age, as shown in previous analyses of
these data [7, 17, 34].

The observed data are longitudinal daily egg counts,
visualized in Figure 5. When analyzing such data, it is
important to consider cohorts where all flies survive
through a specified age a, in Figure 5 chosen as a = 35
days, to avoid censoring issues that will lead to bias.
The figure shows that these data are afflicted by high
variance, with high day-to-day variation.

Associations of daily egg count data and longevity

Elucidating the relationship between reproduction and
longevity has been of long-standing interest in
biodemography [7, 17, 36, 37]. Here we demonstrate the
application of a global Cox point process regression
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Figure 4. Eigensurfaces for early age medfly activity data. The first four eigensurfaces for product functional principal component
analysis are depicted, with ¢1(t)(1(s) (top left, 13.62%), ¢a(t)(s) (top right, 8.62%), ¢1(t)Pa(s) (bottom left, 3.65%) and ¢a(t)a(s) (bottom
right, 1.50%) as per (5), where the percentages represent the fraction of variance explained by the respective eigensurface and the ¢; are
the eigenfunctions reflecting the variation over the age span in days while the x are the eigenfunctions for the intra-day variation. The
x-axis indicates the age coordinate t (measured in days) and the y-axis represents the hour coordinate s within a given day (0-24 hours).

Only flies surviving 32 days are included in this analysis.
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model [15] for such data, where we use a reverse
regression approach with age-at-death as predictor and
the intensity function of the egg-laying process as
response. While reversing the time order, this approach
can serve to quantify and visualize associations between
longevity and the egg-laying process and we
implemented it with the function GloPointPrReg in the
R package frechet [29]; technical details are in the
Appendix. Additional tools include a graphical method

to illustrate the connection between reproduction and
longevity [38] and a forward prediction approach for
remaining lifetime as response with the functional
principal component scores obtained from longitudinally
observed activity or reproductive trajectories up to
current age alive a as predictors [6].

Figure 6 shows a distinct association between egg count
trajectories and age at death. For medflies with lower

100

Egg count

50

20 25 30 35

Age (days)

Figure 5. Individual daily egg-laying counts for medflies surviving through 35 days. Egg-laying counts for 10 randomly selected
medflies are highlighted in black, while the other elements in the sample depicting individual daily egg-laying counts are shown in gray. The
mean daily egg-laying count, obtained by local linear smoothing is shown in red.
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Figure 6. Cost of reproduction: Quantifying the association between longevity and reproduction. Predicted conditional
intensity functions for daily egg-laying at different age-at-death levels ranging from 35 days (blue) to 90 days (red), using global Cox point
process regression for a cohort of medflies who survived past 35 days (see (6) in the Appendix).
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age-at-death, the daily egg count tends to peak sharply
around 15 days, with a steady decline thereafter. Flies
who survive longer tend to have relatively lower egg
counts at all ages until 30 days, and especially at
younger ages, coupled with enhanced reproductive
activity beyond 30 days after emergence. This pattern
reflects the observed cost of reproduction for female
medflies.

Predicting concurrent reproductive potential

How the current reproductive activity of a medfly at
various ages relates to change in reproductive activity
reveals the underlying dynamics of the reproductive
process, complementing the dynamic model in 17].
Denote the egg-laying count on day ¢ by X(¢) with
mean ux(f) = E[X(¢)] and consider difference quotients
Y= X(t+1)-X(1)

(t+1)—t

derivative (d/dt)X(¢) that reflects reproductive activity
change at age . We aim to study the dependence of
Y(¢) on X(¢) by fitting the concurrent regression model
[18],

, which serve to approximate the

E[Y() X (] = B, (1) + B (X () — p (1)), 1 €[10,35] (1).

The estimated intercept function fo(f) represents the
estimated mean derivative of the egg-laying trajectories.
It is positive prior to 15 days, indicating that egg-laying

in egg-laying that accelerates after 30 days, reflecting
the depletion of the reproductive potential of female
medflies (see Figure 7).

The estimated regression coefficient function f(f) acts
on the difference between an individual’s and the
average egg-laying trajectory and takes negative
values throughout; pointwise 95%  bootstrap
confidence intervals show that it is significantly
negative from 10 to 35 days. This indicates a
statistically significant effect whereby above-average
egg-layers experience a more rapid decline than
below-average egg-layers and conforms with a process
that is self-regulating through a dynamic regression to
the mean effect [39].

To fit the varying coefficient model and obtain the 95%
bootstrap pointwise confidence bands, we used the
functions ConcurReg and GetCI Sparse, available in the
R package fdaconcur [40].

Analysis of longitudinally monitored age-specific
behavior patterns

Longitudinal compositional representation of medfly
behaviors

For illustration, we use data on age-specific behavioral
patterns continuously recorded for 51 Mediterranean

is ramping up, then turns negative, indicating a decline fruit flies under controlled laboratory conditions
Bo(t) p1(t)
2-
-0.24+
e
]
'S -0.28+
5
o 01
@)
-0.32-
-14
2. -0.361
10 15 20 25 30 35 10 15 20 25 30 35
Age (days)

Figure 7. Study of concurrent reproductive potential using varying coefficient model. The intercept function Bo(t) represents the
(approximate) mean reproductive rate associated with daily egg-laying counts in female Mediterranean fruit flies that survived past 35
days. The regression coefficient function fi(t) depicts the time-varying effect of the accumulated egg-laying count on the immediate
reproductive rate. The estimated coefficient functions are based on the fitted concurrent regression (1). The 95% pointwise confidence
bands are based on 1000 bootstrap replicates, using concurrent regression (1). If zero is not located within the confidence band this
indicates pointwise (not simultaneous) statistical significance in the corresponding age interval.
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(temperature: 25 + 2°C, relative humidity: 65 + 5%,
light:dark cycle: 14:10). Each medfly was placed in an
individual cage (12 x 5 x 7.5 cm transparent plastic cup).
The behavioral patterns of each fruit fly were observed
instantaneously 12 times each day through its lifetime (no
censoring). In this analysis, we focus on a cohort of flies
surviving past 41 days and the three behaviors of flying
Z\(t), walking Z>(¢) and resting Z3(¢) at age, respectively;
see [8] for further details.

In a preprocessing step, the three behaviors were
transformed into proportions per time unit, where the
proportions always sum up to 1 and are non-negative,
thus forming compositional data; for example, 80%
resting, 10% flying and 10%walking during one hour of
observations, reflecting the observed proportions in
time among just these three behaviors (other behaviors
are not considered). We then obtained square-root
transformed compositional proportions

X0 = 0. \L0. K01,
Yj(t) = Zj. O /(Z,)+Z,(t)+Z,(t) for j=1,2,3. For
further details on compositional data and their
representation on the positive orthant of a sphere, see

[41-43]. This approach then leads to longitudinal data
that are situated on a sphere.

where

Spherical functional principal component analysis for
longitudinal behavior data

Following [22] and [44], we first map the data to linear
tangent spaces using Riemannian log maps centered at
the Fréchet mean curve and then carry out a regular
multivariate functional principal component analysis on
the linear tangent space of the log-mapped data;
spherical functional principal components, eigen-
functions and finite-truncated representations of the log-
mapped data are first obtained on the tangent space and
then mapped back to the original spherical space by
applying Riemannian exp maps. An implementation is
available through the R function RFPCA, available on
GitHub at https://github.com/CrossD/RFPCA.

Figure 8 displays the observed and fitted trajectories
X(?) for six randomly selected medflies, using the first
three components obtained for the spherical functional
principal component analysis. The close alignment
between fitted and observed trajectories indicates a
good fit. Figure 9 further illustrates the mean function
and the first three eigenfunctions; each of these
consists of three functions corresponding to the three
behaviors. Figure 9 indicates that resting and walking
were commonly observed, while flying occurred more
rarely.

1.0

0.8+
0.6
0.4+
0.21
0.0+

1.0
0.8

10

20

30

Age (days)

— flying — resting — walking

— fitted - obs

Figure 8. Observed and fitted trajectories for age-varying behavioral data. Observed data (solid lines) and spherical functional
principal component analysis fitted behavioral trajectories (dashed lines) for six randomly selected medflies, with three selected

components. The close alighment demonstrates a good fit.
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The first three eigen components explain more than 96%
of the total variation. The first eigenfunction reflects an
overall contrast between resting and moving (flying or
walking) throughout the observation period. The second
eigenfunction reflects a contrast between early (0-15
days) and late (1640 days) age periods, while the third
eigenfunction features a contrast for both resting and
walking between the middle age period (15-25 days) and
the early/late age periods. Invoking modes of variation
through this approach facilitates a comprehensive
analysis of complex, time-varying behavioral patterns.

Software

Several R packages are available for computational
implementations of the methods illustrated in this
perspective and beyond.

The R package fdapace [45] provides implementations
of Functional Data Analysis and Empirical Dynamics.
Central to this package is Functional Principal

u

Component Analysis, a key dimension reduction tool for
functional data analysis, used for both sparsely and
densely sampled random trajectories and time courses
via the Principal Analysis by Conditional Estimation
(PACE) algorithm. This core algorithm yields
covariance and mean functions, eigenfunctions and
principal component scores for functional data and their
derivatives, covering both dense (functional) as well as
sparse (longitudinal) sampling designs. Additionally, it
provides fitted continuous trajectories with confidence
bands for sparse designs, even for subjects with very
few longitudinal observations, thereby presenting a
viable and flexible alternative to more classical random
effects modeling of longitudinal data. There is also a
Matlab version (PACE) [25, 26, 46, 47].

The R package frechet [29] provides an implementation
of statistical methods for random objects in various metric
spaces. The core functionality of this package is Fréchet
regression for random objects with Euclidean predictors,
enabling regression analysis for non-Euclidean

1

1.00

0.751

0.507

0.251

0.001

0 10 20 30

40

0 10 20 30 40

Age (days)

— flying — resting — walking

Figure 9. Mean function and eigenfunctions for longitudinal behavioral data. The estimated mean function /i and the first three

estimated spherical eigenfunctions ¢31, ¢32,¢33 for the behavioral fly data using spherical functional principal component analysis. The first three

eigenfunctions explain 96.54% of the total variation, with the individual components explaining 80.55%, 12.23% and 3.76%, respectively.
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responses under mild conditions. As a special case,
frechet includes the implementation of global and local
Cox point process regression with point processes as
responses and an intrinsically non-parametric intensity
function [15]. This package is particularly useful for
handling data such as distributions in 2-Wasserstein
space, covariance matrices endowed with power metrics
(including the Frobenius metric as a special case), and
spherical data, among other data types [10].

The R package fdaconcur [40] provides an
implementation of concurrent or varying coefficient
regression methods for functional data, accommodating
both densely and sparsely observed data. It includes the
construction of pointwise confidence bands and models
the influence of past predictor values through a smooth
history index function [18].

The R package fdarep [33] is designed for repeatedly
observed and thus dependent functional data, aiming at
a framework where curves are recorded repeatedly for
each subject in a sample. In particular, fdarep provides
an implementation of two-dimensional functional
principal component analysis (FPCA), Marginal FPCA,
and Product FPCA for repeated functional data [14, 48].

DISCUSSION

While we focus here on longitudinal data that relate to
movement activity, egg-laying activity and behaviors
that are continuously monitored, other longitudinal
trajectories and their relationship with remaining
lifetime distributions could be of equal interest. One
issue is that one may encounter missing data or irregular
designs with sporadic rather than continuous
monitoring. Such irregular designs can be handled with
the same methods as described above, and the software
we refer to is also sufficiently flexible to handle
irregularly recorded data. This is exemplified in [49],
where functional data analysis methodology is shown to
be superior to classical random effects models that
traditionally have been used to handle missing or
irregular and sparsely sampled longitudinal data.
Various alternative implementations of functional
principal component analysis are also available [50, 51].

Another monitoring design that is sometimes
encountered generates functional snippets, where
individuals are continuously monitored only over a
subject-specific limited range of ages that is a subset of
their lifespan, but not over the entire lifespan. This
scenario is common for human data, where often only a
relatively short period of monitoring is feasible and in
any study where budgetary or logistic limitations allow
only for a time-limited monitoring period. The age
when an individual enters the monitoring period varies

by subject, as subjects of all ages are enrolled at
inception of the study. Since the resulting functional
snippet data convey less information compared to
longitudinal monitoring over the entire lifespan and do
not allow for direct auto-covariance estimation, which is
a fundamental step for functional data analysis [13],
only more restrictive approaches are available that
require additional prior information and stronger
assumptions [52-54].

For human data, the level and impact of movement
activity on various health conditions was the topic of
various studies [55-57]. Special care is needed to avoid
cofounding with factors such as socio-economic
background that may bias the conclusions. Human
studies have been predominantly cross-sectional rather
than longitudinal and thus their emphasis is on cohort
mean effects rather than individual random effects, where
the latter is the emphasis of this article; for the relation
between individual and cohort longevity see [58].

The statistical methodology illustrated in this article,
centered around longitudinal and functional data
analysis, distributional data analysis [59] and the more
general framework of metric statistics and Fréchet
regression [60], has also been employed for the analysis
of samples of mortality trajectories (without monitoring
data) [61-63]. Such data can be viewed as realizations
of a stochastic mortality process and are easily obtained
from various sources, including the Human Mortality
Database (Max Planck Institute for Demographic
Research, available at http://www.mortality.org).

Data availability statement

The data supporting this study’s findings are available
from James R. Carey upon reasonable request (email
address: jrcarey@ucdavis.edu).

APPENDIX
Global Fréchet regression

We apply global Fréchet regression [10] with the
remaining lifetime distribution observed at a given
current alive age a as response. Here the space of
distributions W is equipped with the 2-Wasserstein
distance

1
diy (B, )= [ {F @)= F @) du, FLFy el

-1 -1 . .
where F{  and F, are the corresponding quantile

functions of distribution functions F; and F>. Global
Fréchet regression aims at conditional Fréchet means,
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F, o =argmin E[dsz (F,v)| X =x]. (2)

vew

Assume the random pairs {(X;,F)}%, are realizations

of (X, F), where X is a scalar or vector predictor. In
practice, we estimate the remaining lifetime distribution
F; from the sample of surviving medflies. The global
Fréchet regression estimate is

F, o =argmin lZSA(X Xy (L), A3)
’ n i=1l

vew

where  §(X,,x)=1+(X, - X) £ '(x-X), X =n"'37, X,
andE=n"'32" (X, - X)X,—X)T are weights derived
from a linear regression model. One can then obtain
estimates for density and hazard function of the
remaining lifetime distribution,

. e s fie
ij@(u)— P lx@(u)_—l—ﬁ}’@(u)’ u(0,90). (4)

Product functional principal component analysis

Product functional principal component analysis
(FPCA) serves as a dimension reduction tool for a
function-valued stochastic process. If X(s, ) denote the
activity level at hour s € S=[0, 24] withinday ¢t € T=
[0, 32], the mean and covariance functions of the
underlying process are (s, t)=E[X(s,?)] and

G((51,4))5(52,82)) = E[ X (51,8)) X ($3,8) — (1,8 (52,851,
s, €8, ¢4,t, €T.

Writing {l//j(s)}j’:l for the eigenfunctions of the

operator in L2(S) with marginal kernel Gs(s,u) =
I:ZG((s,t),(u,t))dt and {4}, for the
eigenfunctions of the operator in L?(T) with marginal
kernel GT(t,u)=_[024G((s,t),(s,u))ds, one can represent

X(s, ?) through a product FPCA as follows,

X0 —pus.0=2" > 2uh @Oy, )

32 024
Here 7= [ [ (X(s.0)= (5,00 (5)g, (Odsdt are

the principal component scores that are used to
summarize the two-dimensional process. These
components are zero mean uncorrelated random
variables representing the fluctuations of the process
X(s, £) around the mean function u(s, ).

Global Cox point process model

Writing N(¢) for the point process that represents egg-
laying at age ¢, we model (N, A) as a doubly
stochastic Poisson process, where we postulate an
underlying stochastic (positive integrable) intensity
process A(%), such that NJA = A is a non-homogeneous
Poisson process with intensity function 4 [15, 64].
Given a realization of the latent process A =4, the
expected number of eggs laid up to time ¢ is

t
EINOIA=A]= J.Oﬂ(u)du. Conditional on observing

N(T) = m > 0 events with associated intensity function
A = 1, the random event times T, ... T,, at which egg-
laying occurs are independently and identically
distributed.

To regress the infinite-dimensional object A on age-at-
death X, we fit a global Cox point process regression
model, targeting

Mg (x) = argmin ,_, E[d*(A,2)| X =x], (6)

where (Q, d) forms a metric space of intensity functions
and A € Q represents the random intensity function of
egg-laying events. Intensity functions A € Q admit a
one-to-one decomposition into two components,

T
namely, the intensity factor 7 :.[o A(s)ds and the

density function f(z)=2. Thus, the intensity function

space Q can be viewed as the product metric space
Q=D x Q,, where D denotes the space of density
functions over [0, 7] and , = (0, ) denotes the space
of intensity factors. We utilize the 7 type product metric
d between intensities A, =(f,7;)and A, =(f5,7,),

which is given by

d(A,A,) = (dsz(ﬁ’fz)+d§(Tl’Tz))l/2,

Here dr is the Euclidean metric and dwy is the
Wasserstein metric between probability distributions.
While the intensity function of egg-laying events
remains unobservable, its components, namely the
density function and the intensity factor, can be
estimated from available data.
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