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Abstract

Sparse functional/longitudinal data have attracted widespread interest due to the prevalence of such data in social
and life sciences. A prominent scenario where such data are routinely encountered are accelerated longitudinal
studies, where subjects are enrolled in the study at a random time and are only tracked for a short amount
of time relative to the domain of interest. The statistical analysis of such functional snippets is challenging
since information for far-off-diagonal regions of the covariance structure is missing. Our main methodological
contribution is to address this challenge by bypassing covariance estimation and instead modelling the
underlying process as the solution of a data-adaptive stochastic differential equation. Taking advantage of the
interface between Gaussian functional data and stochastic differential equations makes it possible to
efficiently reconstruct the target process by estimating its dynamic distribution. The proposed approach allows
one to consistently recover forward sample paths from functional snippets at the subject level. We establish
the existence and uniqueness of the solution to the proposed data-driven stochastic differential equation and
derive rates of convergence for the corresponding estimators. The finite sample performance is demonstrated
with simulation studies and functional snippets arising from a growth study and spinal bone mineral density data.

Keywords: accelerated longitudinal study, dynamic distribution, empirical dynamic, growth monitoring, sparse
functional data

1 Introduction

Functional data are commonly viewed as i.i.d. samples of realizations of an underlying smooth sto-
chastic process, which is typically observed at a discrete grid of time points. Such data are common
and routinely arise in longitudinal studies. Functional data analysis has received much attention
over recent decades; functional principal component analysis (Castro et al., 1986; K. Chen &
Lei, 2015; Hall & Hosseini-Nasab, 2006; Kleffe, 1973) and functional regression (Hall &
Horowitz, 2007; Ramsay & Silverman, 2005) have emerged as key tools. Detailed reviews can
be found in Ramsay and Silverman (2005), Hsing and Eubank (2015), and Wang et al. (2016).
One area where there are still important open questions concerns the impact of the study design
on the analysis. We develop here a novel type of analysis for functional snippets, which correspond
to very sparse sampling designs that arise often in accelerated longitudinal studies, by establishing
a connection to stochastic differential equations (SDE).

From a general perspective, functional data are collected through various study designs, where
one can differentiate between fully observed, densely and sparsely sampled functional data
(Zhang & Wang, 2016). Fully observed functional data occur in continuous sensor signal record-
ings and dense designs when measurements at a large number of well-spaced time points are avail-
able. Sparse designs are characterized by the availability of only a small number of measurements.
A common sparse design occurs when sparse time points are distributed over the entire domain for
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each subject, with a smooth density that is strictly positive over the time domain where data are
collected (Hall et al., 2006; Li & Hsing, 2010; Yao et al., 2005).

In this article, the focus is on a second type of sparse design that occurs in accelerated longitudinal
studies (Galbraith et al., 2017), where subjects are enrolled in the study at a random time within the
time domain and are only tracked for a limited amount of time relative to the domain of interest. Such
accelerated longitudinal designs are appealing to practitioners in social and life sciences as they min-
imize the time and resources required to collect data for each subject, especially when data gathering
is costly, intrusive or difficult. Formally, denoting the domain of interest by 7" = [a, b], the ith subject
is only observed on a sub-interval [A;, B;] C T, where B; — A; < n(b —a) foralliandy € (0, 1) isa
constant. When the constant 7 is much smaller than 1, these are functional snippets (Lin et al., 2021).

Partially observed functional data also arise in the form of functional fragments (Kneip & Liebl,
2020; Kraus, 2015; Liebl & Rameseder, 2019), where the constant # may approach 1. The presence
of large fragments makes such functional fragments easier to handle since the design plot (Yao et al.,
2005) is typically fully or nearly fully covered by the design points, thereby enabling the estimation of
the covariance surface directly from the data. In contrast, all of the design points for functional snip-
pets fall within a narrow band around the diagonal area, while the domain of interest is much larger
than this band. It is therefore not possible to infer the covariance surface of the functional data with
the usual non-parametric approach and this impedes the implementation of functional principal com-
ponent analysis and all related methods. The only known solution is to impose additional and typ-
ically very strong and often unverifiable assumptions about the nature of the covariance. Such
assumptions have been made to justify various forms of covariance completion that have included
parametric, semiparametric and other approaches (see, e.g. Delaigle & Hall, 2016; Delaigle et al.,
2021; Descary & Panaretos, 2019; Lin & Wang, 2022; Lin et al., 2021; Rice & Silverman, 1991).

For the modelling of time-dynamic systems, empirical dynamics for functional data (Miiller &
Yao, 2010) is an approach to recover the underlying dynamics from repeated observations of the tra-
jectories that are generated by the dynamics, including a non-linear version (Verzelen et al., 2012).
These approaches do not cover functional snippets. To the best of our knowledge, Dawson and
Miiller (2018) is the only existing dynamic approach aimed at the analysis of functional snippets,
where the underlying dynamics are investigated through an autonomous differential equation for lon-
gitudinal quantile trajectories, requiring the underlying process to be monotonic (Abramson &
Miiller, 1994; Vittinghoff et al., 1994). This approach aims at estimating the conditional quantile tra-
jectories given an initial condition, rather than the whole dynamic distribution which is our goal here.

Specifically, we aim to reconstruct the latent stochastic process that generates the observed function-
al snippets by recovering its time-evolving distributions, which we refer to as dynamic distribution. To
overcome the challenge posed by snippets, we model the underlying process as the solution of a data-
adaptive SDE. The dynamic distribution of the target process, containing all information about the
underlying dynamics, is then estimated by stepwise forward integration. There is previous research
(Comte & Genon-Catalot, 2020; Denis et al., 2021; Mohammadi et al., 2023) where functional
data analysis has been utilized to infer SDEs, primarily focusing on the estimation of drift and diffusion
coefficients with parametric components. Our approach does not follow these approaches and is en-
tirely different, as our emphasis is the modelling of functional snippets and the recovery of the under-
lying stochastic process from such highly incomplete data. To accomplish this, we employ SDEs in a
novel and fully non-parametric way.

The proposed SDE approach is not only new but in contrast to various covariance completion ap-
proaches is non-parametric and does not involve functional principal component analysis. The latter
requires to recover the complete covariance surface, which is straightforward for dense designs (He
et al., 2000), but for functional snippets in principle is impossible, unless one is prepared to impose
strong assumptions on the global structure of the covariance surface that in general cannot be verified.
The utility of the proposed approach for statistical practice is illustrated for growth and bone
mineral density data in Section 6, where it is shown to aid in growth monitoring and more generally
distinguishing individuals with abnormal development patterns. The proposed SDE approach also en-
ables predictions for individuals with only one observation, where the individual-specific dynamic dis-
tribution far into the future can be predicted. The rate of convergence for the corresponding
conditional distributions is derived in terms of the Wasserstein metric. The main assumption of the pro-
posed approach is that the underlying process is Gaussian, which is a common assumption in function-
al data analysis.
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The specific contributions of this article are, first, to provide an alternative perspective to charac-
terize functional snippets using SDEs; second, to recover future distributions of individual subjects
under minimal assumptions; third, to provide an approach that works for minimal snippets, where
only two adjacent measurements may be available for each subject; fourth, to demonstrate existence
and uniqueness of the solution of the data-adaptive SDE, along with the rate of convergence for the
corresponding estimate; fifth, to illustrate the wide applicability of the proposed dynamic modelling
approach with growth snippets from Nepalese children and for bone mineral density data.

The rest of this article is organized as follows. In Section 2, we introduce the proposed dynamic
model, while Section 3 covers estimation procedures. Theoretical results are established in Section 4.
Simulations and applications for a Nepal growth study data and spinal bone mineral density data are
discussed in Sections 5 and 6, respectively. Finally, we conclude with a brief discussion in Section 7.

2 Learning dynamic distribution via stochastic differential equations

2.1 Stochastic differential equations and diffusion processes
A typical (It6) SDE takes the form

{ dX,=b(t, X;)dt +o(t, X,)dB;, teT, (1)

Xo = xo,

where X, = X(t) is a stochastic process on (Q, F, P), b and o are the drift and diffusion coefficients,
respectively, and B, is a Brownian motion (also known as Wiener process). The initial value x( can
be either deterministic or random, independent of the Brownian motion B;. It is known that a
unique solution of (1) exists if the Lipschitz condition

|b(t, x) — b(t, y)| + |o(t, x) —o(t,y)| < Clx —y| forallx,yeR,teT. (2)

and the linear growth condition

|b(t, x)| + |o(t, x)] < C(1+|x|) forallxeR,te T, (3)

hold for some constant C > 0 (Jksendal, 2003, chapter 5.2). In fact, if coefficients b and o satisfy the
Lipschitz and linear growth conditions, then any solution X, is a diffusion process on 7 with drift
coefficient b and diffusion coefficient ¢ (Panik, 2017, p. 154). A diffusion process is a continuous-time
Markov process that has continuous sample paths, which can be defined by specifying its first two
moments together with the requirement that there are no instantaneous jumps over time. We can
write the formulae for the drift and diffusion coefficients of a diffusion process in the following form:

b(t, x)_hmiE(X - X, | X, =x) (4)

s—>tt§ —

and

(¢, x) = lim LE{(X - X)X, =x).

s>t S —

Note that the diffusion coefficient can be equivalently defined as

(¢, x)—hm—Var(X X, | X, =x) (5)

s>ttt S — 1

since

Var(X, = X; | X, = %) = E{(X; = X;)* | X, = x} = {b(t, x)(s — 1) + o(s — 1)}
=E{(X; - X)* | X, =x) + o(s — t).
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Here, b(t, X;) may be thought of as the instantaneous rate of change in the mean of the process given
X;; and 6%(¢, X;) can be viewed as the instantaneous rate of change of the squared fluctuations of the
process given X, (Kloeden & Platen, 1999, chapter 1.7). For a more detailed treatment, we refer to
Section S.1.1 of the online supplementary material.

Diffusion processes originate in physics as mathematical models of the motions of individual
molecules undergoing random collisions with other molecules (Pavliotis, 2014). Brownian motion
is the simplest and most pervasive diffusion process. Several more complex processes can be con-
structed from standard Brownian motion, including the Brownian bridge, geometric Brownian
motion and the Ornstein—Uhlenbeck process (Uhlenbeck & Ornstein, 1930). When drift and dif-
fusion components of a diffusion process are moderately smooth functions, its transition density
satisfies partial differential equations, i.e. the Kolmogorov forward (Fokker-Planck) and the
Kolmogorov backward equation.

2.2 Alternative formulation of stochastic differential equations

We assume that the observed snippets are generated by an underlying stochastic process X; defined on
some compact domain 7 C R with mean function u(t)=E(X;) and covariance function
3(s, t) = Cov(Xs, X;). Without loss of generality, 7 is taken to be [0, 1] in the sequel. Suppose
{X¢15 -..» Xy} is an independent random sample of X;, where # is the sample size. In practice,
each X, ; is only recorded at subject-specific N; time points T}, ..., Ty, and the observed data are
Yj=Xr,iforj=1, ..., N;. We assume that N; > 1 for the subjects used to learn the SDE as subjects
with only one measurement do not carry information about the local covariance structure. The snip-
pet nature is reflected by the restriction that |Tj; — T| < ¢ for all 4, j, k, and some constant d € (0, 1).
The focus of this article is to infer stochastic dynamics of the underlying stochastic process X; from
data pairs (T, Yj),i=1, ...,n,j=1, ..., N;. Specifically, we are interested in estimating sample
paths of X, starting from some initial time point given a starting value. The proposed approach bor-
rows information from subjects with at least two measurements in order to recover the subject-
specific dynamic distribution far into the future for each participant, even for those with a single
measurement; their data do not contribute to the model fitting step. To illustrate the effectiveness
of the proposed method for snippets with minimal numbers of observations, we consider the case
N; =2 for simplicity. However, the proposed method is not restricted to this case and utilizes all
data when more than two measurements are available for some or all subjects. Additional details
are in Section 6.1 and Section S.5.3 of the online supplementary material.

The underlying stochastic process X; is assumed to follow a general SDE as per (1). In real data
applications, the drift and diffusion coefficients in (1) are typically unknown. To recover the
underlying dynamics of X;, instead of attempting to directly estimate the drift and diffusion terms,
which is challenging for functional snippet data, we plug in representations (4) and (35) of drift and
diffusion coefficients to obtain the following alternative version of the SDE,

0
dX; =~ E(Xs 1 X1)
S

s=,

9 1/2
. dt + {a—SVar(XS | X;) s:t} -dB;, teT, (6)

X() =X0.

Note that s is taken to be strictly greater than ¢ when calculating the partial derivatives of E(X; | X;)
and Var(X; | X;) with respect to s, in which case the diffusion coefficient is well-defined and not equal
to 0. The SDE (6) is the key tool to obtain sample paths of X, given an initial condition by means of a
recursive procedure, where under Gaussianity at each step the distribution of X is constructed using
the estimation of conditional means E(X; | X;) and conditional variances Var(X; | X;).

Examples of the SDE (6) include Brownian motion, the Ho-Lee model (Ho & Lee, 1986) and
the Ornstein—Uhlenbeck process (Uhlenbeck & Ornstein, 1930), among others. Different models
postulate different forms of b and 6. The Brownian motion B,, with extensive applications in phys-
ics and electrical engineering, is a special case with zero drift and unit diffusion. The Ho-Lee model
dX; = g(t)dt + 6dB; where o > 0 and g is a deterministic function of time is a stochastic interest rate
model widely used for the pricing of bond options and to model future interest rates. The
Ornstein—Uhlenbeck process dX; = —0X,dt + odB, with 6> 0, 0> 0 is often used to describe
mean-reverting phenomena in the physical sciences, evolutionary biology and finance, where
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the coefficient 6 characterizes the restoring force towards the mean and o the degree of volatility
around the mean.

3 Estimation

3.1 Simulating sample paths

To estimate sample paths of X, from functional snippets, given an initial condition, it is instructive
to rewrite the SDE in (6) as

lim (X, - X,)
_ _ 1/2
— i [ X0 - BKIXD {Var<xs 1Xi) = VarX, X } 5. - Bz)}

with initial condition Xy =x¢. The above formula gives rise to a method to simulate the
continuous-time process X; at a set of discrete time points given an initial condition. Consider a
pre-specified equidistant time grid 0 < #y < #; < --- < tg_q < tx < 1 with the common time spacing
A. Denoting the initial value of X, at #) by X and the simulation of X; at#, by X, fork=1, ..., K,
we simulate the continuous-time process X, at the discrete time points #,, k=1, ..., K, given an
initial condition Xy = x, by the recursion

X — Xi-1

_ EXe [ Xe1) = E(Xp1 | Xie—1)
A

Var(Xy, | Xp—1) — Var(X_1 | Xp—1)
A

12
At { } (B, — By, ).

Observing that E(X;_; | Xg_1) = Xp_1, Var(X_1 | Xp_1) =0, and (B;, — By, ,)/vA ~ N(0, 1), the
above recursion reduces to

Xp = E(Xp | Xpe1) + (Var(Xp | X )} 2 Wy, Xo = 0, (7)

where W, ~ N(0, 1) are independent for k=1, ..., K.

We emphasize that under Gaussianity, the recursion in (7) generates an exact simulation
(Glasserman, 2004) of X, at #1, ..., tx in the sense that the X}, it produces follows the same dis-
tribution of the process X, at#; forallk =1, ..., K;see Lemma 1 in Section 4. Classical simulation
methods for SDEs, such as the Euler—-Maruyama method and the Milstein method (Kloeden &
Platen, 1999), in general, introduce discretization error at #1, ..., tx, because the increments do
not have exactly the right mean and variance. To simulate X, using recursion (7), there is hence
no need to consider increasing numbers of discrete time points K. In practice and particularly
for the case of accelerated longitudinal studies, a good rule of thumb is to set the time spacing
A as the scheduled (as opposed to actual) visit spacing for each subject. The number of discrete
time points K to simulate X, is then determined by the time spacing A and the time interval of inter-
est; see Section 6 for the selection of time grids in real data applications.

To estimate sample paths of the process X;, one needs to iteratively generate a random
sample from the Gaussian distribution N{E(X}, | X;_1), Var(X}, | X4_1)} to simulate X, at #, for
k=1, ..., Kas per (7). In practice, both the conditional mean E(X}, | X,_;) and conditional vari-
ance Var(X} | X,_1) are unknown and thus need to be estimated.

3.2 Estimation of conditional mean and conditional variance
Note that the information contained in X;_; = X, _, is twofold and includes X},_; itself as well as
the time index #;_;. One can then formulate the estimation of the conditional mean E(X}, | X;_1)
and conditional variance Var(X, | Xj_1) as a regression problem with response X, and predictor
(Xp—t5 te1)"

Recall that each subject is observed at least twice, at time points Tj; and Tj,, where the corre-
sponding measurements are Y;; and Y. Let Z; = (Y;1, T1)" and with a slight abuse of notation
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Algorithm 1 Estimating sample paths

Input: Training data {(Z;, Y;)}"_,, initial condition Zy = (xo, #y)", and time discretization {f;, k=0, ..., K}.
Output: (X1, ..., Xg)".
1 fork=1,...,Kdo

2 Estimate the conditional mean E(X | X;_1) and conditional variance Var(X}. | X;_1) by #1(Zy—1) and
2 (Zy_1), respectively;

3 Draw a random sample X, from N{#1(Zy_,), ?*(Zs_1)};
4| Zp < (X t)
S end

set Y; =Y fori=1, ..., n. Viewing the {(Z;, Y;)}7, as n i.i.d. realizations of the pair of random
variables (Z, Y), consider the regression model

Yi=m(Z) + v(Ziei, (8)

where m(z) = E(Y | Z =z) and v?(z) = Var(Y | Z = 2) are respectively the conditional mean func-
tion and conditional variance function. The error term ¢ satisfies E(e;|Z;)=0 and
Var(e¢; | Z;) = 1. The estimation of both conditional mean and conditional variance using paramet-
ric or non-parametric regression methods has been thoroughly studied. For the estimation of con-
ditional variance we adopt the well-known approach of fitting a regression model for the squared
residuals {Y; — 7#1(Z;)}* as responses and Z; as predictors (Fan & Yao, 1998); see Section S.2 of the
online supplementary material for more details.

Based on the regression model (8), the recursion for simulating sample paths in (7) simplifies to

X =m(Zp-1) + (Zp1) Wi, Xo = xo, )

where Zy_1 = (Xp_1, tr_q) for k=1, ..., K. With estimates of the conditional mean function #(-)
and conditional variance function #2(-) in hand, we estimate the sample path of the underlying pro-
cess X; at #1, ..., tg, given an initial condition Xy = x¢, by the following recursive procedure,

X

=m(Zo) + (Zo) Wi,
X, =m(Zp_q) + 0(7 (10)

(Zk—l)Wka k=2’) ---’Ka

where Zo = (xo, t0)" and Zy_y = (Xp_1, tp_1)" for k=2, ..., K; see Algorithm 1.

If one has no prior knowledge about the conditional mean and conditional variance structure, which
is often the case in real data applications, it may be preferable to adopt non-parametric approaches that
are more flexible than say multiple linear regression, while incurring a lower rate of convergence.

4 Theoretical results

We establish existence and uniqueness of the solution to the proposed SDE as per (6) and the rate
of convergence for the estimated sample paths. Existence and uniqueness follows from the
Gaussianity of the process X;; for every finite set of time points #1, ..., t in T, (Xz,, ..., Xp)"
are jointly Gaussian. The key step is to express the conditional mean E(X; | X;) and conditional
variance Var(X; | X;) in terms of the mean and covariance functions of X;, whence drift and dif-
fusion coefficients in (6) are seen to satisfy the Lipschitz and linear growth conditions as per (2)
and (3). Specifically,

E(X | X;) = uls) + (s, )27 (8, X, — p(0)), (11)

Var(X, | X,) = (s, s) — Z(s, =71 (8, H)Z(2, s). (12)
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If X, is non-Gaussian, as long as a unique solution exists, the rate of convergence for the estimated
sample path can be similarly derived by assuming Lipschitz continuity for the conditional mean
function m(-) and conditional variance function v*(-); see Lemma 2.

To show that the drift and diffusion coefficients in (6) satisfy the Lipschitz and linear growth
conditions as per (2) and (3), we require the following conditions.

(A1) The mean function u(t) = E(X;) is continuously differentiable on 7.
(A2) The covariance function (s, #) = Cov(X;, X;) is continuously differentiable in the lower
triangular region {(s, #):s > ¢, s, t € T'}. Equivalently, the two partial derivative functions

, 0X(s, t) , 0X(s, t)
Z = Z =
5(59 t) 65 ) t(S, t) 6t

exist and are continuous for every s, # € T and s > .

Conditions (A1) and (A2) are regularity conditions on the process X;, where the latter implies that
3(s, t) is continuously differentiable in the upper triangular region {(s, #):s < ¢, s, t € T} but may
not be differentiable across the diagonal s = ¢, as for example is the case for Brownian motion. It is
easy to verify that all examples of processes in Section 2.2 satisfy Conditions (A1) and (A2); see
Section S.1 of the online supplementary material.

Theorem 1  If the stochastic process X; is Gaussian, satisfies Conditions (A1), (A2), and
the initial value x is a random variable independent of the s-algebra F, gen-
erated by {Bs, s > 0} with E(x3) < oo, then the stochastic differential equation
(6) has a pathwise unique strong solution

9 1/2
X,=x0+I§)5E(X,|XS) ] dB;,, teT

d
ds+ Jg :—Var(X, | Xs)
r=s or

r=s

with the property that

X, is adapted to the filtration F3° generated by xy and

(13)
{Bs, s €10, 2]}

and

sup E(X?) < co. (14)
teT

All proofs are given in Section S.3 of the online supplementary material. The uniqueness of the
solution means that if X, and Y, are two processes satisfying (6), (13), and (14) then

X;=Y, forallteT a.s.

The solution X, in Theorem 1 is a strong solution because the version B, of Brownian motion is
given in advance and the solution X, is F}*-adapted. The Gaussianity implies that X, must be gov-
erned by a narrow-sense linear SDE (Kloeden & Platen, 1999), where the drift coefficient is
b(t, X;) = a(t)X, + c(¢) and the diffusion coefficient is additive, i.e. (¢, X;) = o(t). The drift and dif-
fusion coefficients in (6) under Gaussianity are

b(t, X;) =1 (2) + Z((s, )] 7' (¢, ){Xe — (1)},

12
olt, X)) = {6, 0 - 255, 0], }
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indicating the SDE (6) is narrow-sense linear. The general solution of a linear SDE can be found
explicitly. Specifically, if X, is Gaussian, as a solution of (6) it is of the form

X, = (D(t){xo+ 5 cs)@™ ! (s)ds+ [l 0(5)(13_1(5)st},

with a(t) = E,(s, £)]Z7 (¢, 1), clt) = /(1) = ZL(s, 1) 72, £)u(r) and D(r) = ehele)ds
An important feature of the recursion in (7) is that it generates an exact simulation of X, at
t1, ..., tx (Glasserman, 2004) if X, is a Gaussian process.

Lemma 1 If the stochastic process X; is Gaussian, then the recursion in (7) generates an

exact simulation of the stochastic process X; at #1, ..., tx in the sense that
the distribution of the Xj, ..., Xg it produces is precisely that of the
continuous-time process X; at time points #q, ..., Ix.

Lemma 1 ensures that under Gaussianity the discretization error does not affect the rate of con-
vergence of estimated sample paths. To study the asymptotics of estimated sample paths (7), we
investigate the rate of convergence of Xk; the same rate then applies for X, for any k < K. The
proof relies on a recursion for [X; — X,| for increasing k, using the Llpschltz continuity of the con-
ditional mean function »(-) and of the conditional variance function v%(-). We require the follow-
ing conditions regarding the variance function X(¢, t).

(B1) The variance function X(¢, #) is strictly positive on the half-open interval (0, 1].

Condition (B1) can be expected to be satisfied in real data applications; all example processes dis-
cussed in Section 2.2 satisfy this condition, see Section S.1 of the online supplementary material.
Under Gaussianity, the conditional mean and conditional variance in recursion (9) becomes

m(Zi—1) = pt(ty) + Zltpy te—1)Z " (tets Lo 1 Xpo1 — w(te—r))}s
VA Zpot) =ty tr) — Z(tpy tm1)E (Eemts Lottt 20),

where Z;_1 = (Xj_1, tp—1)" and t, = t,_1 + A denotes the discrete time points used to simulate the
sample path of the underlying process X;.

Lemma 2  If the stochastic process X; is Gaussian and satisfies (A1), (A2), and (B1), then
fork =2, ..., K the conditional mean and conditional variance in recursion (9)
satisfy

[m(Zi_1) = m(Zy1) < LIXp1 = Xeals

(Zi-1) = U(Zg1)| =0,
where L =maxueq,, 1) [Z(t+A D7 (1) and  Zpg = (Xpy, te1)'s
Ziey = (Xpo1, tpg)'s

Lemma 2 imposes a limit on the growth of the sequence |X; — X,|, whence one can bound
|Xx — Xk| by recursion. Lemma 2 holds for all example processes discussed in Section 2.2 with
Lipschitz constant L = 1; see Section S.1 of the online supplementary material.

To obtain the rate of convergence for the estimated sample path, one also needs to examine the
asymptotic behaviour of the conditional mean function estimate #1(-) and the conditional variance
function estimate #°(-). Assume one has results for any fixed z € R x 7 of the type

[E{lin(z) — m(2) 1% = Olaw),  [E(19%(2) — *(2)11)]Y* = O(B,). (15)

Adopting the residual-based estimator as described in Section S.2 of the online supplementary
material to estimate the conditional variance function v?(-), it is well-known that the estimation

GZ0Z 8unf gz uo Jasn Aieiqr] meT - siaeq ‘elulolie) 10 Alsiaaiun Aq Zey626.2/91 Loeyb/qsssil/ea01L 0L /10p/ajolle-a0ueApe/qsssiljwoo dnooiwepeoe//:sdiy Woll papeojumod


http://academic.oup.com/jrsssb/article-lookup/doi/10.1093/jrsssb/qkae116#supplementary-data
http://academic.oup.com/jrsssb/article-lookup/doi/10.1093/jrsssb/qkae116#supplementary-data
http://academic.oup.com/jrsssb/article-lookup/doi/10.1093/jrsssb/qkae116#supplementary-data
http://academic.oup.com/jrsssb/article-lookup/doi/10.1093/jrsssb/qkae116#supplementary-data

J R Stat Soc Series B: Statistical Methodology 9

of the conditional mean function »(-) has no influence on the estimation of #?(-) (Fan & Yao,
1998). Then g8, = a, if the same regression method is used to estimate #(-) and v?(-). When mul-
tiple linear regression applies, a,, = 8, = n~'/2, while &, =, = n~'/3 for local linear regression.

Theorem 2 If the stochastic process X, is Gaussian and satisfies (A1), (A2), and (B1), then
for the estimated sample path of the SDE (6) as defined in (10),

[E(IXx = Xk *)}/* = O(0ws + B,,)s

where a,, and 8, are the rates of convergence for the conditional mean func-
tion estimate 7%(-) and conditional variance function estimate #2(-) as per (15).

Theorem 2 implies that X converges to X in the sense that both mean and variance converge
to their respective targets, i.e.

|E(Xk) — E(Xx)l = Olan +f,),  [Var(Xk) — Var(Xk)| = O(o + f2).

Note that this convergence holds uniformly over k, thereby establishing the pathwise convergence
of the estimated sample path to the true process.

Writing £(Xx), £(Xk) for the distributions of Xk and of the corresponding estimator X, re-
spectively, we aim to quantify the discrepancy between £(Xx) and £(X) as a measure of the per-
formance of the estimator. The strong convergence results obtained in Theorem 2 can be used to
obtain the rate of convergence of the 2-Wasserstein distance (Villani, 2009) dw{L(Xk), £(Xx)},
where the 2-Wasserstein distance between two probability measures vy, v2 on R is
d3y(v1, v2)= f(l) {FiY(p) - F3* (p)Y>dp, with F;! and F;! denoting the quantile functions of vy, v,, re-
spectively. If v; and v, are one-dimensional Gaussians with means and variances (11, 021) and
(m2, a%) then d%v(vh vp) = (mq — mz)2 + (o1 — )>. For the Wasserstein rate of convergence we
obtain

Corollary 1 Under the conditions of Theorem 2, the distribution of the estimated sample
path as per (10) satisfies

A

dw{L(Xk), LIXk)} = Olow + B,),

where o, and 8, are the rates of convergence for the conditional mean func-

tion estimate 7%2(-) and conditional variance function estimate #2(:) as per
(15).

So far, we have assumed that snippets are observed without measurement errors, which applies to
situations such as longitudinal growth curves, where anthropometric measurements are often consid-
ered to be error-free. Applications to growth curves are highlighted in Section 6.1 and Section S.5.1 of
the online supplementary material using growth curve data for the Nepal and Berkeley growth stud-
ies. The presence of measurement errors will lead to an errors-in-variables scenario (Griliches &
Hausman, 1986), which will be discussed in Section S.4 of the online supplementary material. includ-
ing theoretical analysis that characterizes the impact of measurement errors on the asymptotic behav-
iour of the estimated sample paths. In Section 5.2, we demonstrate that the proposed approach is
quite robust in the presence of measurement errors. If one nevertheless would like to further address
bias caused by measurement errors, this will require adopting some of the available measurement er-
ror correction techniques (Carroll et al., 2006; Cook & Stefanski, 1994).

5 Finite sample performance

5.1 Implementation details

The proposed dynamic modelling approach is straightforward to implement, as outlined in
Algorithm 1. The regression model (8) involves only a two-dimensional predictor, resulting in a
time complexity of O(n) for training. Consequently, Algorithm 1 also runs in O(n) time, given
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that calculating the conditional mean and conditional variance takes two steps and K is fixed. For
generating M sample paths, the time complexity is O(Mn), making it linear with respect to the
sample size. This computational efficiency makes the proposed approach highly suitable for large
datasets. The algorithm has been implemented in R and is available on GitHub at https:/github.
com/yidongzhou/Dynamic-Modeling-of-Functional-Snippets.

Furthermore, the dynamic modelling approach inherently provides uncertainty quantification for
the estimated sample paths. Practically, one can repeat the recursive process described in (10) M
times for a sufficiently large M, such as M =1,000. With these M simulated sample paths in
hand, an empirical 1 — a (pointwise) confidence band for the underlying process can be calculated.
This method is demonstrated in Section 6.1 for identifying developmental delays in children’s
growth and is validated through simulations in Section S.5.5 of the online supplementary material.

Note that non-parametric regression models, such as local linear regression, rely on two
bandwidths /1 and b, for estimating the conditional mean and conditional variance, respectively,
as defined in (8). While /4y can be selected via cross-validation, the bias in the squared residuals
(Y; — #1(Z;)}* makes cross-validation infeasible for choosing b, . In our implementation, we choose
by = by, where we select by by cross-validation for conditional mean estimation, minimizing
CV(h)=> {Yi- 154,9_1)(21)}2. Here ﬁaz_”t) denotes the local linear regression estimate using
bandwidth % based on the reduced sample {(Z;, Y;)},,;; users can choose to substitute alternative
values for by, h;.

5.2 Simulation studies

We demonstrate the utility of the proposed approach in recovering underlying dynamics from
functional snippets across various scenarios. Existing work based exclusively on covariance com-
pletion is not directly comparable, as one of the advantages of the proposed approach is that it
entirely bypasses covariance estimation and does not rely on functional principal component ana-
lysis. For comparative purposes, we estimate the covariance function using the covariance comple-
tion approach of Lin and Wang (2022), denoted as LW, via the mcfda package available at https:/
github.com/linulysses/mcfda. Subsequently, assuming Gaussianity, we derive the conditional
mean and conditional variance using the estimated mean and covariance functions. Finally, we ap-
ply the recursive procedure outlined in (10) to reconstruct the underlying stochastic process.

We generate functional snippets from the Ho-Lee model and the Ornstein—Uhlenbeck process
as discussed in Section 2.2, respectively. To obtain functional snippets, we first simulate the sample
path of X;; ata regular time grid {tk}fzo with #, = kdand Ké = 1 foreachi=1, ..., n. Denoting the
simulated values for the 7 processes by {(X;, i, Xt,,i> ---» Xti) }oq, functional snippets are gener-
ated as {(Xr,;, XT.46.) )y where for each i, T; is a time point randomly selected from the time grid
{te}oq . Since both the Ho—Lee model and the Ornstein-Uhlenbeck process are narrow-sense linear
SDEs, exact methods for simulating their paths are available by examining their explicit solutions
(Glasserman, 2004). Specifically, for the Ho-Lee model dX, = g(t)dt + 0dB;, a simple recursive
procedure for simulating values at {tk}fzo is

Xpor = Xpt [ gls)ds + oltisr — 1) 2 Wi, (16)

where W), ~ N(0, 1) are independent for all k£ and X = x¢. Similarly for the Ornstein—Uhlenbeck
process dX, = —0X,dt + odB;, one can set

0_2 1/2
Xk+] — e—@(tk+|—tk)Xk + {E(l _ e-29(tk+1—zk))} Wk' (17)

The above procedures are exact in the sense that the joint distribution of the simulated values co-
incides with the joint distribution of the corresponding continuous-time process on the simulation
grid. To investigate the effect of noise, we add independent errors to the generated functional snip-
pets {(Xt.i» X145,)'}y. Specifically, we consider the contaminated functional snippets
{(Yi, Yo)"VL,, where Y1 = Xr,; + &1 and Yjp = X145, + €1 with &; ~ N(0, v?) independently.
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We examined the performance of the proposed approach across sample sizes # = 50, 200, 1,000
and noise levels v=0, 0.01, 0.1. For each combination of sample size and noise level, the simula-
tion was repeated O = 500 times. The time interval was chosen as [0, 1] and the time spacing was
0 =0.05. In each simulation, the recursive procedure as per (10) was performed M = 1,000 times
using the contaminated functional snippets {(Yi1, Y;2)'}, with the initial condition Zy = (0, 0)",
from which M = 1,000 estimated sample paths evaluated at the time grid {tk}le were obtained.
We write {()A(thl, e )A(tK,l)T}?il for the M estimated sample paths. For each /, the corresponding
true sample path (X;,, ..., X, ;)" was obtained using the recursive procedure in (16) or (17)
with the same initial value and W,. For each run of a particular sample size and noise level, the
quality of the estimation was quantified by the root-mean-square error,

| M 1/2
RMSE = [MZ (Xt — XtK,,)Z} .

I=1

We chose g() = cos (£), # =0 =1 and the initial condition X, = 0 for the Ho-Lee model and the
Ornstein—Uhlenbeck process, respectively and used multiple linear regression to estimate the con-
ditional mean and conditional variance for both cases. The mean and standard deviation of RMSE
across O = 500 runs for various sample sizes and noise levels are summarized in Table 1. We ob-
serve that the mean RMSE of the proposed approach diminishes as the sample size increases, while
the presence of noise has only a minor effect. In contrast, the mean RMSE of the covariance com-
pletion method is substantial even with a sample size of 1,000. This discrepancy may stem from the
exceptionally sparse nature of this simulation scenario, where each process is observed within a
narrow window of length 0.05, contrasting sharply with the broader interval of interest, which
is [0, 1]. Consequently, the available information may be too limited for covariance completion
methods to accurately reconstruct the entire covariance surface. As shown in Section S.5.3 of
the online supplementary material, the covariance completion approach performs better but is still
inferior to the proposed approach when more measurements are available.

To further illustrate the performance of the proposed dynamic modelling approach, we visualize
the simulation results for the Ornstein—Uhlenbeck process with sample size # = 200 and noise level
v=0.1in Figure 1, where M = 100 estimated sample paths are considered, along with the corre-
sponding true sample paths. It is evident that the estimated sample paths recover the underlying
stochastic dynamics from very sparse data, demonstrating that the proposed approach performs
well.

Table 1. Mean and standard deviation (in parentheses) of root-mean-square errors across 500 runs for the Ho-Lee
model and the Ornstein-Uhlenbeck process

Sample size Noise level

DM Lw

0 0.01 0.1 0 0.01 0.1

Ho-Lee model

50 0.92(0.87)  0.93(0.93)  1.21(1.71)  1.08(0.37)  1.07(0.34) 1.1 (0.45)
200 0.39(0.23)  0.38(0.22)  0.54(0.38)  0.91(0.34)  0.92(1.15)  0.89 (0.27)
1,000 0.17 (0.09) 0.17 (0.09) 0.27 (0.13) 0.89 (0.24) 0.89 (0.24) 0.88 (0.25)

Ornstein—Uhlenbeck process
50 0.63(0.65)  0.62(0.84)  0.71(1.81)  0.72 (0.23) 0.71 (0.2) 0.74 (0.28)
200 0.25(0.15) 026 (0.16)  0.27(0.13)  0.67(0.17)  0.66 (0.21)  0.67 (0.23)
1,000 0.11(0.06)  0.11(0.06)  0.15(0.05)  0.71(0.09)  0.70 (0.10)  0.70 (0.11)

Note. Here, DM is the proposed dynamic modelling approach and LW the covariance completion approach of Lin and
Wang (2022).
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Figure 1. Anillustration of the proposed dynamic modelling approach for a simulated Ornstein—Uhlenbeck process
with sample size n= 200 and noise level v=0.1. Simulated sample paths: fully observed sample paths
contaminated with noise (upper left panel); simulated snippets: two consecutive measurements randomly
extracted from each simulated sample path (upper right panel); true underlying sample paths. true underlying
sample paths without noise (lower left panel); estimated sample paths: estimated sample paths obtained using the
proposed dynamic modelling approach with the simulated snippets as input (lower right panel).

Further simulations are provided in Section S.5 of the online supplementary material, where we
emulate the Berkeley growth study data, assess the resilience of the proposed method to departures
from Gaussianity and explore denser scenarios with N; = 5 measurements per subject. While the
primary objective of the proposed approach is to reconstruct the dynamic distribution of the
underlying process, we also investigate its capability for estimating the mean and variance function
in Section S.5.6 of the online supplementary material.

6 Data applications

6.1 Nepal growth study data

Screening children’s development status and monitoring height growth is essential for paediatric
public health (K. Chen & Miiller, 2012) and due to limited resources often must be based on in-
complete data. We demonstrate the potential of the proposed dynamic modelling approach to
characterize underlying growth patterns and reveal specific growth trends with snippet data
from a Nepal growth study (West et al., 1997). This data set contains height measurements for
2,258 children from rural Nepal taken at five adjacent times points from birth to 76 months,
spaced approximately four months apart. To facilitate the exploration of these data, we use the
first 1,000 records, containing measurements for 107 males and 93 females. Due to missing
data, the actual number of measurements per child ranges between 1 and 5. Children with at least
two subsequent measurements are included in the analysis, while the rest are used for model val-
idation. We applied the proposed method to females and males separately since female and male
growth trends differ significantly, with females reaching puberty earlier than males.

So far the number of measurements per subject N; has been assumed to be 2 for simplicity. For
denser scenarios where N; > 2, one could divide the N; measurements into N; — 1 pairs of contigu-
ous measurements for each i and combine these pairs into a new sample for conditional mean and
conditional variance estimation. This is useful to augment the sample size 7 especially if the sample
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size n is relatively small, which is often the case in practice. We employ this strategy to make full use
of the Nepal growth study data as well as the spinal bone mineral density data in the next subsection.

While in Section S.5.1 of the online supplementary material, we demonstrate the efficacy of the
proposed dynamic modelling approach to recover the underlying growth dynamics from snippet
data using Berkeley growth study data, we highlight here another important application of the
proposed approach—growth monitoring. Given a child’s initial development status, the proposed
approach dynamically predicts child-specific growth patterns far into the future. As a child grows
older and fresh measurements become available, one can screen the child’s development by com-
paring newly available measurements with the predicted growth. We demonstrate this with a ran-
domly selected female and male who have no contiguous measurements and hence are not
included in the model fitting. Specifically, the selected female was measured only once at 4 months,
while the male was measured at 12 and 20 months.

To obtain future growth patterns for these two children, the recursive procedure in (10) was im-
plemented 100 times using the growth snippets with at least two measurements in a row to obtain
100 estimated growth curves, where local linear regression was adopted to estimate the conditional
mean and conditional variance. The starting time is ) = 4 months old for the selected female and
tp = 12 months old for the selected male, where the time spacing was set at A =4 months, corre-
sponding to the intended measurement spacing of the Nepal growth study. The starting height X
is chosen as the initial height measurement, i.e. 52.9 cm and 63 cm for the selected female and
male, respectively.

The estimated growth curves and the corresponding 5%, 50%, 95% percentile curves for these
two individuals are shown in the right panels of Figure 2, while the observed snippet data for the
Nepal growth study are in the left panels. Although the available information is very limited due to
the snippet nature of the data, the proposed approach is capable of capturing relevant dynamics
from the observed growth snippets and revealing future growth trends of the selected female
and male children. For the selected male child, one additional height measurement is available
at a later age (20 months). The newly available height measurement (65.1 cm) falls below the

\ observed growth snippets \ estimated growth curves

120
110
100+ =

\

\

\
s[ews)

\
\
\
\
ajew

0O 8 16 24 32 40 48 56 64 72 8 16 24 32 40 48 56 64 72
Age (month)

Figure 2. Observed growth snippets for females (upper left panel) and males (lower left panel), depicting the
available data for the Nepal growth study, as well as predicted growth curves for a selected female (upper right
panel) and a selected male child (lower right panel). The black dashed curves in the right panels indicate predicted
5%, 50%, and 95% percentiles and the available height measurements for the selected female and male are
highlighted.
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predicted 5% percentile curve, indicating that this child may be developmentally delayed and
should be flagged for further follow-up.

6.2 Spinal bone mineral density data

In this study (Bachrach et al., 1999), 423 healthy individuals were longitudinally assessed for their
spinal bone mineral density. These assessments were scheduled annually over four consecutive
years. However, deviations from the planned visit schedules resulted in varying numbers of meas-
urements available per individual, ranging from 1 to 4, and also varying time intervals between
measurements. Such irregular and sparse observations have posed significant challenges in func-
tional data analysis and garnered much attention in the field (Delaigle & Hall, 2016; Delaigle
etal., 2021; James & Hastie, 2001; Lin & Wang, 2022; Lin et al., 2021). We included 153 females
and 127 males with ages ranging from 8.8 to 26.2 years and featuring at least 2 measurements for
model fitting, while the remaining subjects with only one measurement were used for model
validation.

To infer individual-specific stochastic dynamics of spinal bone mineral density from the irregu-
larly observed bone density snippets, we again randomly selected one female and one male for
whom measurements were available at ages 10 and 9 years, respectively. The recursive procedure
in (10) was run 100 times, resulting in 100 estimated bone density curves. Conditional mean and
variance were obtained with local linear regression with cross-validation bandwidth selection. The
starting age was chosen as ¢y = 10 years for the selected female and #y = 9 years for the selected
male, with an end time of g = 24 years and 1-year time increments, corresponding to the sched-
uled measurement spacing of the data. The starting values of bone mineral density are 0.778 and
0.642 for the selected female and male, respectively, corresponding to their initial bone density
measurements.

Figure 3 depicts the observed snippets and estimated bone density curves, along with
5%, 50%, 95% percentile curves, demonstrating that the proposed dynamic modelling approach
is capable of handling the irregularity inherent in these data; see the right panel of Figure 3.
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Figure 3. Observed snippets of mineral bone density for females (upper left panel) and males (lower left panel), as
well as predicted bone density curves for a randomly selected female (upper right panel) and male (lower right
panel), where the black dashed curves indicate 5%, 50%, and 95% percentiles. The available bone density
measurements for the selected female and male are also highlighted.
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Comparing the predicted bone density curves for the selected female and male, we find that for the
female these reach a plateau at around 16 years, while for the male they level off at around 18
years. This finding is in agreement with the literature (Bachrach et al., 1999). Additionally, we ap-
plied the covariance completion approach for these data and present the findings in Section S.6 of
the online supplementary material.

7 Discussion

In this article, we propose a flexible and robust approach to recover the dynamic distribution from
functional snippets using SDE. The proposed framework circumvents the challenge of estimating
covariance surfaces in the presence of missing data in the off-diagonal regions, leading to a con-
sistent reconstruction of sample paths from observed snippets. Both theoretical analysis and nu-
merical simulations support the effectiveness and utility of the proposed SDE approach.

Differential equations are extensively used across various scientific fields, including engineering,
physics, and biomedical sciences. A significant portion of the literature on differential equations
focuses on parameter estimation (Liang & Wu, 2008), with applications in time series (S. Chen
et al., 2017) and functional data analysis (Denis et al., 2021). Another research avenue involves
neural differential equations, where differential equations enhance the performance of neural net-
works (Yadav et al., 2015). Notable examples include neural ordinary differential equations
(R. T. Chen et al., 2018) and neural SDEs (Jia & Benson, 2019; Oh et al., 2024). Additionally,
SDEs are applied in generative modelling, such as score-based diffusion models (Song et al., 2020).

Complementing the existing literature, this article uses SDEs as a powerful tool to model func-
tional snippets and to recover the underlying dynamics, addressing the challenge of minimal data
availability for individual trajectories. The proposed tools also make it possible to assess forward
dynamics by projecting trajectories into the future when only minimal snippet information or just
one measurement is available for a given subject.
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