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Abstract
Sparse functional/longitudinal data have attracted widespread interest due to the prevalence of such data in social 
and life sciences. A prominent scenario where such data are routinely encountered are accelerated longitudinal 
studies, where subjects are enrolled in the study at a random time and are only tracked for a short amount 
of time relative to the domain of interest. The statistical analysis of such functional snippets is challenging 
since information for far-off-diagonal regions of the covariance structure is missing. Our main methodological 
contribution is to address this challenge by bypassing covariance estimation and instead modelling the 
underlying process as the solution of a data-adaptive stochastic differential equation. Taking advantage of the 
interface between Gaussian functional data and stochastic differential equations makes it possible to 
efficiently reconstruct the target process by estimating its dynamic distribution. The proposed approach allows 
one to consistently recover forward sample paths from functional snippets at the subject level. We establish 
the existence and uniqueness of the solution to the proposed data-driven stochastic differential equation and 
derive rates of convergence for the corresponding estimators. The finite sample performance is demonstrated 
with simulation studies and functional snippets arising from a growth study and spinal bone mineral density data.
Keywords: accelerated longitudinal study, dynamic distribution, empirical dynamic, growth monitoring, sparse 
functional data
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1 Introduction
Functional data are commonly viewed as i.i.d. samples of realizations of an underlying smooth sto
chastic process, which is typically observed at a discrete grid of time points. Such data are common 
and routinely arise in longitudinal studies. Functional data analysis has received much attention 
over recent decades; functional principal component analysis (Castro et al., 1986; K. Chen & 
Lei, 2015; Hall & Hosseini-Nasab, 2006; Kleffe, 1973) and functional regression (Hall & 
Horowitz, 2007; Ramsay & Silverman, 2005) have emerged as key tools. Detailed reviews can 
be found in Ramsay and Silverman (2005), Hsing and Eubank (2015), and Wang et al. (2016). 
One area where there are still important open questions concerns the impact of the study design 
on the analysis. We develop here a novel type of analysis for functional snippets, which correspond 
to very sparse sampling designs that arise often in accelerated longitudinal studies, by establishing 
a connection to stochastic differential equations (SDE).

From a general perspective, functional data are collected through various study designs, where 
one can differentiate between fully observed, densely and sparsely sampled functional data 
(Zhang & Wang, 2016). Fully observed functional data occur in continuous sensor signal record
ings and dense designs when measurements at a large number of well-spaced time points are avail
able. Sparse designs are characterized by the availability of only a small number of measurements. 
A common sparse design occurs when sparse time points are distributed over the entire domain for 
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each subject, with a smooth density that is strictly positive over the time domain where data are 
collected (Hall et al., 2006; Li & Hsing, 2010; Yao et al., 2005).

In this article, the focus is on a second type of sparse design that occurs in accelerated longitudinal 
studies (Galbraith et al., 2017), where subjects are enrolled in the study at a random time within the 
time domain and are only tracked for a limited amount of time relative to the domain of interest. Such 
accelerated longitudinal designs are appealing to practitioners in social and life sciences as they min
imize the time and resources required to collect data for each subject, especially when data gathering 
is costly, intrusive or difficult. Formally, denoting the domain of interest by T = [a, b], the ith subject 
is only observed on a sub-interval [Ai, Bi] ⊂ T , where Bi − Ai ≤ η(b − a) for all i and η ∈ (0, 1) is a 
constant. When the constant η is much smaller than 1, these are functional snippets (Lin et al., 2021).

Partially observed functional data also arise in the form of functional fragments (Kneip & Liebl, 
2020; Kraus, 2015; Liebl & Rameseder, 2019), where the constant η may approach 1. The presence 
of large fragments makes such functional fragments easier to handle since the design plot (Yao et al., 
2005) is typically fully or nearly fully covered by the design points, thereby enabling the estimation of 
the covariance surface directly from the data. In contrast, all of the design points for functional snip
pets fall within a narrow band around the diagonal area, while the domain of interest is much larger 
than this band. It is therefore not possible to infer the covariance surface of the functional data with 
the usual non-parametric approach and this impedes the implementation of functional principal com
ponent analysis and all related methods. The only known solution is to impose additional and typ
ically very strong and often unverifiable assumptions about the nature of the covariance. Such 
assumptions have been made to justify various forms of covariance completion that have included 
parametric, semiparametric and other approaches (see, e.g. Delaigle & Hall, 2016; Delaigle et al., 
2021; Descary & Panaretos, 2019; Lin & Wang, 2022; Lin et al., 2021; Rice & Silverman, 1991).

For the modelling of time-dynamic systems, empirical dynamics for functional data (Müller & 
Yao, 2010) is an approach to recover the underlying dynamics from repeated observations of the tra
jectories that are generated by the dynamics, including a non-linear version (Verzelen et al., 2012). 
These approaches do not cover functional snippets. To the best of our knowledge, Dawson and 
Müller (2018) is the only existing dynamic approach aimed at the analysis of functional snippets, 
where the underlying dynamics are investigated through an autonomous differential equation for lon
gitudinal quantile trajectories, requiring the underlying process to be monotonic (Abramson & 
Müller, 1994; Vittinghoff et al., 1994). This approach aims at estimating the conditional quantile tra
jectories given an initial condition, rather than the whole dynamic distribution which is our goal here.

Specifically, we aim to reconstruct the latent stochastic process that generates the observed function
al snippets by recovering its time-evolving distributions, which we refer to as dynamic distribution. To 
overcome the challenge posed by snippets, we model the underlying process as the solution of a data- 
adaptive SDE. The dynamic distribution of the target process, containing all information about the 
underlying dynamics, is then estimated by stepwise forward integration. There is previous research 
(Comte & Genon-Catalot, 2020; Denis et al., 2021; Mohammadi et al., 2023) where functional 
data analysis has been utilized to infer SDEs, primarily focusing on the estimation of drift and diffusion 
coefficients with parametric components. Our approach does not follow these approaches and is en
tirely different, as our emphasis is the modelling of functional snippets and the recovery of the under
lying stochastic process from such highly incomplete data. To accomplish this, we employ SDEs in a 
novel and fully non-parametric way.

The proposed SDE approach is not only new but in contrast to various covariance completion ap
proaches is non-parametric and does not involve functional principal component analysis. The latter 
requires to recover the complete covariance surface, which is straightforward for dense designs (He 
et al., 2000), but for functional snippets in principle is impossible, unless one is prepared to impose 
strong assumptions on the global structure of the covariance surface that in general cannot be verified. 
The utility of the proposed approach for statistical practice is illustrated for growth and bone 
mineral density data in Section 6, where it is shown to aid in growth monitoring and more generally 
distinguishing individuals with abnormal development patterns. The proposed SDE approach also en
ables predictions for individuals with only one observation, where the individual-specific dynamic dis
tribution far into the future can be predicted. The rate of convergence for the corresponding 
conditional distributions is derived in terms of the Wasserstein metric. The main assumption of the pro
posed approach is that the underlying process is Gaussian, which is a common assumption in function
al data analysis.
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The specific contributions of this article are, first, to provide an alternative perspective to charac
terize functional snippets using SDEs; second, to recover future distributions of individual subjects 
under minimal assumptions; third, to provide an approach that works for minimal snippets, where 
only two adjacent measurements may be available for each subject; fourth, to demonstrate existence 
and uniqueness of the solution of the data-adaptive SDE, along with the rate of convergence for the 
corresponding estimate; fifth, to illustrate the wide applicability of the proposed dynamic modelling 
approach with growth snippets from Nepalese children and for bone mineral density data.

The rest of this article is organized as follows. In Section 2, we introduce the proposed dynamic 
model, while Section 3 covers estimation procedures. Theoretical results are established in Section 4. 
Simulations and applications for a Nepal growth study data and spinal bone mineral density data are 
discussed in Sections 5 and 6, respectively. Finally, we conclude with a brief discussion in Section 7.

2 Learning dynamic distribution via stochastic differential equations
2.1 Stochastic differential equations and diffusion processes
A typical (Itô) SDE takes the form

dXt = b(t, Xt)dt + σ(t, Xt)dBt, t ∈ T ,
X0 = x0,

􏼚

(1) 

where Xt = X(t) is a stochastic process on (Ω, F , P), b and σ are the drift and diffusion coefficients, 
respectively, and Bt is a Brownian motion (also known as Wiener process). The initial value x0 can 
be either deterministic or random, independent of the Brownian motion Bt. It is known that a 
unique solution of (1) exists if the Lipschitz condition

|b(t, x) − b(t, y)| + |σ(t, x) − σ(t, y)| ≤ C|x − y| for all x, y ∈ R, t ∈ T . (2) 

and the linear growth condition

|b(t, x)| + |σ(t, x)| ≤ C(1 + |x|) for all x ∈ R, t ∈ T , (3) 

hold for some constant C > 0 (Øksendal, 2003, chapter 5.2). In fact, if coefficients b and σ satisfy the 
Lipschitz and linear growth conditions, then any solution Xt is a diffusion process on T with drift 
coefficient b and diffusion coefficient σ (Panik, 2017, p. 154). A diffusion process is a continuous-time 
Markov process that has continuous sample paths, which can be defined by specifying its first two 
moments together with the requirement that there are no instantaneous jumps over time. We can 
write the formulae for the drift and diffusion coefficients of a diffusion process in the following form:

b(t, x) = lim
s→t+

1
s − t

E(Xs − Xt | Xt = x) (4) 

and

σ2(t, x) = lim
s→t+

1
s − t

E{(Xs − Xt)
2 | Xt = x}.

Note that the diffusion coefficient can be equivalently defined as

σ2(t, x) = lim
s→t+

1
s − t

Var(Xs − Xt | Xt = x) (5) 

since

Var(Xs − Xt | Xt = x) = E{(Xs − Xt)
2 | Xt = x} − {b(t, x)(s − t) + o(s − t)}2

= E{(Xs − Xt)
2 | Xt = x} + o(s − t).
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Here, b(t, Xt) may be thought of as the instantaneous rate of change in the mean of the process given 
Xt; and σ2(t, Xt) can be viewed as the instantaneous rate of change of the squared fluctuations of the 
process given Xt (Kloeden & Platen, 1999, chapter 1.7). For a more detailed treatment, we refer to 
Section S.1.1 of the online supplementary material.

Diffusion processes originate in physics as mathematical models of the motions of individual 
molecules undergoing random collisions with other molecules (Pavliotis, 2014). Brownian motion 
is the simplest and most pervasive diffusion process. Several more complex processes can be con
structed from standard Brownian motion, including the Brownian bridge, geometric Brownian 
motion and the Ornstein–Uhlenbeck process (Uhlenbeck & Ornstein, 1930). When drift and dif
fusion components of a diffusion process are moderately smooth functions, its transition density 
satisfies partial differential equations, i.e. the Kolmogorov forward (Fokker–Planck) and the 
Kolmogorov backward equation.

2.2 Alternative formulation of stochastic differential equations
We assume that the observed snippets are generated by an underlying stochastic process Xt defined on 
some compact domain T ⊂ R with mean function μ(t) = E(Xt) and covariance function 
Σ(s, t) = Cov(Xs, Xt). Without loss of generality, T is taken to be [0, 1] in the sequel. Suppose 
{Xt,1, . . . , Xt,n} is an independent random sample of Xt, where n is the sample size. In practice, 
each Xt,i is only recorded at subject-specific Ni time points Ti1, . . . , TiNi and the observed data are 
Yij = XTij,i for j = 1, . . . , Ni. We assume that Ni > 1 for the subjects used to learn the SDE as subjects 
with only one measurement do not carry information about the local covariance structure. The snip
pet nature is reflected by the restriction that |Tij − Tik| ≤ δ for all i, j, k, and some constant δ ∈ (0, 1). 
The focus of this article is to infer stochastic dynamics of the underlying stochastic process Xt from 
data pairs (Tij, Yij), i = 1, . . . , n, j = 1, . . . , Ni. Specifically, we are interested in estimating sample 
paths of Xt starting from some initial time point given a starting value. The proposed approach bor
rows information from subjects with at least two measurements in order to recover the subject- 
specific dynamic distribution far into the future for each participant, even for those with a single 
measurement; their data do not contribute to the model fitting step. To illustrate the effectiveness 
of the proposed method for snippets with minimal numbers of observations, we consider the case 
Ni = 2 for simplicity. However, the proposed method is not restricted to this case and utilizes all 
data when more than two measurements are available for some or all subjects. Additional details 
are in Section 6.1 and Section S.5.3 of the online supplementary material.

The underlying stochastic process Xt is assumed to follow a general SDE as per (1). In real data 
applications, the drift and diffusion coefficients in (1) are typically unknown. To recover the 
underlying dynamics of Xt, instead of attempting to directly estimate the drift and diffusion terms, 
which is challenging for functional snippet data, we plug in representations (4) and (5) of drift and 
diffusion coefficients to obtain the following alternative version of the SDE,

dXt =
∂
∂s

E(Xs | Xt)
􏼌
􏼌
􏼌
s=t

· dt +
∂
∂s

Var(Xs | Xt)
􏼌
􏼌
􏼌
s=t

􏼚 􏼛1/2

·dBt, t ∈ T ,

X0 = x0.

⎧
⎨

⎩
(6) 

Note that s is taken to be strictly greater than t when calculating the partial derivatives of E(Xs | Xt) 
and Var(Xs | Xt) with respect to s, in which case the diffusion coefficient is well-defined and not equal 
to 0. The SDE (6) is the key tool to obtain sample paths of Xt given an initial condition by means of a 
recursive procedure, where under Gaussianity at each step the distribution of Xt is constructed using 
the estimation of conditional means E(Xs | Xt) and conditional variances Var(Xs | Xt).

Examples of the SDE (6) include Brownian motion, the Ho–Lee model (Ho & Lee, 1986) and 
the Ornstein–Uhlenbeck process (Uhlenbeck & Ornstein, 1930), among others. Different models 
postulate different forms of b and σ. The Brownian motion Bt, with extensive applications in phys
ics and electrical engineering, is a special case with zero drift and unit diffusion. The Ho–Lee model 
dXt = g(t)dt + σdBt where σ > 0 and g is a deterministic function of time is a stochastic interest rate 
model widely used for the pricing of bond options and to model future interest rates. The 
Ornstein–Uhlenbeck process dXt = −θXtdt + σdBt with θ > 0, σ > 0 is often used to describe 
mean-reverting phenomena in the physical sciences, evolutionary biology and finance, where 
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the coefficient θ characterizes the restoring force towards the mean and σ the degree of volatility 
around the mean.

3 Estimation
3.1 Simulating sample paths
To estimate sample paths of Xt from functional snippets, given an initial condition, it is instructive 
to rewrite the SDE in (6) as

lim
s→t+

(Xs − Xt)

= lim
s→t+

E(Xs | Xt) − E(Xt | Xt)
s − t

(s − t) +
Var(Xs | Xt) − Var(Xt | Xt)

s − t

􏼚 􏼛1/2

(Bs − Bt)

􏼨 􏼩

with initial condition X0 = x0. The above formula gives rise to a method to simulate the 
continuous-time process Xt at a set of discrete time points given an initial condition. Consider a 
pre-specified equidistant time grid 0 ≤ t0 < t1 < · · · < tK−1 < tK ≤ 1 with the common time spacing 
Δ. Denoting the initial value of Xt at t0 by X0 and the simulation of Xt at tk by Xk for k = 1, . . . , K, 
we simulate the continuous-time process Xt at the discrete time points tk, k = 1, . . . , K, given an 
initial condition X0 = x0, by the recursion

Xk − Xk−1

=
E(Xk | Xk−1) − E(Xk−1 | Xk−1)

Δ
Δ +

Var(Xk | Xk−1) − Var(Xk−1 | Xk−1)
Δ

􏼚 􏼛1/2

(Btk − Btk−1 ).

Observing that E(Xk−1 | Xk−1) = Xk−1, Var(Xk−1 | Xk−1) = 0, and (Btk − Btk−1 )/
��
Δ

√
∼ N(0, 1), the 

above recursion reduces to

Xk = E(Xk | Xk−1) + {Var(Xk | Xk−1)}1/2Wk, X0 = x0, (7) 

where Wk ∼ N(0, 1) are independent for k = 1, . . . , K.
We emphasize that under Gaussianity, the recursion in (7) generates an exact simulation 

(Glasserman, 2004) of Xt at t1, . . . , tK in the sense that the Xk it produces follows the same dis
tribution of the process Xt at tk for all k = 1, . . . , K; see Lemma 1 in Section 4. Classical simulation 
methods for SDEs, such as the Euler–Maruyama method and the Milstein method (Kloeden & 
Platen, 1999), in general, introduce discretization error at t1, . . . , tK, because the increments do 
not have exactly the right mean and variance. To simulate Xt using recursion (7), there is hence 
no need to consider increasing numbers of discrete time points K. In practice and particularly 
for the case of accelerated longitudinal studies, a good rule of thumb is to set the time spacing 
Δ as the scheduled (as opposed to actual) visit spacing for each subject. The number of discrete 
time points K to simulate Xt is then determined by the time spacing Δ and the time interval of inter
est; see Section 6 for the selection of time grids in real data applications.

To estimate sample paths of the process Xt, one needs to iteratively generate a random 
sample from the Gaussian distribution N{E(Xk | Xk−1), Var(Xk | Xk−1)} to simulate Xt at tk for 
k = 1, . . . , K as per (7). In practice, both the conditional mean E(Xk | Xk−1) and conditional vari
ance Var(Xk | Xk−1) are unknown and thus need to be estimated.

3.2 Estimation of conditional mean and conditional variance
Note that the information contained in Xk−1 = Xtk−1 

is twofold and includes Xk−1 itself as well as 
the time index tk−1. One can then formulate the estimation of the conditional mean E(Xk | Xk−1) 
and conditional variance Var(Xk | Xk−1) as a regression problem with response Xk and predictor 
(Xk−1, tk−1)T.

Recall that each subject is observed at least twice, at time points Ti1 and Ti2, where the corre
sponding measurements are Yi1 and Yi2. Let Zi = (Yi1, Ti1)T and with a slight abuse of notation 
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set Yi = Yi2 for i = 1, . . . , n. Viewing the {(Zi, Yi)}
n
i=1 as n i.i.d. realizations of the pair of random 

variables (Z, Y), consider the regression model

Yi = m(Zi) + v(Zi)ϵi, (8) 

where m(z) = E(Y | Z = z) and v2(z) = Var(Y | Z = z) are respectively the conditional mean func
tion and conditional variance function. The error term ϵi satisfies E(ϵi | Zi) = 0 and 
Var(ϵi | Zi) = 1. The estimation of both conditional mean and conditional variance using paramet
ric or non-parametric regression methods has been thoroughly studied. For the estimation of con
ditional variance we adopt the well-known approach of fitting a regression model for the squared 
residuals {Yi − m̂(Zi)}

2 as responses and Zi as predictors (Fan & Yao, 1998); see Section S.2 of the 
online supplementary material for more details.

Based on the regression model (8), the recursion for simulating sample paths in (7) simplifies to

Xk = m(Zk−1) + v(Zk−1)Wk, X0 = x0, (9) 

where Zk−1 = (Xk−1, tk−1)T for k = 1, . . . , K. With estimates of the conditional mean function m̂(·) 
and conditional variance function v̂2(·) in hand, we estimate the sample path of the underlying pro
cess Xt at t1, . . . , tK, given an initial condition X0 = x0, by the following recursive procedure,

X̂1 = m̂(Z0) + v̂(Z0)W1,
X̂k = m̂(Ẑk−1) + v̂(Ẑk−1)Wk, k = 2, . . . , K,

(10) 

where Z0 = (x0, t0)T and Ẑk−1 = (X̂k−1, tk−1)T for k = 2, . . . , K; see Algorithm 1.
If one has no prior knowledge about the conditional mean and conditional variance structure, which 

is often the case in real data applications, it may be preferable to adopt non-parametric approaches that 
are more flexible than say multiple linear regression, while incurring a lower rate of convergence.

4 Theoretical results
We establish existence and uniqueness of the solution to the proposed SDE as per (6) and the rate 
of convergence for the estimated sample paths. Existence and uniqueness follows from the 
Gaussianity of the process Xt; for every finite set of time points t1, . . . , tk in T , (Xt1 , . . . , Xtk )T 

are jointly Gaussian. The key step is to express the conditional mean E(Xs | Xt) and conditional 
variance Var(Xs | Xt) in terms of the mean and covariance functions of Xt, whence drift and dif
fusion coefficients in (6) are seen to satisfy the Lipschitz and linear growth conditions as per (2) 
and (3). Specifically,

E(Xs | Xt) = μ(s) + Σ(s, t)Σ−1(t, t){Xt − μ(t)}, (11) 

Var(Xs | Xt) = Σ(s, s) − Σ(s, t)Σ−1(t, t)Σ(t, s). (12) 

Algorithm 1 Estimating sample paths

Input: Training data {(Zi, Yi)}
n
i=1, initial condition Z0 = (x0, t0)T, and time discretization {tk, k = 0, . . . , K}.

Output: (X̂1, . . . , X̂K)T.

1 for k = 1, . . . , K do

2  Estimate the conditional mean E(Xk | Xk−1) and conditional variance Var(Xk | Xk−1) by m̂(Ẑk−1) and   
v̂2(Ẑk−1), respectively;

3  Draw a random sample X̂k from N{m̂(Zk−1), v̂2(Zk−1)};

4  Ẑk ← (X̂k, tk)T;

5 end
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If Xt is non-Gaussian, as long as a unique solution exists, the rate of convergence for the estimated 
sample path can be similarly derived by assuming Lipschitz continuity for the conditional mean 
function m(·) and conditional variance function v2(·); see Lemma 2.

To show that the drift and diffusion coefficients in (6) satisfy the Lipschitz and linear growth 
conditions as per (2) and (3), we require the following conditions. 

(A1) The mean function μ(t) = E(Xt) is continuously differentiable on T .
(A2) The covariance function Σ(s, t) = Cov(Xs, Xt) is continuously differentiable in the lower 

triangular region {(s, t) : s ≥ t, s, t ∈ T }. Equivalently, the two partial derivative functions

Σ′
s(s, t) =

∂Σ(s, t)
∂s

, Σ′
t(s, t) =

∂Σ(s, t)
∂t 

exist and are continuous for every s, t ∈ T and s ≥ t.

Conditions (A1) and (A2) are regularity conditions on the process Xt, where the latter implies that 
Σ(s, t) is continuously differentiable in the upper triangular region {(s, t) : s ≤ t, s, t ∈ T } but may 
not be differentiable across the diagonal s = t, as for example is the case for Brownian motion. It is 
easy to verify that all examples of processes in Section 2.2 satisfy Conditions (A1) and (A2); see 
Section S.1 of the online supplementary material.

Theorem 1 If the stochastic process Xt is Gaussian, satisfies Conditions (A1), (A2), and 
the initial value x0 is a random variable independent of the σ-algebra F ∞ gen
erated by {Bs, s ≥ 0} with E(x2

0) < ∞, then the stochastic differential equation 
(6) has a pathwise unique strong solution

Xt = x0+ ∫t0
∂
∂r

E(Xr | Xs)
􏼌
􏼌
􏼌
r=s

ds+ ∫t0
∂
∂r

Var(Xr | Xs)
􏼌
􏼌
􏼌
r=s

􏼚 􏼛1/2

dBs, t ∈ T

with the property that

Xt is adapted to the filtration F x0
t generated by x0 and

{Bs, s ∈ [0, t]}
(13) 

and

sup
t∈T

E(X2
t ) < ∞. (14) 

All proofs are given in Section S.3 of the online supplementary material. The uniqueness of the 
solution means that if Xt and Yt are two processes satisfying (6), (13), and (14) then

Xt = Yt for all t ∈ T a.s. 

The solution Xt in Theorem 1 is a strong solution because the version Bt of Brownian motion is 
given in advance and the solution Xt is F x0

t -adapted. The Gaussianity implies that Xt must be gov
erned by a narrow-sense linear SDE (Kloeden & Platen, 1999), where the drift coefficient is 
b(t, Xt) = a(t)Xt + c(t) and the diffusion coefficient is additive, i.e. σ(t, Xt) = σ(t). The drift and dif
fusion coefficients in (6) under Gaussianity are

b(t, Xt) = μ′(t) + Σ′
s(s, t)

􏼌
􏼌
s=tΣ

−1(t, t){Xt − μ(t)},

σ(t, Xt) = Σ′(t, t) − 2Σ′
s(s, t)

􏼌
􏼌
s=t

􏽮 􏽯1/2
, 
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indicating the SDE (6) is narrow-sense linear. The general solution of a linear SDE can be found 
explicitly. Specifically, if Xt is Gaussian, as a solution of (6) it is of the form

Xt = Φ(t) x0+ ∫t0 c(s)Φ−1(s)ds+ ∫t0 σ(s)Φ−1(s)dBs

􏽮 􏽯
, 

with a(t) = Σ′
s(s, t)|s=tΣ−1(t, t), c(t) = μ′(t) − Σ′

s(s, t)|s=tΣ−1(t, t)μ(t) and Φ(t) = e∫t0a(s)ds.
An important feature of the recursion in (7) is that it generates an exact simulation of Xt at 

t1, . . . , tK (Glasserman, 2004) if Xt is a Gaussian process.

Lemma 1 If the stochastic process Xt is Gaussian, then the recursion in (7) generates an 
exact simulation of the stochastic process Xt at t1, . . . , tK in the sense that 
the distribution of the X1, . . . , XK it produces is precisely that of the 
continuous-time process Xt at time points t1, . . . , tK.

Lemma 1 ensures that under Gaussianity the discretization error does not affect the rate of con
vergence of estimated sample paths. To study the asymptotics of estimated sample paths (7), we 
investigate the rate of convergence of X̂K; the same rate then applies for X̂k for any k ≤ K. The 
proof relies on a recursion for |X̂k − Xk| for increasing k, using the Lipschitz continuity of the con
ditional mean function m(·) and of the conditional variance function v2(·). We require the follow
ing conditions regarding the variance function Σ(t, t). 

(B1) The variance function Σ(t, t) is strictly positive on the half-open interval (0, 1].

Condition (B1) can be expected to be satisfied in real data applications; all example processes dis
cussed in Section 2.2 satisfy this condition, see Section S.1 of the online supplementary material. 
Under Gaussianity, the conditional mean and conditional variance in recursion (9) becomes

m(Zk−1) = μ(tk) + Σ(tk, tk−1)Σ−1(tk−1, tk−1){Xk−1 − μ(tk−1))},

v2(Zk−1) = Σ(tk, tk) − Σ(tk, tk−1)Σ−1(tk−1, tk−1)Σ(tk−1, tk), 

where Zk−1 = (Xk−1, tk−1)T and tk = tk−1 + Δ denotes the discrete time points used to simulate the 
sample path of the underlying process Xt.

Lemma 2 If the stochastic process Xt is Gaussian and satisfies (A1), (A2), and (B1), then 
for k = 2, . . . , K the conditional mean and conditional variance in recursion (9) 
satisfy

|m(Ẑk−1) − m(Zk−1)| ≤ L|X̂k−1 − Xk−1|,

|v(Ẑk−1) − v(Zk−1)| = 0, 

where L = maxt∈{t1,...,tK−1} |Σ(t + Δ, t)Σ−1(t, t)| and Zk−1 = (Xk−1, tk−1)T, 
Ẑk−1 = (X̂k−1, tk−1)T.

Lemma 2 imposes a limit on the growth of the sequence |X̂k − Xk|, whence one can bound 
|X̂K − XK| by recursion. Lemma 2 holds for all example processes discussed in Section 2.2 with 
Lipschitz constant L = 1; see Section S.1 of the online supplementary material.

To obtain the rate of convergence for the estimated sample path, one also needs to examine the 
asymptotic behaviour of the conditional mean function estimate m̂(·) and the conditional variance 
function estimate v̂2(·). Assume one has results for any fixed z ∈ R × T of the type

[E{|m̂(z) − m(z)|2}]1/2 = O(αn), [E{|v̂2(z) − v2(z)|2}]1/2 = O(βn). (15) 

Adopting the residual-based estimator as described in Section S.2 of the online supplementary 
material to estimate the conditional variance function v2(·), it is well-known that the estimation 
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of the conditional mean function m(·) has no influence on the estimation of v2(·) (Fan & Yao, 
1998). Then βn = αn if the same regression method is used to estimate m(·) and v2(·). When mul
tiple linear regression applies, αn = βn = n−1/2, while αn = βn = n−1/3 for local linear regression.

Theorem 2 If the stochastic process Xt is Gaussian and satisfies (A1), (A2), and (B1), then 
for the estimated sample path of the SDE (6) as defined in (10),

{E(|X̂K − XK|2)}1/2 = O(αn + βn), 

where αn and βn are the rates of convergence for the conditional mean func
tion estimate m̂(·) and conditional variance function estimate v̂2(·) as per (15).

Theorem 2 implies that X̂K converges to XK in the sense that both mean and variance converge 
to their respective targets, i.e.

|E(X̂K) − E(XK)| = O(αn + βn), |Var(X̂K) − Var(XK)| = O(α2
n + β2

n).

Note that this convergence holds uniformly over k, thereby establishing the pathwise convergence 
of the estimated sample path to the true process.

Writing L(XK), L(X̂K) for the distributions of XK and of the corresponding estimator X̂K, re
spectively, we aim to quantify the discrepancy between L(X̂K) and L(XK) as a measure of the per
formance of the estimator. The strong convergence results obtained in Theorem 2 can be used to 
obtain the rate of convergence of the 2-Wasserstein distance (Villani, 2009) dW{L(X̂K), L(XK)}, 
where the 2-Wasserstein distance between two probability measures ν1, ν2 on R is 
d2

W(ν1, ν2)= ∫10 {F−1
1 (p) − F−1

2 (p)}2dp, with F−1
1 and F−1

2 denoting the quantile functions of ν1, ν2, re
spectively. If ν1 and ν2 are one-dimensional Gaussians with means and variances (m1, σ2

1) and 
(m2, σ2

2) then d2
W(ν1, ν2) = (m1 − m2)2 + (σ1 − σ2)2. For the Wasserstein rate of convergence we 

obtain

Corollary 1 Under the conditions of Theorem 2, the distribution of the estimated sample 
path as per (10) satisfies

dW{L(X̂K), L(XK)} = O(αn + βn), 

where αn and βn are the rates of convergence for the conditional mean func
tion estimate m̂(·) and conditional variance function estimate v̂2(·) as per 
(15).

So far, we have assumed that snippets are observed without measurement errors, which applies to 
situations such as longitudinal growth curves, where anthropometric measurements are often consid
ered to be error-free. Applications to growth curves are highlighted in Section 6.1 and Section S.5.1 of 
the online supplementary material using growth curve data for the Nepal and Berkeley growth stud
ies. The presence of measurement errors will lead to an errors-in-variables scenario (Griliches & 
Hausman, 1986), which will be discussed in Section S.4 of the online supplementary material. includ
ing theoretical analysis that characterizes the impact of measurement errors on the asymptotic behav
iour of the estimated sample paths. In Section 5.2, we demonstrate that the proposed approach is 
quite robust in the presence of measurement errors. If one nevertheless would like to further address 
bias caused by measurement errors, this will require adopting some of the available measurement er
ror correction techniques (Carroll et al., 2006; Cook & Stefanski, 1994).

5 Finite sample performance
5.1 Implementation details
The proposed dynamic modelling approach is straightforward to implement, as outlined in 
Algorithm 1. The regression model (8) involves only a two-dimensional predictor, resulting in a 
time complexity of O(n) for training. Consequently, Algorithm 1 also runs in O(n) time, given 

J R Stat Soc Series B: Statistical Methodology                                                                                           9
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssb/advance-article/doi/10.1093/jrsssb/qkae116/7929432 by U
niversity of C

alifornia, D
avis - Law

 Library user on 29 June 2025

http://academic.oup.com/jrsssb/article-lookup/doi/10.1093/jrsssb/qkae116#supplementary-data
http://academic.oup.com/jrsssb/article-lookup/doi/10.1093/jrsssb/qkae116#supplementary-data
http://academic.oup.com/jrsssb/article-lookup/doi/10.1093/jrsssb/qkae116#supplementary-data


that calculating the conditional mean and conditional variance takes two steps and K is fixed. For 
generating M sample paths, the time complexity is O(Mn), making it linear with respect to the 
sample size. This computational efficiency makes the proposed approach highly suitable for large 
datasets. The algorithm has been implemented in R and is available on GitHub at https://github. 
com/yidongzhou/Dynamic-Modeling-of-Functional-Snippets.

Furthermore, the dynamic modelling approach inherently provides uncertainty quantification for 
the estimated sample paths. Practically, one can repeat the recursive process described in (10) M 
times for a sufficiently large M, such as M = 1,000. With these M simulated sample paths in 
hand, an empirical 1 − α (pointwise) confidence band for the underlying process can be calculated. 
This method is demonstrated in Section 6.1 for identifying developmental delays in children’s 
growth and is validated through simulations in Section S.5.5 of the online supplementary material.

Note that non-parametric regression models, such as local linear regression, rely on two 
bandwidths h1 and h2 for estimating the conditional mean and conditional variance, respectively, 
as defined in (8). While h1 can be selected via cross-validation, the bias in the squared residuals 
{Yi − m̂(Zi)}

2 makes cross-validation infeasible for choosing h2. In our implementation, we choose 
h2 = h1, where we select h1 by cross-validation for conditional mean estimation, minimizing 
CV(h) =

􏽐n
l=1 {Yi − m̂(−l)

h (Zl)}
2. Here m̂(−l)

h (·) denotes the local linear regression estimate using 
bandwidth h based on the reduced sample {(Zi, Yi)}i≠l; users can choose to substitute alternative 
values for h1, h2.

5.2 Simulation studies
We demonstrate the utility of the proposed approach in recovering underlying dynamics from 
functional snippets across various scenarios. Existing work based exclusively on covariance com
pletion is not directly comparable, as one of the advantages of the proposed approach is that it 
entirely bypasses covariance estimation and does not rely on functional principal component ana
lysis. For comparative purposes, we estimate the covariance function using the covariance comple
tion approach of Lin and Wang (2022), denoted as LW, via the mcfda package available at https:// 
github.com/linulysses/mcfda. Subsequently, assuming Gaussianity, we derive the conditional 
mean and conditional variance using the estimated mean and covariance functions. Finally, we ap
ply the recursive procedure outlined in (10) to reconstruct the underlying stochastic process.

We generate functional snippets from the Ho–Lee model and the Ornstein–Uhlenbeck process 
as discussed in Section 2.2, respectively. To obtain functional snippets, we first simulate the sample 
path of Xt,i at a regular time grid {tk}K

k=0 with tk = kδ and Kδ = 1 for each i = 1, . . . , n. Denoting the 
simulated values for the n processes by {(Xt0,i, Xt1,i, . . . , XtK,i)

T}n
i=1, functional snippets are gener

ated as {(XTi,i, XTi+δ,i)
T}n

i=1 where for each i, Ti is a time point randomly selected from the time grid 
{tk}K−1

k=0 . Since both the Ho–Lee model and the Ornstein–Uhlenbeck process are narrow-sense linear 
SDEs, exact methods for simulating their paths are available by examining their explicit solutions 
(Glasserman, 2004). Specifically, for the Ho–Lee model dXt = g(t)dt + σdBt, a simple recursive 
procedure for simulating values at {tk}K

k=0 is

Xk+1 = Xk+ ∫tk+1

tk
g(s)ds + σ(tk+1 − tk)1/2Wk, (16) 

where Wk ∼ N(0, 1) are independent for all k and X0 = x0. Similarly for the Ornstein–Uhlenbeck 
process dXt = −θXtdt + σdBt, one can set

Xk+1 = e−θ(tk+1−tk)Xk +
σ2

2θ
(1 − e−2θ(tk+1−tk))

􏼚 􏼛1/2

Wk. (17) 

The above procedures are exact in the sense that the joint distribution of the simulated values co
incides with the joint distribution of the corresponding continuous-time process on the simulation 
grid. To investigate the effect of noise, we add independent errors to the generated functional snip
pets {(XTi,i, XTi+δ,i)

T}n
i=1. Specifically, we consider the contaminated functional snippets 

{(Yi1, Yi2)T}n
i=1, where Yi1 = XTi,i + εi1 and Yi2 = XTi+δ,i + εi2 with εij ∼ N(0, ν2) independently.
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We examined the performance of the proposed approach across sample sizes n = 50, 200, 1,000 
and noise levels ν = 0, 0.01, 0.1. For each combination of sample size and noise level, the simula
tion was repeated Q = 500 times. The time interval was chosen as [0, 1] and the time spacing was 
δ = 0.05. In each simulation, the recursive procedure as per (10) was performed M = 1,000 times 
using the contaminated functional snippets {(Yi1, Yi2)T}n

i=1 with the initial condition Z0 = (0, 0)T, 
from which M = 1,000 estimated sample paths evaluated at the time grid {tk}K

k=1 were obtained. 
We write {(X̂t1,l, . . . , X̂tK,l)

T}M
l=1 for the M estimated sample paths. For each l, the corresponding 

true sample path (Xt1,l, . . . , XtK,l)
T was obtained using the recursive procedure in (16) or (17) 

with the same initial value and Wk. For each run of a particular sample size and noise level, the 
quality of the estimation was quantified by the root-mean-square error,

RMSE =
1
M

􏽘M

l=1

(X̂tK,l − XtK,l)
2

􏼨 􏼩1/2

.

We chose g(t) = cos (t), θ = σ = 1 and the initial condition X0 = 0 for the Ho–Lee model and the 
Ornstein–Uhlenbeck process, respectively and used multiple linear regression to estimate the con
ditional mean and conditional variance for both cases. The mean and standard deviation of RMSE 
across Q = 500 runs for various sample sizes and noise levels are summarized in Table 1. We ob
serve that the mean RMSE of the proposed approach diminishes as the sample size increases, while 
the presence of noise has only a minor effect. In contrast, the mean RMSE of the covariance com
pletion method is substantial even with a sample size of 1,000. This discrepancy may stem from the 
exceptionally sparse nature of this simulation scenario, where each process is observed within a 
narrow window of length 0.05, contrasting sharply with the broader interval of interest, which 
is [0, 1]. Consequently, the available information may be too limited for covariance completion 
methods to accurately reconstruct the entire covariance surface. As shown in Section S.5.3 of 
the online supplementary material, the covariance completion approach performs better but is still 
inferior to the proposed approach when more measurements are available.

To further illustrate the performance of the proposed dynamic modelling approach, we visualize 
the simulation results for the Ornstein–Uhlenbeck process with sample size n = 200 and noise level 
ν = 0.1 in Figure 1, where M = 100 estimated sample paths are considered, along with the corre
sponding true sample paths. It is evident that the estimated sample paths recover the underlying 
stochastic dynamics from very sparse data, demonstrating that the proposed approach performs 
well.

Table 1. Mean and standard deviation (in parentheses) of root-mean-square errors across 500 runs for the Ho–Lee 
model and the Ornstein–Uhlenbeck process

Sample size Noise level

DM LW

0 0.01 0.1 0 0.01 0.1

Ho–Lee model

50 0.92 (0.87) 0.93 (0.93) 1.21 (1.71) 1.08 (0.37) 1.07 (0.34) 1.11 (0.45)

200 0.39 (0.23) 0.38 (0.22) 0.54 (0.38) 0.91 (0.34) 0.92 (1.15) 0.89 (0.27)

1,000 0.17 (0.09) 0.17 (0.09) 0.27 (0.13) 0.89 (0.24) 0.89 (0.24) 0.88 (0.25)

Ornstein–Uhlenbeck process

50 0.63 (0.65) 0.62 (0.84) 0.71 (1.81) 0.72 (0.23) 0.71 (0.2) 0.74 (0.28)

200 0.25 (0.15) 0.26 (0.16) 0.27 (0.13) 0.67 (0.17) 0.66 (0.21) 0.67 (0.23)

1,000 0.11 (0.06) 0.11 (0.06) 0.15 (0.05) 0.71 (0.09) 0.70 (0.10) 0.70 (0.11)

Note. Here, DM is the proposed dynamic modelling approach and LW the covariance completion approach of Lin and 
Wang (2022).
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Further simulations are provided in Section S.5 of the online supplementary material, where we 
emulate the Berkeley growth study data, assess the resilience of the proposed method to departures 
from Gaussianity and explore denser scenarios with Ni = 5 measurements per subject. While the 
primary objective of the proposed approach is to reconstruct the dynamic distribution of the 
underlying process, we also investigate its capability for estimating the mean and variance function 
in Section S.5.6 of the online supplementary material.

6 Data applications
6.1 Nepal growth study data
Screening children’s development status and monitoring height growth is essential for paediatric 
public health (K. Chen & Müller, 2012) and due to limited resources often must be based on in
complete data. We demonstrate the potential of the proposed dynamic modelling approach to 
characterize underlying growth patterns and reveal specific growth trends with snippet data 
from a Nepal growth study (West et al., 1997). This data set contains height measurements for 
2,258 children from rural Nepal taken at five adjacent times points from birth to 76 months, 
spaced approximately four months apart. To facilitate the exploration of these data, we use the 
first 1,000 records, containing measurements for 107 males and 93 females. Due to missing 
data, the actual number of measurements per child ranges between 1 and 5. Children with at least 
two subsequent measurements are included in the analysis, while the rest are used for model val
idation. We applied the proposed method to females and males separately since female and male 
growth trends differ significantly, with females reaching puberty earlier than males.

So far the number of measurements per subject Ni has been assumed to be 2 for simplicity. For 
denser scenarios where Ni > 2, one could divide the Ni measurements into Ni − 1 pairs of contigu
ous measurements for each i and combine these pairs into a new sample for conditional mean and 
conditional variance estimation. This is useful to augment the sample size n especially if the sample 

Figure 1. An illustration of the proposed dynamic modelling approach for a simulated Ornstein–Uhlenbeck process 
with sample size n = 200 and noise level ν = 0.1. Simulated sample paths: fully observed sample paths 
contaminated with noise (upper left panel); simulated snippets: two consecutive measurements randomly 
extracted from each simulated sample path (upper right panel); true underlying sample paths: true underlying 
sample paths without noise (lower left panel); estimated sample paths: estimated sample paths obtained using the 
proposed dynamic modelling approach with the simulated snippets as input (lower right panel).
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size n is relatively small, which is often the case in practice. We employ this strategy to make full use 
of the Nepal growth study data as well as the spinal bone mineral density data in the next subsection.

While in Section S.5.1 of the online supplementary material, we demonstrate the efficacy of the 
proposed dynamic modelling approach to recover the underlying growth dynamics from snippet 
data using Berkeley growth study data, we highlight here another important application of the 
proposed approach—growth monitoring. Given a child’s initial development status, the proposed 
approach dynamically predicts child-specific growth patterns far into the future. As a child grows 
older and fresh measurements become available, one can screen the child’s development by com
paring newly available measurements with the predicted growth. We demonstrate this with a ran
domly selected female and male who have no contiguous measurements and hence are not 
included in the model fitting. Specifically, the selected female was measured only once at 4 months, 
while the male was measured at 12 and 20 months.

To obtain future growth patterns for these two children, the recursive procedure in (10) was im
plemented 100 times using the growth snippets with at least two measurements in a row to obtain 
100 estimated growth curves, where local linear regression was adopted to estimate the conditional 
mean and conditional variance. The starting time is t0 = 4 months old for the selected female and 
t0 = 12 months old for the selected male, where the time spacing was set at Δ = 4 months, corre
sponding to the intended measurement spacing of the Nepal growth study. The starting height X0 

is chosen as the initial height measurement, i.e. 52.9 cm and 63 cm for the selected female and 
male, respectively.

The estimated growth curves and the corresponding 5%, 50%, 95% percentile curves for these 
two individuals are shown in the right panels of Figure 2, while the observed snippet data for the 
Nepal growth study are in the left panels. Although the available information is very limited due to 
the snippet nature of the data, the proposed approach is capable of capturing relevant dynamics 
from the observed growth snippets and revealing future growth trends of the selected female 
and male children. For the selected male child, one additional height measurement is available 
at a later age (20 months). The newly available height measurement (65.1 cm) falls below the 

Figure 2. Observed growth snippets for females (upper left panel) and males (lower left panel), depicting the 
available data for the Nepal growth study, as well as predicted growth curves for a selected female (upper right 
panel) and a selected male child (lower right panel). The black dashed curves in the right panels indicate predicted 
5%, 50%, and 95% percentiles and the available height measurements for the selected female and male are 
highlighted.
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predicted 5% percentile curve, indicating that this child may be developmentally delayed and 
should be flagged for further follow-up.

6.2 Spinal bone mineral density data
In this study (Bachrach et al., 1999), 423 healthy individuals were longitudinally assessed for their 
spinal bone mineral density. These assessments were scheduled annually over four consecutive 
years. However, deviations from the planned visit schedules resulted in varying numbers of meas
urements available per individual, ranging from 1 to 4, and also varying time intervals between 
measurements. Such irregular and sparse observations have posed significant challenges in func
tional data analysis and garnered much attention in the field (Delaigle & Hall, 2016; Delaigle 
et al., 2021; James & Hastie, 2001; Lin & Wang, 2022; Lin et al., 2021). We included 153 females 
and 127 males with ages ranging from 8.8 to 26.2 years and featuring at least 2 measurements for 
model fitting, while the remaining subjects with only one measurement were used for model 
validation.

To infer individual-specific stochastic dynamics of spinal bone mineral density from the irregu
larly observed bone density snippets, we again randomly selected one female and one male for 
whom measurements were available at ages 10 and 9 years, respectively. The recursive procedure 
in (10) was run 100 times, resulting in 100 estimated bone density curves. Conditional mean and 
variance were obtained with local linear regression with cross-validation bandwidth selection. The 
starting age was chosen as t0 = 10 years for the selected female and t0 = 9 years for the selected 
male, with an end time of tK = 24 years and 1-year time increments, corresponding to the sched
uled measurement spacing of the data. The starting values of bone mineral density are 0.778 and 
0.642 for the selected female and male, respectively, corresponding to their initial bone density 
measurements.

Figure 3 depicts the observed snippets and estimated bone density curves, along with 
5%, 50%, 95% percentile curves, demonstrating that the proposed dynamic modelling approach 
is capable of handling the irregularity inherent in these data; see the right panel of Figure 3. 

Figure 3. Observed snippets of mineral bone density for females (upper left panel) and males (lower left panel), as 
well as predicted bone density curves for a randomly selected female (upper right panel) and male (lower right 
panel), where the black dashed curves indicate 5%, 50%, and 95% percentiles. The available bone density 
measurements for the selected female and male are also highlighted.
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Comparing the predicted bone density curves for the selected female and male, we find that for the 
female these reach a plateau at around 16 years, while for the male they level off at around 18 
years. This finding is in agreement with the literature (Bachrach et al., 1999). Additionally, we ap
plied the covariance completion approach for these data and present the findings in Section S.6 of 
the online supplementary material.

7 Discussion
In this article, we propose a flexible and robust approach to recover the dynamic distribution from 
functional snippets using SDE. The proposed framework circumvents the challenge of estimating 
covariance surfaces in the presence of missing data in the off-diagonal regions, leading to a con
sistent reconstruction of sample paths from observed snippets. Both theoretical analysis and nu
merical simulations support the effectiveness and utility of the proposed SDE approach.

Differential equations are extensively used across various scientific fields, including engineering, 
physics, and biomedical sciences. A significant portion of the literature on differential equations 
focuses on parameter estimation (Liang & Wu, 2008), with applications in time series (S. Chen 
et al., 2017) and functional data analysis (Denis et al., 2021). Another research avenue involves 
neural differential equations, where differential equations enhance the performance of neural net
works (Yadav et al., 2015). Notable examples include neural ordinary differential equations 
(R. T. Chen et al., 2018) and neural SDEs (Jia & Benson, 2019; Oh et al., 2024). Additionally, 
SDEs are applied in generative modelling, such as score-based diffusion models (Song et al., 2020).

Complementing the existing literature, this article uses SDEs as a powerful tool to model func
tional snippets and to recover the underlying dynamics, addressing the challenge of minimal data 
availability for individual trajectories. The proposed tools also make it possible to assess forward 
dynamics by projecting trajectories into the future when only minimal snippet information or just 
one measurement is available for a given subject.
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