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On loop Deligne-Lusztig varieties of Coxeter-type
for inner forms of GL,

CHARLOTTE CHAN* AND ALEXANDER B. Ivanov'

For a reductive group G over a local non-archimedean field K one
can mimic the construction from classical Deligne—Lusztig theory
by using the loop space functor. We study this construction in the
special case that G is an inner form of GL,, and the loop Deligne—
Lusztig variety is of Coxeter type. After simplifying the proof of
its representability, our main result is that its ¢-adic cohomology
realizes many irreducible supercuspidal representations of G, no-
tably almost all among those whose L-parameter factors through
an unramified elliptic maximal torus of G. This gives a purely lo-
cal, purely geometric and — in a sense — quite explicit way to realize
special cases of the local Langlands and Jacquet—Langlands corre-
spondences.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 11G25, 20G25, 14F20.

1. Introduction

Let G be an inner form of GL, (n > 2) over a local non-archimedean
field K and let G = G(K) be the group of its K-points. Let T C G be
a maximal elliptic unramified torus. Then T is uniquely determined up to
G-conjugation and 7' = T(K) = L* where L/K is the unramified extension
of degree n. Following an idea of Lusztig [Lus79], in [CI21a] we constructed
a scheme X over Fq with an action by G x T', which can be seen as an ana-
logue of a Deligne—Lusztig variety for the K-groups T C G. As in classical
Deligne-Lusztig theory [DL76], this allowed us to attach to a smooth char-
acter 0: T — @EX the corresponding isotypic component R%(G) of the f-adic
Euler characteristic of X, a smooth virtual G-representation. In [CI21a], we
studied these objects when 6 is primitive (i.e., the Howe decomposition of
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0 has exactly one member): we showed that R%(6) is irreducible supercus-
pidal and isomorphic to the representation attached to (L/K,0) by Howe
[How77], and hence provides a geometric and purely local realization of the
local Langlands and Jacquet—Langlands correspondences.

These results indicate that X, and more generally other schemes ob-
tained by similar Deligne-Lusztig-type constructions for other reductive
groups over K, allow a quite explicit, purely local, and purely geometric way
to realize the local Langlands correspondence and/or some instances of auto-
morphic induction for at least those irreducible representations of G, whose
L-parameter factors through an unramified torus. This is highly desirable, as
the existing local proofs of the local Langlands correspondence are purely al-
gebraic (e.g. via Bushnell-Kutzko types), and the existing geometric proofs
tend to be very inexplicit and/or use global arguments (except for [BW16],
which — similar to [CI21a] — only deals with primitive #). Moreover, an exact
analogue of the classical Deligne-Lusztig theory over non-archimedean local
fields is highly interesting in its own right.

The first goal of the present article is to give a more satisfactory defi-
nition of X and simplify the proof of its representability. The second goal
is to show that R%(6) is irreducible supercuspidal and realizes the local
Langlands and Jacquet—Langlands correspondences for a much wider class
of irreducible supercuspidal representations of G' (almost all among those,
whose L-parameter factors through 7' C @), thus going far beyond the cor-
responding results of [BW16] and [CI21a]. As the methods from [CI21a] for
primitive € do not apply anymore, our main concern here will be to develop
new geometric methods to study the cohomology of Deligne—Lusztig con-
structions of Coxeter type over local fields, in particular generalizing results
of [Lus04] away from the case when 6 is regular (in the sense of op. cit.),
and providing nice description for the quotient of (subschemes of) X by
unipotent radicals of rational parabolic subgroups of GG, which generalizes
(in the special case for G, T) to the situation over K particular results of
[Lus76]. Some of these methods immediately work for all reductive groups,
and some rely on G being an inner form of GL,,.

To describe our result, we need more notation. First of all, there is an
unique integer £ € {0,1,...,n — 1} such that if n’ = ged(n, k), n = n'ng,
k = n'ky, we have G = GLy/ (Dy, p,), where Dy, /., denotes the central
division algebra over K with Hasse-invariant ko/no.

Let € be any character of K* with ker(e) = Ny, (L), the image of the
norm map of L/K. Denote by

e 2 the set of smooth characters of L* with trivial stabilizer in Gal(L/K),
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e ¢ (n) the set of isomorphism classes of smooth n-dimensional repre-
sentations o of the Weil group Wy of K satisfying 0 = 0 ® (e oreck),
e /7 (n, k) the set of smooth irreducible supercuspidal representations 7
of G (= G(K) with G corresponding to k) such that 7 = 7®(oNrdg).

There are natural bijections

2/ Gal(L/K) ——— 95 (n) ——— @75(n,0) —— = /2 (n, k)

GL,,

0 ——— 09 +——— LL(0g)=:my Gl

—  JL(m,"") =t 7.
The latter two maps are the local Langlands and the Jacquet—Langlands
correspondences respectively. Here gy := Indx’; (0 - u) is the induction to

W of the character Wy — W%b = 64’; @Z, where p is the rectifier,
i.e. the unramified character of L* defined by u(w) = (=1)""! (here @
uniformizer of L).

Our main result is the following theorem, which confirms Lusztig’s con-
jecture [Lus79] in this setting for a large class of characters 6.

Theorem A. Assume that p > n. Let 6: T = L* — @; be a smooth
character such that 0|y has trivial stabilizer in Gal(L/K). Then +R%(0)
is a genuine G-representation and

:ER%(@) = .

In particular, £R$.(0) is irreducible supercuspidal and op <> +R$(0) is a
realization of the local Langlands and Jacquet—Langlands correspondences.

In [CI21a, Section 12], for all p,n, k we establish Theorem A under the
assumptions that either: € is primitive (this is a stronger condition on 6 than
in the theorem above), or 6 is unramified and has trivial Gal(L/K)-stabilizer.
When k is coprime to n, then G is the unit group of a central division
algebra, and the proof of Theorem A is considerably easier: for all p,n and
any 0 with trivial Gal(L/K)-stabilizer, the result holds by combining Lusztig
[Lus79] and Boyarchenko [Boyl12] along with a result of Henniart [Hen92,
Théoreme 3.1] (see [Cha20, Section 7]). When x = 1 and n = 2, Theorem A
was first done in [Ival6]. For G = GL2 and ramified elliptic tori a similar
result was shown in [Ival8, Iva20]. Tackling the problem of understanding
Rg (0) for all n,x under the far weaker assumptions on 6 in Theorem A
means that we must overcome two major issues: unlike the setting that
(k,m) = 1, the representations R%(f) are not always compact inductions
from finite-index subgroups of G, and unlike the setting that n = 2, not all
0 are primitive. These issues turned out be quite difficult to resolve; we now
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explain the strategy of the proof of Theorem A and discuss the geometric
methods used in it.

To begin with, G has a (unique up to conjugacy) smooth affine model
Go over the integers Ok of K, whose Og-points are the maximal compact
subgroup Go = GL.(Op,,,,, ), where Op, , —is the ring of integers of
Dy, jny- Moreover, Go can be chosen compatibly with T so that Tp :=
TNGe = Uy, is the maximal compact subgroup of 7. As is shown in [CI21a]
(see also Proposition 3.6 below), X admits a scheme-theoretically disjoint
decomposition,

(1.1) X= I 9Xo, where Xo=1limX,
QGG/GO h

is a subscheme equal to an inverse limit of affine perfect schemes Xj (h =
1,2,3,...), each perfectly finitely presented over Fq. Here X carries an
action of Go X Tp and X} inherits an action of a certain finite (Moy—
Prasad) quotient Gy, x T} of it. Then X; is (the perfection of) a classical
Deligne—Lusztig variety attached to the reductive quotient of the special
fiber of G (isomorphic to Res]Fqn0 /FqGLn/), and the deeper-level varieties
X}, coincide with the (perfections of) varieties considered in [Lus04, Sta09]
when Go ®o, F, is reductive (i.e., & = 0), resp. with those in [CI21b] in the
general case. In this setting, T}, = U /U = (O /p)* and G, is a finite
quotient of GLy/(Op,,,,,) by a congruence subgroup (for example, in the
split case k = 0, Gj, = GL,(OL/ph)).

Let Z be the center of G. Then T' = ZTp. For a character 6 of T' = L*
trivial on the h-units U2, (1.1) plus the fact that the fibers of X}/ ker (T}, —
Tyh-1) — Xp_1 are affine spaces of a fixed dimension, gives R%(6) =
cIndgGO R%Z (0), where R%f (0) is the 0|y, -isotypic component of the ¢-adic
Euler characteristic of X, (extended to a ZGp-representation by letting
z € Z=K* act by 0(z)).

The proof of Theorem A consists of five steps:

(1) Show that j:R%f (0) is an irreducible G,-representation. See Section 4.

(2) By similar methods as in (1), show for a certain closed G}, x Tj-stable
perfect subscheme Xj,,, C Xj, that £H} (X}, )g is irreducible and
:I:R%”’(H) = £ H}(Xpn)e. See Section 5.

(3) Show (using (1)) that the induction £R%(6) = cInd%Gc9 (j:R%f (9)) is
admissible (equivalently, a finite direct sum of irreducible supercuspi-
dals). See Section 6.
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(4) Use [CI21c] to compute the degree deg H (X}, ) of the (finite-dimen-
sional) representation +H (X )g, which is then by (2) also equal to
deg R%h (0). See Section 8.1 and [CI21c].

(5) Using (3) together with the traces of R%(#) [CI21a, Theorem 11.2]
and of 7y on very regular elements (cf. Section 7.2 for a definition) in
T C @G, conclude by using an argument due to Henniart [Hen92] using
linear independence of characters, along with matching deg R%’(G)
from (4) with the explicitly known formal degree of my [CMS90]. See
Section 8.2.

Let us briefly comment on steps (1)-(4) here. Step (1) relies on a precise
analysis of the quotient G\ (X}, x X}3) in the setting described above. This
is remarkably delicate, with difficulties that distinguish it both from the
proof of the h = 1 scalar product formula in classical Deligne—Lusztig theory
[DL76, Theorem 6.8] and from the analogous formula for A > 1 in the regular
case [Lus04, Proposition 2.3] (for more details, see Remark 4.5). This careful
analysis culminates in showing the following particular Mackey formula for
“Deligne-Lusztig induced” G}-representations.

Theorem B (see Theorem 4.1, Corollary 4.3). Let 6,60" be two characters
of Ty,. Then

(RS 0), R%(Q’)>Gh — #{weWs: 6 =boad(w)},

where Wo is the Weyl group of the special fiber of Go and F is the Frobenius
of G acting on it. Moreover, if the stabilizer of 0|1 in Gal(L/K)[n'], the
unique subgroup of Gal(L/K) of order n', is trivial, then iR%L(H) is an
wrreducible G -representation and the map

{charactersd: Tj, — Q, in general position}/WQ
— {irreducible Gp,-representations}
G b
0 — £R7"(0)

18 injective.

The point of Theorem B is that in our setting, it nullifies the assumption
“@ regular” which was crucial in [Lus04]. One can hope that similar methods
as used in the proof of Theorem B could lead to a general Mackey formula
for all elliptic unramified tori in reductive K-groups.
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Step (2) is a technically more elaborate version of the same idea imple-
mented in step (1). It is (among other things) responsible for the assumptions
that p > n and that 6|y has trivial stabilizer in Gal(L/K). See Remark 4.5.

Step (3) relies on the study of the quotient Np\X, where N, C G}
is a subgroup corresponding to the unipotent radical of a proper parabolic
subgroup of G. Once this quotient is described (Lemma 6.8), (3) is easy to
show. The main technical role in this description is played by classical minor
identities, dating back to 1909 results of Turnbull [Tur09].

Step (4), mainly performed in [CI21c] is based on the determination
of the action of Frobenius (over Fg») in the cohomology of Xj, . This de-
termination is strongly related to the amazing fact that X} ,,/ is a maximal
variety over Fyn, i.e., #Xp, v (Fyn ) attains its Weil-Deligne bound, prescribed
by the Lefschetz fix point formula and the dimensions of the single ¢-adic
cohomology groups.

Finally, we state a conjecture for other groups, and discuss the construc-
tion of a p-adic Deligne-Lusztig stack, which allows to relate our results to
the work of Zhu and Xiao-Zhu on the stack of isocrystals [Zhu20, XZ17],
as well as to the recent work of Fargues-Scholze [FS21]. In the rest of the
introduction, G denotes any unramified reductive group over K.

Related work

This paper, in both its results and its methods, has served as motivation
for many directions. We mention several works that have been established
since the time this paper was written. We additionally indicate expected
connections to recent and fast-moving developments in the realm of the
local Langlands conjecture. In the rest of the introduction, G denotes any
unramified reductive group over K and G’ denotes an extended pure inner
form of G. Let T < G’ be an arbitrary (not necessarily elliptic) unramified
maximal torus. As usual, we write G = G(K), G' = G/(K), T = T(K).

Various Deligne—Lusztig spaces for p-adic groups. In [CI21b], we
defined affine perfect schemes X}, of perfectly finite presentation associated
to certain parahoric subgroups of G’, extending [Lus04, Sta09]. Each has an
action of a certain quotient T}, x G}, of Moy—Prasad subgroups, allowing one
to define a deeper version of Deligne—Lusztig induction, which we denote by
R (6).

In an even more general setup (where, in particular, G’ is allowed to be
an inner form of a Levi subgroup of G), certain “big” p-adic Deligne-Lusztig
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spaces attached to G, G’ and T were introduced in [Iva22]. They admit an
action by G’ x T'. In the special case of Coxeter tori and inner forms of GL,,
these spaces give back the space X as in (1.1).

A priori these big p-adic Deligne-Lusztig spaces are huge objects (in
particular, infinite-dimensional and often not representable by schemes). To
develop a formalism capturing the ¢-adic cohomology of such objects is the
task of an ongoing project of L. Mann with the second author. This formal-
ism then attaches a smooth G’-representation R$ (6) to a smooth character

0: T — Q, . Without using this formalism we are able to define R% () in
the special case of the present article in an ad hoc way using (1.1) and the
representations Rg’ (0). By [Iva2l, Thm.1.1], the same also works whenever
G is classical and T is Coxeter.

Below we describe a couple of works on R%f ().

jo(e) and supercuspidal representations. The work in the present
paper establishes the irreducible supercuspidality of the compact induction
C—Ind(R%:h (#)) in the case that G = GL,, for most characters 6. For arbi-
trary G and T, when the size of the residue field of K is sufficiently large,
the irreducible supercuspidality of this compact induction is established
in work of the first author with M. Oi [CO21] for characters 6 satisfying
a genericity condition analogous to primitivity. Moreover, the correspon-
dence 0 — c—Ind(R%f (0)) is the “correct” correspondence, in the sense of
DeBacker—Spice [DS18], and is compatible with current constructions of su-
percuspidal L-packets. This is achieved via an explicit algebraic comparison
to Yu’s construction of supercuspidal representations [Yu0l], in contrast to
the geometric methods established in the present paper.

Mackey formula for R%:h(e). If G’ is K-split and T is Coxeter, the
analogue of Theorem B holds, due to work of the second author and O.
Dudas [DI20, Thm. 3.2.3]. The proof of [DI20, Thm. 3.2.3] is a quite non-
straightforward generalization of our proof of Theorem B.

A p-adic Deligne—Lusztig stack and relation to Fargues—Scholze

Finally, in §9 we put our results in the context of the work of Zhu [Zhu20],
Xiao-Zhu [XZ17] and Fargues—Scholze [FS21]. The starting point is that
there is a natural way to organize (certain variant of) the spaces X = X&
into a family, where G continuously varies through all extended pure inner
forms of GL,, (or more generally, of any given unramified group). More
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precisely, fix an unramified reductive group G. Zhu and Xiao—Zhu consider
the stack Isocq, parametrizing certain G-isocrystals, whose geometric points
correspond to extended pure inner forms of G. We sketch the construction
of a v-stack X,, — Isocg, whose fibers are (in the special case G = GL,,, w
Coxeter), essentially the spaces X/T.

Attached to any character @ of T, there should! exist a “p-adic Deligne—
Lusztig complex” DLy, ¢ in an appropriate category Djis(Isocg, Q) of lisse
pro-étale sheaves on X,,. Theorem A can now be restated as the computation
of the restriction of DL,, ¢ to the basic locus, cf. Corollary 9.2. Moreover,
through the corresponding v-stack Isocg over perfectoid spaces over Fq,
Isocq is related to the stack Bung of G-bundles on the Fargues—Fontaine
curve, a central object of [FS21]. Via this relation, DL,, ¢ gives rise to an
object DLL;,@ € Dys(Bung, Q). We conclude by stating Conjecture 9.6 con-
cerning its behavior and relation to Fargues’ conjectural Hecke eigensheaf
(which in the case of the present article was constructed by Anschiitz—LeBras
[AL21, Thm. 2.1)).

2. Notation

For a non-archimedean local field M we denote by Opr,par, Uy = O} resp.
U]\h/[ =1+ p']Q (with h > 1) its integers, maximal ideal, units resp. h-units.

Throughout the article we fix a non-archimedean local field K with uni-
formizer w and residue field F, of characteristic p with ¢ elements. We
denote by K the completion of a fixed maximal unramified extension of K,
and by O the integers of K. The residue field Fq of K is an algebraic clo-
sure of [Fy, and w is still a uniformizer of K. We write o for the Frobenius
automorphisms of K/K and of F,/F,.

Fix an integer n > 2. We denote by K C L C K the unique subextension
of degree n. Moreover, for any positive divisor r of n we denote by K C K, C
K, = L the unique subextension of degree r over K.

Fix another integer 0 < k < n and write n = n'ng, Kk = n'kg, where
n' = ged(n, k). Then ng, kg are coprime.

Fix a prime £ # p and let Q, be a fixed algebraic closure of Q. All coho-
mology groups of (perfections of) quasi-projective schemes of finite type over
Fq will be compactly supported étale cohomology groups with coefficients
in Q. For such a scheme Y (and more generally, whenever the cohomology

1Sections 9.5 and 9.6 are conditional on the existence of a six functor formalism
for solid pro-étale sheaves on v-stacks on Perqu7 which is not developed yet (this

is, however, the aim of the ongoing work of L. Mann and the second author).
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groups are defined), we write H}(Y) = Y., HI(Y,Q,) (the coefficients
always will be Qy, so there is no ambiguity).

Unless otherwise stated, all representations of locally compact groups
appearing in this article will be smooth with coefficients in Q,.

3. Coxeter-type loop Deligne—Lusztig scheme in type A,_q

Let n =n'ng > 2 and k = n'ky with ged(ko, ng) = 1 be as in Section 2. This
notation remains fixed throughout the article.

In this section we review some constructions and results concerning
loop Deligne—Lusztig schemes of Coxeter type for inner forms of GL,, from
[CI21a], and we simplify the proof of representability (Proposition 3.6).

3.1. Inner forms of GL,, and elliptic tori

Inside the group GL,, over K we fix a split maximal torus T and the unipo-
tent radicals Up, Uy of two opposite K-rational Borel subgroups containing
Ty. Let the roots of Ty in Uy be the positive roots, determining a set Sy
of simple roots. Conjugating if necessary, we may assume that T is the
diagonal torus and Uy is the group of upper triangular unipotent matrices.

3.1.1. Forms of GL,,. The Kottwitz map [Kot85]
kgL, = valodet: B(GLy,)pasic — Z
for GL,, defines a bijection between the set of basic o-conjugacy classes in
GL,(K) and Z. Fix a basic element b € GL,,(K) with kg1, (b) = k. Let G
be the K-group defined by
G(R) = {g € GL,(R®k K): g~ 'bo(g) = b}
(this is the group J, from [RZ96, 1.12]). Then G is an inner form of GL,
and we may identify G(K) = GL,(K). The Frobenius on G(K) is Fy: g —
bo(g)b~!. The K-points of G are
G = G(K) = GLu(Dy ).

We may identify the adjoint Bruhat—Tits building of G over K with that of
GL,. Denote both of them by % .. The adjoint Bruhat-Tits building of G
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over K is the subcomplex Zx = %’? Let x, € #Bk be a vertex. Bruhat—
Tits theory [BT84, 5.2.6] attaches to x; a (maximal) parahoric Ox-model
G of G, whose Og-points

Go = Gp(Ok) = GLn’(ODno/no)’

form a maximal compact subgroup of G.

Remark 3.1. The groups G, Gp,G,Gp depend on the choice of b, but if
Y = h o (h) (h € GL,(K)) is another choice inside the same basic o-
conjugacy class, with corresponding groups G’, G’, then conjugation with
h defines an isomorphism of G, G and G/, G’, and if x; is mapped by h to
Xy, then conjugation by h maps Go, G}y to Go, Gj,. As at the end we are
interested in isomorphism classes of representations of G (or Gp), which are
not affected by these isomorphisms, we leave the choice of b unspecified as
long as possible. When we need concrete realizations of G, Gp,G,Go (in
Sections 4.1, 6.1 and 6.2) we will exploit the freedom of choosing different
b’s inside the same basic o-conjugacy class).

3.1.2. Forms of Tg. Let W = W(Ty, GL,,) be the Weyl group of T in
GL,, then (W, Sy) form a Coxeter system. Let w; = (1n0_1 (1)) eW.ltisa
Coxeter element of (W, Sp). Let w; € Ngr, (To)(K) be a lift of wi. Then
Ad(w1) induces an automorphism of the apartment @y, i C %y of To. It
has precisely one fixed point x,, as wy is Coxeter. Let G be the parahoric
Og-model of GL,, attached to this fixed point. Let 7 be the schematic
closure of Ty in G. Let T denote the (outer) form of T(, which splits over
K, and is endowed with the Frobenius Fy, : t — w0 (t)w; " (independent
of the lift w;), and similarly let T be the (outer) form of 7, which splits
over O, and is endowed with the same Frobenius. We get the group

T:=T(K)=L* andits subgroup Tp :=Tp(Oy) = OF,

where L/K is unramified of degree n. In fact, T = {diag(z, o(z),...,o" 1 (z)):
x € L*} (recall that T is diagonal), and the isomorphism with L* is de-
termined up to composition with an element in Gal(L/K).

3.1.3. Case b = ;. In the special case b = w; and x, = xy,, We
have only one Frobenius F' := Fj, = Fy,, Gp is a form of G, and T is an
elliptic maximal torus of G, and T is a maximal torus of Go. There are
unique (closed, reduced) subgroups U, U~ of G, such that U(I? ) = Uo(f( ),
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U~ (K) = Uy (K) inside G(K) = GLy,(K). Inside Go we will need the
schematic closures Up and U, of U and U™.

The Frobenius F' acts on the roots of T in G, so that there is a unique
subgroup FU C G, satisfying (FU)(K) = F(U(K)), and similarly for
U™, Up, U,,. Identifying W with the Weyl group of T in G, F' acts on
W. Moreover, W = (w;) = Z/nZ is the subgroup generated by w;. It
acts on T and the chosen isomorphism 7' = L* induces an isomorphism
W =~ Gal(L/K), sending w; to the image of ¢ in Gal(L/K).

The maximal torus in the reductive quotient of the special fiber
To®0,F; € (Go ®o, F,)'? is elliptic. Explicitly, these groups are iso-
morphic to Resg,, /r, Gm C Resg,_,., /5, GLn/ ., - Let Wo be the Weyl group
of To ®o,Fy in (Go ®o, Fy)d. It is naturally a subgroup of W, F acts
on Wy and Wg , which is generated by w]”, is isomorphically mapped onto
Gal(L/K,,) under the above isomorphism W = Gal(L/K).

3.2. Perfect schemes

Let k be a perfect field of characteristic p and let X be a k-scheme. Let
¢ =¢x: X — X be the absolute Frobenius morphism of X, that is ¢ is the
identity on the underlying topological space and is given by = +— 2P on Ox.
The scheme X is called perfect if ¢ is an isomorphism. Let Alg; denote the
category of all k-algebras, and let Perf; be the full subcategory of perfect
k-algebras. Then the restriction functor which sends a perfect k-scheme,
regarded as a functor on Alg,, to a functor on Perfy, is fully faithful [Zhul?7,
A.12]. Thus we equally may regard a perfect scheme as a functor on Perfy,
which has an open covering by representable functors in the usual sense.
Every k-scheme X, admits a perfection, namely X} erf = limy X, which is
a perfect scheme. For example, the perfection of Spec k[T is Spec k[T1/P™],
where k[TVP™] = |, <o k[TP ).

Except stated otherwise, throughout this article we will work with per-
fect schemes over k = F, (or k = F,). So, to simplify notation we write
A™ = A7 resp. Gg resp. Gy, for the perfection of the m-dimensional affine
space resp. the additive resp. the multiplicative group over k. A morphism
f: Spec A — Spec B of affine perfect schemes is perfectly finitely presented,
if there is a A = (Ag)pet for a finitely presented B-algebra Ao [BS17,
3.10,3.11]. For further results on perfect schemes we refer to [Zhul7, Ap-
pendix A.1] and [BS17, §3]. Here we only mention the following lemmas.

Lemma 3.2. Let X C A} be a closed perfect subscheme of the m-dimensional
perfect affine space. Then X — Speck is perfectly finite presented.
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Proof. Let T' = (11, T>,...,T;,) be some coordinates on A}". Let a be the
ideal of X in the coordinate ring k[T? ~] of AY". Then it is easy to check
that X is the perfection of Xy = Speck[T]/(a N k[T]), which is (reduced
and) finitely presented over k. O

Lemma 3.3. Let f: X — Y be a morphism of perfect k-schemes with X
separated. The following are equivalent:

(i) f is a monomorphism (of fpqc- or étale sheaves on Perfy,)
(ii) for every algebraically closed field K/k, f(K): X(K) — Y(K) is in-
Jective.

Proof. Assume (ii). To deduce (i) it is enough to show that for any R €
Perfy, f(R): X(R) — Y (R) is injective. Let x,y: Spec R — X be two
elements of X (R), such that fx = fy € Y(R). For each point p € Spec R,
choose a morphism 4,: Spec K, — Spec R with image p, and with K, an
algebraically closed field. Then fxzi, = fyi, € Y (K)) for each p, and from
(ii) we deduce xi, = yi,. As X is separated, the equalizer of z,y is a closed
subscheme of Spec R, say equal to Spec R/I for some ideal I C R. Now,
xip = Yip for all field valued points of Spec R implies that I C ﬂpESpecR p=
rad(0) = 0, as R perfect and hence reduced. The other direction is clear. [

3.3. Witt vectors and loop groups

If K has positive characteristic, we denote by W the ring scheme over I,
where for any F,-algebra R, W(R) = R[w]. If K has mixed characteristic, we
denote by W the K-ramified Witt ring scheme over Fy so that W(F,) = Og
and W(F,) = O (see e.g. [FF18, 1.2]). Let W), = W/V"W be the truncated
ring scheme, where V: W — W is the multiplication by w (if char K > 0)
resp. the Verschiebung morphism (if char K = 0). We regard W}, as a functor
on Perfp , where it is represented by Ah We denote by W, the perfect
group scheme of invertible elements of W and for 1 < a < h, we denote by
W, = ker(W;* — W) the kernel of the natural projection.

If Xis a Iu( -scheme, the loop space L X of X is the functor on Perqu,
R~ LX(R) = X(W(R)[w]).

If X is an affine K-scheme of finite type, L X is represented by an ind-
(perfect scheme) [Zhul7, Proposition 1.1]. If X is a O -scheme, the spaces
of (truncated) positive loops of X’ are the functors on Perqu,

R LYX(R) = X(W(R)) resp. R~ LTX(R) = X(Wy(R)).
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(h > 1). If X is an affine Op-scheme of finite type, LT X, L;X are repre-
sented by affine perfect Fq-schemes, and _LZX are perfectly finitely presented
(by Lemma 3.2). The same holds with F, replaced by IF,,.

Remark 3.4. We could evaluate W, Wj, and LTX, LF X on all R € Algs,

and thereby work with schemes LZX of finite type over Fq, instead of perfect
schemes. Still, one must take care when working with the functors L, L™ in
the mixed characteristic setting—see for example [BS17, Remark 9.3] and
[Zhul7, end of Section 1.1.1] for some warnings. But even in the equal char-
acteristic case, when working with L X, we are really forced to work in the
category of perfect schemes; indeed, as we use an argument on geometric
points in the proof of Proposition 3.6, we can only make our final conclusion
when there is no non-reduced structure (which is the case only after perfec-
tion). Therefore, for the entirety of this paper, we pass to perfect schemes
everywhere. As passing to the perfection is a universal homeomorphism, this
does not affect étale cohomology.

3.4. The perfect F,-space XPL(b)

By a perfect F,-space we mean an fpqe-sheaf on Perqu. Let b be any basic

element with rgr, (b) = k. Let w1 € Ngr, (To)(K) be any lift of w;. Let
Xgl L(b) denote the fpqc-sheafification of the presheaf on Perf

(31) R~ {g9€ LGL,(R)/LUy(R): g tbo(g) € LUy(R)urLUy(R)}.

If G, T are as in Section 3.1, the group GxT acts on XgL(b) by g,t: © +— gxt.

Lemma 3.5. Let b be basic with kgL, (b) = k and let 1wy be any lift of wy.

(i) If o = h='bo(h) for some h € GL,(K), and if G' = G'(K) is the
group attached to b as in Section 3.1, then Ady: G — G, g+— h™1gh
is an isomorphism. Moreover, left multiplication by h induces an iso-
morphism of F-spaces XglL(b) = XglL(b’), which is equivariant with
respect to the isomorphism (Adp,id): G xT — G' x T.

(ii) Let W', be a second lift of wy to GL,(K). Assume that kqr, (1) =
kgL, (W)). Then there exists a T € To(K) with W) = 7 Yino(r).
Let T" = T/(K) be the group attached to W) as in Section 3.1. Then
Ad,;: T — T, t — 77t is an isomorphism. Moreover, right multipli-
cation by T induces an isomorphism of F,-spaces XglL(b) = Xg,lL(b),
which is equivariant with respect to the isomorphism (id, Ad;): G x
T—GxT.
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(iii) XglL(b) = &, unless kgL, (W) = K.

Proof. (i): This is an easy computation. (ii): The fiber over w; in GL,(K) is

9]

a principal homogeneous space under T(K), and it is easy to see that as wy is

v 9

Coxeter, the map t — Ad(w1)(t) 1o (t) from T(K) to {r € T(K): kgL, (7) =
0} is surjective. The rest is an easy computation. (iii): As Xu.)DlL(b) is an in-
verse limit of perfectly finitely presented perfect Fq—schemes, it suffices to
show that XglL(b)(Fq) = @. This holds as kgL, (97 bo(9)) = kgL, (b) = &
and kgL, (LU(F,)) = 0. O

3.5. Representability

We simplify the proof of representability of X fu)lL (b) from [CI21a]. Let b =
be basic with kgL, (b) = . Then we are in the setup of Section 3.1.3. Write
F: LG — LG for the F-morphism of ind-(perfect schemes) corresponding
to F: G(K) = G(K), g — bo(g)b~!. Define the fpqc-sheafification X’ of
the presheaf on Perqu7

R~ {x € LG(R): 2~ 'F(x) € F(LU)}/L(U N FU).

The group G x T acts on X' by g,t:  — gxt. Define Xp as the fpqc-
sheafification of the presheaf on Perqu7

Xo: R {z € LYGo(R): v 'F(z) € LT (FUoNU,)(R)}.

Being the preimage of LT (FUp NU,) under the Lang-morphism
Langp: LTGo — LTGp, g — ¢ 'F(g), Xo is representable by a per-
fect Fq-scheme. Further, the group Gp x Tp acts on Xp by (g,t): = +— gut.
As T is generated by T and the central element w € T C G, the obvious
action of G x Tp on HG/GO g.Xo extends to an action of G x T by letting
(1,w) act in the same way as (w, 1).

Proposition 3.6 ([CI21a]). Let b = 1wy € Ngr, (To)(K) be basic with
KGL,(b) = Kk, and mapping to wy € W. There are G x T-equivariant iso-
morphisms of perfect Fy-spaces

(3.2) xProy=x'= ] gXo.
9€G/Go

In particular, XZPL(b), X' are representable by perfect Fq—schemes.
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Proof. The same computation as at the end of [CI21a, §3] shows that G x T-
equivariantly X (b) 2 X’ as F-spaces. As the right hand side of (3.2) is
representable, it suffices to show the second isomorphism in (3.2). Consider
the fpqc-sheafification X” of the presheaf on Perfg ,

R—{g€ LG(R): g 'F(g9) € L(FUNU )(R)}.
As w is Coxeter, the map
L(FUNU) x L(FUNU") — L(FU), (h,g) ~ h~'gF(h)

is an isomorphism of fpqc-sheaves (this follows by a concrete calculation —
similar to the part of the proof of [CI21a, Lemma 2.12] showing equation
(7.7) of loc. cit. — which can be performed on R-points for any R € Perfﬁ-q.
Compare also [HL12]), so that X’ = X”. But X" is the pull-back of the
closed sub-(ind-scheme) L(FU NU™) under the Lang map Lang,: LG —
LG, g~ g~ 'F(g), which is a morphism of ind-schemes, hence X" is repre-
sentable by an ind-(perfect scheme).

For 7 € T(K), * + 7 '27 defines an equivariant isomorphism be-
tween X" and the analogue of X”, where b is replaced by 7~ !br. Thus
we may take b = (1n0_1 m{;) e with e € T(Op). Fix R € Perqu. Let
g € LG(R) = G(W(R)[w™!]) with g7'F(g) =: a € L(FUN U )(R). For
1 <i<n-—1,let a; € LG4(R) denote the (i + 1,1)-th entry of the ma-
trix a. Then the matrix g is determined by its first column, denoted v (for
1 <4 < n the i-th column is then equal to (bo)*~1(v)). Moreover v has to
satisfy (bo)"(v) = w"(v + Z:-L;ll a;(bo)'(v)), an equation which takes place
in LG4 (R)™. Assume R is an algebraically closed field. The valuations of the
coefficients of the characteristic polynomial of a o-linear endomorphism lie
over its Newton polygon, which in our case coincide with the Newton polygon
of the isocrystal attached to bo, and is just the straight line segment con-
necting the origin and the point (n, k) in the plane (cf. [CI21a, Lemma 6.1]
for the precise statement). This shows val(a;) > —% for 1 <i <n — 1. But
after explicitly determining the affine root subgroups contained in Go(Oj)
(this is a similar computation to [CI21a, Example 8.8]), this translates to the
statement that a € LT (FUpNU,)(R). As X" is a ind-(perfect scheme),
this implies that X” is equal to the fpqc-sheafification of

R {g€ LG(R): g'F(g9) € L"(FUoNUy,)(R)}.

Consider the projection 7: LG — LG/LTGp. If ¢ € X"(R) C LG(R),
then
F(g) € gL (FUpNUR)(R) C gLTGo(R).
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Thus X” maps under 7 to the discrete subset (LG/LtGp)" = G/Go.
Hence X" is isomorphic to the right hand side of (3.2), and we are done. [

Corollary 3.7. Letb € GL,(K) be basic, w1 a lift of wy such that kg, (b) =
kGL, (1) = k. Then XP*(b) = [lc/c. 9Xo is representable by a perfect

F,-scheme.

Proof. This follows from Lemma 3.5 and Proposition 3.6. O
3.6. Representations R$(6) and R%f (0)

Let a basic b and a lift w; be as in Section 3.1 with kgL, (b) = kgL, (V1) = K
be fixed. In Section 3.1 we attached to b, w; the locally pro-finite groups G, T
and their maximal compact subgroups Go,Tp. In [CI21a, 7.2] we defined
families (indexed by h > 1) of perfectly finitely presented perfect group
schemes over F,, with F-points G,, T}, such that Go = 1&1 Gy and Tp =
. S h

@h Ty, and showed that G x T-equivariantly,

X5E(b) = H 9-Xo, with Xo =limX,
G/Go h

such that X is acted on by Gp x Tp?, each X, is a perfectly finitely
presented perfect Fq—scheme acted on by Gp x Ty, and all morphisms are
compatible with all actions. Moreover, X} is the perfection of a smooth
affine Fg-scheme of finite type. We identify X2 (b) with [ JGo 9-Xo Via
this isomorphism. The groups G}, and T}, are certain Moy—Prasad quotients
of Go and T, and hence essentially independent of the choice of b, x; and
wy. An explicit presentation of Gy, T}, X}, is reviewed in Section 4.1 below.

We review the definition of certain étale cohomology groups with com-
pact support of XU-]?lL(b) and X (which are not perfectly finitely presented
over Fq). First, for h > 1 and a character x: T}, — @Z , the x-isotypic com-
ponents Hé'(Xh)X of the f-adic cohomology groups with compact support
are defined?, as X}, is the perfection of smooth scheme of finite type over Fq.
Second, for h > 1, the fibers of X}, /ker(T}, — Tp—1) — Xp—1 are isomorphic
to A"~! [CI21a, Proposition 7.6]. Let x: To — Q, be a smooth character.

2Note that T is generated by Ty and a central element of G, when G, T are both
regarded as subgroups of GLH(K), so that HG/GO g.X o admits also a natural right
T-action.

3Recall from Section 2 that we omit the constant coefficients Q, from the nota-
tion.
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Then there exists an h > 1, such that x is trivial on ker(Tpp — T}) for some
h > 1. Let ¥ > h and denote the characters induced by x on T, and T},
again by x. Then H}(X}), = HY(X} )y, where H} is the alternating sum of
the cohomology. Thus we can define H}(Xo), as H}(Xp)y for any b’ > h
and this is independent of h'4. So, if x is a character of Tp of level h, we
have the G -representation

REM(x) = H} (Xo)y = Hi (Xp)y-

and we denote the Go-representation obtained by inflation via Gp — Gj,
again by R%: (x)-
Let Z C G be the center and let Xp = Ugez

XglL(b) of all ZGo-translates of X». Then Xp is acted on by ZGp x T
and is a disjoint union of copies of X». Exactly as above for Xp, for a

Go 9-X0 be the union in

smooth character 6: T — @Z we may define the smooth ZGn-representation
Hi(Xo0)s.

Lemma 3.8. Let 6: T — @Z be a smooth character of level h. As Go-
representations, H(Xo)y = R%’”(H) As a ZGo-representation, H*(Xo)g
is just the Go-representation R%‘(Q), with action extended to Z by letting
w € Z 2 K* act by the scalar 0(w).

Proof. This is immediate (see e.g. [Ival6, Lemma 4.5]). O

Justified by this lemma we write R%Lh (0) for the ZGp-representation

H*(X0)g. For schemes Y; such that H?(Y;) are defined, put H:([1,e; Vi) =
@, Hi(Y;). We get our main object of study, the smooth G-representation

RE(0) == H} (XD (b))e = cIndG RS (0)

(cf. [CI21a, Theorem 11.2]).

Remark 3.9. By construction and by Lemma 3.5, the isomorphism class of
the G-representation Rg(é?) is independent of the choices of representatives
b, ;. A similar independence holds for the ZGp-representation R%(Q)

4Note that the single cohomology groups H:(Xe)  are not defined, due to a de-
gree shift: H!(Xy/), = H:=24(X}),, for an appropriate d > 0. One can remedy this
by introducing homology groups H;(Y) := Hgdim(y)_i(Y) (dim(Y")) as in [Lus79],
which removes precisely this shift in degree.
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3.7. Norms and characters

The following definitions do not depend on the choice of an isomorphism
T = L* (as in Section 3.1.2).

Definition 3.10. We say that a smooth character : T' = L* — @Z is of
level h if it is trivial on ker(Tp — Tp) = Uf, but non-trivial on ker(Tp —
Tj_1) 2 UM

Recall the subextensions L 2 K, O K (Section 2). Whenever r,s are
positive divisors of n such that s divides 7, we denote by N, /o1 KX — K
the norm map for the field extension K, /K. For any h > h’ > 1, it induces
maps

Uk, /U, = Uk, /Ug. and Uk /Up — Uk [Uf.

which are surjective (see e.g. [Ser95, Chap. V,§2]), and which we again denote
by N,/

Definition 3.11. (i) A character §: T~ L* — Q, resp. 0: Tp = U —
Q, is in general position, if the stabilizer of § in Gal(L/K) is trivial.
We say 0|1 is in general position, if the stabilizer of 0]y in Gal(L/K)
is trivial.
(ii) Let h > 1. A character §: T}, = U,/U} — Q, (resp. Ol jun) is
in general position if its inflation to Ty (resp. to ker(Tp — T11)) is in
general position.

Note that 0: T'= L* — @Z is in general position if and only if 0|7, is.

Lemma 3.12. Let : T = L* — @Z be a character. Let s € Z. Then

Goo®=0 <« 0 factors through Np/k, ...,
The analogous claim holds for 0|y . In particular, 0 is in general position if
and only if 6 does not factor through any of the maps Ny, /. with r <n, and
Olyr: is in general position if and only if 0|y does not factor through any of
the maps Ny, ;. with v < n.

Proof. 0 o 0% = 0 is equivalent to € being trivial on the image of the map
L* — L*, 2 — x~'o°(x). By Hilbert’s Theorem 90, this image is equal
to the kernel of the norm map of L over the field stable by ¢, which is
Kgcd(n,s)' 0
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4. A Mackey formula

In this section we prove the following Mackey-type formula for the represen-
tations R%’ ().

Theorem 4.1. Let 0,0": Tj, — @Z be two characters. Then
<R%§‘(9),R%(9’)>G = #{weWg: 0 =0oad(w)}.

Remark 4.2. The theorem shows that in the setting considered in this paper
and in [CI21al, the assumption in [Lus04, Corollary 2.4(b)] resp. [CI21b,
Corollary 4.7(ii)] that 6 is regular is obsolete. We also note that because
part of this proof requires an explicit computation using our choice of Cox-
eter element wy, Theorem 4.1 does not allow us to conclude the analogue
of the independence-of-choice statements [Lus04, Corollary 2.4(a)], [CI21b,
Corollary 4.7(1)].

Corollary 4.3. Let 0: 1), — @Z be a character, whose stabilizer in
Gal(L/K)[n'], the unique subgroup of Gal(L/K) of order n', is trivial. Then
:l:R%f (0) is irreducible Gy -representation. In particular, Fren acts in :l:R%‘ (9)
by multiplication with a scalar. Moreover, the map

characters 0: Ty, — @Z . irreducible
in general position W G}, -representations
o
0 — £RI"(0)
18 injective.

Proof. This follows from the description of Wg in Section 3.1.3 and Theorem
4.1. O

In course of the proof of Theorem 4.1 we will make use of the following
well-known fact.

Proposition 4.4. Let X be (the perfection of a) quasi-projective scheme
over a finite field, H is a torus, and a: X — X is a finite order au-
tomorphism commuting with the H-action, then tr(a, HX(X,Qy)) = tr(a,
HE(X™, Q).

Proof. See, for example, [DM91, 10.15]. O
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Remark 4.5. We prove Theorem 4.1 in §4.1-4.4 below. To guide the reader,
let us explain the main steps of the proof. The overarching idea follows
the proof of the analogous result in classical Deligne-Lusztig theory [DL76,
Theorem 6.8], but the implementation is much more intricate in our setting.
The essential source of this difficulty is in constructing a connected algebraic
torus which acts on the schemes ¥, for w € Wp. In the classical setting of
h = 1, there is no issue whatsoever, but for h > 1, we are only able to
construct such an action for certain w ((3) and (4)(b)(c) below). In our
present setting we get lucky: it turns out that for all the w € We for which
we cannot find such an action, the scheme ¥, is empty ((4)(a))!

(1)

(2)

(3)
(4)

Construct a scheme Y equipped with a T} x Tj-action, such that
X x Xp/Gp is (up to an affine space) Tj, x Tp-equivariantly isomor-
phic to 3. We then may rewrite the left hand side of Theorem 4.1 as
dim@[ Hj(z)g—l,gu

Let Gy, be the Moy-Prasad quotient of LT G, such that G,,(F,) = G,.
Then G; can be identified with the reductive quotient of Gy, and
pulling back the Bruhat decomposition of G, we get a “Bruhat cell”
Ghw € Gy for any w € Wp. There is a natural map ¥ — Gy. For
w € Wp, let ¥, be the preimage of Gy, 4, and then replacing >,, by
an appropriate vector bundle f]w — ¥ (having the same cohomology
and still carrying a T}, x Tp-action), one is reduced to showing that

& 1 ifwe W5 and ' = 0 o ad(w)
4.1)  dimg H(Zw)p-1 9 = ©
(4.1) Q ¢ (Bw)oro {O otherwise.
Extend the T}y, x Ty-action on f]w to an action of a certain commutative
group scheme H,, (cf. beginning of §4.3).
Show that for w € W one of the following cases appears:

~

(a) Xy =@ (cf. §4.2), or

(b) the connected reductive part HY ., (which is a torus) of H,, is
big enough so that the fixed point locus ifj’wd is finite (cf. §4.3).
Then it is easy to deduce (4.1) for w from Proposition 4.4. Or,

(¢) w =1, in which case we have to develop an essentially different
variant of the extension-of-action principle (see step (3)), using
another vector bundle ¥, — ¥, (cf. §4.4). Here, finally, one again
concludes using Proposition 4.4.

We note moreover that this method is actually quite different from Lusztig’s
method in establishing the Mackey-type formula for regular 6 [Lus04, Propo-
sition 2.3] (see also [CI21b, Theorem 1.1]).
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4.1. General preparations

In contrast to [CI21a] where we worked with Coxeter-type and special repre-
sentatives for [b] (see [CI21a, §5.1]), here it is most convenient to work with
a third type of representatives. We put

(4.2) b =1y = byt € GLy(K)
where

diag(1,...,1,w,...,w) if (k,n) =1,
~——

by := 0 1 and = nTR r
07 \Unor 0)7 o diag(tky mes - - - » thomo ) otherwise.
————

n’

are as in [CI21a, §5.2.1]. In particular, we work in the setup of Section 3.1.3.

Recall the (unique) fixed point x, of F' in the apartment @/ ; of T
in %, and the correspondlng maximal parahorlc Ok- model Go of G. We
have the stabilizer Gy, 0 = = Go(0) of xp in G( ) = GL,(K) and its Moy

Prasad filtration [MP94] given by subgroups be,r (r > 0). Similarly as in
[CI21a, §5.3], consider the affine perfect group scheme G over F, defined by

G(F,) =G0,  G(F,)=GE . =Go.

xp,0 T
and for h € Z>1, the affine perfectly finitely presented perfect group scheme
Gy, over F, such that

Gi(Fy) = G, 0/Cxpn-1)4r  Gni=Gn(Fy) = GL, o/GL 1y )4

We denote the Frobenii on G, Gy, again by F. The groups G, Gy, possess an
explicit description in terms of matrices similar to [CI21a, §5.3].

Remark 4.6. In [CI21a, Section 7], we worked instead with the Coxeter
representatives b’ = by""t., as in [CI21a, §5.2.1]; but if « is as in [CI21a,
§7.6], then b = by~ !, ie., b is integrally o-conjugate to ¥'. In fact, the
groups G, Gy, used here are equal to Gy~ !,7G,y~! with the latter G, G,
as in [CI21a).

As (perfect) Fg-groups, G1 = Resg ,, /r, GLyn/. The above-mentioned de-
scription identifies G1 with a closed Fy-subgroup of GLjr,. In fact, Glfq
is the closed subgroup of GL, 5 consisting of those n x n-matrices g =
(9ij)ijez/mz € GL, 5, for which X;j = 0, unless ¢ = j mod ng; if we
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now equip GL,, F, with the Fg-structure given by the Frobenius Fp: g —

boo(g)by ' and denote the resulting Fy-group simply by GL,, then this de-
fines an [Fy-embedding G; — GLj,.

We regard the symmetric group on n letters S, as the group of set
automorphisms of Z/nZ, and for an element i € Z/nZ let [i] be the unique
integer between 1 and n having residue ¢ modulo n. We also identify S,
with the Weyl group of the diagonal torus in GL,, (either over Fq or K ) by
sending a permutation v € S, to the permutation matrix (again denoted v)
whose non-zero entries are (v(7),7) for 1 <1i <mn.

As G1 is naturally isomorphic to the reductive quotient of the special
fiber of Gp, the group Wy is simply the Weyl group of T; in G;. Thus,
using the above identifications, Wy is the subgroup of S,,, isomorphic to
Spr X -+ X Sy (ng times), of those permutations which preserve the residue
modulo ng.

Applying L;{ to the inclusions To, Up, U, C Go gives closed subgroups
Ty, Uy, U, € Gy, with T}, defined over F, and Uy, U, defined over Fyn (cf.
[CI21Db, 2.6]). For a closed subgroup Hj, C Gp, and 1 < a < h — 1, we write
Hf := Hjy Nker(Gy, — Gy). If Hy, is defined over Fy, we write H := H(F,)
and Hy = H}(F,).

Then we have (by a slight modification — or conjugation with ~ from
Remark 4.6 — of [CI21a, Section 7], in particular, Propositions 7.10,7.11) as
perfect Fq—spaces

(4.3) Xp2{g€Gy: g 'Fg) € U, NFUL} = S,/(U, N FU),

where
Sp=1{g € Gy: g 'F(g) € FU,},

and the action of Uy N FUj, on Sy, is by right multiplication (here and in the
following: all presheaves have to be sheafified). Moreover, (4.3) is G, X Tj-
equivariant with respect to the Gy x Tp-action on the right hand side given
by (¢',t): g — ¢'gt.

The fibers of the projection Sy, — X} are isomorphic to affine spaces of
fixed dimension, so that R%’(H) = H}(Sh)g. As in [Lus04, 1.9], if

Y ={(z,2',y) € FU, x FU;, x Gy,: 2F (y) = y2'}

Snote that X, Sy, are indeed perfect schemes as the tensor product of perfect
rings over a perfect ring is again perfect (by [BS17, 3.16])
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with the T}, x Tj-action given by (t,t'): (x,2',y) — (tot= 1, t'2't' "L tyt'=1),
then the map

(4.4) Gh\(Sh X Sh) — E,

induced by (g,¢') — (97 F(g9),9 'F(¢'),97'q') is an T}, x Tj-equivariant
isomorphism (the quotient of the left side is taken with respect to the diag-
onal action).

The group Gy is reductive and ker(Gj, — Gq) is unipotent. Thus the
Bruhat decomposition Gy = HwEWO U, T1wUq of Gq lifts to a decomposition
Gy, = HwEWO Gh,wa with Gh,w = UhTth}zUh, K}ll = ([U;)l N wil(TU,:)lw
[CI21a, Lemma 8.6]. We then have the locally closed decomposition ¥ =
[wew, Zw, where

Yy = {(z,2',y) € FU, x FUp, X Gpp: zF(y) = ya'}.
is Ty, x Ty-stable. Further, let

f]w = {(x,x’,yl,T,z,yg) € FUy, x FU;, x Uy, x T}, xK}l x Uy,

c xF(y1mizye) = y1mizysx’ }.

where w € Gy, is an (arbitrary but from now on fixed) lift of w. It has a
Ty, x Ty-action by

(45) (t?t/): (iC,ZL',,yl,T, Z¢y2)
= (tat™ T gttt T 2t Tyt ).

Then the map S, — Yo given by (x, 2 y1,7,2,y2) = (x,2,y17212) is a
Ty, X Th-equivariant Zariski-locally trivial fibration. All in all, as in [Lus04],
using (4.4) it is enough to show that

(4.6) > (=1)'dimg, Hi(Ey)g-+ o =

%

{1 if we WE and 0/ = 0 o ad(w)

0 otherwise.

So far we were essentially following [Lus04, 1.9], but now we have to
deviate.
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4.2. Emptyness of certain f]w

Let w € Wp. As in [Lus04, 1.9], make the change the variables xF'(y1) — =z,
o' F(y2)~! +— 2’. We thus may rewrite

(4.7)
Yo = {(x,y1,7, 2,42) € FU, x Uy x T, xK} xUyp,: xF(Tz) € y1102y2 FUL}

with the T}, x Tp-action still given by (4.5).
Lemma 4.7. Assume that there exists some 2 < i < n such that [w(i)] >

[w(i—1)+1] > 1. Then S, = @.

Proof. We may assume h = 1, and hence we may ignore z € K}L whose
image in Gq is 1. We use the identification of G; with the closed subgroup
of GL,, from Section 4.1. Write y; = v;1y:;2 with y11,922 € Uy N FUy
and y12,¥21 € U; N FU; . Replacing x by yl_%x and putting y2 2 into the
FU; on the right hand side, we are reduced to show that there are no
(l‘,yl,g,ygiﬂ') € FU; x (Ul N FUI) X (Ul N FUI) x Tq with

w_lTyi%:UF(Tu')) € y2.1F(Uy).

Replacing everything by appropriate conjugates resp. inverses, it suffices to
show that there are no (x,y,y21,7") € FU; x (UyNFU;) x (UNFU7 ) x Ty
satisfying
W tyxF () € T'yo1 FU;.

For a n x n-matrix X, let X;; denote its (i, j)th entry. Consider the
closed subset

M={XeG:X,;,€G,V2<i<nand X;; =0Vn>i>j>1}
of G1. We have
UiNFU] ={X €Gy: X;; =1Viand X;; =0V (i,j) with j # 1 or i # j}

One easily checks that T; - (Uy N FU;) - FU; € M. Thus it suffices to check
that

W' MF()NM = @.
For X € G; (and even more generally for X € GL,, and F replaced by Fy
as in Section 4.1), one has the formula

(4.8) (W0 XF());; = Xo(i),fw(j—1)+1]-
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Let 2 < i < n be such that [w(i)] > [w(i — 1) + 1] > 1. Then for X € M,
the (4, 7)th diagonal entry of v~ ' X F(w) is

(W' XEF ()i = Xu(i) wi-1)+1 = 0,

by definition of M. This shows that X ¢ M and we are done. OJ

As mentioned in Section 3.1.3, W} = (w]?). Clearly, no element from
WE satisfies the condition in Lemma 4.7. Thus Lemma 4.7 implies (4.6) for
all w satisfying the condition in the lemma.

4.3. An extension of action

It remains to show (4.6) for all w € Wy C S, for which thereisno 2 <i <n
satisfying [w(i)] > [w(i — 1) + 1] > 1. Consider the closed subgroup

Hy = {(t,t") € Ty x Tp: ™t F(t) =t F(t)

centralizes K, = U, N~ Uy w }

of Ty, x Ty It contains T}, x Tj. It is easy to check that the action of Tj, x T},
on X, extends to an action of H,, given by the formula

(t7 tl) : (‘T7 Y1, 7,2, yQ)
= (F)zF )L FO)ypF@) ™ trawt ™t 2t L Py F(H) 7.

Lemma 4.8. Let 1 # w € Wp. Assume that there is no 2 < i < n with
[w(i)] > [w(i — 1) + 1] > 1. Then there is a proper Levi subgroup L of G
containing T i such that if Ly, denotes the corresponding subgroup of Gp,
then Kh C ]Lh-

Proof. First we prove the following claim: there is an s € Z>1 and a sequence
0=idp <1< < - <ig1 < 1s:=n of integers such that for each
1 <j<s,and for each i;_1 +1 <1 <14 (if j > 1) resp. for each 1 < i <1y
(if j = 1), one has w(i) = n—i;_1 — (i; —¢). Indeed, find the 1 <i; < n such
that w(i;) = n. It follows from the condition on w that w(i; —1) =n — 1,

ey w(1) = n — (i1 — 1). The maximal value which w has on {i; +1,...,n}
is n — 1. Find the 41 + 1 <is < n such that w(iz) = n — i;. It follows from
the condition on w that w(is —1)=n—i;1—1, ..., w1 +1) =n —iz + 1.

Then, proceed inductively until i = n is reached. The claim is proven.
Note that i1 < n, as i1 = n would imply w = 1, whereas w # 1 is
assumed in the lemma. Let L be the (proper) Levi subgroup of GL, . = G-
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containing T . of type (i1,42 — 71,...,4s — is—1). From the claim it easily
follows that K;, = U, N w_lU,:w C Ly, O

For ¢ = 1,2 we have the composed maps
T ngThXTh—)Th—)Tl,

where the middle map is the projection to the i-th component, and the last
map is the natural projection. For 1 < i # j < n, let a; ; denote the root of
GL, , corresponding to (4,j)th matrix entry. Recall from Section 4.1 that
T: € G; € GL,F, and that T is the diagonal (and in fact elliptic with
respect to the Frobenius Fp) torus of GL, ,. Let «; ; be the roots of Ty in
GL, r, corresponding to (i, j)th entry.

Lemma 4.9. Let §: Z/nZ — {0,1} be a non-zero function, and let
x: Gy, — Ty be the cocharacter X — diag(X‘S(l), e ,X‘s(”)). Then S, :=
{t € Ty: t71F(t) € im(x)} is a one-dimensional subgroup of Ty. Let 1 <
Jj <i<mn.Ifé does not factor as Z/nZ — 7Z/gcd(n,i — j)Z — {0,1}, then
the connected component S5, of Sy is not contained in the subtorus ker(a; ;)
Of Tl.

In particular, if for any divisor d > 1, & does not factor as Z/nZ —
Z/dZ — {0,1}, then S is a mot contained in any of the subtori ker(c ;)

(1<i#j<n)ofT.

Proof. Assume that § does not factor through Z/nZ — Z/ged(n,i — j)Z.
As dim Sy, = 1, it suffices to show that S, N ker(a; ;) is finite. We write an
element in Ty as an n-tuple (¢;)}_, corresponding to the diagonal matrix
with entries t1, . ..,t,. We have im(x) = {(a=%®)?_, € T1: a € G,,}. Thus
(tr)?_, € Ty lies in Sy if and only if t; 't} = a=0M ;17 = a=0@) |

talty = a9, Thus Sy is isomorphic to the one-dimensional subscheme
of G2,
(4.9) {t1,a € G%@: t%_qn — S+ q"*"“zi(k)}’

which is embedded into T; by sending (¢1,a) to the tuple (¢3)}_, with
ty = t(fk_lazizz @) Thus the intersection Sy N ker(a; ;) is the closed
subscheme of (4.9) given by the equation t; = t;, i.e.,

t?i_liq]‘_l =a i:z qj""5(k)—zfc:2 qiiké(k)

Taking this to (¢"™ — 1)-th power, taking the equation in (4.9) to the power

¢! — ¢!, and equalizing the left hand sides, we deduce that on Sy N
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ker(cy ;) we must have

Q@ =)+, 8RSy 48R~y ' 5(K)).

Thus it suffices to show that

n % J
(@ =@ W)+ (k) # (" -1 g (k) =D dFR(k)),
k=2 k=2 k=2
or equivalently, that
n—1 n—1 i—2 j—2
Yo don—k+i)= Y d'6n—k+j)# =D a5~k +Y_d"6(j k),
k=i—1 k=j—1 k=0 k=0
or that
n—1
> "6 — k) = 6(j — k) #0.
k=0

Assume this is wrong, and this sum is 0. All terms §(i — k) — §(j — k) lie
in the set {—1,0,1} and hence ¢" ! is bigger than the sum of the absolute
values of the remaining summands. It follows that we must have §(i — n +
1) —6(j —n +1) = 0. Then we may continue in the same way with ¢"2
instead of ¢"~1, etc. All in all we deduce that §(i — k) = §(j — k) for all
k € Z/nZ. Or equivalently, that §(k) = d(k + (i — 7)) for all k € Z/nZ. But
this is equivalent to saying that ¢ factors through Z/nZ — Z/gcd(n,i— j)Z,
contradicting our assumption. O

Now let 1 # w € Wy, such that there is no 2 < i < n with [w(i)] >
[w(i—1)+1] > 1. Let L, be as in Lemma 4.8 and let 1 < i3 < n be the size
of its first block (cf. the proof of Lemma 4.8). Let 0: Z/nZ — {0,1}, i — 1
if ¢ < 4; and ¢ — 0 otherwise. Let x = (1;,,0,—;,) be the corresponding
cocharacter. We have (again, cf. the proof of Lemma 4.8), (wd)(i) = 6(i+ )
for an appropriate A € Z/nZ. It follows from Lemma 4.8 and the definition
of H,, that m1(Hy) 2 Swy and ma(H,) 2 S,. Hence also

(4.10) m(Hy,) 2 Sy, and  m(H,) 2 Sy.
From this together with Lemma 4.9 it follows that for i = 1,2, m;(Hy,) is not

contained in any of the ker(c; j: Ty = Gy,) (1 <@ # j < n). Hence it also
holds for m;(Hy, .q), where Hp ; is the reductive part of Hy, (it is a torus).
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oy S SH?
By Proposition 4.4 we now have H}(X,)g-10 = H} (X" )g-1 0. Because

mi(Hy, oq) is not contained in any of the ker(c;,;), we have

ifﬁred C{(1,1,7,1,1): 7 € Ty, F(rw) = T},
and (4.6) for &, casily follows (as in [Lus04, 1.9, proof of claim (e)]).
4.4. Another extension of action

It remains to deal with the case w = 1. We first prove a more general result,
again generalizing Lusztig’s method. The proof does not depend on special
properties of GL, and can be carried out for any group, so we put ourselves
— until the end of Section 4.4 only — in the general setup of [CI21b]. Let G
be a reductive group over K, which is split over K, and let T, T’ be two
maximal K-rational, K -split tori in G. There is a natural inclusion of the
reduced Bruhat—Tits building Zk of G over K into the reduced Bruhat—Tits
building %,; of G over K. Assume there is a point y in the intersection of
Ay and the apartments of T and T inside % .. We have then the parahoric
Ok-model Py of G attached to y. Its O ;-points Py (O ) form the parahoric
subgroup of G(K) attached to y, which is the stabilizer of y. On Py(Op)
we have the descending Moy—Prasad filtration given by certain subgroups
Py(Op)" (h > 0). Using the truncated loop group construction [CI21b, 2.6],
for any h > 1 one can defined an affine perfectly finitely presented perfect
F,-group Gy, satisfying

Gn(Fg) = Py(0) [ Py(0) 1T

We denote by F' the (geometric) Frobenius on G, 7 and its closed subgroups.
To a closed subgroup H C G j; one can naturalfyq attach a closed subgroup
Hj, € Gy, by first taking the schematic closure of H in Py and then applying
L;{. We write Hj := ker(Hj;, — H.,.) for the kernel of the natural projection.
We also write G, := G (F,) and Hp, := H(F,) (the latter only if Hj, is
defined over F;). For more details we refer to [CI21b, 2.6].

Let U, U™ resp. U, U~ be the unipotent radicals of a pair of opposite
Borel subgroups containing T resp. T’ and let Uy, U, resp. U%,U;Z_ be the
corresponding subgroups of Gj. We have the closed perfect subscheme of
Giw

Stun=1{9€Gp: g 'F(g) € FU,}

with a G, x Tp-action by (v,t): g — 7gt. Similarly we have the perfect sub-
scheme S7v p j, € Gp. As already above, Lusztig’s scheme ¥ = {(z,2/,y) €



Loop Deligne-Lusztig varieties for GL, 469

FUjy, x FU) xGy,: oF (y) = ya'} is very useful to compute the inner product
between the virtual Gj-representations obtained from Sz 5, and St/ ¢ p.

More precisely, for @Z -valued characters 6 resp. ¢ of T}, resp. T; we have
<H:(ST,U,h)97 H:(ST’,U’,h)9/>Gh = dim@z Hg(2)97179/

To study H}(X) Lusztig in [Lus04] (and many authors in follow-up
articles) used a locally closed decomposition ¥ = HweWy(T,7T) Yw, Where
Wy(T',T) = {Tyv: v~ 'Tyv = T}} is the transporter from T} to Ty in G
(= reductive quotient of the special fiber of Py) conjugating T/ to Ti. Now,
we generalize this construction in a substantial way.

Let V resp. V' be the unipotent radical of a second Borel subgroup
containing T resp. T'. We have the corresponding subgroups Vj, V} of Gy,.
For v € Wy (T",T) we have the corresponding preimage Vh’]I‘th%/y,7hV§1
(with Ky,y+, :== V, Nv~ 'V, v) of the Schubert cell in G attached to v. We
consider the following generalizations of f]w, Yy from [Lus04]

Svyie = {(z,2',y) € FU, x FU}, x Vh’]I‘hi)K‘l/’V,’hV%: 2 F(y) = ya'},

Svve = {(z,2,y,7,2,y") € FUp, x FU) x Vi x Tjy x K}, 0 x Vi
xF(y'ozy") = o/ mozy"2'},

which have the same alternating sum of cohomology. The action of T}, x T}

on iV,V’,v is
(4.11)

tt _ _ _ 1. — _ _
(@, 7y 724" ()_>) (tet =, 2t byt ot o ¢t L),
and by a similar formula for vy ,. There is an element vy = vo(V,V’) €
Wy (T",T), such that the (generalized) Bruhat cell VT vV} is generic in

Gq, i.e., vo_thvo = V'h_. For this vg we have Ky, = 1. We can write
y €V and y’ € V) as

y = ylh where 1y € U, NV, yp € Uy NV,
v =yl where yf € U, NV, vy € U, NV,

where (¢,t') € Tj, x T), acts on y,y5 resp. y{,y5 by conjugation with ¢ resp.
with #'. Changing the variables zF(y}) — z, o' F(y5)~! + 2’ we can rewrite
EV,V'7U0 as

{(z, 91, v5. 7, u1,y5) € FUL x (U, NV}y,) x (U, NV,) x T, x (U, NVY)
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1" //

x (U, NV},): xF (yaroy)) € yhyhroyiys FUL Y.
Let

HY, = {(t,1) € Ty x Ty: F()6 = ot F() i
centralizes U, NV}, and 0o(F [U’ NV},)oy }

. / s
Define an action of H, on ¥yy/,, by

(t,t") _ _ _ e 1. —
(@, 1,95, T, 915 y5) = (F(&)zF ()~ F(6)y F(8) ™ tyat ™" troot™ g
t’yi’ / 1 t’y’g’ / 1)

It extends the action of T}, x T} . We have to show that it is well-defined, i.e.,
that if (z, v}, v5, 7. Y1, Y4) € Xv.y7 v, then the same holds for (¢,¢).(x, v}, y5,
7,y{,y4). This reduces to show that

aF(yy)F(T)F(00)F(y)) € vy F () tyyrooylys FULE T F(t)

1, 11 ", 1

Writing 3" = y{yy € V} as y’ y3y4 with y§ € V'n FU’h_ and yj

V' N FUj, it suffices to check that F ( ) commutes with y5 € U, NV} and
that ' ~LF(¥') = 95 ' F(t)t 1oy commutes with y§ € V' N FU; . ThlS holds
by definition of Hq’m. We thus have proven the following lemma

Lemma 4.10. The action of Ty X T}’l on iV,V’,vo extends to an action of
the algebraic group H,  given by the above formula.

Now returning to the proof Theorem 4.1, we apply Lemma 4.10 to our G
(= inner form of GL,,), the point y = x;, the diagonal (elliptic unramified)
torus T = T’ of G, the subgroup U = U’ of unipotent upper triangular
matrices and to V.= U, V/ = U™, vg = 1, in which case U, NV, =1
and 0o(FU, NV})i, lis contained in Ly, for some proper Levi subgroup L
of G and hence the reductive part H{° 4 of the connected component of
Hiis blg enough in the sense of Lemma 4 9. Note finally that ¥ = Xy
is a closed subscheme of Xy /- 1, (in fact, on Xy - 1, y varies in T,U,U,

and X; is given by the closed condition y € ’]I‘h[UhU}_L’I). Let il denote
the pullback of ¥; along iU,U*,l — Yyu-,1. It has the same alternating
sum of cohomology as 31, and it is clearly stable under the action of Hj.
Thus, exploiting Proposition 4.4 in the last equality, we deduce Hé‘(il) =
H(Z,) = Hf (31) = Hj(if{") (and the same for =1 ® §'-isotypic parts),
hence verifying (4.6) in the only remaining case w = 1. This completes the
proof of Theorem 4.1.
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5. A variation of the Mackey formula

We work with exactly the same setup and notation as in Section 4 (and in
particular Section 4.1). Recall the presentation (4.3) of X},. Then

Xpw ={9€Gyp: g7 F(g) €U,  NFULY,

is a closed perfect subscheme of X}, stable under the action of Gy x T},.
In fact, X}, has a stratification in locally-closed pieces [CI21c] indexed by
divisors r of n/, and X}, .,/ is precisely the closed stratum.

Theorem 5.1. Let 0: T}, — @; be a character. Assume that p > n, and
that 0|71 has trivial stabilizer in WE. Then

(a) <R%h(9)aHZ(Xh,n')e> =1
and
(b) (HE (X o, HE (Xin)o) =1

We prove Theorem 5.1 in Sections 5.1-5.3. From Theorems 4.1 and 5.1
we deduce:

Corollary 5.2. Under the assumptions of Theorem 5.1, H}(Xp n)g s up
to sign an irreducible representation of G, and H}(X}p ) = R%h (9).

In the proof of Theorem 5.1 we use the following well-known fact.

Proposition 5.3. Let H be a connected algebraic group acting on (the
perfection of) a scheme Y, separated and of finite type of Fq. Then each
h € H(F,) acts trivially in H.(Y,Q,) for each i € Z.

Proof. See [DL76, 6.5]. O

Remark 5.4. The proof of Theorem 5.1 follows the same pattern as the
proof of Theorem 4.1, cf. Remark 4.5. Instead of 3,, one has similar schemes
i\](l’n)’w. Cases analogous to (a) and (c) of step (4) in Remark 4.5 are handled
very similar to the proof of Theorem 4.1. However, those w falling into case
(b) require separate treatment. Here we only can extend the action of T} x T}
on f](lm)’w to a commutative unipotent group H.. Then H&red = 1 and
Proposition 4.4 is not applicable. Instead we use Proposition 5.3, which is
more delicate.
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5.1. Proof Theorem 5.1(a): multiplicative extension

Parts of the proof follows along the same lines as the proof of Theorem 4.1,
thus we will be slightly sketchy below. Similar as in [CI21a, Lemma 7.12] we
have an isomorphism

(Ur N FU}) x (U, ' NFUL) — FUL,  (g,2) = g~ aF(g).
Thus we have G}, x Th-equivariantly Xj, v = Sy, v/ (U}l apa [U,ll)7 where
Shaw ={9 € Gy: g 'F(g) € FUL}

and Gp, x T, acts on Sy, by g,t: @ — gat, and (TU}z N F[U,ll) by right
multiplication. Hence H} (X}, n ) = H(Shn)e. Using Lang’s theorem, we
have a T}, x Tp-equivariant isomorphism

Gr\(Sh X Shn') = Sim) = {(z,2',y) € FU, x FU} x Gy,: 2F(y) = y2'}

where T, x Tj, acts on ¥y ) by (t t: (z, 2 y) = (tot=H 2ttt L),
For w € Wo let X1 )0 = {(z,2",y) € B10): ¥ € Gpp} (it is an T x Tj-
stable locally closed perfect subscheme) and putting K, = U N w—lzu,;w,
we let

Sy = {91, 7, 2,y2) € FU, x U, x Ty, x Kj) x Up: 2F(y17102y2)
€ lewzygFUh}

be the Zariski-locally trivial covering of ¥(q ), with T} x Tp-action given
by the same formula as in (4.5). As in Section 4.1, we have <R%h(0),
H (Xnn)o)Gn = D wewo UM Hy (X1 0),w)0-1,0- We claim that

1 ifw=1,

5.1 di H*inwA:
( ) mm c( (1,n), )9 9 {0 otherwise,

which implies the first formula of Theorem 5.1. First assume w satisfies the
condition in Lemma 4.7. Then E(l nw S S = @ and we are done. Now

assume that w = 1. Then Gy ;1 = Uy - Ty, -U}:’l, SO
f](ln 1 ={(z, 2 y1,7,2) € FUhxFUththth xF(y172) € y1722’}

is another a Zariski-locally trivial covering of ¥y )1 (with obvious T}, x Tj,-

action), so that H:(§(17n)’1)9—179) = H:(i(l’n)71)9—1’9), and we can replace
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i(l,n)’l by i(l,n),l. We can uniquely write z = 2120 with 21 € U,:’l N FU,;’l
and z9 € U;’lﬁFU%L and make the change of variables F(y;) — z, 202 — 2’

(note that the latter works because zo € FU}!), so that i(l,n),l is isomorphic
to

{(x,y1,7,21,22) € FUp, x Up, x Ty, x (IU,?1 mFtU;vl)
X (U;?l N FU%L)Z rF(12122) € y17'leU}L}.

The T}, x Tp-action on i(l,n),l is given by

(t,t): (2,91, 7, 21, 22) = (bt byttt = gt ™).
Let

Hy = {(t,t') € T, x Tp,: t ' F(t) = t'"'F(¥') centralizes Uy N FU; }.

As in Sections 4.3 and 4.4, one can check that H; acts on i(l,n),l by
(t,8): (@, y1,7m, 21, 22) = (F(O2F ()~ FOynF ()~ ettt ™)
(and this action extends the action of T}, x T},). Since Uy N FU, is con-
tained in the subgroup of Gy attached to a proper rational Levi subgroup
L C G, it follows that the connected component H7 .4 of the reductive
part of H is big enough (in the sense of Lemma 4.9), so that we deduce

dim H(X(1,),1)6-1,6 = 1, and hence (5.1) for w = 1 (this is the same argu-
ment as at the end of Section 4.4).

5.2. Proof Theorem 5.1(a): additive extension

It remains to show (5.1) for 1 # w € Wy not satisfying the condition from
Lemma 4.7. Assume w is such an element. Let

Hy ={(t,t") € T} x Tj: i~ "t F(t)w = /"' F(t') centralizes K} }.
In f](lm)ﬂu make the change of variables xF(y1) — x, so that

i(l,n)’w ={(z,y1,7,2,y2) € FU, x Uy, x T, x K}ll x Up: xF(Twz)
€ yirzy F(Upys ')}
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with T}, x Th-action given by the same formula as in (4.5). Now

(t,1): (2, 91,7, 2,y2) = (F(0)zF() Y F(t)y F(8) ™ trat"™ i~ ¢/ 241,
F(t"yF(t) ™)

defines an action of H} on f](lm)?w. In order to check this we have to show
that if (t,¢') € H), and (z,y1,7,2,2) € i(l,n),wa then also (¢,t).(z,y1,7, 2,
y2) € i(l,n),w' After elementary cancellations this reduces to show that

e F(Tizt’ ™) € y  F(t) rizt ' F(t )y F () F(ULF(t )y " F(U) ™)

But as ¢’ € T}, we have U} F(¢')y, 'F(t) ™' = Uly, ', so this reduces to show
that
eF(Tiz) € y F(t) rizt " F (¢ )y F (£ Uy, ).

Again, using ¢’ € T}, we deduce that ¢/~'U} y; Wy = Uiygl, so (t,t").(z,y1, T,
z,y2) € HL.

Via the isomorphism T}, = Uy, /U" mapping a diagonal matrix t = (¢;)7,
to its upper left entry ¢1, we identify 7}, with UL, /U} and T} with Uutjun.
By Lemma 3.12 (and the discussion in Section 3.1.3), the condition that
O|r; has trivial stabilizer in W& = (wi°) translates to the condition that
the restriction of # to U i JU }j does not factor through any of the norm maps
Ny fngs ULjuh — UII(n,OS/UIhQ,OS’ where 1 < s < n’ goes through all divisors

of /. Let Hy° be the connected component of HY.

Lemma 5.5. If (t,t') varies through (T} x T})) N Hy°, then t7 1) varies (at
least) through all elements of ker(N,, /,s) for some divisor 1 <s < n' of n’
(s depends on w).

Before proving this lemma, we use it to finish the proof of Theorem
5.1(a). Indeed, by assumption on 6 for each divisor s < n’ of n’ there is an
element x = x5 € kerN,, /, o C Ul /UM such that 6(zs) # 1. By Lemma 5.5

we can find a divisor s < n’ of n’ and an element (¢,t') € (T} x T}) N Hy°
such that ] 't} = x5, and hence 6(¢]'t;) # 1. Seeing  as a character of T}
again, this simply means that 6(t) # 6(¢'), and it follows that the Ty x T},-
character §~! ® 6 is non-trivial on (T3} x T3}) N Hyy°. By Proposition 5.3 we
thus deduce Hg(i(l’n)ﬂu)g—l’g = 0 for each ¢ > 0, which shows claim (5.1)
for all remaining elements w, and hence also Theorem 5.1(a).

Remark 5.6. The basic idea in the above arguments is the same as in [DL76,

Lemma 6.7]. This gives hope to generalize them to a far more general setup
(e.g. all unramified maximal tori in all reductive groups).
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Towards the proof of Lemma 5.5, for positive integers s,r such that s
divides r, we define morphisms of perfect [F,-schemes

£-1

s

Nm, /: W;J — W;’l r+— Nm, / (z) = H o’ (z).
1=0

Proof of Lemma 5.5. By assumption, w does not satisfy the condition of
Lemma 4.7. Thus by Lemma 4.8 there is a proper Levi subgroup L C G
containing T », such that if L is the corresponding subgroup of Gy, we

K>
have K} C L. We may assume L is maximal, so that there is an 1 < m <
n—1,such that L = GL, .~ xGL,_ _ - (upper left and lower right diagonal

blocks). More precisely, we may (and do) choose that m to be the i; from the
proof of Lemma 4.8. In fact, by our explicit description of Wo == [ Sy
in Section 4.1, we see that as w € W, our choice m = w™!(n) must be an
integer dividing ng. Let x = (1,,0n—rm) be a cocharacter of T ;. From the
explicit form of w determined in Lemma 4.8, we see that wx = (0p—m, Lm).
Let Yj, € Tj denote the subgroup of T}, corresponding to the subgroup
im(x) of T (thus Yy, = W). As im(x) centralizes L, Y}, ,, centralizes Ly,
and hence also K. Thus

Hy D Hy o= {(t,t) €Ty x Ty: i~ "t F(t)yw =t 'F(t') € Y .},

and the same inclusion holds if we take connected components on both sides.
Thus we may replace H,, by H, . Let (¢,#') € T} x T}, Write ¢ = diag(t;),
and ¢ = diag(t))7_, with t;,t; € W' Let x be a W'~ “coordinate” on Y o
(it is an (h—1)-tuple of Al-coordinates). We can eliminate all “coordinates”
ti (i # n) and ¢, (i # m) by expressing them through z and ¢,,, t,. More
precisely,

HY 2= (@t 1) € WO x WO x WOt 0™(8,)t, " = Nmy,, 4 (2)
= " (ty,)th ' }-

m

We see that on H,, , the equation o(t,'t,,) = t,'t;, holds, so that ¢, 't],
can take only finitely many values. On H&f;( we must in particular have
tn, = t,,, or equivalently (using the expression of ¢, ] through t,, t,,) we

have

(5.2) o" M (t) =t
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on Hlluc;( Furthermore, H&& is contained in the perfect scheme (isomorphic
to)
{(z,tn) € Wt x WL 0™ (1)t = Ny, 1 ()}

Now let 1 < g = ged(m,n) < n. As o"(tn)t,t = Nmy,/i(o(ta)t,!) =
ng/l(Nmn/g(a(tn)t,jl)), and Nm,, /i (r) = Nmg/;(Nm,,,(v)), we have
Nmg 1 (Nmy, /(0 (tn)t;, ') Nm,, g(2)~") = 1 on this scheme, and hence
Nm,, /4 (0 (tn)t;, 1) Ny, s (2) 7! is discrete on it. Hence Hy%, is contained in
the perfect scheme (isomorphic to)

{(z,tn) € W00 x WO Nmy, g (0(t)t, ") = Nim,, ()}
After replacing o by ¢9, Lemma 5.8 shows that this last perfect Fq—scheme
is connected, so that it is equal to H&,‘;{ On H}, o t1 = 0(tn), so that (after
replacing o(x) by = which is harmless here), we have

Hy5 2 {(2,t1) € Wyt x Wiots Ny, (o (t1)t7 ") = Ny, (2)}
Now Hy5 N (T} x T}) is the locus in H.,S, defined by z = 1. Thus we deduce
HyS (T xTy)={(t,t") €Ty xTpr : t) =0"""(t1) and Nmy,, (o (t1)t; ") =1}

(recall that in T), ¢ is determined by its first entry #;). Note that
Nmn/g(a(tl)tfl) = 1 simply means that Nm,,/,(t1) is o-stable. As m is
divisible by ng, T} = W;’I(Fqn) = U}/U} and the restriction of Nm,, /, to
T)t = U /U is N, /4, the lemma now follows from Lemma 5.7. O

Lemma 5.7. Suppose (n,p) = 1. Let 1 <m <n—1 and put g = ged(n,m).
Let

a: {y e UL /UL N, yly) € Ui JURY = ULJUL, ys o™ ™(y)y '

Then im(a) = ker(N UL/UL—>UK /UK)

n/g*

Proof. For arbitrary a € Z we have
Nn/g( ) € UK/UK = Nn/g( (y)y_l) - Ua(Nn/g(y))Nn/g(y)_l =1
=0 (y)y € ker(N n/g).

Hence im(a) C ker(N, ;). Let y € ker(a). Then N

n—m (

n/g(y) is rational and

o y) =y and 0" (y) = y. The last two equalities together are equivalent
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to 09(y) = y. Hence N,, /4(y) = %y, and hence y is rational (as Ny, /4(y) is,
and (n,p) = 1). Conversely, if y is rational, then surely y € ker(a)). Thus
ker(a) = UL /UR. Now the source of a is the preimage under the (surjective)
map N, ,: UL/U} — U}(H/Ulh(g of UL /UL hence the size of the source of
o is #ker(N,, ) - #(Uk/UR). Thus #im(a) = FEe ) = fker(N,, o).
As we already know that im(a) C ker(N,,/;) and both sets are finite, we are
done. O

For positive integer s define the F,-morphism
s—1 ‘
trg1: Go = Gay, x> trg () = qul.
=0

Lemma 5.8. Let r > s > 1 be coprime integers. Suppose p > s. The closed
perfect subscheme

Ry = {(y,x) € W' x Wyhs N,y (0(y)y™") = Nmyjy ()}

of W;’l X W;’l 1s connected. More precisely, for h > 2 the fibers of Ry —
Ry_1 are isomorphic to Al (note that Ry is a point).

Proof. 1t suffices to prove that the fibers of R, — Rj_1 are isomorphic to
A'. The fibers of Rj, — Rj,_; are isomorphic to closed sub-(perfect schemes)
of G2 (with coordinates X,Y’) given by the equation

C: tr, ) (Y9 -Y) = try/(X) + const.

where const is a constant term depending on the point in Rj,—1. As tr, (Yi—
Y)=Y? —Y, one can eliminate this constant term by changing the variable
Y + ¢ — Y (for an appropriate ¢ € Fq). So we assume const = 0. We may
assume s > 1, as otherwise we obviously have C' = Al. Put rg :=r, 7| 1= s
and define r; € Z>o (i > 2), v € Z>o (i > 1) by 1, = vit17i41 + rit2 and
ritve < ri41 for ¢ > 0. Say this stops at i = «, that is ro41 = ged(r,s) = 1,
Ta+2 = 0.

Via the change of variables X + Y9
the curve

s+1

—Y — X, C is isomorphic to

Cr: trTl/l(X) = tI’Tz/l(Yq -Y).

Now tr,, 1 (Y?—Y) =Y?” —Y, so that we can successively make a series of
changes of variables of the form Y + X " 5 Y for appropriate 3 € Zxq, to
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eliminate all powers of X with exponent greater than ¢". This shows that
(1 is isomorphic to the curve

Ca: try, 1(X) + 72 try, 1 (X) = tr,, 1 (Y =Y).

Now we successively apply the perfection of Lemma 5.9 to Cy and the ini-
tial tuple of integers (a1,b1,c1,d1) = (1,72,73,72). Consider the operation
(a,b,c,d) — (b,a + by, r,c) on quadruples of integers (satisfying 0 < ¢ < d)
where 0 < r < d and v > 0 are defined by d = yc+r. First of all, if a,b > 0,
then also b, a + by > 0. Moreover, the operation leaves invariant the sum of
products of 1st and 3rd and of 2nd and 4th entries: ac+ bd = br + (a+ bvy)c.
Thus if (a;,b;,c;,d;) is the tuple after (i — 1)th iteration step, we have
a;c; + bid; = r3 + varg = r1 = s < p. Also we have ¢; = riji2, d; = r;4+1, and
hence 0 < ¢; < d; as long as i < a— 1. All this implies that 0 < a;, b;, ¢;, d; <
pand 0 < ¢; < d; for each i = 1,2,...,a — 1, so that Lemma 5.9 indeed
applies in each step, as long as ¢ < «. The last application (for i = a — 1)
produces a quadruple (aq,ba, Ca,da) = (ba—1,00-1 + ba—1da—1,0,1) and Cy
is thus isomorphic to the curve

b X =Y -,

and by the same preservation property of the sum ac+ bd we have that still
0 < bo < p holds. Thus this curve is isomorphic to A% , and we are done. [J
q

The following lemma works for schemes of finite type over F,, so we
denote (in this lemma only) by Ap, the usual affine space over F).

Lemma 5.9. Let a, b, c,d be positive integers with a,b < p and ¢ < d. Write
d=rc+r with 0 <r <c. Then the curve in A%-p given by the equation

Cr: atre (o) +btrg (v) = trg (y? —y)
18 Fp-1somorphic to the curve in AIQFP given by the equation
Cy @ btry () + (a4 by) treyi () = tren (y? —y).

Proof. Make the change of variables z + b~!(y? — ) + z (by assumption
b<p,as0<c<d). Thus Cy is isomorphic to the curve

C1: atry(x) + ab™! tre/1(y? —y) +btrg)(z) = 0.
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Via the change of variables —a~1by + y, C} gets isomorphic to
Ccl: atrei(x) +btrg) (v) = tre) (y? — y).

We have trg/, (yi—y) = yqd —y. Thus we may successively make the changes
of variables of the form y + 2" (for appropriate a € Z>¢), to eliminate all
powers of x with exponent greater than ¢¢. This does not affect the first
summand a tr./;(x) and after all these changes C{ gets isomorphic to the
curve

Ci// : atrc/l(x) + b(fytrc/l(x) + trr/l(x)) = trc/l(yq - y),

which is the same as Cs. ]
5.3. Proof Theorem 5.1(b)

Again, we work in the setup of Section 4.1. For w € W» put

fl(mn)’w =A{(z,y1,7,2,y2) € FU}L X FU,ll x Uy, x Tj, x K}L x Up: aF (y17wz)
€ yitwzyeF(Upys 1)},

and
i(nm)’l = {(z,2',91,7,2) € F[U,lszU,llx[Uhx’]I‘thU,:’l: rF(y172) = y1722'}

with natural T}, x Tj-actions (like in Section 5.1). Similar as in the beginning
of Section 5.1 it suffices to check that

H:(i(rhn)’w)gfl’g =0 forl#we Wp, and

dim Hs(z(n,n),l)O—l,O =1.

First consider the case w # 1. Asz € F [U,l1 and y; varies in Uy, we can not
make the change of variables F'(y1) — z as in the proof of Theorem 5.1(a).
However we can define an action of H} on Ynm)w by

(t,1): (2,51, 7, 2, 92)
(F(t)zF(y)F(t) T F(E()y ' FO)™), FOy P ()~ trot ™ a™t
" F( )y F(E) )
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Note that F(t)zF(y1)F(t) " F(F(t)y; 'F(t)~') € FU} (on the one side it is
contained in FUj as z, F(y;1) € FUp; on the other side it must lie in G}L as
t,x € G,ll) The proof that this indeed is an action goes exactly the same way
as in Section 5.2. The rest of the argument for f](Ln%w goes then through
exactly as for i(l,n),w in Section 5.2.

Now let w = 1. As z,2’, 2 € G}, the equation defining i(n,n),l modulo
G;, reduces to F(y17) = y17. From this it easily follows that y; € G} . Hence
y1 € U} . Hence the change of variables 2 F(y;) — = makes sense (such that
the new variable x again lives in F [U}ll), and the rest of the argument for

Y(nn),1 8Oes exactly the same way as for i(l,n),l in Section 5.1.
6. Cuspidality

We go back to the setup of Section 3.6. Let 6 be a smooth character of
T = L* of level h > 1 in general position. Recall that the induced character
of T}, is again denoted by #, and that it is also in general position. By
Corollary 4.3, R%i(@) is up to sign an irreducible Gp-representation, hence

in particular R%(6) is up to sign a genuine representation. We write \R%h (0)]
resp. | R$(6)| for the genuine representation among :I:R%h’ (0) resp. £R$(0).

Theorem 6.1. Let 6 be a smooth character of T = L* in general position.
Then |RG(0)| is a finite direct sum of irreducible supercuspidal representa-
tions of G.

Proof. There are many (essentially equivalent) ways to deduce this theorem
from Proposition 6.2. By [Bus90, Theorem 1] it suffices to prove that =y :=
Ind(Z;Go ]R%h (0)| is admissible. Let K C G be a compact open subgroup. We
have to show that (Z¢)% is finite-dimensional. Conjugating K into Go and
making it smaller if necessary, we may assume that K = ker(Gp — G,) for
some r > (. Frobenius reciprocity gives

G = @ RGP,
QEGoZ\G/K

Thus we have to show that there are only finitely many non-vanishing sum-
mands on the right. If S denotes a maximal split torus of G whose apart-
ment in Zi(G) = %’? contains the vertex stabilized by Gp, then by the
rational Iwahori-Bruhat decomposition, ZGo\G/Go = X«(S/Z)4om- Hence
any element of ZGp\G/K has a representative of the form g = wtz with
r € Go, it € Xu(S)dom- Now K is normal in Gp, so gKg~! = wtKw™H
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only depends on p. Moreover, any coset ZGpwHGp contains only finitely
many cosets from ZGo\G/K. Thus it suffices to show that for all but
finitely many p € X.(T0/Z)dom, \R%%OMZGOmw”KwW = 0. It is easy to
see that for all but finitely many such u, there is a proper K-rational
parabolic subgroup G with unipotent radical N, such that if N = N(K),
then NN Gp C w!'Kw #. Thus it is enough to show that for each such
N we have |R$"(0)|N"%e = 0. As by Corollary 4.3, |RS"(0)] = £R$"(6)
is a genuine representation, it suffices to show that R%ﬁ (0)NGo = 0 (we
have the natural map of Grothendieck groups of smooth representations
with Q-coefficients r: Ko(Go) — Ko(N N Go) induced by restriction, and
R%’ ()N"Go = () means (1, r(R%h(H)» = 0, where 1 is the trivial represen-
tation). This follows from Proposition 6.2. O

Proposition 6.2. Let N be the unipotent radical of a proper K-rational
parabolic subgroup of G. Then

RGM(0)NYe = 0.

We prove Proposition 6.2 in Section 6.1 in the case x = 0, and in Section
6.2 in general. The proof in the general case is more technical, but follows
exactly the same idea as in the special case k = 0. For reasons of clarity we
explain the special case first.

The explicit description in Lemma 6.6 used in the proof of Proposition
6.2 is — to the author’s knowledge — already new for classical Deligne-Lusztig
varieties, i.e., when h = 1 (and x = 0). In particular, for the Coxeter-type
variety for GL, r, it gives an alternative and much more direct proof of the
cuspidality result for Coxeter-type varieties [DL76, Theorem 8.3|, which is
the last statement of the following corollary to Proposition 6.2.

Corollary 6.3. Letn > 1, and let X be a Deligne—Lusztig variety of Cozeter
type attached to GLyr, . Let 0 be an arbitrary character of T = qun, the
corresponding GL, (F,)-representation R(0) realized in the cohomology of
X, satisfies R(G)N(Fq) =0, for any unipotent radical N of a proper rational
parabolic subgroup of GL,. In particular, if 6 is in general position, the
genuine GLy, (F,)-representation |R(8)| is irreducible cuspidal.

Remark 6.4. The proof of Proposition 6.2 is based on the key lemmas 6.6,
6.8, where the quotient Nj\Xj, is determined. If X} denotes the quotient
of X}, by the Tj-action, then (the cohomology of) Nj,\ X}, can probably be
computed in big generality by same methods as in [Lus76, (2.10)] (where
Coxeter-type Deligne-Lusztig varieties in the flag manifold for a reductive



482 Charlotte Chan and Alexander B. Ivanov

group G over [, are studied, in particular A = 1). Proofs of Lemmas 6.6, 6.8
suggest that the quotients Nj,\ X} are harder to understand than Nj\Xj,.
For h = 1 and G arbitrary reductive group over F,, a quotient similar
to Np\ X, appears in [BR06, Section 3.2], [Dud13] and a couple of related
articles. The methods used in [BRO6] are indirect in the sense that the
structure of the tame fundamental group of the multiplicative group G, 7
is used. In our situation these methods would only apply in the case h :,f’
because for h > 1 the natural covering X;, — X}, is wildly ramified.

6.1. Proof of Proposition 6.2 for Kk =0

For N to have a convenient form, we take b = 1. We also take w; to be
the element by as in (4.2). Then literally G = GL,(K), Go = GL,(Ok)
and G}, = GL, (O /(w@")). Let Nj, denote the image of N N Go in Gj,. We
can assume that NV is the unipotent radical of a mazimal proper parabolic
subgroup. Moreover, conjugating IV if necessary, we may assume that there
is an 1 < ig < n — 1, such that N consists of matrices u = (uij)1<ij<n
with u; = 1V1 < i < n, and u;; = 0 unless i = j or (1 < i < ig and
n —ip < j <n). As the actions of G, and T}, on X} commute, we have

RSH(0)N = HF (X3,)g™ = HF (N\X)o.

We introduce some convenient notation. For » > 1, and an r X r-matrix
g, let |g| := det g. For x = (z;)]_; € Wj,(R)", write g,(z) for the r X r-matrix
whose ith column is o~ !(x). Also we put

Yo i={x € Wy |g,(z)] € W}

This is a functor on Perfr , which is represented by an affine perfectly
finitely presented perfect Fy-scheme. The description of X} in [CI21a, 7.2]
says precisely that X; C Y 5 is a closed subset defined by the condition

o(lgn(@)]) = (=1)"gn(@)]-

Lemma 6.5. The quotient N\ X}, exists as a perfect scheme, and X, —
N\ X}, is finite étale.

Proof. X}, is affine and N, finite, so the quotient exists. As the action has
no fixed points the last claim also follows. O

Lemma 6.6. There is an isomorphism of perfect schemes

o: N\Xp, = (m, ') € Yo % Yogyt ——20 gy U
’gn—io(x,”Zj:l o’
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induced by x = (x;); + ((my(x)),, (w3)i;, +1), where m;(x) is the (n —
io+ 1) x (n —ig + 1)-minor of gn(x) given by

X o(z;) ... o"(xy)

Tig+1 O(Tig+1) - 0" (@ig41)

m;i(x) = |Tigr2 0(Ti42) ... 0" (Tigt2)
T olxn) ... ov0(xy,)

Proof. 1t is clear that the assignment in the lemma defines an Np-equivariant
morphism X, — (Wp)% x (Wj,)" % (with trivial Nj-action on the right).
Thus it induces a map Ny\Xp, — (W) x (Wj)" "%,

A standard argument shows that for z = (x;), € X (R) with cor-
responding z' = (x;)j_,; ; and m = (m;(x)),, one has that g, (z') €
W, (R) (see e.g. [CI21a, Lemma 6.13]). This combined with Lemma 6.7 be-
low, shows that we also have |gi,(m)| € W, (R). Thus (using Lemma 6.7
again), we see that « is well-defined.

To prove the lemma, it now suffices to check that « is an isomorphism
of étale sheaves on Perfy . First we check that as a map of étale sheaves,

« is surjective. Let R € Pgerfﬁq. Let Z denote the target of «, and let m =

(mg)ie o' = (})i;,+1 be a element of Z(R). We construct a preimage x =

(xi)f; € Xp(R') for some étale R-algebra R'. Take x; = z| for ip+1 < i < mn.
Now, we can find an (finite) étale R-algebra R’, and for each 1 <i <o, an
Ti = Z?;é [z j]w? € Wp,(R') such that

n—iop

(6.1) mi =mi(z) = (=) o* () - |gn_iyn(2)],
k=0

holds in Wy (R'), where g,—;, r(z’) denotes the (n —ig) X (n — ip)-matrix

whose columns are 2/, o(2'),...,o%(2’), ..., 0" %(2') (here~ means that the
vector - is omitted). Indeed, note that for £ = n — iy and for k = 0, we have

(6.2) |9n—io.n—io ()| = gn—io.0(@")| = |gn—io (/)] € W} (Fg)

Thus, fixing an ¢, and proceeding successively for j =0,1,...,h—1, we can
take (6.1) modulo @/™! and resolve it for x; j, noting that each time to find
a solution we need a (finite) étale extension of R. Thus « is an epimorphism
of étale sheaves.

By Lemma 3.3 it remains to show that a(R): (Np\Xn)(R) — Z(R)
is injective whenever R is an algebraically closed field. With notation as
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above, for a fixed 1 < i < ip and ;0,2 1,...,%;j—1, Equation (6.1) gives
an equation for x; ; of degree precisely ¢" % (by (6.2)), which is separable
(by (6.2) again). Doing this for each 1 < i < iy and 0 < j < h, we obtain
precisely g%~ possible values for z = (i), € Wp(R)"™ which map to
the given point (m,z’) € Z(R). By Lemma 6.7 all those x automatically
lie in X3, (R). This shows that each fiber of the composition of X;(R) —
(Nu\X3)(R) with a(R) has precisely g% = 4N, points, i.e., that
a(R) is injective. The lemma is proven. O

Lemma 6.7. Let n > 2, 1 < i3 < n — 1. For an Fy-algebra R and
= (2)iny € Yonu(R), let m = (mi(2));2y € Yin(R), 2’ = (2:)i;,41 €
Y—io.n(R). Then

(6.3) 1910 ()| = 1gn ()] - |gn—iy (2) 2 7
Proof. For v = (vj)j_; € Y p(R), and 1 <@ < r, let vl = (Vj)j=1.52i €

Y,_14(R) denote the vector v with i-th coordinate omitted. The claim is
tautological for igp = 1 (in particular, we may assume n > 2). We use in-
duction on 4g. Expanding along the first column and using the induction
hypothesis (for n — 1,i9 — 1), we get

i

9ia(m)] = (=1 mio (Igig-1(m)])

=1
20 t0—2

=" (=D mio | lga-1@)] - T 07 (|90—i, ("))
i=1 j=1

To show that this equals the right hand side of (6.3) it suffices to show that

io

64 YD mio (1901 D)]) = loa@)] o (ga-i ()

=1

This follows from a classical minor identity of Turnbull [Tur09]. We use the
more modern source [Lec93]. Let us first recall some notation from [Lec93].
Let S be a ring (commutative, with 1). For 1 <1i < n, let a;,b; € S™. Then
the 2 x n-tableau

T — ap ag ... Ay ES
b1 b2 ... b,

is the product of the determinants of the two n X n-matrices A and B,
where the i-th column of A resp. B is a; resp. b;. Similarly one defines an
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s X n-tableau for each positive integer s. The entries of the tableau are the
elements a;, b;. More generally we need tableaux with boxes containing some
of the entries. Let T be a s x n-tableau, let A be a subset of elements of T'.
For a permutation o of elements of A, let o(T") denote the tableau obtained
from T, where the elements of A were permuted by o. Then the tableau
7 = (T with boxes around entries in A) is defined as the alternating sum
> osgn(o)o(T), where the sum is taken over the cosets of the symmetric
group on A, modulo the subgroup, which leaves unchanged the rows of 7.
We give an example for n =4, s = 2:

CLQ az a4 | _ | a1 a2 az a4 bs as as ag by as a3 ay
bl b2 bl b2 b3 b4 b1 bg aq b4 bl bQ b3 aj

To continue with our proof, we take S = W, (R). For 1 < i < n, let
i=(0;—1,1,0,—;) € Wyp(R)" denote the i-th coordinate vector. An easy
computation shows that

10

|gn(z)| - o (|gn,i0 (x’)|) — Z(—l)iﬂmia <|gn71(x(i))|)

i=1
_ 4 .. fig o(x) ... 0" (x)
o(x) . o™ H(z)

With other words, to show (6.4) it suffices to show that the tableau on the
right side vanishes. Towards this we have

o(z) ... o" () |_ a(z) ... |lo" () —0
o(x) e o Y(x) o(x) e o (x)

Here the first equality is immediate from the definition of a tableau with
boxes and the fact that the entries o(z),...,0" (x) appear in the second
row, and the second equality is an application of Turnbull’s identity [Tur(09]
(see [Lec93, Proposition 1.2.2(i)]), which claims that if the number k of
boxed entries satisfies £ > n, then the tableau vanishes. Indeed, viewed as
a function on the boxed entries the tableau is a linear alternating (not only
skew-symmetric as stated in the proof of [Lec93, Proposition 1.2.2(i)]) form
on S" in k variables, which must therefore vanish, as AgM = 0 for any
finitely generated S-module M which can be generated by n elements (in
loc. cit. the proof is only formulated when S is a field, but it generalizes to
all rings). O



486 Charlotte Chan and Alexander B. Ivanov

We continue with the proof of Proposition 6.2 for k = 0. The group
anﬁq acts on Y, X Yy, by
(6.5) (11, 72): (¥, 2) = (T1y, T22).

(here 71y := (T1y:)"*, means entry-wise multiplication, and similarly for z).
This action restricts to an action of the closed subgroup

i1 . [m—io—1 -2 o
Hy =< (11,m) € G2, lejzo 7 ( H 0’(7’2)) =1

on ag(Np\X}p), where ap is as in Lemma 6.6. By Lemma 6.6 o induces
an isomorphism on étale cohomology. Now H is 1-dimensional, hence its
connected component H° is a 1-dimensional torus. Therefore the projection
of H° to at least one of the G,-factors of the ambient group G2, is non-
constant, hence surjective. Hence ag(N,\Xp)? = 2.

The action of T, = W) (Fs») on X; induces an action on Nj\Xjp,
which under «g is compatible with the Tj-action on ag(Np\X}) given by
t: (m,2’) — (m - Hz(’;()l ol (t),x" - t) (both products mean scalar multi-
plication). This action of 7}, commutes with the above action of Hy on
ap(Np\X}p). The explicit description in Lemma 6.6 also shows that oo (Np\ X},)
is affine. Thus the Tj-equivariant version of the well-known result [DM91,
10.15 Proposition] gives

dimg, H; (Np\Xn)p = dimg, H (ao(Np\X5)"" ) = 0.
This finishes the proof of Proposition 6.2 in the case k = 0.

6.2. Proof of Proposition 6.2 for arbitrary «

Let k be arbitrary. Let ¢ := (117,(?_1 %)ko, and for r > 1 let b, := P, ¢ be
the block-diagonal ngr x ngr-matrix with blocks equal to c. Let b = b, (it
is the special representative corresponding to k,n as in [CI21a, §5.2.2]).
Let w = bots, be as in (4.2). We have then the corresponding groups
G,Gp,T,Gp,... asin Section 3.1. A maximal rational parabolic subgroup
of G is determined by an integer 1 < ig < n/ — 1. Its unipotent radical N
consists of matrices (A;j)1<ij<n’ Where each A;; is a ng x np-matrix, and
Aji = 1y, Ajj =0, unless i = jor (1 <i<ijpandn' —ip+1<j<n).
Let [ denote an integer which modulo ng is the multiplicative inverse of kg.
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Moreover, for a € Z define [a],, € Z by the requirement that 1 < [a],, < ng
and [a]p,, = @ mod ng. The subgroup N}, of G}, corresponding to N (see
Section 4.1) consists of n x n-matrices of the same shape, where now each
of the ng x ng-blocks A;; with 1 <4 <y and n' —ig+1<j <nisof the

form ZK“:BI e diag(ay, ol (ay), om0 (ay), . .., ol0=Dlmo (qy))
with ag € Wy(Fgno) and ay € Wy_1(Fgno) for A > 0. In particular, #N;, =
go(h+(mo=1)(h=1))io (' —ia) |

Let r > 1 and let Zp, ,p = {(@i)/2]: z; € Wy ifi =1 mod ng and
x; € Wjy_jotherwise}. This is a affine, perfectly finitely presented perfect
[F4-scheme. For a perfect Fy-algebra R and « € Z,, » 4(R) let gy, (x) denote
the nor x npr-matrix whose i-th column is w5 (bro)™~!(2) (the entries

of g, r(z) are either in Wy, (R) or in Wj,_;(R) or in wW,_;(R) C Wy (R)).
The determinant |gp, »(z)| of gn,r(x) is a well-defined element of Wy (R).
Let

Yoorh = {2 € Zng i |gnor(x)] € W'}

The description of X} in [CI21a, 7.2] says precisely that X}, C Y, p is the
subset defined by the closed condition that o(|gn, n (%)]) = (—1)™ =Y gng.nr (7)].

To simplify notation we write s := ngig from now on. For z € X} and
1 <i <s, let m;j(z) denote the (n — s+ 1) x (n — s + 1)-minor obtained
from gp, n/ () by removing all rows except for the i-th and s+1,s5+2,...,n-
th and all but the first n — s + 1 columns. Then m;(z) makes sense as an
element of Wy, resp. of Wy,_1 ifi =1 mod ng resp. if i #1 mod ng. Thus
(mi(x))i_1 € Znyio,n- The analogue of Lemma 6.5 for Np\ X}, holds with the
same proof. We have the following generalization of Lemma 6.6.

Lemma 6.8. The assignment x = (z;)y € X, = m = (m;(z))i_,, 2’ =
(24)j g4 induces an isomorphism of perfect schemes,

. Np\Xpn

Gng,io 1TV
— (m,:n') S Yno,io,h X Yno,n’—io,h: ‘ 1o ’LO( gSI p S W;; (Fq) .
|gno,n’—io ($/)| =17

Proof. Using the description of Nj given above, one checks that m;(x) is
stable under the Np-action on Xp. Now the proof proceeds in a completely
analogous fashion to the proof of Lemma 6.6 (with Lemma 6.7 replaced by
its generalization Lemma 6.9). O

Lemma 6.9. Letn > 2,1 <ig < n —1. For a perfect Fy-algebra R and

z = (z3)"y € Yoo wn(R), we have m = (mi(x))i_, € Yo, ion(R), 2/ =
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(mi)?:io—&-l € Yno,n’—io,h(R) and

(6.6) |9n0.i0 (M)] = |gnon ()] - 1no.nr—io (2')

Proof. 1t is known that for x € Y, n n(R), we have &’ € Y, —iyn(R)
(see [CI21a, Lemma 6.13]). Thus the similar claim for m follows, once (6.6)
is shown. To show (6.6) we first notice that all entries of g, i,(m) (and
not only those in the first column) are in fact (n — s+ 1) X (n — s + 1)-
minors of gy, (). More precisely, for 1 < 4,5 < s the (4, j)-th entry of
Gne.io (M) is the minor of gy, , () obtained by removing all columns except
those with numbers j,7 + 1,...,7 +n — s, and all rows except those with
numbers 4,s,5+ 1,...,n. Let X; denote the i-th row of g, (x). Let also
a denote the a-th standard basis vector of a free rank n module (over an
arbitrary ring). Using the formalism of tableaux with boxes (as in the proof
of Lemma 6.7), but now for the rows of gn, n (x), we can express |gn, i, (m)]
as the s x n-tableau with boxes:

Xs+1 Xoto ... X, n—s+2n—-s+3 n
1 Xsi1 Xsr2 ... Xpg X, n-s+2n—-s+3 n
1 2 X1 X1 X, n-s+2n-s+3 ... n
1 2 AN s—2 X5,1 X5+1 XS+2 . Xn,1 Xn n
1 2 e s—1 Xs+1 e Xn,1 X’n

As each of the entries X 41, Xg19,..., X, appears in each row of this tableau,

it is equal to

(X1] Xst1 X2 ... X, n—s+2n—s+3 n
1 Xor1 Xsro ... Xu1 X, n—-s+2n-s+3 n
1 2 Xst1 Xn_1 Xn n-s+2n—-s+3 ... n
1 2 s—2 Xs—l X5+1 X5+2 Xn—l Xn n
1 2 s—1 Xs+1 Xn—l

Apply (second) Turnbull’s identity [Lec93, Proposition 1.2.2(ii)] to the last
row of this tableau, deducing that it is equal to

1] Xei1 Xep2 ... X, n—s+2n—-s+3 n
1 Xeop1 Xop2 o0 Xp X, n-s+2n—-s+3 n
1 2 Xst1 Xn-1 X, n-s+2n-s+3 ... n
1 2 s—2[s—1 XS+1 X5+2 X”_l Xn n
X7 X Xs 1 X Xot1 Xno1 X,
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Here all boxes can be removed without changing the value of the tableau, as
any non-trivial permutation produces a zero s x n-tableau (as at least one
row will contain two equal entries and hence be equal to 0). The resulting
tableau (without boxes) is precisely the right hand side of (6.6). O

Remark 6.10. In the proof of Lemma 6.8, the fact that the entries of gy, 4, (m)
are certain minors of gy, (z) can be shown by a somewhat tedious but
straightforward calculation, which we omit here. To illustrate the principle,
we give an example. Let n = 9, k = 6, so that n’ = 3, ng = 3, kg = 2. Let
io = 2. We have the two minors of g, n (),

To wogxgg o ga(vl)) azgmgg WUEIQ§ wo EZS§ ojéxlg woigxgg
M2 = | oy wolzo) ) o) and - M=\ 2000 o) o o2z 0tz

o(zr)  o*(zs) o®(ze) ot(wr)

the first corresponding to rows 2,7, 8,9 and columns 1, 2, 3, 4, and the second
corresponding to rows 1,7,8,9 and 2,3,4,5. The first of these minors is by
definition the (2,1)-entry of gy, i, (m), and the fact mentioned above claims
that the second minor is equal to the (1,2)-entry of gy, i, (m), that is, to
wo(mgy) € wWy_1 C Wy, First, M makes sense as an element of wWp,_;.
To compute it, we may lift its entries to elements in W, where we can
multiply rows and columns by powers of w, to see that

waEng w UzExS; wU3EJ}1; wa“éxz;
2| wo(zs) w202 (x9) wod(x7) wot(ws
M=w wo(xg) wo?(zr) wo?(zs) wot(xg)

o(xz7) wo?(zs) wo(zg) o*(x7)

i R s R e
=w O'(xz) 02(507&)) 3( 7) 4(:52) == WO'(mg)
o(x7) wo?(zs) wod(zy) o*(x7)

(after reducing modulo @"W), as claimed.
We continue with the proof of Proposition 6.2. The group an 7 acts on
»q

Yoo.ioh X Yng.n—io,n by the same formula as in (6.5). This action restricts to
an action of the closed subgroup

s—1

1 n—s—1 _ZJ 10]
H, :={ (11,m) € G : le:'jzoa ( H 0’(7’2)) =1

on Np\Xp, & ay(Np\X}p), where oy, is as Lemma 6.8. Now H is 1-dimensional,
hence its connected component H° is a 1-dimensional torus. The rest of the
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argument is exactly as at the end of Section 6.1. Proposition 6.2 is now
proven.

7. Review of some representation theory

We fix an isomorphism Q, = C and use it to identify the isomorphism classes
of smooth complex with smooth Q-representations of all involved groups.
For a finite dimensional (complex or @g-) representation p of a group, we
denote by deg(p) the degree of p.

7.1. Square-integrable representations

We recall some well-known results about square-integrable representations
of p-adic reductive groups due to Harish-Chandra. For a detailed treatment
we refer to [HC70] (see also [Car79]).

In this section let G be an arbitrary reductive group over K and G =
G(K). Let Z be the (K-valued points of) the maximal split torus contained
in the center of G. Let ¢: Z — @EX be a unitary character of Z. We fix now
an invariant Haar measure on G/Z (recall that G is unimodular). We work
with complex-valued representations of G. Let &(G,1)) denote the set of
equivalence classes of irreducible unitary representations (m, V') of G, which
have central character v and satisfy

(7.1) /G N rlldg < oo

where (-, -) denotes the scalar product in the Hilbert space V' (the integral
makes sense as v is unitary). These are the square-integrable representations
with central character x. All irreducible supercuspidal representations with
unitary central character are square-integrable [HC70, §3].

For a given m € &(G, 1)), the integral (7.1) is equal to d(m, dg)|u|?|v|?,
where the constant d(m,dg) > 0 is independent of u,v (and thus only de-
pends on 7 and the chosen measure dg). The constant d(m, dg) is called the
formal degree of 7 (with respect to dg). Let H be a compact open subgroup of
G.1f dg, dg' are two invariant Haar measures on G, then d(r, dg)vol(HZ/Z,dg) =
d(m,dg")vol(HZ/Z,dg'). Moreover, if 7 € &(G, 1) is of the form 7 = c¢Ind$}; 7
for an (automatically finite-dimensional) representation 7 on which Z acts
by the character 1, then d(m,dg)vol(HZ/Z,dg) = deg T (cf. [Car79, 1.6]).

For any m € &5(G,1) and a smooth irreducible representation p of H,
let (7 : p) denote the multiplicity of p in the restriction of 7 to H. We need
the following estimate due to Harish-Chandra.
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Theorem 7.1 (see [HC70, p.6]). Given H, p as above, let m € &(G, ).
Then

(7.2) > d(x,dg)vol(HZ/Z,dg)(x : p) < degp.
WEgQ(G,Qﬁ)

7.2. Traces on elliptic elements

For the moment keep the assumptions of Section 7.1 (in particular, G is
arbitrary reductive). Let H(G) denote the convolution algebra of locally
constant compactly supported functions on G. Fix a Haar measure dg on
G. For any smooth G-representation (m,V), H(G) acts in V by n(f)v =
Jo F(g)m(g)vdg for all v € V, f € H(G). If m is admissible, then m(f) has
finite dimensional range, and hence a trace. Let G™&% denote the set of
regular semi-simple elements of G. It is open dense in G. The following
result due to Harish-Chandra and Lemaire ensures the existence of a trace
of a finite length G-representation on regular semisimple elements of G.

Theorem 7.2 (see [Hen06, Theorem 1]). Let m be a finite length (hence
admissible) smooth representation of G. Then there is a unique (hence in-

variant under conjugation) locally constant function tr(m,-) on G™®% of
G, locally integrable on G, such that for all f € H(G), one has trm(f) =

Jotr(m, 9) f(g)dg.

Now assume again, that G = G(K) for an inner form G of GL,,. For
g € G, let P(g) denote the reduced characteristic polynomial of g. Two ele-
ments of g1, g2 € G™® are conjugate in G if and only if P(g1) = P(g2). All
said above applies to GL,,(K) as a special case. Moreover, for an elements
g € G*% there is a unique up to conjugation element ¢’ € GL,, (K )&
such that P(g1) = P(g2). This has a partial converse. Let G¢!' C Gresss
denote the (open) subset of elliptic elements. For any ¢’ € GL,,(K)! there
is a unique up to conjugation g € G°"' with the same (reduced) character-
istic polynomial. The local Jacquet-Langlands correspondence is then the
following result, which in its most general form is due to Deligne-Kazhdan—
Vigneras [DKV84] and Badulescu [Bad02].

Theorem 7.3 (see [Hen06, Theorem 2]). There is a unique bijection 7’ <>
7 = JL(7') between the sets of *(G) and @/*(GL,(K)) of smooth ir-
reducible square-integrable representations of GL,(K) and G, such that
tr(m,g) = (—=1)" ™ tr(n’, ¢') whenever g € GV, ¢’ € GL,(K)*" with P(g) =
P(g').
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Now we recall a result from [CI21a]. An (elliptic) element x € T' = L*
is called very regular, if € O] and the image of z in the residue field
Or/pr = Fyn has trivial stabilizer in Gal(L/K). This definition does not
depend on the choice of the isomorphism T = L* as in Section 3.1.2. Write
07 := 0o~ for v € Gal(L/K), 6: L* — Q.

Proposition 7.4 (Theorem 11.2 of [C121a]). Let 6: T — Q, be smooth and
x € T very regular. Then tr(R$(0),r) = £ > ecar/k) 07 (@).

7.3. Special cases of local Langlands and Jacquet—Langlands
correspondences

As in the introduction, to a character §: L* — @Z one can attach the n-
dimensional representation oy = Ind%i< (0 - 1) of the Weil group of K, where
we recall that p is the rectifying character of L*, given by u|y, = 1 and
w(w) = (—1)""1. The representation oy is irreducible if and only if 6 is in
general position. In this case, the local Langlands correspondence attaches
to oy the irreducible supercuspidal GL,, (K )-representation WSL := LL(oy).
Moreover, the local Jacquet—Langlands correspondence attaches to ﬂé}L” the
irreducible supercuspidal G-representation 7y := JL(WHGL").

Moreover, 0 is in general position if and only if it is admissible in the
sense of [How77], and the construction of Howe [How77| attaches to it an
irreducible supercuspidal GL, (K )-representation, which is (equivalent to)

71'9GL". With other words, with notation as in the introduction, the diagram
%/ GalL/K
9'—)0’9l W‘e
(n) —L— o (n,0) SN i (n,K)
commutes.

8. Realization of LL and JL in the cohomology of X2*(b) in
some cases

We now will prove Theorem A from the introduction. Let 0: T'= L* — @Z
be a smooth character in general position. Let mg = JL(LL(0y)) € Ag(n, k)
be as in Section 7.3.
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8.1. Degree of R$(0) and formal degree of mg

First we check that the degree of R%h (f) matches with the formal degree of
mp (see Section 7.1). Here we use results from [CI21c|. Fix a Howe decom-
position for : there is a unique tower of fields L =L; D Ly—1 2 --- 2 L1 2D
Lo = K such that

0= (xoNr/k)(@r1oNrL,) - (pr—10Npp, ) (dt)

for some primitive characters x, ¢1,..., ¢ of K*, L, ..., L] respectively.
Denote by hi, ..., h; the levels of ¢1,...,¢; respectively and put dy = [L :
L], in particular, dy = n, d; = 1. Also, Q‘U; is in general position if and
only if hy > 1.

Lemma 8.1. Assume p > n. Assume 0|1 is in general position. Then

n'—1
(81) deg ’R%:L (9)’ — q%"[n(hl—l)—(ht—l)—ZZ;ﬁ dk(hk—hk+1)] H (qno(n/—i) _ 1)
=1

Proof. As R$(0-(¢oNyk)) = RE(0)®(¢odet) [CI21a, Lemma 8.4], we may
assume x = 1, i.e., h = h;. The assumptions along with Theorem 5.1 imply
that R%h (0) = H(Xhn)o- We may assume that b is a Coxeter-type repre-
sentative (as in [CI21a, 5.2.1]). For t € T}, put S1; = {x € Xp i F'(z) =
xt}. As in [CI21a, Lemma 9.3] we see that S1; = @, unless t = 1 (in loc. cit.
we worked with the special representative for b and this explains the sign
(—1)"~! appearing there). Further, one has Sy ; = G}, [CI21c], and so

h=1 n'—1

=1 =0
n'—1

= =D)L T (g0 — 1),
1=0

as G1 = (Resg ., /r, GLn F,0, ) (Fg) and as #G! | = q" for each i > 1.
Boyarchenko’s trace formula [Boyl2, Lemma 2.12] and the determination
[CI21c, Theorem 6.1.1] of the scalar by which F™ acts in the non-vanishing
cohomology group H?(X})g gives

: - (=1)™
dlm|R%h(9)| = dim |H (Xpn )| = ———m—— - #5511,
' (—1)req™=z #1T,
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The lemma now follows by an easy calculation, as #7T), = (¢" — 1)g"("=1,
and as rg = (n' —n)+hi+(n—2)h+3 1 lldk(tk tr+1) by [CI21c, Corollary
6.1.2]. (Technically speaking, one has to check that the choices (of U,b, w)
made here and in [CI21c, §4] are coherent and give rise to isomorphic X}’s.
This follows from a calculation with matrices.) O

On the other side we use the computation of the formal degree of TFé}L
from [CMS90].

Lemma 8.2. Assume that 0|y is in general position. For any left invariant
Haar measure dg on G/Z, d(ng,dg)vol(ZH/Z,dg) is equal to the right hand
side of (8.1). In particular, we have

d(g, dg)vol(GoZ/Z,dg) = deg | RS (0)].

Proof. The product on the left hand side in the lemma is independent of dg,
so it is enough to show the lemma for a fixed (left invariant) Haar measure.
Let dz be the Haar measure on G/Z, normalised such that the Steinberg rep-
resentation Stg of G satisfies d(Stq, dz) = 1. Then by Macdonald’s formula
[SZ96, §3.7] (see also [Karl3, Proposition 5.4]), we have

|I ’nol_

(8.2) vol(GnZ/Z,dx)

3|*—‘

The normalized formal degree d(7, dg) is stable under the Jacquet—Langlands
correspondence [DKV84, BHL10], so we deduce by using (8.2),

n'—1
1 .
d(m, dz)vol(ZH/Z, dz) = d(my, dz") - = [ (g™ 1),
i=1

where dzCG is the measure dZ in the special case n’ = n. Now the normal-
ized formal degree of 7T9GL" is determined in [CMS90, Theorem 2.2.8] and
coincides with the right hand side of (8.1). O

8.2. Comparison

We now prove Theorem A. Assume p > n and assume that 0|1 is in general
position. Let Z = K* be the center of G. For a smooth character ¢ of
K> we have RE(0 - (¢ o Np/k)) = R%(0) ® (¢ o det) [CI21a, Lemma 8.4].
An analogous formula holds for my. Hence we may twist both sides of the
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equality claimed in the theorem by a smooth character ¢ of K*. Thus we
are reduced to the case that 0|z is unitary. Fix an invariant Haar measure
dg on G/Z.

By Theorem 6.1, there exists a finite set I and an irreducible supercus-
pidal representation 7; of G for each i € I such that |R%(0)| = @5_, m;. It
is easy to see (e.g. using [Boyl2, Lemma 2.12]) that the central character
of RG(0) is 0|z. From this and the fact that all supercuspidal representa-
tions are square-integrable it follows that m; € &(G,6|z) for all i. As by
assumption (p,n) = 1, each m; is attached to a pair (E;/K,x;) with E;/K
is a separable degree n extension and y; is an admissible character of E* in
the sense of [How77] (indeed, Howe’s construction also works for inner forms
of GL,,, so that there is no need to pass to the more general constructions
of Yu [Yu01] and Kaletha [Kall9]). Let I, C I denote the subset of those
i € I, for which F;/K is unramified, i.e., E; = L. For each i € I, m; has a
well-defined trace on regular elliptic elements of G, and in particular on the
very regular elements of T' = L*. If i € I \ I, then m; = cInd% E, Ti» where
H C Gp is certain (explicitly determined) compact open subgroup, which is
not maximal compact, and E; is appropriately embedded as a subgroup of
G(K) normalizing H. In particular, for i € I \ I, no conjugate of a very
regular element z € T lies in HE* (in fact, 2 has precisely one fixed point
on Ay, which has to be a vertex, so it is contained in no stabilizer of a
facet of Ak of dimension > 1). By [BH96, (A.14) Theorem]|, tr(m;,z) = 0
for i & I, and hence for any very regular element z € T'= L* we have

+ Y (@) =t(REO) ) =D tr(ma)=> a > x ()

vEGal(L/K) i€l,, i€l ~eGal(L/K)

where ¢; € {£1}, the first equality is Proposition 7.4 and the last follows
from [Hen92, 3.1 Théoreme]| (in fact, it shows the claim only for GL,, but
this along with trace relations defining the Jacquet—Langlands correspon-
dence give also the other cases). We now use the argument from [Hen92,
2.8]: if x € Uy, is very regular and y € Ui, then zy € Uy is again very regu-
lar. Thus letting x be a fixed very regular element of Uy, and varying y € U i
we obtain an equality of finite linear combinations of smooth characters of
the group Ui. We may find an integer i’ such that 6 and all y;’s are trivial
on U }j/, and replace U}J by its finite quotient Uj-f JU L/. As 0|y is in general
position, the coefficient of 0|y on the left hand side is 6(x) # 0. By linear
independence of characters of a finite group there is at least one ig € I,
with Xi, vy = 0lu} -
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Frobenius reciprocity for the compact induction shows that
(8.3) (mi: [RE"(O)]) > 1 foriel

with notation as in Section 7.1. Fix a Haar measure dg on G/Z. By Lemma
8.2 we have d(m;,,dg)vol(GoZ/Z,dg) = deg \R%h (0)|, so that Theorem 7.1
implies (m;,: |[R%"(0)]) = 1 and (: [RE"(0)]) = 0 for all m € &(G,0]x~),
7 # m;,. Combining this with (8.3) we see that I = {ip}. It remains to show
that y;, = 0. Either one can apply [CI21a, Theorem 11.3] (as we now know
that R(0) = m;, is irreducible), or alternatively use that we already know
Xi, = 0 on K*U i, and then apply the same argument as in [Hen93, 5.3].
Theorem A is proven.

9. Deligne—Lusztig sheaves on Isocg and Bung

In this last (sketchy) section we let the element b vary. The resulting family of
Deligne—Lusztig spaces gives rise to a certain p-adic Deligne-Lusztig stack,
whose construction we briefly outline here. This allows us put our results
in the context of the work of Zhu and Xiao-Zhu [Zhu20, XZ17] and the
seminal work of Fargues—Scholze [F'S21] on the geometrization of the local
Langlands correspondence. After a brief investitation of the p-adic Deligne—
Lusztig stack in §9.1-9.4, we use it in §9.5-9.6, to construct a p-adic Deligne—
Lusztig sheaf DL, on the v-stack of G-isocrystals Isocg, as well as the
corresponding sheaf DLﬁwﬁ on the v-stack Bung of G-bundles on the relative
Fargues—Fontaine curve. Finally, we restate our main result, Theorem A in
terms of DL,y and state a conjecture relating Dwaﬂ to Fargues’ Hecke
eigensheaf.

We denote by G any unramified reductive group over K.
9.1. Stack of isocrystals

In [Zhu20, XZ17] Zhu and Xiao—Zhu consider the stack (for the fpqc-topology)
Isocg: Perfg > R — (groupoid of G-torsors over Spec (W(R)[w']) /¢”).

For example, Isocgr, (R) is the groupoid of locally free W(R)[1/w]-modules
& of rank n equipped with a g-equivariant isomorphism & = ¢*&, where ¢
is the automorphism of W(R)[1/w] lifting the g-power Frobenius of R.
Trivializing the torsor, one obtains a presentation as a quotient stack,
Isocg = LG/Ad,LG, where Ad, denotes Frobenius-twisted conjugation.
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By [Iva22, Lm. 5.9 and Thm. 5.1], Isocg is even a stack for the arc-topology
from [BM21], and hence also for the v-topology from [BS17]. The geometric
points of Isocg are given by Kottwitz’ set B (G) of o-conjugacy classes in
G(K).

9.2. p-adic Deligne—Lusztig stack

There is a stack over Isocg, whose fibers are p-adic Deligne-Lusztig spaces,
very closely related to the spaces X glL(b) introduced in §3.1. More precisely,
we have the “Borel-level” p-adic Deligne-Lusztig spaces X, (), introduced
in [Iva22, Def. 8.3], which are the quotients of X DE(b) by the torus action. By
varying the parameter b € LG, we obtain a stack over LG/Ad,LG = Isocg,
whose fibers are precisely the spaces X,,(b), in the following way.

Let T € B C G be a quasi-split torus with Weyl group W, contained in
a K-rational Borel subgroup. We have the Bruhat-decomposition (G/B)? =
[Hpew O(w). Attached to w € W we may consider the v-sheaf X, defined
by the Cartesian diagram

X

LO(w) x LG

[

L(G/B) x LG — L(G/B)? x LG

where the lower map is (g,b) — (g,b0(g),b). One checks that LG acts on
Xy by h: (g,b) = (hg,hbo(h)™!), and that the map X, — LG, (g,b) —
b is LG-equivariant with respect to this action on X,, and the o-twisted
conjugation on LG. This means that X,, - LG descends to a map of v-
stacks,

(9.1) uy: Xy — Isocg,

where X, := [X,,/LG] is the quotient stack. Moreover, the fiber of (9.1)
over a geometric point SpecF, — [SpecF,;/Gy(K)] C Isocg corresponding
to b € G(K), is Xy (b).

9.3. Map to Isoct

Choose a lift w € G(f( ) of w, contained in a hyperspecial subgroup of G(IV( ).
We claim that there is a map
(9.2)
Yirt Xo = [LT /Ady, LT] (2Tsocr,) =[] [SpecF,/ Tuw(K)],
TEX. (T) (0w
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where 0,, = Ad(w) oo is the w-twisted Frobenius on T, and T, is the corre-
sponding K-form of T. To define it, it suffices to define an LG-equivariant
map 3y : Xy — [LT /Ad,, L T|, where LG acts trivially on [L T /Ad, L T].
Note that we have a well-defined map S;: L(BwB) — LT, ujtwus — t
(u1,u2 in the unipotent radical of B). Now, let 4,(g,b) be the image of
Bi(g71bo(g)) under LT — [LT /Ad,,LT]. One checks that this is well-
defined and LG-equivariant, i.e., we have defined ~,,. This map can indeed
depend on the choice of the lift .5 However, the following holds.

Remark 9.1. If W' is another lift of w contained in a hyperspecial subgroup,
then it follows from [Iva21, Lm. 3.8], that the image of ™'’ in X,(T),, ) in
fact lies in ker(H'(k, Tyw) — H'(k, G)) = ker(Xu(T) (s} tors = T1(G)(o))-
In particular, if G and w are such that this kernel is zero, the map v, only
depends on w, not on the lift w. Note that this is the case when G = GL,
and w is a Coxeter element. We simply write v,, in this case.

Pulling v: X, — [LT /Ad,LT] back along SpecF, — [SpecF,/
Ty (K)] C[LT/Ad,LT], we obtain the natural T, (K)-torsor on X,,.

9.4. A special case

For G = GL, and arbitrary w € W, X,, — I[socg admits the following more
explicit description. Let T be the diagonal torus, B the upper triangular
Borel. For R € Perfg an object of X,y (R) over (&,0¢) € Isocg(R) is given
by a complete flag &* = (£ > & D .- D &™) in & (i.e., a B-torsor on
Spec W(R)[1/w]), subject to the condition that the relative position of &*
and 04 (&) is w. Here, if Bung(R) denote the B-torsors on Spec W(R)[1/w],
the relative position is a locally constant map Bung x Bung — W, which
is defined by sending &7, &5 to the unique element w € W = 5,,, such that
k(6N &EN) =#{1 << j:w) <i}.

9.5. Deligne—Lusztig sheaf on Isocg

Fix a smooth character 6: T, (K) — @EX . Bach connected component of
Isoct, = [L'T /Ad,, LT] is of the form [SpecF,/ T\, (K)] and hence admits
a pro-étale local system attached to 6. Let Lg be the pro-étale local system on
Isoct,,, whose restriction to each connected component is this local system.
The rest of §9.5 and §9.6 is conditional on an adequate siz functor formalism
of solid pro-étale sheaves on small v-stacks over perfect schemes. Note that

6Tt appears more natural to change the target of the map v,;. This would give a
stacky version (with b varying) of the map a,p from [Iva2l, Prop. 4.2]
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similar formalism exists for diamonds, cf. ESZl, Chap. VII]. We thus assume
the existence of the categories Dys(Isocg, Q) € Dm(Isocg, Zy), and consider

DLy g 1= a7y (Lo) € Dis(Isoca, Qp).

where a,, j is the left adjoint to a,. The fiber 27DL,, g of DL, ¢ at a geomet-
ric point z;: SpecF, — Isocg corresponding to b € G(Iv() is the #-part of
the cohomology of X;(b), i.e., a “p-adic Deligne Lusztig complex” R, (6) in
the derived category of smooth Gy (K )-representations. Specializing to the
case of the present article, we can reformulate our main result as follows.

Corollary 9.2. If G = GL,, w Cozeter, b basic, p > n and 6 as in The-
orem A, x;DLy, ¢ has non-vanishing cohomology in exactly one degree, rg
(cf. [CI21¢c, Thm.6.1.1]). This cohomology equals (—1)"JL(LL(0p)), with
notations as in the introduction.

Concerning the values at other points, we conjecture the following.

Conjecture 9.3. In the situation of Corollary 9.2, if b is non-basic, then
xZDLw’g =0.

Remark 9.4. Zhu and Xiao-Zhu constructed in [Zhu20, XZ17] a certain
category, which should be thought of as the derived category of Q,-sheaves
on Isocg, cf. [Zhu20, 4.5]. However, their definition is quite technical and
it seems that a solid pro-étale category Dy (Isocg,Q,) should be the more
natural object. Moreover, it seems to be a common belief that Xiao and
Zhu'’s category coincides with Fargues-Scholze’s category Dys(Bung, Q).
It seems reasonable that a possible strategy to prove this fact would be to
establish equivalence of both categories with Dyis(Isocg, Q).

9.6. Diamond associated with Isocg and relation to Bung

Let Perfd denote the category of affinoid perfectoid spaces over F,. Attached
to any v-stack X on Perqu7 we have a v-stack X on Perfd, defined as the
stackification of the category fibered in groupoids, sending Spa(R, R') to
X (RT). On the level of solid pro-étale derived categories, we have a pullback
functor cx : Dys(X,Qp) — Dys(X°, Qy)

On the other side, we have the small v-stack Bung sending S € Perfd
to the groupoid of G-bundles on the relative Fargues—Fontaine curve XEF,
cf. [FS21, Chap. III]. There is a natural morphism of v-stacks

f: Isocg — Bung.
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Indeed, using the Tannakian formalism one is reduced to construct a map
in the case G = GL,,. Fix S = Spa(R, R") € Perfd. An object of Isocg(S)
is given by a locally free W(R™)[1/w]|-module & of rank n plus a ¢-linear
isomorphism og: & = &. Write X5¥ = Yg/¢%, with Ys = SpaW(R™) \
V(w|wr]), where wp is any pseudo-uniformizer of RT, cf. [FS21, I1.1.2].
Then & ®vy(r+)[1/w] Ovs is a rank n vector bundle on Yg and the ¢-linear
automorphism og ® ¢ descends it to a vector bundle on Xg, i.e., to an object
of Bung(S).

The following remark was explained to the second author by I. Gleason.

Remark 9.5. Although both topological spaces, |Isoce| and |Bung|, have the
same underlying set B(G), they are unequal in general. Indeed, the basic
locus is open in Bung and closed in Isocg. However, they are related via
the surjective maps |Isocg| < |Isocg| — |Bung|, where [Isocg| has more
points than both other spaces, but they get identified under the two maps
in different ways, cf. [Gle21].

Applying the functors

Dyis(Isoca, Qp) < Dys(Isocy, Q) 1 Dyis(Bung, Q).

to DLy, 9, we obtain DL;U,e := fuc*(DLy ) € Dis(Bung, Q). Expecting a
good behavior of ¢* and f,, it seems very reasonable to extend Corollary 9.2
and Conjecture 9.3 to the following conjecture.

Conjecture 9.6. For G = GL,, w Cozeter and 0 as in Theorem A, the
stalks of DL, 4 are

irDL., 4 = LL(JL(0g)) ifb bas.z'c
’ 0 otherwise,

where i°: Bunzé — Bung s the locally closed substack corresponding to b

(cf. [F521, Thm. 1.2.7]).

This conjecture uniquely determines DLiu,e- This allows us to (conjec-
turally) relate it to Fargues’ Hecke eigensheaf Aut,, € Dys(Bung, Q,), which
in the case of GL,, was constructed by Anschiitz—LeBras [AL21, Thm. 1.2].
In our setup we do not have Hecke operators, so DL;Uﬁ a priori does not
come equipped with the natural transformations 7y,),_,, which define the
Hecke eigensheaf property (cf. [AL21, 3.3]). However, just by comparing the
stalks we get:
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Corollary 9.7. Suppose Conjecture 9.6 holds true. Then DL;;,G is the ob-

ject of Dys(Bung, Q) underlying the Hecke eigensheaf Aut,,, constructed
in [AL21, Thm. 1.2].
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