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Abstract

Today, the lion’s share of machine learning and high-performance
computing workloads is executed on GPUs, including high-
stakes applications such as self-driving cars and fusion reac-
tor simulations. Unfortunately, GPU computations are car-
ried out on largely undocumented hardware units that can-
not trap or report floating-point exceptions. Worsening the
situation is an ongoing and accelerating shift toward lower-
precision arithmetic, driven by performance demands—yet
this shift only exacerbates the frequency and severity of
floating-point exceptions. Increasingly, matrix multiplica-
tions are offloaded to specialized hardware such as Tensor
Cores. However, because these units do not adhere to a uni-
fied arithmetic standard, their computed results can deviate
to unacceptable levels.

This experience report aims to consolidate our previously
published work and relate it to array programming in two
key ways: (1) by providing tools to diagnose bugs that may
arise during array computations, and (2) by addressing broader
correctness challenges inherent to array-based programming,.
This report highlights GPU-FPX, a debugging tool extended
to analyze computations involving Tensor Cores. It addresses
key correctness challenges, such as the potential for different
Tensor Core implementations to produce inconsistent results
for the same input. These discrepancies can be systematically
uncovered using a targeted testing approach known as FTTN.
We conclude with a discussion on how formal methods, par-
ticularly those based on SMT solvers, can play a critical role
in identifying and bridging gaps in manufacturer-provided
hardware specifications—and, in the long term, in proving
desired correctness properties.
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1 Introduction

Now that GPUs have taken a toll on everyone’s purse, one
must ask: how much longer can the programming commu-
nity afford to ignore the threats they pose to program cor-
rectness? The following cartoon captures the gist of this

article:
- SIMT NaN/INF
Core

{P}(R)

-5 Tensor
@ Core Non-Portable

GPUs support array programming not only through the
familiar single-instruction multiple-thread (SIMT) cores, but
also increasingly via Tensor Cores, which perform matrix
multiply-and-accumulate (MMA) instructions of the form
D = A - B + C where all the matrices involved are “small”
(e.g., 4x4). Tensor Cores serve as dedicated inner accelera-
tors within GPUs, and their growing silicon footprint reflects
their increasing importance in modern GPU architectures.
The results computed by a GPU may be rendered unreliable
or unverifiable in three key ways: (1) they may contain, or
be affected by, floating-point exceptions such as NaNs and
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infinities; (2) the behavior of the hardware (denoted by the
pre/post-condition pairs {P} and {R}) may not be specified
by GPU manufacturers; and/or (3) the results may change
when the same code is ported across different GPU architec-
tures.

The Correctness Topics we Cover: GPUs are highly
parallel computing systems in support of machine learning,
high-performance computing and a plethora of other types of
code. It is safe to say that at present a majority of GPU codes
deal with parallel floating-point computations. This means
that both parallelism bugs and floating-point bugs must be
eliminated. Floating-point bugs are the sole focus here. The
floating-point bug type that has traditionally been discussed
the most is that of rounding. Here, we only focus on how
rounding changes across GPU platforms. Clearly, floating-
point exceptions do arise, and must be addressed—either
deemed to be innocuous or suitably eliminated—a prominent
focus in this paper. Given that manufacturers often do not
provide all pertinent details [11, 13, 24], the community is
often forced to discover missing behaviors through testing—
again our focus.

Floating-point exceptions are often safe to ignore, but of-
ten are as egregious as null-pointer dereference errors that
are taken much more seriously. Unfortunately, the program-
ming community has not researched this topic sufficiently—
especially in the light of rising heterogeneity and reducing
floating-point precision—situations that easily lead to “infin-
ity” (INF) exceptions and subsequently (upon further com-
putation) to NaN (“not a number”) exceptions. Many case
studies involving exceptions are presented in this paper. The
elimination of harmful exceptions is an involved topic that
we have barely scratched. Given the increasing prominence
of Tensor Cores, we must also detect exceptions generated
by them. We have recently extended GPU-FPX to include
this capability and these are the new results reported in this
paper. We now set the tone for the rest of this paper through
three debugging stories.

Story 1: Difficulty of Locating and Eliminating Floating-

Point Exceptions: In a GitHub issue report, the developer
of the “SRU” codebase (Simple Recurrent Units for Highly
Parallelizable Recurrence [22]) describes their inability to
eliminate persistent NaNs that impeded their work [17, 38].
The SRU is designed to retain the modeling power of recur-
rent networks while being much faster and more paralleliz-
able. Unable to debug the issue, the user posted a GitHub
issue, which remains open. We developed a solution and have
posted a fix—essentially pointing out that the root cause of
the bug was “hiding in plain sight” (detailed in our Github
issue fix reported at [38]): in essence, the user allocates a
Tensor and falsely assumes that it has been initialized with
Zeros.

Our Contribution: We employed our unique tool called
GPU-FPX [23] which is based on binary instrumentation

42

Li et al.

to debug this problem. While programming languages re-
searchers often champion the virtues of abstraction and en-
capsulation, GPUs can quickly undermine these ideals. GPU
library components are frequently closed-source (available
only in binary form) and can generate unhandled floating-
point exceptions from their innards. In our experience, bi-
nary instrumentation offers the necessary “X-ray vision”
for uncovering subtle numerical issues. Analyzing GPU ar-
ray programs at the source-code level (e.g., CUDA C) or
even at intermediate-code levels (e.g., PTX or LLVM) often
fails to expose these problems. This is largely because com-
piler optimizations can significantly transform the generated
code—sometimes even silently altering the intended numeri-
cal precision.

As examples, computations originally written in 64-bit
floating-point (FP64) may be downgraded to 32-bit (FP32)
precision [23]. Also some operations such as division are not
supported in hardware. Consider a source-level expression
like a/b. During compilation, this is typically transformed
into a - (1/b), where the multiplier is realized by MUFU.RCP,
a fast reciprocal approximation in hardware. The rest of the
computation is typically realized using fused multiply-add
(FFMA) instructions. Whether this transformation behaves
correctly depends on the GPU’s support for subnormal num-
bers. If b is a subnormal value, (1/b) may either be a very
large, representable number; or, if b is flushed to zero, then
the result can be the INF (infinity) value.

For reasons not yet fully understood, many working in
machine learning or low-precision numerical software seem
plagued by NaNs and other exceptions—with little exter-
nal support or guidance in sight. If the truth of this claim
seems doubtful, we invite you to search for “pytorch nan loss
autocast” (or a similar phrase) on the internet and browse
the thousands of results—each a testament to how wide-
spread and unresolved the issue remains. It is high time
these users received meaningful support from the program-
ming community—through robust debugging tools today,
and proactive defect-prevention measures in the future.

GPU-FPX: how it helps, and is being improved: We de-
veloped GPU-FPX based on substantial reverse-engineering
of SASS (short for streaming assembly) instruction semantics—
an effort made necessary by the absence of manufacturer-
provided specifications. At present, GPU-FPX offers pro-
grammers crucial insights that can often help rescue stalled
machine learning (ML) training runs. It can also assist in
diagnosing and repairing numerical algorithm loops that
may misbehave—such as skipping conditional statements
whose predicates are affected by NaNs [7]. Previously [23],
we had analyzed over 150 benchmarks and applications us-
ing GPU-FPX, uncovering INF and NaN exceptions in 36
of them (some were deemed serious upon later analysis).
Interestingly, these exceptions arose while running the ap-
plications on their own distributed datasets—without even
straying beyond the intended input ranges. (Exceptions that
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are easily triggered by deviating from these inputs are of no
interest.)

In this experience report, we present additional perspec-
tives. First, we describe how GPU-FPX was used to debug two
lossy data compressors. Second, we detail new extensions to
GPU-FPX that enable support for GPU Tensor Cores [13, 24].
Supporting Tensor Cores is essential for analyzing excep-
tions in highly optimized GPU programs, as their adoption
is on the ascent.

Open Challenges: Much room for improvement beyond
GPU-FPX remains. Open questions include how to move
more analyses higher up the programming abstraction stack
and whether certain programs can ever be proven exception—
free, assuming that one can create reliable formal models
for GPU instructions. This is because even for decidable
programs, proving exception-freedom entails the daunting
(and impractical) complexity of proving that all program
variables remain within specific value-ranges.

Story 2: We designed an experiment in which a user per-
forms the calculation D = A - B + C where A and B are 8K-
sized FP16 floating-point matrices, and C and D are of the
same size, but have FP32 precision. We filled the right-hand
side matrices with specific entries that were picked to reveal
computational platform differences (e.g., rounding modes,
precision used in summation, etc.) that one can reasonably
expect. The variety of D matrices we obtain is startling: a
matrix filled with all zeros on NVIDIA A100, V100, AMD
MI250, and a conventional CPU realizing the IEEE round-to-
nearest specification; a matrix filled entirely with 255.875 on
the AMD MI100; and one filled with 191.875 on the NVIDIA
H100. We summarize the contents of these matrices later
in this report. Such large differences are not caused by the
non-associativity of floating-point addition—a very natural
conclusion one might make—but actually due to differences
in terms of how multi-term addition is implemented within
different Tensor Cores, as we explain later.

One Current Solution to Specification Discovery: We
have released a tool called Feature-Targeted Testing of Nu-
merics (FT'TN) [24, 25] to discover specific differences in GPU
arithmetic realizations. FI'TN works by executing targeted
tests and analyzing their outputs to infer the specific hard-
ware features a GPU must possess to produce the observed
results. Similar test-driven methodologies are gaining trac-
tion more broadly; for example, the framework presented by
Xie et al. [41] reveals addition ordering differences through
carefully crafted tests.

A fundamentally more principled approach to testing can
be developed using SMT solvers. Preliminary work in this
direction is reported in [39], where Tensor Core-based matrix
multiplication schemes are formally analyzed. We believe
that beginning with an FTTN-like approach and generalizing
the initial tests using SMT would be a fruitful direction.
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Open Challenges: The fact that GPUs and their accelera-
tors are the only economically viable choice for future HPC
is forcefully argued by Reed et al. [36]. Thus, it is important
that manufacturers be incentivized to help GPU program-
mers in crafting a sufficiently comprehensive set of tests that
match silicon-level behaviors. While one might be able to
compensate for the lack of conformance of GPUs with stan-
dard arithmetic practices, one should be mindful not to stray
into “irresponsibly reckless” territory (a phrase borrowed
from the work reported in [26] where the authors use it to
connote an excessive approximation of a matrix).

Story 3: Even with the best of coding practices (e.g., backed
by good documentation and clear parameterization, as, say,
n [28]) there are a large number of error-prone details that
must be handled carefully in order to program Tensor Cores.
To minimize this tedium, one might consider the use of Al
to generate or augment Tensor Core code. We recently con-
ducted an experiment in which we prompted ChatGPT to
extend a Tensor Core based matrix multiplication routine
to compute the maximum element of the result matrix. We
instructed ChatGPT to use CUDA warp-level primitives that
are known to be efficient. While the generated code appeared
entirely correct—and was even accompanied by clear and
elegant documentation, such code cannot be trusted at face
value (e.g., considering that Al agents are known to halluci-
nate).

Open Challenges: In order to move toward formally ver-
ified Al-generated code in this space, one must not only have
formal specifications of GPU instructions, but also develop
automated formal verification techniques that scale.

Roadmap: We begin by outlining relevant background in
§2, followed by three case studies that illustrate the severity
of floating-point exceptions on GPUs (§3). In §4, we describe
our ongoing work to extend GPU-FPX with support for ex-
ception tracking across Tensor Core instructions. Section §5
presents our approach to specification discovery via Feature-
Targeted Testing of Numerics (FTTN). We then highlight two
representative challenges in §6 that emphasize the need for
rigorous reasoning frameworks. Finally, in §7, based on our
experience, we draw conclusions pertaining to safeguarding
array programming.

2 Background

We assume the reader is familiar with GPUs and floating-
point arithmetic at a high level. This background section aims
to place several relevant concepts in context and introduce
the tools that will be discussed throughout the paper.
NVIDIA GPUs remain the dominant commercial plat-
form for high-performance computing and machine learn-
ing. However, recent efforts have extended floating-point
exception checking capabilities to AMD GPUs as well. Float-
Guard [29], a newly developed tool for AMD hardware, intro-
duces several innovative techniques. It leverages the partial
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exception information exposed by AMD GPUs—an ability
not currently offered by NVIDIA—and extends it to recon-
struct a more complete picture of floating-point exception
behavior. Awareness of AMD GPUs is growing, and their
LLVM-based tooling has made certain tasks more accessi-
ble. We hope that future work on safe array programming,
currently focused on NVIDIA GPUs, will be replicated and
extended to benefit the AMD ecosystem.

On most CPUs, floating-point exceptions can generate soft-
ware traps. Hauser [15] was one of the early researchers who
characterized exceptions and their use to support specula-
tive execution strategies. FPSpy [9] is a CPU-based exception
detection tool that uses software traps to record exceptions.
Unfortunately, techniques that work in “CPU-land” do not
translate well to GPUs, where exceptions do not trigger traps
and must instead be detected by decoding the exponent of
the generated floating-point results.

For NVIDIA GPUs, high-level code is compiled down to
PTX (Parallel Thread Execution), which is then lowered to
SASS (Streaming Assembler), the underlying assembly in-
struction format. SASS is only sporadically documented, and
NVIDIA provides no formal guarantees regarding its correct-
ness or long-term stability. In GPU-FPX, we use NVBit [40],
a binary instrumentation framework made publicly available
by NVIDIA. Much of our tooling builds on and extends this
infrastructure.

To illustrate the subtleties involved in floating-point ex-
ception handling, consider the following C macro that im-
plements the MAX function [5]:

#define MAX(x, y) ((x) >=(y) ? (x) : (y)).

At first glance, this macro appears correct—it simply re-
turns the greater of two values. However, it contains a subtle
flaw. Suppose x is set to NaN (e.g., by a previous statement
such as x = VY—42). Since any comparison involving NaN
returns false, the macro will return y, potentially a valid
value such as 3.14, effectively hiding the NaN from the user.
Now consider another user who calls MAX(y, x) instead; the
result will be x, the NaN—revealing the non-commutative
nature of this macro when NaNs are involved. Demmel [7]
documents many similar examples and even cites real-world
accidents resulting from such behaviors. NVIDIA’s advise
on NaNs [32], requiring users to detect them in software
(specifically, by explicitly checking the exponent field of a
result to be “all 1’s”).! In this sense, the exceptional value for
INF (infinity) is similar to NaNs but with the mantissa being
all 0’s. Likewise, the creation of subnormals (SUB) is an excep-
tion, with the exceptional value consisting of an exponent
field of all zeros and the mantissa field being non-zero.?

n this context, the distinction between exceptions and exceptional values
is handy: the former connotes an event that could have been trapped on a
CPU, while the latter connotes the encoding of the result of the exception in
the floating-point result register (e.g., how we described the NaN encoding,
above).

2A handy website for learning about floating-point (FP32) encodings is [18].
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Finally, the importance of formal methods in GPU pro-
gramming—especially for scientific computing and machine
learning—has been highlighted in two U.S. Department of
Energy reports [5, 12], the latter produced in collaboration
with the NSF. Our work in [39] represents an early step in
this direction.

3 Exception Root-Causing and Mitigation

We now describe three case studies carried out using GPU-
FPX.

3.1 Debugging an Issue in the SRU Unit

Salient excerpts from the SRU example, as listed in the GitHub
page [38], are reproduced below:

import torch
from sru import SRU, SRUCell

# input has length 20, batch size 32 and dimension 128
x = torch.FloatTensor(20, 32, 128).cuda()

input_size, hidden_size = 128, 128

rnn = SRU(input_size, hidden
num_layers = 2,
dropout = 0.0,
bidirectional = False,
layer_norm = False,

size,

number of stacking RNN layers
dropout applied between RNN layers
bidirectional RNN

apply layer normalization on the
output of each layer

initial bias of highway gate (<= 0)

H oH H HE ¥ ¥

highway_bias = -2,
rnn.cuda()

output_states, c_states = rnn(x) # forward pass

We executed the SRU code using the following commands,
first without GPU-FPX instrumentation, and then with GPU-
FPX’s exception detector enabled. Enabling observation in-
curs a noticeable increase in runtime (a geometric-mean
slowdown of 30X is reported in [23]).

time python run_sru.py

(no exceptions seen as a printout)

real om3.141s, user om1.255s, sys 0m3.229s

time LD_PRELOAD=./detector.so python run_sru.py

--- NVBit (NVidia Binary Instrumentation Tool v1.7.2) Loaded ---

Running #GPU-FPX:

kernel
[void at::
native::vectorized_elementwise_kernel] ...

Running #GPU-FPX: kernel [ampere_sgemm_32x128_nn] ...

#GPU-FPX

LOC-EXCEP INFO: Warning: in kernel [ampere_sgemm_32x128_nn], ..
(SUB) found @ /unknown_path in [ampere_sgemm_32x128_nn]:0 [FP32]

#GPU-FPX
LOC-EXCEP INFO: in kernel [ampere_sgemm_32x128_nn], NaN found
in [ampere_sgemm_32x128_nn]:0 [FP32]

Running #GPU-FPX:

kernel [void (anonymous namespace): :sru_cuda_forward_kernel_simple] ..
#GPU-FPX

LOC-EXCEP INFO: in kernel

[void (anonymous namespace)::sru_cuda_forward_kernel_simple],

NaN found in ...

[void (anonymous namespace)::sru_cuda_forward_kernel_simple]:@ [FP32]
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GPU-FPX Report

--- FP16 Operations ---
Total NaN found:

Total INF found:

Total underflow (subnormal):
Total Division by @:

--- FP32 Operations ---
Total NaN found:

Total INF found:

Total underflow (subnormal):
Total Division by @:

--- FP64 Operations ---
Total NaN found:

Total INF found:

Total underflow (subnormal):
Total Division by @:

--- Other Stats ---

Kernels: 4

The total number of exceptions are: 128

(SIS IS INST

=N =N

(SIS INS]

real 0m24.033s, user 0m25.253s, sys om4.426s

The key lines to observe include the invocation of GPU-FPX
via the LD_PRELOAD mechanism, which loads its dynamic
library and activates the detector component, as well as
the output lines where a SUB exception is flagged, followed
by the appearance of a NaN. While the detector executes
quickly and flags the presence of exceptions, it provides
limited insight into their origin and propagation. To gain
deeper understanding, the user is advised to run the GPU-
FPX analyzer component:>

LD_PRELOAD=./analyzer.so python run_sru.py

#GPU-FPX: Instrument all kernels.

Running #GPU-FPX: kernel [..::native::vectorized_elementwise_kernel]
Running #GPU-FPX: kernel [ampere_sgemm_32x128_nn] ...

#GPU-FPX-ANA SHARED REGISTER:
Before executing the instruction
[ampere_sgemm_32x128_nn]: 0
Instruction: FFMA R15, R35.reuse, R42.reuse, R15 ;

We have 4 registers in total. Register @ is VAL. Register 1 is VAL.

Register 2 is NaN. <--
Register 3 is VAL.

@ /unknown_path in

#GPU-FPX-ANA SHARED REGISTER: After executing the instruction @ ...

The key observation is that the NaN value was incoming into
the code proper (see the arrow above; some guesswork is
needed in surmising this). We then suspected that the issue
stemmed from input, which is the following line:

x = torch.FloatTensor (20, 32, 128).cuda()

At this point, we realized that torch.FloatTensor(...)
does not fill the tensor with any defined patterns (it carries
forward whatever was in that memory region). Replacing
that line with this line that initializes the memory (in this
case by random sampling from a normal distribution with
mean 0 and standard deviation 1), the exception disappears
(we do not show the exception-free run, to conserve space):

x = torch.randn(20, 32, 128).cuda()

3The output from the time command is omitted here, as the analyzer run is
aborted early. Note that the analyzer is significantly slower, as it performs
both intra- and inter-instruction exception flow analysis. Strategies for
reducing runtime, including sampling, are discussed in [23].
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In conclusion, while GPU-FPX is effective at flagging floating-
point exceptions, it remains the developer’s responsibility to
determine whether these exceptions impact the correctness
of their computation. As discussed in detail in [23], many
such instances arise in practice. In one notable case involv-
ing a linear solver, GPU-FPX helped localize the exception
specific GPU kernels. Through collaboration with a numeri-
cal expert, we identified a practical workaround: boost the
diagonal entries of the matrix A (involved in solving the
linear system Ax = b), which mitigated the instability and
allowed the linear solver to finish. In the realm of HPC de-
bugging, such pragmatic approaches often prove sufficient,
particularly when the experimental scaffolding is intended
as a single-use or temporary measure.

3.2 Root-causing NaNs in a simple GPU-based Lossy
Data Compressor

A toy version of a data compressor, adapted from cuszp[16]
(see our artifact[2] for details), initially produced no floating-
point exceptions when run on a data array initialized in a
simplistic manner. However, since this toy compressor did
not declare any input constraints, we constructed an input
array spanning the entire FP32 range, which led to the occur-
rence of floating-point exceptions. Fortunately, the CUDA
binary for this compressor was compiled with source-level
line information, allowing us to easily trace the offending
instruction to line 120:
/home/ganesh/repos/BreakingCompressors/maini.cu:120

120 const float recipPrecision = @.5f / eb;

Instruction: MUFU.RCP R4, c[0x@][0x188] ;
We have 2 registers in total.

Register @ is VAL.

Register 1 is INF.

#GPU-FPX-ANA APPEAR

NaN appears at the destination @
/home/ganesh/repos/BreakingCompressors/maini.cu:120
Instruction: FFMA R3, R4, -Ro, 1 ;

We have 3 registers in total.

Register @ is NaN.

Register 1 is VAL.

Register 2 is INF.

In this line, the variable recipPrecision obtained the ex-
ceptional value INF as the result of executing the MUFU.RCP
instruction, subsequently causing the following FFMA instruc-
tion to output a NaN. This scenario underscores the impor-
tance of clearly specifying preconditions for floating-point
computations in HPC code. Although, in this particular case,
the exception might be directly traced to user-written code,
the widespread reliance on extensive third-party libraries
poses significant and often intricate debugging challenges,
as we discuss next.

3.3 Vulnerabilities in a Pytorch-based Compressor

In this case study, we examine a lossy data compressor named
PyBlaz[1, 35], developed in our prior research using the
widely adopted PyTorch[34] framework. We illustrate how
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the compressor (or “codec”) is instantiated, how the input
PyTorch tensor x is created, and how compression and sub-
sequent decompression are performed on x. Finally, we in-
vestigate whether any NaN values appear in the final output
and whether such values were generated at any point during
the process:

# script3.py
import torch
torch.manual_seed(42)
from pyblaz.compression import PyBlaz
import time
# Create a compressor
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
codec = PyBlaz(
block_shape=(128, 128),
dtype=torch.float32,
device=device,
compute_mode="tf32",
compile=True
)
# Create a tensor with extreme values
print("Create a tensor with TF32 values; compress/decompress it")
tf32_big = (2 - 2 ** -10) * (1 << 64)
x = torch.randn(2048, 2048, device=device) * tf32_big
start_time = time.time()

compressed_x = codec.compress(x)

decompressed_x = codec.decompress(compressed_x)

print(f"dec output partial ="

# does x have a nan or inf?

if (x.isnan().sum() > @):
print("x has a nan!")

if (x.isinf().sum() > 0):
print("x has an inf!")

end_time = time.time()

print(f"Elapsed time: {end_time - start_time:.6f} seconds")

, decompressed_x[0:16])

We observed that although the final output contains nei-
ther NaN nor INF values (the “has a nan/inf” prints did not
happen), such exceptional values do arise during intermedi-
ate computations. This raises concerns about the integrity
and reliability of the final results—particularly in light of our
earlier discussion of the MAX macro. The output from this
experiment is shown below:

python script3.py
(...no exceptions printed...)
real om7.405s, user om2.815s, sys 0m5.737s

(...now run with instrumentation...)

time LD_PRELOAD =./detector.so python script3.py

#GPU-FPX: Instrument all kernels.

Running #GPU-FPX: kernel [...::vectorized_elementwise_kernel]
--- Create a tensor... ---

Running #GPU-FPX: kernel
[void at::native::(anonymous namespace)

::distribution_elementwise_grid_stri\

de_kernel] ...

Running #GPU-FPX: kernel [void at::native::(anonymous namespace)
::CatArrayBatchedCopy] ...

HMMA.1688.F32.TF32 R4, R132.reuse, R2, R4 ; : MMA being used!
...(many more)...

HMMA.1688.F32.TF32 R120, R192.reuse, R170, R120 ; : MMA being used!
HMMA.1688.F32.TF32 R124, R192.reuse, R168, R124 ; : MMA being used!
HMMA.1688.F32.TF32 R128, R192, R150, R128 ; : MMA being used!
Running #GPU-FPX: kernel [void cutlass::Kernel] ...

#GPU-FPX LOC-EXCEP INFO: in kernel

[void cutlass::Kernell, NaN found @ /unknown_path in [void cutlas\
s::Kernel]:0 [FP32]

46

Li et al.

Running #GPU-FPX: kernel [void at_cuda_detail

::cub: :DeviceReduceKernel]

Running #GPU-FPX: ... [DeviceReduceSingleTileKernel]
Running #GPU-FPX: kernel [DeviceCompactInitKernel]
Running #GPU-FPX: kernel [DeviceSelectSweepKernel]
Running #GPU-FPX: ... [write_indices]

Running #GPU-FPX: kernel [index_elementwise_kernel]
Running #GPU-FPX: kernel [reduce_kernel]

Running #GPU-FPX: kernel [elementwise_kernel]
Running #GPU-FPX: kernel [unrolled_elementwise_kernell]
Running #GPU-FPX: kernel
[CatArrayBatchedCopy_aligned16_cont\

ig]

--- FP16 Operations ---

Total NaN found: ]
Total INF found: 0
Total underflow (subnormal): @
Total Division by @: Q
--- FP32 Operations ---

Total NaN found: 1
Total INF found: 0
Total underflow (subnormal): @
Total Division by @: Q
--- FP64 Operations ---

Total NaN found: 0
Total INF found: [}
Total underflow (subnormal): @
Total Division by @: Q
--- Other Stats ---

Kernels: 14

The total number of exceptions are: 32
real @m45.069s, user 1m3.745s, sys 0m8.656s

This run provides visibility into the underlying PyTorch
codebase and reveals several informative details—for in-
stance, the use of MMA (matrix multiply-accumulate) in-
structions. Such behavior only emerged when the tensor x
was sufficiently large. Further investigation using the ana-
lyzer yields additional insights (with the output manually
trimmed, as in previous examples):

Running #GPU-FPX: kernel

[void at::native:: (anonymous namespace)::CatArrayBatchedCopy] ...
Running #GPU-FPX: kernel

[void cutlass::Kernel] ...

#GPU-FPX-ANA SHARED REGISTER:

Before executing .. @ /unknown_path in [void cutlass::Kernel]:@

Instruction: FSEL R16@, R16@, -QNAN , !PQ ; We have 2 registers in total.
Register @ is NaN.

Register 1 is NaN.

#GPU-FPX-ANA SHARED REGISTER: After ... @ /unknown_path in

[void cutlass::Kernel]:0

Instruction: FSEL R160, R160, -QNAN , !P@ ; We have 2 registers in total.
Register @ is NaN.

Register 1 is NaN.

#GPU-FPX-ANA SHARED REGISTER: Before ... e

/unknown_path in [void cutlass::Kernell:@

Instruction: FMNMX R13, R13, R160.reuse, !PT ; ..3 registers in total.
Register @ is VAL.
Register 1 is VAL. Register 2 is NaN.

Key Takeaways: The fact that the final output contains
no exceptional values—despite their occurrence during inter-
mediate computations—is troubling. Without access to tools
like GPU-FPX, users would remain unaware of these silent
anomalies. This is particularly alarming as machine learning
libraries such as PyTorch may find their way into safety-
critical operations. Yet, as in this example, we often cannot
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diagnose why such exceptions are triggered or whether they
ultimately affect correctness—underscoring the limitations
of current tooling in the realm of array programming.

There is a clear need for more tools like GPU-FPX—tools
that are not only faster but also offer stronger coverage and
guarantees. As shown in [23], GPU-FPX incurs a geometric-
mean slowdown of 30X across more than 150 applications
(with further performance details in §4.3). While coarse-
sampling strategies, such as monitoring every k™ kernel
invocation, can reduce overhead [23], they run the risk of
missing critical floating-point exceptions.

4 GPU-FPX Bug-Fixes, Extensions,
Performance

While tools like GPU-FPX may represent only a modest
step forward individually, their development, validation,
and refinement require substantial non-trivial effort. We
encourage contributions from the broader community to
ensure that the critically important domain of GPU array
programming continues to advance and benefit all practi-
tioners. In what follows, we describe several recent bug fixes,
followed by a major new feature: support for MMA (matrix
multiply-accumulate) instructions. We then assess the ex-
pected performance impact of GPU-FPX when applied to
tensor core—-based workloads. Finally, we discuss the tool’s
modular design and its implications for future extensibility.

4.1 Tool Fixes and Improvements

We extended and refined the existing GPU-FPX tool to im-
prove reliability and adaptability. Key updates include these:

e We introduced a new error recording format that sum-
marizes exceptions across threads (for easier down-
stream processing) using an XOR reduction instruction.

e We fixed a premature early-exit bug that could have
prevented logging all exceptions—for example when
two threads encounter an exception error.

o We added new detectors which check for exceptional
values generated by Tensor Core operations.

e We significantly updated our exception reporting in-
frastructure to support new floating-point types such
as half precision.

e We upgraded GPU-FPX to use a newer version of
NVBit, and in the process addressed a deadlock is-
sue encountered with newer GPU drivers (following
the NVBit team’s suggestions).

All these additions are documented in the GPU-FPX web-
site [14].

4.2 Adding Support for MMA Instructions

The following is an example to show what is needed to add
support for a hypothetical MMA instruction, HMMA. 442 .F16
RO R4 R6. Figure 1 illustrates the data distribution across
registers for this operation, which computes the product of
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T T2
Ro|R1[R2]R3[R4|R5]|R6[R7| [ROJR1]R2]R3[R4]|R5[RE[R7
A0 |A1|A2|A3|B0|B1|C0O|C1 A4 |A5|A6|A7|B2|B3|C2|C3
T3 T4

R0|R1[R2]R3[R4[R5]|R6[R7| [RO[R1]R2]R3[R4[|R5[RE[R7
A8 A9 |A10/A11| B4 |B5 |C4 [C5| |A12|A13|A14]A15|B6 |B7 |C6|C7
A0 |A1|A2 [A3 BO |B1
A4 |A5 |A6 A7 _ B2 |B3 CO|C2|C4|C6
A8 | A9 |A10|A11 = B4 |B5 X C1|C3|C5|C7
IA12]A13]A14|A15 B6 | B7 C

A B

Figure 1. Example distribution of data in registers for an
MMA operation A+ =B - C.

a4 X 2 matrix B and a 2 X 4 matrix C, and accumulates the
result into a 4 X 4 matrix A (these dimensions are written as
“442” as part of the instruction). Matrices A and B are stored
in row-major order, while C is stored in column-major order.
In this example:

e Each of four threads (T1-T4) holds part of the matrices
in their registers.

e Thread T1, for instance, holds the first four elements
of A in RO-R3, the first row of B in R4-R5, and the first
column of C in R6-R7.

e Similarly, each thread holds its parts of A, B and C in
its registers, respectively, R0, R4 and R6.

If we want to examine the operands for this hypothetical
instruction for possible exceptional values, we need to know
how the data is distributed in the registers. In this example,
we see that we need to treat the first operand as representing
a vector of four registers and the second and third operands
as representing vectors of two registers. We observe that this
is how this distribution must be done, since the matrix A has
16 elements distributed across four threads, so each thread
must hold four elements.

This hypothetical example is instructive for determining
the data layout for other—more general—instructions, such
as HMMA. 1684 .F32.TF32. This instruction computes:

D=A-B+C

where A is a 16X4 matrix, B is a 4 X 8 matrix, and C and D
are 16 X 8 matrices. The matrices A and B are in the TF32
format which is a reduced precision format which has fewer
mantissa bits compared to a standard 32-bit floating point
number.

In this example, we will focus on detecting exceptional
values, that is, NaN or infinity, appearing in the destination
matrix D. Unlike the prior example, each thread is in a group
of 32 threads, called a warp. Since there are 128 elements
in the result, each thread must have four elements of the
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result in its registers. Therefore, if the destination register of
the instruction were RO, then the full result would appear in
registers RO-R3.

The instrumentation of these instructions is done as fol-
lows:

e We use NVBit to send the contents of the four register
values from above to an error checking function.

o The error checking function performs a check for ex-
ceptional values such, as infinity and NaN.

e These errors are reduced through xor so that one
thread can update a global log of errors.

o Notify the user of an error if this is the first time it has
been detected for an instruction.

A similar process applies to instructions like HMMA . 16168 . -
F16.F16, where operands are in half-precision. Since each
32-bit register holds two 16-bit values, register access must
consider this packing format.

4.3 Performance Analysis

Previously, GPU-FPX has been measured to produce slow-
downs of up to 500 times [23] on stock programs. However,
there wasn’t a measurement of the performance overhead in-
curred by the instrumenttion itself. We measured the impact
on the highly optimized matrix-multiplication kernel [33],
which uses tensor cores. The generated assembly code is
arranged in such a way that the tensor operations are in-
terleaved with loads from the GPU shared-memory. This
interleaving reduces the apparent latency from loading from
memory, meaning the code is closer to its pure compute
capacity. In our experiment, we multiplied a 5120 x 4096
matrix and a 4096 X 4096 matrix using this kernel. Without
instrumentation, this multiplication takes 4.9ms on average
on a RTX 3080 Ti. With full instrumentation, we saw an
average time of 2.99s, representing a 610X slowdown. We
also ran this with GPU-FPX’s option which allows the tool
to periodically enable instrumentation. With periodic sam-
pling, we observed an average of 310ms per multiplication
across 1,000 runs with a sample interval of 50. This results in
a slowdown of 63X. The slowdown here represents the cost
of full instrumentation, and the cost of having the binary
instrumentation tool present.

While there is some risk of missing an exceptional value
when sampling, NaN and infinity values tend to propagate,
so they should still be detected later when a kernel is instru-
mented. Matrix multiplication has a lower chance of having
missed exceptions, since each entry of the result depends
on whole rows and columns. This is particularly amplified
when matrix multiplication is being done iteratively on the
same matrix, such as in solvers.

4.4 Development for Modular Extensibility

We are working to add support for new formats and instruc-
tions to GPU-FPX. This includes support for half-precision
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instructions which are vectors by default as they are used
in 32-bit registers. For example, an add instruction can add
both half values, or it can select the first or second only. This
is being done as part of a wider effort to make the tool more
generic to facilitate easier addition of support for new in-
structions. This will also allow the tool to be adapted more
easily to new uses, for example, a new tool which dynami-
cally tracks memory accesses for later analysis.

5 Testing-Based Specification Discovery

Given the often incomplete nature of GPU datasheets, it
is natural to explore uncovering undocumented behaviors
through targeted testing. Such tests are easy to share and can
serve not only to reveal hidden quirks, but also to assess the
degree to which different GPUs exhibit consistent behavior.

4 N rounding to zero

or rounding down

rounding to nearest
Y, or rounding up
- ~ rounding to zero
or rounding up

a11by; = —ulp — 271 % ulp

a1byy = ulp + 271« ulp

alzbzl( or Cu) =2

N

G

rounding to nearest
or rounding down

o

0.121)21( or C]l) =2
J

Figure 2. The logic for test T_rnd_dir (test rounding direc-
tion) are presented here. By setting the a;1b;; product to
the indicated value (e.g., keep b;; = 1 and setting ay; to this
value) and the a;2b2; product also to the indicated value, the
execution is carried out (all other inputs not mentioned are
set to 0). Then by examining the di; output, we can decide
which case we fall into with respect to the rounding being
used.

We now illustrate these ideas in the realm of Tensor Cores—
an effort begun in publications such as [3, 11, 30] and sub-
sequently extended by us in [24, 25] to cover both NVIDIA
and AMD GPUs. The overall goal of a Tensor Core is to ef-
ficiently compute the matrix D where D = A - B + C, with
A, B, and C also being matrices. Since all entries in D are
computed in the same way, it suffices to examine a single
entry Dl,l = A1,1B1,1 + A1,2B2,1 +...+ Al,an,l + Cl,l-

For GPU programmers, understanding the behavior of
multi-term additions—a term introduced in works such as [3]
and [30]—is essential. Key questions arise: How are the indi-
vidual product terms summed? Are the additions performed
in a fixed order, such as left-to-right? And most importantly,
what rounding directions are supported by GPU multi-term
adders?

To investigate the last question, we designed a test, T_rnd-
_dir, introduced in [24] and illustrated in Figure 2. The
specifics of these tests are not critical here; they follow natu-
rally from the rounding rules defined by IEEE floating-point
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arithmetic (see [24] for details). What is more significant is
that such tests can be formalized using SMT-based logic, as
demonstrated in [39]. This approach not only increases con-
fidence in the correctness of compiled tests, but also paves
the way for a shared, trustworthy test suite—readily dissem-
inated across the community to foster deeper understanding
and broader verification of GPU behavior.

6 Toward Verified Tensor Core
Programming

The topic of multi-term addition has far-reaching implica-
tions, with the potential to cause striking variability in results
across different GPUs. One such illustrative test is discussed
in §6.1. In the current era of automated code generation pow-
ered by large language models (LLMs), there is a growing
temptation to rely on such tools to accelerate Tensor Core
programming. While this holds considerable promise for pro-
ductivity, it also comes with important caveats. We provide
a brief glimpse into both the potential and the pitfalls of this
approach in §6.2.

6.1 A Striking Illustration of Non-Portability

The (so-called) trailing matrix update pattern, expressed as
A; = A; - P; - T;, appears frequently in array programming
workloads, including in libraries such as cuSolver [6]. More
generally, computations of the form D = C — A - B fall under
the Level-3 category of the Basic Linear Algebra Subpro-
grams (BLAS) standard.

To investigate the numerical behavior of this pattern, we
design a test case involving matrices A, B, and C, each of size
213 x 213 (i.e., 8192 x 8192). The matrices are populated with
carefully chosen values to exercise edge cases in potential
multi-term implementations, as detailed in [24].

Specifically, we initialize C; ; = 2% for all i, j; A;o = 2'°;
A;; = 27% for odd j; and A;; = 272 for even j (excluding
j = 0). For matrix B, we set By; = 2'° and all other B;;
entries to 27, All values are represented in FP16 precision.
Under real-number semantics, this construction yields D; ; ~
191.99218 for all i, j

Di,j = —(A,‘,O . BO,j + Z Ai,j ‘Bi,j + Z Ai,j ‘Bi,j) +Ci,j

jw2=1 jv/f’izo
J

(010 10 _ -2 -3 _ -3 ,-3 20

= -2 .2 Zz 2 Z 273.273) 42
212 212_1

=27 +2° - 27% = 191.984375

Unfortunately (as specified under “Story-2” earlier), thanks
to the differences in multi-term addition implementation,
the answer can be “all zeros” on NVIDIA A100, V100, AMD
MI250, and a CPU; a matrix filled with 255.875 on the AMD
MI100; and one filled with 191.875 on the NVIDIA H100.
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A Sketch of Multi-Term Addition Differences: When
summing a series of product terms, several key implementa-
tion choices arise: (1) Are product terms grouped—e.g., ac-
cumulated using higher-precision registers or shared round-
ing bits to enhance accuracy? (2) How are IEEE rounding
semantics handled? IEEE floating-point arithmetic defines
multiple rounding modes, implemented using additional bits:
the Guard (G), Round (R), and Sticky (S) bits. On many GPUs,
Tensor Cores perform block fused multiply-add (block FMA)
operations, in which product terms are grouped—commonly
in blocks of size 4, 8, or more—and share GRS bits within
each block. In contrast, CPUs “forget” the GRS bits after each
operation.

To illustrate how this leads to divergent results, consider
why the CPU-computed value of D; ; may be zero. In left-to-
right accumulation, small values are incrementally added to a
large leading term (22°), and the result remains effectively 2%°.
When subtracted from an identical term in C; j, cancellation
yields zero.

However, with wider block FMAs on Tensor Cores, where
accumulation may occur in higher precision and GRS bits are
preserved across grouped terms, such cancellation may no
longer occur exactly. This leads to measurable discrepancies
when accumulated across the whole matrix multiplication.
Beyond this qualitative explanation, we currently lack a full
formal model for explaining the exact results observed on
the five GPU models (i.e., why MI100 yielded 255.875, why
H100 yielded 191.875, etc.).

The critical conclusion for longer-term research is that
such anomalies must, ideally, not be left unexplained. Tensor
Cores appear to be of central importance in future of high-
performance computing, as argued in [10].

Challenge: Given a target GPU’s characteristics—such
as FMA block width, rounding mode, subnormal support,
and more—can one construct fill patterns that produce re-
sult differences of a specified magnitude? Solving this chal-
lenge would enable execution-based testing of commercial
GPUs under a variety of assumed arithmetic models, offer-
ing a practical path to reverse-engineering undocumented
behavior. Analogous strategies have been explored in other
domains—for instance, Collier’s work on checking confor-
mance against assumed memory models by analyzing pro-
gram execution results [4].

What It Might Take to Solve the Challenge: A direct
attempt to solve problems at this scale using existing logic-
based tools—such as SMT solvers—is unlikely to succeed.
Instead, a more viable approach may involve recursively
generating test cases by modeling the constituent expres-
sions of matrix operations, simulating their behavior under
a given GPU arithmetic model, and extrapolating the results.
These are precisely the kinds of foundational challenges that
the broader programming languages community is uniquely
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well positioned to tackle, given its expertise in semantics,
abstraction, and automated reasoning.

6.2 Formal Verification of Array Computations

Suppose one writes code to perform 16 X 16 matrix multi-
plication using Tensor Cores, following a standard online
reference (e.g., [28]). Now consider using a large language
model, such as ChatGPT, to automatically generate code that
computes the maximum value in the result matrix, D. One
such code block was generated entirely by ChatGPT in one
of our experiments:

// local thread ID within a warp
int warpThreadIld = threadIdx.x & (WARP_SIZE - 1);
float localMax = -65504.0f; // half-prec. min is roughly -65504

// Step 1: Each thread checks some subset of D

for (int idx = warpThreadId; idx < M * N; idx += WARP_SIZE) {
float val = __half2float(D[idx]);
localMax = fmaxf(localMax, val);

}

// Step 2: Warp-wide reduce using shuffle intrinsics

unsigned int mask = __activemask(); // active lanes

#pragma unroll

for (int offset = WARP_SIZE / 2; offset > @; offset >>= 1) {
float temp = __shfl_down_sync(mask, localMax, offset);
localMax = fmaxf(localMax, temp);

}
// Step 3: The lane @ in the warp stores the final max to MaxVal
if (warpThreadld == 0) {
*MaxVal = __float2half(localMax);
}

A case study based on this code raises several important
questions:

e How can we formally verify that this code block cor-
rectly computes the maximum value of the D array,
taking into account GPU-specific behaviors?

e How can we model GPU thread execution and the
semantics of low-level operations, including shuffle in-
structions, masking, and warp-synchronous behavior?

While such questions appear to be well within the reason-
ing power of modern SMT solvers, the primary challenge
seems to be the lack of a rigorous, end-to-end framework for
capturing the semantics of GPU programming languages—all
the way from high-level CUDA semantics down to low-level
assembly instructions.

7 Concluding Remarks

In conclusion, the importance of supporting GPU-based
array programming through rigorous—or at least system-
atic—foundations has been underscored by several prior
works [11, 30]. The challenges of reproducibility in this space
have been studied by many other groups (e.g., [31]). The
importance of floating-point exception checking in the con-
text of GPUs was pioneered in [19] with the help of LLVM
instrumentation. The primary tool presented in this work,
namely GPU-FPX, improves upon an earlier tool we had
built, namely BinFPE [20], that first introduced the idea of
SASS-level binary instrumentation. The exception checker
presented in [21] focuses on CPU and parallel-program ex-
ception checking—another important space to consider. A
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recent tutorial from our project team available at [37] intro-
duces many other floating-point correctness checking tools
besides the ones presented here.

We are now in an era marked by a growing variety of
number formats, each bringing its own set of non-standard
arithmetic behaviors—such as differing rounding modes and
NaN-handling conventions, and distinct tradeoffs in preci-
sion and dynamic range (e.g., BF16 vs. FP32). As Reed et al. ob-
serve [36], much of this shift has been driven by the demands
of machine learning, often imposed on high-performance
computing. The assumption that reducing bit width will au-
tomatically lead to better outcomes—such as lower memory
traffic or improved energy efficiency—is a seductive but ul-
timately dangerous oversimplification. We might get more
(hardware-unhandled) exceptions and loops may terminate
more gradually [42]—or never.

Key Takeways.

e Array programming on GPUs merits first-class sta-
tus in programming languages research. Given the
substantial cost and widespread deployment of GPUs,
even modest gains in debugging and correctness can
yield significant productivity and cost benefits.

e Overlooking correctness in GPU-based array program-
ming carries real societal risks. A growing number of
autonomous and embedded systems depend on GPU
computations, and even emerging privacy-preserving
technologies—such as zero-knowledge computing plat-
forms [27]—are planning GPU integration.

e Ultimately, a unified framework that addresses both
parallelism and numerical correctness will be essential—
without it, diagnosing and triaging non-reproducible
behaviors will remain infeasible.

e Assuming that formally verified correctness is the only
viable path forward risks leaving a growing number of
practical, day-to-day problems unaddressed. In many
other areas of software development, fuzz testing has
proven to be an invaluable and pragmatic approach—
often yielding results where formal methods remain
out of reach. The Verificarlo approach [8] that espouses
this approach—and many more of its kind yet to be
developed—deserve more attention.

The kinds of GPU programming correctness challenges high-
lighted here have largely remained underexplored by even
seasoned programming languages researchers. This gap is
understandable: the semantics of GPU architectures evolve
rapidly, making it difficult to establish stable, widely shared
conventions and abstractions. However, given the scale and
significance of the problems in this domain, broader partici-
pation from the PL community would be not only valuable
but essential. To encourage those considering engagement
with these challenges, we offer the following observations:

e Don’t worry if you haven’t been following GPUs closely
over the past 15 years—a period that roughly coincides
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with their rise to prominence. You can still make mean-
ingful contributions by engaging with well-scoped
challenges like those we’ve identified, and developing
more such challenges.

e By actively seeking out problems of the kind discussed

in this paper, we can foster broader community en-
gagement and, importantly, help bring the next gener-
ation of students into the fold of array programming.
Our time in this field is limited—we must ensure that
younger researchers are equipped and inspired to carry
the work forward.
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