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Abstract

The spectral decomposition of graph adjacency matrices is an essential ingredient in the design of graph
signal processing (GSP) techniques. When the adjacency matrix has multi-dimensional eigenspaces,
it is desirable to base GSP constructions on a particular eigenbasis that better reflects the graph’s
symmetries. In this paper, we provide an explicit and detailed representation-theoretic account for the
spectral decomposition of the adjacency matrix of a weighted Cayley graph. Our method applies to
all weighted Cayley graphs, regardless of whether they are quasi-Abelian, and offers detailed descrip-
tions of eigenvalues and eigenvectors derived from the coefficient functions of the representations of
the underlying group. Next, we turn our attention to constructing frames on Cayley graphs. Frames
are overcomplete spanning sets that ensure stable and potentially redundant systems for signal re-
construction. We use our proposed eigenbases to build frames that are suitable for developing signal
processing on Cayley graphs. These are the Frobenius—Schur frames and Cayley frames, for which we
provide a characterization and a practical recipe for their construction.
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1. Introduction

Graph signal processing (GSP) is a fast-growing field that offers a framework for developing signal
processing techniques tailored for signals that are defined on graphs, with the objective of incorporating
the underlying graph structure into the analysis. For a fixed graph G with vertex set V', a graph signal
on G is a complex-valued function f : V — C. If the vertex set V is labeled, say {v;}X;, then the
graph signal can be represented as a column vector [f(v1), f(v2),..., f(vx)]" in CV, where t denotes the
matrix transpose. A powerful technique to analyze graph signals that has gained significant popularity
over the recent years involves fixing a basis of eigenvectors for an appropriate matrix associated with
the graph; we call such a basis a graph Fourier basis. Expanding graph signals in this basis leads to
the idea of Fourier analysis on graphs. The reason for this approach is to improve signal processing
efficiency by working with a basis that encodes the structural features of the underlying graph, rather
than an arbitrary basis of CY.

Prominent examples of matrices associated with graphs are the graph adjacency matrix and the
graph Laplacian. In this manuscript, we focus on weighted graphs, where each edge is assigned
a numerical value known as a weight, while non-edges are assigned a weight of zero. The adjacency
matrix of a weighted graph G with N nodes is the matrix A¢g of size N, whose (7, j)-th entry is precisely
the weight of the edge joining nodes ¢ and j. The Laplacian of G, denoted by L, is an N x N matrix
defined as Lg = Dg — Ag, where D¢ is the diagonal matrix with entries d;; representing the degree
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of the vertex v; (the sum of the weights of edges incident to v;). We note that unweighted graphs can
be viewed as a specific type of weighted graphs in which each edge is assigned a weight of 1.

Consider either the graph adjacency matrix Ag or the graph Laplacian Lq; these matrices are often
referred to as the graph shift operator. Next, fix an orthonormal basis of eigenvectors ¢q,...,¢n €
CV associated with (possibly repeated) eigenvalues \q,..., Ay for that matrix. The graph Fourier
transform f of a graph signal f : V' — C is defined to be the expansion of f in terms of this orthonormal
basis. Namely,

N
F(g) = {frdi) = Y F(on)ilvn)-

n=1

The corresponding inverse Fourier transform is given by

N ~
=1

Here, (-,-) denotes the inner product on CV. It is worth mentioning that the eigenvectors {¢;}¥
can be chosen from RY, since both adjacency and Laplacian matrices are symmetric and real-valued,
and therefore, they both have real spectrum, and are diagonalizable over R. However, we do not
impose such a restriction on our choice of eigenbasis. In fact, we will show that in certain cases, a
complex eigenbasis may provide us with a more efficient Fourier analysis (see e.g. Proposition 2.5 and
Corollary 2.6). We refer to [SM13, SM14, SNF*13| for a detailed background on the graph Fourier
transform, to [OFK*187? | for a general overview of graph signal processing, and to [RCR21, GJK22|
for some new developments in signal processing on large graphs and graphons.

Taking the graph Fourier transform as defined above as a first step, a significant body of research has
been devoted to generalizing classical tools from Fourier analysis to the case of signals defined on graphs.
Important examples of such efforts include wavelet constructions (e.g. [HVG11, INS09, CFM14]), frame
constructions (e.g. [SWHV13, SRV16]), constructions of wavelet-type frames (e.g. [Donl7, GBvLI1S,
LV13, SWHV13|), and constructions of Gabor-type frames (e.g. [BRVS16, GGH21]) for graph signals.
Normally, wavelet and frame constructions, as well as many other signal processing concepts, rely
heavily on the choice of the Fourier basis. Thus, a suitable selection of eigenbasis for the graph Fourier
transform plays a critical role in the success of this theory. The significance of this phenomenon
is accentuated when dealing with a graph (adjacency or Laplacian) matrix with high-dimensional
eigenspaces. A prominent example of such a scenario is the case of a Cayley graph, particularly one
that is associated with a non-Abelian group.

A weighted Cayley graph has vertices corresponding to elements of a group G and weighted edges
generated by an inverse-invariant function w : G — [0, ), called a weight function (see Definition 2.3).
When w is {0,1}-valued, this definition reduces to the definition of an unweighted Cayley graph.
The underlying algebraic structure and highly symmetric nature of (weighted) Cayley graphs make
them a rich category of graphs for various applications, leading to the need for the advancement
of further graph signal processing techniques for this class. For examples of signal processing on
Cayley graphs, see [RKHS02, CDHS21| for the case of Cayley graphs of the symmetric group, and see
[KD19, KD18, CL17| for the case of circulant graphs, which are Cayley graphs on Z,.

For Cayley graphs (or any regular graph in general), the eigenbasis of the associated adjacency and
Laplacian matrices are identical. So, in this article, we focus our attention only to adjacency matrices.
Eigen-decompositions of adjacency matrices of Cayley graphs are well-understood when the group is
Abelian (|Bab79]) or the Cayley graph is quasi-Abelian,’ meaning the generating set is closed under

1The terminology “quasi-Abelian” is somewhat misleading, as it does not pertain to the underlying group of a weighted
Cayley graph; instead, it relates to the conjugation-invariance of its weight function w (see the definition before Corol-
lary 2.6).



conjugation ([RKHS02]). In [GGH19], the second author and collaborators use representation theory
of groups to construct a suitable Fourier basis (i.e., eigenbasis of the graph adjacency matrix) for signal
processing on quasi-Abelian Cayley graphs. They contend that the particular eigenbasis constructed
through representation theoretic considerations is more suitable for developing the Fourier transform
on a Cayley graph. For example, using these eigenbases simplifies several operations on graph signals
including the graph translation operator. Moreover, they show that such eigenbases can be used to
construct a suitable family of tight frames.

In [CDHS21], Chen et al. take a similar viewpoint when studying ranked data sets as signals on the
permutahedron. The permutahedron, denoted by P, , is the Cayley graph of the symmetric group with
the generating set of adjacent transpositions. Selecting the permutahedron as the underlying graph is
crucial for the success of their theory, as the generating set of the permutahedron captures a specific
notion of distance that is useful in the context of ranked voting systems. Chen et al. construct a special
basis of eigenvectors for the vector space £2(S,,) that is compatible with both irreducible representations
of S,, and eigenspaces of the adjacency matrix of P,,. They use this basis to form a frame (i.e., an
overcomplete spanning set) for £2(S,,) that is suitable for GSP on the permutahedron. The significance
of obtaining such a frame is that the analysis coefficients, which are the inner products of vectors
in £2(S,,) with frame elements, provide specific interpretations of the ranked data (e.g. popularity of
candidates, when a candidate is polarizing, and when two candidates are likely to be ranked similarly).
This example highlights the importance of constructing appropriate Fourier bases for (not necessarily
quasi-Abelian) Cayley graphs.

In [BG22|, the first two authors generalize the results of Chen et al. to all Cayley graphs on S,,.
Namely, they introduce a class of frames, called Frobenius—Schur frames, which have the property
that every frame vector belongs to the coefficient space of only one irreducible representation of the
symmetric group. Furthermore, they characterize all Frobenius—Schur frames on the group algebra
of the symmetric group which are ‘compatible’ with respect to both the generating set and the rep-
resentation theory of the group. They observe that frames obtained in [CDHS21]| are exactly such
compatible Frobenius—Schur frames (which we call Cayley frames in this paper); see Subsection 3.3 for
a detailed explanation.

1.1. Main contribution

In the present article, we take the perspective in [GGH19] to extend the results of [BG22] to general
weighted Cayley graphs; that is weighted Cayley graphs on any group G, with any weight function.
This includes the case of unweighted Cayley graphs on any group with any inverse-closed generating
set. The definitions of Frobenius—Schur frames and frames compatible with a generating set can be
naturally extended in the case of general weighted Cayley graphs. Frobenius—Schur frames are those
that are compatible with the representation theory of the underlying group G; whereas, we introduce
weighted Cayley frames with respect to a given weight function w as those that are compatible with
w and the representation theory of G (Definition 3.1).

Our contribution in this paper is two-fold. Firstly, we provide a complete description of the eigen-
decomposition of the adjacency matrix of a weighted Cayley graph in terms of the irreducible rep-
resentations of its underlying group (Proposition 2.5). This work generalizes existing results on the
spectral decomposition of Cayley graphs on Abelian groups [Bab79] and quasi-Abelian Cayley graphs
[RKHS02]. Secondly, we characterize all (weighted) Cayley frames (with respect to a given weight
function) of £2(G), and provide a concrete recipe for constructing such frames (Theorem 3.4). Given
their compatibility with both the group and the weight function, these are suitable frames for signal
processing on weighted Cayley graphs. Our frame construction in Theorem 3.4 is based on the partic-
ular eigenbasis provided in Proposition 2.5, where the representation theory of the underlying group
guides the choice of basis elements. Namely, in a weighted Cayley frame, each vector belongs to the
coefficient space of only one irreducible representation of the underlying group. This is akin to the
selection of the Fourier basis in classical signal processing; indeed, the classical Fourier basis contains



precisely one coefficient function for each irreducible representation of Z,.

Our representation theoretic viewpoint, particularly through the application of Frobenius—Schur
theory, offers a significant benefit in our approach, as it provides a block diagonalization of the ad-
jacency matrix resulting in much smaller block sizes than the original matrix. For instance, in Ex-
ample 2.9 we discuss a Cayley graph on the symmetric group Sy. The associated adjacency matrix
in this case is of size 24, but our method only requires the eigen-decomposition of matrices of size at
most 3. Additionally, the block-diagonalizing unitary matrix from Frobenius—Schur theory depends
solely on the underlying group of a weighted Cayley graph. This feature greatly enhances the compu-
tational efficiency of our proposed method, as the same block-diagonalizing unitary matrix works for
any weighted Cayley graph over a given group.

1.2. Organization of the paper

The rest of this article is organized as follows. In Section 2.1, we present the necessary background for
the representation theory of finite groups, along with the Schur orthogonality relations and Frobenius—
Schur decomposition theorem. In Section 2.2, we use the Frobenius-Schur theorem to provide a
complete description of the eigen-decomposition of the adjacency matrix of a weighted Cayley graph
in terms of the irreducible representations of its underlying group (Proposition 2.5). As a corollary
to Proposition 2.5, we provide a new proof for the quasi-Abelian case. We also provide examples of
applications of Proposition 2.5 for the case of the permutahedrons, P3 and P4. In Section 3.1, we use
the results of Section 2.2 to introduce and characterize weighted Cayley frames, i.e., Frobenius—Schur
frames compatible with the weight function of a Cayley graph. We also provide an example of a Cayley
frame for £2(S;). In Section 3.2 we discuss properties inherited by the larger Cayley frame from the
smaller frames, including tight/parseval frames and the restricted isometry property. Next, we show
how our frame construction for general Cayley graphs relates to the frames for the permutahedron
built in [CDHS21] (Section 3.3). We end the paper with Appendix A which provides a proof of
Proposition 2.5, and Appendix B which gives an overview of the theory behind finding the irreducible
representations of S,,. We have included Appendix B.1 and Appendix B.2 with matrix representations
and coefficient functions of S3 and S;. While this information is known, we have included it here for
the ease of the reader, as finding references presenting this material in a suitable form for us turned
out to be challenging.

2. Notations and background

2.1. Representation theory of finite groups

In this subsection, we provide the necessary background for the representation theory of finite groups
and their associated function spaces. We restrict our attention to unitary representations. This is
non-consequential as every representation of a finite group is unitizable by a change of inner product
on the representation space (see for example [Ser77, Section 1.3]). Throughout this article, let G be
a finite (not necessarily Abelian) group of size N. A unitary representation of G of dimension d is
a group homomorphism 7 : G — Uy(C), where Uy(C) denotes the (multiplicative) group of unitary
matrices of size d. For a representation 7 : G — Uy(C), a subspace W of C%, and an element g € G,
define

m(gIW = {m(9)§ : e W}

The subspace W is called w-invariant if for all g € G, we have w(g)W < W. Given a m-invariant
subspace W, we define the subrepresentation 7|y of m to be the representation of G on the inner
product space W obtained by restricting both the domain and codomain of 7(-) to W. A representation
7 is called irreducible if {0} and C? are its only m-invariant subspaces. We say two representations 7
and o of G are unitarily equivalent if there exists a unitary matrix U such that U~ 1n(g)U = o(g) for all



ge G. We let G denote the collection of all (equivalence classes of) irreducible unitary representations
of G. In the case of an Abelian group, every irreducible representation of G is one-dimensional [Fol95,
Corollary 3.6], and G reduces to the group of characters on G. Note that every unitary representation
of a finite group decomposes into a direct sum of irreducible representations in G [Fol95, Theorem 5.2].

An important representation of a group G is its right regular representation p : G — Un(C),
where p(g) denotes the matrix associated with the permutation h — hg~!, for every h € G. The
representation p is unitarily equivalent to the representation p’ on the vector space £2(G), defined as
follows:

PG —UWPG)), p(x)f(y) = flyx), Vf € *(G), Vz,y e G.
Here, (*(G) is equipped with the inner product (f, g)e2(c) = 24ec f(#)g(x), and U(¢*(G)) denotes the
set of unitary operators on the inner product space £2(G). For the rest of this article, we assume that

the group elements are labeled as G = {gi,...,gn}. So, the unitary operator U : £?(G) — C¥ defined

t
asU(f) = [ flg1),.-., f(g N)] , where t denotes the matrix transpose, provides the unitary equivalence

between p and p’.

When N > 1, the representation p is not irreducible, and thus can be decomposed into a direct sum
of irreducible representations. In many applications, such as those studied in this paper, it is important
to understand the above direct sum decomposition of p in concrete terms. For general (not necessarily
finite) compact groups, the Peter—Weyl theorem provides us with a convenient way to tackle this task.
This theorem, which was first proved by Frobenius and Schur for the case of finite groups, gives rise
to a decomposition of CV (respectively £2(G)) into spaces generated by coefficient functions.

For an arbitrary 7 € G of dimension dr, and vectors £,m € C we define the coefficient function
associated with the representation 7 and the vectors &, n as follows:

Tem: G —C, mey(g) = {m(9)€,n), VgeG.

For the rest of this article, we view 7¢,, as a function on G or as a vector in CV interchangeably.
Namely, we sometimes think of 7¢ ,, as

t

T = |96, - (rlon)E )]

When {e;}%, is the standard orthonormal basis for Cr, the coefficient functions

Ti () 1= Tey e, (x) = (m(x)es, €5, 4,5 =1,...,dx

indicate the entries of the matrix of 7(z) represented in the same basis. Coefficient functions play a
central role in the harmonic analysis of non-Abelian groups. For 7 € G and 1 < i < d,;, define

Eni = {mee, 1 £€Cln}. (1)

For m¢ e, € & s and g,z € G, we have

p(g)ﬂ-f,h‘ (l‘) = Tee; (J}g) = <7T($g)§a ei> = <7T(l‘)71'(g)€7 ei> = Tr(g)€,e; (.13)

So for every g € G, we get p(9)Ex,i € Er . Consequently, every set £ ; forms a p-invariant subspace
of CN. This fact is used in the well-known Frobenius-Schur theorem, stating the decomposition of p.
Important pieces for the Frobenius—Schur theorem are the following orthogonality relations ([Fol95,
Theorem 3.34]).

THEOREM 2.1 (The Schur orthogonality relations). Let w, o be irreducible unitary representations of
G, and consider £ ; and £ ; as subspaces of CcN.

1. If m and o are not unitarily equivalent then E,; L E5; forall1 <i<d and1 < j < d,.



2. If {ej}?ll is an orthonormal basis for C= then {4 /%Wj,,- =1, dﬂ} is an orthonormal basis
for Ex .

This is to say that if 7 and ¢ are not unitarily equivalent then {(7; ;, 0, s)cny = 0 forall 1 <i,j < dx
and 1 < r,s < d, while

(i js Trs)CN = d—léi’réj,s, forall 1 <1i,j,7,5 < dy,
where § is the Kronecker delta function.
We can now state the Frobenius—Schur theorem for finite groups.

THEOREM 2.2 (Frobenius—Schur theorem). Let G be a finite group of size N. For E,; as given in
Definition (1), we have
CN =@, ¢ Dr<icd, Enis

where each & ; has the orthonormal basis

” [dr .
{ Gi = ﬁﬂ'm 1] = 1,...,d7r}.

Moreover, for every 1 < i < dr, the subrepresentation ple_ , is unitarily equivalent to w. Consequently,

A~

p is unitarily equivalent to @__g dp - m; that is, each m € G occurs in the right reqular representation
of G with multiplicity d.

We can reformulate Theorem 2.2 as simultaneous block diagonalization of matrices p(g) for all
g € G. Consider a fixed ordering of G, e.g. G = {r!,72,...,7™}. Let d; denote the dimension of the
representation 7. Let B be a matrix of size N = |G| whose columns are the vectors of the orthonormal
basis in Theorem 2.2 ordered appropriately. Namely,

1 1 1 1 1 1
B=[6hil. 105, 1 101al 10k ol o 0Ll 0b a1 68, 0 0, | @)
J | S —
basis for £, , basis for €1, basis for €., basis for &,m g4,
k
Here, we use f ; to denote QSEZ ) to ensure clear notation. By the Schur orthogonality relations

(Theorem 2.1), B is a unitary matrix, and block diagonalizes the right regular representation. Namely,
for an arbitrary element g € G, the matrix B~'p(g)B is block diagonalized with d; blocks of size d; x d;
for each irreducible representation 7% € G as follows:

m'(g) 0 7™ (g) 0
B 'p(g)B = ®...0 3)
0 ﬂ-l(g) dyxdy 0 ﬂ-m(g) A Xdm,

The importance of the above block diagonalization lies in the fact that the same unitary matrix B
simultaneously block diagonalizes all matrices p(g) for every g € G.

We refer the reader to [Ser77| for a detailed account of the representation theory of finite groups.
We remark that many of the concepts we discussed in this section can be extended to the context of
general compact groups; however, for the purposes of this article, we limit ourselves to finite groups.



2.2. Eigen-decompositions of (weighted) Cayley graph adjacency matrices

In this section, we review how the Frobenius—Schur Theorem can be used to find an explicit decompo-
sition of adjacency matrices of weighted Cayley graphs. We summarize this result in Proposition 2.5.
While this result is well known, especially part (i) in the case of unweighted Cayley graphs, it is
challenging to find references that give detailed descriptions of the eigenbases mentioned in the propo-
sition. In particular, we could not find references for proofs of Proposition 2.5 (ii) and (i¢) in the case
of a weighted Cayley graph that is not necessarily quasi-Abelian. To streamline the paper, we have
included the proof of Proposition 2.5 in Appendix A.

We now provide the necessary definitions, particularly of (weighted) Cayley graphs. Although
Cayley graphs can be defined within the context of directed graphs, this paper focuses exclusively on
undirected graphs.

Fix a finite group G, and let S be a subset of G that is closed under taking inverses, i.e., s € S
precisely when s~ € S. We say G is a Cayley graph on the group G with generating set S if it has the
vertex set V(G) = G, and an edge joining vertex g and h whenever g~ th € S. We say w : G — [0, )
is a weight function if for each z € G, w(x) = w(z~!). This leads to the following definition.

DEFINITION 2.3. A weighted Cayley graph G on a group G with weight function w : G — [0,00) has
vertex set V(G) = G and edge weights determined by the weight function, where each edge g ~ h
has weight w(g~'h). If an edge has weight zero, we consider it as a non-edge in the weighted Cayley
graph. We denote G by Cayley(G, w).

Note that any Cayley graph is just a special case of a weighted Cayley graph where the weight
function is 1g, the characteristic function of the generating set S defined to be

1S(x)={11fx€5

0 otherwise

Clearly, the adjacency matrix A for a weighted Cayley graph Cayley (G, w) as above has (g, h)-th entry
Agn = w(g™"h).

The following proposition relates the eigenvalues of the adjacency matrices of a weighted Cayley
graph to eigenvalues of the corresponding irreducible matrix representations of the underlying group.
To state our proposition, we need the following definition.

DEFINITION 2.4. Consider a function f : G — C where G is a finite group. For every representation
7w € G, define
©(f) = ) fla)m(x).
zeG

PRrROPOSITION 2.5. Let G be a weighted Cayley graph defined on a finite group G with weight function
w:G — [0,00).

(i) The set of eigenvalues of the adjacency matriz Ag coincides with the set | g spec(m(w)), where
spec(m(w)) denotes the spectrum of the matriz (w).

(ii) Let B be the unitary matriz of the normalized coefficient functions given in (2). FEvery A-
eigenvector ¢ € CI®l of Ag can be described as

¢ =B(®, 0 D1 Xni),

where every X, ; € Cl is either 0 or a A-eigenvector for m(w). Moreover, at least one of the
vectors Xy ; is nonzero.



(iii) For each m, let Q () denote a fived orthonormal eigenbasis for mw(w). Then

I

dy &
U U @ Z LTkTh,i : € Qﬂ(w)
k=1

reGil,...,dx = Zq

g

is an orthonormal eigenbasis for Ag.

The proof of Proposition 2.5 can be found in Appendix A. In the following corollary, we consider
the special case for quasi-Abelian Cayley graphs. A weighted Cayley graph is quasi-Abelian if the
weight function is a class function. A class function in ¢?(G) (or the associated class vector in CV)
is a function (or vector) that is constant on conjugacy classes of G. In this case, Proposition 2.5
takes a much simpler form. Namely, the collection of all (normalized) coefficient functions form an
(orthonormal) eigenbasis for Ag. Even though this result is known (see e.g. [RKHS02, Theorem 1.1] or
[GGH19, Theorem IIL.1] for a proof), we provide a proof which is a simple application of the previous
proposition.

COROLLARY 2.6. Consider a quasi-Abelian weighted Cayley graph G on a finite group G of size N
with weight function w : G — [0,00). The set | __a {4 / dﬁm',j P 1<e,5< dﬂ} forms an orthonormal

basis of eigenvectors for Ag. Namely, for every w € G and 1< 1,] < dg,
Agmij = AxTij,

where Ay = iTr(ﬂ'(w)), and w(w) is as defined in Definition 2.4.

Proof. The set of normalized characters { Xr 1= \/% 2?21 it TE @} of a group G forms an orthonor-

mal basis for the subspace of class functions in £2(G) (see e.g. [Fol95, Proposition 5.23]). Given that
G is quasi-Abelian, the weight function w is a class function, so

d
1 s
w = E <w7X7T>CNX7r = § § <w7X7r>(CN7Ti,i~
p VN ==
meG 7eG =
Next, we show that 7(w) is a multiple of the identity matrix. Indeed, using the above expansion of w

with respect to the orthonormal basis {4 / dﬁm,j ITE @, 1<4,5 < d,r}, we have that for every 7 € (@,

(m(w)e;, ejy = Z<w(x)7r(ax)ei, ej) = Z w(z)m; j(x) = (w,mi ey = { \éﬁ@(i 7

zeG zeG w>CN L=

So, the standard basis {e;}%7, is an orthonormal eigenbasis of 7(w) associated with the eigenvalue
dﬁi\f(xﬂ,w)cw. By part (4ii) of Proposition 2.5, the set | J, a{mi; : 1 <4,j < dr} forms an orthogonal
eigenbasis for Ag associated with (repeated) eigenvalues \U/lj@(,r, wyen. Finally, since for every i we
have d£f<xﬂ,w>(cw = (m(w)e;, e;yen, we get \é—ﬂﬁ<xﬂ,w>cw = i’ﬁ(w(w)) O

Next, we observe the inherent difference between the spectral behaviour of general weighted Cayley
graphs and quasi-Abelian ones. As shown in Corollary 2.6, the canonical eigenbasis for the adjacency
matrix of a quasi-Abelian weighted Cayley graph does not depend on the particular choice of the weight
function w. The choice of the weight function only affects the eigenvalues. In the case of a general
weighted Cayley graph (as in Proposition 2.5), the weight function determines both eigenvalues and
eigenvectors of the associated Cayley graph. As a result, the spectral features of non-quasi-Abelian
weighted Cayley graphs are more intricate.



We conclude this section with the illustration of Proposition 2.5 through two examples. Due to
applications in analysis of ranked data sets, developing signal processing on the symmetric group is
of considerable interest. In [CDHS21], the authors contend that the permutahedron is an appropriate
Cayley graph on S,, for representing ranked data. In this graph, two rankings are adjacent if and only
if they differ by transposing two adjacent candidates. More precisely, the permutahedron P, is the
Cayley graph on the group of S,, with generating set S, = {(i,i+ 1) : 1 <14 < n — 1} consisting of all
consecutive transpositions.

EXAMPLE 2.7 (Fourier basis for signal processing on P3). Using the notation from Appendix B.1 for the
irreducible representations of S3, define B = [ﬁbm|ﬁﬁ,1|%m,ﬂ%@,ﬂ%ﬁ,ﬂ%ﬂz,z], where ¢, T,

and 7 are the trivial representation, the alternating representation, and the standard representation
of S3, respectively.

(13)
011000
(123) (132) 1000 1 0
10000 1
A4=100 00 1 1
010100
(12) (23) 001100
id

Figure 1: The Cayley graph Pz and its adjacency matrix As.

The unitary matrix B block-diagonalizes matrices p(g) for all g € S3. So, for the adjacency matrix

Az of P3 we have
1 V3 1 3
B'A3B = diag | 2, -2, \% 2 |, \% 2 .
2 T 2 T2

The eigenvalues of B*A3B are 2, —2 (of multiplicity 1), 1, —1 (of multiplicity 2) associated with eigen-
vectors [1,0,0,0,0,0]*,[0,1,0,0,0,0]*,[0,0,4/3/2,1/2,0,0]%, [0,0,0,0,+/3/2,1/2]%,[0,0, —1/2,4/3/2,0, 0],
[0,0,0,0,—1/2,4/3/2]¢. This leads to the following eigenbasis for Az, derived from the irreducible rep-
resentations of Ss:

w

N[

1 1 1 1
N7 N/ 1 5 /a ~ 5. /2 1
NG V6 0 V3 V3 0
1 _ 1 1 __1 __1 1
B = \{6 y \{g ; 51 ) 2{5 ) 2{5 ) 715
Wl Lo] [22]] 3% [o
| v6] L v6 v3l L v3

REMARK 2.8. The permutahedron P3 is pictured in Figure 1, and is isomorphic to the 6-cycle. The
Cayley graph of Zg with generating set {1, —1} is isomorphic to the 6-cycle as well. We note that the
underlying groups of these two Cayley graphs are very different; in fact, one group is Abelian, and the
other is not. While these graphs are isomorphic, taking each underlying group and its representation



theory into account results in producing different Fourier bases. For the Cayley graph of Zg with
generating set {1,—1}, the Fourier basis consists of the normalized group characters for Zg,

1 1 1 1 1 1
6 6 6 6 6 6
R I I I RGPS B Y B VP I B
V6 1/6 V6 V6 V6 V6
1 L2 L4 1 1,2 14
l| V6 V6 V6 /6 V6 V6 e
RS I (O . T I B S TN I M- R s S AN s G- ) (Y g
V6 /6 V6 V6 V6 V6
1 S 12 1 1 4 12
V6 V6 \/6 /6 V6 NG
L 15 14 1.3 1,2 1,
LLvel Lve™ 1 Lve™ 1 L6 Lve ™ 1 Lve 1)

where w = exp(27i/6) is the primitive sixth root of unity. Similar graph Fourier bases, where the
underlying group is taken to be Z,, have been used in [KD19| for developing GSP methods applicable
to circulant networks.

On the other hand, the Fourier basis for P35 is B, as described in Example 2.7. A Fourier basis
similar to B, where the underlying group is taken to be the symmetric group, was used in [CDHS21] to
develop GSP methods for analyzing ranked data sets. The symmetric group S, which consists of all
permutations of three objects, and its Cayley graphs are particularly well-suited for developing GSP
when the data consists of rankings involving three items (see [CDHS21]| for applications of GSP based
on P, to analysis of ranked data).

ExaMPLE 2.9 (Fourier basis for signal processing on P4). Using the notation for the irreducible rep-
resentations of Sy given in Appendix B.2, we define the matrix

where v;; denotes the normalization of the coefficient function v; ; into a unit vector for every rep-
resentation v. Here, ¢, 7, o, ®’/, and 7 are the trivial representation, the alternating representation,
the 2-dimensional representation, the standard representation, and the standard-alternating tensor
representation of Sy, respectively. Note that B is a unitary matrix that block diagonalizes the right
regular representation of Sy.

(14)(23)

Figure 2: The permutahedron P4 is the Cayley graph on the group S4 with generating set S = {(12), (23), (34)}.
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So, for the adjacency matrix A4 of P4 we have

0 2 4+ w3

3 | -2 0 -1 3
+ w 0 ]

2 2 01
—1 .
B~ 'A,B = diag 3,—3,_@[2 @ 0 -1 0 7@010
i=1 i=1{—-1 0 0 =1{1 0 0
Next we apply Proposition 2.5 (i4) to the eigenvectors of the blocks in B~ A4 B to compute eigenvectors
of Ay as follows.

~ —~ 6-1/2i —~ _ —
L1177'11,% 1l+£021, I-H[l +£0217

Tk =1,2 =1,2
B/ — \/ﬁ 1k+ \/771-3 ks 2k7\/; k \/m ,ka k ’ 537 l )
f—i—l / g

1 /
Vitayz Lk «/4+2 LENSKEVS \/4 22 \/472\/§7T37k

3. Construction of frames for graph signals

Let G be a finite (not necessarily Abelian) group, and consider the associated inner product space
(*(G) together with its usual norm | f|2 = 1/Y,.cc [f(z)[>. A frame for £*(G) is a finite set of vectors
F = {4; : i € I'} such that for some positive real numbers A and B, we have

Alf13 < D Kfea® < Bl f[3, for every f e 6(G). (4)

el

Elements 1; of a frame F are called frame atoms. The constants A and B are called the lower and
upper frame bounds respectively. Frames provide stable and possibly redundant systems which allow
reconstruction of a signal f from its frame coefficients {{f,¥;)>}ics. In the case of redundant frames,
reconstruction of a signal might still be possible even if some portion of its frame coefficients is lost or
corrupted.

Since ¢2(G) is finite-dimensional, any finite spanning subset of it forms a frame. Frames, however,
differ significantly from each other in terms of how efficiently they analyze signals. The condition
number of a frame F is defined to be the ratio ¢(F) := B/A, where A, B denote the optimal constants
satisfying Equation (4). An important class of frames is the class of tight frames, i.e., frames for which
A = B. Parseval frames are tight frames in which A = B = 1. Compared to general frames or to
orthonormal bases, tight frames exhibit many desirable properties, such as greater numerical stability
when reconstructing noisy signals. A major goal in designing frames for real applications is to design
tight frames, or at least frames with a small condition number. For a detailed introduction to frame
theory, see [Chr13, HLOO].

3.1. Special frames for Cayley graphs

Throughout this section, let G be the weighted Cayley graph of the finite group G with a given weight
function w : G — [0, 00). We construct frames for £2(G) that are compatible with the weight function
w and the representation theory of G. Recall that for a representation m of G and a weight function
w:G — [0,00), we set 7(w) = >, .cw(x)m(x); and that the matrix 7(w) is self-adjoint.

DEFINITION 3.1. Let G be a finite group.

(i) A frame {¢;}™, for £?(G) is called a Frobenius-Schur frame if each atom 1); belongs to one
orthogonal component of the Frobenius—Schur decomposition as stated in Theorem 2.2. More
precisely, every frame atom ; belongs to some &, ; (as defined in (1)) for an irreducible repre-

sentation m of G and 1 < j < d.

11



(ii) Let 7 be an irreducible representation of G of dimension d,, and let 1 < ¢ < d, be fixed. For
A € R, define
dr 1
Zﬂ,i,)\ = Z TTh,i * S E,\(ﬂ'(’w)) s (5)
k=1 g

where E)\(m(w)) is the A-eigenspace of 7(w). Here, we use the convention that if \ ¢ spec(mw(w)),
then F)(m(w)) = {0}.

(iii) A frame {¢;}7, of £*(G) is said to be a w-Cayley frame (or Cayley frame compatible with w)
if for every atom ; there exists an irreducible representation = : G — Uy, (C), an eigenvalue
A € spec(m(w)) and an index 1 < j < dr such that ¢; € Z ; 5.

REMARK 3.2. (i) Any w-Cayley frame of £2(G) is in fact a Frobenius—Schur frame. Indeed, for every
k=1,...,dy, the vector 7 ; belongs to & ;, which implies that Z, ; x € & ;.

(i) Fix i = 1,...,d,. Let {g; ;-i;l denote the standard orthonormal basis of C%r, and recall that

{4 /%wj,i 1<j< dﬂ} forms an orthonormal basis for £ ;. For m and ¢ as above, define a linear

map as follows:

d
s dﬂ-
Ori:C > iy Oni([z1...70,]") = ) Tpp [Tk (6)
ion V(G

Each map O, ; is an isometric isomorphism, as it maps one orthonormal basis to another. For
every A € spec(m(w)), we define the restriction map O i x := Ox i|g, (x(w)). This map forms an
isometric isomorphism between E)(7(w)) and Zr ; x.

PROPOSITION 3.3. For every w € G and 1 < i< dy, we have &, ; = @Aespec(w(w)) L i

Proof. The matrix 7(w) is self-adjoint (i.e., w(w)* = m(w)), and as a result it is diagonalizable. So,
one can build an orthonormal basis of Cé consisting of eigenvectors of 7(w). In other words, we can
write

Chr= @ Erw). (7

Aespec(m(w))

Now, consider an arbitrary element m¢ ; € £ ;, and write its linear expansion 7¢ ; = 2211 Tk, Using
(7), the vector X = [x1,...,74, ]" € Cd can be written as a linear combination X = Direspec(r(w)) YAs
with Yy € E)\(7(w)). Letting Y\ = [yx1,---,Yxr.d,]|" we have

ds
e = [ml. g, dllen el = Y Imulecma, dYa = DT Y yakme.
) k=1

Aespec(m(w)) Aespec(m(w)

Note that for each A\, we have Zi’;l Y.k, belongs to Zr; x. So, we get Ex; < Zkespcc(ﬂ(w)) Zrix-
On the other hand, &;; 2 ZAESPCC(W(w)) Zy i is a trivial consequence of the definition of Z ; x.

Lastly we show that this sum is a direct sum. That is, {Z;; x : A € spec(m(w))} is a set of orthogonal
subspaces. To prove this, consider Z, ; » and Z; » for distinct eigenvalues A\, X’ € spec(m(w)). Take
arbitrary X € E)(m(w)) and Y € Ey (m(w)). Since Ey)(w(w)) and Ey (7(w)) are orthogonal subspaces
of C, we have (X, Y )ca, = 0. Now using Schur’s orthogonality relations (Theorem 2.1), we get

D Tmhs D vemea = Y WPl TeideG) = D, Tk = d7<X’ Y)car = 0.
k=1 £2(G) 0 T

=1 k,0=1 k=1

This completes the proof. O
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Now, we can provide a characterization for all w-Cayley frames of £2(G). To state our theorem, we
need the following notation.

NOTATION. For 7 € G and an eigenvalue \ of m(w), let &, 5 denote the collection of all frames for the
eigenspace Ej(m(w)). We define &, x = ¢J if X is not an eigenvalue of 7(w). Elements of &, 5 are
denoted by calligraphic font, e.g. F.

THEOREM 3.4. For every m € G of dimension d, every eigenvalue A € spec(m(w)), and every index
1 <i<dy, let ]-'ZT’)‘ € G, be a given frame with lower and upper frame bounds A?’A and Bf’)‘,
respectively. Then,

(i) The collection

Gri = {Oran(@) : e FI X spec(r(w))}

is a frame for & ;, with lower frame bound A ; = minyegpec(r(w)) Af’)‘ and upper frame bound

Bri = MaXegpec(n(w)) B:’)‘.

(it) The collection G = \J, ¢ 1<ica, Yri 18 a Frobenius-Schur frame for 2(G), which is also a w-
Cayley frame.? Moreover, gAhas lower frame bound min{A, ; : m € @, 1 <i < d;} and upper
frame bound max{By;:m€ G,1 <i<d;}.

(iii) Every w-Cayley frame for £2(G) is of the form described in (ii).

Proof. Fix m€ G, and 1 <i < dy. Let A € spec(m(w)). Then if the frame .7-':”\ has lower and upper
frame bounds AT and BT respectively, then /" = {O,,(¢) : ¢ € F/*} forms a frame for
Zr i,x with the same lower and upper frame bounds. This is indeed the case, as O ; » is an isometric
isomorphism by Remark 3.2. Using the direct-sum decomposition of Proposition 3.3, this union results
in a frame for £, ; whose lower and upper frame bounds are the minimum and maximum, respectively,

over all frame bounds for the frames ]-:Zr A, To see this, consider an arbitrary f € £;;, and note that
[ = 2respec(r(w)) /A for fx € Zz ;5. Fixing A € spec(m(w)), we have that

APNAB < D) Kol < BP A3 (8)

(z»SJt'i"’A

since ]?Zr)‘ is a frame for Z,, . Equation (8) holds for all A € spec(m(w)), and we have that
Direspec(r(w)) [£2]3 = | f||3 since the decomposition of & ; is orthogonal. Summing over \ gives

SN KhaoPs Y A?*|fx|§>( i A?’A)Iflé-

Aespec(m(w)) ’lZ«'aEﬁZr’)‘ Aespec(m(w)) Aespec(m(w))

Similarly,

SN P Y B?*|fx|§<( max BZ”)IfI%-

Aespec(m(w)) wae]f—zr,x Aespec(m(w)) Aespec(m(w))

So, Gr; is a frame for &, ; with lower and upper frame bounds as claimed. This proves ().

2By Remark 3.2 (i), w-Cayley frames are a special type of Frobenius-Schur frames.
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To prove (ii), consider arbitrary f € ¢2(G). Then by Theorem 2.2, we know that f can be decom-
posed into an orthogonal direct sum f = > fri with fr; € & ;. Since G, ; is a frame for
Ex.i, then we have that

7eG,1<i<dx

A E N2 < 2 < Byl frill? 9

wilfrild < D0 1 Fmis O < Bril fill3. (9)
PEGr i

Since Equation (9) holds for all 7 € Gand1<i< dr, then summing over 7 and 7 gives,

Z Z Z |<fﬂ',i»¢>|2> Z Z Arr,i”f‘ir,)\

2> ( min A> 71
e 1<i<dy ¢€Gn reG 1<i<d, 7€G,1<i<dn

Similarly,

IIDINDINCEEDIPI S

reG 1<i<dr ¢€Gn ;i reG 1<i<dx

2 < ( s B) ™
re,1<i<d,

So, G is a frame for ¢2(G) with upper frame bound max{By; : 7 € @, 1 < i < d,} and lower frame
bound min{A, ; : 7€ @, 1 < i < dy}. That G is a Frobenius—Schur frame as well as a w-Cayley frame
follows directly from Proposition 3.3, Remark 3.2 and the definition of G.

Finally, part (ii¢) follows from the fact that a w-Cayley frame can be naturally partitioned into
frames for Z ; ». Applying the map @;11 » to those frames finishes the proof. O

In the following example, we construct a Cayley frame for £2(S;) which is not a basis.

EXAMPLE 3.5. Let G be the Cayley graph of S, with generating set S = {(12), (23), (34), (12)(34)}.

(1243
(1324)
(1342)

Figure 3: The Cayley graph of S4 with generating set S = {(12), (23), (34), (12)(34)}.

We use the notation of Appendix B.2 for the representations of S4 and its coefficient functions. For
each ¢ in the set {¢, 7,0, 7'}, the matrix ¢(S) has only simple eigenvalues, so we have one-dimensional
eigenspaces Fy(4(S)), for all A € spec(¢(S)) and ¢ € {1, 7,0,7’}. The matrix 7(S) has eigenvalue 0

t
of multiplicity 1 with associated one-dimensional eigenspace Ey(7(S)) = [—g, 0, g] C. Also, w(95)
has eigenvalue —2 with multiplicity 2. Fix the following eigenbasis for E_o(7(S5)):

{m_MLWWr{é%m?Y}
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We construct the Mercedes-Benz frame for the 2-dimensional eigenspace E_o(m(S)) = span{vy, va}

t

as follows: {02’§vl_%1)2’ ?Ul—%vz} B {[\[70, \2[] 7[ \4[7\2[7 f] [772’7§a7§] }
By Theorem 3.4, the following sets are frames for &, ;, where ¢ € S4, 1<i<dy.

e G.1= {1}

® Gra={m1}

R T, — Gt fori=1,2

AN B T Y e e PR e P ’
o Guiy={mh, 2B x4 1 /542 ’T’+;’/V fori=1,2,3
g’fr,z { 213\/10 4\/— lz \/10 4\/— 31,\/10+4f 11 \/W 37
o Gri = {0 + P, P+ P, — L+ G — e, — L — Y —

ﬁnizLZ&

Moreover U¢e§4 Gy.i is a 1g-Cayley frame for ¢%(S,).

,1Si§d¢

3.2. Cayley frames with special properties

The frames presented in Theorem 3.4 are constructed in such a way that allow us to pass properties
from frames for the smaller spaces to frames for the larger space. Recall that tight frames are frames
for which the upper and lower frame bounds are equal, and Parseval frames are tight frames in which
the upper and lower frame bounds are both equal to 1. A frame F = {¢;};cs is a unit norm frame if
[pil2 =1 for all i e I.

The following corollary is an immediate consequence of Theorem 3.4 (¢) and (ii).

COROLLARY 3.6. With notation as in Theorem 3./, suppose the frames }"Z-Tr’)‘ are Parseval (resp. tight,
resp. unit norm) for all w, i, and A\. Then G ; is a Parseval (resp. tight, resp. unit norm) frame for
Er.i, and G is a Parseval (resp. tight, resp. unit norm) frame for £?(G).

To introduce the next property, we fix a basis B for £2(G). A vector z € £%(G) is called K-sparse
(with respect to B) if it is a linear combination of at most K basis elements. We call B the sparsity
basis for (2(G). A unit norm frame F for £(G) is said to have the restricted isometry property of
order K with parameter o € (0,1) if

(1= d0r)llal3 < [Fll3 < (1 + 6x) =[5,

for all K-sparse x € ¢?(G) [SF13]. The restricted isometry property was introduced in [CT05| and
[Can08], and is of particular importance in compressive sensing. Given a vector y € C™ of observed
data, an unknown sparse signal z € C"V, and a measurement matrix A € C™*" the goal of compressive
sensing is to determine what matrices A allow for sparse reconstruction of the signal x in the under-
determined (m < N) system y = Az, and to develop efficient reconstruction methods. The restricted
isometry property is key to obtaining an optimal lower bound on m, the number of measurements,
in terms of N and the sparsity of x. Also, frames with small dx for sufficiently large K are more
desirable, as they can serve as measurement matrices that allow for successful sparse reconstruction
[SF13|. The frame construction in Theorem 3.4 allows us to control the restricted isometry property
constants 0.

Let B = U eg Ut {4/%%,1« 1<y < dw}, which is the preferred Fourier basis for £2(G),
and let B, ; = {4 / %’lﬂm 1<j< dﬂ}, which we think of as the preferred Fourier basis for & ;.

15
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COROLLARY 3.7. With notation as in Theorem 3.4, suppose each frame G ; has the restricted isometry
property of order K with parameter 03", with respect to the basis Br ;. Then G has the restricted
isometry property of order K with parameter § := max;, ; 67", with respect to the basis B.

Proof. Suppose x € (*(G) is K-sparse with respect to B, and define Py ; : £*(G) — ¢*(G) to be the
orthogonal projection onto the space £, ;. Note that for each 7 € Gandeach 1 <i < dr, the projection
P ; preserves sparsity. That is, P, ;x is K-sparse with respect to the basis B ; for £ ;. So, by the
assumption, we have for each 7w € Gand1<i< d that

(1= )| Prizl3 < D KPriz, > < (140" Priz]3.
PG i

Now define § = max, ; x 5}2’1")‘7 and observe that

IGz5=2 D> X KPrawddP< ), Y (1+08)|Prazll = (1+3)[]3.

meG 1<i<dr $€Gr i reC 1<i<d,

The lower bound follows by a similar argument. Therefore, G has the restricted isometry property of
order K with parameter d, with respect to the basis B. O

3.3. Comparison with previous work: frames for the permutahedron

In [CDHS21, Equation (11)], suitable frames for the permutahedron were proposed. The same frames
can be produced as an immediate application of Theorem 3.4 to the orthonormal eigenbasis of Proposi-
tion 2.5. Namely, Proposition 2.5, when applied to the case of the permutahedron P,,, provides us with
a second method for obtaining the decompositions in [CDHS21, Proposition 1]. A precise definition
of the permutahedron is given in Subsection 2.2. We note that, unlike the methods in [CDHS21]|,
our approach does not make use of equitable partitions and Schreier graphs. Instead, we need a full
description (in matrix form) of all irreducible representations of S,, to obtain a concrete description of
the eigenvectors of the adjacency matrix of P,, (see Example 2.7 and Example 2.9). Here, we focus on
the relation between our notations and results and those of [CDHS21].

Let 7 be an irreducible representation of S,, associated with a partition + of [n]. Then the space W,
given in [CDHS21, Equation (2)] is simply the subspace of £2(S,) containing all coefficient functions
associated with 7, namely,

W’y = @?;1571',1;'

Fix an eigenvalue A of the adjacency matrix Ap, . Proposition 2.5 (ii) states that every A-eigenvector
¢ € ClIS»l of Ap  can be written as

¢ = B@®, 5 B, Xo.),

where B is the unitary matrix of normalized coefficient functions given in (2), and every X, ; € Cd~
is either 0 or a A-eigenvector for o(S) = >, g o(s). Thus ¢ € W, precisely when X, ; = 0 whenever
o # m. So, a A-eigenvector ¢ of Ap, belongs to W, if and only if it can be written as

®ﬂ71(X1) + @7‘-72()(2) + ...+ @ﬂ-,dw (de),

for X1,...,Xq4. € Ex(m(S)) where at least one of the X;’s is nonzero. Finally, by Remark 3.2 (i),
we have O ;(X;) € Zr ; for each 1 < j < d,. The space Uy given in [CDHS21, Equation (6)] is
defined as the A-eigenspace of the adjacency matrix Ap, . The above discussion shows that the space
Zyx = W, n U, in [CDHS21, Proposition 1] is exactly the space Z, = @?21Z7r,i,% where Z ; 5 is
given in Definition 3.1(i).
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4. Future work

In this paper, we provide a complete description of the eigen-decomposition of the adjacency ma-
trix of a weighted Cayley graph in terms of the irreducible representations of its underlying group
(Proposition 2.5). Leveraging this eigen-decomposition, we characterize all weighted Cayley frames
(with respect to a given weight function) of £2(G), and offer a concrete method for constructing such
frames (Theorem 3.4). In a weighted Cayley frame, each atom is associated exclusively with the coef-
ficient space of a single irreducible representation of the underlying group. So, essentially, we obtain
bases/frames that are efficient in the Fourier domain, analogous to the role played by the classical
Fourier basis in classical signal processing.

We believe that this choice of eigenbasis/frame, informed by the representation theory of the
underlying group, leads to more efficient tools for signal processing. As a follow-up to this work, we
plan to carry out numerical experiments or simulations to explore the following scenarios.

(i) Tt is reasonable to expect that our representation-theoretic approach should be especially ben-
eficial when a repeated eigenvalue is associated with two different irreducible representations.
With terminology of Proposition 2.5, this means that the value A is an eigenvalue for both 7(w)
and o(w), with m,0 € G. We plan to run numerical experiments to compare the efficiency of
our construction (where the eigenvalue A associated with each representation 7 and o is treated
separately) with general GSP constructions in the literature.

(ii) In the context of ranked data analysis, the generating set captures a notion of “closeness” between
rankings. It is reasonable to assume that in different voting contexts, it might be useful to choose
a generating set different from that of the permutahedron. In particular, we are interested in
analyzing scenarios where the top positions in the ranking are considered to be much more
important than the bottom positions. This could be the case where n candidates are ranked for
a single job opening. In that case, two rankings that differ only in the positions n — 1 and n are
intuitively considered to be more similar than rankings in which positions 1 and 2 are switched.
We plan to pursue this direction in future work. We have plans to analyze various data sets in
the context of ranked data to see how varying the generating set affects the interpretation of the
data and the efficacy of the developed GSP tools.
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Appendix A. Proof of Proposition 2.5

Proof. First note that for every m e @, the d, x d matrix m(w) is Hermitian, because

m(w)* = (Z w(x)wm) = @) = 3 we)n(@) = m(w).

zeG zeG zeG
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Hence 7(w) is unitarily diagonalizable. That is, C%* admits an orthonormal basis consisting of eigen-
vectors of m(w).
The adjacency matrix Ag can be written in terms of the right regular representation as follows:

Ag = Y w(x)p(x). (A1)

zeG

By the Frobenius—Schur theorem, there exists a unitary matrix B such that p(g) can be block diago-
nalized. Namely,
9)B =@ dx-7(g9) YgeG, (A.2)

weG

where d, denotes the dimension of 7, and d, - m(g) denotes the direct sum of d, copies of 7(g). Putting
(A.1) and (A.2) together, we get a block diagonalization of Ag as follows:

B 'A¢B=B" (Z w(x)p(x)) B = @ dy - (Z w(x)w(a:)) = @ dr - m(w). (A.3)

zeG TeG zeG e

Let N denote the size of G, and consider ¢ € CV. From (A.3), the vector ¢ is a A-eigenvector of Ag
precisely when B~'¢ is a A-eigenvector of @__g dr - m(w), because

ANB7'¢) =B ' (\p) =B tAge = (@ dy - m(w ) 1. (A.4)

weG

This finishes the proof of (i), because the spectrum of the block diagonal matrix @, s dr - 7(w) is the
collection of eigenvalues of its blocks.

To prove (ii), consider the block partition of the vector B~1¢ € CV that is compatible with the
decomposition @, ¢ dr - 7(w), ie. B7'o =@ ¢ @ X4, with X, ; € C¥. So by (A.4), the vector
¢ is a A-eigenvector of Ag if and only if AX;; = m(w)X,; for every 7 € G and every appropriate i.
That is, ¢ is a A-eigenvector of A if and only if the following two conditions hold:

(a) for every 7 € Gand1<i< dy, either X, ; =0 or X, is a A-eigenvector of m(w);
(b) there exists some 7 € Gand1<i< dy such that X, ; # 0.

By part (), every matrix m(w) is diagonalizable. For every m € G, let {(vir,..., Vi } < C? be an
orthonormal eigenbasis for 7(w). Every fixed eigenvector V™ of m(w) can be naturally embedded in

®7TEG @, . C in d,-many ways; we denote these embedded versions of V™ by V7r " e CN, where
i=1,...,d;. More precisely, for i = 1,...,d,, we define

Vj7T fo=mand k=1

T o =
Vi =@, OxZ1 Yok, where Yo = { 0 otherwise

From the definition of the vectors V}™ it is easy to see that the set U,e {VTr 1<, < dﬂ} is an

orthonormal set in C. Moreover, this set has . el d2 = N elements; so it forms an orthonormal

basis for CV. Finally, since B is a unitary matrix, we obtain the following orthonormal basis of CV:
L T, | ..
B.—U{BVj .1<z,j<dﬁ}.
neG
By properties (a) and (b) above, the collection B is indeed an orthonormal basis consisting of eigen-

vectors of Ag. This finishes the proof of (ii).
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Given the explicit form of the matrix B (see (2)), we observe that

. d d, &=
BV,TF’Z = - |:7T1,i‘772,i| . |7Tdﬂ__i:|V'7r = u E LTk,
! |G| Y Gl =

where V' = [z1, - zq ] O

Appendix B. Representations of S,

The symmetric group S,, is the group of all permutations on n elements with composition of permuta-
tions as the group operation. As we use the irreducible representations of S,, in our approach, we recall
that a finite group’s irreducible representations are in one-to-one correspondence with its conjugacy
classes [FH91, Proposition 2.30]. For S,,, the conjugacy classes are determined by the cycle type of the
permutations, where the cycle type describes the number of cycles and their lengths in the unique cycle
decomposition of a permutation. Therefore, the conjugacy classes of S,, are in bijective correspondence
with the partitions A - n of n.

A useful accounting technique for partitions is to represent them as a collection of rows and columns
of boxes, called a Young diagram. A Young diagram with shape A\ = (A1,...,Ax), where {\;}¥_, is in
non-increasing order, has A; boxes in its ith row, for every 1 < ¢ < k. Thus, the number of Young
diagrams with n blocks is exactly the number of partitions of n. A Young diagram can be extended
to a Young tableau, which is a Young diagram on n blocks where each block is uniquely labeled from
the set {1,2,...,n — 1,n}. A Young tableau is said to be in standard form if the labels in each row
increase from left to right and the labels in each column increase from top to bottom. While Young
diagrams correspond with irreducible representations of S,,, the number of Young tableaux for a given

Young diagram (or, partition A - n) is the dimension of the corresponding irreducible representation
of S,,.

Appendix B.1l. Representations of S; in matrix form and their matrix coeffi-
cients

To write functions on S3 as vectors in C®, we order elements of Sz as follows: id, (12), (23), (13), (123), (132).
Below we have provided all irreducible representations of S3, expressed in matrix form, as well as the
coefficient functions of each representation.

(i) The trivial representation of Sz, denoted by ¢, is the 1-dimensional representation that maps
every element of Sg to 1. This representation is associated with the partition 3,0,0 of n = 3.
The unique coefficient function of ¢ is given by ¢ 1 = [1,1,1,1,1, 1]t )

(ii) The alternating representation of S3, denoted by 7, is the 1-dimensional representation that
maps o € S3 to the sign of the permutation. This representation is associated with the partition
1,1,1 of n = 3. The unique coefficient function of 7 is given by 7 1 = [1,—1,-1,—-1,1, 1]t.

(iii) The standard representation of S; is the 2-dimensional irreducible representation 7 : S5 —

Us(C) defined as follows:
V3 1 0
2 -

Since 7 is multiplicative, and we have (13) = (12)(23)(12) and (123) = (12)(23), the above
matrices are enough to define m on S3. This representation is associated with the partition 2,1,0

|
ol

i) = [y 1] w02 - [
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of n = 3. The normalized coefficient functions of 7 are

1 1]
V3 0 0 V3
1 —7= 1 0 1 0 1 ——=
§7T1,1 = _‘/i , \/;WQJ = 1> \/;771,2 = _1/> \/;W272 = 1‘/g
24/3 ? 12 2\/1‘3
T 23 f }; T 243
| 723 | 2 2 T35

Appendix B.2. Representations of S; in matrix form and their matrix coeffi-
cients

In order to identify functions on S, with vectors of size 24, we order elements of S; as follows:

id, (12), (23), (34), (13), (14), (24), (12)(34), (13)(24), (14)(23), (123), (132), (124), (142), (134),
(143), (234), (243), (1234), (1432), (1423), (1342), (1324), (1243).

Below, we describe the irreducible unitary representations of Sy. Since the elements (12), (23), and
(34) generate the group, we first describe the explicit matrix representations with respect to these
generating elements. The remaining matrix representations are given in Table B.1.

(i) The trivial representation of Sy, denoted by ¢, is the 1-dimensional representation that maps
every element of S; to 1. This representation is associated with the partition 4,0,0,0 of n = 4.

(ii) The alternating representation of Sy, denoted by 7, is the 1-dimensional representation that

maps o € S4 to the sign of the permutation. This representation is associated with the partition
1,1,1,1 of n = 4.

(iii) The 2-dimensional representation of S, denoted by o is defined as follows:
. 10 0 1 0 w? 0 1
i) =[] ez = [ gl st = |2 5| e - |7 gl

where w is the third root of unity. This representation is associated with the partition 2,2,0,0
of n = 4.

(iv) The standard-alternating tensor representation of S4, denoted by 7, is 3-dimensional and
is defined as follows:

100 -1 0 0 0o 0 -1 -1 0
rid)=[0 1 o, x((12)=]0 0 1|, x(23))=0 -1 0 |,x(@B4)=]0 0
00 1 0 10 -1 0 0 0 -1

This representation is associated with the partition 2,1,1,0 of n = 4.

(v) The standard representation of Sy, denoted by 7/, is 3-dimensional and is defined as follows:

100 1 0 0 00 1 100
©Gid)=[0 1 of,(12)=]0 0 —1|,7(23))=|0 1 0|, ((34))=]0 0 1
00 1 0 -1 0 100 010

This representation is associated with the partition 3,1,0,0 of n = 4.
In Table B.1, we summarize the above unitary irreducible representations of S4, and provide the

explicit matrix forms for all group elements. Here, w denotes the third root of unity. In Table B.2 we
provide the matrix coefficients of the unitary representations of Sy.
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Table B.1: The unitary representations of S4 in matrix form
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33

!

™3

/

T3

/!
LEY)

/

T2

/

T2

!
3.1

/

a1

]

-1
-1
-1
1
1
1
1
1
1
1
1
1
1
1
-1
-1
-1
-1
-1

L1 | Tl | 011|021 | 012|022 | T11 | o1 | W31 | T2 | T22 | W32 | W13 [ W23 [ T33 | Ty

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

id
(12)
(23)
(34)

(12)(34)
(13)(24)
(14)(23)
(123)
(132)
(124)
(142)
(134)
(143)
(234)
(243)
(1234)
(1432)
(1423)
(1342)
(1324)
(1243)

Table B.2: The matrix coefficients of the unitary representations of Sy

22



References

[BabT79]

[BG22|

[BRVS16]

[Can08]

[CDHS21]

[CFM14]

[Chr13]

[CL17]

[CTO5]

[Donl7]

[FHO1]

[Fol95]

[GBvVL18]

[GGH19]

[GGH21]

[GIK22]

L. Babai. Spectra of Cayley graphs. Journal of Combinatorial Theory, Series B, 27(2):180—
189, 1979.

K. Beck and M. Ghandehari. Frames for graph signals on the symmetric group: A repre-
sentation theoretic approach. In 2022 30th European Signal Processing Conference (EU-
SIPCO), pages 20712075, 2022.

H. Behjat, U. Richter, D. Van De Ville, and L. S6rnmo. Signal-adapted tight frames on
graphs. IEEE Transactions on Signal Processing, 64(22):6017-6029, 2016.

E. J. Candés. The restricted isometry property and its implications for compressed sensing.
Comptes Rendus Mathematique, 346(9):589-592, 2008.

Y. Chen, J. DeJong, T. Halverson, and D. I. Shuman. Signal processing on the permuta-
hedron: tight spectral frames for ranked data analysis. The Journal of Fourier Analysis
and Applications, 27(4):Paper No. 70, 2021.

C. Chui, F. Filbir, and H. Mhaskar. Representation of functions on big data: Graphs and
trees. Applied and Computational Harmonic Analysis, 38, 07 2014.

O. Christensen. An Introduction to Frames and Riesz Bases. Applied and Numerical
Harmonic Analysis. Birkh&user Boston, 2013.

S. P. Chepuri and G. Leus. Graph sampling for covariance estimation. IEEE Transactions
on Signal and Information Processing over Networks, PP, 4 2017.

E. J. Candes and T. Tao. Decoding by linear programming. IEEE Transactions on Infor-
mation Theory, 51(12):4203-4215, 2005.

B. Dong. Sparse representation on graphs by tight wavelet frames and applications. Ap-
plied and Computational Harmonic Analysis. Time-Frequency and Time-Scale Analysis,
Wavelets, Numerical Algorithms, and Applications, 42(3):452-479, 2017.

W. Fulton and J. Harris. Representation Theory. A First Course, volume 129 of Graduates
Texts in Mathematics. Springer-Verlag, New York, first edition, 1991.

G. B. Folland. A Course in Abstract Harmonic Analysis. Studies in Advanced Mathematics.
CRC Press, Boca Raton, FL, 1995.

F. Gobel, G. Blanchard, and U. von Luxburg. Construction of tight frames on graphs
and application to denoising. In Handbook of big data analytics, Springer Handb. Comput.
Stat., pages 503-522. Springer, Cham, 2018.

M. Ghandehari, D. Guillot, and K. Hollingsworth. A non-commutative viewpoint on graph
signal processing. In Proc. Int. Conf. Samp. Theory and Appl. Proceedings of the Interna-
tional Conference of Sampling Theorey and Applications, Bordeaux, July 2019.

M. Ghandehari, D. Guillot, and K. Hollingsworth. Gabor-type frames for signal processing
on graphs. The Journal of Fourier Analysis and Applications, 27(2):Paper No. 25, 23,
2021.

M. Ghandehari, J. Janssen, and N. Kalyaniwalla. =A noncommutative approach to
the graphon Fourier transform. Applied and Computational Harmonic Analysis. Time-
Frequency and Time-Scale Analysis, Wavelets, Numerical Algorithms, and Applications,
61:101-131, 2022.

23



[HLOO|
[HVG1I]

[INS09]

[KD18]

[KD19]

[LV13]

[OFK*18]

[Ort22]
[RCR21]

[RKHS02|

[SerTT]

[SF13]
[SM13]

[SM14]

[SNF+13)

[SRV16]

[SWHV13]

D. Han and D. R. Larson. Frames, bases and group representations. Mem. Amer. Math.
Soc., 147, 9 2000.

D. K. Hammond, P. Vandergheynst, and R. Gribonval. Wavelets on graphs via spectral
graph theory. Applied and Computational Harmonic Analysis, 30(2):129 — 150, 2011.

M. Jansen, G. Nason, and B. Silverman. Multiscale methods for data on graphs and
irregular multidimensional situations. Journal of the Royal Statistical Society Series B,
71:97-125, 01 2009.

M. S. Kotzagiannidis and M. E. Davies. Analysis vs synthesis - an investigation of (co)sparse
signal models on graphs. 11 2018.

M. S. Kotzagiannidis and P. L. Dragotti. Sampling and reconstruction of sparse signals
on circulant graphs—an introduction to graph-FRI. Applied and Computational Harmonic
Analysis. Time-Frequency and Time-Scale Analysis, Wavelets, Numerical Algorithms, and
Applications, 47(3):539-565, 2019.

N. Leonardi and D. Van De Ville. Tight wavelet frames on multislice graphs. IEFEFE
Transactions on Signal Processing, 61(13):3357-3367, 2013.

A. Ortega, P. Frossard, J. Kovacevi¢, J. M. F. Moura, and P. Vandergheynst. Graph signal
processing: Overview, challenges, and applications. Proceedings of the IEEE, 106(5):808—
828, 2018.

A. Ortega. Introduction to Graph Signal Processing. Cambridge University Press, 2022.

L. Ruiz, L. F. O. Chamon, and A. Ribeiro. Graphon signal processing. IEEE Transactions
on Signal Processing, 69:4961-4976, 2021.

D. Rockmore, P. Kostelec, W. Hordijk, and P. F. Stadler. Fast Fourier transform for fitness
landscapes. Applied and Computational Harmonic Analysis. Time-Frequency and Time-
Scale Analysis, Wavelets, Numerical Algorithms, and Applications, 12(1):57-76, 2002.

J-P Serre. Linear Representations of Finite Groups. Springer-Verlag, New York-Heidelberg,
1977. Translated from the second French edition by Leonard L. Scott, Graduate Texts in
Mathematics, Vol. 42.

H. Rauhut S. Foucart. A Mathematical Introduction to Compressive Sensing. Springer,
2013.

A. Sandryhaila and J. M. F. Moura. Discrete signal processing on graphs. IEEFE Transac-
tions on Signal Processing, 61(7):1644-1656, 2013.

A. Sandryhaila and J. M. F. Moura. Big data analysis with signal processing on graphs:
Representation and processing of massive data sets with irregular structure. IEEE Signal
Processing Magazine, 31(5):80-90, Sept 2014.

D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst. The emerging
field of signal processing on graphs: Extending high-dimensional data analysis to networks
and other irregular domains. IEEFE Signal Processing Magazine, 30(5):83-98, 2013.

D. I. Shuman, B. Ricaud, and P. Vandergheynst. Vertex-frequency analysis on graphs.
Applied and Computational Harmonic Analysis, 40(2):260 — 291, 2016.

D. Shuman, C. Wiesmeyr, N. Holighaus, and P. Vandergheynst. Spectrum-adapted tight
graph wavelet and vertex-frequency frames. IEEE Transactions on Signal Processing, 63,
11 2013.

24



	Introduction
	Main contribution
	Organization of the paper

	Notations and background
	Representation theory of finite groups
	Eigen-decompositions of (weighted) Cayley graph adjacency matrices

	Construction of frames for graph signals
	Special frames for Cayley graphs
	Cayley frames with special properties
	Comparison with previous work: frames for the permutahedron

	Future work
	Proof of Proposition ??
	Representations of Sn
	Representations of S3 in matrix form and their matrix coefficients
	Representations of S4 in matrix form and their matrix coefficients


