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Abstract

The spectral decomposition of graph adjacency matrices is an essential ingredient in the design of graph
signal processing (GSP) techniques. When the adjacency matrix has multi-dimensional eigenspaces,
it is desirable to base GSP constructions on a particular eigenbasis that better reflects the graph’s
symmetries. In this paper, we provide an explicit and detailed representation-theoretic account for the
spectral decomposition of the adjacency matrix of a weighted Cayley graph. Our method applies to
all weighted Cayley graphs, regardless of whether they are quasi-Abelian, and offers detailed descrip-
tions of eigenvalues and eigenvectors derived from the coefficient functions of the representations of
the underlying group. Next, we turn our attention to constructing frames on Cayley graphs. Frames
are overcomplete spanning sets that ensure stable and potentially redundant systems for signal re-
construction. We use our proposed eigenbases to build frames that are suitable for developing signal
processing on Cayley graphs. These are the Frobenius–Schur frames and Cayley frames, for which we
provide a characterization and a practical recipe for their construction.
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1. Introduction
Graph signal processing (GSP) is a fast-growing field that offers a framework for developing signal
processing techniques tailored for signals that are defined on graphs, with the objective of incorporating
the underlying graph structure into the analysis. For a fixed graph G with vertex set V , a graph signal
on G is a complex-valued function f : V Ñ C. If the vertex set V is labeled, say tviuNi“1, then the
graph signal can be represented as a column vector rfpv1q, fpv2q, . . . , fpvN qs

t in CN , where t denotes the
matrix transpose. A powerful technique to analyze graph signals that has gained significant popularity
over the recent years involves fixing a basis of eigenvectors for an appropriate matrix associated with
the graph; we call such a basis a graph Fourier basis. Expanding graph signals in this basis leads to
the idea of Fourier analysis on graphs. The reason for this approach is to improve signal processing
efficiency by working with a basis that encodes the structural features of the underlying graph, rather
than an arbitrary basis of CN .

Prominent examples of matrices associated with graphs are the graph adjacency matrix and the
graph Laplacian. In this manuscript, we focus on weighted graphs, where each edge is assigned
a numerical value known as a weight, while non-edges are assigned a weight of zero. The adjacency
matrix of a weighted graph G with N nodes is the matrix AG of size N , whose pi, jq-th entry is precisely
the weight of the edge joining nodes i and j. The Laplacian of G, denoted by LG, is an N ˆN matrix
defined as LG “ DG ´ AG, where DG is the diagonal matrix with entries dii representing the degree
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of the vertex vi (the sum of the weights of edges incident to vi). We note that unweighted graphs can
be viewed as a specific type of weighted graphs in which each edge is assigned a weight of 1.

Consider either the graph adjacency matrix AG or the graph Laplacian LG; these matrices are often
referred to as the graph shift operator . Next, fix an orthonormal basis of eigenvectors φ1, . . . , φN P

CN associated with (possibly repeated) eigenvalues λ1, . . . , λN for that matrix. The graph Fourier
transform pf of a graph signal f : V Ñ C is defined to be the expansion of f in terms of this orthonormal
basis. Namely,

pfpφiq “ xf, φiy “
N
ÿ

n“1

fpvnqφipvnq.

The corresponding inverse Fourier transform is given by

fpvnq “
N
ÿ

i“1

pfpφiqφipvnq.

Here, x¨, ¨y denotes the inner product on CN . It is worth mentioning that the eigenvectors tφiuNi“1

can be chosen from RN , since both adjacency and Laplacian matrices are symmetric and real-valued,
and therefore, they both have real spectrum, and are diagonalizable over R. However, we do not
impose such a restriction on our choice of eigenbasis. In fact, we will show that in certain cases, a
complex eigenbasis may provide us with a more efficient Fourier analysis (see e.g. Proposition 2.5 and
Corollary 2.6). We refer to [SM13, SM14, SNF`13] for a detailed background on the graph Fourier
transform, to [OFK`18? ] for a general overview of graph signal processing, and to [RCR21, GJK22]
for some new developments in signal processing on large graphs and graphons.

Taking the graph Fourier transform as defined above as a first step, a significant body of research has
been devoted to generalizing classical tools from Fourier analysis to the case of signals defined on graphs.
Important examples of such efforts include wavelet constructions (e.g. [HVG11, JNS09, CFM14]), frame
constructions (e.g. [SWHV13, SRV16]), constructions of wavelet-type frames (e.g. [Don17, GBvL18,
LV13, SWHV13]), and constructions of Gabor-type frames (e.g. [BRVS16, GGH21]) for graph signals.
Normally, wavelet and frame constructions, as well as many other signal processing concepts, rely
heavily on the choice of the Fourier basis. Thus, a suitable selection of eigenbasis for the graph Fourier
transform plays a critical role in the success of this theory. The significance of this phenomenon
is accentuated when dealing with a graph (adjacency or Laplacian) matrix with high-dimensional
eigenspaces. A prominent example of such a scenario is the case of a Cayley graph, particularly one
that is associated with a non-Abelian group.

A weighted Cayley graph has vertices corresponding to elements of a group G and weighted edges
generated by an inverse-invariant function w : GÑ r0,8q, called a weight function (see Definition 2.3).
When w is t0, 1u-valued, this definition reduces to the definition of an unweighted Cayley graph.
The underlying algebraic structure and highly symmetric nature of (weighted) Cayley graphs make
them a rich category of graphs for various applications, leading to the need for the advancement
of further graph signal processing techniques for this class. For examples of signal processing on
Cayley graphs, see [RKHS02, CDHS21] for the case of Cayley graphs of the symmetric group, and see
[KD19, KD18, CL17] for the case of circulant graphs, which are Cayley graphs on Zn.

For Cayley graphs (or any regular graph in general), the eigenbasis of the associated adjacency and
Laplacian matrices are identical. So, in this article, we focus our attention only to adjacency matrices.
Eigen-decompositions of adjacency matrices of Cayley graphs are well-understood when the group is
Abelian ([Bab79]) or the Cayley graph is quasi-Abelian,1 meaning the generating set is closed under

1The terminology “quasi-Abelian” is somewhat misleading, as it does not pertain to the underlying group of a weighted
Cayley graph; instead, it relates to the conjugation-invariance of its weight function w (see the definition before Corol-
lary 2.6).
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conjugation ([RKHS02]). In [GGH19], the second author and collaborators use representation theory
of groups to construct a suitable Fourier basis (i.e., eigenbasis of the graph adjacency matrix) for signal
processing on quasi-Abelian Cayley graphs. They contend that the particular eigenbasis constructed
through representation theoretic considerations is more suitable for developing the Fourier transform
on a Cayley graph. For example, using these eigenbases simplifies several operations on graph signals
including the graph translation operator. Moreover, they show that such eigenbases can be used to
construct a suitable family of tight frames.

In [CDHS21], Chen et al. take a similar viewpoint when studying ranked data sets as signals on the
permutahedron. The permutahedron, denoted by Pn, is the Cayley graph of the symmetric group with
the generating set of adjacent transpositions. Selecting the permutahedron as the underlying graph is
crucial for the success of their theory, as the generating set of the permutahedron captures a specific
notion of distance that is useful in the context of ranked voting systems. Chen et al. construct a special
basis of eigenvectors for the vector space `2pSnq that is compatible with both irreducible representations
of Sn and eigenspaces of the adjacency matrix of Pn. They use this basis to form a frame (i.e., an
overcomplete spanning set) for `2pSnq that is suitable for GSP on the permutahedron. The significance
of obtaining such a frame is that the analysis coefficients, which are the inner products of vectors
in `2pSnq with frame elements, provide specific interpretations of the ranked data (e.g. popularity of
candidates, when a candidate is polarizing, and when two candidates are likely to be ranked similarly).
This example highlights the importance of constructing appropriate Fourier bases for (not necessarily
quasi-Abelian) Cayley graphs.

In [BG22], the first two authors generalize the results of Chen et al. to all Cayley graphs on Sn.
Namely, they introduce a class of frames, called Frobenius–Schur frames, which have the property
that every frame vector belongs to the coefficient space of only one irreducible representation of the
symmetric group. Furthermore, they characterize all Frobenius–Schur frames on the group algebra
of the symmetric group which are ‘compatible’ with respect to both the generating set and the rep-
resentation theory of the group. They observe that frames obtained in [CDHS21] are exactly such
compatible Frobenius–Schur frames (which we call Cayley frames in this paper); see Subsection 3.3 for
a detailed explanation.

1.1. Main contribution
In the present article, we take the perspective in [GGH19] to extend the results of [BG22] to general
weighted Cayley graphs; that is weighted Cayley graphs on any group G, with any weight function.
This includes the case of unweighted Cayley graphs on any group with any inverse-closed generating
set. The definitions of Frobenius–Schur frames and frames compatible with a generating set can be
naturally extended in the case of general weighted Cayley graphs. Frobenius–Schur frames are those
that are compatible with the representation theory of the underlying group G; whereas, we introduce
weighted Cayley frames with respect to a given weight function w as those that are compatible with
w and the representation theory of G (Definition 3.1).

Our contribution in this paper is two-fold. Firstly, we provide a complete description of the eigen-
decomposition of the adjacency matrix of a weighted Cayley graph in terms of the irreducible rep-
resentations of its underlying group (Proposition 2.5). This work generalizes existing results on the
spectral decomposition of Cayley graphs on Abelian groups [Bab79] and quasi-Abelian Cayley graphs
[RKHS02]. Secondly, we characterize all (weighted) Cayley frames (with respect to a given weight
function) of `2pGq, and provide a concrete recipe for constructing such frames (Theorem 3.4). Given
their compatibility with both the group and the weight function, these are suitable frames for signal
processing on weighted Cayley graphs. Our frame construction in Theorem 3.4 is based on the partic-
ular eigenbasis provided in Proposition 2.5, where the representation theory of the underlying group
guides the choice of basis elements. Namely, in a weighted Cayley frame, each vector belongs to the
coefficient space of only one irreducible representation of the underlying group. This is akin to the
selection of the Fourier basis in classical signal processing; indeed, the classical Fourier basis contains
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precisely one coefficient function for each irreducible representation of Zn.
Our representation theoretic viewpoint, particularly through the application of Frobenius–Schur

theory, offers a significant benefit in our approach, as it provides a block diagonalization of the ad-
jacency matrix resulting in much smaller block sizes than the original matrix. For instance, in Ex-
ample 2.9 we discuss a Cayley graph on the symmetric group S4. The associated adjacency matrix
in this case is of size 24, but our method only requires the eigen-decomposition of matrices of size at
most 3. Additionally, the block-diagonalizing unitary matrix from Frobenius–Schur theory depends
solely on the underlying group of a weighted Cayley graph. This feature greatly enhances the compu-
tational efficiency of our proposed method, as the same block-diagonalizing unitary matrix works for
any weighted Cayley graph over a given group.

1.2. Organization of the paper
The rest of this article is organized as follows. In Section 2.1, we present the necessary background for
the representation theory of finite groups, along with the Schur orthogonality relations and Frobenius–
Schur decomposition theorem. In Section 2.2, we use the Frobenius–Schur theorem to provide a
complete description of the eigen-decomposition of the adjacency matrix of a weighted Cayley graph
in terms of the irreducible representations of its underlying group (Proposition 2.5). As a corollary
to Proposition 2.5, we provide a new proof for the quasi-Abelian case. We also provide examples of
applications of Proposition 2.5 for the case of the permutahedrons, P3 and P4. In Section 3.1, we use
the results of Section 2.2 to introduce and characterize weighted Cayley frames, i.e., Frobenius–Schur
frames compatible with the weight function of a Cayley graph. We also provide an example of a Cayley
frame for `2pS4q. In Section 3.2 we discuss properties inherited by the larger Cayley frame from the
smaller frames, including tight/parseval frames and the restricted isometry property. Next, we show
how our frame construction for general Cayley graphs relates to the frames for the permutahedron
built in [CDHS21] (Section 3.3). We end the paper with Appendix A which provides a proof of
Proposition 2.5, and Appendix B which gives an overview of the theory behind finding the irreducible
representations of Sn. We have included Appendix B.1 and Appendix B.2 with matrix representations
and coefficient functions of S3 and S4. While this information is known, we have included it here for
the ease of the reader, as finding references presenting this material in a suitable form for us turned
out to be challenging.

2. Notations and background

2.1. Representation theory of finite groups
In this subsection, we provide the necessary background for the representation theory of finite groups
and their associated function spaces. We restrict our attention to unitary representations. This is
non-consequential as every representation of a finite group is unitizable by a change of inner product
on the representation space (see for example [Ser77, Section 1.3]). Throughout this article, let G be
a finite (not necessarily Abelian) group of size N . A unitary representation of G of dimension d is
a group homomorphism π : G Ñ UdpCq, where UdpCq denotes the (multiplicative) group of unitary
matrices of size d. For a representation π : G Ñ UdpCq, a subspace W of Cd, and an element g P G,
define

πpgqW :“ tπpgqξ : ξ PW u.

The subspace W is called π-invariant if for all g P G, we have πpgqW Ď W . Given a π-invariant
subspace W , we define the subrepresentation π|W of π to be the representation of G on the inner
product spaceW obtained by restricting both the domain and codomain of πp¨q toW . A representation
π is called irreducible if t0u and Cd are its only π-invariant subspaces. We say two representations π
and σ of G are unitarily equivalent if there exists a unitary matrix U such that U´1πpgqU “ σpgq for all
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g P G. We let pG denote the collection of all (equivalence classes of) irreducible unitary representations
of G. In the case of an Abelian group, every irreducible representation of G is one-dimensional [Fol95,
Corollary 3.6], and pG reduces to the group of characters on G. Note that every unitary representation
of a finite group decomposes into a direct sum of irreducible representations in pG [Fol95, Theorem 5.2].

An important representation of a group G is its right regular representation ρ : G Ñ UN pCq,
where ρpgq denotes the matrix associated with the permutation h ÞÑ hg´1, for every h P G. The
representation ρ is unitarily equivalent to the representation ρ1 on the vector space `2pGq, defined as
follows:

ρ1 : GÑ Up`2pGqq, ρ1pxqfpyq “ fpyxq, @f P `2pGq, @x, y P G.

Here, `2pGq is equipped with the inner product xf, gy`2pGq “
ř

xPG fpxqgpxq, and Up`2pGqq denotes the
set of unitary operators on the inner product space `2pGq. For the rest of this article, we assume that
the group elements are labeled as G “ tg1, . . . , gNu. So, the unitary operator U : `2pGq Ñ CN defined

as Upfq “
”

fpg1q, . . . , fpgN q
ıt

, where t denotes the matrix transpose, provides the unitary equivalence
between ρ and ρ1.

When N ą 1, the representation ρ is not irreducible, and thus can be decomposed into a direct sum
of irreducible representations. In many applications, such as those studied in this paper, it is important
to understand the above direct sum decomposition of ρ in concrete terms. For general (not necessarily
finite) compact groups, the Peter–Weyl theorem provides us with a convenient way to tackle this task.
This theorem, which was first proved by Frobenius and Schur for the case of finite groups, gives rise
to a decomposition of CN (respectively `2pGq) into spaces generated by coefficient functions.

For an arbitrary π P pG of dimension dπ, and vectors ξ, η P Cdπ , we define the coefficient function
associated with the representation π and the vectors ξ, η as follows:

πξ,η : GÑ C, πξ,ηpgq “ xπpgqξ, ηy, @g P G.

For the rest of this article, we view πξ,η as a function on G or as a vector in CN interchangeably.
Namely, we sometimes think of πξ,η as

πξ,η “
”

xπpg1qξ, ηy, . . . , xπpgN qξ, ηy
ıt

.

When teiudπi“1 is the standard orthonormal basis for Cdπ , the coefficient functions

πi,jpxq :“ πei,ej pxq “ xπpxqei, ejy, i, j “ 1, . . . , dπ

indicate the entries of the matrix of πpxq represented in the same basis. Coefficient functions play a
central role in the harmonic analysis of non-Abelian groups. For π P pG and 1 ď i ď dπ, define

Eπ,i “
 

πξ,ei : ξ P Cdπ
(

. (1)

For πξ,ei P Eπ,i and g, x P G, we have

ρpgqπξ,eipxq “ πξ,eipxgq “ xπpxgqξ, eiy “ xπpxqπpgqξ, eiy “ ππpgqξ,eipxq.

So for every g P G, we get ρpgqEπ,i Ď Eπ,i. Consequently, every set Eπ,i forms a ρ-invariant subspace
of CN . This fact is used in the well-known Frobenius–Schur theorem, stating the decomposition of ρ.
Important pieces for the Frobenius–Schur theorem are the following orthogonality relations ([Fol95,
Theorem 3.34]).

Theorem 2.1 (The Schur orthogonality relations). Let π, σ be irreducible unitary representations of
G, and consider Eπ,i and Eσ,j as subspaces of CN .

1. If π and σ are not unitarily equivalent then Eπ,i K Eσ,j for all 1 ď i ď dπ and 1 ď j ď dσ.
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2. If tejudπj“1 is an orthonormal basis for Cdπ then
!b

dπ
|G|πj,i : j “ 1, .., dπ

)

is an orthonormal basis
for Eπ,i.

This is to say that if π and σ are not unitarily equivalent then xπi,j , σr,syCN “ 0 for all 1 ď i, j ď dπ
and 1 ď r, s ď dσ while

xπi,j , πr,syCN “
|G|
dπ

δi,rδj,s, for all 1 ď i, j, r, s ď dπ,

where δ is the Kronecker delta function.
We can now state the Frobenius–Schur theorem for finite groups.

Theorem 2.2 (Frobenius–Schur theorem). Let G be a finite group of size N . For Eπ,i as given in
Definition (1), we have

CN “ ‘πPpG ‘1ďiďdπ Eπ,i,

where each Eπ,i has the orthonormal basis
#

φπj,i :“

c

dπ
N
πj,i : j “ 1, ..., dπ

+

.

Moreover, for every 1 ď i ď dπ, the subrepresentation ρ|Eπ,i is unitarily equivalent to π. Consequently,
ρ is unitarily equivalent to ‘πPpG dp ¨ π; that is, each π P pG occurs in the right regular representation
of G with multiplicity dπ.

We can reformulate Theorem 2.2 as simultaneous block diagonalization of matrices ρpgq for all
g P G. Consider a fixed ordering of pG, e.g. pG “ tπ1, π2, . . . , πmu. Let di denote the dimension of the
representation πi. Let B be a matrix of size N “ |G| whose columns are the vectors of the orthonormal
basis in Theorem 2.2 ordered appropriately. Namely,

B “
”

φ11,1| . . . |φ
1
d1,1

looooooomooooooon

basis for Eπ1,1

| φ11,2| . . . |φ
1
d1,2

looooooomooooooon

basis for Eπ1,2

| . . . |φ11,d1 | . . . |φ
1
d1,d1

loooooooomoooooooon

basis for Eπ1,d1

| . . . . . . |φm1,dm | . . . |φ
m
dm,dm

looooooooomooooooooon

basis for Eπm,dm

ı

. (2)

Here, we use φki,j to denote φpπ
k
q

i,j to ensure clear notation. By the Schur orthogonality relations
(Theorem 2.1), B is a unitary matrix, and block diagonalizes the right regular representation. Namely,
for an arbitrary element g P G, the matrix B´1ρpgqB is block diagonalized with di blocks of size diˆdi
for each irreducible representation πi P pG as follows:

B´1ρpgqB “

»

—

–

π1pgq 0
. . .

0 π1pgq

fi

ffi

fl

d1ˆd1

‘ . . .‘

»

—

–

πmpgq 0
. . .

0 πmpgq

fi

ffi

fl

dmˆdm

(3)

The importance of the above block diagonalization lies in the fact that the same unitary matrix B
simultaneously block diagonalizes all matrices ρpgq for every g P G.

We refer the reader to [Ser77] for a detailed account of the representation theory of finite groups.
We remark that many of the concepts we discussed in this section can be extended to the context of
general compact groups; however, for the purposes of this article, we limit ourselves to finite groups.
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2.2. Eigen-decompositions of (weighted) Cayley graph adjacency matrices
In this section, we review how the Frobenius–Schur Theorem can be used to find an explicit decompo-
sition of adjacency matrices of weighted Cayley graphs. We summarize this result in Proposition 2.5.
While this result is well known, especially part piq in the case of unweighted Cayley graphs, it is
challenging to find references that give detailed descriptions of the eigenbases mentioned in the propo-
sition. In particular, we could not find references for proofs of Proposition 2.5 piiq and piiiq in the case
of a weighted Cayley graph that is not necessarily quasi-Abelian. To streamline the paper, we have
included the proof of Proposition 2.5 in Appendix A.

We now provide the necessary definitions, particularly of (weighted) Cayley graphs. Although
Cayley graphs can be defined within the context of directed graphs, this paper focuses exclusively on
undirected graphs.

Fix a finite group G, and let S be a subset of G that is closed under taking inverses, i.e., s P S
precisely when s´1 P S. We say G is a Cayley graph on the group G with generating set S if it has the
vertex set V pGq “ G, and an edge joining vertex g and h whenever g´1h P S. We say w : GÑ r0,8q
is a weight function if for each x P G, wpxq “ wpx´1q. This leads to the following definition.

Definition 2.3. A weighted Cayley graph G on a group G with weight function w : G Ñ r0,8q has
vertex set V pGq “ G and edge weights determined by the weight function, where each edge g „ h
has weight wpg´1hq. If an edge has weight zero, we consider it as a non-edge in the weighted Cayley
graph. We denote G by CayleypG, wq.

Note that any Cayley graph is just a special case of a weighted Cayley graph where the weight
function is 1S , the characteristic function of the generating set S defined to be

1Spxq “

#

1 if x P S
0 otherwise

.

Clearly, the adjacency matrix A for a weighted Cayley graph CayleypG, wq as above has pg, hq-th entry

Ag,h “ wpg´1hq.

The following proposition relates the eigenvalues of the adjacency matrices of a weighted Cayley
graph to eigenvalues of the corresponding irreducible matrix representations of the underlying group.
To state our proposition, we need the following definition.

Definition 2.4. Consider a function f : G Ñ C where G is a finite group. For every representation
π P pG, define

πpfq “
ÿ

xPG
fpxqπpxq.

Proposition 2.5. Let G be a weighted Cayley graph defined on a finite group G with weight function
w : GÑ r0,8q.

(i) The set of eigenvalues of the adjacency matrix AG coincides with the set
Ť

πPpG specpπpwqq, where
specpπpwqq denotes the spectrum of the matrix πpwq.

(ii) Let B be the unitary matrix of the normalized coefficient functions given in (2). Every λ-
eigenvector φ P C|G| of AG can be described as

φ “ Bp‘πPpG ‘
dπ
i“1 Xπ,iq,

where every Xπ,i P Cdπ is either 0 or a λ-eigenvector for πpwq. Moreover, at least one of the
vectors Xπ,i is nonzero.
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(iii) For each π, let Qπpwq denote a fixed orthonormal eigenbasis for πpwq. Then

ď

πPpG

ď

i:1,...,dπ

$

’

&

’

%

d

dπ
|G|

dπ
ÿ

k“1

xkπk,i :

»

—

–

x1
...
xdπ

fi

ffi

fl

P Qπpwq

,

/

.

/

-

is an orthonormal eigenbasis for AG.

The proof of Proposition 2.5 can be found in Appendix A. In the following corollary, we consider
the special case for quasi-Abelian Cayley graphs. A weighted Cayley graph is quasi-Abelian if the
weight function is a class function. A class function in `2pGq (or the associated class vector in CN )
is a function (or vector) that is constant on conjugacy classes of G. In this case, Proposition 2.5
takes a much simpler form. Namely, the collection of all (normalized) coefficient functions form an
(orthonormal) eigenbasis for AG. Even though this result is known (see e.g. [RKHS02, Theorem 1.1] or
[GGH19, Theorem III.1] for a proof), we provide a proof which is a simple application of the previous
proposition.

Corollary 2.6. Consider a quasi-Abelian weighted Cayley graph G on a finite group G of size N
with weight function w : G Ñ r0,8q. The set

Ť

πPpG

!
b

dπ
N πi,j : 1 ď i, j ď dπ

)

forms an orthonormal

basis of eigenvectors for AG. Namely, for every π P pG and 1 ď i, j ď dπ,

AGπi,j “ λππi,j ,

where λπ “ 1
dπ

Trpπpwqq, and πpwq is as defined in Definition 2.4.

Proof. The set of normalized characters
!

χπ :“ 1?
N

řdπ
i“1 πi,i : π P pG

)

of a group G forms an orthonor-
mal basis for the subspace of class functions in `2pGq (see e.g. [Fol95, Proposition 5.23]). Given that
G is quasi-Abelian, the weight function w is a class function, so

w “
ÿ

πPpG

xw,χπyCNχπ “
1
?
N

ÿ

πPpG

dπ
ÿ

i“1

xw,χπyCNπi,i.

Next, we show that πpwq is a multiple of the identity matrix. Indeed, using the above expansion of w

with respect to the orthonormal basis
!
b

dπ
N πi,j : π P pG, 1 ď i, j ď dπ

)

, we have that for every π P pG,

xπpwqei, ejy “
ÿ

xPG
xwpxqπpxqei, ejy “

ÿ

xPG
wpxqπi,jpxq “ xw, πi,jyCN “

#

0 i ‰ j
?
N
dπ
xχπ, wyCN i “ j

.

So, the standard basis teiudπi“1 is an orthonormal eigenbasis of πpwq associated with the eigenvalue
?
N
dπ
xχπ, wyCN . By part piiiq of Proposition 2.5, the set

Ť

πPpGtπi,j : 1 ď i, j ď dπu forms an orthogonal

eigenbasis for AG associated with (repeated) eigenvalues
?
N
dπ
xχπ, wyCN . Finally, since for every i we

have
?
N
dπ
xχπ, wyCN “ xπpwqei, eiyCN , we get

?
N
dπ
xχπ, wyCN “

1
dπ

Trpπpwqq.

Next, we observe the inherent difference between the spectral behaviour of general weighted Cayley
graphs and quasi-Abelian ones. As shown in Corollary 2.6, the canonical eigenbasis for the adjacency
matrix of a quasi-Abelian weighted Cayley graph does not depend on the particular choice of the weight
function w. The choice of the weight function only affects the eigenvalues. In the case of a general
weighted Cayley graph (as in Proposition 2.5), the weight function determines both eigenvalues and
eigenvectors of the associated Cayley graph. As a result, the spectral features of non-quasi-Abelian
weighted Cayley graphs are more intricate.
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We conclude this section with the illustration of Proposition 2.5 through two examples. Due to
applications in analysis of ranked data sets, developing signal processing on the symmetric group is
of considerable interest. In [CDHS21], the authors contend that the permutahedron is an appropriate
Cayley graph on Sn for representing ranked data. In this graph, two rankings are adjacent if and only
if they differ by transposing two adjacent candidates. More precisely, the permutahedron Pn is the
Cayley graph on the group of Sn with generating set Sn “ tpi, i` 1q : 1 ď i ď n´ 1u consisting of all
consecutive transpositions.

Example 2.7 (Fourier basis for signal processing on P3). Using the notation from Appendix B.1 for the
irreducible representations of S3, define B “

”

1?
6
ι1,1|

1?
6
τ1,1|

1?
3
π1,1|

1?
3
π2,1|

1?
3
π1,2|

1?
3
π2,2

ı

, where ι, τ ,
and π are the trivial representation, the alternating representation, and the standard representation
of S3, respectively.

(13)

(132)

(23)

id

(12)

(123)

A3 “

»

—

—

—

—

—

—

–

0 1 1 0 0 0
1 0 0 0 1 0
1 0 0 0 0 1
0 0 0 0 1 1
0 1 0 1 0 0
0 0 1 1 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Figure 1: The Cayley graph P3 and its adjacency matrix A3.

The unitary matrix B block-diagonalizes matrices ρpgq for all g P S3. So, for the adjacency matrix
A3 of P3 we have

BtA3B “ diag

˜

2,´2,

«

1
2

?
3
2?

3
2 ´ 1

2

ff

,

«

1
2

?
3
2?

3
2 ´ 1

2

ff¸

.

The eigenvalues of BtA3B are 2,´2 pof multiplicity 1q, 1,´1 pof multiplicity 2q associated with eigen-
vectors r1, 0, 0, 0, 0, 0st, r0, 1, 0, 0, 0, 0st, r0, 0,

?
3{2, 1{2, 0, 0st, r0, 0, 0, 0,

?
3{2, 1{2st, r0, 0,´1{2,

?
3{2, 0, 0st,

r0, 0, 0, 0,´1{2,
?

3{2st. This leads to the following eigenbasis for A3, derived from the irreducible rep-
resentations of S3:

B “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

»

—

—

—

—

—

—

—

—

–

1?
6
1?
6
1?
6
1?
6
1?
6
1?
6

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

—

—

—

—

–

1?
6

´ 1?
6

´ 1?
6

´ 1?
6

1?
6
1?
6

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

—

—

–

1
2
0
1
2
´ 1

2
´ 1

2
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

—

—

—

—

–

1
2
?
3

1?
3

´ 1
2
?
3

´ 1
2
?
3

1
2
?
3

´ 1?
3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

—

—

—

—

–

´ 1
2
?
3

1?
3

´ 1
2
?
3

´ 1
2
?
3

´ 1
2
?
3

1?
3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

—

—

–

1
2
0
´ 1

2
1
2
´ 1

2
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

-

.

Remark 2.8. The permutahedron P3 is pictured in Figure 1, and is isomorphic to the 6-cycle. The
Cayley graph of Z6 with generating set t1,´1u is isomorphic to the 6-cycle as well. We note that the
underlying groups of these two Cayley graphs are very different; in fact, one group is Abelian, and the
other is not. While these graphs are isomorphic, taking each underlying group and its representation
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theory into account results in producing different Fourier bases. For the Cayley graph of Z6 with
generating set t1,´1u, the Fourier basis consists of the normalized group characters for Z6,

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

»

—

—

—

—

—

—

—

—

–

1?
6
1?
6
1?
6
1?
6
1?
6
1?
6

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

—

—

—

—

–

1?
6

1?
6
ω

1?
6
ω2

1?
6
ω3

1?
6
ω4

1?
6
ω5

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

—

—

—

—

–

1?
6

1?
6
ω2

1?
6
ω4

1?
6

1?
6
ω2

1?
6
ω4

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

—

—

—

—

–

1?
6

1?
6
ω3

1?
6

1?
6
ω3

1?
6

1?
6
ω3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

—

—

—

—

–

1?
6

1?
6
ω4

1?
6
ω2

1?
6

1?
6
ω4

1?
6
ω2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

—

—

—

—

–

1?
6

1?
6
ω5

1?
6
ω4

1?
6
ω3

1?
6
ω2

1?
6
ω

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

-

,

where ω “ expp2πi{6q is the primitive sixth root of unity. Similar graph Fourier bases, where the
underlying group is taken to be Zn, have been used in [KD19] for developing GSP methods applicable
to circulant networks.

On the other hand, the Fourier basis for P3 is B, as described in Example 2.7. A Fourier basis
similar to B, where the underlying group is taken to be the symmetric group, was used in [CDHS21] to
develop GSP methods for analyzing ranked data sets. The symmetric group S3, which consists of all
permutations of three objects, and its Cayley graphs are particularly well-suited for developing GSP
when the data consists of rankings involving three items (see [CDHS21] for applications of GSP based
on Pn to analysis of ranked data).

Example 2.9 (Fourier basis for signal processing on P4). Using the notation for the irreducible rep-
resentations of S4 given in Appendix B.2, we define the matrix

B “ r Ąι1,1|Ćτ1,1|Ćσ1,1|Ćσ2,1|Ćσ1,2|Ćσ2,2|Ćπ1,1|Ćπ2,1|Ćπ3,1|Ćπ1,2|Ćπ2,2|Ćπ3,2|Ćπ1,3|Ćπ2,3|Ćπ3,3|
Ćπ11,1|

Ćπ12,1|
Ćπ13,1|

Ćπ11,2|
Ćπ12,2|

Ćπ13,2|
Ćπ11,3|

Ćπ12,3|
Ćπ13,3 s ,

where Ąυi,j denotes the normalization of the coefficient function υi,j into a unit vector for every rep-
resentation υ. Here, ι, τ , σ, π1, and π are the trivial representation, the alternating representation,
the 2-dimensional representation, the standard representation, and the standard-alternating tensor
representation of S4, respectively. Note that B is a unitary matrix that block diagonalizes the right
regular representation of S4.

id

(12)

(23)

(34)

(123) (132) (12)(34) (234) (243)

(13) (1234) (1243) (1342) (24) (1432)

(134) (124) (13)(24) (143) (142)

(1324)

(14)

(1423)

(14)(23)

Figure 2: The permutahedron P4 is the Cayley graph on the group S4 with generating set S “ tp12q, p23q, p34qu.
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So, for the adjacency matrix A4 of P4 we have

B´1A4B “ diag

¨

˝3, ´3,
2
à

i“1

„

0 2` ω3

2` ω 0



,
3
à

i“1

»

–

´2 0 ´1
0 ´1 0
´1 0 0

fi

fl ,
3
à

i“1

»

–

2 0 1
0 1 0
1 0 0

fi

fl

˛

‚.

Next we apply Proposition 2.5 piiq to the eigenvectors of the blocks in B´1A4B to compute eigenvectors
of A4 as follows.

B1 “

$

’

’

&

’

’

%

Ăι1,1,Ąτ1,1,
?
6´
?
2i

4 Ąσ1,l `
?
2
2 Ąσ2,l,

´
?
6`
?
2i

4 Ąσ1,l `
?
2
2 Ąσ2,l,

1´
?
2?

4´2
?
2
Ąπ1,k `

1?
4´2

?
2
Ąπ3,k,Ąπ2,k,

?
2`1?

4`2
?
2
Ąπ1,k `

1?
4`2

?
2
Ąπ3,k, : k “ 1, 2, 3, l “ 1, 2

?
2`1?

4`2
?
2

Ąπ11,k `
1?

4`2
?
2

Ąπ13,k,
Ąπ12,k,

1´
?
2?

4´2
?
2

Ąπ11,k `
1?

4´2
?
2

Ąπ13,k

,

/

/

.

/

/

-

.

3. Construction of frames for graph signals
Let G be a finite (not necessarily Abelian) group, and consider the associated inner product space
`2pGq together with its usual norm }f}2 “

a

ř

xPG |fpxq|
2. A frame for `2pGq is a finite set of vectors

F “ tψi : i P Iu such that for some positive real numbers A and B, we have

A}f}22 ď
ÿ

iPI

|xf, ψiy|
2 ď B}f}22, for every f P `

2pGq. (4)

Elements ψi of a frame F are called frame atoms. The constants A and B are called the lower and
upper frame bounds respectively. Frames provide stable and possibly redundant systems which allow
reconstruction of a signal f from its frame coefficients txf, ψiyuiPI . In the case of redundant frames,
reconstruction of a signal might still be possible even if some portion of its frame coefficients is lost or
corrupted.

Since `2pGq is finite-dimensional, any finite spanning subset of it forms a frame. Frames, however,
differ significantly from each other in terms of how efficiently they analyze signals. The condition
number of a frame F is defined to be the ratio cpFq :“ B{A, where A,B denote the optimal constants
satisfying Equation (4). An important class of frames is the class of tight frames, i.e., frames for which
A “ B. Parseval frames are tight frames in which A “ B “ 1. Compared to general frames or to
orthonormal bases, tight frames exhibit many desirable properties, such as greater numerical stability
when reconstructing noisy signals. A major goal in designing frames for real applications is to design
tight frames, or at least frames with a small condition number. For a detailed introduction to frame
theory, see [Chr13, HL00].

3.1. Special frames for Cayley graphs
Throughout this section, let G be the weighted Cayley graph of the finite group G with a given weight
function w : GÑ r0,8q. We construct frames for `2pGq that are compatible with the weight function
w and the representation theory of G. Recall that for a representation π of G and a weight function
w : GÑ r0,8q, we set πpwq “

ř

xPG wpxqπpxq; and that the matrix πpwq is self-adjoint.

Definition 3.1. Let G be a finite group.

(i) A frame tψiumi“1 for `2pGq is called a Frobenius–Schur frame if each atom ψi belongs to one
orthogonal component of the Frobenius–Schur decomposition as stated in Theorem 2.2. More
precisely, every frame atom ψi belongs to some Eπ,j (as defined in (1)) for an irreducible repre-
sentation π of pG and 1 ď j ď dπ.
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(ii) Let π be an irreducible representation of G of dimension dπ, and let 1 ď i ď dπ be fixed. For
λ P R, define

Zπ,i,λ :“

$

’

&

’

%

dπ
ÿ

k“1

xkπk,i :

»

—

–

x1
...
xdπ

fi

ffi

fl

P Eλpπpwqq

,

/

.

/

-

, (5)

where Eλpπpwqq is the λ-eigenspace of πpwq. Here, we use the convention that if λ R specpπpwqq,
then Eλpπpwqq “ t0u.

(iii) A frame tψiumi“1 of `2pGq is said to be a w-Cayley frame (or Cayley frame compatible with w)
if for every atom ψi there exists an irreducible representation π : G Ñ Udπ pCq, an eigenvalue
λ P specpπpwqq and an index 1 ď j ď dπ such that ψi P Zπ,j,λ.

Remark 3.2. (i) Any w-Cayley frame of `2pGq is in fact a Frobenius–Schur frame. Indeed, for every
k “ 1, . . . , dπ, the vector πk,i belongs to Eπ,i, which implies that Zπ,i,λ Ď Eπ,i.

(ii) Fix i “ 1, . . . , dπ. Let tejudπj“1 denote the standard orthonormal basis of Cdπ , and recall that
!b

dπ
|G|πj,i : 1 ď j ď dπ

)

forms an orthonormal basis for Eπ,i. For π and i as above, define a linear
map as follows:

Θπ,i : Cdπ Ñ Eπ,i, Θπ,iprx1 . . . xdπ s
tq “

dπ
ÿ

k“1

xk

d

dπ
|G|

πk,i. (6)

Each map Θπ,i is an isometric isomorphism, as it maps one orthonormal basis to another. For
every λ P specpπpwqq, we define the restriction map Θπ,i,λ :“ Θπ,i|Eλpπpwqq. This map forms an
isometric isomorphism between Eλpπpwqq and Zπ,i,λ.

Proposition 3.3. For every π P pG and 1 ď i ď dπ, we have Eπ,i “
À

λPspecpπpwqq Zπ,i,λ.

Proof. The matrix πpwq is self-adjoint (i.e., πpwq˚ “ πpwq), and as a result it is diagonalizable. So,
one can build an orthonormal basis of Cdπ consisting of eigenvectors of πpwq. In other words, we can
write

Cdπ “
à

λPspecpπpwqq

Eλpπpwqq. (7)

Now, consider an arbitrary element πξ,i P Eπ,i, and write its linear expansion πξ,i “
řdπ
k“1 xkπk,i. Using

(7), the vector X “ rx1, . . . , xdπ s
t P Cdπ can be written as a linear combination X “

ř

λPspecpπpwqq Yλ,
with Yλ P Eλpπpwqq. Letting Yλ “ ryλ,1, . . . , yλ,dπ st, we have

πξ,i “ rπ1,i| . . . |πdπ,isrx1, . . . , xdπ s
t “

ÿ

λPspecpπpwqq

rπ1,i| . . . |πdπ,isYλ “
ÿ

λPspecpπpwqq

dπ
ÿ

k“1

yλ,kπk,i.

Note that for each λ, we have
řdπ
k“1 yλ,kπk,i belongs to Zπ,i,λ. So, we get Eπ,i Ď

ř

λPspecpπpwqq Zπ,i,λ.

On the other hand, Eπ,i Ě
ř

λPspecpπpwqq Zπ,i,λ is a trivial consequence of the definition of Zπ,i,λ.
Lastly we show that this sum is a direct sum. That is, tZπ,i,λ : λ P specpπpwqqu is a set of orthogonal

subspaces. To prove this, consider Zπ,i,λ and Zπ,i,λ1 for distinct eigenvalues λ, λ1 P specpπpwqq. Take
arbitrary X P Eλpπpwqq and Y P Eλ1pπpwqq. Since Eλpπpwqq and Eλ1pπpwqq are orthogonal subspaces
of Cdπ , we have xX,Y yCdπ “ 0. Now using Schur’s orthogonality relations (Theorem 2.1), we get

C

dπ
ÿ

k“1

xkπk,i,
dπ
ÿ

`“1

y`π`,i

G

`2pGq

“

dπ
ÿ

k,`“1

xky`xπk,i, π`,iy`2pGq “
dπ
ÿ

k“1

xkyk
|G|
dπ

“
|G|
dπ
xX,Y yCdπ “ 0.

This completes the proof.
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Now, we can provide a characterization for all w-Cayley frames of `2pGq. To state our theorem, we
need the following notation.

Notation. For π P pG and an eigenvalue λ of πpwq, let Gπ,λ denote the collection of all frames for the
eigenspace Eλpπpwqq. We define Gπ,λ “ H if λ is not an eigenvalue of πpwq. Elements of Gπ,λ are
denoted by calligraphic font, e.g. F .

Theorem 3.4. For every π P pG of dimension dπ, every eigenvalue λ P specpπpwqq, and every index
1 ď i ď dπ, let Fπ,λi P Gπ,λ be a given frame with lower and upper frame bounds Aπ,λi and Bπ,λi ,
respectively. Then,

(i) The collection
Gπ,i “

!

Θπ,i,λpψq : ψ P Fπ,λi , λ P specpπpwqq
)

is a frame for Eπ,i, with lower frame bound Aπ,i “ minλPspecpπpwqqA
π,λ
i and upper frame bound

Bπ,i “ maxλPspecpπpwqqB
π,λ
i .

(ii) The collection G “
Ť

πPpG,1ďiďdπ Gπ,i is a Frobenius–Schur frame for `2pGq, which is also a w-
Cayley frame.2 Moreover, G has lower frame bound mintAπ,i : π P pG, 1 ď i ď dπu and upper
frame bound maxtBπ,i : π P pG, 1 ď i ď dπu.

(iii) Every w-Cayley frame for `2pGq is of the form described in piiq.

Proof. Fix π P pG, and 1 ď i ď dπ. Let λ P specpπpwqq. Then if the frame Fπ,λi has lower and upper
frame bounds Aπ,λi and Bπ,λi respectively, then rFπ,λi “ tΘπ,i,λpψq : ψ P Fπ,λi u forms a frame for
Zπ,i,λ with the same lower and upper frame bounds. This is indeed the case, as Θπ,i,λ is an isometric
isomorphism by Remark 3.2. Using the direct-sum decomposition of Proposition 3.3, this union results
in a frame for Eπ,i whose lower and upper frame bounds are the minimum and maximum, respectively,
over all frame bounds for the frames rFπ,λi . To see this, consider an arbitrary f P Eπ,i, and note that
f “

ř

λPspecpπpwqq fλ for fλ P Zπ,i,λ. Fixing λ P specpπpwqq, we have that

Aπ,λi }fλ}
2
2 ď

ÿ

φP rFπ,λi

|xfλ, φy|
2 ď Bπ,λi }fλ}

2
2 (8)

since rFπ,λi is a frame for Zπ,i,λ. Equation (8) holds for all λ P specpπpwqq, and we have that
ř

λPspecpπpwqq }fλ}
2
2 “ }f}

2
2 since the decomposition of Eπ,i is orthogonal. Summing over λ gives

ÿ

λPspecpπpwqq

ÿ

ψαP rFπ,λi

|xfλ, ψαy|
2 ě

ÿ

λPspecpπpwqq

Aπ,λi }fλ}
2
2 ě

ˆ

min
λPspecpπpwqq

Aπ,λi

˙

}f}22.

Similarly,

ÿ

λPspecpπpwqq

ÿ

ψαP rFπ,λi

|xfλ, ψαy|
2 ď

ÿ

λPspecpπpwqq

Bπ,λi }fλ}
2
2 ď

ˆ

max
λPspecpπpwqq

Bπ,λi

˙

}f}22.

So, Gπ,i is a frame for Eπ,i with lower and upper frame bounds as claimed. This proves piq.

2By Remark 3.2 (i), w-Cayley frames are a special type of Frobenius–Schur frames.
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To prove piiq, consider arbitrary f P `2pGq. Then by Theorem 2.2, we know that f can be decom-
posed into an orthogonal direct sum f “

ř

πPpG,1ďiďdπ fπ,i with fπ,i P Eπ,i. Since Gπ,i is a frame for
Eπ,i, then we have that

Aπ,i}fπ,i}
2
2 ď

ÿ

φPGπ,i

|xfπ,i, φy|
2 ď Bπ,i}fπ,i}

2
2. (9)

Since Equation (9) holds for all π P pG and 1 ď i ď dπ, then summing over π and i gives,

ÿ

πPpG

ÿ

1ďiďdπ

ÿ

φPGπ,i

|xfπ,i, φy|
2 ě

ÿ

πPpG

ÿ

1ďiďdπ

Aπ,i}fπ,λ}
2
2 ě

˜

min
πPpG,1ďiďdπ

Aπ,i

¸

}f}22.

Similarly,

ÿ

πPpG

ÿ

1ďiďdπ

ÿ

φPGπ,i

|xfπ,i, φy|
2 ď

ÿ

πPpG

ÿ

1ďiďdπ

Bπ,i}fπ,i}
2
2 ď

˜

max
πPpG,1ďiďdπ

Bπ,i

¸

}f}22.

So, G is a frame for `2pGq with upper frame bound maxtBπ,i : π P pG, 1 ď i ď dπu and lower frame
bound mintAπ,i : π P pG, 1 ď i ď dπu. That G is a Frobenius–Schur frame as well as a w-Cayley frame
follows directly from Proposition 3.3, Remark 3.2 and the definition of G.

Finally, part piiiq follows from the fact that a w-Cayley frame can be naturally partitioned into
frames for Zπ,i,λ. Applying the map Θ´1

π,i,λ to those frames finishes the proof.

In the following example, we construct a Cayley frame for `2pS4q which is not a basis.

Example 3.5. Let G be the Cayley graph of S4 with generating set S “ tp12q, p23q, p34q, p12qp34qu.

id (12)
(23)

(34)

(13)
(14)

(24)

(12)(34)

(13)(24)
(14)(23)

(123)(132)
(124)(142)

(134)
(143)

(234)

(243)

(1234)

(1432)
(1423)

(1342)
(1324)

(1243)

Figure 3: The Cayley graph of S4 with generating set S “ tp12q, p23q, p34q, p12qp34qu.

We use the notation of Appendix B.2 for the representations of S4 and its coefficient functions. For
each φ in the set tι, τ, σ, π1u, the matrix φpSq has only simple eigenvalues, so we have one-dimensional
eigenspaces EλpφpSqq, for all λ P specpφpSqq and φ P tι, τ, σ, π1u. The matrix πpSq has eigenvalue 0

of multiplicity 1 with associated one-dimensional eigenspace E0pπpSqq “
”

´
?
2
2 , 0,

?
2
2

ıt

C. Also, πpSq
has eigenvalue ´2 with multiplicity 2. Fix the following eigenbasis for E´2pπpSqq:

#

v1 “ r0, 1, 0s
t
, v2 “

„

?
2

2
, 0,

?
2

2

t
+

.
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We construct the Mercedes-Benz frame for the 2-dimensional eigenspace E´2pπpSqq “ spantv1, v2u

as follows:
!

v2,
?
3
2 v1 ´

1
2v2,´

?
3
2 v1 ´

1
2v2

)

“

"

”?
2
2 , 0,

?
2
2

ıt

,
”

´
?
2
4 ,

?
3
2 ,´

?
2
4

ıt

,
”

´
?
2
4 ,´

?
3
2 ,´

?
2
4

ıt
*

.

By Theorem 3.4, the following sets are frames for Eφ,i, where φ PxS4, 1 ď i ď dφ.

• Gι,1 “ tĂι1,1u

• Gτ,1 “ tĄτ1,1u

• Gσ,i “

#

´
?

3
2 ` 1

2 i
b

3
2´

?
3

2 i
Ąσ1,i `

1
b

3
2´

?
3

2 i
Ąσ2,i,

?
3

2 ´
1
2 i

b

3
2´

?
3

2 i
Ąσ1,i `

1
b

3
2´

?
3

2 i
Ąσ2,i

+

, for i “ 1, 2

• Gπ1,i “
"

Ąπ12,i,
2´
?
5?

10´4
?
5

Ąπ11,i `
1?

10´4
?
5

Ąπ13,i,
?
5`2?

10`4
?
5

Ąπ11,i `
1?

10`4
?
5

Ąπ13,i

*

, for i “ 1, 2, 3

• Gπ,i “
!

´
?
2
2 Ąπ1,i `

?
2
2 Ąπ3,i,

?
2
2 Ąπ1,i `

?
2
2 Ąπ3,i,´

?
2
4 Ąπ1,i `

?
3
2 Ąπ2,i ´

?
2
4 Ąπ3,i,´

?
2
4 Ąπ1,i ´

?
3
2 Ąπ2,i ´

?
2
4 Ąπ3,i

)

,
for i “ 1, 2, 3.

Moreover
Ť

φPxS4,1ďiďdφ Gφ,i is a 1S-Cayley frame for `2pS4q.

3.2. Cayley frames with special properties
The frames presented in Theorem 3.4 are constructed in such a way that allow us to pass properties
from frames for the smaller spaces to frames for the larger space. Recall that tight frames are frames
for which the upper and lower frame bounds are equal, and Parseval frames are tight frames in which
the upper and lower frame bounds are both equal to 1. A frame F “ tφiuiPI is a unit norm frame if
}φi}2 “ 1 for all i P I.

The following corollary is an immediate consequence of Theorem 3.4 piq and piiq.

Corollary 3.6. With notation as in Theorem 3.4, suppose the frames Fπ,λi are Parseval (resp. tight,
resp. unit norm) for all π, i, and λ. Then Gπ,i is a Parseval (resp. tight, resp. unit norm) frame for
Eπ,i, and G is a Parseval (resp. tight, resp. unit norm) frame for `2pGq.

To introduce the next property, we fix a basis B for `2pGq. A vector x P `2pGq is called K-sparse
(with respect to B) if it is a linear combination of at most K basis elements. We call B the sparsity
basis for `2pGq. A unit norm frame F for `2pGq is said to have the restricted isometry property of
order K with parameter δK P p0, 1q if

p1´ δKq}x}
2
2 ď }Fx}22 ď p1` δKq}x}22,

for all K-sparse x P `2pGq [SF13]. The restricted isometry property was introduced in [CT05] and
[Can08], and is of particular importance in compressive sensing. Given a vector y P Cm of observed
data, an unknown sparse signal x P CN , and a measurement matrix A P CmˆN , the goal of compressive
sensing is to determine what matrices A allow for sparse reconstruction of the signal x in the under-
determined pm ă Nq system y “ Ax, and to develop efficient reconstruction methods. The restricted
isometry property is key to obtaining an optimal lower bound on m, the number of measurements,
in terms of N and the sparsity of x. Also, frames with small δK for sufficiently large K are more
desirable, as they can serve as measurement matrices that allow for successful sparse reconstruction
[SF13]. The frame construction in Theorem 3.4 allows us to control the restricted isometry property
constants δK .

Let B “
Ť

πPpG
Ť

k:1,...,dπ

!b

dπ
|G|πj,k : 1 ď j ď dπ

)

, which is the preferred Fourier basis for `2pGq,

and let Bπ,i “
!b

dπ
|G|πj,i : 1 ď j ď dπ

)

, which we think of as the preferred Fourier basis for Eπ,i.
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Corollary 3.7. With notation as in Theorem 3.4, suppose each frame Gπ,i has the restricted isometry
property of order K with parameter δπ,iK , with respect to the basis Bπ,i. Then G has the restricted
isometry property of order K with parameter δ :“ maxπ,i δ

π,i
K , with respect to the basis B.

Proof. Suppose x P `2pGq is K-sparse with respect to B, and define Pπ,i : `2pGq Ñ `2pGq to be the
orthogonal projection onto the space Eπ,i. Note that for each π P pG and each 1 ď i ď dπ, the projection
Pπ,i preserves sparsity. That is, Pπ,ix is K-sparse with respect to the basis Bπ,i for Eπ,i. So, by the
assumption, we have for each π P pG and 1 ď i ď dπ that

p1´ δπ,iK q}Pπ,ix}
2
2 ď

ÿ

φPGπ,i

|xPπ,ix, φy|
2 ď p1` δπ,iK q}Pπ,ix}

2
2.

Now define δ “ maxπ,i,λ δ
π,i,λ
K , and observe that

}Gx}22 “
ÿ

πPpG

ÿ

1ďiďdπ

ÿ

φPGπ,i

|xPπ,ix, φy|
2 ď

ÿ

πPpG

ÿ

1ďiďdπ

p1` δq}Pπ,ix}
2
2 “ p1` δq}x}

2
2.

The lower bound follows by a similar argument. Therefore, G has the restricted isometry property of
order K with parameter δ, with respect to the basis B.

3.3. Comparison with previous work: frames for the permutahedron
In [CDHS21, Equation (11)], suitable frames for the permutahedron were proposed. The same frames
can be produced as an immediate application of Theorem 3.4 to the orthonormal eigenbasis of Proposi-
tion 2.5. Namely, Proposition 2.5, when applied to the case of the permutahedron Pn, provides us with
a second method for obtaining the decompositions in [CDHS21, Proposition 1]. A precise definition
of the permutahedron is given in Subsection 2.2. We note that, unlike the methods in [CDHS21],
our approach does not make use of equitable partitions and Schreier graphs. Instead, we need a full
description (in matrix form) of all irreducible representations of Sn to obtain a concrete description of
the eigenvectors of the adjacency matrix of Pn (see Example 2.7 and Example 2.9). Here, we focus on
the relation between our notations and results and those of [CDHS21].

Let π be an irreducible representation of Sn associated with a partition γ of rns. Then the spaceWγ

given in [CDHS21, Equation (2)] is simply the subspace of `2pSnq containing all coefficient functions
associated with π, namely,

Wγ “ ‘
dπ
i“1Eπ,i.

Fix an eigenvalue λ of the adjacency matrix APn . Proposition 2.5 piiq states that every λ-eigenvector
φ P C|Sn| of APn can be written as

φ “ Bp‘
σPxSn ‘

dσ
i“1 Xσ,iq,

where B is the unitary matrix of normalized coefficient functions given in (2), and every Xσ,i P Cdσ
is either 0 or a λ-eigenvector for σpSq “

ř

sPS σpsq. Thus φ P Wγ precisely when Xσ,i “ 0 whenever
σ ‰ π. So, a λ-eigenvector φ of APn belongs to Wγ if and only if it can be written as

Θπ,1pX1q `Θπ,2pX2q ` . . .`Θπ,dπ pXdπ q,

for X1, . . . , Xdπ P EλpπpSqq where at least one of the Xi’s is nonzero. Finally, by Remark 3.2 piiq,
we have Θπ,jpXjq P Zπ,j,λ for each 1 ď j ď dπ. The space Uλ given in [CDHS21, Equation (6)] is
defined as the λ-eigenspace of the adjacency matrix APn . The above discussion shows that the space
Zγ,λ “ Wγ X Uλ in [CDHS21, Proposition 1] is exactly the space Zπ,λ “ ‘dπi“1Zπ,i,λ, where Zπ,i,λ is
given in Definition 3.1piiq.
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4. Future work
In this paper, we provide a complete description of the eigen-decomposition of the adjacency ma-
trix of a weighted Cayley graph in terms of the irreducible representations of its underlying group
(Proposition 2.5). Leveraging this eigen-decomposition, we characterize all weighted Cayley frames
(with respect to a given weight function) of `2pGq, and offer a concrete method for constructing such
frames (Theorem 3.4). In a weighted Cayley frame, each atom is associated exclusively with the coef-
ficient space of a single irreducible representation of the underlying group. So, essentially, we obtain
bases/frames that are efficient in the Fourier domain, analogous to the role played by the classical
Fourier basis in classical signal processing.

We believe that this choice of eigenbasis/frame, informed by the representation theory of the
underlying group, leads to more efficient tools for signal processing. As a follow-up to this work, we
plan to carry out numerical experiments or simulations to explore the following scenarios.

(i) It is reasonable to expect that our representation-theoretic approach should be especially ben-
eficial when a repeated eigenvalue is associated with two different irreducible representations.
With terminology of Proposition 2.5, this means that the value λ is an eigenvalue for both πpwq
and σpwq, with π, σ P pG. We plan to run numerical experiments to compare the efficiency of
our construction (where the eigenvalue λ associated with each representation π and σ is treated
separately) with general GSP constructions in the literature.

(ii) In the context of ranked data analysis, the generating set captures a notion of “closeness” between
rankings. It is reasonable to assume that in different voting contexts, it might be useful to choose
a generating set different from that of the permutahedron. In particular, we are interested in
analyzing scenarios where the top positions in the ranking are considered to be much more
important than the bottom positions. This could be the case where n candidates are ranked for
a single job opening. In that case, two rankings that differ only in the positions n´ 1 and n are
intuitively considered to be more similar than rankings in which positions 1 and 2 are switched.
We plan to pursue this direction in future work. We have plans to analyze various data sets in
the context of ranked data to see how varying the generating set affects the interpretation of the
data and the efficacy of the developed GSP tools.
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Appendix A. Proof of Proposition 2.5

Proof. First note that for every π P pG, the dπ ˆ dπ matrix πpwq is Hermitian, because

πpwq˚ “

˜

ÿ

xPG
wpxqπpxq

¸˚

“
ÿ

xPG
wpxqπpx´1q “

ÿ

xPG
wpxqπpxq “ πpwq.
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Hence πpwq is unitarily diagonalizable. That is, Cdπ admits an orthonormal basis consisting of eigen-
vectors of πpwq.

The adjacency matrix AG can be written in terms of the right regular representation as follows:

AG “
ÿ

xPG
wpxqρpxq. (A.1)

By the Frobenius–Schur theorem, there exists a unitary matrix B such that ρpgq can be block diago-
nalized. Namely,

B´1ρpgqB “
à

πPpG

dπ ¨ πpgq @g P G, (A.2)

where dπ denotes the dimension of π, and dπ ¨πpgq denotes the direct sum of dπ copies of πpgq. Putting
(A.1) and (A.2) together, we get a block diagonalization of AG as follows:

B´1AGB “ B´1

˜

ÿ

xPG
wpxqρpxq

¸

B “
à

πPpG

dπ ¨

˜

ÿ

xPG
wpxqπpxq

¸

“
à

πPpG

dπ ¨ πpwq. (A.3)

Let N denote the size of G, and consider φ P CN . From (A.3), the vector φ is a λ-eigenvector of AG
precisely when B´1φ is a λ-eigenvector of

À

πPpG dπ ¨ πpwq, because

λpB´1φq “ B´1pλφq “ B´1AGφ “

˜

à

πPpG

dπ ¨ πpwq

¸

B´1φ. (A.4)

This finishes the proof of piq, because the spectrum of the block diagonal matrix
À

πPpG dπ ¨πpwq is the
collection of eigenvalues of its blocks.

To prove piiq, consider the block partition of the vector B´1φ P CN that is compatible with the
decomposition

À

πPpG dπ ¨ πpwq, i.e. B
´1φ “ ‘πPpG ‘

dπ
i“1 Xπ,i, with Xπ,i P Cdπ . So by (A.4), the vector

φ is a λ-eigenvector of AG if and only if λXπ,i “ πpwqXπ,i for every π P pG and every appropriate i.
That is, φ is a λ-eigenvector of AG if and only if the following two conditions hold:

(a) for every π P pG and 1 ď i ď dπ, either Xπ,i “ 0 or Xπ,i is a λ-eigenvector of πpwq;

(b) there exists some π P pG and 1 ď i ď dπ such that Xπ,i ‰ 0.

By part piq, every matrix πpwq is diagonalizable. For every π P pG, let tV π1 , . . . , V πdπu Ď Cdπ be an
orthonormal eigenbasis for πpwq. Every fixed eigenvector V πj of πpwq can be naturally embedded in
‘πPpG ‘

dπ
i“1 Cdπ in dπ-many ways; we denote these embedded versions of V πj by V π,ij P CN , where

i “ 1, . . . , dπ. More precisely, for i “ 1, . . . , dπ, we define

V π,ij “ ‘σPpG ‘
dσ
k“1 Yσ,k, where Yσ,k “

"

V πj if σ “ π and k “ i
0 otherwise .

From the definition of the vectors V π,ij , it is easy to see that the set
Ť

πPpG

!

V π,ij : 1 ď i, j ď dπ

)

is an

orthonormal set in CN . Moreover, this set has
ř

πPpG d
2
π “ N elements; so it forms an orthonormal

basis for CN . Finally, since B is a unitary matrix, we obtain the following orthonormal basis of CN :

B :“
ď

πPpG

!

BV π,ij : 1 ď i, j ď dπ

)

.

By properties (a) and (b) above, the collection B is indeed an orthonormal basis consisting of eigen-
vectors of AG. This finishes the proof of piiq.
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Given the explicit form of the matrix B (see (2)), we observe that

BV π,ij “

d

dπ
|G|

”

π1,i|π2,i| . . . |πdπ,i

ı

V πj “

d

dπ
|G|

dπ
ÿ

k“1

xkπk,i,

where V πj “ rx1, ¨ ¨ ¨ , xdπ s
t.

Appendix B. Representations of Sn
The symmetric group Sn is the group of all permutations on n elements with composition of permuta-
tions as the group operation. As we use the irreducible representations of Sn in our approach, we recall
that a finite group’s irreducible representations are in one-to-one correspondence with its conjugacy
classes [FH91, Proposition 2.30]. For Sn, the conjugacy classes are determined by the cycle type of the
permutations, where the cycle type describes the number of cycles and their lengths in the unique cycle
decomposition of a permutation. Therefore, the conjugacy classes of Sn are in bijective correspondence
with the partitions λ $ n of n.

A useful accounting technique for partitions is to represent them as a collection of rows and columns
of boxes, called a Young diagram. A Young diagram with shape λ “ pλ1, . . . , λkq, where tλiuki“1 is in
non-increasing order, has λi boxes in its ith row, for every 1 ď i ď k. Thus, the number of Young
diagrams with n blocks is exactly the number of partitions of n. A Young diagram can be extended
to a Young tableau, which is a Young diagram on n blocks where each block is uniquely labeled from
the set t1, 2, . . . , n ´ 1, nu. A Young tableau is said to be in standard form if the labels in each row
increase from left to right and the labels in each column increase from top to bottom. While Young
diagrams correspond with irreducible representations of Sn, the number of Young tableaux for a given
Young diagram (or, partition λ $ n) is the dimension of the corresponding irreducible representation
of Sn.

Appendix B.1. Representations of S3 in matrix form and their matrix coeffi-
cients

To write functions on S3 as vectors in C6, we order elements of S3 as follows: id, p12q, p23q, p13q, p123q, p132q.
Below we have provided all irreducible representations of S3, expressed in matrix form, as well as the
coefficient functions of each representation.

(i) The trivial representation of S3, denoted by ι, is the 1-dimensional representation that maps
every element of S3 to 1. This representation is associated with the partition 3, 0, 0 of n “ 3.
The unique coefficient function of ι is given by ι1,1 “ r1, 1, 1, 1, 1, 1s

t
.

(ii) The alternating representation of S3, denoted by τ , is the 1-dimensional representation that
maps σ P S3 to the sign of the permutation. This representation is associated with the partition
1, 1, 1 of n “ 3. The unique coefficient function of τ is given by τ1,1 “ r1,´1,´1,´1, 1, 1s

t
.

(iii) The standard representation of S3 is the 2-dimensional irreducible representation π : S3 Ñ
U2pCq defined as follows:

πpidq “

„

1 0
0 1



, πpp12qq “

«

´ 1
2

?
3
2?

3
2

1
2

ff

, πpp23qq “

„

1 0
0 ´1



.

Since π is multiplicative, and we have p13q “ p12qp23qp12q and p123q “ p12qp23q, the above
matrices are enough to define π on S3. This representation is associated with the partition 2, 1, 0
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of n “ 3. The normalized coefficient functions of π are

c

1

3
π1,1 “

»

—

—

—

—

—

—

—

—

–

1?
3

´ 1
2
?
3

1?
3

´ 1
2
?
3

´ 1
2
?
3

´ 1
2
?
3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

c

1

3
π2,1 “

»

—

—

—

—

—

—

–

0
1
2
0
´ 1

2
´ 1

2
1
2

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

c

1

3
π1,2 “

»

—

—

—

—

—

—

–

0
1
2
0
´ 1

2
1
2
´ 1

2

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

c

1

3
π2,2 “

»

—

—

—

—

—

—

—

—

–

1?
3
1

2
?
3

´ 1?
3

1
2
?
3

´ 1
2
?
3

´ 1
2
?
3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Appendix B.2. Representations of S4 in matrix form and their matrix coeffi-
cients

In order to identify functions on S4 with vectors of size 24, we order elements of S4 as follows:

id, p12q, p23q, p34q, p13q, p14q, p24q, p12qp34q, p13qp24q, p14qp23q, p123q, p132q, p124q, p142q, p134q,

p143q, p234q, p243q, p1234q, p1432q, p1423q, p1342q, p1324q, p1243q.

Below, we describe the irreducible unitary representations of S4. Since the elements p12q, p23q, and
p34q generate the group, we first describe the explicit matrix representations with respect to these
generating elements. The remaining matrix representations are given in Table B.1.

(i) The trivial representation of S4, denoted by ι, is the 1-dimensional representation that maps
every element of S4 to 1. This representation is associated with the partition 4, 0, 0, 0 of n “ 4.

(ii) The alternating representation of S4, denoted by τ , is the 1-dimensional representation that
maps σ P S4 to the sign of the permutation. This representation is associated with the partition
1, 1, 1, 1 of n “ 4.

(iii) The 2-dimensional representation of S4 denoted by σ is defined as follows:

σpidq “

„

1 0
0 1



, σpp12qq “

„

0 1
1 0



, σpp23qq “

„

0 ω2

ω 0



, σpp34qq “

„

0 1
1 0



,

where w is the third root of unity. This representation is associated with the partition 2, 2, 0, 0
of n “ 4.

(iv) The standard-alternating tensor representation of S4, denoted by π, is 3-dimensional and
is defined as follows:

πpidq “

»

–

1 0 0
0 1 0
0 0 1

fi

fl , πpp12qq “

»

–

´1 0 0
0 0 1
0 1 0

fi

fl , πpp23qq “

»

–

0 0 ´1
0 ´1 0
´1 0 0

fi

fl , πpp34qq “

»

–

´1 0 0
0 0 ´1
0 ´1 0

fi

fl .

This representation is associated with the partition 2, 1, 1, 0 of n “ 4.

(v) The standard representation of S4, denoted by π1, is 3-dimensional and is defined as follows:

π1pidq “

»

–

1 0 0
0 1 0
0 0 1

fi

fl , π1pp12qq “

»

–

1 0 0
0 0 ´1
0 ´1 0

fi

fl , π1pp23qq “

»

–

0 0 1
0 1 0
1 0 0

fi

fl , π1pp34qq “

»

–

1 0 0
0 0 1
0 1 0

fi

fl .

This representation is associated with the partition 3, 1, 0, 0 of n “ 4.

In Table B.1, we summarize the above unitary irreducible representations of S4, and provide the
explicit matrix forms for all group elements. Here, ω denotes the third root of unity. In Table B.2 we
provide the matrix coefficients of the unitary representations of S4.

20



S4 ι τ σ π π1

id 1 1 r 1 0
0 1 s

”

1 0 0
0 1 0
0 0 1

ı ”

1 0 0
0 1 0
0 0 1

ı

p12q 1 ´1 r 0 1
1 0 s

”

´1 0 0
0 0 1
0 1 0

ı ”

1 0 0
0 0 ´1
0 ´1 0

ı

p23q 1 ´1
“

0 ω2

ω 0

‰

”

0 0 ´1
0 ´1 0
´1 0 0

ı ”

0 0 1
0 1 0
1 0 0

ı

p34q 1 ´1 r 0 1
1 0 s

”

´1 0 0
0 0 ´1
0 ´1 0

ı ”

1 0 0
0 0 1
0 1 0

ı

p13q 1 ´1
“

0 ω
ω2 0

‰

”

0 1 0
1 0 0
0 0 ´1

ı ”

0 ´1 0
´1 0 0
0 0 1

ı

p14q 1 ´1
“

0 ω2

ω 0

‰

”

0 0 1
0 ´1 0
1 0 0

ı ”

0 0 ´1
0 1 0
´1 0 0

ı

p24q 1 ´1
“

0 ω
ω2 0

‰

”

0 ´1 0
´1 0 0
0 0 ´1

ı ”

0 1 0
1 0 0
0 0 1

ı

p12qp34q 1 1 r 1 0
0 1 s

”

1 0 0
0 ´1 0
0 0 ´1

ı ”

1 0 0
0 ´1 0
0 0 ´1

ı

p13qp24q 1 1 r 1 0
0 1 s

”

´1 0 0
0 ´1 0
0 0 1

ı ”

´1 0 0
0 ´1 0
0 0 1

ı

p14qp23q 1 1 r 1 0
0 1 s

”

´1 0 0
0 1 0
0 0 ´1

ı ”

´1 0 0
0 1 0
0 0 ´1

ı

p123q 1 1
“

ω 0
0 ω2

‰

”

0 0 1
´1 0 0
0 ´1 0

ı ”

0 0 1
´1 0 0
0 ´1 0

ı

p132q 1 1
“

ω2 0
0 ω

‰

”

0 ´1 0
0 0 ´1
1 0 0

ı ”

0 ´1 0
0 0 ´1
1 0 0

ı

p124q 1 1
“

ω2 0
0 ω

‰

”

0 1 0
0 0 ´1
´1 0 0

ı ”

0 1 0
0 0 ´1
´1 0 0

ı

p142q 1 1
“

ω 0
0 ω2

‰

”

0 0 ´1
1 0 0
0 ´1 0

ı ”

0 0 ´1
1 0 0
0 ´1 0

ı

p134q 1 1
“

ω 0
0 ω2

‰

”

0 0 ´1
´1 0 0
0 1 0

ı ”

0 0 ´1
´1 0 0
0 1 0

ı

p143q 1 1
“

ω2 0
0 ω

‰

”

0 ´1 0
0 0 1
´1 0 0

ı ”

0 ´1 0
0 0 1
´1 0 0

ı

p234q 1 1
“

ω2 0
0 ω

‰

”

0 1 0
0 0 1
1 0 0

ı ”

0 1 0
0 0 1
1 0 0

ı

p243q 1 1
“

ω 0
0 ω2

‰

”

0 0 1
1 0 0
0 1 0

ı ”

0 0 1
1 0 0
0 1 0

ı

p1234q 1 ´1
“

0 ω
ω2 0

‰

”

0 ´1 0
1 0 0
0 0 1

ı ”

0 1 0
´1 0 0
0 0 ´1

ı

p1432q 1 ´1
“

0 ω
ω2 0

‰

”

0 1 0
´1 0 0
0 0 1

ı ”

0 ´1 0
1 0 0
0 0 ´1

ı

p1423q 1 ´1 r 0 1
1 0 s

”

1 0 0
0 0 ´1
0 1 0

ı ”

´1 0 0
0 0 1
0 ´1 0

ı

p1342q 1 ´1
“

0 ω2

ω 0

‰

”

0 0 1
0 1 0
´1 0 0

ı ”

0 0 ´1
0 ´1 0
1 0 0

ı

p1324q 1 ´1 r 0 1
1 0 s

”

1 0 0
0 0 1
0 ´1 0

ı ”

´1 0 0
0 0 ´1
0 1 0

ı

p1243q 1 ´1
“

0 ω2

ω 0

‰

”

0 0 ´1
0 1 0
1 0 0

ı ”

0 0 1
0 ´1 0
´1 0 0

ı

Table B.1: The unitary representations of S4 in matrix form
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S4 ι1,1 τ 1,1 σ1,1 σ2,1 σ1,2 σ2,2 π1,1 π2,1 π3,1 π1,2 π2,2 π3,2 π1,3 π2,3 π3,3 π11,1 π12,1 π13,1 π11,2 π12,2 π13,2 π11,3 π12,3 π13,3
id 1 1 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1
p12q 1 ´1 0 1 1 0 ´1 0 0 0 0 1 0 1 0 1 0 0 0 0 ´1 0 ´1 0
p23q 1 ´1 0 ω2 ω 0 0 0 ´1 0 ´1 0 ´1 0 0 0 0 1 0 1 0 1 0 0
p34q 1 ´1 0 1 1 0 ´1 0 0 0 0 ´1 0 ´1 0 1 0 0 0 0 1 0 1 0
p13q 1 ´1 0 ω ω2 0 0 1 0 1 0 0 0 0 ´1 0 ´1 0 ´1 0 0 0 0 1
p14q 1 ´1 0 ω2 ω 0 0 0 1 0 ´1 0 1 0 0 0 0 ´1 0 1 0 ´1 0 0
p24q 1 ´1 0 ω ω2 0 0 ´1 0 ´1 0 0 0 0 ´1 0 1 0 1 0 0 0 0 1

p12qp34q 1 1 1 0 0 1 1 0 0 0 ´1 0 0 0 ´1 1 0 0 0 ´1 0 0 0 ´1
p13qp24q 1 1 1 0 0 1 ´1 0 0 0 ´1 0 0 0 1 ´1 0 0 0 ´1 0 0 0 1
p14qp23q 1 1 1 0 0 1 ´1 0 0 0 1 0 0 0 ´1 ´1 0 0 0 1 0 0 0 ´1
p123q 1 1 ω 0 0 ω2 0 0 1 ´1 0 0 0 ´1 0 0 0 1 ´1 0 0 0 ´1 0
p132q 1 1 ω2 0 0 ω 0 ´1 0 0 0 ´1 1 0 0 0 ´1 0 0 0 ´1 1 0 0
p124q 1 1 ω2 0 0 ω 0 1 0 0 0 ´1 ´1 0 0 0 1 0 0 0 ´1 ´1 0 0
p142q 1 1 ω 0 0 ω2 0 0 ´1 1 0 0 0 ´1 0 0 0 ´1 1 0 0 0 ´1 0
p134q 1 1 ω 0 0 ω2 0 0 ´1 ´1 0 0 0 1 0 0 0 ´1 ´1 0 0 0 1 0
p143q 1 1 ω2 0 0 ω 0 ´1 0 0 0 1 ´1 0 0 0 ´1 0 0 0 1 ´1 0 0
p234q 1 1 ω2 0 0 ω 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0
p243q 1 1 ω 0 0 ω2 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0
p1234q 1 ´1 0 ω ω2 0 0 ´1 0 1 0 0 0 0 1 0 1 0 ´1 0 0 0 0 ´1
p1432q 1 ´1 0 ω ω2 0 0 1 0 ´1 0 0 0 0 1 0 ´1 0 1 0 0 0 0 ´1
p1423q 1 ´1 0 1 1 0 1 0 0 0 0 ´1 0 1 0 ´1 0 0 0 0 1 0 ´1 0
p1342q 1 ´1 0 ω2 ω 0 0 0 1 0 1 0 ´1 0 0 0 0 ´1 0 ´1 0 1 0 0
p1324q 1 ´1 0 1 1 0 1 0 0 0 0 1 0 ´1 0 ´1 0 0 0 0 ´1 0 1 0
p1243q 1 ´1 0 ω2 ω 0 0 0 ´1 0 1 0 1 0 0 0 0 1 0 ´1 0 ´1 0 0

Table B.2: The matrix coefficients of the unitary representations of S4
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