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Abstract

This paper investigates the Robinson graphon completion/recovery problem
within the class of Lp-graphons, focusing on the range 5 < p ⩽ ∞. A graphon
w is Robinson if it satisfies the Robinson property: if x ⩽ y ⩽ z, then w(x, z) ⩽
min{w(x, y), w(y, z)}. We demonstrate that if a graphon possesses localized near-
Robinson characteristics, it can be effectively approximated by a Robinson graphon
in terms of cut-norm. To achieve this recovery result, we introduce a function Λ,
defined on the space of Lp-graphons, which quantifies the degree to which a graphon
w adheres to the Robinson property. We prove that Λ is a suitable gauge for mea-
suring the Robinson property when proximity of graphons is understood in terms of
cut-norm. Namely, we show that (1) Λ(w) = 0 precisely when w is Robinson; (2) Λ
is cut-norm continuous, in the sense that if two graphons are close in the cut-norm,
then their Λ values are close; and (3) for p > 5, any Lp-graphon w can be approx-
imated by a Robinson graphon, with error of the approximation bounded in terms
of Λ(w). When viewing w as a noisy version of a Robinson graphon, our method
provides a concrete recipe for recovering a cut-norm approximation of a noiseless
w. Given that any symmetric matrix is a special type of graphon, our results can
be applicable to symmetric matrices of any size. Our work extends and improves
previous results, where a similar question for the special case of L∞-graphons was
answered.
Keywords: Robinson, graphon recovery, Lp-graphons, matrix completion

Mathematics Subject Classifications: 05C62, 15A83,15B52

1 Introduction

Given an incomplete matrix MI with many missing entries, is it possible to recover the
underlying complete matrix M? An instance of such a scenario is when data is aggregated
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from customer ratings, where any given customer only rates a few items. In general,
this problem is ill-posed; indeed, with low dimensional information, it is not possible to
uniquely recover high dimensional data. However, in practical applications, it is often the
case that additional structure about the original matrixM is known. In the above example
regarding costumer ratings, it is usually assumed that most people’s preferences are based
on very few factors, implying that the complete matrix M should be low rank. Leveraging
this assumption makes the completion of MI quite tractable, even if the majority of its
entries are missing. In general, the problem of filling in the incomplete entries in a
matrix MI under the condition that the completed matrix satisfies a specified structural
property is known as the matrix completion problem. Due to its many applications in
data science, the completion problem for low rank matrices has gained the attention
of many researchers (see e.g. [9, 10, 30, 31, 34, 49, 54, 56]). Furthermore, the matrix
completion problem has been explored in the context of various other essential structural
properties, including Hankel, Toeplitz, and moment structures (see [16, 17, 29, 57] for
some examples). Unfortunately, even known information can be corrupted by noise. In
this case, the problem of completion becomes that of recovery : Given an observed matrix
M̂ , find a matrix M satisfying a prescribed structural property such that ∥M − M̂∥ is
small. For examples of recovery of noisy matrices, see [1, 8, 33, 35, 36, 37, 51, 55] for low
rank matrices, [18, 43] for monotone matrices, and [7, 12, 52] for covariance matrices.

An important structural property of matrices/graphons is the Robinson property. A
Robinson matrix, also called an R-matrix, is a symmetric matrix A = [aij] such that for
i ⩽ j ⩽ k we have

aik ⩽ min{aij, ajk}.

Robinson matrices are well-studied objects in data science, largely because of their con-
nection with the classical seriation problem [19, 40, 45, 48, 53]. The objective of the
seriation problem is to use pairwise comparisons of a set of items to recover their lin-
ear ordering. The seriation problem is easily transferred to the problem of determining
whether a given symmetric matrix can be permuted into a Robinson matrix, and finding
the Robinson ordering. This problem can be solved in polynomial time; see [45] for the
original algorithm, and [2, 20, 38, 39] for more recent efficient algorithms. When the
underlying matrix is perturbed by noise, recovery of a Robinson ordering turns out to be
a very challenging problem. For a discussion on the NP-hardness of this problem when
ℓp-norm approximations (with p < ∞) are required, see [4]; and for a polynomial time
algorithm when seeking ℓ∞-norm approximations, see [13].

To put matrices of various size in one framework, and also to develop a probabilistic
Robinson theory that can treat matrices of growing sizes, we focus on graphons as a
versatile extension of symmetric matrices. Graphons are measurable real-valued functions
on [0, 1]2 that are symmetric with respect to the diagonal. A graphon is called an Lp-
graphon if its p-norm is finite. L∞-graphons are typically referred to as graphons, and were
introduced in [42] as the limit objects of converging sequences of dense graphs (i.e. graph
sequences {Gn}n∈N in which the number of edges is quadratic in the number of vertices).
In [5, 6], Borgs et al. extended this point of view, and proved that Lp-graphons (when
1 < p < ∞) are limit objects of sparse graph sequences. The mode of convergence in
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dense/sparse graph limit theory is easily captured using the cut-norm. This norm was
introduced in [21] for matrices, and can be extended to graphons in a natural manner:

∥w∥□ = sup
A,B⊆[0,1]

∣∣∣∣∣
∫∫

A×B

w(x, y) dxdy

∣∣∣∣∣,
where the supremum is taken over all Lebesgue measurable subsets A,B.

Graph limit theory provides an effective approach for capturing the common large-scale
features of networks. This viewpoint is now the base for many network analysis methods.
In the limit theory of graphs, graphons represent random processes, called w-random
graphs, that generate networks. Networks produced by the same graphon have similar
large-scale features. For this reason, we think of graphons as the large-scale blueprint of
any graph that they generate. Naturally, to study networks, we only need to study the
(underlying) graphon, rather than the individual networks generated by that graphon.
We refer to [41] for a comprehensive account of (dense) graph limit theory. To see some
applications of graphons in network analysis, we refer to [3, 22, 23, 24, 27, 28, 44].

Robinson Lp-graphons are defined similarly to Robinson matrices (see Subsection 2.2).
In this paper, we study the graphon recovery problem for the class of Robinson graphons.
The limiting Robinson graphon of a converging graph sequence, if recovered successfully
in terms of cut-norm, can be used to seriate the graphs in that sequence (see for example
[32] for a randomized algorithm or [47] for a spectral approach). For this reason, we must
measure proximity in terms of cut-norm when performing the Robinson graphon recovery.
Our objective, therefore, is to obtain a statement of the following general form:

Given a graphon w that is locally almost Robinson, there exists a Robinson
graphon u such that ∥w − u∥□ is sufficiently small.

To begin, it is essential to formalize the concept of locally almost Robinson graphons. In
this paper, we introduce a graphon function denoted as Λ, which serves as a gauge for
assessing the Robinson property by quantifying localized (aggregated) deviations from it
(Definition 4). In informal terms, we consider a graphon w to be locally almost Robinson
if Λ(w) is close to 0. Indeed, we prove that Λ serves as a suitable measurement for the
Robinson property when p > 5 (see Proposition 5 and Theorem 19); that is, we show that
Λ is subadditive and satisfies the following three properties:

• (Recognition) Λ(w) = 0 if and only if w is Robinson.

• (Continuity) Λ is continuous with respect to the cut-norm.

• (Recovery) Given an Lp-graphon w, there exists a Robinson graphon u such that
∥w − u∥□ ⩽ cpΛ(w)

αp , where αp ∈ (0, 1) and cp > 0 are constants depending only
on p.

The final item in the list presented above may be interpreted as follows: if w is locally
almost Robinson (i.e., Λ(w) is near 0), then a Robinson graphon u can be found so that
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∥w − u∥□ is also small. We think of u as a Robinson approximation for w. Our results
(in particular, Definition 7 and Theorem 19) provide a systematic approach for creating
Robinson approximations for graphons that are almost Robinson on a local scale.

The current work extends the results of [14, 26], where a similar problem was addressed
within the context of L∞-graphons. Specifically, [14] introduced a function Γ defined on
the space of L∞-graphons. Much like Λ, this function Γ adheres to three crucial properties:
(1) recognition: Γ(w) = 0 precisely when w is Robinson, (2) continuity: when equipped
with the cut-norm, the function Γ exhibits continuity over the space of L∞-graphons, and
(3) recovery: for every L∞-graphon w, there exists a Robinson L∞-graphon u such that
∥w − u∥□ ⩽ 14Λ(w)1/7. The approach in the current paper offers a two-fold advantage.
Firstly, our newly proposed function Λ possesses the desired properties of recognition,
continuity, and recovery for all Lp-graphons with p > 5, extending beyond the restricted
case of L∞-graphons. Secondly, the formula defining the function Λ is less intricate
compared to Γ. Leveraging the simplicity of Λ and applying meticulous estimates, we
not only extend the results achieved by Γ to encompass Lp-graphons (as detailed in
Theorem 19), but also notably improve the outcomes within the domain of L∞-graphons
(as demonstrated in Corollary 17).

It is worth noting that the proof of continuity and recovery of Γ in [14, 26] cannot be
adjusted to work for the setting of Lp-graphons. Indeed, the proof of the ∥ · ∥□-continuity
of Γ in [14] relies upon the continuity of the triangular cut operator when acting on the
space of [−1, 1]-valued graphons [14, Lemma 6.1]. This continuity, however, does not hold
when the triangular cut is applied to Lp-graphons with p < ∞ (see [46]). As a result, the
proof in [14] do not work for the unbounded case. Similarly, the proof of stability of Γ
in [26, Theorem 3.2] heavily relies on the fact that the graphons at hand do not attain
values outside of [−1, 1] (see Remark 3 for more details). Thus, to handle Lp-graphons,
the new approach presented here seemed to be necessary.

This paper is organized as follows: In Section 2, we introduce various necessary back-
ground involving graphons and the study of the Robinson property. Section 3 discusses
previous work that has been done to recover Robinson graphons in the cut-norm; here,
we also comparatively summarize our own graphon recovery results. In Section 4, along-
side the building of necessary machinery and statement of technical lemmas, we present
proofs of our main recovery results. The aforementioned technical lemmas are proven in
Appendix A.

2 Notation and background

In this section of the paper, we present necessary background and notation for the reader.
We begin with basic notation used throughout the paper; afterwards, we present graph
limit theory, stating required definitions alongside notable results, then transition into
explanation of the Robinson property for both matrices and graphons.

All functions and sets discussed in this paper are assumed to be measurable. The
symmetric difference between two sets A and B is denoted A△B, and the measure of A
is denoted |A|. The notation ∥ · ∥p is used to represent the standard p-norm; that is, for
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a function f : X → R on a measure space X, and 1 ⩽ p < ∞,

∥f∥p :=
(∫

X

|f |p
) 1

p

and ∥f∥∞ := inf
a∈R

{|f(x)| ⩽ a almost everywhere (a.e.)} .

2.1 Graphons and the cut-norm

We begin by defining the graphon, the fundamental building block of graph limit theory,
in several of its myriad forms.

Definition 1 (Graphon space).

• Let W0 be the set of all symmetric, measurable functions w : [0, 1]2 → [0, 1]. The
elements of this set are called graphons.

• Let W∞ be the set of all bounded, symmetric, measurable functions w : [0, 1]2 → R.
The elements of this set are called kernels.

• For p ⩾ 1, let Wp be the set of all symmetric, measurable functions w : [0, 1]2 → R
such that ∥w∥p < ∞. The elements of this set are called Lp-graphons.

It is clear that W0 ⊆ W∞ ⊆ Wp ⊆ W1 for p > 1. We mention as well the space
of step kernels S ⊆ W∞, which comprises the set of symmetric step functions on [0, 1]2;
that is, for w ∈ S, there exists some partition P = {P1, . . . , Pm} of [0, 1] into measurable
subsets such that w is constant on Pi × Pj for all 1 ⩽ i, j ⩽ m. We define the space of
step graphons S0 ⊆ W0 similarly. The norm of choice for these function spaces is the
cut-norm, which was introduced in [21] for matrices, and can be naturally extended to
the case of graphons as follows.

Definition 2 (Cut-norm). Let w ∈ W1. We define the cut-norm by

∥w∥□ = sup
S,T⊆[0,1]

∣∣∣∣∣
∫∫

S×T

w(x, y) dxdy

∣∣∣∣∣
where the supremum is taken over all measurable subsets S and T . Moreover, the supre-
mum in the formula for cut-norm is achieved [41, Lemma 8.10].

It is obvious that for any function w ∈ W1, and for all p ⩾ 1,

∥w∥□ ⩽ ∥w∥1 ⩽ ∥w∥p ⩽ ∥w∥∞.

Similar to unlabeled graphs, we are interested in ‘unlabeled graphons’; these are defined
through an analytic generalization of graph vertex relabelling. Let Φ denote the set
of all measure-preserving bijections on [0, 1]; that is, if A ⊂ [0, 1] and ϕ ∈ Φ, then
|ϕ(A)| = |ϕ−1(A)| = |A|. The cut-distance between two graphons u and w is

δ□(u,w) = inf
ϕ∈Φ

∥u− wϕ∥□,
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where wϕ(x, y) = w(ϕ(x), ϕ(y)). The cut-distance δ□ is only a pseudometric; we thus

identify graphons of cut distance 0 to get the space W̃0 of unlabeled graphons. W̃ and W̃p

are defined similarly. This has quite the reward: For p > 1, the metric space (W̃ p, δ□) has
a compact unit ball ([6, Theorem 2.13]). For p = 1, additional conditions are required to
ensure compactness ([6, Theorem C7]), though we do not consider this case in the paper.

Let w ∈ W1 and let A,B ⊆ [0, 1]. The cell average of w over A×B is given by

w(A×B) =
1

|A×B|

∫∫
A×B

w dxdy.

For w ∈ W1 and a partition P = (S1, ..., Sk) of [0, 1] into measurable sets, we define the
function wP by

wP(s, t) =
1

|Si × Sj|

∫∫
Si×Sj

w(x, y) dxdy = w(Si × Sj) if (s, t) ∈ Si × Sj,

The operator w 7→ wP is called the stepping operator. It is easy to see that the stepping
operator is contractive with respect to the cut-norm as well as Lp-norms ; indeed, for
w ∈ W1, a partition P of [0, 1], and p ⩾ 1, we have

∥wP∥p ⩽ ∥w∥p and ∥wP∥□ ⩽ ∥w∥□.

2.2 The Robinson property

The Robinson property for matrices was first introduced in [50] for the study of the
classical seriation problem, whose objective is to order a set of items so that similar items
are placed close to one another. A symmetric matrix A = [aij] is a Robinson matrix if

i ⩽ j ⩽ k =⇒ aik ⩽ min{aij, ajk}.

and is Robinsonian if it becomes a Robinson matrix after simultaneous application of a
permutation π to its rows and columns. The permutation π is a Robinson ordering of A.
If the entries aij of the symmetric matrix A represent similarity of items i and j, then the
Robinson ordering of A represents a linear arrangement of the items so that similar items
are placed closer together.

The Robinson property for graphons, initially introduced in [14], shares a similar
definition. When analyzing large matrices or graphs, particularly in the context of network
visualization, it is useful to determine whether these complex structures can be interpreted
as samples of a Robinson graphon w. If so, one can harness the Robinson property inherent
in the graphon w to obtain quantitative insights concerning the data at hand. Formally,
an Lp-graphon w ∈ Wp is said to be Robinson if

x ⩽ y ⩽ z =⇒ w(x, z) ⩽ min{w(x, y), w(y, z)}.

We call an Lp-graphon Robinson almost everywhere, or Robinson a.e. for short, if it is
equal a.e. to a Robinson Lp-graphon. An Lp-graphon w ∈ Wp is called Robinsonian if
there exists a Robinson Lp-graphon u ∈ Wp such that δ□(w, u) = 0.
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3 Robinson property: measurement and recovery

In order to study the recovery problem for Robinson matrices/graphons, we need to devise
a graphon parameter that suitably measures the Robinson property. Such a parameter
must recognize Robinson graphons, be continuous on the space of graphons, and recover
the Robinson property. These three key features ensure that the graphon parameter
recognizes graphs sampled from Robinson graphons as well. Informally speaking, these
are graphs whose parameter value is small, and we think of them as ‘almost Robinson
graphs’.

We give a brief overview of past results from [14] introducing such a parameter for
L∞-graphons, before discussing efforts to tackle this problem in the world of Lp-graphons.
The parameter Γ : W0 → [0, 1] was introduced in [14] to estimate to what extent a given
graphon fails to satisfy the Robinson property. We recall the definition of Γ, noting that
it can naturally extend to W1. For w ∈ W1 and a measurable subset A of [0, 1], we define
Γ(w,A) as

Γ(w,A) =

∫∫
y<z

[∫
x∈A∩[0,y]

(w(x, z)− w(x, y))dx

]
+

dydz

+

∫∫
y<z

[∫
x∈A∩[z,1]

(w(x, y)− w(x, z))dx

]
+

dydz,

where [x]+ = max(x, 0). We then define Γ(w) := supA Γ(w,A), where the supremum
is taken over all measurable subsets of [0, 1]. It turns out that Γ suitably measures the
Robinson property for L∞-graphons:

(i) (Recognition [14, Proposition 4.2]) w ∈ W0 is Robinson a.e. if and only if Γ(w) =
0.

(ii) (Continuity [14, Lemma 6.2]) Γ is continuous on W0 with respect to cut-norm.

(iii) (Recovery [26, Theorem 3.2]) For every w ∈ W0, there exists a Robinson graphon
u ∈ W0 satisfying

∥u− w∥□ ⩽ 14Γ(w)1/7.

Indeed, Γ recognizes samples of Robinson graphons: These are precisely graph sequences
whose Γ-values converge to 0 [26, Theorem 1.2].

Remark 3. It is natural to ask whether these results for Γ can be extended to Lp-graphons;
however, in trying to do so, one encounters key issues in proving continuity (ii) and
recovery (iii) of Γ. Firstly, if χ denotes the characteristic function of the triangle above
the diagonal, then the proof of (ii) is based on the following two facts:

(a) |Γ(w1)− Γ(w2)| ⩽ 2∥w1 − w2∥□ + 2∥(w1 − w2)χ∥□ for w1, w2 ∈ W1.

(b) ∥wχ∥□ ⩽ 2
√

∥w∥□∥w∥∞ for w ∈ W∞.
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While condition (a) holds in the sparse case, it was shown in [46] that condition (b)
cannot be generalized to w ∈ Wp with 1 < p < ∞. In fact, the map Mχ : w 7→ wχ is not
∥ · ∥□-continuous on Wp for 1 < p < ∞ [46, Corollary 3.4]. So even though the definition
of Γ can be extended to Lp-graphons, the proof of continuity in [14] does not naturally
extend to the unbounded case. Whether Γ is cut-norm continuous on Wp remains an
open question.

Secondly, the proof of stability of Γ in [27] relies heavily, and at multiple points, on the
universal L∞-bound on graphons. Most importantly, the key idea of the proof is to locate
a large enough cell on which the graphon has a large enough average ([27, Claim 4.11]),
assuming that the desired upper bound on the error of estimate fails. The existence of
such a cell, which is an integral part of the proof, is not guaranteed when the graphon is
not L∞-bounded. Indeed, for any 1 ⩽ p < ∞, it is easy to construct a graphon w with
∥w∥p = 1 for which such a cell does not exist.

4 Robinson recovery of Lp-graphons

In this section, we introduce a new graphon parameter Λ for measuring the Robinson
property. We say that A ⩽ B for sets A,B ⊆ [0, 1] if a ⩽ b for all a ∈ A and b ∈ B.

Definition 4 (Robinson parameter). Let w ∈ W1. Define

Λ(w) =
1

2
sup

A⩽B⩽C,
|A|=|B|=|C|

[ ∫∫
A×C

w dxdy −
∫∫

B×C

w dxdy

]

+
1

2
sup

X⩽Y ⩽Z,
|X|=|Y |=|Z|

[ ∫∫
X×Z

w dxdy −
∫∫

X×Y

w dxdy

]
,

where A,B,C and X, Y, Z are measurable subsets of [0, 1].

It is clear that we have Λ(w) ⩾ 0 for all w ∈ W1, as we can take A = B = C = X =
Y = Z = ∅. Moreover,

Λ(w) ⩽
1

2

(∫∫
(A∪B)×C

|w| dxdy +
∫∫

X×(Y ∪Z)

|w| dxdy

)
,

implying that Λ(w) ⩽ ∥w∥p for every p ⩾ 1. Note that since the supremum is subadditive,
we also have that Λ is subadditive, i.e., for all u,w ∈ Wp

Λ(u+ w) ⩽ Λ(u) + Λ(w). (1)

The rest of this section is dedicated to proving that Λ suitably measures the Robinson
property for Lp-graphons. We thus show that Λ recognizes the Robinson property, is
continuous on Lp-graphons, and can recover the Robinson property. We begin with the
proof of recognition, noting that for ease of notation, the upper triangle of the unit square
will be written

∆ =
{
(x, y) ∈ [0, 1]2 : x ⩽ y

}
.
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Proposition 5 (Recognition). Let 1 ⩽ p ⩽ ∞ and suppose w ∈ Wp. Then w is Robinson
a.e. if and only if Λ(w) = 0.

Proof. Observe that if w is Robinson a.e., then Λ(w) = 0. To prove the reverse direction,
suppose Λ(w) = 0. For n ∈ N, let wn = wPn , where Pn is the partition of [0, 1] into
n equal-size intervals I1 ⩽ I2 ⩽ . . . ⩽ In. Note that as Λ(w) = 0, for any choice of
measurable subsets A ⩽ B ⩽ C of [0, 1] of equal size, we have∫∫

A×C

w(x, y) dxdy ⩽
∫∫

B×C

w(x, y) dxdy &

∫∫
A×C

w(x, y) dxdy ⩽
∫∫

A×B

w(x, y) dxdy.

Applying the above inequalities to the sets Ii, we observe that wn is Robinson. Since
wn → w in the L1 norm, by using the Borel–Cantelli Lemma and going down to a
subsequence if necessary, we can assume that {wn} converges to w pointwise a.e. in [0, 1]2.
So, there exists a set of measure zero N ⊂ [0, 1]2 such that w(x, y) = limnwn(x, y) for
(x, y) ∈ [0, 1]2 \N . As w is symmetric, we can assume that N is symmetric with respect
to the main diagonal. Next, we define the symmetric function w̃ as follows:

w̃(x, y) =

{
w(x, y) (x, y) ∈ ∆ \N
sup {w(u, v) : (u, v) ∈ ([0, x]× [y, 1]) \N} (x, y) ∈ ∆ ∩N

.

Clearly w = w̃ almost everywhere. To show w̃ is Robinson, we observe that for every
(x1, y1), (x2, y2) ∈ ∆ with x2 ⩽ x1 and y1 ⩽ y2, we have w̃(x2, y2) ⩽ w̃(x1, y1). Indeed, the
required inequality can be easily verified by considering four cases depending on whether
each of (x1, y1) and (x2, y2) belong to ∆ \ N or ∆ ∩ N ; we omit the details of this
straightforward verification.

We now show that Λ is continuous on Lp-graphons.

Proposition 6 (Continuity). |Λ(w)− Λ(u)| ⩽ 2∥w − u∥□.

Proof. Let w, u ∈ W1, and fix ϵ > 0. There exist measurable sets A ⩽ B ⩽ C with equal
size and measurable sets X ⩽ Y ⩽ Z with equal size such that

1

2

(∫∫
A×C

w dxdy−
∫∫

B×C

w dxdy+

∫∫
X×Z

w dxdy−
∫∫

X×Y

w dxdy

)
⩾ Λ(w)− ϵ. (2)

Combining (2) with the definition of Λ(u), we get that

2(Λ(w)− Λ(u)− ϵ) ⩽
∫∫

A×C

w − u+

∫∫
B×C

u− w +

∫∫
X×Z

w − u+

∫∫
X×Y

u− w

⩽ 4∥w − u∥□.

Following the same logic, we can also prove that Λ(u)− Λ(w) ⩽ 2∥w − u∥□ + 2ϵ. Taking
ϵ → 0, we get |Λ(w)− Λ(u)| ⩽ 2∥w − u∥□.
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Figure 1: The graphon w(x, y) = x2 + y2 (left) and its Robinson approximation Rα
w for

α = 0.05 (right).

Having shown that Λ recognizes the Robinson property and is continuous on Lp-
graphons, all that remains is to show it recovers the Robinson property; that is, we
endeavour to show that for a given Lp-graphon w, there exists some Robinson Lp-graphon
u such that ∥w − u∥□ is bounded above by some power of Λ(w). This is a far more
challenging task than the previous two properties and must be handled in several parts.
We begin by first defining this Robinson graphon u and listing some properties that will
be useful in future proofs.

4.1 Robinson approximation of Lp-graphons

Here we introduce the α-Robinson approximation of an Lp-graphon. We borrow the
following terminology from [26]. The upper left (UL) and lower right (LR) regions of a
given point (a, b) ∈ ∆ are given by

UL(a, b) = [0, a]× [b, 1],

LR(a, b) = [a, b]× [a, b] ∩∆.

Definition 7 (α-Robinson approximation for graphons). Let p ⩾ 1 and fix a parameter
0 < α < 1. Given w ∈ Wp, the α-Robinson approximation Rα

w of w is the Lp-graphon
such that for all (x, y) ∈ ∆,

Rα
w(x, y) = sup {w(S × T ) : S × T ⊆ UL(x, y), |S| = |T | = α} , (3)

where S, T are measurable and sup ∅ = 0. Moreover, we set Rα
w = w if α = 0 and w is

Robinson.

For every w ∈ Wp, the approximation Rα
w is a Robinson graphon. To see this, note that

for two points (x1, y1) and (x2, y2), if (x1, y1) ∈ UL(x2, y2), then UL(x1, y1) ⊆ UL(x2, y2).
So by definition of Rα

w, we get Rα
w(x1, y1) ⩽ Rα

w(x2, y2). Therefore, Rα
w satisfies the

Robinson property (Subsection 2.2), as for x ⩽ y ⩽ z, we have (x, z) ∈ UL(x, y)∩UL(y, z).
See Figure 1 for an example of a graphon w and its Robinson approximation Rα

w.
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Remark 8. If w is a Robinson graphon and 0 < α < 1, then the graphon Rα
w can be

different from w, although both graphons are Robinson. This is indeed the case for
Robinson step graphons. In general, w does not need to be continuous, but Rα

w satisfies
certain continuity properties: Though Rα

w is certainly not always continuous on [0, 1]2–the
outer boundary of thickness α of the unit square is set to 0 by definition–it is continuous
on [α, 1−α]2. We prove this fact and some other useful properties of Rα

w in Proposition 9.

Proposition 9 (Properties of the Robinson approximation). Let p ⩾ 1, and fix a param-
eter 0 < α < 1. Given graphons w, u ∈ Wp , we have:

(i) If u ⩽ w pointwise, then 0 ⩽ Rα
w −Rα

u ⩽ Rα
w−u.

(ii) Rα
w is continuous on the square [α, 1− α]2, and ∥Rα

w∥∞ ⩽ α− 2
p∥w∥p.

(iii) For w, u ∈ Wp, we have ∥Rα
w − Rα

u∥∞ ⩽ ∥w − u∥□. In particular, ∥Rα
w − Rα

u∥□ ⩽
∥w − u∥□.

We note that for item (iii), only convergence in the L1-norm—the weakest Lp-norm—is
required. Therefore, convergence in any Lp-norm is enough to guarantee the convergence
of the α-Robinson approximations in the cut-norm.

Proof. To prove (i), let (x, y) ∈ ∆. By definition of the α-Robinson approximation, for
every ϵ > 0, there exist sets A,B ⊆ UL(x, y) such that Rα

w(x, y) ⩾ w(A×B) ⩾ Rα
w(x, y)−ϵ

and C,D ⊆ UL(x, y) such that Rα
u(x, y) ⩾ u(C ×D) ⩾ Rα

u(x, y) − ϵ. We also note that
|A| = |B| = |C| = |D| = α. Since u ⩽ w, we have

0 ⩽
1

α2

∫∫
C×D

(w − u)dxdy = w(C ×D)− u(C ×D) ⩽ Rα
w(x, y)−Rα

u(x, y) + ϵ

Letting ϵ → 0, we conclude that 0 ⩽ Rα
w −Rα

u . Moreover, we note that

Rα
w(x, y)− ϵ−Rα

u(x, y) ⩽
1

α2

∫∫
A×B

(w − u)dxdy ⩽ Rα
w−u(x, y),

showing that (i) holds true, again by letting ϵ → 0.
To prove (ii), let (x, y) ∈ [α, 1−α]2, and suppose the sequence {(xn, yn)} ⊂ [α, 1−α]2

converges to (x, y) in the standard Euclidean distance. Then, we have

UL(min(xn, x),max(yn, y)) ⊆ UL(x, y) ⊆ UL(max(xn, x),min(yn, y)),

which implies that

Rα
w(min(xn, x),max(yn, y)) ⩽ Rα

w(xn, yn) ⩽ Rα
w(max(xn, x),min(yn, y)). (4)

We shall show that both the upper and lower bound in (4) converge to Rα
w(x, y); by the

Squeeze Theorem, this will imply our original claim. To do so, we let ϵ > 0 and recall
from elementary measure theory that as w is an L1 function, for every ϵ > 0, there exists
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a δ > 0 such that for every S ⊂ [α, 1 − α]2 satisfying |S| < δ, we have
∫∫

S
|w| dxdy < ϵ.

Let N ∈ N be such that for all n ⩾ N , we have that d((xn, yn), (x, y)) <
δ
2
. Defining the

set S := UL(min(xn, x),max(yn, y))△UL(x, y), it must then be that

Rα
w(x, y) ⩽ Rα

w(min(xn, x),max(yn, y)) +
1

α2

∫∫
S

|w|dxdy

⩽ Rα
w(min(xn, x),max(yn, y)) +

ϵ

α2
.

Note that by definition of Rα
w, we have Rα

w(min(xn, x),max(yn, y)) ⩽ Rα
w(x, y), so

|Rα
w(min(xn, x),max(yn, y))−Rα

w(x, y)| < ϵ.

Let ϵ → 0, we conclude that the left hand side of (4) converges to Rα
w(x, y). A similar

argument shows that the the right hand side of (4) converges to Rα
w(x, y) as well, and we

are done.
To prove the norm bound, we note that for every ϵ > 0, there exist sets A,B ⊆ UL(x, y)

where |A| = |B| = α such that Rα
w(x, y) ⩾ w(A × B) ⩾ Rα

w(x, y) − ϵ. Then, by Hölder’s
inequality,

Rα
w(x, y)− ϵ ⩽

1

α2

∫∫
A×B

w dxdy ⩽
1

α2
∥w∥p∥1A×B∥q = α− 2

p∥w∥p,

where we used ∥1A×B∥q = α2/q = α2−2/p. We let ϵ → 0 to finish the proof of (ii).
To prove (iii), fix (x, y) ∈ ∆, and let ϵ > 0 be arbitrary. By an argument similar to

(i), there exist sets A,B of size α such that A×B ⊆ UL(x, y), and

Rα
w(x, y)−Rα

u(x, y) ⩽ w(A×B)− u(A×B) + ϵ ⩽ α2∥w − u∥□ + ϵ.

Sending ϵ to 0, we get Rα
w(x, y) − Rα

u(x, y) ⩽ α2∥w − u∥□. A similar argument can be
used to show Rα

u(x, y)−Rα
w(x, y) ⩽ α2∥w − u∥□, so we are done.

4.2 Recovering the Robinson property for Lp-graphons

Our proof that Λ recovers the Robinson property requires that the value of Rα
w and w

both be tightly controlled within sets of specific measure. To accomplish this, we enhance
the techniques outlined in [26], and as a result, we need to introduce analogous notation.
Let w ∈ W∞ be a graphon with w ⩾ 0 and ⌈∥w∥∞⌉ = M . Fix a parameter α ∈ (0, 1) (as
in Definition 7), and let m be a fixed integer. For k ∈ {1, . . . ,mM − 1}, define the k-th
black region Bk, the k-th white region Vk and the k-th grey region Gk as follows.

Bk =
{
(x, y) ∈ ∆ : x = y or ∃ S × T ⊆ UL(x, y)s.t. |S| = |T | = α & w(S × T ) >

k

m

}
,

Vk =
{
(x, y) ∈ ∆ \ Bk : ∃ S × T ⊆ LR(x, y) s.t. |S| = |T | = α & w(S × T ) ⩽

k

m

}
,

Gk = ∆ \ (Bk ∪ Vk).
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We set B0 = VmM = ∆, set V0 = BmM = ∅, and denote G :=
⋃mM−1

k=1 Gk. In addition, we
also define the following regions:

Rk := Bk ∩ Vk+1.

Black regions provide lower bounds on both Rα
w and w while white regions provide upper

bounds. So the regions Rk are used to form tight bounds on the behaviour of both Rα
w

and w. Grey regions provide no information pertinent to our method of proof. From the
definition of the regions, it is easy to observe that

B0 ⊇ B1 ⊇ . . . ⊇ BmM and V0 ⊆ V1 ⊆ . . . ⊆ VmM .

Subsequently, we establish that the regions Rk form a partition of ∆ \ G. Our approach
mirrors that of [26, Lemma 4.8], with a supplementary sketch of the proof provided for
reader’s convenience.

Figure 2: An example of black and white regions for m = 4 and α = 0.1.

Lemma 10. Let w ∈ W∞ be such that w ⩾ 0 and ⌈∥w∥∞⌉ = M , and let Bk, Vk, Gk, and
Rk be as defined above. Then,

∆ \

(
mM−1⋃
k=1

Gk

)
=

mM−1⊔
k=0

Rk,

where
⊔

denotes the disjoint union of sets.

Proof. Let 1 ⩽ i < j ⩽ mM − 1, and note that Ri ⊆ Vi+1 ⊆ Vj and Rj ⊆ Bj. Since
Vj ∩ Bj = ∅, we conclude that Ri ∩Rj = ∅ as well. So the regions Rk are disjoint. Next,
observe that

∆ \

(
mM−1⋃
k=1

Gk

)
= ∆ \

(
mM−1⋃
k=1

∆ \ (Bk ∪ Vk)

)
=

mM−1⋂
k=1

(Bk ∪ Vk).

the electronic journal of combinatorics 30 (2023), #P00 13



Now, we consider the expansion of (B1 ∪ V1) ∩ (B2 ∪ V2) ∩ . . . ∩ (BmM−1 ∪ VmM−1) into
expressions X1 ∩ . . . ∩ XmM−1 with Xi ∈ {Bi,Vi}. We further note that X1 ∩ . . . ∩
XmM−1 = ∅ whenever Xi = Vi and Xj = Bj for some i < j; thus, every nonempty term
X1 ∩ . . . ∩XmM−1 from the above expansion must be of one of the following forms:

(i) X1 ∩ . . . ∩XmM−1 = Bj ∩ Vj+1 = Rj with 1 ⩽ j < mM − 1 if there is at least one
black and one white region amongst the Xi.

(ii) X1 ∩ . . . ∩XmM−1 = V1 ∩ . . . ∩ VmM−1 = V1 if all Xi are white.

(iii) X1 ∩ . . . ∩XmM−1 = B1 ∩ . . . ∩ BmM−1 = BmM−1 if all Xi are black.

This completes the proof, as V1 = V1 ∩ B0 = R0 and BmM−1 = BmM−1 ∩ VmM = RmM−1.

By definition, for every k ∈ {1, . . . ,mM − 1}, the regions Bk and Vk have upper and
lower boundary functions fk, gk : [0, 1] → [0, 1], where fk is the upper boundary of Bk and
gk is the lower boundary of Vk. These are defined in [26] as follows:

fk(x) = sup{z ∈ [x, 1] : (x, z) ∈ Bk},
gk(x) = inf{z ∈ [x, 1] : (x, z) ∈ Vk};

with the convention inf ∅ = 1. Additionally, we define f0(x) = 1 and gmM(x) = x for all
x ∈ [0, 1] to represent the corresponding boundaries for B0 = VmM = ∆. Finally, since
fk and gk+1 are the upper and lower boundaries of Bk and Vk+1 respectively, if the region
Rk is nonempty, then it is bounded from below by gk+1 and from above by fk. We refer
to Figure 2 for a visual representation of the regions and boundary functions previously
mentioned.

From the definition of the black and white regions, it is easy to see that the functions
fk and gk are both increasing functions and thus only admit jump discontinuities. We
naturally extend the graph of these functions to boundary curves by adding vertical line
segments connecting any such discontinuities, denoting the resulting curves once again by
fk and gk respectively.

Let S, T ⊆ [0, 1] be measurable. We say that S×T crosses a boundary curve fk or gk
if the top-left corner of the cell is strictly above the boundary curve and its bottom-right
corner is strictly below the curve. This definition is used as S×T need not be a connected
subset of R2, so a boundary curve can go through the cell without intersecting it. Figure
3 depicts such behavior.

The proof of our recovery theorem is based on the idea that the total area of the
grey regions Gk is small. This allows us to concentrate on the behaviour of w and Rα

w

inside the regions Rk, where their values are strictly controlled. We show that their local
average difference in these regions can be controlled by Λ(w), leading to the conclusion
that ∥w − Rα

w∥□ must be small. We introduce three lemmas here, each necessary in the
proof of our main result. We will present the proofs of Lemma 12 and Lemma 13 in
Appendix A. The proof of Lemma 11 is very similar to [26, Lemma 4.10], but to keep this
article self-contained, we present a sketch of this proof in Appendix A as well.
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Figure 3: An example of a cell S×T that crosses a boundary curve f2 without intersecting
it.

Lemma 11. Let k ∈ Z⩾0, w ∈ Wp with w ⩾ 0, and α ∈ (0, 1). Then, Gk does not contain
any β × β square, where β > α. Here, Gk denotes the closure of Gk in the Euclidean
topology of R2.

Lemma 12. Let u ∈ L∞[0, 1] (not necessarily non-negative), and P ⊆ [0, 1] be a measur-
able subset such that

∫
P
u dx ̸= 0. Let 0 < β < |P | be fixed. Then P can be partitioned

into N := ⌈|P |/β⌉ subsets P1, . . . , PN so that the following conditions are satisfied:

(i) P1 ⩽ . . . ⩽ PN−1.

(ii) |Pi| = β for 1 ⩽ i ⩽ N − 1 and |PN | ⩽ β.

(iii)
∣∣ ∫

PN
u dx

∣∣ ⩽ 1
N

∣∣ ∫
P
u dx

∣∣.
Lemma 13. Let f ∈ L1[0, 1]2, and let S, S ′ ⊆ [0, 1] be measurable subsets such that
|S| = |S ′|. Suppose for a constant C > 0 we have∫∫

S×S′
f dxdy ⩾ C.

Then, for every α ∈ (0, 1), there exist measurable sets T ⊂ S and T ′ ⊂ S ′ such that
|T | = |T ′| = α|S| and

1

|T × T ′|

∫∫
T×T ′

f dxdy ⩾
C

|S × S ′|
.

4.3 Proof of recovering property of Λ

Prefacing our main result, we begin first with a necessary proposition—as the proof of
Theorem 19 heavily features “cutting” graphons off at certain values, we must control
their behaviour once cut. The following proposition provides such control.
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Proposition 14. Let p > 2 and w ∈ W∞ with w ⩾ 0. Suppose ∥w∥p ⩽ 1. If Rα
w is the

Robinson approximation of w with parameter α = ∥w∥
− p

3p−2
∞ Λ(w)

2p
5p−2 , then

∥w −Rα
w∥□ ⩽ 4

(
1 + (8∥w −Rα

w∥p + 2)∥w∥
2p

3p−2
∞

)
Λ(w)

p−2
5p−2 . (5)

The proof of this proposition is inspired by [26, Theorem 3.2], however, the approxi-
mation result of [26] would not provide the upper bound needed for Proposition 14. As a
corollary of this proposition, we improve upon the bound obtained in [26].

Proof. By [41, Lemma 8.10], there exist measurable S, T ⊆ [0, 1] so that∣∣∣∣∫∫
S×T

(w −Rα
w) dxdy

∣∣∣∣ = ∥w −Rα
w∥□.

Replacing S × T with T × S if necessary, we can assume without loss of generality that∣∣∣∣ ∫∫
(S×T )∩∆

(w −Rα
w) dxdy

∣∣∣∣ ⩾ 1

2
∥w −Rα

w∥□. (6)

Fix β ∈ (α, 8
7
α). Next, we split S into N1 := ⌈|S|/β⌉ subsets S1, S2, . . . , SN1 , and T

into N2 := ⌈|T |/β⌉ subsets T1, . . . , TN2 , so that the following conditions are satisfied.
Conditions for Si:

(i) S1 ⩽ . . . ⩽ SN1−1.

(ii) |Si| = β for 1 ⩽ i ⩽ N1 − 1 and |SN1| ⩽ β.

(iii)

∣∣∣∣∣
∫∫

SN1
×T

(w −Rα
w) dxdy

∣∣∣∣∣ ⩽ ∥w −Rα
w∥□

N1

.

Conditions for Ti:

(i) T1 ⩽ . . . ⩽ TN2−1.

(ii) |Tj| = β for 1 ⩽ j ⩽ N2 − 1 and |TN2| ⩽ β.

(iii)

∣∣∣∣∣
∫∫

S×TN2

(w −Rα
w) dxdy

∣∣∣∣∣ ⩽ ∥w −Rα
w∥□

N2

.

To prove that a partition of S satisfying the above three properties exists, we apply
Lemma 12 to the function u(·) =

∫
T
(w − Rα

w)(·, y)dy and P = S; a similar proof shows
that such a partition exists for T .

We will assume, without loss of generality, that N1, N2 ⩾ 8, as we shall show the
proposition holds true if N1 ⩽ 7 or N2 ⩽ 7. Assume that N1 ⩽ 7. Then, |S| ⩽ 7β, and so
we get

∥w −Rα
w∥□ =

∣∣∣∣∫∫ (w −Rα
w)1S×T

∣∣∣∣ ⩽ ∥w −Rα
w∥∞(7β) ⩽ ∥w∥∞ (8α) = 8∥w∥

2p−2
3p−2
∞ Λ(w)

2p
5p−2 .
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In the above inequalities, we used the fact that since 0 ⩽ w,Rα
w and ∥Rα

w∥∞ ⩽ ∥w∥∞, we
have ∥w − Rα

w∥∞ ⩽ ∥w∥∞. To verify that the statement of the proposition holds true in
this case, we need to show that the right hand side of the previous inequality is bounded
above by the right hand side of (5), which reduces to showing that

Λ(w)
p+2
5p−2 ⩽ ∥w∥

2
3p−2
∞ .

However, since Λ(w) ⩽ 1 and p > 2, we have Λ(w)
p+2
5p−2 ⩽ Λ(w)

2
3p−2 . This, together with

the fact that Λ(w) ⩽ ∥w∥∞, proves that Proposition 14 holds if N1 ⩽ 7. An identical
argument shows that the proposition also holds if N2 ⩽ 7. From this point forward, we
make the following assumption:

Assumption (∗) N1, N2 ⩾ 8.

We now consider the value of w − Rα
w on the sets Si × Tj. Note that with repeated

applications of the triangle inequality, we have

∑
1 ⩽ i < N1, 1 ⩽ j < N2

(Si × Tj) ∩∆ ̸= ∅

∣∣∣∣∣
∫∫

Si×Tj

w−Rα
w

∣∣∣∣∣ ⩾
∣∣∣∣∣
∫∫

(S×T )∩∆
w−Rα

w

∣∣∣∣∣−
∣∣∣∣∣
∫∫

(SN1
×T )∪(S×TN2

)

w−Rα
w

∣∣∣∣∣,
which, together with Equation (6) and property (iii) of the partitions {Si} and {Ti},
implies that

∑
1 ⩽ i < N1, 1 ⩽ j < N2

(Si × Tj) ∩∆ ̸= ∅

∣∣∣∣∣
∫∫

Si×Tj

(w −Rα
w)

∣∣∣∣∣ ⩾ (12 − 1

N1

− 1

N2

)
∥w −Rα

w∥□.

The above inequality, combined with Assumption (∗), implies that

∑
1 ⩽ i < N1, 1 ⩽ j < N2

(Si × Tj) ∩∆ ̸= ∅

∣∣∣∣∣
∫∫

Si×Tj

(w −Rα
w)

∣∣∣∣∣ ⩾ 1

4
∥w −Rα

w∥□. (7)

Claim 15. There exists a cell S ′ × T ′ ⊆ ∆ contained in a region Rk = Bk ∩ Vk+1 so that
|S ′| = |T ′| = α, and∣∣∣ ∫∫

S′×T ′
(w −Rα

w)dxdy
∣∣∣ ⩾ α2

[
1

4
∥w −Rα

w∥□ − 2(2mM − 1)∥w −Rα
w∥pα

1− 2
p

]
.

We use the pigeonhole principle to prove the claim. By Lemma 10, ∆ =
⋃mM−1

k=0 Rk ∪⋃mM−1
k=1 Gk, and each of the regions Gk or Rk is bounded by boundary curves in {fk, gl :

1 ⩽ k ⩽ mM − 1, 1 ⩽ l ⩽ mM}. Thus, if a cell Si × Tj does not cross the graph of any
of these boundary curves, then it must be entirely contained inside one closed region Rk
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or Gk. Next, by Lemma 11, no grey regions Gk can contain any Si × Tj with 1 ⩽ i < N1

and 1 ⩽ j < N2, because |Si| = |Tj| = β for such i and j. Thus, these cells must either
lie in a single region Rk or cross a boundary curve. Let I denote the collection of indices
(i, j) with i < N1 and j < N2, for which the associated cells Si × Tj do not lie in a single
region Rk. From above,

I =
{
(i, j) :

1 ⩽ i < N1

1 ⩽ j < N2
, and ∃ 1 ⩽ k ⩽ mM −1 s.t. (Si×Tj) crosses fk or gk or gmM

}
.

Because the lower and upper boundaries fk, gk are increasing curves, each fk and gk cross
at most 2/β cells from the grid. As there are 2mM − 1 total fk and gk, we have

|I| ⩽ 2(2mM − 1)

β
.

Using Hölder’s inequality and that every cell indexed in I is of size β2, we get

∑
(i, j) ∈ I

(Si × Tj) ∩∆ ̸= ∅

∣∣∣∣∣
∫∫

Si×Tj

(w −Rα
w) dxdy

∣∣∣∣∣ ⩽ 2(2mM − 1)

β
∥w −Rα

w∥pβ
2− 2

p . (8)

Putting inequalities (7) and (8) together, it must be true that

∑
1 ⩽ i < N1, 1 ⩽ j < N2

(Si × Tj) ∩∆ ̸= ∅
(i, j) ̸∈ I

∣∣∣∣∣
∫∫

Si×Tj

(w −Rα
w) dxdy

∣∣∣∣∣ ⩾ 1

4
∥w−Rα

w∥□−2(2mM−1)∥w−Rα
w∥pβ

1− 2
p .

Since there are at most (⌊β−1⌋)2 cells Si × Tj of size β × β and β2 ⩽ (⌊β−1⌋)−2, there
must exist a cell Si0 × Tj0 ⊆ ∆ so that |Si0| = |Tj0| = β, (i0, j0) ̸∈ I, and∣∣∣∣∣

∫∫
Si0

×Tj0

(w −Rα
w)dxdy

∣∣∣∣∣ ⩾ β2

[
1

4
∥w −Rα

w∥□ − 2(2mM − 1)∥w −Rα
w∥pβ

1− 2
p

]
.

So Si0 × Tj0 lies entirely in Rk = Bk ∩ Vk+1 for some 0 ⩽ k ⩽ mM − 1. By Lemma 13,
we can reduce Si0 × Tj0 to an α × α cell, called S ′ × T ′, contained in Rk = Bk ∩ Vk+1

satisfying∣∣∣∣∫∫
S′×T ′

(w −Rα
w) dxdy

∣∣∣∣ ⩾ α2

[
1

4
∥w −Rα

w∥□ − 2(2mM − 1)∥w −Rα
w∥pβ

1− 2
p

]
.

This inequality holds for all β > α; taking β → α proves Claim 15.
The cell S ′ × T ′ is thus contained in some region Rk. From the definition of Rα

w and
the black and white regions, we observe that if 1 ⩽ k ⩽ Mm− 1, then k

m
< Rα

w ⩽ k+1
m

on
S ′ × T ′, and if k = 0, then 0 ⩽ Rα

w ⩽ 1
m

on S ′ × T ′.
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Claim 16. Under the assumptions made so far,

∥w −Rα
w∥□ ⩽ 4

(
2Λ(w)

α2
+

1

m
+ 2(2mM − 1)∥w −Rα

w∥pα
1− 2

p

)
.

To prove the claim, we consider three cases:

Case 1: Assume that
∫∫

S′×T ′(w −Rα
w) dxdy > 0 and 0 ⩽ k ⩽ mM − 2.

Using Claim 15 and the fact that |S ′ × T ′| = α2, we have

w(S ′×T ′)− k

m
⩾ w −Rα

w(S
′×T ′) ⩾

1

4
∥w−Rα

w∥□−2(2mM−1)∥w−Rα
w∥pα

1− 2
p . (9)

Now let (x, y) be the lower right corner of S ′×T ′. Then (x, y) ∈ Vk+1, implying that
LR(x, y) contains a region Sa×Tb so that |Sa| = |Tb| = α and that w(Sa×Tb) ⩽ k+1

m
.

So inequality (9) combined with the definition of Λ implies that

Λ(w) ⩾
α2

2

(
w(S ′ × T ′)− w(S ′ × Tb) + w(S ′ × Tb)− w(Sa × Tb)

)
⩾

α2

2

(
1

4
∥w −Rα

w∥□ − 2(2mM − 1)∥w −Rα
w∥pα

1− 2
p +

k

m
− k + 1

m

)
,

which reduces to

1

4
∥w −Rα

w∥□ ⩽
2Λ(w)

α2
+

1

m
+ 2(2mM − 1)∥w −Rα

w∥pα
1− 2

p .

Case 2: Assume
∫∫

S′×T ′(w −Rα
w) dxdy ⩽ 0 and 1 ⩽ k ⩽ mM − 1.

By a similar argument used to show (9),

k + 1

m
− w(S ′ × T ′) ⩾

1

4
∥w −Rα

w∥□ − 2(2mM − 1)∥w −Rα
w∥pα

1− 2
p .

Now let (x, y) be the upper left corner of S ′ × T ′. Then (x, y) ∈ Bk, which means
UL(x, y) contains a region Sc × Td such that |Sc| = |Td| = α and w(Sc × Td) >

k
m
.

Using the definition of Λ, similar to the argument in Case 1, we get

Λ(w) ⩾
α2

2

(
k

m
+

1

4
∥w −Rα

w∥□ − 2(2mM − 1)∥w −Rα
w∥pα

1− 2
p − k + 1

m

)
,

which reduces to

1

4
∥w −Rα

w∥□ ⩽
2Λ(w)

α2
+

1

m
+ 2(2mM − 1)∥w −Rα

w∥pα
1− 2

p .
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Case 3: Assume that either
∫∫

S′×T ′(w − Rα
w) dxdy > 0 and k = mM − 1 or that∫∫

S′×T ′(w −Rα
w) dxdy ⩽ 0 and k = 0.

In the first assumption, we have that Rα
w > M − 1

m
on S ′ × T ′ whereas w ⩽ M

by definition. Thus, α2

m
⩾
∫∫

S′×T ′(w − Rα
w) dxdy > 0. In the second assumption,

we have that Rα
w ⩽ 1

m
on S ′ × T ′ and by negativity of the integral in the second

assumption it must be that α2

m
⩾
∫∫

S′×T ′(R
α
w − w) ⩾ 0. Combining either of these

results with Claim 15 gives

α2

m
⩾ α2

[
1

4
∥w −Rα

w∥□ − 2(2mM − 1)∥w −Rα
w∥pα

1− 2
p

]
,

which can be rearranged to show

1

4
∥w −Rα

w∥□ ⩽
1

m
+ 2(2mM − 1)∥w −Rα

w∥pα
1− 2

p .

So Claim 16 holds in all cases.

To finish the proof, we take α = ∥w∥
− p

3p−2
∞ Λ(w)

2p
5p−2 and m = ⌈Λ(w)−

p−2
5p−2 ⌉ in Claim 16,

and we get

1

4
∥w−Rα

w∥□ ⩽

(
1+(4∥w−Rα

w∥p+2)∥w∥
2p

3p−2
∞

)
Λ(w)

p−2
5p−2+

(
4∥w−Rα

w∥p∥w∥
2p

3p−2
∞

)
Λ(w)

2p−4
5p−2 .

Since Λ(w) ⩽ 1, we get Λ(w)
2p−4
5p−2 ⩽ Λ(w)

p−2
5p−2 ; this simplifies the above equation to the

desired result.

As a corollary to Proposition 14, we obtain an improvement for the earlier results of
[26] on Robinson approximation of graphons and kernels.

Corollary 17. Let w : [0, 1]2 → [0, 1] be a graphon and u : [0, 1]2 → R be a kernel. Then

∥w −Rα
w∥□ ⩽ 44Λ(w)

1
5 and ∥u−Rα∗

u ∥□ ⩽ 44∥u∥
4
5∞Λ(u)

1
5 ,

where α = ∥w∥−
1
3∞ Λ(w)

2
5 and α∗ = ∥u∥−

2
5∞ Λ(u)

2
5 .

Proof. For w ∈ W0, let αp = ∥w∥
− p

3p−2
∞ Λ(w)

2p
5p−2 . Then, by Proposition 14, we have

∥Rαp
w − w∥□ ⩽ 44Λ(w)

p−2
5p−2 , since ∥w∥∞ ⩽ 1 and ∥w − R

αp
w ∥p ⩽ 1. However, as w ∈

Lp[0, 1]2 for every p ⩾ 1, we can allow p → ∞, showing ∥w − Rα
w∥□ ⩽ 44Λ(w)

1
5 , where

α = ∥w∥−
1
3∞ Λ(w)

2
5 as desired. For u ∈ W , we scale by ∥u∥∞ to make a new function

u∗ := u/∥u∥∞ to get that

∥u∗ −Rα∗

u∗∥□ ⩽ 44Λ(u∗)
1
5 , (10)

where α∗ = ∥u∥−
2
5∞ Λ(u)

2
5 . We note that by definition of Λ and positivity of ∥u∥∞, it

must be the case that Λ(u∗)
1
5 = ∥u∥−

1
5∞ Λ(u)

1
5 . Furthermore, by definition of Rα

u , we have
Rα∗

u∗ = ∥u∥−1
∞ Rα∗

u . Thus, combining these two observations with (10) yields 1
∥u∥∞∥u −

Rα∗
u ∥□ ⩽ 44∥u∥−

1
5∞ Λ(u)

1
5 , which proves the claim.
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We are now ready to state and prove our recovery result about Λ. We begin with a
necessary definition—a key technique in this proof is taking an unbounded graphon and
“cutting it off” at a certain threshold.

Definition 18 (M -cut-off). Let w ∈ W1 and define

EM = {(x, y) ∈ [0, 1]2 : w(x, y) > M}.

The M -cut-off of w, denoted by wM , is defined to be wM := (1−1M)w, where 1M is the
characteristic function of EM and 1 is the characteristic function of [0, 1]2.

Theorem 19. Suppose w : [0, 1]2 → [0,∞) is an Lp-kernel with p > 5 and ∥w∥p ⩽ 1.
Then there exists some α ∈ [0, 1

2
) such that Rα

w, the Robinson approximation of w with
parameter α, satisfies

∥w −Rα
w∥□ ⩽ 78Λ(w)

p−5
5p−5 . (11)

The idea of the proof is as follows: we use the triangle inequality to bound ∥w−Rα
w∥□

by the sum of the cut-norms of w − wM , wM − Rα
wM

and Rα
wM

− Rα
w, and then bound

each term using Λ. If wM is Robinson, then the upper bound is proved without use of
Corollary 17. If wM is not Robinson, then ∥wM−Rα

wM
∥□ must be handled using Corollary

17. Handling these two cases finishes the proof.

Proof. By definition of Robinson approximation, if Λ(w) = 0, then we set α = 0, resulting

in Rα
w = w. Thus, we assume that Λ(w) > 0 and define our cut-off value M = 2Λ(w)−

1
p−1 .

We now consider two cases.
Case 1: Suppose that Λ(wM) > 0.

Let α = ∥wM∥−
2
5∞ Λ(wM)

2
5 . The triangle inequality can then be used to show that

∥w −Rα
w∥□ ⩽ ∥w − wM∥□ + ∥wM −Rα

wM
∥□ + ∥Rα

w −Rα
wM

∥□.

We will proceed by bounding each of the terms on the right hand side one by one, starting
with ∥w − wM∥□. By definition, 1M is the characteristic function of EM , the region of

[0, 1]2 where w > M . Since M |EM |
1
p ⩽ ∥w1M∥p ⩽ ∥w∥p ⩽ 1, we get |EM | ⩽ ( 1

M
)p.

Therefore, for q satisfying 1/p+ 1/q = 1, it is true that

∥1M∥q = |EM |1/q ⩽
(

1

M

) p
q

= M1−p = 21−pΛ(w). (12)

It is also true that

∥w − wM∥□ ⩽ ∥w − wM∥1 = ∥w1M∥1 ⩽ ∥w∥p∥1M∥q ⩽ 21−pΛ(w) ⩽ 21−pΛ(w)
p−5
5p−5 , (13)

handling the first term. We can further say that ∥w − wM∥□ ⩽ 1
16
Λ(w)

p−5
5p−5 for all p > 5.

Now we shift focus to ∥wM −Rα
wM

∥□. By Corollary 17, as wM is bounded,

∥wM −Rα
wM

∥□ ⩽ 44∥wM∥
4
5∞Λ(wM)

1
5 ⩽ 44M

4
5 (Λ(w) + 21−pΛ(w))

1
5 ,
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where the second inequality is due to the combination of (1) for wM = w−w1M alongside
the fact that Λ(−w1M) ⩽ ∥w1M∥1 ⩽ 21−pΛ(w) by (12). This simplifies to

∥wM −Rα
wM

∥□ ⩽ 44(1 + 21−p)
1
5M

4
5Λ(w)

1
5 ⩽ 44(1 + 21−p)

1
5 2

4
5Λ(w)

p−5
5p−5 .

Using the fact that p > 5, the above inequality gives us:

∥wM −Rα
wM

∥□ ⩽ 77.6Λ(w)
p−5
5p−5 . (14)

To bound the third term, we use Proposition 9 (i) and Proposition 9 (ii) to get that

∥Rα
w −Rα

wM
∥□ ⩽ ∥Rα

w −Rα
wM

∥∞ ⩽ ∥Rα
w−wM

∥∞ ⩽ α−2∥w − wM∥1.

Applying Hölder’s inequality with conjugate indices p, q, we conclude

∥Rα
w −Rα

wM
∥□ ⩽ α−2∥w1M∥1 ⩽ α−2∥w∥p∥1M∥q.

Now, using the upper bound for ∥1M∥q provided by (12), and substituting the value of
α, we observe that

∥Rα
w −Rα

wM
∥□ ⩽ 21−pα−2Λ(w) = 21−pΛ(w)

(
∥wM∥−

2
5∞ Λ(wM)

2
5

)−2

. (15)

Applying (1) to w = wM + w1M gets us

Λ(wM) ⩾ Λ(w)− Λ(w1M) ⩾ Λ(w)− ∥w1M∥1 ⩾ Λ(w)− ∥w∥p∥1M∥q ⩾ (1− 21−p)Λ(w),

and since p > 5, this requires that Λ(wM) ⩾ 15
16
Λ(w). Using this together with ∥wM∥∞ ⩽

M = 2Λ(w)
−1
p−1 and inequality (15) implies that

2p−1∥Rα
w −Rα

wM
∥□ ⩽ Λ(w)∥wM∥

4
5∞Λ(wM)−

4
5 ⩽ Λ(w)M

4
5 (1− 21−p)−

4
5Λ(w)−

4
5

⩽
2

4
5

(1− 21−p)
4
5

Λ(w)
p−5
5p−5 .

When p > 5, we have 2
4
521−p(1− 21−p)−

4
5 ⩽ 0.2, so

∥Rα
w −Rα

wM
∥□ ⩽ 0.2Λ(w)

p−5
5p−5 . (16)

Thus (13), (14), and (16) together imply that ∥w − Rα
w∥□ ⩽ 78Λ(w)

p−5
5p−5 , proving the

statement of the theorem in this case.

Case 2: Suppose that Λ(wM) = 0.

Let α = M− 2
5Λ(w)

2
5 . We proceed similarly to Case 1, bounding each of the three

summands in the right hand side of the following inequality:

∥w −Rα
w∥□ ⩽ ∥w − wM∥□ + ∥wM −Rα

wM
∥□ + ∥Rα

w −Rα
wM

∥□.
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The first term on the right side of the inequality can be handled identically to Case 1,

yielding ∥w−wM∥□ ⩽ 1
16
Λ(w)

p−5
5p−5 . For the third term, we can proceed identically to Case

1 and get
∥Rα

w −Rα
wM

∥□ ⩽ 21−pα−2Λ(w).

Putting α = M− 2
5Λ(w)

2
5 and noting that p > 5 results in ∥Rα

w −Rα
wM

∥□ ⩽ 0.2Λ(w)
p−5
5p−5 .

However, the second term ∥wM − Rα
wM

∥□ must be handled differently. Indeed, when
Λ(wM) = 0, we have that wM is Robinson a.e., and we need to approximate Rα

wM
directly.

Claim 20. When wM : [0, 1]2 → [0,M ] is Robinson a.e., we have

∥wM −Rα
wM

∥□ ⩽
∫∫

{|x−y|⩽2α}
wM(x, y) dxdy.

To prove the claim, first note that for any point (x, y) ∈ ∆, we have that wM(x, y) is an
upper bound for every value of wM over the set UL(x, y); thus, any average over that set
(such as in the definition of Rα

w) would not exceed wM(x, y). So Rα
wM

⩽ wM . On the
other hand, as wM is Robinson a.e., we have

Rα
wM

(x, y) = Rα
wM

(y, x) =


1

α2

∫∫
[x−α,x]×[y,y+α]

wMdxdy for (x, y) ∈ [α, 1− α]2 ∩∆

0 otherwise

.

(17)
We now introduce an auxiliary function w̃M defined as follows:

w̃M(x, y) = w̃M(y, x) =

{
wM(x− α, y + α) (x, y) ∈ [α, 1− α]2 ∩∆

0 otherwise
.

Since wM is Robinson, we have that Rα
wM

⩾ w̃M . Thus we have 0 ⩽ wM−Rα
wM

⩽ wM−w̃M

pointwise, allowing us to show the following:

∥wM −Rα
wM

∥□ ⩽ ∥wM − w̃M∥□ = 2

∫∫
[0,1]2∩∆

(wM − w̃M)dxdy

= 2

(∫∫
[0,1]2∩∆

wMdxdy −
∫∫

[α,1−α]2∩∆
w̃Mdxdy

)
= 2

(∫∫
[0,1]2∩∆

wMdxdy −
∫∫

0⩽x⩽y−2α⩽1−2α

wM(x, y)dxdy

)
⩽
∫∫

{|x−y|⩽2α}
wM(x, y)dxdy.

This proves Claim 20. Finally, note that∫∫
{|x−y|⩽2α}

wM(x, y)dxdy ⩽ ∥wM∥p∥1[0,1]2∩{|x−y|⩽2α}∥q ⩽ (1− (1− 2α)2)
1
q ⩽ (4α)1−

1
p ,
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where in the last inequality we used that 0 ⩽ α ⩽ 1. Substituting for α and noting that
p > 5, we have

∥wM −Rα
wM

∥□ ⩽ 41−
1
p

(Λ(w)
M

)( 2
5
)(1− 1

p
)

⩽ 4Λ(w)
2
5 .

Since Λ(w) ⩽ 1 and 2
5
⩾ (p−5)(5p−5)−1 for all p > 5, we get ∥wM −Rα

wM
∥□ ⩽ 4Λ(w)

2
5 ⩽

4Λ(w)
p−5
5p−5 . Therefore, if Λ(wM) = 0, we have that ∥w − Rα

w∥□ ⩽ 5Λ(w)
p−5
5p−5 , proving the

statement of the theorem in this case.

Remark 21 (Concluding remarks). We finish this section with a discussion on the perfor-
mance of Λ and a comparison with the previously defined function Γ from [14].

(i) The function Γ provides a continuous and robust mapping on Lp-graphons only
for the case p = ∞ (see Remark 3), whereas Λ can be used as a suitable gauge
of Robinson property for any Lp-graphon with 5 < p ⩽ ∞ (see Theorem 19).
Moreover, the error (in cut-norm) of the Robinson approximation provided by Γ

of a graphon w : [0, 1]2 → [0, 1] is bounded by 14Γ(w)
1
7 (see [14, Theorem 3.2]).

However, using Λ for Robinson approximation of w leads to a much improved upper
bound of 44Λ(w)

1
5 (see Corollary 17). This improvement is partly due to the refined

definition of Λ (compared to Γ), and partly due to the possibility of using sharper
results in Proposition 14 for Lp-graphons to obtain bounds for L∞-graphons by
letting p → ∞.

(ii) Theorem 19 holds only for p > 5. This is an artefact of the proof technique used
and not an indication that similar results do not hold for 1 ⩽ p ⩽ 5. We anticipate
that ideological bottlenecks would appear at p ⩽ 2 and p = 1. We conjecture that
results analogous to Theorem 19 are valid for p ⩾ 2, though achieving these results
would likely require new proof methods and more advanced techniques. Indeed, our
proof of Theorem 19 is based on the idea of approximating an Lp-graphon with its
M -cut-off, and then applying Robinson approximation results for bounded graphons
to the cut-off function. The condition p > 5 is essential for obtaining reasonable
cut-off approximations (see (13)). This requirement is the primary impediment to
adapting the proof of Theorem 19 to p ⩽ 5.

Appendices

A Proofs of Lemmas 11, 12 and 13

In this Appendix we present proofs of the lemmas used previously in the paper, recalling
their statements for clarity.

Lemma (Lemma 11). Let k ∈ Z⩾0, w ∈ Wp with w ⩾ 0, and α ∈ (0, 1). Then, Gk does
not contain any β × β square, where β > α. Here, Gk denotes the closure of Gk in the
Euclidean topology of R2.

the electronic journal of combinatorics 30 (2023), #P00 24



Proof of Lemma 11. Let k ∈ Z⩾0 be fixed and let Gk be defined with parameter m and
α. Towards a contradiction, let β > α and suppose there exist measurable subsets S, T ⊆
[0, 1] with |S| = |T | = β for which S × T ⊆ Gk. Since |S| = |T | = β > α, there exist
a1, a2 ∈ S and b1, b2 ∈ T such that a2 − a1 > α and b2 − b1 > α. Note that (ai, bj) ∈ Gk

for i, j = 1, 2. Since every point in Gk that is not on the lower or upper boundary curves
must be an interior point of Gk, by moving the points slightly if necessary, we can assume
that

a2 − a1 > α, b2 − b1 > α, and (ai, bj) ∈ Gk, i, j = 1, 2.

We shall now show the inclusion (a1, a2) × (b1, b2) ⊆ Gk. Towards a contradiction,
suppose that there exists some point (z, w) ∈ UL(a2, b1) ∩ LR(a1, b2) \ Gk, which implies
that either (z, w) ∈ UL(a2, b1)∩LR(a1, b2)∩Bk or that (z, w) ∈ UL(a2, b1)∩LR(a1, b2)∩Vk.
The first case implies that (a2, b1) ∈ Bk while the second case implies that (a1, b2) ∈ Vk,
both of which are contradictions with (ai, bj) ∈ Gk. Thus, Gk contains (a1, a2)× (b1, b2).

Clearly, (a1, a2)× (b1, b2) contains a closed α× α rectangle which we denote [a′1, a
′
2]×

[b′1, b
′
2]. The two points (a′1, b

′
2) and (a′2, b

′
1) are elements of Gk, so they fail to satisfy the

conditions for both Vk and Bk. In particular, we have w([a′1, a
′
2]× [b′1, b

′
2]) ⩽ (k− 1)/m as

(a′2, b
′
1) ̸∈ Bk, as well as w([a

′
1, a

′
2], [b

′
1, b

′
2]) > (k− 1)/m as (a′1, b

′
2) ̸∈ Vk. These statements

form a contradiction, showing the initial claim must be true.

Lemma. (Lemma 12) Let u ∈ L∞([0, 1]), let P ⊆ [0, 1] be a measurable subset such that∫
P
u dx ̸= 0, and let 0 < β < |P | be fixed. Then P can be partitioned into N := ⌈|P |/β⌉

subsets P1, . . . , PN so that the following conditions are satisfied:

(i) P1 ⩽ . . . ⩽ PN−1.

(ii) |Pi| = β for 1 ⩽ i ⩽ N − 1 and |PN | ⩽ β.

(iii)
∣∣ ∫

PN
u dx

∣∣ ⩽ 1
N

∣∣ ∫
P
u dx

∣∣.
Proof of Lemma 12. For any sets P1, . . . , PN satisfying the above properties, we must
have

|PN | = δ := |P | − β

(⌈
|P |
β

⌉
− 1

)
.

To prove the lemma, it is enough to find a subset PN ⊆ P satisfying |PN | = δ and
condition (iii). Indeed, given such a subset PN , one can form the other sets P1, . . . , PN−1

by splitting P \ PN into consecutive sets of measure β. If δ = β, then the lemma follows
trivially from the pigeonhole principle. So, we assume that δ < β. Moreover, replacing
u by −u if necessary, we can assume that

∫
P
u dx > 0. We claim there must exist a set

Q ⊂ P such that |Q| = |P | − β

(⌈
|P |
δ

⌉
− 1

)
and

∫
Q
u dx > 0. To show this statement,

note that ∫
P

u dx =

∫
P+

u dx+

∫
P−

u dx > 0, (18)

where P+ := {x ∈ P : u(x) > 0} and P− := {y ∈ P : u(y) < 0}. If |P+| ⩾ δ, then any
subset Q of measure δ from P+ suffices. If |P+| < δ, then we let Q = P+∪Q′ for a subset
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Q′ ⊆ P− with |Q′| = δ − |P+|, and note that
∫
Q
u dx ⩾

∫
P
u dx > 0 by (18). We now

prove the existence of a subset PN ⊆ P satisfying |PN | = δ and condition (iii). Towards
a contradiction, assume that for any set S ⊆ P such that |S| = δ, we have∣∣∣∣ ∫

S

u dx

∣∣∣∣ > 1

N

∫
P

u dx. (19)

Consider now R := P \ Q. For any p ∈ P , let rp = inf{q : |R ∩ [p, q]| = δ}, and let the
auxiliary function ϕ be defined as

ϕ : P → R, ϕ(p) :=

∫
R∩[p,rp]

u dx.

For ease of writing, let Rp := R ∩ [p, rp], and note that as |Rp| = δ, by (19), we get
ϕ(p) ̸= 0 for all p ∈ P . It is easy to see that ϕ is continuous, as for p, q ∈ P , we have

|ϕ(p)− ϕ(q)| =
∣∣∣∣ ∫

Rp

u dx−
∫
Rq

u dx

∣∣∣∣ = ∣∣∣∣ ∫
Rp∆Rq

u dx

∣∣∣∣ ⩽ ∥u∥∞|Rp∆Rq| ⩽ ∥u∥∞|p− q|.

Therefore, as ϕ ̸= 0, it is either strictly positive or strictly negative. Without loss of
generality, we assume that ϕ(p) > 0 for all p, and to avoid violating (19), it must also be
that

ϕ(p) >
1

N

∫
P

u dx (20)

for all p ∈ P . Consider {pi}Mi=1 ⊂ R, where p1 = 0, pi+1 = rpi for 1 < i < M , and

M =
⌈
|P |
δ

⌉
− 1. Then, due to the positivity of w and (20), we have that

∫
P

u dx =
M∑
i=1

ϕ(pi) +

∫
Q

u dx >
M

N

∫
P

u dx. (21)

This will lead to a contradiction, as we will show that M ⩾ N , i.e.
⌈
|P |
δ

⌉
− 1 ⩾

⌈
|P |
β

⌉
.

We note that as δ < β, it must be the case that M ⩾ N − 1. Therefore, for (21) to avoid
a contradiction, M must be equal to N − 1. This forces δ within a tight range of values:

Specifically, |P |/
⌈
|P |
β

⌉
⩽ δ < β. However, the exact value of δ is |P | − β(

⌈
|P |
β

⌉
− 1), and

thus if M = N − 1, we have |P | − β
(⌈

|P |
β

⌉
− 1
)
⩾ |P |

⌈ |P |
β ⌉ , which implies, |P | ⩾ β

⌈
|P |
β

⌉
|P | − β

(⌈
|P |
β

⌉
− 1
)
< β, or equivalently, |P | < β

⌈
|P |
β

⌉
This is a contradiction, so M ⩾ N , making (21) a contradiction. Thus the lemma holds
true and such a partition of P must exist.
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Lemma. (Lemma 13) Let f ∈ L1([0, 1]2), and let S, S ′ ⊆ [0, 1] be measurable subsets such
that |S| = |S ′|. Suppose for a constant C > 0 we have∫∫

S×S′
f dxdy ⩾ C.

Then, for every α ∈ (0, 1), there exist measurable sets T ⊂ S and T ′ ⊂ S ′ such that
|T | = |T ′| = α|S| and

1

|T × T ′|

∫∫
T×T ′

f dxdy ⩾
C

|S × S ′|
.

Proof of Lemma 13. Suppose there exist integers n, k, l, with l < k, so that |S| = k
n
and

α|S| = l
n
; the case where one or both of |S| or α is not rational can be done using standard

density/approximation arguments. Next, split S into k consecutive sets S1 ⩽ S2 ⩽ . . . ⩽
Sk of measure 1

n
; likewise, split S ′ into k consecutive sets S ′

1 ⩽ S ′
2 ⩽ . . . ⩽ S ′

k also of
measure 1

n
and note that∫∫

S×S′
f dxdy =

k∑
i=1

k∑
j=1

∫∫
Si×S′

j

f dxdy.

Let Bi,j :=
∫∫

Si×S′
j
f dxdy and let Nk,l denote the collection of all l-subsets of the set

{1, ..., k}. Note that there are
(
k−1
l−1

)
many l-subsets of k elements containing a specific

element i0. Using this, counting the number of times a specific Bi,j appears in the following
sum results in ∑

I∈Nk,l

∑
J∈Nk,l

∑
i∈I
j∈J

Bi,j =
k∑

i,j=1

(
k − 1

l − 1

)2

Bi,j ⩾

(
k − 1

l − 1

)2

C.

Thus, by the pigeonhole principle, there exist sets I, J ∈ Nk,l such that∑
i∈I
j∈J

Bi,j ⩾

(
k−1
l−1

)2(
k
l

)2 C =
l2

k2
C.

This implies that the sets T = ∪i∈ISi and T ′ = ∪i∈JS
′
i satisfy both that∫∫

T×T ′
f dxdy ⩾

l2

k2
C

and |T | = |T ′| = α|S|, showing the lemma holds true.
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