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Marine heatwaves (MHWs) are warm sea surface temperature (SST) anomalies
with substantial ecological and economic consequences. Observations of MHWs
are based on relatively short instrumental records, which limit the ability to
forecast these events on decadal and longer timescales. Paleoclimate
reconstructions can extend the observational record and help to evaluate
model performance under near future conditions, but paleo-MHW
reconstructions have received little attention, primarily because marine
sediments lack the temporal resolution to record short-lived events. Individual
foraminifera analysis (IFA) of paleotemperature proxies presents an intriguing
opportunity to reconstruct past MHW variability if strong relationships exist
between SST distributions and MHW metrics. Here, we describe a method to
test this idea by systematically evaluating relationships between MHW metrics
and SST distributions that mimic IFA data using a 2000-member linear inverse
model (LIM) ensemble. Our approach is adaptable and allows users to define
MHWSs based on multiple duration and intensity thresholds and to model
seasonal biases in five different foraminifera species. It also allows uncertainty
in MHW reconstructions to be calculated for a given number of I[FA
measurements. An example application of our method at 12 north Pacific
locations suggests that the cumulative intensity of short-duration, low-
intensity MHWSs is the strongest target for reconstruction, but that the error on
reconstructions will rely heavily on sedimentation rate and the number of
foraminifera analyzed. This is evident when a robust transfer function is applied
to new core-top oxygen isotope data from 37 individual Globigerina bulloides at
a site with typical marine sedimentation rates. In this example application, paleo-
MHW reconstructions have large uncertainties that hamper comparisons to
observational data. However, additional tests demonstrate that our approach
has considerable potential to reconstruct past MHW variability at high
sedimentation rate sites where hundreds of foraminifera can be analyzed.
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1 Introduction

Marine heatwaves (MHWs) are prolonged periods of
anomalously warm ocean temperature relative to local
climatologies that can have considerable socioeconomic impacts
(von Biela et al., 2019; Free et al., 2023; Leggat et al., 2019; Oliver
et al,, 2021; Rogers-Bennett and Catton, 2019; Smith et al., 2023,
2021). MHW s can occur throughout the global ocean as evidenced
by recent events in the northeast Pacific, East China Sea, Tasman
Sea, Mediterranean Sea, northwest Atlantic, southwest Atlantic and
Benguela current region (Oliver et al., 2021). Observational data
suggest that MHW frequency, duration and spatial extent have
increased in recent decades (Frolicher et al., 2018; Holbrook et al.,
20205 Oliver et al., 2018; Yao et al., 2022), and a prominent north
Pacific event from 2014-2016 may be the most ecologically and
economically impactful ever recorded (Bond et al., 2015; Cheung
and Frolicher, 2020; Di Lorenzo and Mantua, 2016). Nicknamed the
“Blob,” this event caused major shifts in the geographic range of
organisms from copepods to sunfish, closed commercially-
important fisheries, initiated an unprecedented harmful algal
bloom and contributed to mass strandings of birds and marine
mammals (Cavole et al., 2016; Jones et al., 2018; McCabe et al.,
2016). Recent trends in MHW behavior are due at least in part to
anthropogenic global warming (Barkhordarian et al., 2022;
Laufkotter et al., 2020), and forecasts based on general circulation
model (GCM) ensembles such as phases 5 and 6 of the Coupled
Model Intercomparison Project (i.e. CMIP5 and CMIP6, Eyring
et al, 2016; Taylor et al., 2012) generally predict these trends will
continue (Frolicher et al., 2018; Oliver et al., 2019). However,
comparisons of these GCM ensembles to observed MHWs show
significant biases that can both overestimate and underestimate
various measures of MHW behavior (Hirsch et al.,, 2021; Plecha
et al., 2021), thereby raising concern regarding the accuracy of
decadal to centennial forecasts.

MHW variability reflects the combined influence of
temperature changes due to external radiative forcing and
internal modes (Holbrook et al., 2019; Oliver et al., 2021). Both
internal and external forcings operate on decadal timescales that are
relatively well captured by instrumental data, and longer centennial
to millennial timescales that are not resolved by observations.
Accordingly, MHW forecasts exhibit considerable skill on sub-
annual timescales (Holbrook et al., 2020; Jacox et al., 2022), but not
on longer timescales over which the models are uncalibrated and
unvalidated. Furthermore, observational data reflect the recent,
relatively low CO, climate, which may not accurately record the
breadth and magnitude of feedbacks expected in the high CO,
climate of future centuries (Tierney et al.,, 2020). Both processes
likely contribute to the biases in CMIP forecasts of future MHW
activity, and point to a need for new strategies to validate MHW
behavior in models over a larger dynamic range.

Paleoclimate data offer the potential to extend the observational
record and thus evaluate model performance under boundary
conditions different than those recorded during the observational
era. For example, climates such as those of the Pliocene and Eocene
have been identified as good analogs for future warming (Burke
etal., 2018), and can serve as benchmarks against which to calibrate
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and validate models. Despite this, few studies have approached
MHWSs from a paleoclimate perspective, likely because most
paleoceanographic archives lack the high temporal resolution
necessary to characterize individual MHWSs. Massive hermatypic
corals may be an exception (Zinke et al., 2015), but this archive is
primarily limited to low-latitude ocean regions during the latest
Quaternary period. In contrast, marine sediments can record ocean
variability across millions of years in diverse oceanographic settings,
and preserve proxies like foraminifera that are sensitive to MHW's
(Lane et al,, 2023). Unfortunately, most marine sedimentary
archives have low sediment accumulation rates and experience
bioturbation, which leads to temporal resolutions of centuries to
millennia that are far too coarse to record monthly to
annual MHWs .

Individual foraminifera analysis (IFA) offers a potential solution
to this temporal averaging problem in marine sediments. Unlike
traditional paleoceanographic applications of foraminifera, which
pool individuals to estimate mean conditions, IFA measures
geochemical proxies in many single foraminifera and then
interprets the shape of the resulting distribution (Ford et al,
2018, 2015; Groeneveld et al., 2019; Khider et al., 2011; Koutavas
et al., 2006; Koutavas and Joanides, 2012; Leduc et al., 2009;
Rongstad et al., 2020; Rustic et al., 2020; Thirumalai et al., 2019;
White et al., 2018). Given the ~4 week lifespan of most mixed layer
planktonic foraminifera (Spero, 1998) due to a lunar-pacing of
reproduction (Erez et al., 1991; Jonkers et al., 2015), each measured
shell approximates a monthly snapshot of ocean conditions. The
collective distribution of these snapshots then represents changes in
the statistical properties of both mean climate and extremes over a
time interval that is dictated by sedimentation rate, bioturbation
and sampling interval. For example, IFA has been used to
reconstruct the El Nifo Southern Oscillation (ENSO) in the
tropical Pacific based on the expectation that increased ENSO
variability will broaden the distribution of reconstructed SST
relative to the seasonal cycle, which manifests itself as an increase
in standard deviation (Ford et al., 2015; Khider et al., 2011;
Koutavas et al., 2006; Koutavas and Joanides, 2012; Rustic et al,,
2020; White et al,, 2018). Like ENSO variability, MHWs are also
characterized by relatively short-lived sea surface temperature (SST)
anomalies, and changes in their mean behavior between time
periods could produce distinct changes in IFA-based
SST distributions.

In practice, there are a number of complications that make it
challenging to identify how an IFA-based SST distribution might be
altered by changes in MHWSs. For example, traditional approaches
to calibrating foraminifera proxies using global core-top sediment
(Elderfield and Ganssen, 2000; Malevich et al., 2019; Saenger and
Evans, 2019; Tierney et al., 2019) or sediment traps (Anand et al.,
2003; Gray et al, 2018; Huang et al.,, 2008) would be extremely
costly because orders of magnitude more analyses would be
necessary to generate IFA-based SST distributions for each site or
time interval. Furthermore, it is not yet obvious how the accuracy of
IFA-based SST distributions vary with the number of geochemical
proxy measurements made, which makes it difficult to know how
many foraminifera would need to be sampled to make meaningful
MHW reconstructions. Variations in the seasonality of different
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foraminifera species is also a complicating factor, and it is likely that
relationships between IFA-based SST distributions and MHWs are
specific to both individual species and sites. Finally, the numerous
ways of describing both MHWSs and SST distributions create a large
pool of potential relationships, which may make it challenging to
identify those that are most useful.

In light of these complications, it is attractive to evaluate
relationships between IFA-based SST distributions and MHWs in a
pseudoproxy framework. Pseudoproxies (Mann and Rutherford, 2002)
are realistic approximations of actual proxy data that are generated by
passing the output of physically consistent climate simulations through
a proxy system model (Dee et al.,, 2016; Evans et al., 2013) that mimics
complicating factors such as variations in seasonality. This approach
obviously avoids the cost and labor of true geochemical proxy
measurements and allows relationships between IFA-based SST
distributions and MHWs to be explored quickly and efficiently.
Furthermore, generating pseudoproxies from large ensembles of
climate model simulations allows many realistic climate states to be
sampled, thereby providing the large sample size necessary for robust
measures of skill and error. Because pseudoproxies are generated from
a known signal, they also provide valuable opportunities for validation
and a testbed for evaluating how the accuracy of a relationship might
change due to choices such as the MHW definition assumed, the
foraminifera species considered, the sedimentation rate at a site or the
number of proxy measurements used to generate an IFA-based SST
distribution. Finally, because climate model simulations are spatially
complete, a pseudoproxy approach allows relationships to be compared
across large regions to identify sites where they have the greatest
potential to generate meaningful MHW reconstructions.

Here we describe a method for evaluating quantitative
relationships between SST distributions similar to those that
could be generated via IFA and various measures of MHW
variability with the goal of identifying which have the greatest
potential to yield paleo-MHW reconstructions. We adopt a
pseudoproxy approach in which a 2000-member linear inverse
model (LIM) ensemble is used to compare MHW behavior to
SST distribution statistics that mimic IFA measurements. Our
approach is adaptable and allows users to evaluate five different
foraminifera species, numerous MHW definitions and a number of
realistic complications. While we are motivated by the desire to
eventually reconstruct paleo-MHWs, the goal of this study is simply
to define a framework for identifying the most robust quantitative
transfer functions between IFA-based SST distributions and
MHWs. Below, we first describe the data sources, construction
and validation of an algorithm that can evaluate transfer functions
based on different foraminifera species and MHW definitions. We
then demonstrate the utility of our approach through the example
application of identifying the most promising targets for paleo-
MHW reconstructions in the northeast Pacific. Finally, we
demonstrate how our approach can be integrated with IFA data
using new high-precision oxygen isotope (5'°0) analyses of
individual Globigerina bulloides from core-top sediments. We
focus on the northeast Pacific domain with the goal of generating
transfer functions that could eventually be used to generate paleo-
MHW reconstructions that place events like the 2014-2016 “Blob”
MHW (Bond et al., 2015) into context. However, the approach we
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describe is also valid for other species and ocean regions, thereby
providing a framework for developing additional transfer functions
and paving the way toward an improved understanding of the
spatiotemporal behavior of MHWs.

2 Methods
2.1 Overview of the algorithm design

A simplified design of our method and its basic order of
operations are summarized in Figure 1, while more specific
information is presented in later subsections. The primary input to
our algorithm is an ensemble of monthly SST timeseries. Monthly
data is required since this is the approximate lifespan of an individual
foraminifera (Spero, 1998), and each SST value can be considered
analogous to what might be reconstructed from the measurement of a
paleotemperature proxy in a single foraminifer. Multiple timeseries
are required because each timeseries is ultimately reduced to a single
SST distribution, and thus effectively contributes only a single data
point to a given transfer function. We note that we use the phrase
“transfer function” throughout the remainder of the text to describe
the quantitative relationships between IFA pseudoproxy SST
distributions and MHWs .

The algorithm then allows a user to specify how a MHW is
defined and this information is used to calculate MHWSs for each
SST timeseries within the ensemble. One of five foraminifera species
(Neogloboquadrina pachyderma, Neogloboquadrina incompta,
Globigerina bulloides, Trilobatus sacculifer or Globigerinoides
ruber) is also specified, and used to weight the monthly SST
timeseries based on the seasonal concentration of that species as
calculated by the proxy system model of Kretschmer et al. (2018).
Statistics that summarize the shape of weighted SST distributions
are then regressed against MHW measures using partial least
squares regression (Mehmood et al., 2012) to develop initial
transfer functions. If regression statistics and comparisons to
observed MHWSs suggest that a transfer function is promising, the
user can perform additional cross validation to evaluate how a
transfer function might perform in a paleoclimate context. For
example, realistic sedimentation rates and sampling intervals can be
specified to estimate how many foraminifera will be required to
achieve a desired accuracy in a MHW reconstruction. This can be
compared against the number of foraminifera actually present or
the analytical budget available to provide a feasibility check before
committing to a laborious and costly study.

2.2 Monthly SST from a linear inverse
model (LIM) ensemble and observations

As noted previously, implementing our method requires an
ensemble of monthly SST data. For the purposes of calibration, data
should span a wide range of MHW states while still being physically
realistic. Here, we achieve this using a 2,000 member LIM ensemble that
has previously been used to explore Pacific MHWSs (Xu et al., 2021).
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FIGURE 1

undersampling

Schematic of our workflow for generating transfer functions between pseudoproxy SST distribution statistics and MHW metrics, and evaluating their
skill. Italicized text indicates a user-defined choice. Monthly SST timeseries derive from COBEv2, ERSSTv5, HadISST or the LIM ensemble. MHW
intensity and duration thresholds refer to the minimum intensity and duration necessary for a warm anomaly to be defined as a MHW, and metrics
represent various measures of these MHWs. Monthly foraminifera concentrations, based on the PLAFOM2.0 model of Kretschmer et al. (2018), are
used to generate a weighted monthly SST timeseries that represents the seasonal bias of a defined species. Distribution statistics summarize these
seasonally-weighted pseudoproxy SST timeseries. Partial least squares (PLS) regression is used to develop transfer functions between distribution
statistics and MHW metrics. If a user chooses to do so, the error on a reconstruction for a given number of individual foraminifera can be evaluated.

LIMs are stochastically-forced linear dynamical models that are
empirically determined. That is, the predictable dynamics of the
climate system are inferred from auto covariance and lagged
covariance of the coarse-grained climate variables, whereas the
remaining unresolved fast-decaying and rapid nonlinear processes
associated with weather are parameterized as spatially-coherent
Gaussian white noise. The underlying assumption of a LIM
construction is that the coarse-grained climate evolution acts
as an integrated response to the rapid weather variability
(Hasselmann, 1976), resulting in a system in which its predictable
dynamics can be represented to a reasonable approximation linearly
and deterministically. The unpredictable stochastic forcing, on the
other hand, contributes to energizing the climate system. A LIM
simulation obtained by integrating the stochastic forcing forward in
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time thus represents a climate system that can be diagnosed in the same
manner as simulations from coupled GCMs, but with the advantage
that many realizations of the simulated timeseries can be generated
relatively easily (e.g. Ault et al,, 2013; Newman et al,, 2011). This general
approach has been used extensively to explore Pacific SST on sub-
annual to multidecadal timescales using LIMs (Alexander et al., 2008;
Capotondi et al., 2022; Penland and Matrosova, 1994; Penland and
Sardeshmukh, 1995; Xu et al., 2022, 2021).

The LIM ensemble in this study is based on Extended
Reconstructed Sea Surface Temperature data set version 3
(ERSSTv3; Smith et al., 2008) in the tropical and north Pacific (110°
E-60°W and 20°S-60°N) from 1950-2019 (Xu et al.,2021).1tis gridded
at2°x 2°and consists of 2,000 physically-realistic timeseries of monthly
SST that are 70 years each. This ensemble represents a large number of
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“alternate histories” of north Pacific SST that drastically increases the
data available for generating transfer functions and allows for the large
sample size necessary for robust statistics. Furthermore, this large
ensemble is more likely to span the range of variability that could have
existed in the geologic past, thereby making our transfer functions
more relevant to paleo-MHW reconstructions.

To validate LIM-based transfer functions, we also evaluate
MHWs in monthly SST timeseries from three additional gridded
observational products. ERSST version 5 (ERSSTv5) is gridded at
2° x 2° and was analyzed for the period from 1854-2023 A.D
(Huang et al., 2017). Version two of the Centennial in situ
Observation-Based Estimates of SST (COBEv2) is gridded at 1° x
1° and was analyzed for the period from 1850-2023 (Hirahara et al.,
2014). Finally, the Hadley Centre Sea Ice and Sea Surface
Temperature data set HadISST is gridded at 1° x 1° and was
analyzed for the period from 1870-2022 (Rayner et al,, 2003).

2.3 MHW definitions and their detection in
observations and LIMs

While MHW  are broadly defined as periods when SSTs exceed
climatology by some amount for some period of time, there is no strict
consensus on these values. For example, observational studies based on
daily satellite SST data commonly define a MHW to be a thermal
anomaly that exceeds the 90" percentile for at least five days (Hobday
et al., 2016), but model-based studies have considered intervals that
exceed climatological SST by at least one standard deviation for at least
five months to be MHWSs (Xu et al., 2021). While the daily MHW
definition is clearly outside the bounds of what our approach can
resolve, we see no need to make further a priori assumptions about
what magnitude of warming or duration constitutes a MHWs. We
therefore allow the user to define an intensity threshold and duration
for considering a warm anomaly tobea MHW. Intensity thresholds are
formulated in terms of the number of standard deviations above
monthly climatology (e.g. across all Januarys) within a single
timeseries. Duration thresholds are simply an integer number of
consecutive months. We use the term “definition” throughout the
remainder of the text to refer to these various ways of defining MHWs.
For example, a low intensity, short duration definition may specify
MHWs to be times when monthly SST exceeds the climatological value
by at least one standard deviation for at least one month, while a high
intensity, long duration definition might require SST to exceed
climatology by atleast two standard deviations for at least four months.

For a given definition, MHWSs are calculated across the entire
length of a SST timeseries, but each monthly timeseries in the ensemble
is considered separately. In the case of LIM data, this means MHWs are
identified within each 70-year realization, but the 2,000 ensemble
members are considered independently. Thus, the LIM ensemble
provides 2,000 separate estimates of MHW behavior for each
definition considered.

To account for global warming trends, a 30-year high pass filter
is applied to ERSSTv5, COBEv2 and HadISST timeseries prior to
calculating climatologies (Figure 2A). This is equivalent to a shifting
(as opposed to fixed) baseline approach and is consistent with the
idea that a MHW should be an exceptional event above a
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background state that is distinct from lower frequency
anthropogenic warming (Amaya et al., 2023). LIM simulations do
not have a global warming trend so do not require filtering.

Once MHWs are identified, they are further characterized based
on five metrics (Figure 2). In some cases metrics are normalized to a
decade to account for the different lengths of ERSSTv5, COBEv2,
HadISST and LIM timeseries. We use the term “metric” throughout
the remainder of the text to refer to the following five ways of
characterizing MHW behavior:

e Count (n/decade): Total MHW events, normalized to
a decade

e Total months (n/decade): Total number of months in a
timeseries that meet the assigned MHW definition,
normalized to a decade.

e Cumulative intensity (°C/decade): Sum of monthly
intensities in a timeseries that meet the assigned MHW
definition, normalized to a decade.

* Mean duration (months): Average length of all MHWs in
a timeseries

* Mean intensity (°C): Average intensity of all MHWSs in
a timeseries.

The values for these metrics can vary considerably with the choice
of MHW definition, and increases or decreases in one metric do not
necessarily cause equivalent changes in other metrics. An example
using COBEv2 data from the northeast Pacific gridbox closest to Deep
Sea Drilling Project (DSDP) Site 36 (Table 1) and spanning the 2012-
2018 interval that includes the “Blob” MHW is shown in Figure 2.
Using one standard deviation and one month as intensity and duration
thresholds, respectively, four MHW events are identified (Figure 2C).
Two events have a duration of a single month and intensities of 0.89°C
and 0.75°C, respectively, which both exceed one standard deviation
(0.51°C), but not two (1.02°C). Because these events are a single month,
their cumulative intensities are identical to their mean intensities. A
third event has a duration of three months, a mean intensity of 0.91°C
and a cumulative intensity of 2.73°C. A fourth event represents the
“Blob” event and has a duration of 24 months, a mean intensity of 1.12°
C and cumulative intensity of 26.87°C. If the MHW definition is
changed to have a duration threshold of five months, the three shorter
events are no longer considered MHWSs and only the “Blob” event
remains with identical metrics (Figure 2D). Using two standard
deviations and one month thresholds to define MHWSs excludes
most of the three shorter events, but also splits the “Blob” event into
four (Figure 2E). Thus, the count of MHWs actually increases to five,
which have durations of one to six months and mean intensities of 1.09
to 1.50°C. Using two standard deviations and five month thresholds,
eliminates all but one high intensity MHW that represents the most
intense portion of the “Blob” event (Figure 2F).

2.4 Accounting for seasonality in
foraminifera abundance

Planktonic foraminifera live in near-surface ocean environments
around the globe and have long been recognized as valuable tools for
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FIGURE 2

(A) COBEV2 SST at DSDP Site 36 (black) and the low frequency trend associated with the 30-year high pass filter (red). This filter is used to remove
the global warming trend from observational data when calculating MHW metrics (B) Subset of COBEv2 SST for the years from 2012-2018 spanning
the "Blob” MHW (black) and the same signal after removing the low frequency trend (grey). The climatology plus one standard deviation (blue) marks
a threshold above which a MHW could be defined (red shading) (C) SST with the low frequency trend and climatology removed (black) relative to
the upper bound of one standard deviation (grey dashed line) and two standard deviations (grey dotted line). Times exceeding one standard
deviation provide an equivalent definition (red shading) that are identical to panel (B). (D) As in panel (C) for intensity and duration thresholds of one
standard deviation and five months (E) As in panel (C) for intensity and duration thresholds of two standard deviations and one month (F) As in panel
(C) for intensity and duration thresholds of two standard deviations and five months.

TABLE 1 Locations and sedimentation rates of north Pacific sites.

latitude longitude sedimentation rate (cm/kyr) sedimentation rate reference
ODP 887 54.3654 -148.446 7 Galbraith et al., 2007; Rea, 1994
DSDP 36 40.9847 -130.11 24 Brennan et al., 2022; McManus et al., 1970
DSDP 183 52.52 -161.2055 0.92 Costa et al., 2024
DSDP 179 56.409 -145.9887 6.95 Jacger et al, 2014; Opdyke and
Foster, 1970
DSDP 37 40.979 -140.7185 0.26 Opdyke and Foster, 1970
DSDP 177 50.4697 -130.205 2 approximated from Costa et al., 2024
ODP 1023 479173 -128.792 2 approximated from Costa et al., 2024
A 55 -140 1 approximated from Costa et al., 2024
B 50 -150 0.23 Costa et al., 2024; Kemnitz et al., 2023
C 50 -140 0.14 Costa et al., 2024
D 45 -150 0.48 Donahue, 1970; Opdyke and Foster, 1970
E 45 -140 0.22 Opdyke and Foster, 1970
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reconstructing past SST (Anand et al, 2003; Bemis et al, 1998;
Elderfield and Ganssen, 2000; Emiliani, 1955; Lea et al., 2000, 1999).
Given their lifespan, measuring established paleotemperature proxies
such as 8'%0 (Bemis et al, 1998) or magnesium to calcium ratios
(Mg/Ca; Lea et al,, 1999) in individual foraminifera allows for
distributions of monthly SST to be generated (Ford et al., 2015;
Koutavas et al., 2006; Rongstad et al., 2020; Rustic et al., 2020). These
distributions are approximately equivalent to those based on monthly
LIM and observational SST data, and therefore provide a means to
use LIM-based transfer functions to reconstruct past MHW behavior.

However, planktonic foraminifera preferentially live at depths
and during seasons when optimal growth conditions exist, and are
therefore seasonally-biased recorders of SST (Jonkers et al, 2013,
2010; Jonkers and Kucera, 2015; Ortiz et al., 1995; Sautter and
Thunell, 1989; Taylor et al., 2018; Tolderlund et al, 1971). To
account for seasonality, monthly LIM ensemble data must be
weighted to generate pseudoproxy SST timeseries that mimic the
information that can be reconstructed from IFA. We achieve this
using an existing planktonic foraminifera proxy system model
(PLAFOM2.0), which is a global model of foraminifera abundance
that predicts the monthly concentration (in mmol C m™) of five
species: N. pachyderma, N. incompta, G. bulloides, T. sacculifer and G.
ruber (Fraile et al., 2008; Kretschmer et al., 2018). PLAFOM2.0 uses a
marine ecosystem model that predicts foraminifera food sources
(Moore et al., 2001) to calculate species-specific rates of growth and
mortality (Fraile et al, 2008). PLAFOM2.0 has recently been
integrated with the biogeochemically-active ocean component of
the Community Earth System Model (Hurrell et al, 2013) to
calculate global estimates of foraminifera concentration in each
month of the year and at 24 vertical levels between 0 and 250
meters (Kretschmer et al., 2018).

Our approach extracts PLAFOM2.0 concentrations for the
user-defined foraminifera species from the grid-box closest to

10.3389/fmars.2024.1321254

monthly SST data. Monthly foraminifer concentrations are
summed across the model’s entire 250 m depth domain, thereby
removing the user from a priori assumptions regarding depth
habitat. The total annual foraminifer concentration is then used
to convert monthly concentrations into proportions. Values greater
than 0.083 (i.e. 1/12) reflect some degree of foraminifera seasonal
preference. An example based on G. bulloides from DSDP Site 36 is
shown in Figure 3. Monthly proportions are used as weights to
resample the original SST timeseries and generate a new SST record
that mimics the seasonal bias of the selected foraminifera species.

2.5 Summary statistics of SST distributions

A number of statistical values have been developed to summarize
the shape of a distribution. These statistics are attractive for
establishing transfer functions because they condense the large
amount of data in a SST distribution into a single value. For each
of the monthly-weighted SST timeseries described above, we calculate
a series of statistics that summarize the shape of their distributions.
We use the term “statistic” throughout the remainder of the text to
refer to the following measures of distributions that are plausible
predictors of MHW metrics:

» Shapiro-Wilk test: A statistical test evaluating the null
hypothesis that data are Gaussian (Shapiro and Wilk, 1965).
Test statistic values range from 0 to 1, with higher values
representing closer agreement with a Gaussian distribution.

* Kurtosis: A measure of how often outliers occur or the
“tailedness” of a distribution

» Skewness: A measure of a distribution’s asymmetry

* Quantiles 1-21: Values dividing a distribution into 21
continuous intervals of equal probability.

G. bulloides, DSDP Site 36
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Example of the modeled seasonal change in the relative concentration of G. bulloides at DSDP Site 36. Values greater than 0.083 (dashed line)

represent some degree of seasonal preference.
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Statistics are calculated from standardized SST anomalies by
subtracting means and dividing by standard deviations, and after
30-year high pass filtering in the case of ERSSTv5, COBEv2 and
HadISST. Standardizing has no effect on Shapiro-Wilk, kurtosis and
skewness values, and changes quantiles by a fixed proportion that
varies between sites. The latter is helpful when comparing sites with
different amplitude climatologies as it forces the total range of
quantiles to be approximately equal. Standardizing also eliminates
the need to select a specific proxy-temperature calibration for cases
that calibrations are linear. That is, if 8'%0 values of foraminifera
were used to estimate SST using a linear calibration (e.g. Bemis
et al., 1998), the standardized anomalies of those 880 values would
have the same distribution statistics as 8'%0-based SST estimates
(for some statistics, the inverse relationship between 8'%0 and
temperature would need to be accounted for by multiplying by -1).

2.6 Constructing transfer functions
between pseudoproxy SST distribution
statistics and MHW metrics

Our method next uses partial least squares regression (PLSR) to
evaluate if pseudoproxy SST distribution statistics (section 2.5) are
useful predictors of any MHW metric (section 2.3). PLSR is an
attractive alternative to more traditional ordinary least squares
regression for this application because it allows information from
all distribution statistics to contribute to a transfer function despite
considerable collinearity among them (Mehmood et al, 2012).
Pseudoproxy SST distribution statistics are transformed into a
new set of orthogonal components and a transfer function is
generated using only a subset of these components. The
dimensionality reduction of PLSR is therefore similar to principal
components regression (PCR) with the difference that PLSR
maximizes covariance between independent and dependent
variables when selecting components while PCR only considers
the variance of independent variables. Thus, PCR can inadvertently
eliminate components with considerable predictive power if they
have low variance, while PLSR is less prone to this effect.

We implement PLSR separately for each of the five MHW metrics
using the scikit-learn Python module (Pedregosa et al, 2011). The
number of components to include in the PLSR is chosen by first
randomly selecting 30 pseudoproxy SST timeseries from the ensemble
along with their corresponding MHW metrics. Subsets of 70% of each
pseudoproxy SST timeseries are then used to generate PLSR-based
transfer functions with 1 to 10 components that are each capable of
predicting a MHW metric. Applying each transfer function to the
withheld 30% of data allows the differences between the predicted and
observed MHW metrics to be used to calculate root mean square
errors (RMSE):

SY(MHW, - MHW ;)?
N

RMSE =

where MHW;-hat is the predicted MHW metric for ensemble
member i, MHW,; is the true MHW metric for that ensemble
member and N is the number of ensemble members considered.
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The change in RMSE with additional components allows the user to
identify an appropriate number of components to include in the
PLSR (Figure 4). To guide users toward transfer functions that
balance lower RMSE with complexity, we highlight two values:
1) the number of components that yield the overall lowest RMSE
and 2) the number of components at which RMSE ceases to
improve by at least 1%. After the user selects a number of
components, a new PLSR transfer function is generated using all
pseudoproxy SST timeseries within the ensemble.

The performance of a transfer function is initially evaluated
using its correlation coefficient (r*), the standard deviation of
regression residuals (RMSE,.;) and the RMSE relative to
observations (RMSEps). The latter value is calculated by applying
the distribution statistics for ERSSTv5, COBEv2 and HadISST
monthly SST data to the LIM-based transfer function and
comparing the calculated MHW metric to each record’s true
value (Figure 5). This out of sample validation provides an
important check on how well a LIM-based transfer function
reflects reality. If the user deems a transfer function to be
sufficiently promising, the influence of under-sampling can then
be evaluated.

In practice, IFA will always under-sample past SST because only
tens or hundreds of monthly values will be reconstructed from
foraminifera within a sedimentary interval that represents decades
to millennia. To evaluate how sensitive transfer functions are to this
effect, our approach considers a series of scenarios in which 50 to
800 foraminifera tests are picked from a sedimentary interval.
Because the number of foraminifera measured is equivalent to the
number of months sampled, the amount of time represented in a
sedimentary interval (derived from sedimentation rate) can be used
to calculate what fraction of all months will be recorded by a given
number of IFA measurements. For example, if 200 foraminifera are
measured from a sedimentary interval representing 500 years
(equivalent to 6,000 months), 3.3% of all months are sampled.
Using a randomly selected ensemble member, we randomly draw
the fraction of values equivalent to each number of picked
foraminifera. This yields an under-sampled pseudoproxy SST
record that mimics what would be generated from IFA in marine
sediments. The distribution statistics from the under-sampled,
pseudoproxy IFA data are then applied to the transfer function
and the resulting reconstructed MHW metric is compared with the
true value. This is repeated 500 times to quantify the RMSE
associated with sampling each number of foraminifera
(RMSEgmp). A fit through a range of possible IFA measurements
gives an estimate of RMSE,y,, for any number of foraminifera
(Figure 6) and is valuable for evaluating what level of accuracy can
be expected from a sample prior to geochemical analyses.

A disadvantage of PLSR is that the transformation of
distribution statistics into new orthogonal variables can
complicate the interpretation of regression coefficients in terms of
actual physical properties. Our algorithm produces two resources
that give some insight into how distribution statistics vary with
changes in a MHW metric. The first gives the loadings for each
distribution statistic and component (Figure 7A). Larger loadings
indicate that a particular distribution statistic has a greater influence
on a given component, while loadings of the same sign indicate
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FIGURE 4

Example of how regression RMSE (RMSE.y) changes with the number of components included in the partial least squares regression. In this case,
the cumulative intensity of MHWs, defined using intensity and duration thresholds of one standard deviation and one month, are related to the
statistics of a pseudoproxy SST distribution based on G. bulloides seasonality at DSDP Site 36. While the user is ultimately left to select the number
of components to use in a PLSR, the values at which RMSE, 4 is at its minimum (red triangle) and ceases to improve by at least 1% (yellow triangle)
are provided to inform this choice.
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FIGURE 5

Example comparison of MHW cumulative intensity at DSDP Site 36 predicted from a PLSR-based transfer function versus that observed in the LIM
ensemble (red) or observational SST products (black). MHWs are defined using intensity and duration thresholds of one standard deviation and one
month and distribution statistics derive from a pseudoproxy SST distribution that is based on G. bulloides seasonality at DSDP Site 36. The
consistency with which the LIM-based transfer function estimates independent observations supports the validity of our approach.
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which distribution statistics covary in the same direction. The
second resource presents the difference in distribution statistics
between ensemble members with the highest and lowest 10% of a
MHW metric (Figure 7B). This allows the user to see which
distribution statistics change the most between extreme values of
MHW metrics.

2.7 Example application at northeast
Pacific sites

To demonstrate a potential application of our method we apply
it at 12 northeast Pacific locations (Figure 8; Table 1) with the goal
of identifying sites where IFA-based SST distributions have the
greatest potential to reconstruct paleo-MHW variability. We
consider a domain from about 40-60°N and 130-160°W that
approximates the area influenced by the 2014-2016 “Blob” MHW
(Bond et al., 2015). Of the 12 sites, seven locations (noted with site
numbers from the Deep Sea Drilling Program or Ocean Drilling
Program (ODP)) represent sediment cores that have been
recovered, while the remaining five locations (labeled A-E)
represent locations at which cores could potentially be collected
in the future. These five sites are exemplary, and selected only to fill
gaps in the spatial distribution of existing cores without considering
the type or thickness of sediment at specific coordinates.
Sedimentation rates at each site are taken from previously
published age models when possible, and estimated from adjacent
cores (Costa et al., 2024) when such data is unavailable (Table 1).

10.3389/fmars.2024.1321254

At each site we consider a series of MHW definitions that
include duration thresholds of 1, 2 and 4 months and intensity
thresholds of 1 or 2 standard deviations. We model the seasonal
abundance of G. bulloides and N. incompta since they are common
in the modern northeast Pacific (Ortiz and Mix, 1992; Sautter and
Thunell, 1989; Taylor et al.,, 2018) and in sediment cores (Davies
et al., 2011; Praetorius et al., 2015; Taylor et al., 2014). We
consistently select the number of components included in the
PLSR based on the value at which RMSE ceases to improve by at
least 1% (section 2.6; Figure 4). We perform additional evaluation of
under-sampling only when a transfer function’s correlation
coefficient exceeds 0.5. This value is selected somewhat arbitrarily
to increase efficiency by not considering the influence of under-
sampling for transfer functions with seemingly little promise. Other
users may make alternative decisions. When under-sampling is
evaluated, we use our best-estimates of sedimentation rate at each
site (Table 1) and assume a 1 cm sampling interval. In total we
evaluate 60 potential transfer functions at each of the 12 sites to
identify which MHW metrics, based on which MHW definitions,
are mostly likely to be reconstructed by which foraminifera species
at each location.

2.8 Stable isotope analyses of individual
G. bulloides

To demonstrate how a transfer function may be applied to
actual IFA data to reconstruct paleo-MHWs we also measured §'°0

G. bulloides, cumulative MHW intensity (°C/decade)
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FIGURE 6

Example result demonstrating how the RMSE of a reconstructed MHW metric will vary with the number of foraminifera measured. Results vary based
on the strength of a transfer function’s fit and the sedimentation rate at a site. Here, the transfer function in Figure 5 is applied to scenarios in which
50, 100, 200, 400 or 800 G. bulloides are measured at DSDP site 36. This suggests that the cumulative intensity of MHWs at this site would be
reconstructed with an error of approximately +6°C/decade if 100 G. bulloides were measured. A fit through the five points allows RMSEg,m, to be
calculated for any number of foraminifera, which in this case is: IN(RMSEg,mp) = 5.385 - 0.753 * In(n forams).
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FIGURE 7
Information to aid in the physical interpretation of a transfer function (A) The

loadings on each component of the PLSR allow the user to visualize

how distribution statistics vary relative to one another. (B) The percent difference in each distribution statistic between the LIM ensemble members
with the highest and lowest 10% of a MHW metric. This example uses the regression from Figure 5 to plot the difference between LIM ensemble

members at DSDP Site 36 with the highest and lowest cumulative intensities.

in individual G. bulloides from core-top (0-1 cm) sediments at
DSDP Site 36. Core-top sediments are commonly assumed to
approximate recent oceanographic conditions, and have been
widely used to calibrate and validate paleoceanographic proxies
(Quintana Krupinski et al., 2017; Rongstad et al., 2020; Saenger and
Evans, 2019; Tierney et al., 2019). Core-top sediments were first wet
sieved at 63 um and dried. All G. bulloides were then picked from
the 150-250 um and >250 pm size fractions. Forty-five individuals
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from the larger size fraction were briefly sonicated in water and
methanol before being transferred to Kiel device vials. §'°0 was
measured at the Oregon State University Stable Isotope Laboratory
using a Thermo-Fisher Kiel IV carbonate device coupled to a
custom Thermo-Fisher MAT253+ isotope ratio mass
spectrometer that has been optimized to analyze small volumes of
carbon dioxide. For example, each ion beam has a factor of ~3
greater than stock amplification for m/z 44, 45, and 46, and a
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Locations of the northeast Pacific sites considered in this study relative to the 2015 SST anomaly associated with the “Blob” MHW. Numeric values
represent the locations of existing DSDP and ODP marine sediment cores. Letters represent hypothetical locations at which cores could be

collected within the geographic range of the 2015 MHW event.

modified pressure-adjust routine that minimizes sample versus
standard pressure imbalances in small samples. This roughly doubles
the instrument’s signal to noise ratio at low beam intensities (typically
near 1000 mV with the greater amplification; Supplementary Table
S3), at the cost of a slight increase in nonlinearity with sample size.
Modifications prevent running high mass samples without saturating
the detectors, or requiring expansions, which can be problematic with
such small amounts of CO, gas. Loading small volumes of reference gas
reproducibly can also be a challenge, and requires extra analyses of
carbonate standards for the purpose of isotope calibration relative to
Vienna Pee Dee Belemnite (VPDB). In this study, small (up to 0.1 t0 0.2
permil) linear corrections were made for source nonlinearity as a
function of major beam intensity. Specifically, 8-9 analyses of an in-
house standard (Wiley Marble) within each run were used to constrain
linear relationships for raw 880 and 8'*C versus m/z 44, and then used
to correct source nonlinearity in all other analyses from that run using
their measured m/z 44 intensity. An additional small correction for
reference gas depletion during each run was applied based on trends in
the same Wiley Marble standards versus analysis time. This gas
depletion correction has since been eliminated by increasing the size
of the reference gas reservoir. The weights of the individual shells were
calculated from the relationship between initial gas pressures (the Kiel
VMI gauge) and measured weights of standards ranging from about 3
to 17 pg, measured on a Sartorius SE2 ultramicrobalance
(Supplementary Table S3). The uncertainty in the calcite weight
associated with each shell analysis estimated from initial gas
pressures is about 1 pg. Comparing measured to calculated mass for
standards in this study yields a RMSE of 2 ug (Supplementary Table
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S3). Multiple analyses of NBS19 bracketed samples to evaluate
precision and normalized data to the VPDB scale.

3 Results

The primary result of this work is the methodology described
above, which identifies and quantifies robust transfer functions
between pseudoproxy IFA-based SST distributions and MHW
metrics. However, our application of it in the northeast Pacific
provides an important example of the information it generates, how
those results might be used, and the characteristics of sites with the
greatest potential to reconstruct MHWs.

3.1 Locations and characteristics of the
best transfer functions

Transfer function correlation coefficients vary significantly
depending on site, MHW metric and MHW definition. The best
fits occur at proposed locations B and C in the central part of the
domain (50°N, 140-150°W) where r* values can exceed 0.8
(Figure 9A). Robust transfer functions with * >0.7 are still found
at many other locations including ODP Site 887, DSDP Site 183,
ODP Site 1023 and proposed location E, but sites further south and
west (e.g. DSDP Site 37 and proposed location D) have weaker best
fits with maximum 7> values below 0.6. Best fits consistently come
from transfer functions that target the cumulative intensity of
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MHWs, while transfer functions that target other MHW metrics
rarely have correlation coefficients above 0.5 (Figure 9B). Fits are
typically best when MHWs are defined based on a duration of one
month, but the decline in 7* values for duration thresholds of two and
four months is modest (Figure 9C). Fits are also highest when MHW' s
are defined using an intensity threshold of one standard deviation,
but often decrease considerably when the threshold is changed to two
standard deviations (Figure 9D). In comparison, differences between
species are minor and transfer functions based on G. bulloides are
often similar to those based on N. incompta without evidence for once
species consistently outperforming the other.

However, high correlation coefficients do not guarantee a transfer
function can accurately reconstruct MHWSs. While our evaluation of
under-sampling does show that RMSEq,,, decreases in transfer
functions with higher ¥ values (Figure 10A), sedimentation rate
appears to be a more important control on accuracy (Figure 10B).
For example, a transfer function that targets the cumulative intensity of
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short duration, low intensity MHWSs using G. bulloides at proposed
location C has a very high correlation coefficient of 0.81, but applying
this transfer function to a SST distribution based on 200 foraminifera
would reconstruct MHW cumulative intensity with an error of £351%
due to thelocation’s low sedimentation rate of 0.14 cm/kyr. In contrast,
applying transfer functions with weaker fits (+* 0.66-0.71) to SST
distributions based on 200 foraminifera at sites with higher
sedimentation rates of ~7 cm/kyr (i.e. ODP Site 887, DSDP Site 179)
would reconstruct MHW cumulative intensity with an error of only
about +45% (Figure 10B).

3.2 Individual G. bulloides stable isotopes

Of the 45 individual foraminifera analyzed from site DSDP Site
36, 37 were large enough (calcite weight 3-15 ug) for the dual inlet
pressure adjustment required for high precision analysis

0.9
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0.7 A
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Summary of correlation coefficients for all 720 transfer functions considered. (A) differences between transfer functions based on G. bulloides (red)
and N. incompta (blue) at the 12 northeast Pacific sites (B) differences between transfer functions targeting each of the five MHW metrics (C)
differences between transfer functions for each of the three duration thresholds considered when defining MHW:s (D) differences between transfer

functions for the two intensity thresholds considered when defining MHWs.
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The RMSE expected for MHW reconstructions when only 200 foraminifera are measured. (A) versus the correlation coefficient of the transfer
function and (B) versus the sedimentation rate of each site. The lowest RMSE values occur at the highest sedimentation rates, not the highest
correlation coefficients. RMSE is expressed as a percent of the LIM ensemble mean to accommodate the differing units of MHW metrics. Under-

sampling was only evaluated in transfer functions with a r>0.5.

(Supplementary Table S3). External precision was 0.03%o and
0.09%o for NBS19 8°C and §'%0, respectively (16, n = 6) and
0.02%o and 0.07%o for in-house standard Wiley Marble (16, n = 13).
Average '°0 internal precision for standards with masses >3 ug
was 0.05%o (0.03%o for masses 10-15 pg, 0.04%o for 6-10 ug, and
0.07%o for 3-6 ug). Average 8'°0 for all G. bulloides was 1.84 +
0.78%o with a total range of 0.39 - 3.15%o. While G. bulloides with
masses of 3-6 [g had a somewhat higher mean §'%0 of 2.1 + 0.76
(n=14) than those with masses of 6-10 g (80 = 1.66 + 0.71;
n=11) and 10-15 pg (8'0 = 1.69 + 0.83; n=12), the slope of
-0.06%o/1g observed for all data was not significant (p = 0.06) and
we treated the data as a single population. The standard deviation of
the individual shell data is a factor of 20 greater than internal
precision, and a factor of 10 greater than external analytical
precision, so the variability in foraminiferal data can reliably
be interpreted to reflect the environment of their habitat.
The distribution of proxy data is shown in Figure 11
and complete distribution statistics are given in Supplementary
Table S4, acknowledging that the relatively small number of
foraminifera analyzed may not accurately capture the true
underlying distribution.

We applied these IFA-based distribution statistics to a transfer
function that predicts the cumulative intensity of MHW's at DSDP
Site 36. The transfer function accounts for the seasonal ecology of G.
bulloides, and defines MHWSs using intensity and duration
thresholds of one standard deviation and one month, respectively.
Applying a transfer function that defines MHWSs using a two month
duration threshold yielded similar results (not shown). IFA-based
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distribution statistics calculated a cumulative intensity of 10.63°C/
decade in core-top sediments, which is appreciably higher than
values of 6.68°C/decade, 6.37°C/decade and 5.52°C/decade in
ERSSTv5, COBEv2 and HadISST data, respectively. However,
because only 37 individuals are measured, the influence of under-
sampling is severe and we calculate the error on reconstructed
cumulative intensity to be +14.38°C/decade.

4 Discussion

This study provides a framework for developing transfer
functions that can reconstruct past MHW variability from IFA
paleotemperature distributions. Our systematic application of this
approach at a series of northeast Pacific sites suggests that
promising transfer functions can be generated from multiple
species in most regions, and that the cumulative intensity of short
duration, low intensity MHWs is the metric that can be
reconstructed with the greatest skill. It is not immediately clear
why transfer functions that target cumulative intensity consistently
outperform others, but we speculate that it may relate to the
metric’s reliance on both duration and intensity. That is,
variations in MHW duration or intensity alone may cause only
modest changes to a SST distribution, while their combined
influence in the cumulative intensity metric may be larger and
more detectable. Similarly, we speculate that using duration and
intensity thresholds of one month and one standard deviation,
respectively, to define MHWs yields stronger transfer functions
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isotopic values were converted to temperature using the calibration of Bemis et al. (1998). The Shapiro-Wilk statistic, kurtosis and skewness of the
distribution are 0.95, -1.18 and -0.075, respectively. Complete statistics are given in Supplementary Table S4.

because of the greater number of these low intensity, short duration
events within each LIM ensemble member. A thorough evaluation
of the mechanisms responsible for these observations and the
degree to which they occur outside the north Pacific domain is
left for future work.

In contrast, the relationship between transfer function skill and
sedimentation rate is more straightforward. One centimeter of
marine sediment in the central gyres can typically reflect many
thousand years of time for sedimentation rates <0.25 cm/kyr
(Table 1). Transfer function correlation coefficients at proposed
location C are the highest of any location we consider, but one
centimeter of sediment corresponds to about 7,000 years, or
equivalently, 84,000 months. In this case, 200 foraminifera only
represent about 0.25% of all months, leading to a severely under-
sampled SST distribution and MHW reconstructions with errors
exceeding +350% (Figure 10B). Despite a higher sedimentation rate
at DSDP Site 36, the influence of under-sampling on the individual
foraminifera §'®0 data we generate is similar. Our 37 analyses
represent only about 0.75% of the approximately 5000 months
recorded by a centimeter of sediment at the site, making it unlikely
that the resulting SST distribution (Figure 11) is representative of
the larger population. While it is possible to generate a cumulative
intensity estimate from these 37 analyses, the error on this value is
too large to compare to observed modern values in a meaningful
way. It is regrettable that our §'°0 data was generated in parallel
with the development of our method, and we therefore missed an
opportunity to evaluate how the relative paucity of G. bulloides at
DSDP Site 36 would impact the accuracy of MHW reconstructions.
Fortunately, similar situations should be avoidable in the future by
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using our method to calculate the expected accuracy of a MHW
reconstruction prior to conducting geochemical analyses.

Given the sensitivity of our method to sedimentation rate, it is
not surprising that the most accurate MHW reconstructions occur
at ODP Site 887 and DSDP Site 179 where sedimentation rates are
~7 cm/kyr. At these locations, one centimeter of sediment reflects
about 150 years, or 1800 months, and measuring 200 foraminifera
would represent about 11% of all months. In these cases, the SST
distribution is less dramatically under-sampled and RMSEg,,
decreases to about +45%. While obviously an improvement, it
seems likely that errors of this magnitude would still limit the
practical application of our approach to only major shifts in
MHW behavior.

The best path to reducing uncertainty in MHW reconstructions
when applying our approach is to minimize the degree of under-
sampling, which can be achieved in two ways. First, more
foraminifera can be measured to increase the fraction of all
months sampled. For example, we calculate that the error on
MHW cumulative intensity reconstructed from N. incompta at
DSDP Site 179 can be reduced from +42% when 200 foraminifera
are sampled to +21% when 800 are sampled. These sample sizes
may seem unreasonably large given that IFA studies typically
measure only 50-100 individuals (Ford et al., 2015; Koutavas
et al, 2006; Rongstad et al., 2020; Rustic et al., 2020). However,
previous studies have not rigorously evaluated the sensitivity of
their results to under-sampling and may have similar sample
requirements. The likelihood that large sample requirements will
be necessary to address many hypotheses will favor analytical
approaches that achieve high throughput measurements of
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geochemical proxies without significantly sacrificing analytical
precision. Even with analytical advances, the degree to which
errors can be reduced by increasing sample sizes will ultimately
be determined by the number of foraminifera present in a sample,
and it may not always be possible to achieve a desired level of skill
simply by making more measurements.

A second way to decrease the errors caused by under-sampling
is to reduce the number of months recorded in a sampling interval
by targeting high sedimentation rate sites. Continental margins
sites, such as those in the Gulf of Alaska (Walczak et al., 2020) or the
Santa Barbara Basin (Hendy et al., 2002), can have sedimentation
rates in excess of 100 cm/kyr and minimal bioturbation, which
allow a 1 cm sample to achieve near decadal resolution. Application
of our method at these locations shows strong transfer functions
similar to other north Pacific sites (not shown), and can reconstruct
MHW cumulative intensity with an error below +20% when 100
foraminifera are sampled, and below £15% when 200 are analyzed.
In comparison to reducing errors by increasing sample sizes,
targeting high sedimentation rate sites has the advantage of
improving accuracy while also minimizing analytical time and
expense. These variables are obviously not exclusive however, and
sites with both high sedimentation rates and abundant foraminifera
are currently the best candidates for applying our method to
generate paleo-MHW reconstructions.

Such reconstructions have the potential to significantly expand
upon existing paleo-MHW research, which, to our knowledge, consists
only of a single study of bi-monthly to annual coral data in western
Australia (Zinke et al,, 2015). Evidence that foraminifera assemblages
vary with MHW s on short timescales (Lane et al., 2023) is an important
result, but it will be difficult to attribute assemblage changes to past
MHW variability as opposed to changes in the mean state.
Additionally, it is not yet clear if changes in assemblages primarily
reflect a response to MHW duration, frequency, intensity or some
combination of these metrics. On the other hand, our transfer
functions target specific MHW metrics in a quantitative way that
facilitates statistical analyses and comparisons to independent model
simulations. While we highlight a northeast Pacific application, the
framework we describe can be applied to other foraminifera species in
other ocean domains to significantly advance knowledge of
spatiotemporal MHW variability.

Despite promise, the accuracy with which MHWSs can be
reconstructed using our approach relies on a number of
assumptions that should be carefully considered when
interpreting results. In many cases these same assumptions also
apply to traditional foraminifera-based reconstructions and are an
inherent complication of paleoceanography. For example, changes
in the seasonality of G. bulloides or N. incompta growth have the
potential to alter mean SST reconstructions (Jonkers and Kucera,
2015), but would also likely change paleotemperature distributions
independently of MHW behavior. Applying our transfer functions
in the distant past would therefore require demonstrating that
seasonality had not changed significantly, or generating new
transfer functions with alternate modeled seasonalities that
account for any changes. These alternate seasonalities could be
generated for modern species by rerunning foraminifera ecology
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models (Fraile et al., 2008; Kretschmer et al., 2018; Moore et al.,
2001) under the boundary conditions of past climates, but may be
challenging for extinct species.

It may also be important that PLAFOM2.0 (Kretschmer et al,
2018) calculates seasonal trends in foraminifera concentrations,
which could differ from trends in calcification. The rate of
planktic foraminifera chamber formation and calcification is
known to vary throughout their life (de Nooijer et al., 2014; Lea
etal., 1995; Ter Kuile and Erez, 1984), causing geochemical proxies
such as Mg/Ca or 8'°0 to vary with shell size (Elderfield et al.,
2002). To minimize this effect, paleoceanographic reconstructions
typically target foraminifer tests within narrow size fractions.
However, seasonal biases can also differ between size fractions
(Jonkers et al.,, 2013; Thunell et al., 1983) and aren’t accounted
for by PLAFOM2.0. This could cause the true seasonal bias of actual
IFA data to differ from that modeled in IFA pseudoproxies when
only narrow size fractions are considered. While additional work is
necessary to characterize the scope of this potential complication,
solutions seem possible if it proves to be a concern. For example,
seasonal biases of specific size fractions could be incorporated into
proxy system models like PLAFOM2.0 or shell size could be added
as an independent variable when predicting paleotemperatures,
thereby allowing all foraminifera to be measured regardless of
size fraction.

It is also plausible that the seasonal distributions generated by
PLAFOAM2.0 (Kretschmer et al., 2018) do not account for
ecological responses that are unique to MHWSs. For example,
stratification during a MHW could isolate foraminifera from the
nutrient-rich subsurface, possibly ending their growing season and
ability to record MHWs if they could not alter their habitat depth.
While this possibility will ultimately have to be evaluated on a case
by case basis, the best data available to evaluate it in the north
Pacific is the 4-year sediment trap study of Sautter and Thunell
(1989). These data overlap with multiple MHWS, with the initial 2
years being characterized by a long duration, low intensity MHW
associated with the 1982/83 El Nifio, and a shorter duration MHW
occurring during the winter of 1984-85. During this interval G.
bulloides exhibited a seasonal flux from March-July, while N.
incompta was most abundant from August-November. Both
trends agree with the modeled distributions of Kretschmer et al.
(2018), but are inconsistent with the possibility that the growing
season of either species ends abruptly with the onset of a MHW.
Support for this comes from the observation that G. bulloides were
found in Santa Barbara Basin sediment traps throughout the 2014-
2016 “Blob” MHW (Cherry et al., 2023), although these organisms
may be a distinct genotype from those in more subpolar
environments and therefore may respond to MHWs differently.
Additional monitoring of how foraminifera assemblages and
abundance change across a range of MHW intensities and
durations (e.g. Lane et al,, 2023) is certainly warranted since
available data are limited, but current knowledge suggests that G.
bulloides and N. incompta remain present and with similar
seasonality during many MHWs.

If future work should demonstrate that certain species exhibit
ecological biases that make them unsuitable for MHW
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reconstructions, it is encouraging that our method predicts robust
transfer functions across multiple species. The framework we
describe accommodates five different foraminifera species, and
will allow reconstructions to target only the species whose ecology
is minimally impacted by MHWs. Alternatively, if multiple species
are found to have uncorrelated ecological biases, it may be
advantageous to generate multiple independent MHW
reconstructions from different species in the same sedimentary
interval. These reconstructions could then be combined to
maximize their mutual MHW information and minimize species-
specific effects.

Moving forward, our approach could be improved by further
refining our proxy system model, which could consider
bioturbation more realistically. When calculating the fraction of
months sampled by a given number of IFA measurements, we
currently assume that sedimentation rate is the only variable
determining the amount of time represented by one centimeter of
sediment. While this assumption may be valid at sites with anoxic
bottom waters void of benthic organisms, bioturbation could
significantly increase the amount of time represented in a
sedimentary interval because of mixing over depths of 10 or more
centimeters (Dolman et al,, 2021). Fortunately, tools exist to
rigorously evaluate bioturbation in sedimentary archives (Dolman
and Laepple, 2018) and can be incorporated into future versions of
our algorithm.

Species specific paleotemperature calibrations will not be a
major concern as long as they are linear, which is often true for
880 (Bemis et al., 1998; Mulitza et al, 2003). In these cases,
transformations do not change the distribution statistics between
raw geochemical data and reconstructed temperature. The same is
not true for exponential paleotemperature calibrations (Anand
et al,, 2003; Lea et al., 1999; Saenger and Evans, 2019), and Mg/
Ca data would need to be transformed to temperature to apply our
transfer functions. In either case, changes in the §'*0 or Mg/Ca of
seawater between time intervals would not influence distributions
as long as these values remained relatively constant within each IFA
time interval.

Finally, we stress that any paleo-MHW reconstructions based
on our approach should be interpreted only in the context within
which they are calibrated. Reconstructed MHWs will follow the
definition in Section 2.3, and will not necessarily reflect trends based
on the daily definitions commonly used when studying modern
MHWs. Furthermore, changes in one metric should not be assumed
to be representative of other metrics or MHW definitions. That is, a
reconstructed increase in MHW cumulative intensity should not be
taken to mean there were also increases in the number or duration
of events. Similarly, a transfer function based on short duration, low
intensity MHWSs should not be used to suggest changes in higher
intensity or longer duration events. While there are undoubtedly
other ways to generate transfer functions between IFA distributions
and MHW metrics, reconstructions from this study should only be
interpreted for the region, metric and definition for which they are
calibrated and validated.
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5 Conclusions

We describe a framework to evaluate how well SST
distributions can predict MHW metrics, with the goal of
generating transfer functions that can be applied to monthly
paleotemperature distributions derived from IFA. Results reveal
that the cumulative intensity of short duration, low intensity
MHWs is the most promising target for reconstruction, and can
likely be calculated with an error of less than 15% at continental
margin sites with sedimentation rates in excess of 100 cm/kyr. Our
approach is a major advance in the nascent field of paleo-MHW
research that allows specific MHW metrics and their uncertainty
to be quantified from individual foraminifera in marine
sediments. While we present an example application from the
northeast Pacific, our approach is valid in other ocean domains
and for other foraminifera species. Application of our method in
broader contexts therefore has considerable potential to advance
knowledge surrounding the spatiotemporal variability of MHW3s
prior to the observational era. Future paleo-MHW reconstructions
will provide valuable context for interpreting modern trends as
well as out-of-sample validation targets for climate models, both
of which should help improve forecasts of MHW behavior on
decadal-centennial timescales.
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