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ABSTRACT

The Boyle temperature, TB, for an n-segment polymer in solution is the temperature where the second osmotic virial coefficient, A2, is
zero. This characteristic is of interest for its connection to the polymer condensation critical temperature, particularly for n→∞. TB can be
measured experimentally or computed for a given model macromolecule. For the latter, we present and examine two approaches, both based
on the Mayer-sampling Monte Carlo (MSMC) method, to calculate Boyle temperatures as a function of model parameters. In one approach,
we use MSMC calculations to search for TB, as guided by the evaluation of temperature derivatives of A2. The second approach involves
numerical integration of an ordinary differential equation describing how TB varies with amodel parameter, starting from a known TB. Unlike
generalMSMC calculations, these adaptations are appealing because they neither invoke a reference for the calculation nor use special averages
needed to avoid bias when computing A2 directly. We demonstrate these methods by computing TB lines for off-lattice linear Lennard-
Jones polymers as a function of chain stiffness, considering chains of length n ranging from 2 to 512 monomers. We additionally perform
calculations of single-molecule radius of gyration Rg and determine the temperatures Tº, where linear scaling of R

2
g with n is observed, as if

the polymers were long random-walk chains. We find that Tº and TB seem to differ by 6% in the n→∞ limit, which is beyond the statistical
uncertainties of our computational methodology. However, we cannot rule out systematic error relating to our extrapolation procedure as
being the source of this discrepancy.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0227411

I. INTRODUCTION

Macromolecules and polymers have long been of scientific
and engineering interest due to their technological and biological
importance. Of the many ways to characterize polymer structure
and behavior, the “º point” receives considerable attention. The
º point is the temperature at which an n-segment polymer in solu-
tion behaves as being ideal in some prescribed sense. This occurs
not because the segments are non-interacting, rather because the
temperature-weighted attractive and repulsive interactions among
the polymer segments and the solvent molecules cancel on aver-
age. Two definitions of this temperature are in common use. One
matches the scaling of the radius of gyration, Rg , of a single poly-
mer molecule to that of an ideal chain, and in particular, the

º point is the temperature where Rg scales as n1/2 (for a linear
chain in three dimensions); we will use Tº to represent this tem-
perature. The other definition is based on the second osmotic virial
coefficient, A2, for a pair of molecules, and it specifically identi-
fies the º point as the polymer’s Boyle temperature, TB, defined
as the temperature where A2 = 0. In either case, at temperatures
above the º point (“good-solvent conditions”), the entropy is able
to swell the polymer chains due to favorable polymer–solvent inter-
actions. Below the º point (“poor-solvent conditions”), the chains
contract and may precipitate out of solution. At the º point,
the polymer behaves, by some measure, as if it were in an ideal
solvent. The º point can be determined experimentally through
various methods, such as light scattering, osmotic pressure measure-
ments, or viscometry. Understanding the º point is important in
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polymer science for designing and optimizing polymer processing
and applications.

While the º point depends on molecular weight, for n→∞ it
is expected to be asymptotically independent of molecular weight.
Moreover, it is hypothesized1 and observed2–6 to strongly corre-
late with the critical temperature, Tc, of the polymer in solution,
with Tº, TB, and Tc becoming mutually equal asymptotically for
n→∞. Accordingly, the º point (using either definition, Tº or
TB) helps in predicting the solubility of polymers, understand-
ing their phase behavior and tailoring materials for specific uses
such as drug delivery, coatings, and polymer blends. In addition,
a class of biological macromolecules known as intrinsically dis-
ordered proteins is believed to exhibit a condensation transition
to form membrane-less intracellular structures that are impor-
tant to biological function, and there is interest in employing
calculations of their º point to understand conditions where this
occurs.5,6

The Boyle temperature can be studied through numerical
calculation of A2, and for finite n, there is reason to believe
that TB provides a better characterization of Tc than does the
single-molecule, Rg-based Tº, particularly for heteropolymers.5

Mayer and Mayer7,8 showed that gas-phase virial coefficients BN

can be expressed as integrals over configurations of N = 2, 3, 4
molecules, for the second, third, and fourth virial coefficients,
respectively. McMillan and Mayer9 pointed out that osmotic virial
coefficients can be expressed likewise, where A2 involves integrating
configurations of two solutes (macromolecules) in a solvent at fixed
chemical potential. However, theory and calculations involving
explicit solvent can be very difficult.10 Sampling of polymer con-
formations can be slow, and details involving adjustments of the
solvent to different polymer conformations are difficult to capture
and moreover are largely not needed to understand the solute’s
behavior. Instead, McMillan–Mayer’s treatment adopts models
based on an implicit solvent, with the interactions between and
among polymer segments interpreted as a solvent-mediated poten-
tial of mean force, which, in principle, is temperature-dependent.
This greatly simplifies both theoretical and computational
methods.

As with many treatments of polymer behavior, lattice mod-
els have been employed in many studies reporting calculations of
A2 from a molecular model,3,11–16 although these studies often do
not have a focus on the Boyle temperature. Of those that do,11–14 one
significant outcome is an observed n−1/2 approach ofTB to its n→∞
value,

TB(n) − TB(∞) = cn−1/2. (1)

All the studies found that TB decreases monotonically with increas-
ing n [c > 0 in (1)] for the entire range of n examined, which in one
case extended up to n = 512.14

There have also been several studies of off-lattice chains of
hard-sphere beads.17–22 Our focus is on the Boyle temperature,
which requires attractive and repulsive interactions, so we do not
examine these results. Instead, we turn briefly to summarizing
some relevant results for off-lattice models having intermolecular
attraction:

Sheng et al.2 computed both A2 and the phase behavior of an LJ
bead-spring model for n = 20, 50, and 100. Their Boyle temperatures
varied little with n and were not obtained with precision suffi-
cient to perform an extrapolation. Their three values of Tc varied
considerably with n, and followed the Schultz–Flory form,1,23 allow-
ing for a credible n→∞ extrapolation. The so-obtained extrapo-
lated Tc value coincided with their n-invariant value of TB, within
uncertainty.

Harismiadis and Szleifer24 looked at flexible LJ chains of up to
n = 40 atoms joined by rigid bonds. They too found that Boyle tem-
peratures varied little with n, with data insufficiently precise to allow
a meaningful extrapolation to n→∞.

Wichert and Hall25 computed A2 and TB for chains of square-
well beads up to n = 50, considering different well ranges extending
up to twice the hard-core diameter; notably, intramolecular inter-
actions were modeled as hard spheres (no attraction) in one case,
or as square well in another (but only for n up to 16). They found
that the slope of the approach of TB(n) to TB(∞) depended on
the range of the attractive potential. For short-range potentials,
i.e., narrow wells, they found TB(n) to decrease with increasing n
[c > 0 in Eq. (1), consistent with most of the lattice-model results],
while for longer-range potentials (wider wells), they observed TB

to increase with n (c < 0). However, in both cases, the data appear
to level off or even go through a maximum with respect to n for
large n. Their power-law fit yielded, instead of the usual −0.5, rather
large exponents (ranging from −1.23 to −2.79 for different well
widths), which resulted from attempting to stretch the plateau into
a straight line. The presence or absence of intramolecular attrac-
tion was found to have a surprisingly small effect on the Boyle
temperatures.

Vega and López Rodríguez26 examined models that are repre-
sentative of n-alkanes, with up to 200 united-atommethylene groups
represented by LJ sites with fixed bond lengths and employing a
three-state rotational isomeric state approximation. They used their
calculations of the Boyle temperature to estimate a critical point
for the polymethylene melt. Vega and López Rodríguez observed
for their data that TB increases linearly with n−1/2 (c < 0) for small
n, but levels off at n = 100. Their comparison of the plateau TB

with short-alkane Tc values from the literature extrapolated to
n→∞ supports the hypothesis that TB and Tc coincide in this
limit.

Rubio and Freire27 performed calculations of A2 for LJ beads
joined by Gaussian bonds, examining both linear chain molecules,
as well as star topologies. In a subsequent work,28 they evaluated
Boyle temperatures for the model, considering chains of length up
to n = 217. They found that extrapolation to n→∞ yielded a coin-
cidence of TB with extrapolated Tº data taken previously29 for the
same model.

Chiew and Sabesan30 performed calculations of A2 for freely
jointed LJ chains with rigid bonds, up to n = 48 atoms. They found
that the Boyle temperature increases with n [c < 0 in (1)] and
plateaus for n > 32.

Withers et al.31 examined a similar system up to n = 16, con-
sidering both rigid-length bonds and FENE springs for adjacent
atoms. They observed the expected n−1/2 approach to the long-chain
limit, with TB increasing with n (c < 0). However, they found that
this n dependence is significantly diminished in going from rigid to
weak FENE bonds. Otherwise, they did not observe a plateau with
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increasing n, and this could be due to the relatively small values of
n examined in their study.

Ida and Yoshizaki32 examined the effect of torsional flexibility
on A2 and the radius of gyration of freely rotating chains with fixed
bond angles, considering both linear and three-arm star topologies.
They used an LJ bead model with n of up to 900 and focused on the
effect of torsional flexibility on the ratio of A2 for the two topologies.
They did not examine or report Boyle temperatures.

Schultz and Kofke33 reported values of virial coefficients for
normal alkanes up to n = 20, in some cases, reporting coefficients
up to A6. Again, these data were presented without an attempt to
focus on the Boyle temperature or reporting TB values specifically.

Mohammadi et al.34 (2012) computed A2 for chains of atoms
interacting with an exp-6 non-bonded potential, up to n = 48. They
studied the effect of the strength of the core repulsion and the chain
length on the Boyle temperature, finding also that c < 0.

A recent study by Liu et al.35 applied restricted self-consistent
field theory to examine (among other things) the n dependence of
TB. The results of Liu et al. again indicated c < 0 for the approach to
of Boyle temperature to its value at n→∞.

Finally, wemention the recent work ofMittal and co-workers5,6

in application to proteins. These are heteropolymers formed from
amino acid subunits, and their function is governed by the specific
sequence of these residues. Accordingly, they are not amenable to
a process of extrapolation of n→∞. Nevertheless, working with
model proteins of 50–150 (coarse-grained) residues, they showed
that, whileTB andTc do not coincide for finite n, they follow a strong
linear correlation, sufficient to allow the former to reliably estimate
the latter. They also demonstrated that in some systems, a second,
lower-temperature zero inA2 can be used to estimate a lower-critical
solution temperature (LCST), in addition to the usual connection to
the upper-critical solution temperature (UCST).6

Given the usefulness of the Boyle temperature as a means to
understand polymer behavior, it is worthwhile to consider meth-
ods specifically formulated to compute it for a given molecular
model and in particular methods to examine how it changes with
various features of the model. The Mayer sampling Monte Carlo
(MSMC)36 technique has appealing features for this purpose. It is
an importance-sampling Monte Carlo method that is tailored for
the evaluation of virial coefficients and their derivatives. It can be
applied to compute virial coefficients of arbitrary order N, and
(unlike the most commonly used methods) it requires no tabulation
or interpolation of histograms. These features make the approach
particularly well suited for determination of the Boyle temperature.
The conventional application of MSMC for the calculation of A2

invokes a reference system of known A2 (typically the hard-sphere
model), and this requirement introduces sampling issues that must
be handled using an established method. In this paper, we show that
when computing the temperature at which A2 is specifically zero,
we can avoid this complication, opening up possibilities to evaluate
a range of Boyle temperatures efficiently. We examine approaches
based on a guided, direct search for the Boyle temperature of a given
system and another that involves tracing TB lines of a polymer as
some parameter describing or defining it is varied.

The present work aims to demonstrate a proof of concept
for evaluating Boyle points and lines with simple application and
to uncover strengths and weaknesses in alternative MSMC-based
approaches. In Sec. II, we provide a summary of the MSMCmethod

and propose techniques for evaluating Boyle points using it. Then,
in the section following that, we introduce the model used for
this study, which is given by linear LJ chains with a fixed bond
length and variable bond-angle stiffness. We present results from
our calculations of TB for varying stiffness and for different chain
lengths. Finally, we close with concluding remarks and suggestions
for extensions and applications of the methods.

II. METHODS

We begin this section with a review of MSMC methods for the
calculation ofA2 and then turn the focus to twoways thatMSMC can
be adapted specifically for the calculation of the Boyle temperature,
where A2 = 0.

A. Evaluating A 2(T )

The key expression for the classical second virial coefficient in
terms of a molecular model is7,8,37,38

A2 = −
1

2q2
+ f (r12,ω1,ω2)e(ω1)e(ω2)dr12dω1dω2, (2a)

≡
I

q2
, (2b)

where f is the Mayer function for the pair of molecules,

f (r12,ω1,ω2) = exp (−´U(r12,ω1,ω2)) − 1, (2c)

e is the intramolecular Boltzmann factor,

e(ωi) ≡ ei ≡ exp (−´ua(ωi)), (2d)

q = ∫ e(ω)dω is the single-molecule conformational integral, and
´ ≡ 1/kBT with T being the temperature and kB being the Boltzmann
constant; to simplify some equations presented in the following, we
define the integral I via (2b). In (2c), U is the intermolecular energy,
obtained by summing over all pairs of atoms with one from each
molecule, and in (2d), ua is the total intramolecular energy, com-
prising both bonded and non-bonded components. The integrals
are taken over ω, which includes all internal conformation coordi-
nates and overall orientations for eachmolecule, and r12 is the vector
distance between the centers of mass of the pair.

Methods for computing A2 have almost always been based
upon an integration of the center-of-mass distribution of an inter-
acting pair of molecules, averaged over their orientations and inter-
nal conformations. Sometimes, this entails sampling each molecule
in its ideal-gas state, governed only by its intramolecular potential
ua and performing quadrature of the Mayer function for a sample of
conformations and orientations (e.g., Refs. 24, 26, and 30). Another
approach involves the tabulation of histograms of the center-of-mass
separations as the molecules sample positions and conformations
in a finite box, followed by integration of the resulting distribution
(e.g., Refs. 10 and 31); this approach is preferred if working with
an explicit solvent. Alternatively, A2 can be evaluated by regressing
simulation data for the osmotic pressure at low concentrations.2

In this study, we examine the suitability of MSMC for
the evaluation of A2 of macromolecules. The approach is much
like a conventional Monte Carlo simulation of two molecules
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(orNmolecules forAN), but sampling is based on the intermolecular
Mayer function f , as well as the intramolecular Boltzmann factors ei.
In this manner, sampling is based on the importance to the A2

integral, allowing both inter- and intra-molecular considerations to
influence the molecules’ conformations.

MSMC introduces a reference system, and the integral in
Eq. (2a) is expressed as an ensemble average with respect to it; in
particular,

A2 = �0ï f
µ0

⟩
µ0e1e2

, (3)

where µ0 is the sampling weight and �0 is A2 as given by Eq. (2a) but
with f replaced by µ0; the angle brackets in (3) represent an ensem-
ble average, weighted by µ0e1e2, as indicated by the subscript on the
brackets. Typically, µ0 ≡ ∣ fref ∣, where fref is the Mayer function for a
reference model, which is chosen to be simple enough to allow easy
evaluation of �0. Almost always, this reference is selected to be a sim-
ple hard-sphere (HS) model. Such a reference can provide accurate
results for any target system, but precision may become poor if there
is great disparity in the size (which is easily adjusted by changing
the HS diameter) or shape of the target and reference models. For a
chain-molecule target, the HS diameter would typically be selected
to approximate the radius of gyration of a polymer molecule. If the
target is highly anisotropic (e.g., a long rigid polymer chain), it may
become advantageous to select an anisotropic reference, such as hard
ellipsoids or spherocylinders.

While Eq. (3) provides a rigorous expression for A2, in practice,
it can provide incorrect results, reflecting a bias due to systematically
inadequate sampling of f/µ0. An alternative formula may be written
with the roles of the target (A2, f) and reference (�0, µ0) switched,
but this too may lead to biased results. An effective remedy is found
with overlap sampling,39,40 which has roots in Bennett’s method41

and is based on ensemble averages collected in both the target and
reference systems,

A2 = �0ïµOS
µ0
⟩
µ0e1e2

⟨ f /∣ f ∣ð∣ f ∣e1e2⟨µOS/∣ f ∣ð∣ f ∣e1e2 , (4a)

where µOS is an overlap function, defined as

µOS =
µ0∣ f ∣

³µ0 + ∣ f ∣ , (4b)

and ³ is a parameter chosen to optimize the calculations. Com-
plete details of the implementation of the overlap sampling form of
MSMC are given in Ref. 42.

An appealing feature of the MSMC method is that it neither
requires a priori determination of a system volume for conducting
the calculations nor does it require that any truncation of the poten-
tial be applied. Configurations and center-of-mass separations are
sampled naturally in proportion to their importance to the average,
and large separations do not have to be artificially restricted. Instead
of selecting a volume, a reference-system hard-sphere diameter must
be chosen, which affects µ0, µOS, and sampling of the reference sys-
tem, but has no effect on sampling of the target, which again occurs
in an unrestricted infinite-volume space. In addition, with over-
lap sampling, the choice of the reference diameter does not affect

the accuracy of the computed average, although very inappropriate
values can impact efficiency (precision).

B. Tracing T B lines

It is of interest to understand the effect of major macromolecu-
lar features on the location of the Boyle temperature. Such features,
which we will label generally as ½, could include molecular weight,
architecture (e.g., chains, stars, and brushes), electrostatics, rigidity,
block structure, and more. Accordingly, it would be useful to have
an efficient means to evaluate TB across a range of parameter values.
One approach of course is to evaluate A2(T; ½) for a range of T and
observe where it crosses zero. This may be wasteful if theA2 ≠ 0 con-
ditions are not of primary interest. Still, it can be effective to jump
from one value of ½ to the next and iterate intelligently to locate
A2 = 0 for the new ½. We employ this approach in some of our
calculations and provide details in the following.

Alternatively, for cases where ½ represents a continuous vari-
able, we can formulate an ordinary differential equation (ODE) for
TB(½) (to simplify the equations that follow, we will work with
´ rather than T itself ),

(∂´B
∂½
)
A2

= m(´, ½), (5)

and apply conventional methods for numerical solution of ODEs
to trace out the TB line. This approach is reminiscent of the
Gibbs–Duhem integration method for tracing lines of phase
coexistence.43–45 In the present case, the necessary ODE is given by
the “−1 rule,” which states

m(´, ½) = −(∂A2/∂½)´(∂A2/∂´)½ (6)

≡ −
A½
2

A
´
2

,

where we introduce the notation of using superscripts to represent
derivatives. Therefore, if we start at a condition where A2 = 0 (i.e.,
Boyle temperature), integration of the ODE will, in principle, trace a
line of constant A2 = 0 or, equivalently, a line of Boyle temperatures.

The necessary derivatives are obtained via Eq. (2),

A
½
2 =

I½

q2
− 2A2(ln q)½, (7a)

A
´
2 =

I´

q2
− 2A2(ln q)´. (7b)

These can be evaluated via MSMC calculations, in terms of the
following ensemble averages (writing u1 + u2 as u):

A
½
2 =

´

2
�0ï e−´U

µ0
U

½
+

f

µ0
u
½⟩

µ0e1e2

− ´�0⟨u½1⟩
e1
ï f

µ0
⟩
µ0e1e2

, (8a)

A
´
2 =

1

2
�0ï e−´U

µ0
U +

f

µ0
u⟩

µ0e1e2

− �0⟨u1ðe1ï f

µ0
⟩
µ0e1e2

. (8b)

The latter term in each expression includes a simple Boltzmann-
weighted (e1) single-molecule average; they multiply A2, but for
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integration along the TB line, A2 = 0, and in principle, these terms
drop out. Still, we retain these contributions because the integration
is not precisely on A2 = 0, and moreover, the ODE integration algo-
rithm necessarily samples points off of this line by some amount.
Now, crucially, as only the ratio of the A2 derivatives is required by
Eq. (6), �0 cancels and does not need to be evaluated. Accordingly,
we are free to select the reference µ0 to be whatever provides the best
sampling, without regard to whether it corresponds to a known ref-
erence integral �0. We select µ0 = ∣ f ∣, which should ensure that the
sampling covers all important contributions to the averages; hence,
overlap sampling is not required.

In summary, we evaluate the TB-line derivative m(´, ½) via the
ratio of averages,

(∂´B
∂½
)
A2

= −´
⟨ e−´U
∣ f ∣

U½
+

f
∣ f ∣
(u½ − 2⟨u½1⟩e1)⟩∣ f ∣e1e2⟨ e−´U

∣ f ∣
U + f

∣ f ∣
(u − 2⟨u1ðe1)⟩∣ f ∣e1e2

. (9)

The single-molecule averages can be evaluated via Monte Carlo
sampling of e1 before starting calculation of the MSMC averages.

C. Stability

Error in the calculated ´B gives rise to error in the computed
slopem, and as the integration proceeds, this error can contribute to
further inaccuracy in ´B (instability) or it can attenuate it (stability).
When integrating in the direction of increasing ½, stability requires
that46

m
´
≡ (∂m

∂´
)
½

< 0. (10)

If integration is stable in one direction, it will be unstable in the
other. Equation (10) applies at a given ´, ½, and the condition may
be satisfied at one point and not necessarily at the next. Even if (10)
is satisfied, the integration will not necessarily be stable and can also
depend on the integration algorithm and step size �½ relative to the

magnitude of m´. Conversely, an integration can succeed if (10) is

not satisfied if the magnitude ofm´
�½ is not too large.

While evaluation of the stability measure in Eq. (10) is not
needed to perform the integration, it is of interest to examine it as
we study the integration method. The slope derivative is given in
terms of the A2 derivatives as follows:

m
´
= −
⎛⎝A

½´
2

A
´
2

+m
A
´´
2

A
´
2

⎞⎠, (11)

where the double superscript indicates a second derivative. These
can be obtained starting from Eq. (7),

A
½´
2

A
´
2

=
I½´

A
´
2q

2
− 2(ln q)½ + 2m(ln q)´ − 2A2

A
´
2

(q½´
q
+ (ln q)½(ln q)´),

(12a)

A
´´
2

A
´
2

=
I´´

A
´
2q

2
− 4(ln q)´ − 2A2

A
´
2

(q´´
q
+ (ln q)´(ln q)´). (12b)

All these terms involve ratios of integrals, so they may be evalu-
ated using MSMC (and single-molecule Boltzmann sampling for the

q derivatives) without invoking a reference or imposing A2 = 0. In
particular,

I½´

A
´

2q
2
= −

1

³
ï e−´U∣ f ∣ [(´u − 1)U

½
+ ´U(u½ + U½)] + f

∣ f ∣ u
½(´u − 1)⟩

∣ f ∣e1e2

, (13a)

I´´

A
´
2q

2
= −

1

³
ï e−´U∣ f ∣ (u +U)2 − 1∣ f ∣u2⟩

∣ f ∣e1e2

, (13b)

A2

A
´
2

= −
1

³
ï f∣ f ∣ ⟩

∣ f ∣e1e2

, (13c)

³ = ï e−´U∣ f ∣ U + f∣ f ∣ (u − 2⟨u1ðe1)⟩
∣ f ∣e1e2

, (13d)

(ln q)´ = −⟨u1ðe1 , (13e)

(ln q)½ = −´⟨u½1⟩
e1
, (13f)

q½´

q
= ⟨(´u1 − 1)u½1⟩

e1
, (13g)

q´´

q
= ⟨u21⟩e1. (13h)

D. Direct search for Boyle temperature

For a given ½, it is possible to locate the Boyle temperature
through a straightforward root-finding procedure, solving for the
values of ´ that yields A2(´) = 0. Given that each test for the root
involves an MSMC (or other method) calculation of A2, this might
not be initially appealing. However, the specific requirement that
A2 be zero introduces a simplification that puts this approach at a par
with the integration method just described. In particular, according
to Eq. (3), solving for A2 = 0 is equivalent to solving

ï f∣ f ∣ ⟩
∣ f ∣e1e2

= 0. (14)

The reference integral �0, which is non-zero, cancels out and need
not be evaluated, so we can again choose µ0 to optimize sampling,
selecting it to be ∣ f ∣ as shown here. Again, no overlap sampling or
other complications need be introduced.

The search for the Boyle temperature can be guided using tem-
perature derivatives computed via the formulas presented above. A
first-order Newton’s method prescribes an update to ´ according to

´B,next = ´B − A2/A´
2. (15)

We adopt a second-order correction, which can accelerate conver-
gence,

´B,next = ´B −

⎛⎜⎜⎝
A
´
2

A
´´
2

−

¿ÁÁÁÀ⎛⎝ A
´
2

A
´´
2

⎞⎠
2

− 2
A2

A
´´
2

⎞⎟⎟⎠. (16)

Notably, both expressions require only ratios involving A2 and its
derivatives and may be evaluated via direct-sampling MSMC using
Eqs. (12) and (13).
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The final estimate of ´B is taken from Eq. (15) using quantities
computed from the last simulation in the search, so that we can also
compute an uncertainty,

Ã(´B) = Ã⎛⎝A2

A
´
2

⎞⎠, (17)

where Ã(⋅) indicates the uncertainty of the quantity in parenthe-
ses, which should be evaluated with consideration of the correlation
between the two terms in the ratio.

III. APPLICATION: BOND-ANGLE FLEXIBILITY

A. Model

We consider an application to off-lattice linear LJ chain poly-
mers and examine the effect of bond-angle flexibility on the Boyle
temperature. In particular, atoms on different molecules interact
with the LJ potential,

uLJ(r) = 4ϵ[(Ã
r
)12 − (Ã

r
)6], (18)

and the intermolecular energy is U = 3i3j uLJ(rij), where i and
j each sum over the n atoms of one of the chains. Within each
chain, adjacent atoms are connected by rigid bonds and non-bonded
atoms (defined as those atoms separated by two or more bonds in
the chain) interact with the same LJ potential given in Eq. (18).
The flexibility of the chain is governed by a bond-bend potential of
the form

ubend(ϕ) = kb(1 + cos ϕ), (19)

where ϕ is the angle formed by each interior atomwith its two neigh-
bors. By varying kb from zero to infinity, we go from the limit of
flexible chains, to rigid, rod-like molecules. We note that the “1” in
(19) has no effect on configuration sampling and just adds a fixed
constant to the total intramolecular energy. In principle, it can affect
the precision of averages where it multiples other quantities, but we
have not investigated this.We retain it because it was used in another
study.47

Our study examines chains across a range of lengths, from
n = 2 (which has no bend movement) to 512, so the results can also
be used to examine the effect of chain length on TB for fixed bond
flexibility.

In all that follows, quantities are expressed in units such that
Ã = 1 and ϵ = 1 and temperatures are in units of ϵ/kB.
B. Computation details

We calculated the Boyle temperature for chains of length
n = 2, 4, 8, 16, 32, 64, 128, 256, and 512 atoms, respectively. We rep-
resent the bond-bending parameter kb of Eq. (19) via a surrogate
variable, ½,

½(kb) = 2√
4 + kb

. (20)

This variable takes values from zero (corresponding to kb →∞, rigid
chain) to unity (kb = 0, flexible chain). For this choice of ½,

u
½
1 = −

8

½3
∑

angles,i

1 + cos ϕi, (21)

U
½
= 0. (22)

MSMC calculations are performed for a pair of chains to col-
lect the averages described above. Sampling is weighted by ∣ f ∣e1e2.
Hence, the chains are internally self-avoiding, but may overlap each
other (for which f = −1). Single-molecule simulations are performed
every time a new ´ and/or kb is encountered, to evaluate ⟨u1ð and⟨u½1⟩ needed by Eq. (13); we also measure the average radius of
gyration. These single-molecule calculations are completed before
initiating MSMC sampling to provide averages needed for some of
the MSMC averages. All the calculations are performed using the
molecular-modeling software framework etomica.48,49

The Metropolis Monte Carlo algorithm is employed,50,51 and
sampling of configurations is accomplished using five Monte Carlo
trials, selected at random (the first two are not used for the single-
molecule calculations):

1. rigid translation of a molecule;
2. rigid rotation of a molecule;
3. reptation, in which an atom at one end of the chain is placed

at the other end, at a position selected uniformly on a sphere
one bond length from the last atom there;

4. pivot, which proceeds as follows:
(a) an atom is selected at random;
(b) an atom adjacent to it is selected at random;
(c) a rotation axis through the first atom is selected at

random on the unit sphere; and
(d) the adjacent atom and all atoms beyond it undergo a

rigid rotation about the axis by an angle selected at ran-
dom within a maximum rotation angle that is adjusted
in preliminary runs to yield a 50% rate of acceptance of
the trial;

5. bond shuffle, in which a 3- to 5-atom segment of the chain is
selected at random, and the bond directions joining the atoms
within the segment are shuffled among the pairs, reassigning
them at random. The result is that the end atoms of the seg-
ment are at the same relative locations (because the vector sum
of the bonds between them is unchanged), but the interior
atoms are moved.

In order to prevent the molecules from drifting away from the
origin, the first molecule is never translated, and when perform-
ing reptation, pivot and bond-shuffle moves, the first molecule is
translated such that its geometric center does not move.

The maximum rotation angle for the pivot moves is different
for different parts of the chain for n ≥ 8, reflecting that it is easier
to complete a larger pivot near the end of the chain compared to
the center. For n = 8, the middle half of the chain takes larger steps
than the outer half. For n > 8, the first and last n/8 atoms (n/4 total)
in the chain have the largest move, then the next n/8 on each side
toward the center, then n/8 after that, and then the n/4 in the middle
have the smallest. Each maximum angle is adjusted independently
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to achieve at 50% acceptance of pivot moves in the range where it
applies.

We run simulations to search for A2 = 0 for six values of ½: 0.0,
0.2, 0.4, 0.6, 0.8, and 1.0. To begin each, we run 106-step simula-
tions starting at T = 4, where A2 < 0 for all models and increase the
temperature to 5, 8, 12, and 16 until A2 > 0. We take the tempera-
ture with the smallest A2 magnitude as an initial guess for the Boyle
temperature for the next part of the search. In the second part, we
run a simulation at the guess for TB and the necessary ratios of A2,

A
´
2 , and A

´´
2 are computed. The next guess for the Boyle temperature

comes from taking a second-order Taylor series about the current
guess and solving for A2 = 0, as given by Eq. (16) with the deriva-
tives given by Eqs. (12) and (13). If the guess for TB is much too low,
the second-order series either does not go through zero or does so
at a much higher temperature. If the discriminant is less than zero
or if ´B,next > 1.4´B, we use the first-order series instead, Eq. (15).
Similarly, if the guess for TB is much too high, the new guess would
be much too low. If ´B,next < ´B/1.4, then we take ´B,next = ´B/1.4.
When we use the second-order series for the next guess, we also
increase the number of simulation steps fourfold. In other cases,
we maintain the number of steps until the search is close enough
to use the second-order series. The search ends once a 1024 × 106-
step simulation is performed and thus typically examines six values
of ´ before concluding. The final estimate for ´B is obtained by the

first-order series, and the uncertainty in the estimate is as given by
Eq. (17).

We also evaluate the Boyle lines via integration of Eq. (6), which
is performed using the fourth-order Runge–Kutta method (RK4).
We conduct simulations starting from ½ = 0.2 (kb = 96) at the Boyle
temperature given by the direct-search calculations described in
the previous paragraph and continue to ½ = 1 (kb = 0) in steps of
�½ = 0.1. Each simulation runs for 107 samples after 106 samples
of equilibration. Integration in the reverse direction is also per-
formed, starting at ½ = 1 and proceeding toward ½ = 0 in steps of
−0.1. Each step in the RK4 method evaluates ´B(½) via a weighted
sum ofm(´, ½) evaluated at four values of (´, ½). The stochastic error
in the resulting value of ´B is obtained by summing in quadrature
the errors in the four m(´, ½) values. This error estimate does not
include any contribution associated with the approximate nature of
the finite-step RK4 solution of the ODE.

Uncertainties in the ensemble averages are computed as one
standard deviation of the mean (68% confidence level) of 100 block
averages for the single-molecule calculations and 1000 block aver-
ages for the two-molecule MSMC calculations. Correlation between
adjacent block averages is monitored to ensure that the blocks are
independent (less than 10% correlation).

From studies of single-molecule block correlations, we deter-
mined that pivot moves are not sufficiently effective at generating

FIG. 1. Trace of Mayer function f for the representative segment of sampling. For each figure, the following are the number of atoms in each chain, n, and bond rigidity
parameter, ½ (and in parentheses, kb): (a) 16, 0.2 (96). (b) 16, 0.6 (7.1). (c) 16, 1.0 (0). (d) 128, 0.2 (96). (e) 128, 0.6 (7.1). (f) 128, 1.0 (0). The ordinate uses an arcsinh scale,
which for large magnitudes is similar to a log scale while accommodating negative numbers.
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independent configurations by themselves, most likely because they
have difficulty when the pivot atom is in the central region of
the chain. We introduced reptation moves, and this has a signifi-
cantly favorable effect on the block correlation, but again does not
directly affect the mid-chain. We introduced the bond-shuffle move
to address this concern and obtained good acceptance rates when it
was limited to involving a random four-atom segment.

C. Results and discussion

1. f trace

In the Mayer-sampling method (and unlike Boltzmann sam-
pling), configurations in which the twomolecules overlap each other
are not prohibited (overlap being where one or more atoms in one
chain substantially overlap one or more atoms of the other) and
in fact are expected to occur frequently. The second virial coeffi-
cient involves the average of f/∣ f ∣, which equals +1 when there is
no overlap and −1 when there is overlap. For A2 = 0, these contribu-
tions average to zero, hence overlap and non-overlap configurations
should occur with equal likelihood. This can be helpful for sampling,
as the molecules can get into and out of tangled configurations with-
out having to untangle in a physically realistic manner or completely
separating via a molecule-translation move.

While equal samples of overlap and non-overlap should occur
on average, it is of interest to determine whether configurations eas-
ily transition from an overlap to non-overlap condition and vice
versa. To this end, we can examine plots of f as it fluctuates through
a short segment of the simulation. Such plots are shown in Fig. 1.

The figures show that the configurations frequently transition back
and forth between overlap ( f < 0) and non-overlap ( f > 0) arrange-
ments. For longer chains, larger positive values of f are encountered,
resulting from favorable arrangements of many atoms at once; such
arrangements are favored by stiffer bond angles. Still, even though
the weight of the configurations is given by ∣ f ∣, these highly favor-
able arrangements do not persist unduly long and do not hinder
sampling overall. It should be noted that large- f configurations do
not contribute to the averages proportionate to their magnitude, as
all the averages involve the ratio of f or f + 1 to its magnitude ∣ f ∣.
2. Configuration snapshots

Some representative images of configurations sampled during
the MSMC sampling are shown in Fig. 2. Examples are presented
for a relatively short chain (n = 16) and the longest one (n = 128),
each for three values of kb. Each configuration is a snapshot for the
calculation at the respective Boyle temperature. The configurations
show how the persistence length of the chains increases with bond
rigidity and also demonstrate that configurations with chain–chain
overlap are encountered in the sampling.

3. Boyle-temperature lines

The results for the Boyle points and lines are shown in Fig. 3
and presented in Tables I–IV. Data are obtained from (1) direct
search for the solution of Eq. (3), (2) from integration of Eq. (9) in
the direction of increasing ½ starting from the direct-solution result
at ½ = 0.2, and (3) in the direction of decreasing ½ starting from
½ = 1.0. Data from the three sources are largely consistent with each

FIG. 2. Snapshots of configurations from MSMC calculations. The values listed with each figure are the number of atoms in each chain, n, and bond rigidity parameter,
½ (and in parentheses, kb). (a) 16, 0.2 (96). (b) 16, 0.6 (7.1). (c) 16, 1.0 (0). (d) 128, 0.2 (96). (e) 128, 0.6 (7.1). (f) 128, 1.0 (0).
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FIG. 3. Inverse Boyle temperature (´
B
) as a function of bond-angle stiffness (rigid

on left of scale, flexible on the right) for chain lengths in powers of 2–512. The
symbols are from direct solution, solving for ⟨ f /∣ f ∣ð∣ f ∣e1e2

= 0. The solid line is

from the integration of Eq. (9) in the direction of increasing ½, and the dotted line is
from the integration in the reverse direction. The points (not visible) are placed at
the end of each integration step (�½ = 0.1), and the lines simply join the points.
Uncertainties on all displayed data are smaller than the symbol size. The values
for n ≥ 64 at ½ = 0 are off the bottom scale of the figure.

TABLE I. Boyle temperatures (in Lennard-Jones units) as computed using direct
search, forward integration (increasing ½), and backward integration (decreasing
½) for different chain lengths n (2, 4, and 8) and bond-angle rigidity parameter ½
[Eq. (20)]. Forward integration starts using the search value at ½ = 0.2, and back-
ward integration starts from the search value at ½ = 1. The numbers in parentheses
indicate the uncertainty (68% confidence) in the last digit(s) of the tabulated values.

n ½ Search TB

Forward
integration TB

Backward
integration TB

2 1.00 3.9808(10)
4 0.00 4.4221(7)
4 0.10 4.409(19)
4 0.20 4.4035(11) 4.4035(11) 4.388(13)
4 0.30 4.380(9) 4.364(9)
4 0.40 4.3448(11) 4.354(11) 4.341(7)
4 0.50 4.323(11) 4.318(5)
4 0.60 4.3082(10) 4.314(12) 4.308(3)
4 0.70 4.323(12) 4.315(2)
4 0.80 4.3279(10) 4.333(12) 4.3265(16)
4 0.90 4.345(12) 4.3375(13)
4 1.00 4.3483(11) 4.355(12) 4.3483(11)
8 0.00 4.7609(6)
8 0.10 4.68(3)
8 0.20 4.6829(9) 4.6829(9) 4.70(2)
8 0.30 4.634(13) 4.654(14)
8 0.40 4.5620(9) 4.556(16) 4.565(10)
8 0.50 4.492(17) 4.493(7)
8 0.60 4.4783(8) 4.472(18) 4.483(5)
8 0.70 4.493(18) 4.493(3)
8 0.80 4.5168(9) 4.519(19) 4.519(2)
8 0.90 4.541(19) 4.5408(14)
8 1.00 4.5608(9) 4.561(19) 4.5608(9)

TABLE II. Same as presented in Table I but for n = 16 and 32.

n ½ Search TB

Forward
integration TB

Backward
integration TB

16 0.00 5.0697(6)
16 0.10 4.98(5)
16 0.20 4.8451(9) 4.8451(9) 4.88(3)
16 0.30 4.756(18) 4.77(2)
16 0.40 4.6755(7) 4.67(2) 4.672(14)
16 0.50 4.60(2) 4.568(10)
16 0.60 4.5541(7) 4.58(2) 4.546(6)
16 0.70 4.60(3) 4.566(4)
16 0.80 4.6061(7) 4.64(3) 4.604(3)
16 0.90 4.67(3) 4.6367(18)
16 1.00 4.6648(8) 4.69(3) 4.6648(8)
32 0.00 5.7244(15)
32 0.10 5.15(7)
32 0.20 4.9351(8) 4.9351(8) 4.93(4)
32 0.30 4.84(3) 4.87(3)
32 0.40 4.7266(7) 4.70(3) 4.75(2)
32 0.50 4.60(3) 4.613(14)
32 0.60 4.5745(7) 4.55(3) 4.577(9)
32 0.70 4.56(3) 4.601(6)
32 0.80 4.6347(7) 4.60(3) 4.637(4)
32 0.90 4.63(3) 4.671(2)
32 1.00 4.7020(7) 4.66(4) 4.7020(7)

TABLE III. Same as presented in Table I but for n = 64 and 128.

n ½ Search TB

Forward
integration TB

Backward
integration TB

64 0.00 8.331(5)
64 0.10 5.07(10)
64 0.20 4.9840(8) 4.9840(8) 4.92(6)
64 0.30 4.86(4) 4.81(4)
64 0.40 4.7455(7) 4.74(4) 4.71(3)
64 0.50 4.62(4) 4.61(2)
64 0.60 4.5694(7) 4.58(5) 4.578(15)
64 0.70 4.61(5) 4.602(10)
64 0.80 4.6320(8) 4.65(5) 4.643(6)
64 0.90 4.69(5) 4.675(4)
64 1.00 4.7043(8) 4.72(5) 4.7043(8)
128 0.00 14.11(2)
128 0.10 5.11(16)
128 0.20 5.0072(8) 5.0072(8) 4.98(9)
128 0.30 4.93(5) 4.94(7)
128 0.40 4.7498(7) 4.78(6) 4.71(5)
128 0.50 4.62(6) 4.59(4)
128 0.60 4.5577(10) 4.62(7) 4.53(3)
128 0.70 4.67(8) 4.560(17)
128 0.80 4.6209(10) 4.74(8) 4.608(11)
128 0.90 4.80(8) 4.649(6)
128 1.00 4.6923(11) 4.85(8) 4.6923(11)
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TABLE IV. Same as presented in Table I but for n = 256 and 512.

n λ Search TB

256 0.20 5.0199(15)
256 0.40 4.7485(17)
256 0.60 4.551(4)
256 0.80 4.602(3)
256 1.00 4.683(3)
512 1.00 4.661(10)

FIG. 4. Boyle temperature (given as its reciprocal, β
B
) as a function of bond-

angle rigidity, as computed using the integration method and presented as a
difference from the direct solution results. Filled symbols: forward integration direc-
tion (increasing λ, less stiffness); open symbols: reverse integration direction. The
lines join the points as a guide to the eye. Uncertainties represent contributions
from both the direct-search calculation and the integration, and are at the 68%
confidence level.

other, agreeing within their statistical uncertainties. The conclusion
is shown more clearly in Fig. 4, which presents the integration data
as a difference from the direct-search values. We first note that the
scale of the differences and the uncertainties are both small, rela-
tive to the Boyle temperatures themselves—about 0.1%. Most of the
uncertainty is ascribable to the integration, as the uncertainties in the
direct-search values (which employed 100 times more sampling) are
about 0.05%. There is no persistent systematic discrepancy, although
we do note possible positive bias in the difference, independent of
the integration direction. However, the integration errors do not
accumulate, showing no consistent growth with distance along the
integration; any inherent instability in the integration has not mani-
fested itself. The agreement of these largely independent calculations
suggests that they are accurate.

Lattice-model calculations for short chains (n ≤ 32) by Flori-
ano et al.52 found that chain stiffness pushes the critical temper-
ature monotonically upward relative to the case of more flexible
chains. Our calculations find that increasing stiffness (right to left
in Fig. 3) at first produces a decrease in TB (increase in βB) and
then after going through a minimum, TB increases with stiffness,
corresponding to the Floriano et al.52 behavior for Tc.

4. Asymptotic behavior for large n

The Boyle temperature is shown as a function of chain length
in Fig. 5. In all cases, TB increases with n [c < 0 in Eq. (1)] for

FIG. 5. Boyle temperature as a function of chain length, presented as 1/n1/2;
hence, the y axis represents n→∞. The legend indicates the value of λ.
Uncertainties are smaller than the symbol sizes.

small n and then appears to level off at larger n, as seen in other
studies reviewed above. However, the behavior does not plateau,
but instead exhibits a shallow maximum, with TB beginning to
decrease for n > 64 for λ = 1. The scale of the decrease—of order
0.04 in LJ units—may not have been discernible in prior off-lattice
studies, which had uncertainties in TB often larger than this. This
c > 0 behavior was seen previously only for short-range potentials,25

which suggests that it is the range of the potential relative to the
size of the polymer that is relevant to determination of the slope.
The existence of a shallow maximum in TB with increasing molec-
ular weight has been observed experimentally, for example, with
polystyrene in decalin.53

The rigid-bond case λ = 0 is qualitatively different. TB increases
rapidly with n for large n, as strongly attractive interactions are easily
accessed by the pair of straight chains, requiring a large increase in
T to maintain A2 = 0.

5. Stability

The stability measure mβ defined by Eq. (10) is shown in Fig. 6
as a function of λ for each n. It is mostly positive, indicating that the
backward integration direction is the stable one, but its magnitude
is small, suggesting that stability in either direction should not be

FIG. 6. TB-line integration stability measure, mβas computed according to Eq. (10)
for the chain-length (n) values examined in this paper.
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a significant concern. In fact, the key quantity is the product mβ
�λ,

where �λ = ±0.1 is the integration step size. This product should not
be positive, but its magnitude is relevant as well. For example, RK4
is unstable if this product is less than about −3. The small magnitude
of this product is consistent with the observation that neither inte-
gration direction shows any stability issues. This outcome is specific
to the model and integration path; hence, in other applications, one
may find that stability matters more.

6. Radius of gyration

A freely jointed ideal (non-self-avoiding) chain will exhibit a
squared radius of gyration R2

g that scales linearly with the number of
monomers, n. The idea of the θ temperature is that the steric repul-
sion that tends to increase Rg is perfectly offset by the temperature-
and solvent-modulated attraction that tends to decrease it. However,
this connection cannot be exact, as the Boyle temperature computed
here is based on interactions of two molecules, while Rg is com-
puted for a single molecule. Still, there is a balance of repulsion and
attraction at play in both situations, so a connection can be expected.

We performed single-molecule simulations to compute R2
g for

various values of n, λ, and T, to observe the scaling behavior overall
and to evaluate Tθ in particular, for comparison with TB. Scaling is
defined by the form

R
2
g(n;T) = anb, (23)

such that an ideal chain has b = 1. We performed a simple check
of our sampling and averaging methods by computing R2

g for freely
jointed (ideal) chains of varying n, and observe that the expected
scaling,R2

g ∼ n (b = 1), is obeyed. For non-ideal chains, the exponent

b is a function of n and T, and the points where b = 1 locally define
Tθ(n).

First, Fig. 7 shows the results for R2
g as a function of chain

length, for various λ, each evaluated at their respective Boyle tem-
peratures. Presented on a log–log scale, the ideal-chain behavior is
given by a line of unit slope. The “linear” line demonstrates this,
and we see that the λ = 1 chain exhibits behavior that is close to
it. Differences from ideal scaling can have several sources: (1) the
finiteness of n, which is particularly apparent for the small-n results;
(2) the temperatures are TB, and not Tθ, so they are not tuned to
mimic the ideal-chain scaling; and (3) T is varying with n in the plot,
which is not how scaling is defined. Apart from the λ = 1 behavior,
we note that as the bond angles become increasingly rigid, the chains
approach the a rigid-rod limit, where the scaling of R2

g is quadratic.
The approach to the corresponding reference line can be observed
in the figure.

Second, in Fig. 8, we show the scaling behavior for the λ = 1
system (zero bond-stiffness potential) as a function of chain length
n for a set of isotherms from T = 3–5. These are single-molecule cal-
culations performed independently of the Boyle-temperature study.
We evaluate b for each n according to

b( n√
2
) = 1

ln 2
ln( R2

g(n)
R2
g(n/2)). (24)

Superimposed on these data is a line tracing (n,TB) pairs. This
allows one to directly examine the scaling of R2

g at the Boyle tem-
perature for each chain length. For long chains, it does not appear
that b is approaching the ideal-chain value of 1.0, but instead seems

FIG. 7. Squared radius of gyration, R2
g , as a function of chain length n, evaluated at the Boyle temperature for each (n, λ). The lines for linear (ideal-chain) and quadratic

scaling are presented for reference. The legend indicates values of the chain stiffness parameter λ, such that stiffness increases as λ decreases.
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FIG. 8. Scaling exponent, b, for squared radius of gyration, R2
g , as defined in

Eq. (24). All data are for λ = 1, corresponding to zero bond-stiffness potential.
Each narrow line presents b as a function of n for fixed T , ranging from T = 3 to
T = 5 in steps of 0.1. The error bars indicate uncertainties at 68% confidence. The
thick black line labeled TB(n) traces the (n, TB) pairs, allowing reading of b at
the Boyle temperature for each n. The horizontal dashed line at b = 1 shows the
ideal-scaling exponent, and the value of n at the intersection with each T defines
Tθ for that n. These are shown as a function of n in Fig. 9.

to be leveling off at about 1.05, suggesting that TB and Tθ do not
coincide at n→∞.

For another way to look at this, the intersection of each
isotherm of temperature T with b = 1 locates the n for which T is the
θ temperature, and from this, we can construct Tθ(n); we compute
uncertainties using 100 bootstrap samples of Rg(n) from Gaussians
consistent with their uncertainties. These results are shown in Fig. 9,
along with TB(n). Plotted against n−1/2, the y-intercept yields the
n→∞ limit for each dataset, and we see that TB and Tθ again do
not appear to coincide in this limit. Instead, we have TB(n→∞)
= 4.64 ± 0.02 and Tθ(n→∞) = 4.916 ± 0.018. This disagreement is

FIG. 9. Boyle and θ temperatures as a function of length of chain, n, for λ = 1
(zero bond stiffness) system. The black points are based on the definition of Rg,
using the construction shown in Fig. 7, and the red points are Boyle temperatures,
TB. The dashed–dotted black line is a fit of Tθ to a0 + a1n−0.7, and the dashed
red “quadratic” line is fit of TB to a0 + a1n−0.5

+ a2n−1. The inset expands the
region near the Boyle-temperature intercept. Where not visible, uncertainties (68%
confidence) on both sets of points are smaller than the symbol sizes.

at odds with previous findings, as summarized in the Introduction.
This may be due to the increased precision of the data presented
here, which is better able to reveal differences between the limit
values of TB and Tθ. Alternatively, we should point out that the
extrapolation forTθ is sensitive to the choice of exponent of n used to
extrapolate Tθ. An exponent of −0.7, for example, yields an intercept(4.675 ± 0.005) that is in statistical agreement with the extrapo-
lated TB without producing a marked disagreement with the data,
as shown in Fig. 9. So, while stochastic errors cannot explain the
difference in TB and Tθ at n→∞, we cannot rule out a systematic
error related to the extrapolation procedure. Hence, it is still plau-
sible from these data that TB and Tθ coincide at n→∞, although
the views shown in Figs. 8 and 9 strongly suggest that they do not.
More sophisticated methods for extrapolation28,54 might be applied
to help resolve this question.

A notable observation to take from Fig. 9 is the large difference
in sensitivity of Tθ and TB to chain length n. From about n = 25 to
∞, TB varies by about 2%, whereas over the same range, Tθ covers a
range of about 40% of the extrapolated value. From this standpoint
alone, the Boyle temperature provides a more practical measure of
the infinite-chain behavior and most likely the critical temperature
Tc, than does Tθ.

IV. CONCLUDING REMARKS

The Boyle temperature, defined as the point where the sec-
ond osmotic virial coefficient A2 is zero, is a key quantity for the
understanding of the behavior of a given polymer system. It pro-
vides important information about the polymer in solution while
requiring the study of only two molecules. Mayer-sampling Monte
Carlo methods provide an appealing route to the calculation of
A2 and from this, the Boyle temperature. The method involves
importance sampling with respect to configurations contributing
most to the value of A2. Among other outcomes, this allows the
molecules to explore configurations where the pair overlaps, which
can reduce problems with trapping in the subregions of configura-
tion space due to polymer entanglement. In addition, the method
requires no specification of a system volume, instead relying on
importance sampling to restrict sampling to relevant configurations
within an infinite volume. Related to this, the approach does not
require arbitrary truncation of the intermolecular potential.

Postulating a specific interest in the Boyle temperature rather
than the entire A2 dependence on temperature, and considering
how TB changes with features of the polymer molecules, in this
paper, we have examined two approaches to methodically evaluate
the Boyle temperature with respect to the macromolecule’s features
or parameters. One approach is direct search for TB using MSMC to
evaluate whether A2 = 0 at each candidate temperature and guiding
the search with temperature derivatives ofA2. This is an effective and
appealing approach, significantly simplified by the focus on A2 = 0.
An alternative that we examine is to integrate a differential equa-
tion that describes how TB varies with the model parameter and
particularly bond-angle stiffness. This method requires knowledge
of a Boyle temperature for one parameter value and prescribes trac-
ing of the TB line using an ODE integrator. This calculation does not
make particular use of the focus on A2 = 0 and could be applied to
trace lines for other constant values of A2, if desired.
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In comparison with established methods, the proposed tech-
niques for evaluating TB have the primary advantage of simplicity
and arguably effectiveness and efficiency. Established methods usu-
ally involve evaluation of the radial distribution function. This
means an evaluation of histograms or, alternatively, an in-place
quadrature, both necessitating selection of bin widths or integration
steps and an explicit or implicit truncation of the intermolecular
potential. Furthermore, in these methods, importance sampling is
not applied to the center-of-mass separations and molecule confor-
mations are weighted only by using the intramolecular Boltzmann
factor, which does not account for how the intermolecular inter-
actions affect the conformations. All these issues are handled in
MSMC, which in the present application requires evaluation of
only a small number of single-molecule and pair ensemble aver-
ages. In principle, established methods could be extended to com-
pute temperature and λ derivatives, to implement the methodical
TB search described here, but no such attempts have been reported
previously. Apart from these issues of simplicity, one can argue
that the MSMC-based method should be more efficient, providing
more precise results with less computation. It has advantages due
to the central role importance sampling, and the accommodation
of configurations with overlaps, which should ease concerns about
non-ergodicity. However, we have not attempted to prove such a
claim in this study.

The example presented here is given as a proof of concept.
There are several ways that one might extend the method to other
problems. For example, there is also interest in the temperature at
which the third osmotic virial coefficient, A3 is zero, as it relates
to the importance of non-pairwise contributions to the potential of
mean force, and it perhaps possesses an even stronger connection
to Tc. Extension of the methods here to this quantity is possible,
although some complications would be introduced by the need to
handle the flexible correction.15,55 It would also be of interest to be
able to trace the TB lines for varying polymer architectures. The
derivative with respect to the addition of another atom could be
captured using a variant of Widom insertion and/or deletion, but
it is unclear whether such an approach would be effective. Most
likely, it would be better to apply the direct-search method, which
requires only temperature derivatives, and this approach may be
simpler and more robust in general. Finally, extension to mixtures
of different polymer molecules would be easy and involve very little
modification to the methods presented here.

SUPPLEMENTARY MATERIAL

All single-molecule and MSMC ensemble averages and uncer-
tainties computed as part of this work are tabulated in a machine-
readable form and provided in the supplementary material.
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