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In order to investigate the potential observational signals of different regularization ambiguities in loop

quantum cosmological models, we systematically compute and compare the primordial scalar power

spectra and the resulting angular power spectra in the standard loop quantum cosmology (LQC) and

Thiemann regularized versions, modified LQC-I/II (mLQC-I/II), using both the dressed metric and the

hybrid approaches. All three loop quantum cosmological models yield a nonsingular bounce with a

postbounce physics that converges rapidly in a few Planck seconds. Using Starobinsky potential and the

initial conditions for the background dynamics chosen to yield the same inflationary e-foldings, which are

fixed to be 65 in all three LQC models, we require that all three models result in the same scale-invariant

regime for the primordial power spectrum with a relative difference of less than 1%. This permits us to

explore the differences resulting from the deep Planck regime in the angular power spectrum. For the

adiabatic states, our results demonstrate that the angular power spectrum predicted by the hybrid approach

has a smaller deviation from the angular power spectrum predicted by the standard Λ cold dark matter

(ΛCDM) cosmological model at large angles in comparison with the dressed metric approach for all three

models. The angular power spectrum predicted by mLQC-I in both the hybrid and the dressed metric

approaches shows the smallest deviation from the one predicted by the standard ΛCDM cosmological

model at large angular scales, except for the case of fourth order adiabatic initial states in the hybrid

approach. On the contrary, mLQC-II results in the largest deviations for the amplitude of the angular power

spectrum at large angles and is most disfavored.
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I. INTRODUCTION

Inflation, a finite quasi–de Sitter expanding phase,

which, in its simplest form, is realized by a single scalar

field known as the “inflaton” evolving under the influence

of a plateaulike potential, not only resolves longstanding

puzzles in the standard big bang cosmology but also serves

as a causal mechanism to seed the acoustic peaks in the

cosmic microwave background (CMB) and accounts for the

distribution of large-scale structure from the evolution of

primordial quantum vacuum fluctuations [1–3]. However,

classical inflationary spacetimes are past incomplete [4],

and the big bang singularity is inevitable when the Universe

evolves backward to the regime where the energy density

and spacetime curvature diverge close to the Planck regime.

To address this issue, one solution is to extend the infla-

tionary spacetimes to the Planck regime by considering the

quantum geometry effects. One of the most successful

attempts to achieve this goal is loop quantum cosmology

(LQC), where the techniques of loop quantum gravity

(LQG) are applied to symmetry-reduced cosmological

spacetimes [5–8]. A key prediction of LQC is that the

big bang singularity is replaced with a quantum bounce as

spacetime curvature approaches the Planck regime, extend-

ing the spacetime to the contracting branch [7,9], with the

probability for the occurrence of the bounce turns out to be

unity in the consistent histories formulation of quantum

mechanics [10].

At the fundamental level, singularity resolution in LQC

arises due to the underlying discreteness emerging from

quantum geometry, whereby the evolutionary equation

turns out to be a second order discrete quantum difference

equation. Interestingly, under reasonable conditions, the

underlying quantum evolution can be accurately captured

for a class of semiclassical states using effective dynamics

[11–15]. In fact, extensive numerical simulations show that

the effective spacetime description matches the general

relativity trajectory to a great accuracy as soon as spacetime

curvature becomes 1% of the Planck value [7,12].

This implies that the quantum geometric corrections to
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background dynamics quickly diminish away from the

Planck regime. In addition, the effective dynamics accu-

rately captures the underlying dynamics resulting from the

quantum Hamiltonian constraint starting from the bounce

point if one considers states which are sharply peaked at

late times on the classical trajectory. This can be understood

by comparing the expectation value of the volume observ-

able in the quantum theory and the bounce volume in

effective dynamics. For states which are sharply peaked at

late times, this difference is negligible [13]. In this manu-

script, we assume the validity of effective dynamics in the

entire regime which is true when one considers states which

are sharply peaked at late times in the classical regime.

The phenomenological implications of LQC for various

models have been extensively studied, assuming the

validity of the effective dynamics [16,17]. The bounds

on the energy density, expansion, and shear scalar in

different models have been found [18–20], and strong

curvature singularities have been shown to be generically

resolved in isotropic models [21–23] as well as anisotropic

models [24–27]. Moreover, it has been demonstrated that a

viable nonsingular inflationary model can be constructed in

an isotropic model [28–31] as well as Bianchi-I spacetime

[32,33]. Effective dynamics also plays an important role in

exploring quantum geometric effects in cosmological

perturbations in LQC [34,35] where different approaches

exist
1
: the deformed algebra approach [40–42], the separate

universe approach [43], the hybrid approach [44–47], and

the dressed metric approach [48–50]. However, among

these approaches, the latter two are the most widely used to

investigate the phenomenological predictions of LQC

models which have been also used to address anomalies

in CMB [51–55]. Despite these successes, as any quantum

theory, loop quantization of cosmological models faces the

issue of quantization ambiguities. A class of these ambi-

guities in the background dynamics in standard LQC have

been adequately addressed in isotropic [56,57], anisotropic

models [58], as well as black hole spacetimes [59]; however

certain important ambiguities still remain. In this manu-

script our focus is to understand potential observational

imprints two of these: the regularization ambiguity arising

from the treatment of Euclidean and Lorentzian terms in

the Hamiltonian constraint, and the quantization ambigu-

ities which lead to different effective mass functions in

perturbations.

Let us first discuss the regularization ambiguities. In the

standard LQC model, the Lorentzian and Euclidean terms

in the Hamiltonian constraint are combined using classical

symmetry before quantization in Friedmann-Lemaître-

Robertson-Walker (FLRW) spacetime [60]. However, if

two terms are treated independently during the quantiza-

tion, they lead to different inequivalent quantizations of

LQC. Two notable examples are the so-called modified

LQC-I (mLQC-I) and the modified LQC-II (mLQC-II)

[61,62], both arising from the Thiemann’s regularization of

the Hamiltonian constraint [63–65]. While classical

identities on gravitational phase space are used to write

the extrinsic curvature of the Lorentzian term of the

Hamiltonian constraint in terms of holonomies in

mLQC-I, the symmetry between extrinsic curvature and

Ashtekar-Barbero connection in spatially flat spacetime is

used to express the Lorentzian part in terms of holonomies

in mLQC-II. In this sense, mLQC-I is closer to construction

followed in full LQG and mLQC-II is only valid in spatially

flat models. It has been demonstrated that the strong

singularities are resolved [23] and the occurrence of

inflation is generic in mLQC-I/II, like the standard LQC

[62]. In contrast to the second order discrete quantum

difference equation in the standard LQC, the quantum

Hamiltonian constraint in mLQC-I/II yields a fourth order

discrete quantum difference equation [66]. Moreover, the

effective modified Friedmann equation contains higher

order terms of energy density for mLQC-I/II, while in

the standard LQC only the quadratic term of the energy

density appears [67]. In addition, the maximum energy

density at the quantum bounce in mLQC-I/II is different

from the maximum energy density in the standard LQC.

In contrast to the dynamics of mLQC-II, which shares

qualitative similarities with standard LQC, mLQC-I

exhibits notable differences. Particularly in the contracting

phase, mLQC-I gives rise to an emergent quasi–de Sitter

spacetime that arises with a Planckian value, implying that

the contracting phase in mLQC-I is purely a quantum

regime without a classical regime [68]. While the nature of

the bounce is asymmetric in mLQC-I [69], the background

dynamics is symmetric in the prebounce and postbounce

branches for mLQC-II as it is in the standard LQC.

Considering such regularization ambiguities with different

physical implications, the pertinent question is how the

quantum effects of spacetime encoded in the preinfla-

tionary phase modify the dynamics of cosmological per-

turbations for each regularization. To answer this question,

one needs to carefully examine how different modifications

to the Hamiltonian constraint lead to modifications of the

primordial power spectrum.

Apart from regularization ambiguities in the background

Hamiltonian, there are also quantum ambiguities related to

treatments of cosmological perturbations. Since LQC is a

quantization of symmetry-reduced homogeneous space-

times and the full connection to LQG is not established yet,

in the two popular approaches—dressed metric and hybrid

approaches—linear perturbations are treated using Fock

quantization in the loop quantized background. The dressed

metric approach is based on the Hamiltonian formulation of

classical perturbations in the Arnowitt-Deser-Misner

phase space, in which the lapse and shift vector are

treated as Lagrange multipliers. In this approach, the

Hamiltonian constraint is expanded up to the second order1
See also [36–39] as examples of other approaches.
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in perturbations, then the zeroth order Hamiltonian con-

straint is loop quantized, while the second order constraint

describes the dynamics of linear inhomogeneous perturba-

tions [48–50]. In other words, the inhomogeneous degrees

of freedom can be interpreted as the quantum degrees of

freedom propagating in the quantum spacetime described

by the dressed metric after quantization. In fact, for sharply

peaked states, the evolution of the scale factor in the

dressed metric is governed by the effective dynamics in

LQC. Although the hybrid and the dressed metric

approaches share common features in the sense that the

background geometry is loop quantized while the linear

inhomogeneous perturbations are Fock quantized, there are

some differences between these two approaches. In fact, in

the hybrid approach, the background geometry is loop

quantized, the zeroth mode of the scalar field is quantized

in the standard Schrödinger representation, and the inho-

mogeneous perturbations are Fock quantized [44–46]. The

solution to the resulting quantum dynamical equation is

then solved by using the Born-Oppenheimer ansatz, which

approximates the physical state as a direct product of the

quantum background state and the states only depending on

the gauge invariant modes. Whether or not the differences

at the quantum level translate to any differences in

predictions is a question which remains open, but at the

practical level the difference in the two approaches is tied to

the way polymerization is performed in different steps to

reach quantum geometry modifications to the Mukhanov-

Sasaki equation [70]. In the latter sense, signatures in CMB

resulting from dressed and hybrid approaches can be seen

as originating from quantization ambiguities which affect

the effective mass functions in the Mukhanov-Sasaki

equation [70,71].

The effects of regularization and quantum ambiguities

on the primordial power spectrum were earlier studied in

the literature, and the primordial power spectrum in the

standard LQC and mLQC-I/II has been computed for

the dressed metric approach [72] (see also [73]) as well

as the hybrid approach [74]. It was found that the resulting

primordial power spectra in the standard LQC and mLQC-

I/II have similar patterns with three distinctive regimes: the

infrared regime, the intermediate oscillatory regime (the

enhanced regime), and the ultraviolet regime (the scale-

invariant regime where the predicted primordial power

spectrum by LQC models is well approximated by a power

law power spectrum). In fact, with the adiabatic initial

states, both approaches predict an oscillating pattern of the

primordial power spectrum with amplified amplitude in the

regime preceding the observed scale-invariant primordial

power spectrum in the CMB. Moreover, it has been shown

that all LQC models predict the same amount of inflation

and the scale-invariant regime in the primordial power

spectrum in the ultraviolet regime, while the shape and

amplitude of the primordial power spectrum are distinct for

each regularization and quantum ambiguity in the infrared

and the intermediate regimes. Since the comoving Hubble

horizon is shrinking at the present time due to the

accelerating expansion of the Universe, these superhorizon

modes with amplified amplitude can only be observed

indirectly via non-Gaussianity effects [75–77]. Although it

is not possible to directly detect such quantum gravitational

effects in the primordial power spectrum via the CMB data,

they can be used to constrain the regularization and

quantum ambiguities in LQC models. In fact, it is expected

that the modification of the infrared and the intermediate

regimes of the primordial power spectrum leads to the

modification of the angular power spectrum at large angles,

i.e., low l multipoles. Hence, one can compare the angular

power spectrum predicted by different regularizations and

quantum ambiguities in LQC models with the angular

power spectrum predicted by the standard Λ cold mark

matter (ΛCDM) cosmological model to constrain regulari-

zation and quantum ambiguities. Therefore, in this study,

we revisit the primordial power spectrum for LQC models

in both the hybrid and the dressed metric approaches to

understand the effects of different regularizations and

quantum ambiguities, adiabatic initial states, and the initial

time for which the adiabatic initial states are imposed in the

contracting branch, in the infrared and the intermediate

regimes of the primordial power spectrum. Then, by

calculating the relevant angular power spectrum, we aim

to understand for which model the predicted angular power

spectrum has more or less compatibility with the angular

power spectrum predicted by the standard ΛCDM cosmo-

logical model at large angular scales.

To understand quantization ambiguities, we calculate the

effective mass function for each model in both the hybrid

and the dressed metric approaches for the Starobinsky

potential while solving the background dynamics by fixing

the initial conditions at the bounce. We then compute the

scalar primordial power spectrum
2
by imposing zeroth,

second, and fourth order adiabatic initial states in the

contracting branch with an exception to the mLQC-I in

the dressed metric approach, whose initial state is chosen to

be the exact de Sitter solution tailored to the special

properties of the effective mass function in this model

and approach. We compare the primordial power spectrum

predicted by these three models by tuning the inflaton’s

mass and the initial value of the inflaton field at the bounce

in such a way that all models predict the same number of

e-foldings, Ne ¼ 65, and also the same scale-invariant

regime with the relative difference in the power less than

1% in that regime. In this sense, we can compare the

primordial power spectrum for each regularization and

quantum ambiguity in the infrared and the intermediate

2
Since we only compute the primordial power spectrum for

scalar perturbations in this manuscript, henceforth, when we refer
to the “primordial power spectrum,” it specifically refers to the
scalar primordial power spectrum.
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regimes, because of which any modifications in the angular

power spectrum can be merely due to such modifications in

the infrared and the intermediate regimes. In doing so, we

find that the shape and amplitude of the primordial power

spectrum in the infrared and the intermediate regimes

depend on the regularization and quantum ambiguities,

the order of adiabatic initial states, and how far from the

bounce they are imposed in the contracting branch. In fact,

it is found that the intermediate regime in the primordial

power spectrum has a larger amplitude if the initial states

are imposed further away from the bounce in the con-

tracting branch, except for mLQC-I in the dressed metric

approach. In addition, we find that the intermediate regime

has a smaller amplitude for higher order adiabatic initial

states in both LQC and mLQC-II and for both the hybrid

and the dressed metric approaches. Moreover, we realize

that the primordial power spectrum has a spike preceding

the scale-invariant regime in the case of fourth order

adiabatic initial states for the mLQC-I model and the

hybrid approach. Furthermore, it turns out that the primor-

dial power spectrum for both LQC and mLQC-II in the

dressed metric approach has a slightly stronger suppressing

regime in the infrared regime in comparison with the hybrid

approach. Finally, for mLQC-I in the dressed metric

approach with the de Sitter initial state, the primordial

power spectrum reaches a constant value in the infrared

regime rather than being suppressed.

Motivated by the fact that each model has different

predictions for the primordial power spectrum in the

infrared and the intermediate regimes, we aim at finding

the relevant angular power spectrum to investigate which

model has the most compatibility with the angular power

spectrum predicted by the standard ΛCDM cosmological

model. Hence, we feed the calculated primordial power

spectrum into the CAMB code
3
as an external power

spectrum and compute the angular power spectrum. We

observe larger amplitude at large angles, i.e., low l multi-

poles, for all models in both the hybrid and dressed metric

approaches in comparison with the angular power spectrum

predicted by the standard ΛCDM cosmological model.

However, our results demonstrate that the angular power

spectrum predicted by the hybrid approach has a smaller

deviation from the angular power spectrum predicted by the

standard ΛCDM cosmological model at large angles in

comparison with the dressed metric approach for all three

models, except for the case of mLQC-I with fourth order

adiabatic initial states in the hybrid approach. Moreover,

among these three models, the angular power spectrum

predicted by mLQC-I in both the hybrid and the dressed

metric approaches shows the smallest deviation from the

angular power spectrum predicted by the standard ΛCDM

cosmological model at large angles, except for the case with

fourth order adiabatic initial states in the hybrid approach

due to the presence of a spike preceding the scale-invariant

regime. On the contrary, based on our results, mLQC-II is

disfavored by the data since it predicts the largest amplitude

for the angular power spectrum at large angles among these

three models. Therefore, we conclude that the regulariza-

tion used in mLQC-I is preferred from an observational

perspective since the predicted angular power spectrum has

the smallest deviation at large angles from the angular

power spectrum predicted by the standard ΛCDM cosmo-

logical model.

The manuscript is organized as follows. In Sec. II, we

briefly review the effective dynamics of background

spacetime for three LQC models arising from regulariza-

tion ambiguities, namely the standard LQC, mLQC-I, and

mLQC-II. In Sec. III, we briefly review the cosmological

perturbations in both the hybrid and the dressed metric

approaches and present the effective mass function in the

Mukhnov-Sasaki equation for each model and approach. In

Sec. IV, we numerically solve the background dynamics

and the Mukhanov-Sasaki equation of the linear perturba-

tions for different initial states set in the contracting phase

to compute the primordial power spectrum for each model

and approach. Then, we compute the relevant angular

power spectrum by feeding the numerical primordial power

spectrum into the CAMB code. In this way, we show how

different regularizations and quantum ambiguities lead to

different predictions for the angular power spectrum at

large angles and compare the results with the angular power

spectrum predicted by the standard ΛCDM cosmological

model. Finally, we give a summary and conclusion in

Sec. V. In this manuscript, we use the Planck units

with ℏ ¼ c ¼ 1 while keeping Newton’s constant G

explicitly.

II. A BRIEF REVIEW OF LOOP QUANTUM

COSMOLOGY IN DIFFERENT

REGULARIZATIONS

In this section, we briefly review the effective

dynamics of the background spacetime in three distinct

loop quantum cosmological models for a spatially flat,

homogeneous, and isotropic FLRW spacetime: the

standard LQC and the modified LQCs (mLQCs),

namely mLQC-I and mLQC-II. These models originate

from different regularizations of the classical

Hamiltonian constraint in LQG for FLRW spacetime.

As is well known, the classical Hamiltonian constraint

in LQG is composed of two parts, namely the

Euclidean term and the Lorentzian term. In the standard

LQC, these two terms are combined using classical

symmetry and then loop quantized, while in mLQCs,

separate regularizations of the Lorentzian term are

3
Code for Anisotropies in the Microwave Background (CAMB)

is used to calculate cosmological quantities by solving back-
ground and perturbation equations. For details, see https://camb
.readthedocs.io.
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implemented, which result in two distinct variants of

the loop quantum cosmological model, namely mLQCs

[61]. For these three models, the evolution of quantum

dynamics is governed by their own discrete quantum

difference equations. Moreover, when the background

state is chosen to be the semiclassical state, the main

properties of the quantum evolution of loop quantum

cosmological models can be faithfully captured by

the effective dynamics governed by an effective

Hamiltonian constraint, which can be obtained from

the polymerization of the classical Hamiltonian con-

straint of the FLRW spacetime. This effective descrip-

tion provides a convenient approach to studying the

phenomenological implications of the loop quantum

cosmological models, as they have been frequently used

in the literature (see, e.g., [62,67,78]). In the following,

we briefly review the dynamical equations of the

effective dynamics in the standard LQC and mLQCs.

A. The effective dynamical equations in LQC

For a spatially flat, homogeneous, and isotropic FLRW

universe filled with a massive scalar field, the classical

phase space is spanned by 4 degrees of freedom, which can

be chosen as fv; b;ϕ; pϕg, where v denotes the volume of

the universe (related to the scale factor a, i.e., v ¼ a3) with
its conjugate momentum b which equals γH in the classical

theory with γ being the Barbero-Immirzi parameter and

H ¼ ȧ=a the Hubble rate. Besides, ϕ stands for the scalar

field, and pϕ is its conjugate momentum. These canonical

variables satisfy the standard Poisson brackets fb; vg ¼
4πGγ and fϕ; pϕg ¼ 1. The classical dynamics of a

spatially flat FLRW universe filled with a single scalar

field is based on the classical Hamiltonian constraint that

takes the form

H ¼ −
3vb2

8πGγ2
þ
p2
ϕ

2v
þ vUðϕÞ; ð2:1Þ

where UðϕÞ represents the potential of the scalar field.

From this Hamiltonian, it is straightforward to obtain the

corresponding Hamilton’s equations and the classical

Friedmann equation. Then the effective Hamiltonian con-

straint in the standard LQC can be formally obtained from

the polymerization of the momentum b in the classical

Hamiltonian constraint. To be specific, the rule of thumb to

obtain the effective Hamiltonian constraint in the standard

LQC is to apply the polymerization ansatz b2 →

sin2ðλbÞ=λ2 in the classical Hamiltonian constraint (2.1).

In this way, one can recover the effective Hamiltonian

constraint of standard LQC in the μ̄ scheme [7], namely

HLQC ¼ −
3vsin2ðλbÞ
8πGγ2λ2

þ
p2
ϕ

2v
þ vUðϕÞ: ð2:2Þ

Correspondingly, it is straightforward to obtain the

Hamilton’s equations in LQC, which turn out to be

v̇ ¼ 3v

2γλ
sinð2λbÞ; ḃ ¼ −4πGγðρþ PÞ; ð2:3Þ

ϕ̇ ¼ pϕ

v
; ṗϕ ¼ −vU;ϕ; ð2:4Þ

where U;ϕ stands for the derivative of the potential with

respect to the scalar field. Besides, in the Hamilton’s

equations, the energy density and the pressure of the scalar

field are given, respectively, by

ρ ¼
p2
ϕ

2v2
þ UðϕÞ; P ¼

p2
ϕ

2v2
− UðϕÞ: ð2:5Þ

From the Hamilton’s equation for volume and the relation

between the energy density and the momentum b, one can

obtain the modified Friedmann equation in LQC, which

takes the shape

H2 ¼ 8πG

3
ρ

�

1 −
ρ

ρc

�

; ð2:6Þ

here ρc ¼ 3=8πGλ2γ2 ≈ 0.41ρPl is the maximum energy

density at which the quantum bounce takes place in

LQC. The modified Friedmann equation is well suited

for studying the general aspects of the inflationary

scenario in LQC, and one only needs to make use of

different types of inflationary potentials to investigate

the extension of the relevant inflationary spacetimes to

the Planck regime. For the actual numerical simulation

of the inflationary universe in LQC, the initial conditions

are usually set right at the bounce point, where the

parameter space is essentially a one-parameter space

spanned by the value of the scalar field. More details on

setting up the initial conditions for the background

evolution will be discussed in Sec. IV.

B. The effective dynamical equations in mLQCs

The effective dynamical equations for mLQC-I and

mLQC-II have been obtained in Refs. [62,67]. In particular,

for mLQC-I, the effective Hamiltonian constraint takes the

form

HI ¼
3v

8πGλ2

�

sin2ðλbÞ − ðγ2 þ 1Þsin2ð2λbÞ
4γ2

�

þ
p2
ϕ

2v
þ vUðϕÞ: ð2:7Þ

Since the matter sector remains unaltered as in the standard

LQC, the above modified Hamiltonian constraint in

mLQC-I only changes the dynamical equations in the
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geometric sector. It is straightforward to check that the

resulting Hamilton’s equations are given explicitly by

v̇ ¼ 3v sinð2λbÞ
2γλ

fðγ2 þ 1Þ cosð2λbÞ − γ2g;

ḃ ¼ −4πGγðρþ PÞ; ð2:8Þ

where ρ and P are still given by their standard definitions

in (2.5). Although the unique properties of the background

dynamics of the mLQC-I model already become manifest

in the numerical simulations using Hamilton’s equations,

one can reach a deeper understanding of its dynamical

features only when its modified Friedmann equation

becomes available. It turns out that, in contrast to the

standard LQC, where both the contracting and the expand-

ing branches are described by the same modified

Friedmann equation (2.6), these two branches are actually

governed by different modified Friedmann equations in

mLQC-I. In particular, the modified Friedmann equation in

the expanding (postbounce) branch is given by [67]

H2
post ¼

8πG

3
ρ

�

1−
ρ

ρIc

�

"

1þ γ2ρ=ρIc

ð1þ γ2Þð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− ρ=ρIcÞ
p

2

#

;

ð2:9Þ

where ρIc ¼ ρc=4ðγ2 þ 1Þ is the maximum energy density

at which the quantum bounce takes place in mLQC-I.

The above modified Friedmann equation reduces to the

classical Friedmann equation when the energy density is far

below the Planck energy density, whereas in the contracting

(prebounce) phase the corresponding modified Friedmann

equation takes the form

H2
pre ¼

8πGαρΛ

3

�

1−
ρ

ρIc

�

"

1þ ρð1− 2γ2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− ρ=ρIc
p

Þ
4γ2ρIcð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− ρ=ρIc
p

Þ

#

;

ð2:10Þ

with α ¼ 1−5γ2

1þγ2
and ρΛ ¼ 3

8πGαλ2ð1þγ2Þ2. This implies an

emergence of the effective cosmological constant ρΛ and

a rescaled Newton’s constant G̃ ¼ αG in the asymptotic

region of the contracting phase when ρ ≪ ρIc. The different

asymptotic behavior of the modified Friedmann equation in

the expanding and the contracting branches in mLQC-I

provides an intuitive explanation for the asymmetric

evolution of the mLQC-I universe with respect to the

quantum bounce. Although the classical universe is recov-

ered in the future of the expanding branch, there exists only

a quasi–de Sitter phase in the past of the contracting branch

when the universe is filled with matter satisfying the weak

energy condition.

On the other hand, the effective Hamiltonian for mLQC-

II can be written as follows:

HII ¼ −
3v

2πGγ2λ2
sin2

�

λb

2

��

1þ γ2sin2
�

λb

2

��

þ
p2
ϕ

2v

þ vUðϕÞ: ð2:11Þ

Correspondingly, the Hamilton’s equations in the geo-

metric sector are given by

v̇ ¼ 3v sinðλbÞ
γλ

f1þ γ2 − γ2 cosðλbÞg;

ḃ ¼ −4πGγðρþ PÞ: ð2:12Þ

Similar to the standard LQC, the modified Friedmann

equation in mLQC-II in both contracting and the expanding

branches takes the same form and is given by

H2¼ 16πG

3
ρ

�

1−
ρ

ρIIc

�

×

�

1þ4γ2ð1þ γ2Þρ=ρIIc
1þ2γ2ρ=ρIIc þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ4γ2ð1þ γ2Þρ=ρIIc
p

�

; ð2:13Þ

with the maximum energy density ρIIc ¼ 4ð1þ γ2Þρc. As a
result, the background evolution of the mLQC-II universe

is also symmetric with respect to the quantum bounce when

the universe is coupled with a massless scalar field.

Moreover, the previous studies have shown that the

qualitative dynamics in two models are also very similar

to each other as well [78]. Consequently, in order to

distinguish mLQC-II from LQC, further information on

the linear perturbations in the two theories is vital to

revealing the quantitative difference in the predictions of

these two models on the CMB observations. In particular, it

is worthwhile to compare the predictions on the primordial

power spectrum from all three models, namely LQC and

mLQCs, which compose the main content of the next two

sections.

III. THE LINEAR PERTURBATION THEORIES IN

LOOP QUANTUM COSMOLOGICAL MODELS:

DRESSED METRIC APPROACH VS HYBRID

APPROACH

In this section, we briefly review the Mukhanov-Sasaki

equation for the linear cosmological perturbations in the

dressed metric and the hybrid approaches in LQC and

mLQCs. For a detailed exposition of the linear perturbation

theory in these three models, we refer the readers to our

previous work [70–72,74]. In the following, we only cite the

main results that are relevant for numerically computing the

primordial power spectrum and the relevant angular power

spectrum in thesemodels. It turns out that in all threemodels,

the linear cosmological perturbations satisfy the modified
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Mukhanov-Sasaki equation,which is characterized by differ-

ent effective mass functions that essentially originate from

regularization ambiguities in the background dynamics and

quantum ambiguities related to treatments of cosmological

perturbations. In terms of the rescaled Mukhanov-Sasaki

variable νk which is related to the comoving curvature

perturbation Rk via νk ¼ zsRk with zs ¼ aϕ̇=H, the modi-

fied Mukhanov-Sasaki equation in each model takes the

generic form

ν00k þ ðk2 þ sÞνk ¼ 0; ð3:1Þ

where s stands for the effective mass term, whose explicit

form is both model and approach dependent. A prime in the

above equation denotes differentiation with respect to the

conformal time η. Moreover, the mode function is normal-

ized according to the Wronskian condition

νkðν0kÞ⋆ − ðνkÞ⋆ν0k ¼ i; ð3:2Þ

with the asterisk standing for the complex conjugate. In the

actual simulations, we set the initial states in the contracting

phase when the relevant modes of interest are inside the

comoving Hubble horizon. Since the adiabatic condition is

well satisfied for thosemodes, the initial states can be chosen

as the adiabatic states, which are essentially the WKB

solutions of Eq. (3.1), namely

νk ¼
1
ffiffiffiffiffiffiffiffiffi

2Wk

p e
−i
R

η
Wkðη̄Þdη̄: ð3:3Þ

Onceplugging the above solutionback intoEq. (3.1), one can

obtain a differential equation of Wk that takes the form

W2
k ¼ k2 þ s −

1

2

W00
k

Wk

þ 3

4

�

W0
k

Wk

�

2

: ð3:4Þ

Starting from the zeroth order solution, W
ð0Þ
k ¼ k, the

adiabatic solutions at the second and fourth orders can be

obtained as

W
ð2Þ
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

k2þ s
p

; W
ð4Þ
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

fðs;kÞ
p

4jk2þ sj ; ð3:5Þ

where fðs; kÞ ¼ 5s02 þ 16k4ðk2 þ 3sÞ þ 16s2ð3k2 þ sÞ−
4s00ðk2 þ sÞ. However, we should point out that the initial

states of the perturbations in mLQC-I are chosen in the

contracting branch, where the de Sitter phase is a very good

approximation and the effective mass function is well

approximated by s ¼ −2=η2. Therefore, Eq. (3.1) has the
exact solutions, which are [72]

νk ¼ αk
e−ikη
ffiffiffiffiffi

2k
p

�

1 −
i

kη

�

þ βk
eikη
ffiffiffiffiffi

2k
p

�

1þ i

kη

�

; ð3:6Þ

where αk and βk are two integration constants. In our

simulations, the initial states of the perturbations are chosen

as the positive frequency modes with αk ¼ 1 and βk ¼ 0.

Given the initial states in the contracting phase, one

should propagate the modified Mukhanov-Sasaki equation

until the end of inflation, where the power spectrum, i.e.,

the correlation function between two modes Pνk
, is evalu-

ated for the observable modes that have reentered the

Hubble horizon at present. In order to compare the results

to the observational data, it is common to use the power

spectrum of the comoving curvature perturbation whose

magnitude freezes for the superhorizon modes, and it can

be computed from Pνk
as

PRk
¼ Pνk

z2s
¼ k3

2π2
jνkj2
z2s

: ð3:7Þ

It should be noted that the above power spectrum is only

valid in the regime where the adiabatic initial states are real

numbers at the initial time, which means k2 þ s ≥ 0 for

W
ð2Þ
k and fðs; kÞ ≥ 0 for W

ð4Þ
k . Before we proceed with the

numerical results of the power spectrum, we need to fix the

effective mass term in each model in both the dressed

metric and the hybrid approaches. Since these effective

mass terms have already been discussed in detail in our

previous work [70–72,74], we briefly mention their explicit

forms in both approaches for three different LQC models in

the following subsection.

A. The dressed metric approach in loop quantum

cosmological models: Polymerization aspects

In the dressed metric approach, the quantum fluctuations

propagating on a quantum background spacetime can be

equivalently described as propagating on a continuum

spacetime with a dressed metric derived from effective

dynamics. The general formalism is based on the

Hamiltonian formulation of the perturbation theory in gen-

eral relativity introduced by Langlois [79]. Considering a

single scalar fieldminimally coupled to gravity on a spatially

flat FLRW background, the mass function of the classical

Mukhanov-Sasaki equation is given by

s ¼ U2 −
a00

a
; ð3:8Þ

where the term related to the potential of the scalar field reads

U2¼
24πGp2

ϕ

a4
−
18p4

ϕ

a6
1

π2a
−12apϕU;ϕ

1

πa
þa2U;ϕϕ; ð3:9Þ

withU;ϕ denoting the derivative of the potential with respect

to the scalar field ϕ. The quantum ambiguities in the dressed

metric approach are due to the presence of the inverse of the

conjugate momentum of the scale factor. In fact, in classical
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theory, πa is directly related to b via πa ¼ −6a2b=κγ.

Correspondingly, π2a is proportional to b2. As already

discussed in the last section, in the loop quantum cosmo-

logical models, the effective backgroundHamiltonian can be

obtained from the polymerization of b2 in the classical

background Hamiltonian. Since the linear perturbations are

propagating on the effective spacetimes as long as the

effective dynamics is valid, the relevant background quan-

tities in the classical Mukhanov-Sasaki equation must be

polymerized in a manner consistent with the polymerization

of the background dynamics. Therefore, in the classical

effective potential (3.9), 1=π2a must be polymerized in the

same manner as in the background dynamics. In contrast,

there is no information on a proper polymerization of 1=πa
from the background dynamics and thus it introduces

quantum ambiguities into the effective mass function in

the modified Mukhanov-Sasaki equation. In the following,

we adopt the polymerization ansatz that was employed in our

previous work [72]. To be specific, 1=πa and 1=π2a are

polymerized in LQC according to the ansatz

1

πa
→ −

4πγλ cosðλbÞ
3a2 sinðλbÞ ;

1

π2a
→

16π2G2γ2λ2

9a4sin2ðλbÞ ; ð3:10Þ

and similarly for mLQC-I, we use the following ansatz:

1

πIa
¼ 8πGγλΘ̃ðbÞ

3a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ γ2Þsin2ð2λbÞ − 4γ2sin2ðλbÞ
p ; ð3:11Þ

1

πIa
2
¼ 64π2G2γ2λ2

9a4ðð1þ γ2Þsin2ð2λbÞ − 4γ2sin2ðλbÞÞ ; ð3:12Þ

with Θ̃ðbÞ ¼ 1–2ð1þ γ2Þ sin2ðλbÞ. And finally, in the case

of mLQC-II, we employ the ansatz

1

πIIa
¼ −

2πγλ cosðλb=2Þ
3a2 sinðλb=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2sin2ðλb=2Þ
p ; ð3:13Þ

1

πIIa
2
¼ 4π2γ2λ2

9a4sin2ðλb=2Þð1þ γ2sin2ðλb=2ÞÞ : ð3:14Þ

Once plugging the above polymerization ansatz into the

classical mass function (3.8), one can obtain the correspond-

ing effective mass function for each model in the dressed

metric approach. Then, given an appropriate initial state in

the contracting phase, we can numerically compute the

evolution of the mode function throughout the evolution

of the Universe until the end of inflation.

B. The hybrid approach in loop quantum cosmological

models: Polymerization aspects

The modified Mukhanov-Sasaki equation in the hybrid

approach can be obtained by the following polymerization

procedures, which are similar to those used in the dressed

metric approach. After all, both approaches apply the same

hybrid quantization of the background dynamics and the

perturbations; i.e., the background is loop quantized in the

μ̄ scheme while the perturbations are Fock quantized. The

main distinctions between these two approaches at the level

of effective dynamics originate from the different forms of

the classical mass function, which are equivalent on the

classical trajectories but lead to different effective mass

functions after polymerization due to quantization ambi-

guities [70]. Here we cite the expressions of the effective

mass functions in the hybrid approach for LQC and

mLQCs. The details of the derivation of the effective mass

functions can be found in our previous work [74]. These

effective mass functions are based on the polymerization of

the classical mass function, which is cast into the form

s ¼
4πGp2

ϕ

3v4=3

�

19 − 24πGγ2
p2
ϕ

Ω
2

�

þ v2=3
�

U;ϕϕ þ
16πGγpϕΛ

Ω
2

U;ϕ −
16πG

3
U

�

; ð3:15Þ

whereΩ and Λ are equal in the classical theory, and both of

them are given by vb. We distinguish these two terms only

for the convenience of the effective theory in which they are

polymerized in different ways according to the model under

consideration. To be specific, in the case of standard LQC,

Ω and Λ are polymerized to be

ΩLQC ¼ v
sinðλbÞ

λ
; ΛLQC ¼ v

sinð2λbÞ
2λ

; ð3:16Þ

while in mLQC-I, they are polymerized into

Ω
2
I ¼ −

v2γ2

λ2

�

sin2ðλbÞ − γ2 þ 1

4γ2
sin2ð2λbÞ

�

;

ΛI ¼ v
sinð2λbÞ

2λ
: ð3:17Þ

Finally, in mLQC-II, they are polymerized as

Ω
2
II ¼

4v2

λ2
sin2

�

λb

2

��

1þ γ2sin2
�

λb

2

��

;

ΛII ¼ v
sinðλbÞ

λ
: ð3:18Þ

Substituting the above polymerization ansatz for Ω and Λ

into the classical mass function (3.15), one can obtain the

effective mass function for each model. Given the func-

tionality for the effective mass term for each regularization,

one is able to proceed to find the curvature power spectrum.

Therefore, the goal of the next section is to compute the

curvature power spectrum for each regularization in both

the dressed metric and the hybrid approaches and then feed
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it into the CAMB code to calculate the relevant angular

power spectrum.

IV. THE PRIMORDIAL SCALAR POWER

SPECTRUM AND THE ANGULAR POWER

SPECTRUM IN LOOP QUANTUM

COSMOLOGICAL MODELS

In this section, we study the primordial power spectrum

and the relevant angular power spectrum of the loop

quantum cosmological models discussed in the previous

section. In Sec. IVA, we first numerically solve the

background equations with the initial conditions set at

the bounce, then solve the Mukhanov-Sasaki equation

given in Eq. (3.1) with different effective mass functions

and appropriate initial states for each model and approach.

Finally, we compute the primordial scalar power spectrum

and the relevant angular power spectrum for each model

and approach and compare the latter with the angular power

spectrum predicted by the standard ΛCDM cosmological

model in Sec. IV B.

A. The primordial power spectra in loop quantum

cosmological models

After reviewing the effective background dynamics and

the modified Mukhanov-Sasaki equations in the standard

LQC and mLQCs, we proceed to compare the observable

predictions of these three models in both the hybrid and the

dressed metric approaches in this section. In fact, we

compute the primordial power spectrum and the relevant

angular power spectrum for different regularizations and

quantum ambiguities, along with appropriate initial states.

As discussed earlier, the main differences among these

models come from different quantizations of the gravita-

tional sector as well as different polymerizations of the

conjugate momentum of the scale factor in the Mukhanov-

Sasaki equation. Such differences are encoded in the time-

dependent effective mass function in the Mukhanov-Sasaki

equation, which takes distinct forms for different regula-

rizations and quantum ambiguities. Besides, to compute the

primordial power spectrum, one first needs to fix the

background dynamics for each model. Hence, we consider

the extension of the inflationary scenario in the loop

quantum cosmological models, with the inflationary phase

driven by a single scalar field and the potential given by the

Starobinsky potential

UðϕÞ ¼ m2

32πG
ð1 − e−

ffiffiffiffiffiffi

16πG
3

p
ϕÞ2: ð4:1Þ

This potential has only one free parameter, i.e., the

inflaton’s mass m, which will be determined by a phe-

nomenological matching of the predicted primordial power

spectrum with the observational data. In fact, with the

scalar power spectrum As and scalar spectral index ns given

at the pivot mode k⋆=a0 ¼ 0.05 Mpc−1 (here a0 stands for

the scale factor at present), respectively by [80]

lnð1010AsÞ ¼ 3.044� 0.014ð68% CLÞ;
ns ¼ 0.9649� 0.0042ð68% CLÞ: ð4:2Þ

According to the Planck Collaboration in the

TT;TE;EE-lowEþ lensing 68% limits data, one can fix

the inflaton’s mass to bem ¼ 2.44 × 10−6 (in Planck units)

by simply matching analytical expressions for power

spectrum and spectral index obtained using the slow-roll

approximation with the observational values in Eq. (4.2).

1. Fixation of the free parameters and the initial

conditions

To obtain the primordial power spectrum, one needs to

first fix the background dynamics and then use the

appropriate initial states to numerically solve the

Mukhanov-Sasaki equation (3.1). In our simulations, we

set the initial conditions for the background dynamics at the

bounce point, where the energy density reaches its maxi-

mum. Due to the rescaling freedom in volume, we choose

vB ¼ 1 for our numerical solutions without loss of general-

ity. The canonical variable b in each model at the bounce

is fixed and takes the value bB ¼ π=2λ in LQC, bIB ¼
arcsinð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=ð2þ 2γ2Þ
p

Þ=λ in mLQC-I, and bIIB ¼ π=λ in

mLQC-II. Furthermore, the momentum of the scalar field

pϕ can be determined by using the effective Hamiltonian

constraint while choosing the positive velocity. Therefore,

the only free parameters that need to be fixed are the

inflaton’s mass and the value of the scalar field at

the bounce ϕB. It turns out that the former controls the

amplitude of the primordial power spectrum, and the latter

specifies the duration of the inflationary phase, i.e., the

number of e-foldings Ne, or correspondingly, the spectral

index of the primordial power spectrum in the almost scale-

invariant regime.
4
Given the initial value of the inflaton’s

mass and ϕB at the bounce, we solve the background

equations using the SOLVE_IVP module from the SCIPY

package in PYTHON, which numerically integrates a system

of ordinary differential equations. We use the RK45 method

(although the results are the same for different methods),

with absolute and relative tolerances set to be 10−13.

After fixing the background dynamics, we then proceed

with the numerical simulations of the primordial power

spectrum. In fact, we set the initial states of the perturba-

tions to be the adiabatic initial states given in (3.3) in the

contracting branch, except for mLQC-I in the dressed

metric approach, which is specified by the exact de

Sitter solution (3.6). Given the solutions for the background

4
The almost scale-invariant regime is where the power spec-

trum can be approximated by the power law power spectrum, i.e.,
PR ¼ Asðk=k⋆Þns−1 where k⋆=a0 ¼ 0.05 Mpc−1, As, and ns are
given in (4.2).
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quantities, we feed these solutions into the Mukhanov-

Sasaki equation with the appropriate initial states to

compute the primordial power spectrum. To this end, we

use the PYOSCODE package, which has been specifically

written to solve second order differential equations with

highly oscillatory solutions [81]. This package combines the

method ofRK45with theWKBapproximation. In fact, when

the solution is nonoscillatory, it uses the RK45method while

controlling the error using higher order corrections and skips

several cycles using the WKB approximation when the

solution is highly oscillatory. This method significantly

improves the speed of the code and allows large numbers

of simulations. Once the solutions of the mode functions are

obtained, we then calculate the primordial power spectrum

when the observable modes exit the Hubble horizon (super-

horizon) in the slow-roll phase.

Finally, to compare the angular power spectrum pre-

dicted by the loop quantum cosmological models with the

angular power spectrum predicted by the ΛCDM best fit to

the Planck TT;TE;EEþ lowEþ lensing data, it is neces-

sary to initially conduct a scale matching for the primordial

power spectrum. In fact, we set the scale factor to be unity

at the bounce in our numerical simulations, while it is

usually fixed to be 1 at the present time by the Planck

mission to find the amplitude and spectral index for the

primordial power spectrum in the standard ΛCDM cos-

mological model. In order to find the correspondence of the

comoving scales with the observational scales, we fix the

amplitude of the curvature power spectrum to be As, i.e.,

PRðk⋆Þ ¼ As to pick some particular comoving wave

number of the pivot scale k⋆=a0 ¼ 0.05 Mpc−1. This

means that the comoving wave number of the pivot mode

obtained in this way depends on the inflaton’s mass and the

initial value of the scalar field ϕB at the bounce. Moreover,

since we solve the exact background equations without

using slow-roll approximations, the inflaton’s mass

obtained from the slow-roll approximation will not result

in the central values for the amplitude of the power

spectrum and spectral index in Eq. (4.2). This means that

there is freedom in choosing the pivot mode for which the

amplitude of the primordial power spectrum matches the

observational data, As, by tuning the inflaton’s mass and

inflaton field at the bounce in such away that the inflationary

predictions are close to the central values of Eq. (4.2).

To restrict above freedom and place each model’s

predictions on an equal footing for later comparison, we

choose the inflaton’s mass and inflaton field at the bounce

while the amplitude of the primordial power spectrum

matches the As for a particular k⋆, which is well inside the

scale-invariant regime. Hence, this will guarantee that the

relevant angular power spectrum completely matches

the angular power spectrum predicted by ΛCDM best fit to

the Planck TT;TE;EEþ lowEþ lensing data at large l
multipoles and has the smallest deviation at large angles,

i.e., low l multipoles for each model. Additionally, as we

will see, different regularizations and quantum ambiguities

modify the infrared and the intermediate regimes in the

power spectrum while producing the same scale-invariant

regime. Hence, in order to compare these models appropri-

ately, we finely tune the inflaton’s mass andϕB in such away

that all three models, LQC and mLQCs, not only predict the

same number of e-folding, i.e., Ne ≃ 65, but also lead to the

relative difference in the amplitude of the power spectrum

being less than 1% in the scale-invariant regime. It should be

mentioned that while the analysis presented in this manu-

script focused on these number of e-foldings, our results did

not change when the e-foldings were changed to 60 or 70. It

turns out that in this case, there is not much freedom in

choosing a quite different pivot mode for different models,

which might affect our conclusion. To achieve this, we

choose the inflaton’s mass to be m ¼ 2.7 × 10−6, which is

different from what is obtained from slow-roll approxima-

tions, i.e.,m ¼ 2.44 × 10−6, and thevalueof the inflaton field

at the bounce is fixed for each model accordingly to achieve

Ne ¼ 65. We again note that the inflaton’s mass is slightly

different fromwhat is obtained from slow-roll approximation

because we numerically solve exact equations, and that is

not because of quantum gravity effects. In this sense, we can

compare the primordial power spectrum with different

regularizations and quantum ambiguities in the infrared

and intermediate regimes which can result in modifications

in the angular power spectrum. In the following we aim to

understand how the amplitude and shape of the primordial

power spectrum in the infrared and the intermediate regimes

would change for different regularizations, quantum ambi-

guities, initial states, and where the initial states are imposed.

2. Comparison of the effective mass functions in different

models and approaches

As we have discussed earlier, the effects of different

regularizations and quantum ambiguities are encoded in the

time-dependent effective mass function. To this end,

the effective mass functions of LQC and mLQC-II in the

contracting branch from where the adiabatic initial states

are imposed are shown in the left panel of Fig. 1 and also in

the expanding branches (including effective mass function

for mLQC-I) in the right panel of Fig. 1 for both the hybrid

and the dressed metric approaches. From these figures, it is

obvious that the effective mass function far away from the

bounce in the hybrid and the dressed metric approaches are

the same for both LQC and mLQC-II. Moreover, the order

of magnitude of the effective mass function is also the same

for both LQC and mLQC-II. However, from the right panel

in Fig. 1, one can see the noticeable differences among

different models near the bounce. From the left panel in

Fig. 1, one can see that the effective mass function is

positive where the adiabatic initial states are imposed for

both LQC and mLQC-II. In Fig. 2, we plot the effective

mass function for mLQC-I in both the hybrid (red curve)

and the dressed metric (blue curve) approaches. From this
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plot, one can see that the effective mass function in the

dressed metric approach is negative in the contracting

branch where the exact de Sitter solution (3.6) is imposed,

and it also goes to a large negative value by further going

into the contracting branch. On the other hand, the effective

mass function for the hybrid approach goes to very large

positive values by further going into the contracting branch.

3. The influence of different initial times on the

primordial power spectrum

In this subsection, we study the effects of choosing

different initial times for setting the initial states in the

contracting phase on the shape of the primordial power

spectrum. As an illustrative example, we plot the primordial

power spectrum for LQC with ϕB ¼ −1.4306 and m ¼
2.7 × 10−6 in the range of the comoving wave number

k∈ ð10−5; 1000Þ while the second order adiabatic initial

states are imposed at t ¼ −106,−5 × 106, and−107 for both

the hybrid (left) and the dressed metric (right) approaches in

Fig. 3. In this plot, the green star is the primordial power

spectrum for adiabatic initial states imposed at t ¼ −106, the

blue triangle is for t ¼ −5 × 106, and the red dotted is for

t ¼ −107. The corresponding k⋆ for imposing adiabatic

initial states at t ¼ −106, −5 × 106, and −107 in the hybrid

approach (left) are k⋆ ¼ 493.396, k⋆ ¼ 492.134, and

k⋆ ¼ 491.459, and for the dressed metric approach (right)

are k⋆ ¼ 490.297, k⋆ ¼ 491.134, and k⋆ ¼ 492.334,

respectively. We should also point out that there are 2000

samples for each primordial power spectrum in the figure.

From these figures, one can see that the primordial power

spectrum in LQC and its modified version, as we will see

later, can be generally divided into three distinctive regimes:

the suppressed infrared regime for k ¼ ð10−5; 10−4Þ, the
amplified oscillatory regime for k ¼ ð10−4; 1Þ, and the scale-
invariant regime for k ¼ ð1; 1000Þ. From these plots, one can

clearly see that the amplification of the power spectrum in the

intermediate regime depends on how far from the bounce the

adiabatic initial states are imposed in the contracting branch.

In fact, as the adiabatic initial states are imposed further in the

contracting branch, the primordial power spectrum has a

larger amplification in the intermediate regime. This behav-

ior is also observed in the case of mLQC-I for the hybrid

approach and mLQC-II for both the hybrid and the dressed

metric approaches with zeroth, second, and fourth order

adiabatic initial states, except for the case of mLQC-I in the

dressed metric approach, where the initial state is specified

using the exact de Sitter solution. This is mainly because

adiabatic initial states are just the approximate solutions of

the Mukhanov-Sasaki equation of the mode function. In

contrast, in the dressedmetric approach ofmLQC-I, the exact

solution of the Mukhanov-Sasaki equation, which is the de

Sitter initial state, is available, and the resulting primordial

power spectrum is then independent of the initial time. In the

case of mLQC-I, as the adiabatic initial states are imposed

FIG. 1. The left panel compares the absolute value of the effective mass function for LQC (sLQC) and mLQC-II (sII) in both the hybrid
and the dressed metric approaches in the contracting branch from where the initial states are imposed. The right panel compares the

absolute value of the effective mass function for LQC, mLQC-I (sI), and mLQC-II in the expanding branch until t ¼ 5.1 × 107 (in

Planck units).

FIG. 2. The effective mass function for mLQC-I in the

contracting branch from where the adiabatic initial states are

imposed for both the hybrid and the dressed metric approaches.
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further in the contracting branch, the scale-invariant regime

occurs in larger wave modes in comparison with LQC and

mLQC-II due to the special properties of the effective mass

function in this model, which is why the chosen initial time

for mLQC-I is very different from the initial time for LQC

and mLQC-II. In fact, to have the same inflationary pre-

dictions compared with two other models, we must choose

the initial time to have different values from the other two

models. Otherwise, the relative difference in the primordial

power spectrum in the scale-invariant regimewill not be less

than 1% when it is compared with two other models.

4. The influence of different initial states on

the primordial power spectrum

With the given initial conditions for the background

dynamics and the initial states for the linear perturbations,

we numerically compute the primordial power spectrum in

both the dressed metric approach and the hybrid approach

for all three models and present these results in Figs. 4–6. In

Fig. 4, we plot the primordial power spectrum for LQCwith

ϕ0 ¼ −1.4306 and m ¼ 2.7 × 10−6 while adiabatic initial

states (zeroth, second, and fourth order) are imposed

at t ¼ −106 for both the hybrid (left) and the dressed

metric (right) approaches. The dashed line denotes the

central value for the amplitude of the primordial power

spectrum, i.e., As ¼ 2.0989 × 10−9, according to the

Planck Collaboration in the TT, TE, EE-lowEþ lensing

68% limits data at pivot scale k⋆=a0 ¼ 0.05 Mpc−1. The

corresponding k⋆ for zeroth, second, and fourth order

adiabatic initial states in the hybrid approach (left) are

k
ð0Þ
⋆ ¼ 493.396, k

ð2Þ
⋆ ¼ 492.754, and k

ð4Þ
⋆ ¼ 490.168 where

the upper indices 0, 2, and 4 denote the order of adiabatic

FIG. 3. The primordial power spectrum for LQC with ϕB ¼ −1.4306 and m ¼ 2.7 × 10−6, while second order adiabatic initial states

are imposed at t ¼ −106, −5 × 106, and −107 for the hybrid (left) and the dressed metric (right) approaches (all in Planck units). The

corresponding k⋆ for imposing adiabatic initial states at t ¼ −106, −5 × 106, and −107 in the hybrid approach (left) are k⋆ ¼ 492.754,

k⋆ ¼ 491.134, and k⋆ ¼ 490.459, and for the dressed metric approach (right) are k⋆ ¼ 92.365, k⋆ ¼ 491.134, and k⋆ ¼ 490.334,

respectively. The dashed line is the central value for the amplitude of the primordial power spectrum, i.e., As ¼ 2.0989 × 10−9,

according to the Planck Collaboration in the TT, TE, EE-lowE þ lensing 68% limits data at pivot scale k⋆=a0 ¼ 0.05 Mpc−1.

FIG. 4. The primordial power spectrum for LQC with different adiabatic initial states (zeroth, second, and fourth order) in the hybrid

approach (left panel) and the dressed metric (right panel) approach, while t ¼ −106, ϕB ¼ −1.4306, and m ¼ 2.7 × 10−6 (all in Planck

units). The corresponding k⋆ for zeroth, second, and fourth order adiabatic initial states in the hybrid approach (left panel) are

k
ð0Þ
⋆ ¼ 493.396, k

ð2Þ
⋆ ¼ 492.754, and k

ð4Þ
⋆ ¼ 490.168 where the upper indices 0, 2, and 4 denote the order of adiabatic initial states, and

for the dressed metric approach (right panel) are k
ð0Þ
⋆ ¼ 490.297, k

ð2Þ
⋆ ¼ 492.365, and k

ð4Þ
⋆ ¼ 494.283, respectively. The dashed line is

the central value for the amplitude of the primordial power spectrum, i.e., As ¼ 2.0989 × 10−9, according to the Planck Collaboration in

the TT, TE, EE-lowEþ lensing 68% limits data.
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initial states, and for the dressed metric approach (right)

are k
ð0Þ
⋆ ¼ 490.297, k

ð2Þ
⋆ ¼ 492.365, and k

ð4Þ
⋆ ¼ 494.283,

respectively. As it is obvious from both panels, the

amplification of the primordial power spectrum in the

intermediate regime depends on the order of adiabatic

initial states in both the hybrid and the dressed metric

approaches. In fact, for higher order adiabatic initial states,

the power spectrum has smaller amplification in the

intermediate regime in both the hybrid and the dress metric

approaches. Moreover, in a very small k regime (the

infrared regime), the suppression of the primordial power

spectrum is slightly stronger in the case of the dressed

metric approach. Apart from that, from the primordial

power spectrum, it is not easy to distinguish the dressed

metric approach from the hybrid approach, where the

amplitude of the primordial power spectrum in the inter-

mediate regime in two approaches looks close to each other

once the same initial states are chosen.

In Fig. 5, we plot the primordial power spectrum for

mLQC-I with ϕ0 ¼ −1.31 andm ¼ 2.7 × 10−6 while initial

states are imposed at t ¼ −2.4 for both the hybrid (left) and

the dressed metric (right) approaches. In this case, we use

zeroth, second, and fourth order adiabatic initial states for

the hybrid approach but use the de Sitter initial state for the

dressed metric approach, which is why only one primordial

power spectrum is plotted in the right panel of Fig. 5. The

corresponding k⋆ for zeroth, second, and fourth order

adiabatic initial states in the hybrid approach (left) are

k
ð0Þ
⋆ ¼ 518.996, k

ð2Þ
⋆ ¼ 518.692, and k

ð4Þ
⋆ ¼ 519.114,

and for the dressed metric approach is k
ðdsÞ
⋆ ¼ 520.332

FIG. 5. The primordial power spectrum for mLQC-I with different adiabatic initial states (zeroth, second, and fourth order) in the

hybrid approach (left) and with the de Sitter initial state in the dressed metric approach (right) while t ¼ −2.4, ϕB ¼ −1.31, and

m ¼ 2.7 × 10−6 (in Planck units). The corresponding k⋆ for zeroth, second, and fourth order adiabatic initial states in the hybrid

approach (left) are k
ð0Þ
⋆ ¼ 518.996, k

ð2Þ
⋆ ¼ 518.692, and k

ð4Þ
⋆ ¼ 519.114 where the upper indices 0, 2, and 4 denote the order of adiabatic

initial states, and for the dressed metric approach is k
ðdsÞ
⋆ ¼ 520.332 (ds denotes de Sitter initial state), respectively. The dashed line is the

central value for the amplitude of the primordial power spectrum, i.e., As ¼ 2.0989 × 10−9, according to the Planck Collaboration in the

TT, TE, EE-lowEþ lensing 68% limits data.

FIG. 6. The primordial power spectrum for mLQC-II with different adiabatic initial states (zeroth, second, and fourth order) in the

hybrid approach (left) and the dressed metric (right) approaches while t ¼ −106, ϕB ¼ −1.54, and m ¼ 2.7 × 10−6. The corresponding

k⋆ for zeroth, second, and fourth order adiabatic initial states in the hybrid approach (left) are k
ð0Þ
⋆ ¼ 478.882, k

ð2Þ
⋆ ¼ 478.500, and

k
ð4Þ
⋆ ¼ 480.513 where the upper indices 0, 2, and 4 denote the order of adiabatic initial states, and for the dressed metric approach are

k
ð0Þ
⋆ ¼ 479.876, k

ð2Þ
⋆ ¼ 479.228, and k

ð4Þ
⋆ ¼ 480.008, respectively. The dashed line is the central value for the amplitude of the

primordial power spectrum, i.e., As ¼ 2.0989 × 10−9, according to the Planck Collaboration in the TT, TE, EE-lowEþ lensing 68%

limits data.
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(ds denotes de Sitter initial state), respectively. From these

figures, it is obvious that the amplitude of the intermediate

regime of the primordial power spectrum is larger for the

dressed metric approach in comparison with the hybrid

approach. Moreover, in the case of the dressed metric

approach, the primordial power spectrum monotonically

increases in the intermediate regime and then becomes

constant at a very small k regime (the infrared regime). In

the case of the hybrid approach, one can see that the

amplification of the primordial power spectrum in the

intermediate regime depends on the order of adiabatic initial

states. However, there are important differences between

LQC and mLQC-I in this case. First, the amplification in the

intermediate regime for mLQC-I is smaller in comparison to

LQC for all zeroth, second, and fourth order adiabatic initial

states in the hybrid approach. Second, for fourth order

adiabatic initial states, there seems to be a peak of large

magnitude in the rightmost part of the intermediate regime,

which precedes the scale-invariant regime.

Finally,weplot theprimordial power spectrum formLQC-

II with ϕ0 ¼ −1.54 and m ¼ 2.7 × 10−6 while adiabatic

initial states (zeroth, second, and fourth order) are imposed at

t ¼ −106 for both the hybrid (left) and the dressed metric

(right) approaches in Fig. 6. The corresponding k⋆ for zeroth,
second, and fourth order adiabatic initial states in the hybrid

approach (left) are k
ð0Þ
⋆ ¼ 478.882, k

ð2Þ
⋆ ¼ 478.500, and

k
ð4Þ
⋆ ¼ 480.513, and for the dressed metric approach are

k
ð0Þ
⋆ ¼ 479.876, k

ð2Þ
⋆ ¼ 479.228, and k

ð4Þ
⋆ ¼ 480.008,

respectively. The behavior of the primordial power spectrum

is very similar to LQC in both the hybrid and the dressed

metric approaches. However, the primordial power spectrum

has a larger amplification in the intermediate regime for

mLQC-II in comparison to LQC. As we will see, these

differences in the intermediate regime lead to different

modifications in the angular power spectrum at large angles,

i.e., low l multipoles.

B. The angular power spectra in loop quantum

cosmological models

In order to compute the angular power spectrum, we feed

the primordial power spectrum computed in Figs. 4–6 into

CAMB code as an external primordial power spectrum. In fact,

since the inflationary phase is occurring far away from the

bounce regime, the background dynamics are the same as in

the classical cosmology when inflation begins, while the

effect of the preinflationary phase is encoded in the initial

states and also the effective mass function in theMukhanov-

Sasaki equation. Hence, we can use the transfer function

computed by CAMB for the standard cosmology in this case,

while using the primordial power spectrum computed in the

previous section. Before feeding the primordial power

spectrum into the CAMB code, we first take an average over

20 samples to make the power spectrum smoother, then we

use scale matching (explained earlier) to normalize the

primordial power spectrum at k⋆=a0 ¼ 0.05 Mpc−1 to be

able to compare the prediction of the model with observa-

tional data. Therefore, given the primordial power spectrum

for all three models with different initial states, we calculate

the angular power spectrum in both the hybrid and the

dressed metric approaches.

The results for the angular power spectrum are com-

pared in Figs. 7–12. We plot the angular power spectrum

for zeroth order adiabatic initial states for the hybrid

approach in Fig. 7 and for the dressed metric approach

in Fig. 8 in all three models, namely LQC and mLQCs.

FIG. 7. The angular power spectrum predicted by LQC models in the case of the hybrid approach for zeroth order adiabatic initial

state. The black dots are the Planck 2018 temperature angular power spectrum, with blue error bars for low l multipoles and red error

bars for large l multipoles. The green curve is the ΛCDM angular power spectrum best fit to Planck 2018 data.
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However, we should point out that for mLQC-I in the

dressed metric approach, we compare the angular power

spectrum with the primordial power spectrum in the right

panel of Fig. 5 which is computed for the de Sitter initial

state. The black dots are the Planck 2018 temperature

angular power spectrum, with blue error bars for low l
multipoles and red error bars for large l multipoles. The

green curve is the ΛCDM angular power spectrum best fit

to the Planck Collaboration in the TT, TE, EE-lowEþ
lensing 68% limits data. From Figs. 7 and 8, it is clear that

all three models match the best fit curve at large multipoles

l in both the hybrid approach and the dressed metric

approaches, since they predict the same scale-invariant

regime at large k. However, all three curves deviate from

the best fit curve from the ΛCDM model and predict a

larger angular power spectrum at large angles, i.e., low l
multipoles due to amplification of the primordial power

spectrum in the part of the intermediate regime that is next

to the almost scale-invariant regime. In fact, mLQC-II

exhibits the largest amplitude for the angular power

FIG. 8. The angular power spectrum predicted by LQC models in the case of the dressed metric approach, while zeroth order adiabatic

initial states are used for LQC and mLQC-II and the de Sitter initial state is used for mLQC-I. The black dots are the Planck 2018

temperature angular power spectrum, with blue error bars for low l multipoles and red error bars for large l multipoles. The green curve

is the ΛCDM angular power spectrum best fit to Planck 2018 data.

FIG. 9. The angular power spectrum predicted by LQC models in the case of the hybrid approach for second order adiabatic initial

states. The black dots are the Planck 2018 temperature angular power spectrum, with blue error bars for low l multipoles and red error

bars for large l multipoles. The green curve is the ΛCDM angular power spectrum best fit to Planck 2018 data.
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spectrum at large angles, followed by LQC, and finally

mLQC-I. Therefore, mLQC-I is the one that can produce

the result closest to that from the ΛCDMmodel in both the

hybrid and the dressed metric approaches. Moreover,

comparing the angular power spectrum from the hybrid

approach with the one from the dressed metric approach

for the same model, one can find that the deviation from

the best fit curve at large angles is larger in the case of the

dressed metric approach. This is because the amplitude of

the intermediate regime, k∈ ð0.01; 10Þ, is larger in the case

of the dressed metric approach right next to the scale-

invariant regime.

In addition, the results for the angular power spectrum

for the second order adiabatic initial states in LQC and

mLQCs are given in Fig. 9 for the hybrid approach and in

Fig. 10 for the dressed metric approach. Note that for

mLQC-I in the dressed metric approach, similar to the case

with the zeroth order adiabatic initial states, we compare

the angular power spectrum obtained from the primordial

power spectrum computed with the de Sitter initial state.

FIG. 10. The angular power spectrum predicted by LQC models in the case of the dressed metric approach, while second order

adiabatic initial states are used for LQC and mLQC-II and the de Sitter initial state is used for mLQC-I. The black dots are the Planck

2018 temperature angular power spectrum, with blue error bars for low l multipoles and red error bars for large l multipoles. The green

curve is the ΛCDM angular power spectrum best fit to Planck 2018 data.

FIG. 11. The angular power spectrum predicted by LQC models in the case of the hybrid approach for the fourth order adiabatic initial

states. The black dots are the Planck 2018 temperature angular power spectrum, with blue error bars for low l multipoles and red error

bars for large l multipoles. The green curve is the ΛCDM angular power spectrum best fit to Planck 2018 data.
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One can find from the figures that the amplitude of the

angular power spectrum from the second order adiabatic

states is almost the same as that of the zeroth order adiabatic

initial states. That is because although the primordial power

spectrum has a smaller amplitude for the second order

adiabatic initial states in the left part of the intermediate

regime at very small k, they actually have very similar

magnitude in the right part of the intermediate regime next

to the almost scale-invariant regime. Based on these results,

only the latter contributes mostly to the angular power

spectrum at low l multipoles.

In Figs. 11 and 12, we compare the angular power

spectrum predicted by LQC and mLQCs with the fourth

order adiabatic initial states in both the hybrid and the dressed

metric approaches. As one can see from Fig. 11, LQC has a

smaller angular power spectrum at large angles in compari-

sonwith mLQC-I, while the reverse is true for the zeroth and

second order adiabatic initial states in the case of the hybrid

approach. The reason is the presence of a large spike right

before the scale-invariant regime in the primordial power

spectrum with fourth order adiabatic initial states. However,

the angular power spectrum for fourth order adiabatic initial

states in the case of the dressedmetric approach is identical to

zero and second order adiabatic initial states. The reason is

that the difference in the intermediate regime due to the

different order of adiabatic initial states occurs in very small

k, so the contribution to angular power is tiny and almost

indistinguishable.

Finally, we summarize this section by pointing out that

the predictions for the primordial power spectrum and the

relevant angular power spectrum depend on the regulari-

zation ambiguities in the background dynamics, quantum

ambiguities originating from treatments of cosmological

perturbations, the order of adiabatic initial states, and also

how far from the bounce they are imposed in the con-

tracting branch. In fact, we realize that although the angular

power spectra computed in all three models and two

different perturbation approaches are consistent with the

CMB observations at small scales with l ≥ 20, they

actually exhibit different behaviors at large angles for

low l multipoles. In general, the angular power spectrum

computed using the hybrid approach has a smaller

deviation from the angular power spectrum predicted by

the standard ΛCDM cosmological model in comparison

with the dressed metric approach. Besides, among these

three models, mLQC-I shows the smallest deviation from

the angular power spectrum predicted by the standard

ΛCDM cosmological model at large angles for zeroth

and second order adiabatic initial states, while for the fourth

order adiabatic initial states in the hybrid approach, LQC

has the smallest deviation from the angular power spectrum

predicted by the standard ΛCDM cosmological model at

large angles. In any case, mLQC-II has the largest devia-

tions from the angular power spectrum predicted by the

standard ΛCDM cosmological model at large angles.

V. SUMMARY

In this manuscript, we conduct a detailed investigation of

the primordial power spectrum and the relevant angular

power spectrum in loop quantum cosmological models for

a spatially flat FLRW universe filled with a single infla-

tionary scalar field. Our main purpose is to investigate the

potential observational signals from CMB that can be used

FIG. 12. The angular power spectrum predicted by LQC models in the case of the dressed metric approach, while fourth order

adiabatic initial states are used for LQC and mLQC-II and the de Sitter initial state is used for mLQC-I. The black dots are the Planck

2018 temperature angular power spectrum, with blue error bars for low l multipoles and red error bars for large l multipoles. The green

curve is the ΛCDM angular power spectrum best fit to Planck 2018 data.
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to distinguish three loop quantum cosmological models,

namely the standard LQC and Thiemann regularized

versions mLQC-I/II, arising from regularization ambigu-

ities in the background dynamics, as well as to look for

signals to differentiate two perturbation approaches,

namely the dressed metric approach and the hybrid

approach in LQC. We first briefly reviewed the background

dynamics of these three models for a spatially flat FLRW

spacetime, with an emphasis on the effective dynamics of

each model. Using the effective Hamiltonian constraint,

one can first derive the effective Hamilton’s equations in

each model and then numerically solve the evolution of the

background dynamics of the Universe with a given set of

initial conditions. To facilitate the comparison of three

models, we choose the inflationary potential to be the

Starobinsky potential, which is favored by Planck 2018

data, and the initial conditions are set at the bounce point

with a particular choice of the value of the inflaton field so

that the duration of the inflationary phase in each model is

fixed to be the same number of e-foldings Ne ¼ 65. While

the analysis presented in this manuscript focused on these

number of e-foldings, our results did not change when the

e-foldings were changed to 60 or 70.

Once the background dynamics is fixed, we then proceed

with the linear cosmological perturbations on the quantum

background spacetimes. To numerically compute the pri-

mordial power spectrum and the angular power spectrum in

each model, we appeal to two alternative perturbation

approaches, namely the dressed metric approach and the

hybrid approach, which both use Fock quantized perturba-

tions on the loop quantized background. Our previous work

has demonstrated that the difference in these two

approaches at a practical level is tied to the way polym-

erization is performed at different steps and at a phenom-

enological level both approaches are closely related [70]. In

particular, using the effective dynamics, the modified

Mukhanov-Sasaki equation for each model in the dressed

metric and the hybrid approaches can be obtained by

polymerizing the background quantities, namely the

inverse of the conjugate momentum of the scale factor

and its square, in the classical Mukhanov-Sasaki equation,

and this procedure leads to distinct effective mass functions

for different models and approaches as their unique features

when compared with one another. Equipped with the

modified Mukhanov-Sasaki equation, we then move on

to numerically compute the primordial power spectrum in

each model and perturbation approach. For the initial states

of the linear perturbations, we choose the zeroth, second,

and fourth order adiabatic initial states in the contracting

branch when the adiabatic conditions are satisfied, with an

exception to the mLQC-I in the dressed metric approach,

whose initial states are chosen to be the exact de Sitter

solution tailored to the special properties of the effective

mass function in this model and approach. To compare

these models appropriately, we set the inflaton’s mass and

the initial value of the scalar field at the bounce in such a

way that all models predict not only approximately the

same number of inflationary e-foldings, which is Ne ¼ 65,

but also almost the same scale-invariant regime for the

primordial power spectrum with a relative difference of less

than 1%. As a result, all the differences in the predicted

primordial power spectrum in LQC and mLQC-I/II from

the dressed metric approach and the hybrid approach can be

traced to the differences in the infrared and the intermediate

regimes, which are supposed to encode the quantum

gravitational effects.

From the resulting primordial power spectrum for each

model and approach, we find some interesting results. First,

the moment when the adiabatic initial states of the linear

perturbations are imposed in the contracting phase can

affect the amplitude of the primordial power spectrum in

the intermediate regime. This is true for all three models in

both the dressed metric and the hybrid approach, except

mLQC-I in the dressed metric approach, in which the exact

de Sitter initial state is employed. The amplitude of the

primordial power spectrum increases when the adiabatic

initial states are chosen at an earlier time in the contracting

phase. This is mainly because these states are just the

approximate solutions of the Mukhanov-Sasaki equation of

the mode function. In contrast, in the dressed metric

approach of mLQC-I, the exact solution of the

Mukhanov-Sasaki equation, which is the de Sitter initial

state, is available, and the resulting primordial power

spectrum is then independent of the initial time. Second,

when different adiabatic initial states are employed, the

amplitude of the primordial power spectrum also depends

on the order of these states. To be specific, irrespective of

the perturbation approach, in LQC and mLQC-II, the fourth

order adiabatic initial states result in the primordial power

spectrum with the lowest amplitude in the intermediate

regime as compared to the zeroth and second order

adiabatic initial states. When the order of the adiabatic

initial states decreases, the amplitude of the primordial

power spectrum increases. The only exception to this

observation is mLQC-I in the hybrid approach, where

we find the primordial power spectrum resulting from the

fourth order adiabatic initial states has a larger amplitude

than that from the second order adiabatic initial states.

Moreover, in this case, there appears a peak of large

magnitude in the rightmost part of the intermediate regime,

which precedes the scale-invariant regime. Third, the

primordial power spectrum for both LQC and mLQC-II

in the dressed metric approach has a slightly stronger

suppressing regime in the infrared regime in comparison

with the hybrid approach. Moreover, for mLQC-I in the

dressed metric approach with the de Sitter initial state, the

primordial power spectrum reaches a constant value in the

infrared regime rather than being suppressed. Finally, from

the primordial power spectrum, it is not easy to distinguish

the dressed metric approach from the hybrid approach in
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LQC and mLQC-II, where the amplitude of the primordial

power spectrum in the intermediate regime in the two

approaches looks close to each other once the same initial

states are chosen. The differences in the primordial power

spectrum between these two approaches become only

discernible in mLQC-I, where one has to choose different

initial states for the two approaches. As a result, to

distinguish the observational effects of these two

approaches and the regularization ambiguities, one must

go through further steps to compute the angular power

spectrum in each model and approach.

When the numerical primordial power spectrum is fed

into the CAMB code, the relevant angular power spectrum

for each model and approach can be obtained. From our

results, we find that although all the models and approaches

can result in the angular power spectrum, which is con-

sistent with the angular power spectrum predicted by the

standard ΛCDM cosmological model at small scales with

l ≥ 20, they do have distinct predictions on the angular

power spectrum at large angles with l < 20. To be specific,

in the dressed metric approach, the order of the adiabatic

initial states in LQC and mLQC-II would not affect the

amplitude of the angular power spectrum at large angles

with l < 20. Besides, the predicted angular power spectrum

at large angles always has a larger deviation from the

angular power spectrum predicted by the standard ΛCDM

cosmological model in mLQC-II than in LQC. This

immediately makes mLQC-II less appealing as compared

with LQC. Furthermore, although mLQC-I predicts a

primordial power spectrum with a Planck scale infrared

regime, it turns out that the resulting angular power

spectrum from mLQC-I is largely improved at large angles,

with the smallest deviations from the angular power

spectrum predicted by the standard ΛCDM cosmological

model among all three models. This implies that in the

dressed metric approach, the averaged amplitude of the

resulting primordial power spectrum takes the lowest

values in the rightmost part of the intermediate regime

neighboring the scale-invariant regime since only this part

of the primordial power spectrum significantly contributes

to the angular power spectrum at large angles. On the other

hand, in the hybrid approach, we observe a similar pattern

for the zeroth and second order adiabatic initial states,

while the deviation of the angular power spectrum at large

angles from the angular power predicted by the standard

ΛCDM cosmological model is smaller in comparison with

the dressed metric approach. The deviation of the angular

power spectrum at large angles from the angular power

spectrum predicted by the standard ΛCDM cosmological

model is always largest inmQLC-II and smallest inmLQC-I.

In particular, it is worth emphasizing that with the

simplest zeroth and second order adiabatic initial states

set in the contracting phase, one can obtain an angular

power spectrum that is close to the angular power

spectrum predicted by the standard ΛCDM cosmological

model even at low l multipoles from mLQC-I by using the

hybrid approach. As compared with the results in LQC

and mLQC-II, similar results between mLQC-I and

ΛCDM are very striking since no special choice of the

initial states of the linear perturbations is required. In this

sense, mLQC-I seems to be a more favorable construction

of the quantum cosmological theory from LQG, and the

hybrid approach also appears easier to reconcile with the

observations. Finally, with the fourth order adiabatic

initial states, LQC results in an angular power spectrum

with the least deviation from the angular power spectrum

predicted by the standard ΛCDM cosmological model at

large angles. In this case, the results from mLQC-I are less

satisfactory due to the spike in the intermediate regime.

These results are very interesting since by construction

mLQC-I follows the procedure in LQG more directly than

any other considered model.

To conclude, our investigations on the angular power

spectrum predicted by LQC and mLQCs models in both the

dressed metric approach and the hybrid approach reveal

that quantization regularization and quantum ambiguities

are not merely theoretical artifacts. Instead, they can lead to

potential signals that can in principle be compared and

tested by direct observational data in the future. Although

with the commonly used adiabatic initial states, none of the

models and approaches actually resolve the anomalies in

the angular power spectrum at large angular scales [80], the

similarities between the angular power spectrum predicted

by mLQC-I and the standard ΛCDM cosmological model

point out a possible new direction to resolve this issue. In

particular, there might be a certain regularization that can

lead to a quantum cosmological model in which the angular

power spectrum is naturally suppressed by setting general

initial states in the contracting phase. It will be interesting

to examine these models with special initial states, as

considered earlier for standard LQC, to explore whether

modified versions of LQC can result in an alleviation of

anomalies in CMB.
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