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UNIQUENESS, MIXING, AND OPTIMAL TAILS
FOR BROWNIAN LINE ENSEMBLES WITH GEOMETRIC AREA TILT

PIETRO CAPUTO AND SHIRSHENDU GANGULY

We consider noncolliding Brownian lines above a hard wall, subject to geometrically growing self-
potentials of tilted area type. The model was proposed by Caputo, loffe, and Wachtel as the scaling limit
for the level lines of (24-1)-dimensional solid-on-solid random interfaces above a hard wall. In contrast
with the well-studied Airy line ensemble, a central object in the KPZ universality class, the presence
of growing area tilts renders the model nonintegrable. A stationary infinite-volume Gibbs measure was
previously constructed as a limit of finite line ensembles on finite intervals with zero boundary conditions.
We refer to this as the zero boundary state. Some preliminary control on its fluctuations was given in
terms of first moment estimates for one-point marginals and for suitable curved maxima. Subsequently,
Dembo, Lubetzky, and Zeitouni revisited the case of finitely many lines and established an equivalence
between the free and the zero boundary states. We develop probabilistic arguments to resolve several
questions that remained open. We prove that the zero boundary state is mixing, and hence ergodic, and
establish a quantitative decay of correlation. Further, we prove an optimal upper tail estimate for the top
line showing that it behaves approximately as a Ferrari—-Spohn diffusion, which corresponds to the process
obtained by neglecting all interactions with lower lying lines. Finally, we prove that there exists a unique
uniformly tight Gibbs measure, which implies uniqueness of the stationary state, and convergence to this
state of the free boundary ensembles as the number of lines and the domain size are taken to infinity in an
arbitrary fashion.
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1. Introduction

We develop a unified probabilistic framework that will enable us to answer multiple open questions about
area-tilted line ensembles. Before diving into the precise model of interest, we start with a broad overview
of what line ensembles are, why they are important, and some of the recent developments in their study.
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Line ensembles (LEs) are a collection of random curves which occur rather naturally in many models of
interest, encoding useful information. They could be both discrete or continuous. In certain cases they are
natural in the prelimit as well as admit canonical scaling limits. A classical example is Dyson Brownian
motion (DBM) which describes the motion of eigenvalues of an n xn Gaussian unitary ensemble (GUE) as
their complex Gaussian entries perform independent (up to Hermitianness) Brownian motions. Remarkably,
an alternate description which is significantly more probabilistic states (see [32]) that DBM is a collection
of independent Brownian motions conditioned to not intersect. This immediately implies that they possess
a simple yet powerful Markov property, namely, the conditional law of a finite subset of the curves on
a compact interval given everything else is given by independent Brownian bridges between the given
boundary endpoints, constrained to not intersect and to avoid the remainder of the boundary data.

It turns out that this model is determinantal via the Karlin-McGregor formula which opens up the door
to performing asymptotic analysis. Indeed such formulas along with probabilistic methods were employed
in [13] where the Airy line ensemble was constructed as a scaling limit of the DBM. The aforementioned
resampling invariance property passes to the limit which provides a varied set of tools to study this canonical
family of random curves whose top line is the parabolic Airy; process. Via the Robinson—-Schensted—Knuth
correspondence, the various lines in the Airy LE together are expected to describe the scaling limit of the
asymptotic free energy of disjoint polymers in various (14 1)-dimensional models believed to be in the
Kardar—Parisi—Zhang (KPZ) universality class. However, currently, the rigorous proof of such connections
exist only for a handful of models possessing exactly solvable properties. One of the key phenomena
observed in such models is a competition between Brownian fluctuations and the nonintersection constraint
leading to the fluctuation exponents characteristic of KPZ universality [12; 17; 18; 31; 33].

The Markovian property, in this context referred to as the Brownian—Gibbs property, also casts such
LE as special cases of infinite-volume Gibbs measures which are ubiquitous in statistical mechanics and
probability theory. Gibbsian line ensembles are a special class of Gibbs measures, which have received
considerable attention in the past two decades owing, in part, to their occurrence in integrable probability;
see, for instance, [2] for results on tightness for such line ensembles.

Often in applications one needs a precise understanding of various observables including one-point
tail estimates, decay of correlations and so on. These have been studied in great detail recently for the
Airy LE; see, e.g., [1; 6; 13; 15; 16]. Besides probabilistic ideas, as already indicated, integrable features
such as being determinantal is usually a crucial input in the analyses. In the case of the Airy LE, the
determinantal property stems from an underlying exchangeability of the prelimiting model of noncrossing
Brownian motions leading to the Karlin—-McGregor formula. For a recent set of results which bypasses
the use of such determinantal properties, see [25].

Low-temperature level curves and entropic repulsion. Another class of line ensembles, which is indeed
our focus, arises naturally by considering the local restrictions of level curves of discrete random interfaces.
Perhaps the most canonical example comes from the low-temperature three-dimensional Ising model with
a hard floor, with all positive boundary conditions except the floor where it is entirely negative, leading to
an interface between the two phases. This is an example of entropic repulsion, which for low-temperature
(2+1)-dimensional crystals above a hard wall has been the subject of extensive study in statistical physics.
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While the unconstrained surface of the crystal would typically be rigid at height 0, the presence of a
wall pushes the surface upwards to increase its entropy (i.e., to allow downward fluctuations), to a height
which typically diverges logarithmically with the side length L of the box. A rigorous study of this
phenomenon in the (2+1)-dimensional solid-on-solid (SOS) model — a low-temperature approximation
of the three-dimensional Ising model — dates back to Bricmont, El Mellouki and Frohlich in 1986 [4]. A
rather refined picture was established later in [7] where among other things it was shown that the model
admits a sequence of nested level lines each encompassing a large macroscopic fraction of the sites; see
also [8] for counterpart study of other gradient interface models. As a result of the entropic repulsion, the
energy cost of the i-th curve is linear in the area enclosed between the i-th and (i+1)-th curve with a
prefactor A’, for some constant A > 1, which grows geometrically with i.

Such level curves can be analyzed to some degree using cluster expansion techniques, see [7], but
obtaining their precise limiting fluctuations remains a challenging task; see, however, [5] for some
promising recent progress. To construct a candidate for their scaling limit, in [9; 10] the authors
introduced and initiated the study of a model consisting of an unbounded number of nonintersecting
Brownian bridges above a hard wall, and subject to geometrically increasing area tilts. Thus the individual
lines face stronger and stronger pressure towards the wall as one goes down the stack (that is, as their
index is increased). We will call this model the A-tilted LE. The recent work [35] proves that the A-tilted
LE is the scaling limit of the discrete counterpart consisting of area-tilted nonintersecting random walks.

A natural way to create infinite-volume limits is to take finite systems on compact domains with
boundary conditions and then pass to a limit provided it exists. Thus important questions concern
existence of such limits and their dependence on boundary conditions, and their properties such as
ergodicity, decay of correlation and tail behavior. For the Airy LE many of the above questions have
been thoroughly investigated, with most of the arguments relying substantially on integrable inputs. See
also the recent results in [20; 22] showing convergence to the Airy LE of the 1-tilted LE, i.e., when
A =1, which admits a determinantal structure as observed in [28]. In contrast, in absence of any algebraic
structure, for the A-tilted LE with A > 1, despite the initial results in [9; 10] and further progress made
recently in [19], all of the above questions and others have remained largely open.

We develop a unified probabilistic framework primarily relying on resampling and coupling ideas to
resolve several of the above questions.

Before moving on to the next section devoted to setting up the definitions leading to the statements of
our main theorems, for the ease of readability we offer a quick glimpse of what we aim to establish. This
includes

« sharp tail estimates (addressing both upper tail as well as entropic repulsion) which will also be a
crucial input in the remainder of the arguments;

« ergodicity and mixing properties of the infinite LE constructed in [10] as well as quantitative decay
of correlation estimates;

« uniqueness of A-tilted LEs under a uniform tightness assumption, which in particular implies that
there exists a unique stationary Gibbs measure such that the n-th line converges to zero as n — oo.
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We now move on to the precise description of the model and the main theorems. In the forthcoming
section we set up the technical apparatus, introduce the Gibbs property, as well as review previously
known facts. This will provide the necessary background for the main results that will be presented
in Section 3.

2. Setup and known facts

‘We start with the formal definition of LEs.

2.1. Line ensembles with geometric area tilts. For { <r,n e N, and x, y € R", let B?rz be the unnor-

malized path measure of n independent standard Brownian bridges B = (B'(s), . B"(s)) sele,r],
with boundary data B’ (¢) = x; and B'(r) = y;, i = 1, n As a convention, we write [B 2 also for
the corresponding expectation, so that the total mass of [B , satisfies
X,y 1 B fozl\%
B, 7, [1]=ge(x.y)i= ——— ¢ %0,

Qr(r—0)n/?

For n € N, define the simplex
={xeR":x;>--->x, >0} 2-1)
We consider path measures that are supported on the set Qn ¢, of nonintersecting n-tuples X,

Q-i-

n;l,r

={X:X(@) eAl,Vie, )},

and such that the i-th path X’ is subject to a potential of area tilt type of the form

,
exp(—aki_l/Xi(s)ds), i=1,...,n,
¢

where a > 0 and A > 1 are fixed constants. Thus, givenn > 1,a > 0,1 > 1 and x, y € A;}, we consider
the partition function

Z,0 (@ 0) =B [lgy et Xin X O, 2-2)
and the associated probability measure [P’n .. r[ | a, A] defined by the expectations

Poy LF(X) [ a, ] = By F(X) 1gy, e HIHTX0®) 23)

X,y
Zn;z,r ((1,
where F is any bounded measurable function over the set of n-tuples of continuous functions from [£, r]
to R. The measure I]j>£ 7L+ 1 a, A] will be referred to as the n-LE w1th (a, ))-geometric area tilts with
boundary conditions (x y) on the interval [£, r]. We remark that [P’n .. r[ | a, A] is well defined for all

X,y € AT, Indeed, ifx,ye A one has

B, (2},,) >0,

n;l,r
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and therefore Z-. et r(a A) € (0, 00). Whlle this does not apply to all x, Y€ A , the closure of the
set A C R", it is still possible to define IPn .. r[ | a, A] in these cases by a limiting procedure.1 Ifr=1,
then Pn Z .-l a, 1] has an explicit determinantal form in the limit [£, r] — R, and is referred to as the
Dyson-Ferrari—Spohn line ensemble; see [28].

Two cases of boundary conditions are of special interest. The first one corresponds to zero boundary

conditions, and is obtained by taking x = y = 0 above:

PO, [-la, 2] = p22 [-]a, Al (2-4)

n;l,r n;l,r

The second is the case of free boundary conditions defined by

Pl JF(X) a2 i= ———— f BIFX) gy, e XU O S gray,  (2-5)
n [ r(a )\.) A, x A, "
where
2!, @ —/ 77 (a, ) dxdy,
Afxatr -
and dx, dy denote Lebesgue measure on R". For a proof that [P’f - | a, A] is well defined, that is,
Z,. z L@, A) €(0,00), forall a > 0, A > 1, see [9, Appendix A].

To simplify the notation, when [£, r] = [—T, T] we will often write
wh =Pl gl laal, ph =P gl la Al (2-6)

for the above probability measures. In what follows a and A will often be omitted from our notation.
We assume the parameter A > 1 to be fixed once and for all. Moreover, whenever a is not explicitly
mentioned, it will be tacitly assumed that a = 1.

2.2. The stationary measure. For n =1, note that :“(1) 7 1s simply a Brownian excursion B(s), s € [-T, T'],

T
exp(—/ B(s) dt),
-T

and is known to converge weakly, as T — oo, to the law of a stationary process known as Ferrari-Spohn

with an area tilt

diffusion, which we denote by {Ygs(?), ¢ € R}, such that Yrs(0) has density proportional to
Ai(V2x — 1) 120, 2-7)

where Ai(-) is the Airy function and —w; denotes its largest zero. This was first constructed in [23] as a
scaling limit of the relative height of a Brownian bridge constrained to be above circular or parabolic
barriers, and then it was shown to be the scaling limit of a large class of area-tilted random walk
models [27]; see also [26]. Further, across [24; 29] this was shown to also arise as the limit of interfaces
in the low-temperature Ising model in the critical prewetting regime.

IThe finite-dimensional convergence is a simple consequence of the monotonicity in the endpoint data while the tightness can
be obtained as in [10, Section 2] whose estimates continue to hold uniformly for all boundary data as long as they are bounded. In

the determinantal case of Dyson Brownian motion, a similar argument appears in [13] where the finite-dimensional convergence
is argued using convergence of the explicit determinantal kernels.
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However, we will focus primarily on the case of large n or n = co. Results from [9; 10] ensure the
tightness of the measures u,{j and MS,T asn — oo and T — oco. As observed therein, monotonicity (the
precise statement appears in Lemma 2.3 below) implies that there is a well-defined, time stationary, infinite

line ensemble ” describing the weak limit of MS - the limit n, T — oo being taken in an arbitrary fashion,

ul= lim ul .
n,T—o00 ’

We often refer to u° as the zero boundary condition A-tilted line ensemble, or simply the zero boundary
A-tilted LE or sometimes, for brevity, the zero boundary LE. In particular, for every fixed n € N, there
exists a time stationary, n-LE

py = lim g 7 (2-8)

T—o0

describing the weak limit of ,UUS’T as T — oo, and such that M?, — 1 weakly, as n — 0o. Recently,
Dembo, Lubetzky and Zeitouni [19] showed that for every fixed n € N, one has the weak convergence

o= lim ) o, 2-9)

T—o00

for the free boundary ensemble as well. It follows that, taking 7" — oo first, and then n — oo, the free
boundary measures /,L;{’T also converge to the stationary field °. We refer to Theorems 2.10 and 2.11
for more formal statements.

As a consequence of our uniqueness result mentioned in the introduction, it follows that sending n, T' to
infinity in any arbitrary fashion also yields the same result; see Corollary 3.8. Concerning the measure y°,
we shall also address other questions that were listed as open problems in [9; 10], namely ergodicity and
decay of correlations.

The above facts, combined with PDE theory, also show that the measure ,ug can be identified with the

stationary diffusion process on A" associated to the Sturm Liouville operator

n

L, = Z (%8; —Ai_lxi), X € A;f,
i=1

where AT is defined in (2-1). More precisely, 10 is the law of the stationary Langevin diffusion with
invariant distribution ®2(x) dx on Af, where @, is the Krein—Rutman eigenfunction of L, on AT with
Dirichlet boundary condition on dA; see, e.g., the discussion in [28, Section 2.3] for the special case
A = 1. It is thus natural to identify u° as the law of an infinite-dimensional diffusion process, a point of
view that we hope to investigate further in future work.

2.3. Brownian—Gibbs (BG) property for area-tilted measures. As alluded to multiple times already, a
crucial tool for us will be a sampling invariance property enjoyed by the ensembles defined above. This
extends the notion of the Brownian—Gibbs property introduced in [13] to paths with area tilts. We refer to
it as the Brownian—Gibbs property of the line ensemble. We start by recalling the basic definitions. A
more comprehensive treatment can be found in [13; 14; 16].
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Let the spaces AT be defined as the n = oo version of the set A" given in (2-1). The sample space
is 2 = C(R, A}), the set of continuous functions f : R AT, equipped with the topology of uniform
convergence of any finite number of paths on compact subsets, and with the corresponding Borel o-
field B. The coordinate maps X € Q +> X' (t) are viewed as the position of the i-th particle at time ¢.
Following [13], for each n € N, and time interval [£, r] C R, define the internal and external o -algebras

B,.,,=0c(X'(t):t €, r)andi <n),

B¢, =o(X'(t):eitherr ¢ (£, r) ori > n).

n;l,r

Given a > 0, A > 1, an interval [£, r], an integer n € N and a continuous function 4 : R — R, we write
[Eﬁ% L+ | h] for the expectation of the n-line ensemble with floor 2, which is defined as in (2-2)—(2-3)

with the set Q:{ ¢, replaced by

Q+,h — QJr

n;l,r n;l,r

N{X"(s) > h(s),VYs € (¢, r)}.
Let also €2, = C([£, r], AY) denote the set of paths in the interval [£, r].

Definition 2.1 (A-tilted LE). A probability measure [° on €2 is said to have the Brownian—Gibbs (BG)
property with respect to (a, A)-geometric area tilts (or in short simply the BG property) if for any bounded
measurable F : ¢ » — R, the corresponding conditional expectations E[ - | B, 1 satisfy

ELF | B, 1 =EX, O X Op( x| x0, (2-10)
P-a.s. for any —0o < £ < r < oo and n € N. In (2-10), we use the notation X=" = (X!, ..., X") and

X>" = (X" X"*+2 ). A probability measure P on Q with the above Brownian—Gibbs property is
called a A-tilted line ensemble, or simply a A-tilted LE.

If P = 1 denotes the zero boundary A-tilted LE, that is, the weak limit of MS,T as discussed in
Section 2.2, then it was shown in [10] that P has the BG property. A standard argument allows one
to show that A-tilted measures also satisfy the strong BG property, namely the property (2-10) when
the deterministic domain identified by »n lines and the time interval [¢, ] is replaced by the stopping
domain identified by n lines and the time interval [t¢, 7,], where 7, and t, are left and right stopping
times, respectively (i.e., the event {t; <t} N{r, > s} isin BZ;I,S for all s and ¢); see [13, Lemma 2.5].

Finally, note that the BG property only specifies the conditional law of finitely many paths on a finite
domain. Thus X ~ u° satisfying the BG property immediately implies that for any constant ¢ > 0, the
random element X +c = (X' +c¢);>1 also satisfies the BG property (this uses the fact that the area increase
for each curve on a given finite domain is deterministic along with the fact that the Brownian bridge
density is invariant under shifting by a constant). This can be also thought of as raising the hard floor
from O to c. Generalizing further, one can raise the floor to any given g : R — R, and in particular if,
say, g is bounded and regular enough, one can in principle construct a BG measure where the floor is g
by monotonicity and tightness arguments.

However, postponing the investigation of such LEs to the future, throughout this article we will be only
considering LEs satisfying the following property.
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Definition 2.2 (asymptotically pinned to zero). A probability measure P on €2 or the corresponding LE is
said to be asymptotically pinned to zero if the following holds. For any ¢ > 0 and T € R, there exists
k =k(T, ¢) such that
P( sup X¥(s)<e)>1—ce. (2-11)
se[~T,T]

Note that any finite LE (X'(-))1<;<, can be naturally seen to satisfy the asymptotic pinning condition
by introducing an auxiliary curve X"*!(.) = 0. Further, estimates recorded later (see, for instance,
Remark 2.9) immediately imply the unsurprising fact that 4° is indeed an example of a BG measure
asymptotically pinned to zero.

2.4. Monotonicity and scaling. Two key tools for the analysis of A-tilted line ensembles are monotonicity
and scaling. Monotonicity is expressed by the following stochastic domination properties. For vectors of
continuous functions f = (fh oo M, g§= (g',...,¢" on[£, r] C R we define the partial order

<8 = fi@t)y<g'(t) forall re[l,rlandi € [n]. (2-12)

For every n € N and £ < r, consider the ensemble I]:Di;%’r[- |h=, hT, rl of n lines on the interval [£, r],
parametrized by boundary conditions x, y € At apairh=(h~, h"), hi (hi i=1,...,n), where for
eachi, h;, hi+ are nonnegative continuous functions, called respectively the i-th floor and the i-th ceiling,
satisfying h;” < h;L and

- — + + .
hig  <h;, hi,<h, i=1,...,n—1,
and an n- tuple of nonnegative continuous functions p = (p1, ..., px), called the area tilts. The line
ensemble [P’ s [-1h ™, hT, p] is defined by the partition function
X,y S [T i
Zn L, r(h’ h+ p) - Bg r []]-h <X<h+]]-9+ . e ’=l fe piX (t)dt],

Stochastic domination is defined w.r.t. the partial order (2-12). For two measures p, v on paths X, Y,
we write p > v if there exists a coupling I' of (u«, v) such that I'(X > Y) = 1. The following lemma is
proved in [9, Lemma 1.4], which in turn is based on [13, Lemma 2.6], where the basic monotonicity
property of nonintersecting Brownian line ensembles was first established.

Lemma 2.3. [fx <u,y <v,h™ <g~,h" < g™, and p > k, then

Poo L 1A Bt pl<Prt [-1g7. 8" kl.

Remark 2.4. Lemma 2.3 is stronger than [9, Lemma 1.4] since it allows each path to have its own floor
and ceiling. However, the proof can be extended with minor modifications. Moreover, the statement
in Lemma 2.3 extends, with the same proof, to the case of noncontinuous ceilings of the form At =
hT1r + ool where AT is a continuous function and I is a finite union of intervals contained in [£, r],
and I'“ = [¢, r]\ I". The same extension holds for floors of the form 2~ = h~ 1 where A~ is a continuous
function and I' is as above. Moreover, the lemma generalizes easily to the case of pinned fields obtained
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by taking ceilings of the form ht = oolpre where I = (U, {si} is a finite collection of points s; € [£, r].
The latter case corresponds to independent ensembles with zero boundary conditions at the points s;.

Brownian scaling induces a useful scaling relation for A-tilted line ensembles that may be summarized
as follows. Consider the following mapping of an n-tuple X of paths on an interval [—A%/3T, A*/3T] to

an n-tuple Y of paths on [-7, T]:

Y( )—L/ 323, (2-13)

The next lemma says in particular that if Y is related to X via (2-13), then Y has distribution [P’S,T[ -lai, A]
if and only if X has distribution [P’g sl 1 a, 2], and the same holds for the free boundary ensemble.
See [9, Lemma 1.1] for a proof.

Lemma 2.5. Foralln e N, T >0,a >0, A > l,andg,yeA;{,

x, _ A1y A 13y
Z,: 02203 12213 (a,r) =2 n/3zn or *(ak A).
Moreover, for any bounded measurable function F on Qn O

[FX) lar, Al =P o5 0 FOTPXGPP ) [ a, 4],

an

where P° - | a, A] is the zero boundary measure defined in (2-4). The same expression holds for the

[- | a, A] defined in (2-5).

n@r

free boundary measure [P’n or

The following remark will be useful in several later applications.

Remark 2.6. Let Xi denote the i-th line of the ensemble ,uf r = IP,{ _rrl | a,A]. The above
lemma, combined w1th the monotonicity in Lemma 2.3, shows that X () is stochastically dominated
1/3y1
by A~V X107
imposed on X,ZI’T and then by applying the scaling relation. More generally, by removing all top k paths

X ff}l is stochastically dominated

(A%/3.), even conditioned on X i,r- This follows by first removing the ceiling Xn’T

and applying k times the scaling relation, one has that for any n > k > 1,

by A7k x! AZk/3.). The same statement continues to hold for 4 ;..

n—k, )\2/(/37"(

2.5. Confinement estimates. Let X ,ll’T denote the top path in the free boundary ensemble Mrle We use
[- ]+ to denote the positive part. The main confinement estimate from [9] can be rephrased as follows.

Theorem 2.7. There exists a constant C > 0 such that for alln e N, T > 0,

E[ me;xﬂ[x;j(r) -yl <C, (2-14)

te[—

where ¥ (t) = C log(1 + |t|). In particular, for alln e N,and T > S > 0,

E[ r[na}?x x! 7M1= C1 +log(1+9)).
te

The statement of Theorem 2.7 was proven in [9] with the function 1 (¢) replaced by |f|*, where
o > 0 can be taken arbitrarily small; see [9, Theorem 3.1]. However, a careful check of the steps in that
proof reveals that the upgrading presented in (2-14) requires only minor adjustments; this is indeed a
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consequence of the exponential tail established in [9, Section 3.3]. Moreover, minor modifications of the
argument leading to (2-14) can be shown to prove this slightly stronger bound: for every S, T > 0,
E[ max [ s =¥ ®]4] < (2-15)
te[—S.T
where X, ! _g.r 1s the top path in the free boundary condition ensemble [P’f ' _s.rl- [ 'a, 2] on the in-
terval [— S T]. Asa corollary, we state bounds on the height of the k-th path Xk (?) in the free
boundary ensemble un r» for any k > 1, which exploit the uniformity along translations expressed by

the estimate (2-15). The next statement follows directly from the stochastic domination in Remark 2.6
and (2-15). As a convention, we set Xﬁ}l uw)=0ifu¢[-T,T].

Corollary 2.8. There exists a constant C > 0 such that for all integers k >0,n > k+ 1, and for all T > 0,

sup E[LX5 5 (D] < CA7+°,
teR

Moreover, forall T > S > 0,

sup E[ max Xk+‘(z+u)] < CATF3(1+1log(1 +[SA%*73))).
teR  u€[=S.§

Remark 2.9. By monotonicity, Corollary 2.8 applies to the zero boundary ensemble MS,T as well.

Moreover, by uniformity in n, T, and appealing, for instance, to Fatou’s lemma, the same uniform

estimates continue to hold for the (k+1)-th line of the zero boundary A-tilted LE ul.

Finally, for later reference we collect below the main findings from [10] and [19] concerning infinite-
volume measures that we already alluded to in Section 2.2.

Theorem 2.10 [10, Theorems 1.3, 1.4, and 1.5]. For any k, the joint law Of{X,i,T}lgisk under /’L;{,T
or MS,T forms a tight sequence as n, T — 00, and any weak limit point is a Gibbs measure in the sense of
Definition 2.1. Moreover, /LS’T has a well-defined stationary limit u°, the zero boundary \-tilted LE.

Theorem 2.11 [19, Theorem 1.1]. Foranyn € N, ,un 7 and ,un 7 have the same weak limit an’ as T — oo.
In particular, takmg first T — oo and then n — oo one has the weak convergence of ,un 7 to the zero
boundary LE 1°.

Given the above preparation, we are now in a position to state our main results.

3. Main results

We first start with the properties of 11° before discussing other boundary conditions.

3.1. Optimal tail behavior. The first result concerns the one-point tail behavior which will also serve
as a crucial input in the proofs of several of the forthcoming results. It is worth beginning by drawing
an analogy with the known tail estimates for the top line of the Airy LE, namely the Airy, process. It
is known that the one-point distribution in this case is the GUE Tracy—Widom distribution Frw (see
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[34; 37]) which has the tail behavior

Frw((t, 00)) = exp(—%‘p/z + O(log t)), as t — oo, G3-1)
Frw((—o0, —t)) = exp(—%t3 + O (log t)), as t — oo.

Moreover, letting Yrs( - ) denote the stationary Ferrari—-Spohn diffusion with one-point marginal given
by (2-7), the asymptotic formula for the Airy function Ai(z) = exp((— % +0(1))z3/ 2), as z — 00, shows that

P(Yes(0) > 1) = exp(— (22 +o(1))*?), 1 — oo. (3-2)

In the case of infinitely many lines, as recorded in Theorem 2.7 and Corollary 2.8, estimates from
[9; 10] captured the right scale of fluctuation for the A-tilted ensemble 1°. Here we establish an essentially
optimal upper tail estimate for the height of the top path, showing that the Tracy—Widom/Ferrari—Spohn
upper tail (3-2) continues to hold at least up to first order even for 1°, and using scaling arguments this
extends to every subsequent path. On the other hand, the lower tail behavior for 11° cannot be expected to
be the same as that of Airy; because of the entropic repulsion induced by the hard floor constraint. For
the Ferrari—Spohn distribution, it is not too difficult to see that the probability of getting close to the floor
decays as

P(Yrs(0) < &) < &, (3-3)

since essentially it behaves in the same way as a Brownian excursion on a unit order interval. With
multiple lines, we establish that the lower tail diminishes faster than polynomial; see Theorem 3.3.

Let X' denote the i-th line in the zero boundary A-tilted LE 1°. By monotonicity, X'(0) domi-
nates Ygs(0), and therefore (3-2) is a lower bound on the tail probability P(X'(0) > 7). The next result
proves that, asymptotically, it is also an upper bound.

Theorem 3.1 (upper tail). The top line in the zero boundary A-tilted LE satisfies
PX'(0) > 1) = exp(— (22 +o(1))*?), - oo. (3-4)

We remark that a minor refinement of our ideas would allow us to improve the above statement with
more precise information on the coefficient ¢ = ¥ + o0(1), by including logarithmic correction terms as
in (3-1). However, we refrain from pursuing that for the sake of exposition. Also, as a straightforward
consequence of Theorem 3.1 and Remark 2.6 one obtains the following tail estimate for the k-th path:

PXAH(0) = 1A=k < exp(—(%ﬁ +o(1))*?), 1 oo,

Note however that one should expect a sharper bound than the above for larger k, since the devia-
tion X*¥*1(0) > ¢ for the (k+1)-th curve forces the k curves above it to deviate by the same amount. We
record this improvement in the following corollary whose proof is also relatively straightforward from
Theorem 3.1.

Corollary 3.2. For any A > 1, there exists an increasing sequence c = cy(A) with ¢y = %E and

Ck = Coo = %ﬁ%, such that for all fixed k > 0, the (k+1)-th line in the zero boundary A-tilted LE
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satisfies
P(X*10) > 1473 <exp(—(cx +o(1)?), 1 — oc.

Our next result provides a lower tail estimate quantifying the repulsion induced on the top path X! by
the multiple lines below it.

Theorem 3.3 (entropic repulsion). There exists a constant C = C, > 0 such that
P(X'(0) <) < eCle/2,

It is worth noticing the contrast with the polynomial tail displayed by the Ferrari—-Spohn diffusion
in (3-3), where the only repulsive effect is due to the hard wall. Note also that the right-hand side above
can be rewritten as exp(—C 10g2(1 /€)) which bears some resemblance with a log normal distribution.

3.2. Ergodicity and mixing properties. We next turn to the study of the ergodic properties of 1, and let
the corresponding stationary, infinite line ensemble be X. For any ¢ € R, let 7; denote the shift operator
defined by 7, X (-) = X (¢+ -). Let B denote the Borel o -field generated by the finite-dimensional cylinder
sets (see, e.g., sets appearing later in (4-2)), and write ;B ={T_,X € B}, B € B.

For every fixed n the stationary line ensemble 10 = limr_, « ,Uvgj with n lines is known to have an
exponential decay of correlations, but no quantitative dependence on n is known; see [9; 19]. Here we
address the mixing and ergodic properties in the case of infinitely many lines.

Theorem 3.4. The line ensemble ,uO is mixing, that is, for every A, B € B,
lim u*(TANB) = u’(A)u’(B). (3-5)
—00

In particular, 1° is ergodic.

The corresponding result for the Airy LE was established in [15]. A natural quantitative version of the
above result would seek to establish the decay of correlation of, say to begin with, the top line. Parallel
inquiries have been undertaken in the case of exactly solvable models; see, for instance, [36; 38] for sharp
correlation estimates for the Airy, process. A more recent work [3] considers the related Airy; process.
Towards this we have the next result.

Theorem 3.5. There exist constants ¢, C > 0 such that, for all t > 0,
|Cov(X'(0), X' (1))| < Cexp(—c(logt)*/). (3-6)

Here we use the notation Cov(f, g) = E[ fg]—E[ f] E[g] for the covariance. We note that by translation
invariance Theorem 3.1 implies that all moments of X!(s) are finite for all s € R. In particular, the
covariance in (3-6) is well defined. Our proof will in fact show that the above estimate holds for X ke
for any fixed k.

Note that the above is significantly weaker than the exponential decay of correlation exhibited by the
Ferrari—Spohn diffusion. While one may speculate on the basis of geometrically decaying nature of the
curves, that a similar correlation structure might be expected for u” as well, pinning down the correct
order of correlations in this case remains an attractive open problem.
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3.3. Uniqueness. Classifying Gibbs measures and in certain cases proving their uniqueness is an important
problem in statistical mechanics. As already alluded to in the introduction, taking limits of finite-volume
measures with varying boundary conditions is a natural recipe to construct infinite-volume measures which
leads to important questions about whether the limits depend on the sequence of boundary conditions.
For instance, for the A-tilted LE, the question of uniqueness of the limit points of the free boundary
measures M;{,T as n, T — oo has received some attention [10; 19]. Our final main result addresses these
questions in rather general terms. We begin with a definition. Recall that a A-tilted LE is a BG measure

as in Definition 2.1.

Definition 3.6. A i-tilted LE X = {X'};> is said to be uniformly tight (UT) if, given any & > 0, there
exists C > 0 such that, forall t > 0,
P(X'(1)=C) <e.

Note that while any stationary line ensemble is by definition uniformly tight, the above definition also
allows nonstationary ensembles. Finally, recall the notion of being asymptotically pinned to zero from
Definition 2.2.

Theorem 3.7. Suppose v is the law of a UT A-tilted LE which is also asymptotically pinned to zero. Then

v =pu’.

An immediate consequence of the above theorem is that there exists a unique stationary, asymptotically
pinned to zero, A-tilted LE. Finally, we record that a straightforward consequence of the above result is
the uniqueness of the line ensemble with free boundary conditions.

Corollary 3.8. The finite LE with free boundary conditions /1,,{] from (2-6) satisfy

lim g = p,
n,T—o0 ’

withn, T — oo arbitrarily.

Indeed, Corollary 3.8 follows from the fact that any limit point of /,L,{T must be UT. To see this,
recall the strong confinement estimates for free boundary ensembles with finitely many lines stated in
Corollary 2.8. By passing to the limit one has that such estimates continue to hold for any limit point.
Such a property will be termed uniform confinement (UC) in the upcoming Definition 5.1, and will play
a key role in our arguments. It is easy to see that UC implies UT and asymptotically pinned to zero, and
thereby from Theorem 3.7 we have Corollary 3.8. On the other hand the reverse implication is much
harder, and a significant part of our work is devoted to its proof; see Theorem 7.1 below.

Note that it was mentioned in the discussion preceding Definition 2.2 that for any bounded continuous
function g, a BG measure with floor g could be made sense of if g is regular enough and bounded. This
would then be UT as well. Further, such a measure could also be constructed if g is not growing too fast.
In that case it would yield a BG measure but a non-UT measure. However, perhaps more intriguing is the
possibility of the existence of non-UT, yet asymptotically pinned to zero, A-tilted LEs. We anticipate that
the strategy we develop for the proof of Theorem 3.7 plays an important role in the analysis of such cases
as well: in the companion paper [11] we combine these ideas with a detailed analysis of nontranslation
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invariant versions of Ferrari—Spohn diffusions to obtain a complete characterization of all A-tilted LEs
that are asymptotically pinned to zero, revealing the existence of a two parameter family of non-UT BG
measures describing line ensembles whose top line wanders parabolically to infinity.

3.4. Proof ideas. We end this section with a brief overview of the proofs. As already indicated, in
contrast to past work on Airy LE, in absence of any integrability, our arguments do not have access to
algebraic inputs and are completely probabilistic in nature. In the upcoming section, we present a key
observation which is the starting point of many of our arguments, and already in its vanilla form yields a
quick alternate proof of Theorem 2.11.

In its core the observation is simple. Note that by monotonicity, for any n, 7', there exists a coupling
of the measures u,{ . and ﬂg,T such that deterministically the former dominates the latter. The crucial
observation then is that one can also simultaneously construct another coupling such that the larter
dominates the former, at least on a given compact interval, say around the origin, with high probability,
provided that T is large enough compared to n. To accomplish this we sample two independent copies
of /L’{T and M’S,T’ Given the samples, all one needs to ensure is the existence of a stopping domain
(see Figure 1) where the boundary data for the latter dominates the former. Since then one can simply
resample both ensembles on this domain (the strong BG property from Section 2.3 allows this) under
the monotone coupling and on account of the reverse ordering of the boundary data, the zero boundary
ensemble will dominate the free boundary counterpart.

Note that the existence of the stopping domain relies on the independent fluctuations of the two
ensembles to find a random time such that the zero boundary ensemble is above the free ensemble. This
necessitates 7 to be large enough as a function of n to allow enough room to fluctuate. The order in which
limits are taken in Theorem 2.11 permits taking 7 much larger compared to n and hence this strategy
suffices. On the other hand, for stronger claims such as Theorem 3.7 and Corollary 3.8, this does not
work as n can be in principle infinite for finite 7. This is where we need to refine our approach. A finer
coupling of the free and zero boundary measures is also at the heart of our ergodicity results Theorems 3.4
and 3.5. Without diving further into details let us only mention that a crucial input at this point is a strong
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Figure 1. An illustration of the resampling argument outlined. On the left, we have two inde-
pendent samples of Mg,T (pink) and ,u,fT (green) with n = 4. The stopping domain where the
pink data dominates the green data is denoted by [y, 7,]. On the right, we have the resampled
ensembles (denoted by orange and blue, respectively) under the monotone coupling causing the
orange curves to deterministically be above the blue curves.
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one-point tail estimate for general uniformly tight ensembles. For the zero boundary ensemble this is
expressed by Theorem 3.1. To deliver such estimates we set up a bootstrap program, which is broadly
divided into two parts. The first part proves that a uniformly tight hypothesis (recall Definition 3.6) can
be upgraded to a uniform confinement property, a notion we introduce later (see Definition 5.1) which
essentially amounts to satisfying first moment bounds as in Corollary 2.8. In the second part, such first
moment bounds are then upgraded further to the sought tail bounds.

3.5. Organization of the article. In the upcoming section we implement the reverse coupling strategy
outlined above for an alternative proof of Theorem 2.11. Section 5 is devoted to the one-point tail estimate,
Theorem 3.1. We then investigate mixing properties and prove Theorems 3.4 and 3.5 in Section 6. The
argument developed in this section also allows us to prove Theorem 3.3. Finally, we prove Theorem 3.7
and Corollary 3.8 in Section 7 which also contains the proof of stretched exponential tail bounds under
the assumption of UT.

4. A first coupling argument

We introduce the vanilla version of the crucial coupling argument which as indicated in Section 3.4 will
be a key device in many of our arguments. While we will need refined versions of this in the proofs of
our main results, here as a warmup we introduce the key idea which already will suffice to provide an
alternate proof of Theorem 2.11.

In what follows @ = 1 and A > 1 are fixed, and the constants appearing below are allowed to depend
on their value, but they may not depend on other parameters. Let X,, 7 and Y, 7 denote the random lines
with law ,u;fj and MS,T’ respectively, that is, the n-line LEs on [—7, T'] defined in (2-6). By monotonicity
there exists a coupling of X, 7, Y, 7 such that X,, 7 > Y, 7 with probability one. The following coupling
lemma states that one can find another coupling such that if 7 is large enough then, in the bulk, the
inequality can be reversed with large probability.

Lemma 4.1. Foralln € N, and T > 0 there exists a coupling P, v of Xn.7 and Y, 1 such that
Por(Xnr () <Y, 7®),Vt €[-T/2,T/2]) > 1 —&(T),
for some e(T) — 0,as T — o0.

Proof. Let Y:’T denote the n-th path in Y, 7. For any u > 0, consider the stopping domain [z, (1), 7, ()]
defined by

() =inf{t > =T : Y'7(t) 2 u}, (W) =sup{t <T: Y ;(t)>u}
Consider now Y,f’ |» that is, the lowest path in the interval [—1, 1] with zero boundary conditions, and let
8u(1t) =P} 1(0) = ).

For any fixed n € N, and u# > 0, one has §,,(u) > 0. This is a direct consequence of the definition of the
ensemble MS 7+ We refer however the interested reader to Lemma 6.2 below for a quantitative lower bound
on such probabilities that will be crucial in some of our later arguments involving more refined couplings.
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Figure 2. The ensemble pinned at zero at gaps of 2 with finitely many lines (four in the figure)
owing to random fluctuations will be above the infinite ensemble with the same number of lines at
the random locations ty, 7,, as in the proof.

We seek to bound from below the probability
P(re(u) < -T/2, v, (u) > T/2).

By monotonicity, see Lemma 2.3 and Remark 2.4, we can replace Y, r by the ensemble obtained by
pinning all paths at zero height at the endpoints of the intervals

I]:[_T+2(.]_1)’_T+2,]]9 j:1»---ajmax’

where jmax = [T]. Call Yn,T this pinned process, and let Y" denote its n-th path. Note that each interval /;
has size 2 with midpoint s; = —T + (2j — 1). We consider the index j, defined as the smallest j such
that Y (sj) > u (see Figure 2). Since the intervals are independent, one has

P(te(u) = =T/2) < (1= 8, () T/H < e WA,
By symmetry, the same bound applies to P(z, (1) < T/2). It follows that
P(te(u) < =T/2, t.(u) > T/2) > 1 —2e 2 LT/4],

If we condition on {Y,, 7(¢) : t < te(u)} and {Y,, 7(¢) : t > 7, (u)}, then by the strong BG property we
may resample

{Xn,T(t) 1€ [Te(u), Tr(u)]}

by using the law with left boundary data x := Y, 7 (t,(#)) and right boundary data yi= Y, r(t(u). In
particular, we know that the boundary values are all higher than u.
Consider now an independent sample of X, 7, and define the event

A={X) (W) <u, X, p(t-w) <u},
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where X ,i 7 denotes the top path in X, 7. We can now construct the desired coupling P, 7. We start with
two independent sample of X, 7, Y, 7, as above. If the event

B=AN{t,(u) <-T/2, 7,(u) > T/2}

occurs then we resample {()_( nT @), Yor @)t €lte(u), 7 (u)]} according to the monotone coupling
which by construction guarantees that

Xnr(®) <Ynr (), te[=T/2,T/2], (4-1)

with probability one. If instead B does not occur, then we keep the independent samples of (X,.7, Y,.7)
everywhere. The previous observations and the strong BG property guarantee that this is a valid coupling.
Thus, we have shown that there exists a coupling P, 7 of (X, 7, Y, r) such that (4-1) holds with
probability at least 1 —g(n, T, u) —q’'(n, T, u), where
q(n, T,u) =2~ g'(n, T,u)=2 sup P(X, 7(t) > u),
t€[~T,T]

and we are using that the event A has probability at most 2 sup,¢_r 71 P(X rll,T(t) > u). Next we observe
that, for every fixed n € N, ¢'(n, T, u) — 0 as u — oo, uniformly in T. Indeed, this follows from
Corollary 2.8 and Markov’s inequality. Therefore, we may take 7 — oo and u = u(T) — oo such that
8,(u)T — o0, so that both g(n, T, u) — 0 and ¢'(n, T, u) — 0. This concludes the proof. ]

4.1. Free vs. zero boundary conditions. The coupling from the above lemma provides a rather crude
comparison of the free and zero boundary paths X,, 7, Y, 7. However, this is already sufficient to provide
an alternative proof of Theorem 2.11.

Corollary 4.2. Let ,ug denote the weak limit of MQ’T, as T — o0, as in (2-8). Then (2-9) holds, that is, Mg
is also the weak limit of,ur{’T, as T — oo.

Proof. In view of Theorem 2.10, the measures ,u,{j indexed by {n, T} are tight. It remains to show
that for each fixed n, finite-dimensional distributions converge, as 7 — oo, to the finite-dimensional
distributions of Mg- To thisend, fixme N, let S=(s1,...,5,) e R", ZT=(1,...,in) €{l,...,n}",
and let 7 = (71, ..., t,) € RY. Consider the event
E=ES,I.T={XeQ:Xi(s))>tj,j=1,...,m}. (4-2)

Using the fact that, by, for example, [10, Theorem 1.4], E is a continuity set for 4 and for any limiting
point of ;L,{’T (recall that M,{,T is a tight sequence), and that sets of the form (4-2) generate the o -algebra,

it follows that it suffices to show that for each n € N, and for each choice of S, Z, T,
M;fﬁT(E) - M?,,T(E) -0, T — oo. (4-3)

Since the event FE is increasing with respect to the partial order (2-12), and ,ugj is stochastically dominated
by w] . it follows that

wh r(E) = 1l 1 (E).
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On the other hand, if 7" is large enough so that all points in 7" are contained in [—7 /2, T /2], by Lemma 4.1

we have
'ur{,T(E) =Pur(Xi(s)>tj:j=1,....,m)
<SPur(YiGsp) >t j=1,....,m)+e&(l)=puy +(E)+e(T).
Letting T — oo we obtain (4-3) . 0

5. One-point tail estimate

The proof of Theorem 3.1 is divided into two parts. The first part establishes a weaker statement, namely
a nonoptimal stretched exponential bound, while the second part bootstraps the first argument to reach
the optimal % exponent.

5.1. Proof of Theorem 3.1, I. For later purposes, it is convenient to consider the following general setup.
Recall that a A-tilted LE is a BG measure as in Definition 2.1.

Definition 5.1 (uniformly confined LE). A A-tilted LE X (not necessarily stationary) is said to be uniformly
confined (UC) if there exists a constant C such that for all integers k > 0, for all s € R,

E[X**1(s)] < CA7*3, (5-1)
and such that, forall s e R, S > 0 and all k > O,

E[ max XK (s +u)] < CATFR (1 +Tog(1 +1SA%73))). (5-2)
ue[—S,

Recalling the definition of UT from Definition 3.6, observe that
UC = UT. (5-3)

Note also that the UC property is invariant under time translation, that is, if v is UC and vy is the law
induced by v on the translated paths X (- —s), then vy is also UC, with the same constants in (5-1) and
(5-2). Lastly, the zero boundary A-tilted LE 1© is UC by Remark 2.9.

We will now show that the UC assumption can already be bootstrapped to establish the significantly
stronger stretched exponential tails. We first start with the statement for the top line.

Lemma 5.2 (stretched exponential bound). For any UC A-tilted LE X, there exist positive constants o, ¢
and C such that for all t > 0,
PIX'(0) > ] <Ce ", (5-4)

Moreover, by the invariance under translation of the UC property, the tail bound (5-4) holds for X'(s)
uniformly in s € R.

The proof is technical, so we begin with a brief road map. Recall that we only have at our disposal
one-point estimates as well as curved max first moment bounds such as those appearing in Theorem 2.7.
This allows us, simply by Markov’s inequality, to argue that up to a small failure probability, paths with
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a large enough index (polynomial in ¢) are below a slightly raised floor. Further, Markov’s inequality
again allows us some, albeit weak, control on the entry and exit data of the remaining top paths (stretched
exponential in #). Thus we have a finite problem at our hand with polynomial in  many paths whose
entry and exit data are bounded by stretched exponential in #, on a domain we choose to be suitably large
(stretched exponential in ). We then obtain a lower bound on the partition function of this system to
argue that the paths are likely to come down to height smaller than ¢ with stretched exponentially small
failure probability which finishes the proof. Crucial ingredients in the proof include the BG property,
monotonicity, comparison to the Ferrari—Spohn diffusion and tail estimates of its maximum.

Proof of Lemma 5.2. Fix some y > 0 large, define K = Clogy, where C > 0 is a constant depending
only on A to be taken large enough, and 7 = y'° and consider the events

1
A:{ max XK(s)S—}, B = max X(s)<y}
se[-T,T] y s€[—
Let us first show that |
P(ANB)>1— —, (5-5)
yh

for any constant B € (0, 1) provided y is large enough. Indeed, for any k € N, using Markov’s inequality
along with (5-2) (which holds by hypothesis),

C)L7 3k +1og T
P( I[nax Xk+1(s) >u) < (k+log ).
- u

If k=0 and u = y we have P(B¢) < Cy~!log y for some new constant C > 0. If k + 1 = C log y, where
C > 0 is sufficiently large depending only on A, and u = 1/y, we have P(A¢) < Cy~!. This proves (5-5).

Next, we observe that, thanks to (5-5), to prove (5-4) it is sufficient to show that there exist constants
a > 1, b > 0 such that for all y > 0 large enough one has

1
P(X'(0) > 2log" y | AN B) < —.
y
By monotonicity and the BG property, it follows that it suffices to prove the estimate
1
P(£,(0) > log" y) < > (5-6)

where £](0) is the height at zero of the top line of the line ensemble &, = (£, ..., £5), consisting
of K lines in the interval [—7, T] with boundary conditions all equal to y, with a ceiling at height y and
a floor at zero, with all lines subject to an area tilt with the same coefficient A = 1. This uses the fact
that, by Lemma 2.3, lowering all area tilt parameters A’ ~! to 1 yields stochastically higher paths.

To prove (5-6), we introduce the nested shapes defined by the trapezoids 7; = Ts; ¢ 4,,y, Where

y lfse[_Tv_Sl]U[Sl’T]v
—(y—h)E ifs e [=8;, =S + 4],
Tis) = (y —hi)=¢ %SE[S Si +£]
hi ifse[-S;+¢, S —1],

if s e[S; -4, 8],
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Figure 3. The trapezoids 7; and 7; ;.

and we set
S =T—2K—i+1t, £:=)°, hi == (K —i+1)log’ y.

Note that 7,41 < 7;,i =1, ..., K —1; see Figure 3.

To prove (5-6), by monotonicity we may replace the ensemble {S;} by the ensemble {5;} obtained by
restricting, for each i, the i-th path ";‘; on the interval [—S; + £, S; — £] with boundary conditions y with
floor at zero and ceiling at y, and with area tilt A = 1. Reasoning as in Remark 2.4, this corresponds to
adding a floor at height y for the i-th path on the intervals [—S;, —S; 4+£] and [S; — £, S;]. Define the events

Ai={E <T}), i=1,....K.

By construction, if, e.g., a =7, and Eyl (0) > log” y, then there must exist i = 1, ..., K such that A; did
not occur while all A;, j =i+1,..., K, have occurred. Therefore,

K
P} (0) > log" y) < Y P(AS | Aiy),
i=1
where Ak 1 denotes the certain event.
To prove an upper bound on P(A? | A; 1), by monotonicity we may estimate from below the probability
that a single random path Z “on [—S;+¢, S; —¢] with boundary condition y, ceiling at y, floor at h;1,
and area tilt A = 1, satisfies Z' < 7;, so that

K
P(EL(0) > log" y) < Y (1 —P(Z' < T)). 5-7)

i=1

where we set /1 g1 = 0 for the floor of the K -th path ZX. We emphasize that each line Z’ is now analyzed
separately, that is, we have reduced the problem from an ensemble of K lines to a single line. Next, we
are going to prove

; 1
P(Z'<T)=1-—, (5-8)
y

for some b >0, and foralli =1, ..., K. Combined with (5-7), and adjusting the value of the constant b > 0,
this proves the desired claim (5-6) since K = O (log y).
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y

=S —s+¢ N

Figure 4. A sketch of the event in (5-8) fori = K. Here S :=T — £, h =log’ y.

We are going to prove (5-8) in the case i = K, but the same argument works fori =1, ..., K — 1 with
no modification. Thus, we now have Z = ZX a single path on [—S, S]:=[—T + £, T — £] with ceiling
at y, floor at 0, and area tilt A = 1; see Figure 4.

Define the stopping domain [z, T3] by

Ty =inf{s > —=S:Z(s) <h/2}, wm=sup{s <S:Z(s)<h/2}.

Since y=T"10< /S and £ = y° > §* for some « € (%, 1), monotonicity and Lemma 5.4 below show that

1
Pti<=S+¢ n>S-0>1-—. (5-9)
y

Next, we show that

1
P( max Z(s)<h|ti<-S+¢, t2>S—£)21——h. (5-10)
se[—S+¢,5—¢] y

Note that (5-9) and (5-10), by adjusting the value of b, are sufficient to conclude the proof of the desired
bound (5-8) at i = K for all y sufficiently large. On the other hand it is not difficult to see that, by using
the strong BG property from Section 2.3, and then monotonicity, the estimate (5-10) follows from the
tail bound on the maximum for the Ferrari—-Spohn diffusion proven in Lemma 5.3 below. Indeed, we may
impose a floor at /2 so that the probability of the event max,c[—s4¢,5—¢] Z(s) > h can be estimated by
the probability of the event maxe[—s+¢,s—¢] Yrs(s) > h/2. This concludes the proof of Lemma 5.2. [

Lemma 5.3. There exist constants c, C > 0 such that the stationary Ferrari—Spohn diffusion Ygg satisfies,
forallT >1,t >0,

P( max Ygs(s) >1) < C T exp(—ct>/?). (5-11)
se[—T,T]

Proof. We assume for simplicity that 7 is an integer, and let sq, ..., sy, with N = 2T, denote a mesh
of the interval [—T, T], such that s;1 | —s; = 1. Further, let E be the event that Ygs(s;) < ¢/2 for all
i=1,..., N. Then by the tail estimate (3-2) and a union bound, the complement of E has probability at
most C T exp(—c t3/?) for some constants ¢, C. Thus, we may assume that £ holds in (5-11). By the BG
property, using monotonicity and a union bound it is then sufficient to consider the probability that at
least one of 2T independent Brownian bridges on the interval [0, 1], conditioned to stay nonnegative,
with boundary 0O at both ends, has maximum larger than 7/2. By a union bound, and using well-known
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estimates on the maximum of Brownian excursions (see, e.g., [30, Section 2.10]), one has that this
probability is at most C T exp(—c t?). (I

The following technical lemma quantifies the pull to the floor, as a consequence of the area tilt, even in
the presence of high boundary conditions.

Lemma 5.4. Let Y1 denote the Brownian bridge on [—T, T] with left and right boundary data at
height \/T, with floor at zero and area tilt 1, and fix « € (%, 1). For L >0, let

T =Inf{s > =T :Yr(s) <L}, 7t p=sup{s<T:Yr(s)<L}.
There exist constants ¢ > 0 and L > 0 such that for all T large enough
Pty >-T+T<e T, P, <T-TY<e T,

Proof. By symmetry it suffices to prove the bound on the left random time 7, ;. By adding a floor at
height /T, and using the fact that an area-tilted Brownian excursion exceeds height @ on [—T, T'] with
probability at most O (Te™* “3/2), see Lemma 5.3, we know that Y7 will stay below 24/T with probability
at least 1 — Ce™"" for some constants ¢, C > 0, for all T large enough. Thus, at a negligible cost, we
may add a ceiling at 2+/T and we may consider the path Y7 defined as the single line with area tilt 1
with both boundary data at 24/T on the restricted time interval [—T, —T + T%] with length T%. Thus we
may reduce to the probability that the minimum height of the path Yr exceeds L. We have

P(te.p > —T 4+ T%) < P(min ?T(s) > L)+ Ce ", (5-12)
S
Moreover,
[E[eiA(B)]lA(B)ZLTD‘] - e*LT"‘
E[e—A®B)] = Ele=AB)]’

P(min Y7 (s) > L) < (5-13)

where [E denotes the normalized expectation over the standard Brownian bridge B(-) in [—ty, t4], ty :=
T /2, with boundary height 2+/T at both ends, conditioned to satisfy B(s) € [O, 2T ] forall s e [—ty, to],
and with A(B) = ff’taB(s) ds. To check the first inequality in (5-13), note that min, )7T (s) > L implies
that A(B) > 2Lt, = LT“. It remains to provide a lower bound on the denominator in (5-13) .

Let{=T",0< B < a, and h > 1 be parameters to be fixed, and consider the event that the path comes
down from height 2JT to height 4 within distance ¢ from both left and right of the interval [—¢,, #,] and
that it stays below height 2/ for the rest of the time. More precisely, define

Fopn=1{B(—ty+¥€) <h, Bty —€) <h, B(s) <2h,Vse[—ty+{,t,— L]}
On the event Fy ; we have
A(B) <2(2VT )0 +2h 2ty —20) <4TPT2 4 20T < (4+21)T°,
provided 8 <« — 150 that E[e=AB)] > [P’(Fg,h)e_(“”h)w. Next, we show that

P(Fep)=e ", (5-14)
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for suitable values of the constants 8 and 4. By considering the joint distribution of X = B(—t, + £),
and Y = B(t, — £), one can check by Gaussian computations that the event {X € [0, 1], Y € [0, h]} has
probability at least c£~!/2e=CT/¢_ for suitable constants ¢, C. Moreover, conditioned on the occurrence
of this event, a computation for the probability of the tube event 0 < B(s) <2h, s € [—t, + £, ty — £], for
a Brownian bridge shows that Fy j satisfies

P(Fyp) > Ce—l/ze—CT/Ze—CT”/hQ.

Since o > % we may take £ = T# with > 1 —a and B < a — %, and we may choose the constant &

large enough, independently of T, to ensure that P(F, ) > e~ ", for all T sufficiently large. This proves
(5-14). Summarizing, using (5-12) and (5-13), if we fix L = 2h + 6 we have obtained, for all T large
enough,

P(rep > —T+T% <e E72IT" L CoT <o 4 ce7 T, O

5.2. Proof of Theorem 3.1, II. Next, we want to bootstrap the stretched exponential behavior in (5-4) to

obtain the optimal exponent % Let us fix ¢ large, and consider the time interval 7 = ¢, with R a large
constant to be fixed later. Thanks to Lemma 5.2, taking « as in (5-4), the event
A={X"(-T)=** X'(T) <1} (5-15)

has probability at least 1 — e=<"" for some constant ¢ > 0 and all # > 1. Moreover, recall by Remark 2.6,
under /LS’T, conditional on the top curve, the law of the second curve is stochastically dominated by that
of the unconditional first curve. Therefore, the maximum of the second line X2,
M% = max Xz(s),
s€[~T,T]
satisfies
P(M7 > ClogT | X'(0) > 1) < 1.

This follows from the corresponding property for the line ensemble with law MS,T’ see Corollary 2.8, and
the weak convergence lim, 7 /’LS,T =u?, together with the observation that the distribution of X 1(0)
under 1 is absolutely continuous with respect to Lebesgue measure (see, e.g., [10, Theorem 1.4]) and

that P(X'(0) > ¢) > O for any ¢. It follows that
P(X'(0) > 1) <P(X'(0) > t, M7 <ClogT)+ 3 P(X'(0) > 1).
Therefore, using also the previous observation about the event A in (5-15) one has
P(X'(0)>1) <2P(X'(0) > ¢, M2 <ClogT, A)+e¢ "

Now, on the event {M% < ClogT}N A, by stochastic domination one can replace X 1 (s),se[-T,T],
by the single Brownian bridge Z(s), s € [T, T, with boundary conditions y := t*/%, with area tilt 1
and with floor at yg := Clog T. From Lemma 5.4, if T = t® with R large enough, it follows that with

12

probability at least 1 —2e™" one has Z(t;) < yo+logt <2yg, i =1, 2, for some stopping domain [71, 72],

with 11 < —T/2 and 7, > T /2. On the latter event one can use the strong BG property to resample on the
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stopping domain [, t2] D [—7/2, T /2] with boundary condition 2yq. Thus, letting Yrs(-) denote the
stationary Ferrari—Spohn diffusion, by monotonicity and using (3-2), it follows that
PX1(0)>1) <2P(Z(0) > 1) et
<2P(Yrs(0) > 1 —2y0) + 3¢ "
= exp(—(%E + 0(1))t3/2), t — oo.
This ends the proof of (3-4). [l

Below we record a tail bound for the maximum of X!, which is a straightforward consequence of the
above argument.

Corollary 5.5. There exist constants ¢, C > 0, such that for all S > 1, for all t > 0,

P( max X (s) > Clog(S) +1) < CSexp(—ct>?). (5-16)

se[—S,

Proof. Fixt > 0large and T > 1. If T > Tk := t¥ for some large enough constant R > 0, taking
yo = Clog T, the exact same argument as above yields

P( max X'(s)>1+2y0) <2P( max Z(s) >t +2y) +e "
se[-T/2,T/2] se[—T/2,T/2]

<2P( max  Yes(s) > 1) 4 3e <"
se[~T/2.T/2]

< CTexp(—ct?), (5-17)

with the last inequality following from Lemma 5.3. This proves (5-16) in the case 28 =T > Tg. If
T < Tg one may estimate

P( max Xl(s)>t+ClogT)§|P( max Xl(s)>t+ClogT)
se[—T/2,T/2] se[—Tr/2.Tr/2]

< CtRexp(—cr’/?),

where the last bound follows from (5-17) at T = Tk, for a suitable constant C > 0. Taking ¢ sufficiently
large and adjusting the value of the constants shows that for any 1 <7 < Ty the last expression is bounded
by CT exp(—c t3/?) for suitable constants ¢, C > 0. Taking S = T'/2 finishes the proof. (I

Corollary 3.2 is also a quick consequence of Theorem 3.1.

Proof of Corollary 3.2. By monotonicity and rescaling, as in Remark 2.6, for each £ we have
P(X*10) > 273 = P(XT1(0) > A7, Vi < k)
k
<[]P&x'©) > 1% 5

i=0
= exp(—(ck +0(1))t3/2), t — 00,

where ¢; := 2‘[ Z oA i/2 which satisfies ¢y — coo(X) = f\/‘{l as k — oo. O
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While this in principle finishes the proof of our results about the upper tail, for later applications we
show how to prove a counterpart of Corollary 3.2 and hence an extension of Lemma 5.2 to general k,
simply under the assumption UC from Definition 5.1. Note that the proof of Corollary 3.2 relied on the
monotonicity and scale invariance exhibited by the zero boundary LE ° which a priori might not hold
for a general LE (though a posteriori it does as a consequence of Theorem 3.7).

Lemma 5.6. For any UC A-tilted LE X, there exist constants @ > 0, ¢ > 0 and C > 0, such that for any
se€Randanyk >0andy > 0,

PIX* 1 (s) > a3y < C e,

Proof. The proof is a straightforward adaptation of the arguments in Lemma 5.2 and so we will be brief.
First of all, without loss of generality we will take s = 0, since the UC property is translation invariant.
Fix k e N, and some y > 0 large. Define K = C log y, where C > 0 is a constant depending only on A to
be taken large enough, and 7 = A ~2*/3y10 and consider the events

1
A= { max XKTIHK (k3 < —}, B={ max X*Tl(s)a*3 <y).
se[-T,T] y se[—T,T]

It follows from the definition of UC in (5-1) and (5-2) along with an application of Markov’s inequality that
1
P(ANB)>1-——,
y

for any constant 8 € (0, 1) provided y is large enough.

Further, on A N B, by the BG property, and using monotonicity, it suffices to ignore the top k curves
and hence we simply have to analyze the ensemble of K lines X k1 Xk*K on the domain [—T, T]
starting and ending at A 7*/3y with a floor at A7%/3/y and a ceiling at A*/3y. We can now appeal to
Brownian scaling and instead consider the ensemble on [—y!?, y10] (recall that T = A~2%/3y10) with K
lines with the usual geometric area tilts, starting and ending at y with a floor at 1/y and a ceiling at y.
Let us denote this new ensemble by {Z'};<x. This is exactly the setting of the proof of Lemma 5.2, the
arguments of which imply, for example, that

1 a 1
P( max _Z'(s) > log' y) < —,
s€[—y3,y7] y

for some constants a, b > 0, for all y large enough. Since X**1(0) is stochastically dominated by Z!(0),
this finishes the proof. O

The proof of Theorem 3.3 quantifying the entropic repulsion effect on the lower tail behavior relies on
an argument developed in detail in Section 6, particularly a construction outlined (6-19), and hence is
postponed to the end thereof.
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6. Ergodicity and mixing

This section is devoted to the proofs of Theorems 3.4 (see Figure 5) and 3.5. We begin by recalling that
the stationary, infinite zero boundary LE is denoted by X and for any ¢ € R, 7; denotes the shift operator
defined by T, X(-) =X+ -).

Proof of Theorem 3.4. An application of the m — A theorem, see, e.g., [21], shows that it is sufficient
to prove (3-5) for all sets A, B of the form (4-2). Therefore, adopting the notation from (4-2), we fix
A=E(S,Z,T)and B=E(S', 7,7, where m e N, S =(s1,...,5,) € R", T = (i1, ...,in) € N,
and T = (11, ..., ty) € RY are given, and similarly for S’, 7', 7'. Let X; = 17,4 and X = 1, so that
E[X;] = [E[X(’)] = u%A) and E[X] = u°(B). We are going to find two independent random variables
W/ € [0, 1], W; € [0, 1] and a coupling of (X;, X) and (W/, W;) such that a.s. X; > W/, X > W, and such
that, setting A, = X — W;, A, = X, — W/, one has

lim E[A,]= lim E[A;]=0. (6-1)
11— 00 t—00

By stationarity, (6-1) is equivalent to lim,_, o, E[W,] = E[X{)] and lim,_, o E[W;] = E[X]. Assuming the
existence of such a coupling, we see that

u (T, AN B) =E[X;X]
= [E[W,’] E[W, ]+ [E[W,A;] + [E[W,’At] + [E[A,A;]
— E[X(1E[X] = n’(A)u’(B), t— oo, (6-2)

where we use (6-1), the independence of W/, W;, and the fact that W,, W/, A;, A} € [0, 1].

To construct the desired coupling we take s > 0 so that |s;| < s and |s/| < s, and £ € N such that
¢ > max{i;, i;./} forall j=1,...,m,and j/=1,...,m/, so that the event B concerns the first £ lines in
the time interval [—s, s], while the event 7; A concerns the first £ lines in the time interval [t — s, f + 5].

To construct the independent proxy random variables W, and W;, consider the line ensemble Y  ;
with zero boundary condition on [—#/2, ¢ /2] and with infinitely many lines. Note that this is well defined
by monotonicity as the increasing limit of the zero boundary ensemble with finitely many lines, as noted

Figure 5. Illustration of the proof strategy for Theorem 3.4. The ensemble Y pinned at £¢/2
and 3t/2 (green lines) is monotonically coupled to X with law u° (pink lines). The weak
convergence guarantees that the gap between the top green lines and the top pink lines goes
to zero in expectation on compact domains centered around O and 7. Further, the green lines
on[—t/2,t/2] and [t/2, 3¢ /2] are independent due to the pinning.
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in [10]. Call W; the indicator function that the first £ lines of Y ~,; satisfy the event B. Similarly, let Y é)o,t

be the line ensemble with zero boundary condition on [¢/2, 3¢ /2], with infinitely many lines, and call W/

the indicator function of the event that the first £ lines of Y7, ; satisfy the event 7; A. Note that owing to

the pinning, the line ensembles Y, ; and ¥ /oo ;» and hence the random variables W;, W/, are independent.
Now observing that the LE

Yi=Yoor Yoo ,) (6-3)

obtained by concatenating Y oo, and Y7 , is stochastically dominated by X, and that the events involved
are all increasing, there exists a coupling of the random variables (X}, X), (W/, W;) such that a.s. X; > W/,
X > W,. It remains to prove E[W,] 1 u’(B) and E[W/11 1°(A). That E[W,] and E[W/] increases and that
the limits are upper bounded by 1°(B) and 1°(A), respectively, is a simple consequence of monotonicity
and the increasing nature of A, B. Equality now follows by the portmanteau lemma, using the weak
convergence of the distribution of ¥« ; and the distribution of Y, (t + -) to u® as t — oo, and the fact
that A and B are open, which implies lim inf E[ W;] > 1%(B) and similarly liminf E[W/] > w’A). O

While the above provides a qualitative proof of mixing, we next seek to obtain the quantitative bound
stated in Theorem 3.5. The key technical step is to estimate the convergence rate in (6-1). We begin with
a brief overview. Recall the coupling argument based on resampling presented in Section 4 where in the
case of finitely many lines, a reverse coupling was constructed under which with high probability the
zero boundary LE dominates the free boundary LE. In the case of infinitely many lines, this is hard to
argue but nonetheless we show that indeed such a reverse coupling exists where the requisite reverse
domination holds up to a small shift, which is enough for our purposes.

To accomplish this we rely on (5-2) which allows us to ignore the curves with index larger than a chosen
threshold on a finite domain by raising the floor by an appropriately chosen amount which effectively
reduces the case to finitely many lines. The reverse coupling strategy can now be employed as long as
we can show that with high probability there exist random times in the finite domain where the top few
curves in a pinned ensemble, say, Y as in the previous proof, are higher than that of an independently
chosen infinite ensemble X. Note now that there is a tradeoff in the choice of the domain size ¢. The
smaller it is, the lower the floor is since by (5-2) the growth of the maximum is controlled on such a
domain. On the other hand, choosing the domain to be too small makes it harder for the top few lines
of Y to have large enough fluctuations in order to dominate the corresponding lines in X at some time.

To ensure that a desirable domain exists, we will rely on the stretched exponential tail estimates
developed in Corollary 3.2.

Proof of Theorem 3.5. We start by arguing as in (6-2). Namely, define the random variables X, = X' (z),
X = X'(0), where X denotes the LE with law u°. As before, consider the line ensemble Y defined
by (6-3), where Y ; has zero boundary condition on [—#/2, ¢/2], and Y[ , has zero boundary condition
on [7/2,3t/2]. Call W, the height at zero of the top line of Y o ; and call W/ the height at ¢ of the top line
of Y go,,. Clearly, W/, W, are independent. Moreover, by stochastic domination and translation invariance,

E[W,]=E[W/] <E[X]=E[X]] and E[W?]=E[(W))?]<E[X*]=E[(X))?]. (6-4)
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Now for any coupling of (X, X)), (W/, W,), by independence of W/, W, one has
Cov(X'(0), X'(t)) = E[XX/] — E[X] E[X]]
= E[W,] IE[W;] — E[X] [E[X;] + [E[WIA;] + [E[W;A,] + IE[AtA;], (6-5)
where A, = X — W, and A} = X — W/. Therefore, using (6-4), translation invariance, and a?—b* <
2a(a — b), for a > b > 0, the absolute value of (6-5) is bounded by
2E[XTE[A]+2 [E[W, ATl + [E[A, A7]. (6-6)

We note that this is valid for any coupling of (X, X;), (W/, W;), and that while the inequalities (6-4)
ensure that E[A,]=E[A]] > 0, not all couplings have A;, A} > 0 pointwise. From (6-6), Theorem 3.1, and
Schwarz’ inequality, we see that the desired bound ‘COV(X 10), X! (t))‘ < Cexp(—c(log 1)3/7y follows
once we prove that for suitable constants ¢, C > 0,

E[(AN?] < Co(t)?, (6-7)
where we define
(1) == exp(—c(log 1)*'7). (6-8)
By (6-4),
E[(A)*] = E[(X — W))*] < 2E[X*] —2E[XW,] = 2E[XA,]. (6-9)

We are going to show that there exists a coupling of (X, X;), (W/, W;) and an event E; such that on E,
one has A; < (p(t)2 and such that

P(E;) < Co()*. (6-10)
In this case,

EIXA] < () E[X]+ E[XAdge] < Co(t)® + VP(ES) ELX*(A)?] < 2Co(1)?, (6-11)

where in the first equality we use the positivity of X. In the final inequality we use E[X?(A,)?] < C,
which follows, for example, from the crude bound |A;| < X + W, and applying Theorem 3.1. From
(6-11) and (6-9) we infer (6-7) with a different constant C. Thus, it remains to prove (6-10) and hence
the proof is now complete with the aid of the following lemma. We end by pointing out that the same
argument verbatim works for any fixed k& and hence shows that Theorem 3.5 continues to hold in this
case as well. O

Though we only need to produce a coupling of the top lines X! and Y, for a later application in the
proof of Theorem 3.7, as in Theorem 3.4, we will design a coupling of X with Y« ;, the co-LE with zero
boundary conditions on [—¢/2, t/2], such that with high probability the top i lines are close to each other,
for any fixed i, provided ¢ is large enough.

Lemma 6.1. Given any i and S > 0, for all large enough t, there exists a coupling of Y o ; and X, and

an event E; such that on E; one has
X () =YL, () <p®? j=1,...,i, se[-S, 5],
and such that P(E[) < @(t)?, where ¢(t) is defined in (6-8).
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Proof. Let Y ; denote the k-line ensemble with zero boundary condition on [—¢/2, t/2]. We take ¢t > 0
large and k € N as a function of ¢ defined by k = L(% log t)l/ “J , where a > 0 and A > 0 are constants to
be tuned later, so that

exp(Ak?) <t <exp(A(k+ 1)%). (6-12)
By monotonicity, there exists a coupling of (¥ s, Y«.r) such that
YL, > Y/,
for every j. Therefore, it will be sufficient to show that there exists a coupling of (X, Y« ;) such that
X/ (s) — Yk{[(s) <e®)? j=1,...,i, se[-8, 8] (6-13)

Indeed, we then obtain the coupling claimed in the lemma by first sampling the paths Y ; and then inde-
pendently sampling the X; and Y «;, using the conditional distributions from the couplings of (X;, Y.,)
and (Y oos, Yk.r), respectively.

To prove (6-13), we are going to use an enhanced version of the coupling argument in the proof of
Lemma 4.1. We start by ensuring that all lines below the k-th line X* are below a certain height throughout
the whole interval. From Markov’s inequality and Corollary 2.8, for any # > 0 and ¢ large enough one has

P(Fy>1—SKo8L  p 0 max  X*(s) < un—t,
u sel—1/2,1/2]

Using (6-12) and setting u := A*/6, one has
P(F) >1—CA 7, (6-14)

for all # large enough. In other words, the (k+1)-th line exceeds the height A K6 in [—¢ /2, t/2] with
probability O (A~*/7).

Next, consider the discrete time steps s; = —1/2+2j — 1, j = 1,..., jmax, Where jmax = [1/2].
Similarly, letu; =t/2—-2j+1, j=1,..., jmax. Setv:= k”, with b > 0 to be fixed later, and consider
the indexes

Co=inf{j € {1, ..., jmax}: Vi, (s)) = vA" D5 vi=1, ..k},
re =inf{j € {1, ..., jmax}: Yp,(u;) > va" DB vi=1,... k.

Accordingly, we define the random times 7, = s¢, and 7, = u,_, and consider the events
ko ‘ ) ) ‘ .
Bi={ty<—t/4, 1, >1t/4), G, =G, Gl ={X'(r,) <vr V3N {X'(z,) <va"=V3)
i=1

We start with independent samples of the infinite line ensemble X and the k-line ensemble Y ; with
zero boundary conditions on [—#/2, t /2], and consider the event

El:thGlth'
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If E; occurs, then by definition of the events F;, G, and By, at the stopping domain [7,, 7,] the boundary
values of Y, are higher than the boundary values of the top k lines of X and the (k+1)-th line of X does
not exceed height 2%/, Thus, on this event we may resample {(X'(s), Y} ,(5)), s € [t¢, 7,]} according
to the monotone coupling which by construction guarantees that

X'(5) SY () +A7M0 se[—t/4,1/4], i=1,... Kk (6-15)

with probability one. This follows from the fact that the resampling of the top & lines of X, on the event F;,

—k/6and therefore

using stochastic domination, can be performed with an effective floor at height A
one can compare with the lines Y ,it, i=1,...,k, with floor at zero, with an overall shift by ATKOIf
instead E; does not occur, then we keep the independent samples of (X, Y ;) everywhere. The previous
observations and the strong BG property guarantee that this is a valid coupling. Note that above we
crucially used the fact that [7,, 7] is a stopping domain.

From (6-15) it follows that, if A 7%/ < ¢ ()2, then on the event E, we have (6-13). It remains to show

that P(Ey) < ©(1)? holds. One has
P(E;) < P(F)) 4+ P(G)) + P(B;)).

Now, (6-14) shows that P(Ff) <C A7%/7 while using the independence of (7, 7,) and the line ensemble X,
Corollary 3.2 and a union bound imply

P(G¢) < 2k exp(—ck®*/?), (6-16)

for some constant ¢ > 0. We turn to an upper bound on P(By).
Note that the points s; are the midpoints of the intervals /; of size 2, where

L= [=1/242(G = 1. =t/2+2j],  j=1..... jmax.

By monotonicity, see Lemma 2.3 and Remark 2.4, we can replace Y r by the ensemble obtained by
pinning all k paths at zero height at the endpoints of the intervals 7;. Call Z', i =1, ..., k, the lines
of this pinned process. We define the index ¢, as the smallest j such that Zi (s i) = vA~ =73 for all
i=1,...,k. Since the intervals are independent, one has

P(te > —t/4) <P, > [t/8]) < (1 — pr(u) /¥ < e=Pe@L/BL

where pi(v) is defined as the probability that the A-tilted k-line ensemble Y » with zero boundary
conditions on the interval [—1, 1] satisfies

Y, = VB =1k (6-17)
By symmetry, the same bound applies to P(z, < ¢/4). It follows that

P(Bf) <P(ty > —t/4) + P(t, < t/4) <2~ PxWL/EL
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In Lemma 6.2 below we show that for all k e N, v > 1, pr(v) > e_Ckvz, for some constant C > 0, see
also the remark following that lemma for a discussion on the true asymptotics. Taking v = k?, we obtain

pe(v) > e K

Summarizing, since ¢ > 2% as in (6-12),if a =1+ 2b and A is large enough, it follows that

P(BS) < 2exp(—cet), (6-18)
for some constant ¢ > 0.
Therefore, from (6-14), (6-16) and (6-18) we have

P(Ef) <A77 4 kexp(—ck®?) 4+ 2 exp(—c €.

By choosing b = 5, a =14 2b = %, we obtain (6-10) with ¢(¢) = e~°* for some new constant ¢ > 0. By
adjusting the Value of ¢ we can also ensure that A~%/6 < ¢(#)? as required to have the inequality (6-13)
on the event E;. By our definition of k in (6-12), this proves the desired correlation decay with ¢(t) =
exp(—c(log)?), and 6 = 1/a = 3. a

Lemma 6.2. There exists a constant C > 0, such that for any k € N, v > 1, the probability py(v) of the
event defined in (6-17) satisfies

pr(v) > e Ok,

Note that the above bound is expected to be suboptimal when & is much larger than log v, where the
—Ck*Y O the other hand when k

is much smaller, say k = 1, this is the right behavior as on a fixed domain size, the one-point tail of the

one-point estimate in Corollary 3.2 is expected to yield a bound e

top line is indeed Gaussian and not given by Theorem 3.1 .

Proof. We use a geometric construction involving the nested trapezoidal shapes defined as follows. Given
parameters 0 < @; < b; < 1 and h; > 0, consider the i-th trapezoid I1; defined by the piecewise linear

function
0 ifte[—1,=b;]U[b;, 1],
hi(bitt)
22t ifr e ,
M@e)=4{ % (=i, —ail, (6-19)
h; ift € [—a;, a;],
BO=D it 1 € [y, bil.
We choose

bi=2"2R a = LR 4 DAV = D3,

Note that a; is the midpoint in the interval [b; 1, b;], and one has I1;;| < IT;; see Figure 6.
Consider the A-tilted k-line ensemble Y » on the interval [—1, 1] with zero boundary conditions, and
let A denote the event that for each i =1, ..., k one has the i-th line above the i-th trapezoid:

A={Y,,>T:i=1,... k)

By construction, one has px(v) > P(A). By monotonicity we may replace the ensemble Yy 2 by the
ensemble Z , obtained by pinning the i-th path Y ,i’z at zero outside of the interval [—a;_1, a;—1], for each
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=1 —b; —a; —biy 0 bivi @i b 1

Figure 6. The trapezoids IT; and IT;,.

i=1,...,k, where we set ag = 1. Thus, we have

=P =T i=1,...,k); (6-20)

see Figure 7.
Let E; denote the event that 7,@ > I1;. Conditioned on E;, to compute the probability of E; | one may, by
monotonicity, impose a ceiling at height /; and remove all paths below the (i+1)-th path. This shows that

k
pe) = [ [,
i=1
where y; (v) is defined as the probability that the random path Z; on the interval [—a;_, a;_], with zero
boundary condition, with a floor at zero, a ceiling at height /;_;, with area tilt A1 satisfies Z; > IT;.
Here we may set 4o = A!/3v for the ceiling acting on the top path. It remains to show that there exists
an absolute constant C > 0 such that for all v > 1, forall i € N,

yi(v) > e V. (6-21)

To prove (6-21) we observe that by the scaling from Lemma 2.5 applied to a single path, one has that

y; (v) is the probability that the random path £ on the interval [—a, a], with zero boundary condition,

1/3

with a floor at zero, a ceiling at height A!/3v, with area tilt 1, satisfies £ > I1, where IT is the trapezoid

hy

hy

h3

-1 0 @ a 1

Figure 7. A sketch of the event in (6-20) in the case k = 3.
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ARy

by
—a -1 —a a4

Figure 8. The rescaled trapezoid [T and a sketch of the event in (6-22).

defined by (6-19) with a;, b;, h; replaced by a, b, h, respectively, and where
b= )LZ(i—l)/3bi =1, h= k(i_l)/3h,’ =,
a=2"DBg | = %(kz/s +1)., a=2a20"D83g = %(1 + 2723,
Therefore,
yi(v) = P& > I); (6-22)
see Figure 8.
To estimate the probability P(§ > I) we may write
E(e_ffag‘)(s)ds; < &y < 2By
[E(e—ffaSo(S)dS; £o < A1/3v)

> e 2 p(MT < £ < A1),

P > 1) =

where now &y is the simple Brownian excursion on [—a, a], without area tilt and without ceiling.

Since v > 1 and A > 1, observe that {1:[ < &y < A3v)} is ensured by &y rising up to %(v +113p) at —1
and 1 and staying inside the rectangle [—1, 1] X [v, A13v]. The probability of the first event is dictated
by Gaussian tails of Brownian excursion, see, e.g., [30, Section 2.10], and that of the second event is
a constant bounded away from 0. Thus overall we get

P(I1 < & < A3y > e_cvz,

for all v > 1, and for some constant C = C(A) > 0 for all A > 1. By adjusting the value of the constant C
we arrive at the desired estimate (6-21). [l

We conclude this section with the proof of Theorem 3.3 relying on the construction in (6-19).

6.1. Proof of Theorem 3.3. We will employ monotonicity and the strategy outlined in Figure 7. Note
first that as a simple consequence of ordering,

PX'0)<e)=PX'(0)<e:i <K) (6-23)

for any K. Now suppose there was no interaction between the paths, i.e., if the i-th path was an independent
FS diffusion with tilting factor A’~!. Then from the above display, the proof would follow if we can prove
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that for each such FS diffusion Y}és,
P(Ylis(O) <e) < &2, say.

Now note that the above bound cannot possibly be true for all i since for any i, the typical value of Yés (0) is
of order A~@~D/3 However our proof will indeed proceed by showing that an approximate independence
holds true and that the above estimate also continues to hold, as long as i < K = clog(1/¢) for some
appropriate c.

We start with a generalized version of (3-3).

Lemma 6.3. There exists a universal constant C > 0, such that for any i € N,
P(Yis(0) <e) < Ce’A ™.
In particular, IP(YIQS(O) <g) < Csz,for all i such that M= < 1/e.

Proof. By monotonicity, P(Y}is 0)<g) < P(ﬁs (0) < ¢) where 17125 has the same law as YléS except now
it is pinned at zero at £4~2¢~1/3_ By Brownian scaling,

P(Yis(0) < &) = P(Y(0) < erl=D/3),

where ?kls is a Brownian excursion B(s) on [—1, 1] with the tilting factor

1
exp(—/ B(s) ds).
-1

By Gaussian tails of the maximum of a Brownian excursion on [—1, 1], the expectation of the above
exponential is a constant, say 1/Cy, and since the above density term is bounded by 1,

PV (0) <=3y < C\P(B0) < erl=V/3) < Creai~!,

for some constant C, > 0, where the last estimate follows from standard repulsion estimates for Brownian
excursion which, e.g., can be found in [30, p. 79, Section 2.10]. O

Equipped with this estimate we return to the proof of Theorem 3.3. Now by monotonicity, the right-
hand side of (6-23), can only increase on removal of all lines beyond K as well as introducing boundary
conditions where now the i-th curve is pinned at 0 at £x; where xg = A2 B and x;_y —x; = CoA T3
where ¢, C; are constants depending on A to be fixed later.

An advantage of this pinning is that the independent Ferrari—Spohn diffusions ?If‘s with pinnings at +x;
have a nontrivial chance of being nonintersecting. As depicted in Figure 7 for the i-th curve consider
a trapezoid IT; of width and height comparable to A=%/3 and A~//3, respectively. The exact construction
can be done as in (6-19), with the choice of the parameter v being 1. By construction I1; are nested and by
scaling arguments it is easy to see that f;és stays within IT;_; \ I1; with a probability bounded away from O
independently of i, say c. We denote by {17123 € I, \ I[1;} the latter event. Thus, using also Lemma 6.3,

T2 PHs@ <o) _e¥

P(X'(0)<e:i<K) < — <—,
l_L-K:1 P(Ygs € IIi—1 \ T1;) ck

for some universal constant c, as long as A=K > ¢, which finishes the proof.
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7. Uniqueness

This section is devoted to the proof of Theorem 3.7. We will again employ the reverse coupling strategy
in the way outlined before the proof of Theorem 3.5, with the difference that now X is replaced by the
paths, denoted by Z, with law v, where v stands for a generic uniformly tight A-tilted measure satisfying
the asymptotic pinning condition in (2-11).

Note that as commented before the proof of Theorem 3.5, one-point tail estimates were crucial in the
implementation of this strategy, for which we relied on Corollary 3.2 which delivers such estimates for
the zero boundary LE. Thus in this general case, our first step is to establish a counterpart tail bound
simply under the assumption of UT. The most important part of the proof is a bootstrapping result which
establishes that

UT = UC,

reversing (5-3), and hence showing their equivalence. This will allow us to appeal to our previously
established bounds in Lemma 5.6 yielding the tail estimates needed to carry out the program.

7.1. Uniformly tight implies uniformly confined. The first step delivers the above mentioned crucial
input which shows that an asymptotically pinned at zero, uniformly tight LE is also uniformly confined
(recall from Definitions 2.2, 3.6, and 5.1).

Theorem 7.1 (UT = UC). Suppose v is the law of a UT A-tilted LE satisfying (2-11) to be denoted by
Z = {Zi}izl. Then v is also UC. Namely, there exists a constant C > 0 such that for all k > 0 and s € R,

E[Z*!(s)] < CA7*5. (7-1)
Moreover, forallk >0, S > 0and s € R,
[E[Ier[gasxs] ZH (s +1)] < CA7* 3 log(1 + |2 %*38)). (7-2)

Once Theorem 7.1 is available, we obtain stretched exponential tails by Lemma 5.6: there exist
constants ¢, C > 0 and « > 0 such that for any k and any s € R, x > 0,

P[Z 1 (s) > A *Bx] < Ce . (7-3)

To prove Theorem 7.1, we start with a result for the ensemble with bounded boundary data. We
let Zéo’T(s), i=1,2,...,n, s € [T, T], denote the infinite A-tilted LE on [—7, T'] with boundary
data all equal to a given constant L > 0. This can be defined as the limit as » — oo of the finite
A-tilted LE Z,';’T(s), i=1,2,...,n,s € [T, T], with boundary data all equal to L, the existence being
guaranteed by tightness and monotonicity, as in the case of zero boundary conditions treated in [10].

Proposition 7.2. Fix L > 0 and let Zf)o,T(s), i=1,2,...,n,5s € [T, T], denote the infinite \-tilted LE
on [—T, T] with boundary data all equal to L. There exists a constant Ty = Ty(L) > 0 such that for all
T > Ty, forall k > 0,

E[ZEF5(0)] < Cor™ P2, (7-4)



230 PIETRO CAPUTO AND SHIRSHENDU GANGULY

where Cy is an absolute constant (independent of L). Moreover, for all0 < S < T /2,

E[ max ZE ()] < Cor ™ log2 + 2275)). (7-5)
se[—S

Notice the important difference with the apparently similar estimate in Corollary 2.8. In the latter, the
line ensemble has either free or zero boundary conditions, while here it has a fixed height boundary L,
the same for every path, and this is a huge difference for low lying paths.

We reiterate that the field Z 7 appearing in the above statement is well defined, by taking limits # — oo
of an ensemble of n paths and using monotonicity. Using a floor at L and Theorem 2.7 one can immediately

but Proposition 7.2 is a much finer statement providing
—k/3

obtain rough upper bounds on the paths Z* 0. T
information on the rapid decrease of the k-th path to the correct scale A

Before proving Proposition 7.2 we quickly finish the proof of Theorem 7.1.

Proof of Theorem 7.1 assuming Proposition 7.2. Let Z = {Z' : i > 1} denote the set of random lines
with law v. Given the uniform tightness hypothesis on v, for any i € N let L; > 0 be such that
sup,.g P(Z Y)y>L;) <27 Recalling the statement of Proposition 7.2, we may assume without loss of
generality that the constants T; := Ty(L;) form a nondecreasing sequence. Define the events

o
A= ﬂ {Z'(£T) < L;}.
j=i
By Borel-Cantelli lemma, 1(A;) 1 1, a.s., i — oo. Finally, fixing S as in the second part of the theorem,
let iy be such that 7; > 25 when i > ij.

Now for any i > iy, observe that A; is measurable with respect to o (Z '(s) : |s| > T;). Further,
to apply the asymptotic pinning hypothesis (2-11), for any ¢ > 0, let B(n, T, ¢) be the event that
Supser_7.77 2" (s) <&

Then it follows by Proposition 7.2 that for any k <n — 1,

E[Z5(0) 14, 1800.7.6)] < E[ZKTN0) | 1, = 1, Lpga1ye) = 1] < Cor ™+,

E[ r[nax Z"N )14 1,00 < E maSX ZMN @) 14, = 1, g = 1]
te|l—

< Cor M3 1og2 + |A*38]) +&.

Note that we used monotonicity, the BG property of Z on the domain [—T;, T;] with the top n — 1
lines, and the fact that on the event A; N B(n, T;, ¢) the hypothesis of Proposition 7.2 is satisfied, by the
definition of 7; as a function of L;. Moreover, we have raised the boundary condition induced by Z" to a
flat floor at height ¢ (since conditioning on B(n, T;, &) permits that), which leads to the extra & appearing
in the bounds above. Moreover, note that the constant Cy is independent of L;.

We will now finish the proof with a couple of applications of the monotone convergence theorem. Note
that since Z is assumed to satisfy (2-11), for any ¢, 7;, we have 1p(, 1,¢) 1 1, a.s. as n — oo. Therefore,

E[Z*T1(0)14,1 < Cor " +& and [[ max zk+1(z)1A 1 < Cor ™3 log(2 + [A*/3S) +e.

te[—
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Since ¢ was arbitrary, using 14, 1 1, a.s. proves (7-1) and (7-2) for the case s = 0. Applying the above
argument to the LE shifted by any real number s finishes the proof. (I

We now turn to the proof of the key Proposition 7.2.

7.2. Nested shapes and curved maxima. To prove Proposition 7.2 we want to define nested shapes
¢i+1 < ¢;, where for eachi > 0, ¢; : [-T, T] — Ry is a function such that ¢;(s) restricted to s €
[—T/2, T/2] is of the form A~"/3log(1 + |sA%/3|) up to a suitable vertical shift and such that with high
probability Z;r]T < ¢; throughout [T, T']. To do this we will consider the ensemble Z;,T with n lines
and with the same boundary condition L on [T, T'], and will prove estimates that are uniform in the
number of lines n. We start by defining a scaled version of the nested shapes ¢;.

Fix some parameters § G(O, %), o€ (%, 1), L € Ry. We define, for all T large, and for any given
choice of the vertical shift parameters i; € R,

wh,(s)_{L,-Jrsi if s € [-T;, —T; + T*1U[T; — T7, T3],
! hi+W¥(s) ifsel-T;+T T; = T], (7-6)
g =AMV Lii=LAB, T, :=TA%3, W(s):= Dlog(l+|s|),

for some constant D to be fixed below. We assume that the 4; are such that the curved part of 1//l.h" is
lower than the flat part, that is,

hi +W(T; — T7) < L; +e. (7-7)

Since T will be taken large enough, this will be automatically satisfied in what follows. Thus, for each
ieN, wih " is a function on the interval [—7;, 7;] which looks approximately like Figure 9.
Next, we define the rescaled function ¢f“ (s):= A"/ 3%}” (A%735), s € [T, T]. In other words,

¢ (s) =1+ —i/3 23y
hi + 27 1BW (s %3 ifse[-T+14, T —t], (7-8)
& = A", hioo= A", ;1= T~ (1=2i/3,

Notice that for each i > 0, ¢l.h " is a function on the interval [—T7, T']. The key technical step in the proof
of Proposition 7.2 can be stated as follows.

Li+e

T

Figure 9. A sketch of the function 1/f[h "in (7-6).
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Lemma 7.3. Let Zfl’T(s), i=1,...,n,s € [T, T], denote the n-line ensemble on [—T, T] with
boundary data all equal to L. There exist some absolute constants c, C > 0, a collection of random
variables ho, hy, ... with sup; E[h;] < C, and a constant Ty = To(L), such that for all T > Ty, for all
n €N, the ensemble {Zfl’T} can be coupled to (hy, ..., h,—1) in such a way that for all 0 <i < n, with

probability at least 1 — Ce™T*)"

Z1 ) =¢](0), sel-T.T) j=ii+1,....n—1. (7-9)

Let us first show how Proposition 7.2 follows from Lemma 7.3. By monotonicity, one has convergence
of the line ensemble {Z,’;’T}izl to {Zéo,T}izl and therefore it is sufficient to establish (7-4) and (7-5) for
the ensemble {ZL,T}izl, with a constant C independent of n. Let A; denote the event that (7-9) holds
under the coupling introduced in Lemma 7.3, so that P(A}) < C e~ ™) Notice that

El_max zl 1) Tacl < PADV2E[( max_ ZL ,())%]'"?
se[— se[-T.T]

<C e(nf)f'/z T‘S,

for some new constants C, § > 0, where we have used a rough estimate on the second moment of the
maximum of the top path in the infinite line ensemble Z, 7. The latter can be obtained, for instance, by
adding a floor at the boundary height L and then using the bounds in Corollary 5.5 for the zero boundary
measure with a floor at zero. Note that since we are taking 7 large enough depending on L, the above
constant C can be taken independent of L.
Thus, to prove Proposition 7.2 it is sufficient to establish
E[ max Zi () 14, 1< CA P log2 4277 8) (7-10)
se

with an absolute constant C, for all S € [0, T/2]. On the event A;, we know that Z;’T(s) < ¢:“ (s), and
since t; < T /2, one has

AP 7 (s) < hi + Dlog(1+1s]A*/%), s e[-T/2,T/2].
Using sup; E[#;] < oo we obtain the desired estimate (7-10). It remains to prove Lemma 7.3.

7.3. Proof of Lemma 7.3. Let us begin with a high-level description of the ideas of the proof. To simplify
the notation we write ¢; instead of ¢l.hi and ; instead of Wl-hi. One consequence of our definitions is that
the rescaled functions ¢; defined in (7-8) describe nested shapes; see (7-12) and Figure 10. Towards the
proof of (7-9), by monotonicity, for each i we may raise the boundary of the path Z,’;“Tl from L to L+&;41,
and thus the probability of the event (7-9) is bounded below by the probability that this modified path, for
each i, is contained in the region between the two shapes ¢; and ¢;1; see Figure 11. If we start from the
bottom path then a simple recursion together with monotonicity allows us to reduce the problem to the
analysis of a single path, call it Z;, with a floor at ¢; 1, for each i. The key step is then an estimate of
the probability that this path Z; | satisfies Z; | < ¢;. To prove this, we use Lemma 5.4 to ensure that
Z;+1 comes down rapidly enough from the boundary, so that we may resample in the bulk of our interval
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L+

L+¢&4 ¢

Figure 10. A sketch of the two shapes ¢; 1 < ¢;.

using boundary data that are only a small vertical shift from the floor ¢; . At this point we apply a first
moment estimate for the maximum of an area-tilted path with a concave floor that was derived in [9]. It is
precisely this confinement estimate, combined with scaling and recursion, that will allow us to construct
the random variables /; representing the random vertical shifts in the definition of the nested shapes ¢;,
and to guarantee that their expected values satisfy the required uniform bounds sup; E[4;] < C.

We now turn to the technical details of the proof. As mentioned above, we proceed recursively, starting
from the bottom path Z|/ ;, and use monotonicity at each step to raise the boundary condition and to
impose a floor. Namely, if we assume that Z;JFTZ satisfies Z;JFTZ < ¢j+1 in [—T, T], then we can dominate
Z;ZJFT] by a single random line Z;, with area tilt AL with boundary data ¢; 1 (—T) = ¢i11(T) =L+ &4
and with a floor at ¢; 1(s), s € [T, T]. We are going to show that this random line Z;; satisfies

P(Zit1 <) >1—Ce T, (7-11)

for some constants ¢, C > 0 independent of n and i. Once we have such a bound, we can obtain the
desired estimate, starting from Z,,, where the floor is ¢, := 0, and then stopping at the desired path i, to

Li+e;
w

Li+é&

Vi

T;

Figure 11. Sketch of a realization of the path W; satisfying the event W; < 1//!1 "in (7-15). The
path is conditioned to stay above the floor &; from (7-16).
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obtain that the probability of the event A; in (7-9) satisfies, by the union bound,
n
P(A) = 1= Ce T > 1 Clem T,
j=i

for some new constant C’. Thus the proof of Lemma 7.3 has been reduced to (7-11), for every 0 <i < n.
Before proving (7-11), we first observe that

$i(s) = ¢iti(s), se[-T,T] (7-12)

This guarantees, in particular, that the event in (7-11) is not empty, since Z;;; is conditioned to stay
above ¢; 1. To prove (7-12), notice that t; | = A20=0/3s <4 and using also (7-7), one has

MP(@i(s) = pir1(9) = & =2~ Peia,
fors e [-T,—-T+4]U[T —t;,T], and
M@ () = Gis1(9)) = hi = 27 Phigy + W (sAHP) =271 (sa20HD),
fors e [T +¢;, T —t;]. By definition of ¢; we see that there exists ¢; = ¢;(1) > 0 such that
gi— A" Peinr = crer. (7-13)
Notice also that if C; is a large enough constant then
AT <0+ M), xeR.

Therefore,
KPi(s) = di41(9) = hi =27 Phigy — Cr 4 ¥ (s277),

forse[-T +1,T —t;], whereco =1—1"1/4>0.In particular, if
hi > Cr+21""Phig, (7-14)

then the right-hand side above is nonnegative and therefore ¢; > ¢; as desired; see Figure 10. Note that
the relations (7-14) may be assumed to hold without loss of generality, since the only requirement on the
variables £; is that sup; E[#;] < C.
We turn to the proof of (7-11). We first apply the scaling as in Lemma 2.5. It follows that the probability
in (7-11) can be evaluated as
P(Zis1 < ¢") =P(Wis1 < /"), (7-15)

where now W;11,i =0, ..., n—1, denotes the single line on [—7;, T;], with area tilt 1, with boundary data

MBI (=T) = AP (T) = Li + A P8 = Li + &,

where we define & := A/38; .1 = A™1/3¢; 1, and with floor given by

Ei(s) = APl (sA7HR) = a7 Ryl (sA?B), s e [T T, (7-16)

Note that &;(0) = A_1/3h,-+1. We refer to Figure 11 for a drawing of the event in (7-15).
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Note that from (7-13) we know that &; — &; > c1¢;. Define w :=L; +&; + % c1€&;, where the constant ¢
is the same as in (7-13). Let us also define

fi = Azj/3(T _ ti-i-]) — Tl . 7—;'(1)\’72(170{)/3’
and note that 7; > T; — T%; see Figure 11. We first show that
P(Wisi(s) <w,Vs € [T, i) = 1 — Ce™ )",

This can be achieved by considering a global floor at height L; + &; and using the bound in Lemma 5.3
on the probability that the maximum of a Ferrari—-Spohn diffusion exceeds the height % c1€&; in an interval
of size 2T;, since by definition (7-6) &; is larger than / T9Ai/4,

Thus, by monotonicity we can now restrict to a path in [—T;, T;] with boundary data at w, a ceiling at w
and a floor at &;(s), s € [—f”,-, f",-]. Call Wi the associated path. Set v; = Si(f}) as in Figure 11 and write

ki = max{W;(=T; + T, W;(T; — )} — v;.
‘We will show that
Elk;] < C, (7-17)

for some constant C. Note that we are considering a single line with area tilt 1, with boundary at w and
ceiling at w and we ask for it to come down to v; + k; within a time

A=T,— (T, - T") =T*(1 =229 > 6,17,

for some constant ¢, > 0. We may add a floor at v; by monotonicity. Next, we apply Lemma 5.4, with T
replaced by 7; and with T¢ replaced by A, and with a floor shifted upwards by v;. Note that 7; /2 < T, <T,
and that by taking 43'1 <o <a we can write A > (7;)* and thus the lemma applies. We obtain that with
probability at least 1 — Ce™“7i" the height goes down from the boundary reaching below height v; + K
within the intervals [—f}, —T; +T] and [f}, T; — T], for an absolute constant K (which plays the role
of the constant called L in Lemma 5.4). Let us call E this favorable event. On the complement of E we
may estimate k; by using the ceiling w sothat k; <w < L;4+¢& < L; + (A4 T?) so that

E[ki; E1< C(L; + W/* v T%))e T < C,

for some absolute constant C provided T is large enough depending on L. On the event E one can use
boundary conditions v; + K on a stopping domain which includes [—7; + T, T; — T;"], and we can further
impose a floor at v; + K. We then obtain the estimate E[k;; E] < C by simply applying the one-point
estimate for the single line with Ferrari—Spohn distribution. This proves (7-17).

Finally, once (7-17) is available, we need to show that for a suitable choice of the random variables 4;
one has the desired domination within the region [—7; + 7%, T; — T*]. This will be achieved by means
of the curved maxima with concave floor established in [9]. By monotonicity and the definition of the
random variables k;, see also Figure 11, we can consider a single line with left and right boundary
conditions at height v; + k; and with floor at 12,- +&;(s), for s € [-T; + T, T; — T;"], where we define

A

ki =ki+v —&(=T; + T7).



236 PIETRO CAPUTO AND SHIRSHENDU GANGULY

In order to apply the result from [9] we shift it vertically by —k; — &;(0) and consider the path WiH
on [-T; +T*, T; — T%], with area tilt 1, with floor at é,- (s) :=&;(s) — &;(0), with left and right boundary
conditions at height é,- (T; — T{). Then we consider the curved maximum

I; .= W — D1 1 ,
’ se[—THrrnT?’),(Ti—T;*][ i+ = Dlog(l+sD],

where [ - |+ denotes the positive part. From the estimate established in [9, Equation (3.8)] it follows that
E[l;] <C, (7-18)

if the constant D is large enough. As already noted after Theorem 2.7 the bound in [9] is derived for curved
maxima with respect to any concave power law function W (s) = [s|%, ¢ € (0, %) but it can be extended,
with the same proof, to the case of W(s) = Dlog(1 + |s|) if D is large enough. In conclusion, by setting

hi =& O0) +ki+Ti =2~ Phipy + ki + T, (7-19)
we have obtained that the line W;,; from (7-15) satisfies
Wit1(s) < hi + Dlog(1+Is) =" (s), s e[-T;. T,

where wl.h" is defined in (7-6). Recursively, starting at 4, := 0, (7-19) defines the sequence /;, and one
obtains the desired bound sup; E[4;] < oo, provided the same holds for Igi, ;. Noting that Igi <14k
and using the bounds (7-17) and (7-18), combined with (7-15), this proves (7-11).

Remark 7.4. For simplicity, we have stated Proposition 7.2 for fixed bounded boundary data L = O(1).
However, it is not difficult to check that the exact same argument given in the proof, namely Lemma 7.3,
can be applied with boundary data L = O(T?) to obtain the same conclusions, provided § < %—indeed,
the proof was based on the estimate from Lemma 5.4, which holds for any boundary height up to 7''/2,
and the rest of the argument can be repeated without modification with L = O(T?), § < % In particular,
the statements (7-4) and (7-5) hold also for the line ensemble Z,, 7 defined as in the statement of

Proposition 7.2, this time with boundary data L = 74,8 ¢ (0, %)

7.4. Proof of Theorem 3.7. To finish the proof of Theorem 3.7 we first need the counterpart result
of Lemma 6.1. We use the same notation, that is, we will use Y to denote the infinite LE with
zero boundary conditions on [—#/2, /2] and note that its infinite volume limit has law . Moreover,
we write Z for the uniformly tight LE in the statement of Theorem 3.7. By monotonicity, the latter
stochastically dominates the former. However, as in Lemma 6.1, the next result shows that with high
probability a reversing coupling can be constructed such that the top i lines are close to each other, for
any fixed i, provided  is large enough.

Lemma 7.5. There exists § > 0 such that given any i and S > 0, for all large enough t, there exists a
coupling of Y ~,r and Z, and an event E; such that on E, one has

Zis) =YL () <e®)? j=1,...,i, se[-S,S],

and such that P(E[) < @(t)?, where ¢(t) == exp(—c log(t)‘s)for some absolute constant ¢ > 0.
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Note that the definition of ¢(¢) has been altered a bit compared to Lemma 6.1 where § was taken to
be % This is because we will be relying on (7-3) which is a consequence of Theorem 7.1 and Lemma 5.6
which does not exactly specify the exponent in the tail estimate, in contrast with Theorem 3.1, where the
tail behavior is explicit. Nonetheless, this will not affect the outcome.

Proof of Lemma 7.5. The proof is verbatim the argument in the proof of Lemma 6.1 once two modifications
are made. To deduce (6-14), the input from Corollary 2.8 needs to be replaced by the counterpart input (7-2).
Similarly (7-3) replaces Corollary 3.2 to deliver (6-16). ]

We now have all the ingredients to complete the proof of Theorem 3.7. Let X denote the paths with
law 0. As already mentioned, under the monotone coupling of Z and X, with probability one, for any
i>1,

Zi - X', (7-20)

On the other hand, by Lemma 7.5 and the monotonicity ¥ ; < X, for all fixed i € N and § > 0, reasoning
as in (6-13), for any ¢ > 0, there exists another coupling such that with probability at least 1 — ¢,

Zi(s) < X/(s)4+e, j=1,...,i, se[=S,S]. (7-21)
The proof is essentially done at this point barring a few measure-theoretic details which we seek to provide
now. Borrowing notation from the proof of Corollary 4.2, fix m € N and let S = (sy, ..., sp) € [—¢, t]",
IT=(1,....im) €{l,...,i}", and let T = (11, ..., t,y) € R and consider the event

E=ES,I,T={YeQ:Yi(s)>t;,j=1,...,m}.
It suffices to show that for each m € N, and for each choice of S, Z, T,
p(E) =P(X € E)=P(Z € E) = v(E).
Since the event E is increasing (in the sense of the partial order (2-12)), by (7-20) it follows that
P(XeE)<P(Z<€E).
Inequality (7-21) on the other hand implies that for any & > 0,

P(Xe€E)>P(Z<€E)—e¢,
where
Ec={YeQ:Yi(s)>tj—e j=1,...,m}.

By invoking the absolute continuity with respect to independent Brownian motions for any fixed number
of lines on any compact domain established in [10, Theorem 1.4], it follows that E is a continuity set
for X. Therefore,

P(X € E)=P(Z € E). O

We finish with the proof of Corollary 3.8.
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Proof. By Theorem 2.10, the family of measures M}f,r as n and T increase to oo is tight. Further, by

Corollary 2.8, and a similar reasoning, say, using Fatou’s lemma as in Remark 2.9, it follows that any
limit point as n, T — oo, must be UC. Hence it is UT and satisfies (2-11). Thus by Theorem 3.7 any
limit point must agree with 1. This finishes the proof. U
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