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UNIQUENESS, MIXING, AND OPTIMAL TAILS

FOR BROWNIAN LINE ENSEMBLES WITH GEOMETRIC AREA TILT

PIETRO CAPUTO AND SHIRSHENDU GANGULY

We consider noncolliding Brownian lines above a hard wall, subject to geometrically growing self-

potentials of tilted area type. The model was proposed by Caputo, Ioffe, and Wachtel as the scaling limit

for the level lines of (2+1)-dimensional solid-on-solid random interfaces above a hard wall. In contrast

with the well-studied Airy line ensemble, a central object in the KPZ universality class, the presence

of growing area tilts renders the model nonintegrable. A stationary infinite-volume Gibbs measure was

previously constructed as a limit of finite line ensembles on finite intervals with zero boundary conditions.

We refer to this as the zero boundary state. Some preliminary control on its fluctuations was given in

terms of first moment estimates for one-point marginals and for suitable curved maxima. Subsequently,

Dembo, Lubetzky, and Zeitouni revisited the case of finitely many lines and established an equivalence

between the free and the zero boundary states. We develop probabilistic arguments to resolve several

questions that remained open. We prove that the zero boundary state is mixing, and hence ergodic, and

establish a quantitative decay of correlation. Further, we prove an optimal upper tail estimate for the top

line showing that it behaves approximately as a Ferrari–Spohn diffusion, which corresponds to the process

obtained by neglecting all interactions with lower lying lines. Finally, we prove that there exists a unique

uniformly tight Gibbs measure, which implies uniqueness of the stationary state, and convergence to this

state of the free boundary ensembles as the number of lines and the domain size are taken to infinity in an

arbitrary fashion.
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1. Introduction

We develop a unified probabilistic framework that will enable us to answer multiple open questions about

area-tilted line ensembles. Before diving into the precise model of interest, we start with a broad overview

of what line ensembles are, why they are important, and some of the recent developments in their study.
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Line ensembles (LEs) are a collection of random curves which occur rather naturally in many models of

interest, encoding useful information. They could be both discrete or continuous. In certain cases they are

natural in the prelimit as well as admit canonical scaling limits. A classical example is Dyson Brownian

motion (DBM) which describes the motion of eigenvalues of an n×n Gaussian unitary ensemble (GUE) as

their complex Gaussian entries perform independent (up to Hermitianness) Brownian motions. Remarkably,

an alternate description which is significantly more probabilistic states (see [32]) that DBM is a collection

of independent Brownian motions conditioned to not intersect. This immediately implies that they possess

a simple yet powerful Markov property, namely, the conditional law of a finite subset of the curves on

a compact interval given everything else is given by independent Brownian bridges between the given

boundary endpoints, constrained to not intersect and to avoid the remainder of the boundary data.

It turns out that this model is determinantal via the Karlin–McGregor formula which opens up the door

to performing asymptotic analysis. Indeed such formulas along with probabilistic methods were employed

in [13] where the Airy line ensemble was constructed as a scaling limit of the DBM. The aforementioned

resampling invariance property passes to the limit which provides a varied set of tools to study this canonical

family of random curves whose top line is the parabolic Airy2 process. Via the Robinson–Schensted–Knuth

correspondence, the various lines in the Airy LE together are expected to describe the scaling limit of the

asymptotic free energy of disjoint polymers in various (1+1)-dimensional models believed to be in the

Kardar–Parisi–Zhang (KPZ) universality class. However, currently, the rigorous proof of such connections

exist only for a handful of models possessing exactly solvable properties. One of the key phenomena

observed in such models is a competition between Brownian fluctuations and the nonintersection constraint

leading to the fluctuation exponents characteristic of KPZ universality [12; 17; 18; 31; 33].

The Markovian property, in this context referred to as the Brownian–Gibbs property, also casts such

LE as special cases of infinite-volume Gibbs measures which are ubiquitous in statistical mechanics and

probability theory. Gibbsian line ensembles are a special class of Gibbs measures, which have received

considerable attention in the past two decades owing, in part, to their occurrence in integrable probability;

see, for instance, [2] for results on tightness for such line ensembles.

Often in applications one needs a precise understanding of various observables including one-point

tail estimates, decay of correlations and so on. These have been studied in great detail recently for the

Airy LE; see, e.g., [1; 6; 13; 15; 16]. Besides probabilistic ideas, as already indicated, integrable features

such as being determinantal is usually a crucial input in the analyses. In the case of the Airy LE, the

determinantal property stems from an underlying exchangeability of the prelimiting model of noncrossing

Brownian motions leading to the Karlin–McGregor formula. For a recent set of results which bypasses

the use of such determinantal properties, see [25].

Low-temperature level curves and entropic repulsion. Another class of line ensembles, which is indeed

our focus, arises naturally by considering the local restrictions of level curves of discrete random interfaces.

Perhaps the most canonical example comes from the low-temperature three-dimensional Ising model with

a hard floor, with all positive boundary conditions except the floor where it is entirely negative, leading to

an interface between the two phases. This is an example of entropic repulsion, which for low-temperature

(2+1)-dimensional crystals above a hard wall has been the subject of extensive study in statistical physics.



UNIQUENESS, MIXING, AND OPTIMAL TAILS FOR LINE ENSEMBLES WITH AREA TILT 197

While the unconstrained surface of the crystal would typically be rigid at height 0, the presence of a

wall pushes the surface upwards to increase its entropy (i.e., to allow downward fluctuations), to a height

which typically diverges logarithmically with the side length L of the box. A rigorous study of this

phenomenon in the (2+1)-dimensional solid-on-solid (SOS) model — a low-temperature approximation

of the three-dimensional Ising model — dates back to Bricmont, El Mellouki and Fröhlich in 1986 [4]. A

rather refined picture was established later in [7] where among other things it was shown that the model

admits a sequence of nested level lines each encompassing a large macroscopic fraction of the sites; see

also [8] for counterpart study of other gradient interface models. As a result of the entropic repulsion, the

energy cost of the i-th curve is linear in the area enclosed between the i-th and (i+1)-th curve with a

prefactor ¼i , for some constant ¼ > 1, which grows geometrically with i .

Such level curves can be analyzed to some degree using cluster expansion techniques, see [7], but

obtaining their precise limiting fluctuations remains a challenging task; see, however, [5] for some

promising recent progress. To construct a candidate for their scaling limit, in [9; 10] the authors

introduced and initiated the study of a model consisting of an unbounded number of nonintersecting

Brownian bridges above a hard wall, and subject to geometrically increasing area tilts. Thus the individual

lines face stronger and stronger pressure towards the wall as one goes down the stack (that is, as their

index is increased). We will call this model the ¼-tilted LE. The recent work [35] proves that the ¼-tilted

LE is the scaling limit of the discrete counterpart consisting of area-tilted nonintersecting random walks.

A natural way to create infinite-volume limits is to take finite systems on compact domains with

boundary conditions and then pass to a limit provided it exists. Thus important questions concern

existence of such limits and their dependence on boundary conditions, and their properties such as

ergodicity, decay of correlation and tail behavior. For the Airy LE many of the above questions have

been thoroughly investigated, with most of the arguments relying substantially on integrable inputs. See

also the recent results in [20; 22] showing convergence to the Airy LE of the 1-tilted LE, i.e., when

¼= 1, which admits a determinantal structure as observed in [28]. In contrast, in absence of any algebraic

structure, for the ¼-tilted LE with ¼ > 1, despite the initial results in [9; 10] and further progress made

recently in [19], all of the above questions and others have remained largely open.

We develop a unified probabilistic framework primarily relying on resampling and coupling ideas to

resolve several of the above questions.

Before moving on to the next section devoted to setting up the definitions leading to the statements of

our main theorems, for the ease of readability we offer a quick glimpse of what we aim to establish. This

includes

• sharp tail estimates (addressing both upper tail as well as entropic repulsion) which will also be a

crucial input in the remainder of the arguments;

• ergodicity and mixing properties of the infinite LE constructed in [10] as well as quantitative decay

of correlation estimates;

• uniqueness of ¼-tilted LEs under a uniform tightness assumption, which in particular implies that

there exists a unique stationary Gibbs measure such that the n-th line converges to zero as n → ∞.



198 PIETRO CAPUTO AND SHIRSHENDU GANGULY

We now move on to the precise description of the model and the main theorems. In the forthcoming

section we set up the technical apparatus, introduce the Gibbs property, as well as review previously

known facts. This will provide the necessary background for the main results that will be presented

in Section 3.

2. Setup and known facts

We start with the formal definition of LEs.

2.1. Line ensembles with geometric area tilts. For ℓ < r , n ∈ N, and x, y ∈ R
n , let B

x,y

ℓ,r be the unnor-

malized path measure of n independent standard Brownian bridges B = (B1(s), . . . , Bn(s)), s ∈ [ℓ, r ],
with boundary data Bi (ℓ)= xi and Bi (r)= yi , i = 1, . . . , n. As a convention, we write B

x,y

n;ℓ,r also for

the corresponding expectation, so that the total mass of B
x,y

n;ℓ,r satisfies

B
x,y

n;ℓ,r [1] = qr−ℓ(x, y) := 1

(2Ã(r − ℓ))n/2 e
− ∥y−x∥2

2
2(r−ℓ) .

For n ∈ N, define the simplex

A
+
n = {x ∈ R

n : x1 > · · ·> xn > 0}. (2-1)

We consider path measures that are supported on the set �+
n;ℓ,r of nonintersecting n-tuples X ,

�+
n;ℓ,r = {X : X(t) ∈ A

+
n ,∀t ∈ (ℓ, r)},

and such that the i-th path X i is subject to a potential of area tilt type of the form

exp

(
−a¼i−1

∫ r

ℓ

X i (s) ds

)
, i = 1, . . . , n,

where a > 0 and ¼ > 1 are fixed constants. Thus, given n g 1, a > 0, ¼ > 1 and x, y ∈ A
+
n , we consider

the partition function

Z
x,y

n;ℓ,r (a, ¼) := B
x,y

ℓ,r [1�+
n;ℓ,r

e−a
∑n

i=1 ¼
i−1

∫ r

ℓ
X i (s) ds)], (2-2)

and the associated probability measure P
x,y

n;ℓ,r [ · | a, ¼] defined by the expectations

P
x,y

n;ℓ,r [F(X) | a, ¼] := 1

Z
x,y

n;ℓ,r (a, ¼)
B

x,y

ℓ,r [F(X)1�+
n;ℓ,r

e−a
∑n

1 ¼
i−1

∫ r

ℓ
X i (s) ds], (2-3)

where F is any bounded measurable function over the set of n-tuples of continuous functions from [ℓ, r ]
to R. The measure P

x,y

n;ℓ,r [ · | a, ¼] will be referred to as the n-LE with (a, ¼)-geometric area tilts with

boundary conditions (x, y) on the interval [ℓ, r ]. We remark that P
x,y

n;ℓ,r [ · | a, ¼] is well defined for all

x, y ∈ A
+
n . Indeed, if x, y ∈ A

+
n one has

B
x,y

ℓ,r (�
+
n;ℓ,r ) > 0,
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and therefore Z
x,y

n;ℓ,r (a, ¼) ∈ (0,∞). While this does not apply to all x, y ∈ A
+
n , the closure of the

set A
+
n ¢ R

n , it is still possible to define P
x,y

n;ℓ,r [ · | a, ¼] in these cases by a limiting procedure.1 If ¼= 1,

then P
x,y

n;ℓ,r [ · | a, ¼] has an explicit determinantal form in the limit [ℓ, r ] → R, and is referred to as the

Dyson–Ferrari–Spohn line ensemble; see [28].

Two cases of boundary conditions are of special interest. The first one corresponds to zero boundary

conditions, and is obtained by taking x = y = 0 above:

P
0
n;ℓ,r [ · | a, ¼] := P

0,0

n;ℓ,r [ · | a, ¼]. (2-4)

The second is the case of free boundary conditions defined by

P
f

n;ℓ,r [F(X) | a, ¼] := 1

Z
f

n;ℓ,r (a, ¼)

∫

A
+
n ×A

+
n

B
x,y

ℓ,r [F(X)1�+
n;ℓ,r

e−a
∑n

1 ¼
i−1

∫ r

ℓ
X i (s) ds] dx dy, (2-5)

where

Z
f

n;ℓ,r (a, ¼) :=
∫

A
+
n ×A

+
n

Z
x,y

n;ℓ,r (a, ¼) dx dy,

and dx, dy denote Lebesgue measure on R
n . For a proof that P

f

n;ℓ,r [ · | a, ¼] is well defined, that is,

Z
f

n;ℓ,r (a, ¼) ∈ (0,∞), for all a > 0, ¼ > 1, see [9, Appendix A].

To simplify the notation, when [ℓ, r ] = [−T, T ] we will often write

µ
f

n,T := P
f

n;−T,T [ · | a, ¼], µ0
n,T := P

0
n;−T,T [ · | a, ¼], (2-6)

for the above probability measures. In what follows a and ¼ will often be omitted from our notation.

We assume the parameter ¼ > 1 to be fixed once and for all. Moreover, whenever a is not explicitly

mentioned, it will be tacitly assumed that a = 1.

2.2. The stationary measure. For n =1, note that µ0
1,T is simply a Brownian excursion B(s), s ∈[−T, T ],

with an area tilt

exp

(
−

∫ T

−T

B(s) dt

)
,

and is known to converge weakly, as T → ∞, to the law of a stationary process known as Ferrari–Spohn

diffusion, which we denote by {YFS(t), t ∈ R}, such that YFS(0) has density proportional to

Ai
( 3
√

2 x −É1

)2
1x>0, (2-7)

where Ai( · ) is the Airy function and −É1 denotes its largest zero. This was first constructed in [23] as a

scaling limit of the relative height of a Brownian bridge constrained to be above circular or parabolic

barriers, and then it was shown to be the scaling limit of a large class of area-tilted random walk

models [27]; see also [26]. Further, across [24; 29] this was shown to also arise as the limit of interfaces

in the low-temperature Ising model in the critical prewetting regime.

1The finite-dimensional convergence is a simple consequence of the monotonicity in the endpoint data while the tightness can

be obtained as in [10, Section 2] whose estimates continue to hold uniformly for all boundary data as long as they are bounded. In

the determinantal case of Dyson Brownian motion, a similar argument appears in [13] where the finite-dimensional convergence

is argued using convergence of the explicit determinantal kernels.
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However, we will focus primarily on the case of large n or n = ∞. Results from [9; 10] ensure the

tightness of the measures µ
f

n,T and µ0
n,T as n → ∞ and T → ∞. As observed therein, monotonicity (the

precise statement appears in Lemma 2.3 below) implies that there is a well-defined, time stationary, infinite

line ensemble µ0 describing the weak limit of µ0
n,T , the limit n, T →∞ being taken in an arbitrary fashion,

µ0 = lim
n,T →∞

µ0
n,T .

We often refer to µ0 as the zero boundary condition ¼-tilted line ensemble, or simply the zero boundary

¼-tilted LE or sometimes, for brevity, the zero boundary LE. In particular, for every fixed n ∈ N, there

exists a time stationary, n-LE

µ0
n = lim

T →∞
µ0

n,T (2-8)

describing the weak limit of µ0
n,T as T → ∞, and such that µ0

n → µ0 weakly, as n → ∞. Recently,

Dembo, Lubetzky and Zeitouni [19] showed that for every fixed n ∈ N, one has the weak convergence

µ0
n = lim

T →∞
µ

f

n,T , (2-9)

for the free boundary ensemble as well. It follows that, taking T → ∞ first, and then n → ∞, the free

boundary measures µ
f

n,T also converge to the stationary field µ0. We refer to Theorems 2.10 and 2.11

for more formal statements.

As a consequence of our uniqueness result mentioned in the introduction, it follows that sending n, T to

infinity in any arbitrary fashion also yields the same result; see Corollary 3.8. Concerning the measure µ0,

we shall also address other questions that were listed as open problems in [9; 10], namely ergodicity and

decay of correlations.

The above facts, combined with PDE theory, also show that the measure µ0
n can be identified with the

stationary diffusion process on A
+
n associated to the Sturm Liouville operator

Ln =
n∑

i=1

(
1
2
∂2

xi
− ¼i−1xi

)
, x ∈ A

+
n ,

where A
+
n is defined in (2-1). More precisely, µ0

n is the law of the stationary Langevin diffusion with

invariant distribution 82
n(x) dx on A

+
n , where 8n is the Krein–Rutman eigenfunction of Ln on A

+
n with

Dirichlet boundary condition on ∂A
+
n ; see, e.g., the discussion in [28, Section 2.3] for the special case

¼= 1. It is thus natural to identify µ0 as the law of an infinite-dimensional diffusion process, a point of

view that we hope to investigate further in future work.

2.3. Brownian–Gibbs (BG) property for area-tilted measures. As alluded to multiple times already, a

crucial tool for us will be a sampling invariance property enjoyed by the ensembles defined above. This

extends the notion of the Brownian–Gibbs property introduced in [13] to paths with area tilts. We refer to

it as the Brownian–Gibbs property of the line ensemble. We start by recalling the basic definitions. A

more comprehensive treatment can be found in [13; 14; 16].
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Let the spaces A
+
∞ be defined as the n = ∞ version of the set A

+
n given in (2-1). The sample space

is �= C(R,A
+
∞), the set of continuous functions f : R 7→ A

+
∞, equipped with the topology of uniform

convergence of any finite number of paths on compact subsets, and with the corresponding Borel Ã -

field B. The coordinate maps X ∈ � 7→ X i (t) are viewed as the position of the i-th particle at time t .

Following [13], for each n ∈ N, and time interval [ℓ, r ] ¢ R, define the internal and external Ã -algebras

B
i

n;ℓ,r = Ã(X i (t) : t ∈ (ℓ, r) and i f n),

B
e

n;ℓ,r = Ã(X i (t) : either t /∈ (ℓ, r) or i > n).

Given a > 0, ¼ > 1, an interval [ℓ, r ], an integer n ∈ N and a continuous function h : R 7→ R+, we write

E
x,y

n;ℓ,r [ · | h] for the expectation of the n-line ensemble with floor h, which is defined as in (2-2)–(2-3)

with the set �+
n;ℓ,r replaced by

�
+,h
n;ℓ,r =�+

n;ℓ,r ∩ {Xn(s) > h(s),∀s ∈ (ℓ, r)}.

Let also �ℓ,r = C([ℓ, r ],A
+
∞) denote the set of paths in the interval [ℓ, r ].

Definition 2.1 (¼-tilted LE). A probability measure P on � is said to have the Brownian–Gibbs (BG)

property with respect to (a, ¼)-geometric area tilts (or in short simply the BG property) if for any bounded

measurable F :�ℓ,r 7→ R, the corresponding conditional expectations E[ · | Be

n;ℓ,r ] satisfy

E[F | Be

n;ℓ,r ] = E
Xfn(ℓ),Xfn(r)

n;ℓ,r [F( · , X>n) | Xn+1], (2-10)

P-a.s. for any −∞ < ℓ < r <∞ and n ∈ N. In (2-10), we use the notation Xfn = (X1, . . . , Xn) and

X>n = (Xn+1, Xn+2, . . . ). A probability measure P on � with the above Brownian–Gibbs property is

called a ¼-tilted line ensemble, or simply a ¼-tilted LE.

If P = µ0 denotes the zero boundary ¼-tilted LE, that is, the weak limit of µ0
n,T as discussed in

Section 2.2, then it was shown in [10] that P has the BG property. A standard argument allows one

to show that ¼-tilted measures also satisfy the strong BG property, namely the property (2-10) when

the deterministic domain identified by n lines and the time interval [ℓ, r ] is replaced by the stopping

domain identified by n lines and the time interval [Äℓ, Är ], where Äℓ and Är are left and right stopping

times, respectively (i.e., the event {Äℓ f t} ∩ {Är g s} is in Be

n;t,s for all s and t); see [13, Lemma 2.5].

Finally, note that the BG property only specifies the conditional law of finitely many paths on a finite

domain. Thus X ∼ µ0 satisfying the BG property immediately implies that for any constant c > 0, the

random element X +c = (X i +c)ig1 also satisfies the BG property (this uses the fact that the area increase

for each curve on a given finite domain is deterministic along with the fact that the Brownian bridge

density is invariant under shifting by a constant). This can be also thought of as raising the hard floor

from 0 to c. Generalizing further, one can raise the floor to any given g : R → Rg0, and in particular if,

say, g is bounded and regular enough, one can in principle construct a BG measure where the floor is g

by monotonicity and tightness arguments.

However, postponing the investigation of such LEs to the future, throughout this article we will be only

considering LEs satisfying the following property.
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Definition 2.2 (asymptotically pinned to zero). A probability measure P on � or the corresponding LE is

said to be asymptotically pinned to zero if the following holds. For any ε > 0 and T ∈ R, there exists

k = k(T, ε) such that

P( sup
s∈[−T,T ]

X k(s)f ε)g 1 − ε. (2-11)

Note that any finite LE (X i ( · ))1fifn can be naturally seen to satisfy the asymptotic pinning condition

by introducing an auxiliary curve Xn+1( · ) ≡ 0. Further, estimates recorded later (see, for instance,

Remark 2.9) immediately imply the unsurprising fact that µ0 is indeed an example of a BG measure

asymptotically pinned to zero.

2.4. Monotonicity and scaling. Two key tools for the analysis of ¼-tilted line ensembles are monotonicity

and scaling. Monotonicity is expressed by the following stochastic domination properties. For vectors of

continuous functions f = ( f 1, . . . , f n), g = (g1, . . . , gn) on [ℓ, r ] ¢ R we define the partial order

f z g ⇐⇒ f i (t)f gi (t) for all t ∈ [ℓ, r ] and i ∈ [n]. (2-12)

For every n ∈ N and ℓ < r , consider the ensemble P
x,y

n;ℓ,r [ · | h−, h+, Ä] of n lines on the interval [ℓ, r ],
parametrized by boundary conditions x, y ∈ A

+
n , a pair h = (h−, h+), h± = (h±

i : i = 1, . . . , n), where for

each i , h−
i , h+

i are nonnegative continuous functions, called respectively the i-th floor and the i-th ceiling,

satisfying h−
i z h+

i and

h−
i+1 z h−

i , h+
i+1 z h+

i , i = 1, . . . , n − 1,

and an n-tuple of nonnegative continuous functions Ä = (Ä1, . . . , Än), called the area tilts. The line

ensemble P
x,y

n;ℓ,r [ · | h−, h+, Ä] is defined by the partition function

Z
x,y

n;ℓ,r (h
−, h+, Ä) := B

x,y

ℓ,r [1h−zXzh+1�+
n;ℓ,r

e−
∑n

i=1

∫ r

ℓ
Äi (t)X

i (t) dt ],

Stochastic domination is defined w.r.t. the partial order (2-12). For two measures µ, ¿ on paths X , Y ,

we write µ{ ¿ if there exists a coupling 0 of (µ, ¿) such that 0(X { Y )= 1. The following lemma is

proved in [9, Lemma 1.4], which in turn is based on [13, Lemma 2.6], where the basic monotonicity

property of nonintersecting Brownian line ensembles was first established.

Lemma 2.3. If x z u, y z v, h− z g−, h+ z g+, and Ä { » , then

P
x,y

n;ℓ,r [ · | h−, h+, Ä] z P
u,v

n;ℓ,r [ · | g−, g+, »].

Remark 2.4. Lemma 2.3 is stronger than [9, Lemma 1.4] since it allows each path to have its own floor

and ceiling. However, the proof can be extended with minor modifications. Moreover, the statement

in Lemma 2.3 extends, with the same proof, to the case of noncontinuous ceilings of the form h̄+ =
h+

10 +∞10c where h+ is a continuous function and 0 is a finite union of intervals contained in [ℓ, r ],
and 0c = [ℓ, r ]\0. The same extension holds for floors of the form h̄− = h−

10 where h− is a continuous

function and 0 is as above. Moreover, the lemma generalizes easily to the case of pinned fields obtained



UNIQUENESS, MIXING, AND OPTIMAL TAILS FOR LINE ENSEMBLES WITH AREA TILT 203

by taking ceilings of the form h̄+ = ∞10c where 0 =
⋃

i {si } is a finite collection of points si ∈ [ℓ, r ].
The latter case corresponds to independent ensembles with zero boundary conditions at the points si .

Brownian scaling induces a useful scaling relation for ¼-tilted line ensembles that may be summarized

as follows. Consider the following mapping of an n-tuple X of paths on an interval [−¼2/3T, ¼2/3T ] to

an n-tuple Y of paths on [−T, T ]:
Y ( · )= 1

¼1/3
X(¼2/3 · ). (2-13)

The next lemma says in particular that if Y is related to X via (2-13), then Y has distribution P
0
n,T [ · | a¼, ¼]

if and only if X has distribution P
0
n,T¼2/3[ · | a, ¼], and the same holds for the free boundary ensemble.

See [9, Lemma 1.1] for a proof.

Lemma 2.5. For all n ∈ N, T > 0, a > 0, ¼ > 1, and x, y ∈ A
+
n ,

Z
x,y

n,ℓ¼2/3,r¼2/3(a, ¼)= ¼−n/3 Z
¼−1/3x,¼−1/3 y

n,ℓ,r (a¼, ¼).

Moreover, for any bounded measurable function F on �+
n,ℓ,r ,

P
0
n,ℓ,r [F(X) | a¼, ¼] = P

0
n,ℓ¼2/3,r¼2/3[F(¼−1/3 X(¼2/3 · ) | a, ¼],

where P
0
n,ℓ,r [ · | a, ¼] is the zero boundary measure defined in (2-4). The same expression holds for the

free boundary measure P
f

n,ℓ,r [ · | a, ¼] defined in (2-5).

The following remark will be useful in several later applications.

Remark 2.6. Let X i
n,T denote the i-th line of the ensemble µ

f

n,T = P
f

n,−T,T [ · | a, ¼]. The above

lemma, combined with the monotonicity in Lemma 2.3, shows that X2
n,T ( · ) is stochastically dominated

by ¼−1/3 X1
n−1,¼2/3T

(¼2/3 · ), even conditioned on X1
n,T . This follows by first removing the ceiling X1

n,T

imposed on X2
n,T and then by applying the scaling relation. More generally, by removing all top k paths

and applying k times the scaling relation, one has that for any n> k g 1, X k+1
n,T is stochastically dominated

by ¼−k/3 X1
n−k,¼2k/3T

(¼2k/3 · ). The same statement continues to hold for µ0
n,T .

2.5. Confinement estimates. Let X1
n,T denote the top path in the free boundary ensemble µ

f

n,T . We use

[ · ]+ to denote the positive part. The main confinement estimate from [9] can be rephrased as follows.

Theorem 2.7. There exists a constant C > 0 such that for all n ∈ N, T > 0,

E
[

max
t∈[−T,T ]

[X1
n,T (t)−È(t)]+

]
f C, (2-14)

where È(t)= C log(1 + |t |). In particular, for all n ∈ N, and T g S > 0,

E[ max
t∈[−S,S]

X1
n,T (t)] f C(1 + log(1 + S)).

The statement of Theorem 2.7 was proven in [9] with the function È(t) replaced by |t |³, where

³ > 0 can be taken arbitrarily small; see [9, Theorem 3.1]. However, a careful check of the steps in that

proof reveals that the upgrading presented in (2-14) requires only minor adjustments; this is indeed a
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consequence of the exponential tail established in [9, Section 3.3]. Moreover, minor modifications of the

argument leading to (2-14) can be shown to prove this slightly stronger bound: for every S, T > 0,

E
[

max
t∈[−S,T ]

[X1
n;−S,T (t)−È(t)]+

]
f C, (2-15)

where X1
n;−S,T is the top path in the free boundary condition ensemble P

f

n;−S,T [ · | a, ¼] on the in-

terval [−S, T ]. As a corollary, we state bounds on the height of the k-th path X k
n,T (t) in the free

boundary ensemble µ
f

n,T , for any k g 1, which exploit the uniformity along translations expressed by

the estimate (2-15). The next statement follows directly from the stochastic domination in Remark 2.6

and (2-15). As a convention, we set X k+1
n,T (u)= 0 if u /∈ [−T, T ].

Corollary 2.8. There exists a constant C > 0 such that for all integers k g 0, n g k +1, and for all T > 0,

sup
t∈R

E[X k+1
n,T (t)] f C¼−k/3.

Moreover, for all T g S > 0,

sup
t∈R

E[ max
u∈[−S,S]

X k+1
n,T (t + u)] f C¼−k/3

(
1 + log(1 + |S¼2k/3|)

)
.

Remark 2.9. By monotonicity, Corollary 2.8 applies to the zero boundary ensemble µ0
n,T as well.

Moreover, by uniformity in n, T , and appealing, for instance, to Fatou’s lemma, the same uniform

estimates continue to hold for the (k+1)-th line of the zero boundary ¼-tilted LE µ0.

Finally, for later reference we collect below the main findings from [10] and [19] concerning infinite-

volume measures that we already alluded to in Section 2.2.

Theorem 2.10 [10, Theorems 1.3, 1.4, and 1.5]. For any k, the joint law of {X i
n,T }1fifk under µ

f

n,T

or µ0
n,T forms a tight sequence as n, T → ∞, and any weak limit point is a Gibbs measure in the sense of

Definition 2.1. Moreover, µ0
n,T has a well-defined stationary limit µ0, the zero boundary ¼-tilted LE.

Theorem 2.11 [19, Theorem 1.1]. For any n ∈ N, µ
f

n,T and µ0
n,T have the same weak limit µ0

n , as T → ∞.

In particular, taking first T → ∞ and then n → ∞ one has the weak convergence of µ
f

n,T to the zero

boundary LE µ0.

Given the above preparation, we are now in a position to state our main results.

3. Main results

We first start with the properties of µ0 before discussing other boundary conditions.

3.1. Optimal tail behavior. The first result concerns the one-point tail behavior which will also serve

as a crucial input in the proofs of several of the forthcoming results. It is worth beginning by drawing

an analogy with the known tail estimates for the top line of the Airy LE, namely the Airy2 process. It

is known that the one-point distribution in this case is the GUE Tracy–Widom distribution FTW (see
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[34; 37]) which has the tail behavior

FTW((t,∞))= exp
(
− 4

3
t3/2 + O(log t)

)
, as t → ∞,

FTW((−∞,−t))= exp
(
− 1

12
t3 + O(log t)

)
, as t → ∞.

(3-1)

Moreover, letting YFS( · ) denote the stationary Ferrari–Spohn diffusion with one-point marginal given

by (2-7), the asymptotic formula for the Airy function Ai(z)=exp
((

−2
3
+o(1)

)
z3/2

)
, as z →∞, shows that

P(YFS(0) > t)= exp
(
−

(
2
√

2
3

+ o(1)
)
t3/2

)
, t → ∞. (3-2)

In the case of infinitely many lines, as recorded in Theorem 2.7 and Corollary 2.8, estimates from

[9; 10] captured the right scale of fluctuation for the ¼-tilted ensemble µ0. Here we establish an essentially

optimal upper tail estimate for the height of the top path, showing that the Tracy–Widom/Ferrari–Spohn

upper tail (3-2) continues to hold at least up to first order even for µ0, and using scaling arguments this

extends to every subsequent path. On the other hand, the lower tail behavior for µ0 cannot be expected to

be the same as that of Airy2 because of the entropic repulsion induced by the hard floor constraint. For

the Ferrari–Spohn distribution, it is not too difficult to see that the probability of getting close to the floor

decays as

P(YFS(0)f ε) ≍ ε3, (3-3)

since essentially it behaves in the same way as a Brownian excursion on a unit order interval. With

multiple lines, we establish that the lower tail diminishes faster than polynomial; see Theorem 3.3.

Let X i denote the i-th line in the zero boundary ¼-tilted LE µ0. By monotonicity, X1(0) domi-

nates YFS(0), and therefore (3-2) is a lower bound on the tail probability P(X1(0) > t). The next result

proves that, asymptotically, it is also an upper bound.

Theorem 3.1 (upper tail). The top line in the zero boundary ¼-tilted LE satisfies

P(X1(0) > t)= exp
(
−

(
2
√

2
3

+ o(1)
)
t3/2

)
, t → ∞. (3-4)

We remark that a minor refinement of our ideas would allow us to improve the above statement with

more precise information on the coefficient c = 2
√

2
3

+ o(1), by including logarithmic correction terms as

in (3-1). However, we refrain from pursuing that for the sake of exposition. Also, as a straightforward

consequence of Theorem 3.1 and Remark 2.6 one obtains the following tail estimate for the k-th path:

P(X k+1(0) > t¼−k/3)f exp
(
−

(
2
√

2
3

+ o(1)
)
t3/2

)
, t → ∞.

Note however that one should expect a sharper bound than the above for larger k, since the devia-

tion X k+1(0) > t for the (k+1)-th curve forces the k curves above it to deviate by the same amount. We

record this improvement in the following corollary whose proof is also relatively straightforward from

Theorem 3.1.

Corollary 3.2. For any ¼ > 1, there exists an increasing sequence ck = ck(¼) with c0 = 2
√

2
3

and

ck → c∞ = 2
√

2
3

√
¼√
¼−1

, such that for all fixed k g 0, the (k+1)-th line in the zero boundary ¼-tilted LE



206 PIETRO CAPUTO AND SHIRSHENDU GANGULY

satisfies

P(X k+1(0) > t¼−k/3)f exp
(
−(ck + o(1))t3/2

)
, t → ∞.

Our next result provides a lower tail estimate quantifying the repulsion induced on the top path X1 by

the multiple lines below it.

Theorem 3.3 (entropic repulsion). There exists a constant C = C¼ > 0 such that

P(X1(0)f ε)f εC log(1/ε).

It is worth noticing the contrast with the polynomial tail displayed by the Ferrari–Spohn diffusion

in (3-3), where the only repulsive effect is due to the hard wall. Note also that the right-hand side above

can be rewritten as exp(−C log2(1/ε)) which bears some resemblance with a log normal distribution.

3.2. Ergodicity and mixing properties. We next turn to the study of the ergodic properties of µ0, and let

the corresponding stationary, infinite line ensemble be X . For any t ∈ R, let Tt denote the shift operator

defined by Tt X( · )= X(t + · ). Let B denote the Borel Ã -field generated by the finite-dimensional cylinder

sets (see, e.g., sets appearing later in (4-2)), and write Tt B = {T−t X ∈ B}, B ∈ B.

For every fixed n the stationary line ensemble µ0
n = limT →∞ µ0

n,T with n lines is known to have an

exponential decay of correlations, but no quantitative dependence on n is known; see [9; 19]. Here we

address the mixing and ergodic properties in the case of infinitely many lines.

Theorem 3.4. The line ensemble µ0 is mixing, that is, for every A, B ∈ B,

lim
t→∞

µ0(Tt A ∩ B)= µ0(A)µ0(B). (3-5)

In particular, µ0 is ergodic.

The corresponding result for the Airy LE was established in [15]. A natural quantitative version of the

above result would seek to establish the decay of correlation of, say to begin with, the top line. Parallel

inquiries have been undertaken in the case of exactly solvable models; see, for instance, [36; 38] for sharp

correlation estimates for the Airy2 process. A more recent work [3] considers the related Airy1 process.

Towards this we have the next result.

Theorem 3.5. There exist constants c,C > 0 such that, for all t > 0,

∣∣Cov(X1(0), X1(t))
∣∣ f C exp(−c(log t)3/7). (3-6)

Here we use the notation Cov( f, g)= E[ f g]−E[ f ] E[g] for the covariance. We note that by translation

invariance Theorem 3.1 implies that all moments of X1(s) are finite for all s ∈ R. In particular, the

covariance in (3-6) is well defined. Our proof will in fact show that the above estimate holds for X k( · )
for any fixed k.

Note that the above is significantly weaker than the exponential decay of correlation exhibited by the

Ferrari–Spohn diffusion. While one may speculate on the basis of geometrically decaying nature of the

curves, that a similar correlation structure might be expected for µ0 as well, pinning down the correct

order of correlations in this case remains an attractive open problem.
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3.3. Uniqueness. Classifying Gibbs measures and in certain cases proving their uniqueness is an important

problem in statistical mechanics. As already alluded to in the introduction, taking limits of finite-volume

measures with varying boundary conditions is a natural recipe to construct infinite-volume measures which

leads to important questions about whether the limits depend on the sequence of boundary conditions.

For instance, for the ¼-tilted LE, the question of uniqueness of the limit points of the free boundary

measures µ
f

n,T as n, T → ∞ has received some attention [10; 19]. Our final main result addresses these

questions in rather general terms. We begin with a definition. Recall that a ¼-tilted LE is a BG measure

as in Definition 2.1.

Definition 3.6. A ¼-tilted LE X = {X i }ig1 is said to be uniformly tight (UT) if, given any ε > 0, there

exists C > 0 such that, for all t > 0,

P(X1(t)g C)f ε.

Note that while any stationary line ensemble is by definition uniformly tight, the above definition also

allows nonstationary ensembles. Finally, recall the notion of being asymptotically pinned to zero from

Definition 2.2.

Theorem 3.7. Suppose ¿ is the law of a UT ¼-tilted LE which is also asymptotically pinned to zero. Then

¿ = µ0.

An immediate consequence of the above theorem is that there exists a unique stationary, asymptotically

pinned to zero, ¼-tilted LE. Finally, we record that a straightforward consequence of the above result is

the uniqueness of the line ensemble with free boundary conditions.

Corollary 3.8. The finite LE with free boundary conditions µ
f

n,T from (2-6) satisfy

lim
n,T →∞

µ
f

n,T = µ0,

with n, T → ∞ arbitrarily.

Indeed, Corollary 3.8 follows from the fact that any limit point of µ
f

n,T must be UT. To see this,

recall the strong confinement estimates for free boundary ensembles with finitely many lines stated in

Corollary 2.8. By passing to the limit one has that such estimates continue to hold for any limit point.

Such a property will be termed uniform confinement (UC) in the upcoming Definition 5.1, and will play

a key role in our arguments. It is easy to see that UC implies UT and asymptotically pinned to zero, and

thereby from Theorem 3.7 we have Corollary 3.8. On the other hand the reverse implication is much

harder, and a significant part of our work is devoted to its proof; see Theorem 7.1 below.

Note that it was mentioned in the discussion preceding Definition 2.2 that for any bounded continuous

function g, a BG measure with floor g could be made sense of if g is regular enough and bounded. This

would then be UT as well. Further, such a measure could also be constructed if g is not growing too fast.

In that case it would yield a BG measure but a non-UT measure. However, perhaps more intriguing is the

possibility of the existence of non-UT, yet asymptotically pinned to zero, ¼-tilted LEs. We anticipate that

the strategy we develop for the proof of Theorem 3.7 plays an important role in the analysis of such cases

as well: in the companion paper [11] we combine these ideas with a detailed analysis of nontranslation
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invariant versions of Ferrari–Spohn diffusions to obtain a complete characterization of all ¼-tilted LEs

that are asymptotically pinned to zero, revealing the existence of a two parameter family of non-UT BG

measures describing line ensembles whose top line wanders parabolically to infinity.

3.4. Proof ideas. We end this section with a brief overview of the proofs. As already indicated, in

contrast to past work on Airy LE, in absence of any integrability, our arguments do not have access to

algebraic inputs and are completely probabilistic in nature. In the upcoming section, we present a key

observation which is the starting point of many of our arguments, and already in its vanilla form yields a

quick alternate proof of Theorem 2.11.

In its core the observation is simple. Note that by monotonicity, for any n, T , there exists a coupling

of the measures µ
f

n,T and µ0
n,T such that deterministically the former dominates the latter. The crucial

observation then is that one can also simultaneously construct another coupling such that the latter

dominates the former, at least on a given compact interval, say around the origin, with high probability,

provided that T is large enough compared to n. To accomplish this we sample two independent copies

of µ
f

n,T and µ0
n,T . Given the samples, all one needs to ensure is the existence of a stopping domain

(see Figure 1) where the boundary data for the latter dominates the former. Since then one can simply

resample both ensembles on this domain (the strong BG property from Section 2.3 allows this) under

the monotone coupling and on account of the reverse ordering of the boundary data, the zero boundary

ensemble will dominate the free boundary counterpart.

Note that the existence of the stopping domain relies on the independent fluctuations of the two

ensembles to find a random time such that the zero boundary ensemble is above the free ensemble. This

necessitates T to be large enough as a function of n to allow enough room to fluctuate. The order in which

limits are taken in Theorem 2.11 permits taking T much larger compared to n and hence this strategy

suffices. On the other hand, for stronger claims such as Theorem 3.7 and Corollary 3.8, this does not

work as n can be in principle infinite for finite T . This is where we need to refine our approach. A finer

coupling of the free and zero boundary measures is also at the heart of our ergodicity results Theorems 3.4

and 3.5. Without diving further into details let us only mention that a crucial input at this point is a strong

Äℓ Är Äℓ Är

Figure 1. An illustration of the resampling argument outlined. On the left, we have two inde-

pendent samples of µ0
n,T (pink) and µ

f

n,T (green) with n = 4. The stopping domain where the

pink data dominates the green data is denoted by [Äℓ, Är ]. On the right, we have the resampled

ensembles (denoted by orange and blue, respectively) under the monotone coupling causing the

orange curves to deterministically be above the blue curves.
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one-point tail estimate for general uniformly tight ensembles. For the zero boundary ensemble this is

expressed by Theorem 3.1. To deliver such estimates we set up a bootstrap program, which is broadly

divided into two parts. The first part proves that a uniformly tight hypothesis (recall Definition 3.6) can

be upgraded to a uniform confinement property, a notion we introduce later (see Definition 5.1) which

essentially amounts to satisfying first moment bounds as in Corollary 2.8. In the second part, such first

moment bounds are then upgraded further to the sought tail bounds.

3.5. Organization of the article. In the upcoming section we implement the reverse coupling strategy

outlined above for an alternative proof of Theorem 2.11. Section 5 is devoted to the one-point tail estimate,

Theorem 3.1. We then investigate mixing properties and prove Theorems 3.4 and 3.5 in Section 6. The

argument developed in this section also allows us to prove Theorem 3.3. Finally, we prove Theorem 3.7

and Corollary 3.8 in Section 7 which also contains the proof of stretched exponential tail bounds under

the assumption of UT.

4. A first coupling argument

We introduce the vanilla version of the crucial coupling argument which as indicated in Section 3.4 will

be a key device in many of our arguments. While we will need refined versions of this in the proofs of

our main results, here as a warmup we introduce the key idea which already will suffice to provide an

alternate proof of Theorem 2.11.

In what follows a = 1 and ¼ > 1 are fixed, and the constants appearing below are allowed to depend

on their value, but they may not depend on other parameters. Let Xn,T and Y n,T denote the random lines

with law µ
f

n,T and µ0
n,T , respectively, that is, the n-line LEs on [−T, T ] defined in (2-6). By monotonicity

there exists a coupling of Xn,T , Y n,T such that Xn,T ° Y n,T with probability one. The following coupling

lemma states that one can find another coupling such that if T is large enough then, in the bulk, the

inequality can be reversed with large probability.

Lemma 4.1. For all n ∈ N, and T > 0 there exists a coupling Pn,T of Xn,T and Y n,T such that

Pn,T (Xn,T (t)f Y n,T (t),∀t ∈ [−T/2, T/2])g 1 − ε(T ),

for some ε(T )→ 0, as T → ∞.

Proof. Let Y n
n,T denote the n-th path in Y n,T . For any u > 0, consider the stopping domain [Äℓ(u), Är (u)]

defined by

Äℓ(u)= inf{t >−T : Y n
n,T (t)g u}, Är (u)= sup{t < T : Y n

n,T (t)g u}.

Consider now Y n
n,1, that is, the lowest path in the interval [−1, 1] with zero boundary conditions, and let

¶n(u)= P(Y n
n,1(0)g u).

For any fixed n ∈ N, and u > 0, one has ¶n(u) > 0. This is a direct consequence of the definition of the

ensemble µ0
n,T . We refer however the interested reader to Lemma 6.2 below for a quantitative lower bound

on such probabilities that will be crucial in some of our later arguments involving more refined couplings.
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−7 −5 −3 −1 1 3 5 7 9

Figure 2. The ensemble pinned at zero at gaps of 2 with finitely many lines (four in the figure)

owing to random fluctuations will be above the infinite ensemble with the same number of lines at

the random locations Äℓ, Är , as in the proof.

We seek to bound from below the probability

P(Äℓ(u) <−T/2, Är (u) > T/2).

By monotonicity, see Lemma 2.3 and Remark 2.4, we can replace Y n,T by the ensemble obtained by

pinning all paths at zero height at the endpoints of the intervals

I j = [−T + 2( j − 1),−T + 2 j], j = 1, . . . , jmax,

where jmax =+T ,. Call Ŷ n,T this pinned process, and let Ŷ n denote its n-th path. Note that each interval I j

has size 2 with midpoint s j = −T + (2 j − 1). We consider the index jℓ defined as the smallest j such

that Ŷ n(s j )g u (see Figure 2). Since the intervals are independent, one has

P(Äℓ(u)g −T/2)f (1 − ¶n(u))
+T/4, f e−¶n(u)+T/4,.

By symmetry, the same bound applies to P(Är (u)f T/2). It follows that

P(Äℓ(u) <−T/2, Är (u) > T/2)g 1 − 2e−¶n(u)+T/4,.

If we condition on {Y n,T (t) : t f Äℓ(u)} and {Y n,T (t) : t g Är (u)}, then by the strong BG property we

may resample
{
Y n,T (t) : t ∈ [Äℓ(u), Är (u)]

}

by using the law with left boundary data x := Y n,T (Äℓ(u)) and right boundary data y := Y n,T (Är (u)). In

particular, we know that the boundary values are all higher than u.

Consider now an independent sample of Xn,T , and define the event

A =
{

X1
n,T (Äℓ(u))f u, X1

n,T (Är (u))f u
}
,
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where X1
n,T denotes the top path in Xn,T . We can now construct the desired coupling Pn,T . We start with

two independent sample of Xn,T , Y n,T , as above. If the event

B = A ∩ {Äℓ(u) <−T/2, Är (u) > T/2}

occurs then we resample
{
(Xn,T (t), Y n,T (t)) : t ∈ [Äℓ(u), Är (u)]

}
according to the monotone coupling

which by construction guarantees that

Xn,T (t)f Y n,T (t), t ∈ [−T/2, T/2], (4-1)

with probability one. If instead B does not occur, then we keep the independent samples of (Xn,T , Y n,T )

everywhere. The previous observations and the strong BG property guarantee that this is a valid coupling.

Thus, we have shown that there exists a coupling Pn,T of (Xn,T , Y n,T ) such that (4-1) holds with

probability at least 1 − q(n, T, u)− q ′(n, T, u), where

q(n, T, u)= 2e−¶n(u)+T/4,, q ′(n, T, u)= 2 sup
t∈[−T,T ]

P(X1
n,T (t) > u),

and we are using that the event Ac has probability at most 2 supt∈[−T,T ] P(X1
n,T (t) > u). Next we observe

that, for every fixed n ∈ N, q ′(n, T, u) → 0 as u → ∞, uniformly in T . Indeed, this follows from

Corollary 2.8 and Markov’s inequality. Therefore, we may take T → ∞ and u = u(T )→ ∞ such that

¶n(u)T → ∞, so that both q(n, T, u)→ 0 and q ′(n, T, u)→ 0. This concludes the proof. □

4.1. Free vs. zero boundary conditions. The coupling from the above lemma provides a rather crude

comparison of the free and zero boundary paths Xn,T , Y n,T . However, this is already sufficient to provide

an alternative proof of Theorem 2.11.

Corollary 4.2. Let µ0
n denote the weak limit of µ0

n,T , as T → ∞, as in (2-8). Then (2-9) holds, that is, µ0
n

is also the weak limit of µ
f

n,T , as T → ∞.

Proof. In view of Theorem 2.10, the measures µ
f

n,T indexed by {n, T } are tight. It remains to show

that for each fixed n, finite-dimensional distributions converge, as T → ∞, to the finite-dimensional

distributions of µ0
n . To this end, fix m ∈ N, let S = (s1, . . . , sm) ∈ R

m , I = (i1, . . . , im) ∈ {1, . . . , n}m ,

and let T = (t1, . . . , tm) ∈ R
m
+. Consider the event

E = E(S, I, T )= {X ∈� : X i j (s j ) > t j , j = 1, . . . ,m}. (4-2)

Using the fact that, by, for example, [10, Theorem 1.4], E is a continuity set for µ0
n and for any limiting

point of µ
f

n,T (recall that µ
f

n,T is a tight sequence), and that sets of the form (4-2) generate the Ã -algebra,

it follows that it suffices to show that for each n ∈ N, and for each choice of S, I, T ,

µ
f

n,T (E)−µ0
n,T (E)→ 0, T → ∞. (4-3)

Since the event E is increasing with respect to the partial order (2-12), and µ0
n,T is stochastically dominated

by µ
f

n,T , it follows that

µ
f

n,T (E)g µ0
n,T (E).
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On the other hand, if T is large enough so that all points in T are contained in [−T/2, T/2], by Lemma 4.1

we have

µ
f

n,T (E)= Pn,T (X
i j (s j ) > t j : j = 1, . . . ,m)

f Pn,T (Y
i j (s j ) > t j : j = 1, . . . ,m)+ ε(T )= µ0

n,T (E)+ ε(T ).

Letting T → ∞ we obtain (4-3) . □

5. One-point tail estimate

The proof of Theorem 3.1 is divided into two parts. The first part establishes a weaker statement, namely

a nonoptimal stretched exponential bound, while the second part bootstraps the first argument to reach

the optimal 3
2

exponent.

5.1. Proof of Theorem 3.1, I. For later purposes, it is convenient to consider the following general setup.

Recall that a ¼-tilted LE is a BG measure as in Definition 2.1.

Definition 5.1 (uniformly confined LE). A ¼-tilted LE X (not necessarily stationary) is said to be uniformly

confined (UC) if there exists a constant C such that for all integers k g 0, for all s ∈ R,

E[X k+1(s)] f C¼−k/3, (5-1)

and such that, for all s ∈ R, S > 0 and all k g 0,

E[ max
u∈[−S,S]

X k+1(s + u)] f C¼−k/3
(
1 + log(1 + |S¼2k/3|)

)
. (5-2)

Recalling the definition of UT from Definition 3.6, observe that

UC =⇒ UT. (5-3)

Note also that the UC property is invariant under time translation, that is, if ¿ is UC and ¿s is the law

induced by ¿ on the translated paths X( · − s), then ¿s is also UC, with the same constants in (5-1) and

(5-2). Lastly, the zero boundary ¼-tilted LE µ0 is UC by Remark 2.9.

We will now show that the UC assumption can already be bootstrapped to establish the significantly

stronger stretched exponential tails. We first start with the statement for the top line.

Lemma 5.2 (stretched exponential bound). For any UC ¼-tilted LE X , there exist positive constants ³, c

and C such that for all t > 0,

P[X1(0) > t] f C e−c t³ . (5-4)

Moreover, by the invariance under translation of the UC property, the tail bound (5-4) holds for X1(s)

uniformly in s ∈ R.

The proof is technical, so we begin with a brief road map. Recall that we only have at our disposal

one-point estimates as well as curved max first moment bounds such as those appearing in Theorem 2.7.

This allows us, simply by Markov’s inequality, to argue that up to a small failure probability, paths with
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a large enough index (polynomial in t) are below a slightly raised floor. Further, Markov’s inequality

again allows us some, albeit weak, control on the entry and exit data of the remaining top paths (stretched

exponential in t). Thus we have a finite problem at our hand with polynomial in t many paths whose

entry and exit data are bounded by stretched exponential in t , on a domain we choose to be suitably large

(stretched exponential in t). We then obtain a lower bound on the partition function of this system to

argue that the paths are likely to come down to height smaller than t with stretched exponentially small

failure probability which finishes the proof. Crucial ingredients in the proof include the BG property,

monotonicity, comparison to the Ferrari–Spohn diffusion and tail estimates of its maximum.

Proof of Lemma 5.2. Fix some y > 0 large, define K = C log y, where C > 0 is a constant depending

only on ¼ to be taken large enough, and T = y10 and consider the events

A =
{

max
s∈[−T,T ]

X K (s)f 1

y

}
, B = { max

s∈[−T,T ]
X1(s)f y}.

Let us first show that

P(A ∩ B)g 1 − 1

y´
, (5-5)

for any constant ´ ∈ (0, 1) provided y is large enough. Indeed, for any k ∈ N, using Markov’s inequality

along with (5-2) (which holds by hypothesis),

P( max
s∈[−T,T ]

X k+1(s) > u)f C¼−k/3(k + log T )

u
.

If k = 0 and u = y we have P(Bc)f Cy−1 log y for some new constant C > 0. If k +1 = C log y, where

C > 0 is sufficiently large depending only on ¼, and u = 1/y, we have P(Ac)f Cy−1. This proves (5-5).

Next, we observe that, thanks to (5-5), to prove (5-4) it is sufficient to show that there exist constants

a > 1, b > 0 such that for all y > 0 large enough one has

P(X1(0) > 2 loga y | A ∩ B)f 1

yb
.

By monotonicity and the BG property, it follows that it suffices to prove the estimate

P(À 1
y (0) > loga y)f 1

yb
, (5-6)

where À 1
y (0) is the height at zero of the top line of the line ensemble À y = (À 1

y , . . . , À
K
y ), consisting

of K lines in the interval [−T, T ] with boundary conditions all equal to y, with a ceiling at height y and

a floor at zero, with all lines subject to an area tilt with the same coefficient ¼ ≡ 1. This uses the fact

that, by Lemma 2.3, lowering all area tilt parameters ¼i−1 to 1 yields stochastically higher paths.

To prove (5-6), we introduce the nested shapes defined by the trapezoids Ti = TSi ,ℓ,hi ,y , where

Ti (s)=





y if s ∈ [−T,−Si ] ∪ [Si , T ],
y − (y − hi )

s+Si

ℓ
if s ∈ [−Si ,−Si + ℓ],

hi if s ∈ [−Si + ℓ, Si − ℓ],
y − (y − hi )

Si −s
ℓ

if s ∈ [Si − ℓ, Si ],
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hi+1

hi

y

−T T−Si+1 + ℓ Si Si+10

Figure 3. The trapezoids Ti and Ti+1.

and we set

Si := T − 2(K − i + 1)ℓ, ℓ := y9, hi := (K − i + 1) log5 y.

Note that Ti+1 z Ti , i = 1, . . . , K − 1; see Figure 3.

To prove (5-6), by monotonicity we may replace the ensemble {À i
y} by the ensemble {À̄ i

y} obtained by

restricting, for each i , the i-th path À i
y on the interval [−Si + ℓ, Si − ℓ] with boundary conditions y with

floor at zero and ceiling at y, and with area tilt ¼= 1. Reasoning as in Remark 2.4, this corresponds to

adding a floor at height y for the i-th path on the intervals [−Si ,−Si +ℓ] and [Si −ℓ, Si ]. Define the events

Ai = {À̄ i
y z Ti }, i = 1, . . . , K .

By construction, if, e.g., a = 7, and À 1
y (0) > loga y, then there must exist i = 1, . . . , K such that Ai did

not occur while all A j , j = i + 1, . . . , K , have occurred. Therefore,

P(À 1
y (0) > loga y)f

K∑

i=1

P(Ac
i | Ai+1),

where AK+1 denotes the certain event.

To prove an upper bound on P(Ac
i | Ai+1), by monotonicity we may estimate from below the probability

that a single random path Z i on [−Si + ℓ, Si − ℓ] with boundary condition y, ceiling at y, floor at hi+1,

and area tilt ¼= 1, satisfies Z i z Ti , so that

P(À 1
y (0) > loga y)f

K∑

i=1

(1 − P(Z i z Ti )), (5-7)

where we set hK+1 = 0 for the floor of the K -th path Z K . We emphasize that each line Z i is now analyzed

separately, that is, we have reduced the problem from an ensemble of K lines to a single line. Next, we

are going to prove

P(Z i z Ti )g 1 − 1

yb
, (5-8)

for some b>0, and for all i =1, . . . , K . Combined with (5-7), and adjusting the value of the constant b>0,

this proves the desired claim (5-6) since K = O(log y).
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h

y

−S S−S + ℓ

−S + 2ℓ

Figure 4. A sketch of the event in (5-8) for i = K . Here S := T − ℓ, h = log5 y.

We are going to prove (5-8) in the case i = K , but the same argument works for i = 1, . . . , K −1 with

no modification. Thus, we now have Z = Z K , a single path on [−S, S] := [−T + ℓ, T − ℓ] with ceiling

at y, floor at 0, and area tilt ¼= 1; see Figure 4.

Define the stopping domain [Ä1, Ä2] by

Ä1 = inf{s >−S : Z(s)f h/2}, Ä2 = sup{s < S : Z(s)f h/2}.

Since y = T 1/10 f
√

S and ℓ= y9 g S³ for some ³∈
(

3
4
, 1

)
, monotonicity and Lemma 5.4 below show that

P(Ä1 <−S + ℓ, Ä2 > S − ℓ)g 1 − 1

yb
. (5-9)

Next, we show that

P( max
s∈[−S+ℓ,S−ℓ]

Z(s)f h | Ä1 <−S + ℓ, Ä2 > S − ℓ)g 1 − 1

yb
. (5-10)

Note that (5-9) and (5-10), by adjusting the value of b, are sufficient to conclude the proof of the desired

bound (5-8) at i = K for all y sufficiently large. On the other hand it is not difficult to see that, by using

the strong BG property from Section 2.3, and then monotonicity, the estimate (5-10) follows from the

tail bound on the maximum for the Ferrari–Spohn diffusion proven in Lemma 5.3 below. Indeed, we may

impose a floor at h/2 so that the probability of the event maxs∈[−S+ℓ,S−ℓ] Z(s) > h can be estimated by

the probability of the event maxs∈[−S+ℓ,S−ℓ] YFS(s)g h/2. This concludes the proof of Lemma 5.2. □

Lemma 5.3. There exist constants c,C > 0 such that the stationary Ferrari–Spohn diffusion YFS satisfies,

for all T g 1, t > 0,

P( max
s∈[−T,T ]

YFS(s)g t)f C T exp(−c t3/2). (5-11)

Proof. We assume for simplicity that T is an integer, and let s1, . . . , sN , with N = 2T , denote a mesh

of the interval [−T, T ], such that si+1 − si = 1. Further, let E be the event that YFS(si ) f t/2 for all

i = 1, . . . , N . Then by the tail estimate (3-2) and a union bound, the complement of E has probability at

most C T exp(−c t3/2) for some constants c,C . Thus, we may assume that E holds in (5-11). By the BG

property, using monotonicity and a union bound it is then sufficient to consider the probability that at

least one of 2T independent Brownian bridges on the interval [0, 1], conditioned to stay nonnegative,

with boundary 0 at both ends, has maximum larger than t/2. By a union bound, and using well-known
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estimates on the maximum of Brownian excursions (see, e.g., [30, Section 2.10]), one has that this

probability is at most C T exp(−c t2). □

The following technical lemma quantifies the pull to the floor, as a consequence of the area tilt, even in

the presence of high boundary conditions.

Lemma 5.4. Let YT denote the Brownian bridge on [−T, T ] with left and right boundary data at

height
√

T , with floor at zero and area tilt 1, and fix ³ ∈
(

3
4
, 1

)
. For L > 0, let

Äℓ,L = inf{s >−T : YT (s)f L}, Är,L = sup{s < T : YT (s)f L}.

There exist constants c > 0 and L > 0 such that for all T large enough

P(Äℓ,L >−T + T ³)f e−T c

, P(Är,L < T − T ³)f e−T c

.

Proof. By symmetry it suffices to prove the bound on the left random time Äℓ,L . By adding a floor at

height
√

T , and using the fact that an area-tilted Brownian excursion exceeds height a on [−T, T ] with

probability at most O(T e−c a3/2

), see Lemma 5.3, we know that YT will stay below 2
√

T with probability

at least 1 − Ce−T c

for some constants c,C > 0, for all T large enough. Thus, at a negligible cost, we

may add a ceiling at 2
√

T and we may consider the path ỸT defined as the single line with area tilt 1

with both boundary data at 2
√

T on the restricted time interval [−T,−T + T ³] with length T ³ . Thus we

may reduce to the probability that the minimum height of the path ỸT exceeds L . We have

P(Äℓ,L g −T + T ³)f P(min
s

ỸT (s) > L)+ Ce−T c

. (5-12)

Moreover,

P(min
s

ỸT (s) > L)f E[e−A(B)
1A(B)gLT ³ ]

E[e−A(B)] f e−LT ³

E[e−A(B)] , (5-13)

where E denotes the normalized expectation over the standard Brownian bridge B( · ) in [−t³, t³], t³ :=
T ³/2, with boundary height 2

√
T at both ends, conditioned to satisfy B(s) ∈

[
0, 2

√
T

]
for all s ∈[−t³, t³],

and with A(B)=
∫ t³
−t³

B(s) ds. To check the first inequality in (5-13), note that mins ỸT (s) > L implies

that A(B)g 2Lt³ = LT ³. It remains to provide a lower bound on the denominator in (5-13) .

Let ℓ= T ´ , 0<´ <³, and h g 1 be parameters to be fixed, and consider the event that the path comes

down from height 2
√

T to height h within distance ℓ from both left and right of the interval [−t³, t³] and

that it stays below height 2h for the rest of the time. More precisely, define

Fℓ,h = {B(−t³ + ℓ)f h, B(t³ − ℓ)f h, B(s)f 2h,∀s ∈ [−t³ + ℓ, t³ − ℓ]}.

On the event Fℓ,h we have

A(B)f 2
(
2
√

T
)
ℓ+ 2h(2t³ − 2ℓ)f 4T ´+1/2 + 2hT ³ f (4 + 2h)T ³,

provided ´ f ³− 1
2
, so that E[e−A(B)] g P(Fℓ,h)e

−(4+2h)T ³ . Next, we show that

P(Fℓ,h)g e−T ³ , (5-14)
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for suitable values of the constants ´ and h. By considering the joint distribution of X = B(−t³ + ℓ),
and Y = B(t³ − ℓ), one can check by Gaussian computations that the event {X ∈ [0, h], Y ∈ [0, h]} has

probability at least cℓ−1/2e−CT/ℓ, for suitable constants c,C . Moreover, conditioned on the occurrence

of this event, a computation for the probability of the tube event 0 f B(s)f 2h, s ∈ [−t³ + ℓ, t³ − ℓ], for

a Brownian bridge shows that Fℓ,h satisfies

P(Fℓ,h)g cℓ−1/2e−CT/ℓe−CT ³/h2

.

Since ³ > 3
4

we may take ℓ = T ´ with ´ > 1 − ³ and ´ < ³− 1
2
, and we may choose the constant h

large enough, independently of T , to ensure that P(Fℓ,h)g e−T ³ , for all T sufficiently large. This proves

(5-14). Summarizing, using (5-12) and (5-13), if we fix L = 2h + 6 we have obtained, for all T large

enough,

P(Äℓ,L g −T + T ³)f e−(L−2h−5)T ³ + Ce−T c f e−T ³ + Ce−T c

. □

5.2. Proof of Theorem 3.1, II. Next, we want to bootstrap the stretched exponential behavior in (5-4) to

obtain the optimal exponent 3
2
. Let us fix t large, and consider the time interval T = t R , with R a large

constant to be fixed later. Thanks to Lemma 5.2, taking ³ as in (5-4), the event

A = {X1(−T )f t2/³, X1(T )f t2/³} (5-15)

has probability at least 1 − e−ct2

for some constant c > 0 and all t > 1. Moreover, recall by Remark 2.6,

under µ0
n,T , conditional on the top curve, the law of the second curve is stochastically dominated by that

of the unconditional first curve. Therefore, the maximum of the second line X2,

M2
T = max

s∈[−T,T ]
X2(s),

satisfies

P(M2
T > C log T | X1(0) > t)f 1

2
.

This follows from the corresponding property for the line ensemble with law µ0
n,T , see Corollary 2.8, and

the weak convergence limn,T →∞ µ0
n,T = µ0, together with the observation that the distribution of X1(0)

under µ0 is absolutely continuous with respect to Lebesgue measure (see, e.g., [10, Theorem 1.4]) and

that P(X1(0) > t) > 0 for any t . It follows that

P(X1(0) > t)f P(X1(0) > t, M2
T f C log T )+ 1

2
P(X1(0) > t).

Therefore, using also the previous observation about the event A in (5-15) one has

P(X1(0) > t)f 2 P(X1(0) > t, M2
T f C log T, A)+ e−ct2

.

Now, on the event {M2
T f C log T } ∩ A, by stochastic domination one can replace X1(s), s ∈ [−T, T ],

by the single Brownian bridge Z(s), s ∈ [−T, T ], with boundary conditions y := t2/³, with area tilt 1

and with floor at y0 := C log T . From Lemma 5.4, if T = t R with R large enough, it follows that with

probability at least 1−2e−t2

one has Z(Äi )f y0 + log t f 2y0, i = 1, 2, for some stopping domain [Ä1, Ä2],
with Ä1 <−T/2 and Ä2 > T/2. On the latter event one can use the strong BG property to resample on the
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stopping domain [Ä1, Ä2] £ [−T/2, T/2] with boundary condition 2y0. Thus, letting YFS( · ) denote the

stationary Ferrari–Spohn diffusion, by monotonicity and using (3-2), it follows that

P(X1(0) > t)f 2 P(Z(0) > t)+ e−ct2

f 2 P(YFS(0) > t − 2y0)+ 3e−ct2

= exp
(
−

(
2
√

2
3

+ o(1)
)
t3/2

)
, t → ∞.

This ends the proof of (3-4). □

Below we record a tail bound for the maximum of X1, which is a straightforward consequence of the

above argument.

Corollary 5.5. There exist constants c,C > 0, such that for all S g 1, for all t > 0,

P( max
s∈[−S,S]

X1(s) > C log(S)+ t)f C S exp(−c t3/2). (5-16)

Proof. Fix t > 0 large and T g 1. If T g TR := t R for some large enough constant R > 0, taking

y0 = C log T , the exact same argument as above yields

P( max
s∈[−T/2,T/2]

X1(s) > t + 2y0)f 2 P( max
s∈[−T/2,T/2]

Z(s) > t + 2y0)+ e−ct2

f 2 P( max
s∈[−T/2,T/2]

YFS(s) > t)+ 3e−ct2

f C T exp(−c t3/2), (5-17)

with the last inequality following from Lemma 5.3. This proves (5-16) in the case 2S = T g TR . If

T f TR one may estimate

P( max
s∈[−T/2,T/2]

X1(s) > t + C log T )f P( max
s∈[−TR/2,TR/2]

X1(s) > t + C log T )

f C t R exp(−c t3/2),

where the last bound follows from (5-17) at T = TR , for a suitable constant C > 0. Taking t sufficiently

large and adjusting the value of the constants shows that for any 1 f T f TR the last expression is bounded

by CT exp(−c t3/2) for suitable constants c,C > 0. Taking S = T/2 finishes the proof. □

Corollary 3.2 is also a quick consequence of Theorem 3.1.

Proof of Corollary 3.2. By monotonicity and rescaling, as in Remark 2.6, for each k we have

P(X k+1(0) > ¼−k/3t)= P(X i+1(0) > ¼−k/3t,∀i f k)

f
k∏

i=0

P(X1(0) > ¼−(k−i)/3t)

= exp
(
−(ck + o(1))t3/2

)
, t → ∞,

where ck := 2
√

2
3

∑k
i=0 ¼

−i/2, which satisfies ck → c∞(¼)= 2
√

2
3

√
¼√
¼−1

as k → ∞. □
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While this in principle finishes the proof of our results about the upper tail, for later applications we

show how to prove a counterpart of Corollary 3.2 and hence an extension of Lemma 5.2 to general k,

simply under the assumption UC from Definition 5.1. Note that the proof of Corollary 3.2 relied on the

monotonicity and scale invariance exhibited by the zero boundary LE µ0 which a priori might not hold

for a general LE (though a posteriori it does as a consequence of Theorem 3.7).

Lemma 5.6. For any UC ¼-tilted LE X , there exist constants ³ > 0, c > 0 and C > 0, such that for any

s ∈ R and any k g 0 and y > 0,

P[X k+1(s) > ¼−k/3 y] f C e−c y³ .

Proof. The proof is a straightforward adaptation of the arguments in Lemma 5.2 and so we will be brief.

First of all, without loss of generality we will take s = 0, since the UC property is translation invariant.

Fix k ∈ N, and some y > 0 large. Define K = C log y, where C > 0 is a constant depending only on ¼ to

be taken large enough, and T = ¼−2k/3 y10, and consider the events

A =
{

max
s∈[−T,T ]

X k+1+K (s)¼k/3 f 1

y

}
, B = { max

s∈[−T,T ]
X k+1(s)¼k/3 f y}.

It follows from the definition of UC in (5-1) and (5-2) along with an application of Markov’s inequality that

P(A ∩ B)g 1 − 1

y´
,

for any constant ´ ∈ (0, 1) provided y is large enough.

Further, on A ∩ B, by the BG property, and using monotonicity, it suffices to ignore the top k curves

and hence we simply have to analyze the ensemble of K lines X k+1, . . . , X k+K , on the domain [−T, T ]
starting and ending at ¼−k/3 y with a floor at ¼−k/3/y and a ceiling at ¼−k/3 y. We can now appeal to

Brownian scaling and instead consider the ensemble on [−y10, y10] (recall that T = ¼−2k/3 y10) with K

lines with the usual geometric area tilts, starting and ending at y with a floor at 1/y and a ceiling at y.

Let us denote this new ensemble by {Z i }ifK . This is exactly the setting of the proof of Lemma 5.2, the

arguments of which imply, for example, that

P( max
s∈[−y5,y5]

Z1(s)g loga y)f 1

yb
,

for some constants a, b > 0, for all y large enough. Since X k+1(0) is stochastically dominated by Z1(0),

this finishes the proof. □

The proof of Theorem 3.3 quantifying the entropic repulsion effect on the lower tail behavior relies on

an argument developed in detail in Section 6, particularly a construction outlined (6-19), and hence is

postponed to the end thereof.
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6. Ergodicity and mixing

This section is devoted to the proofs of Theorems 3.4 (see Figure 5) and 3.5. We begin by recalling that

the stationary, infinite zero boundary LE is denoted by X and for any t ∈ R, Tt denotes the shift operator

defined by Tt X( · )= X(t + · ).

Proof of Theorem 3.4. An application of the Ã − ¼ theorem, see, e.g., [21], shows that it is sufficient

to prove (3-5) for all sets A, B of the form (4-2). Therefore, adopting the notation from (4-2), we fix

A = E(S, I, T ) and B = E(S ′, I ′, T ′), where m ∈ N, S = (s1, . . . , sm) ∈ R
m , I = (i1, . . . , im) ∈ N

m ,

and T = (t1, . . . , tm) ∈ R
m
+ are given, and similarly for S ′, I ′, T ′. Let X ′

t = 1Tt A and X = 1B , so that

E[X ′
t ] = E[X ′

0] = µ0(A) and E[X ] = µ0(B). We are going to find two independent random variables

W ′
t ∈ [0, 1], Wt ∈ [0, 1] and a coupling of (X ′

t , X) and (W ′
t ,Wt) such that a.s. X ′

t g W ′
t , X g Wt and such

that, setting 1t = X − Wt , 1
′
t = X ′

t − W ′
t , one has

lim
t→∞

E[1t ] = lim
t→∞

E[1′
t ] = 0. (6-1)

By stationarity, (6-1) is equivalent to limt→∞ E[W ′
t ] = E[X ′

0] and limt→∞ E[Wt ] = E[X ]. Assuming the

existence of such a coupling, we see that

µ0(Tt A ∩ B)= E[X ′
t X ]

= E[W ′
t ] E[Wt ] + E[Wt1

′
t ] + E[W ′

t1t ] + E[1t1
′
t ]

−→ E[X ′
0] E[X ] = µ0(A)µ0(B), t → ∞, (6-2)

where we use (6-1), the independence of W ′
t ,Wt , and the fact that Wt ,W ′

t ,1t ,1
′
t ∈ [0, 1].

To construct the desired coupling we take s > 0 so that |si | f s and |s ′
i | f s, and ℓ ∈ N such that

ℓg max{i j , i ′
j ′} for all j = 1, . . . ,m, and j ′ = 1, . . . ,m′, so that the event B concerns the first ℓ lines in

the time interval [−s, s], while the event Tt A concerns the first ℓ lines in the time interval [t − s, t + s].
To construct the independent proxy random variables W ′

t and Wt , consider the line ensemble Y ∞,t

with zero boundary condition on [−t/2, t/2] and with infinitely many lines. Note that this is well defined

by monotonicity as the increasing limit of the zero boundary ensemble with finitely many lines, as noted

− t
2

t
2

3t
20 t

Figure 5. Illustration of the proof strategy for Theorem 3.4. The ensemble Y pinned at ±t/2

and 3t/2 (green lines) is monotonically coupled to X with law µ0 (pink lines). The weak

convergence guarantees that the gap between the top green lines and the top pink lines goes

to zero in expectation on compact domains centered around 0 and t . Further, the green lines

on [−t/2, t/2] and [t/2, 3t/2] are independent due to the pinning.
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in [10]. Call Wt the indicator function that the first ℓ lines of Y ∞,t satisfy the event B. Similarly, let Y ′
∞,t

be the line ensemble with zero boundary condition on [t/2, 3t/2], with infinitely many lines, and call W ′
t

the indicator function of the event that the first ℓ lines of Y ′
∞,t satisfy the event Tt A. Note that owing to

the pinning, the line ensembles Y ∞,t and Y ′
∞,t , and hence the random variables Wt ,W ′

t , are independent.

Now observing that the LE

Y := (Y ∞,t , Y ′
∞,t) (6-3)

obtained by concatenating Y ∞,t and Y ′
∞,t is stochastically dominated by X , and that the events involved

are all increasing, there exists a coupling of the random variables (X ′
t , X), (W ′

t ,Wt) such that a.s. X ′
t g W ′

t ,

X g Wt . It remains to prove E[Wt ] ↑µ0(B) and E[W ′
t ] ↑µ0(A). That E[Wt ] and E[W ′

t ] increases and that

the limits are upper bounded by µ0(B) and µ0(A), respectively, is a simple consequence of monotonicity

and the increasing nature of A, B. Equality now follows by the portmanteau lemma, using the weak

convergence of the distribution of Y ∞,t and the distribution of Y ′
∞,t(t + · ) to µ0 as t → ∞, and the fact

that A and B are open, which implies lim inf E[Wt ] g µ0(B) and similarly lim inf E[W ′
t ] g µ0(A). □

While the above provides a qualitative proof of mixing, we next seek to obtain the quantitative bound

stated in Theorem 3.5. The key technical step is to estimate the convergence rate in (6-1). We begin with

a brief overview. Recall the coupling argument based on resampling presented in Section 4 where in the

case of finitely many lines, a reverse coupling was constructed under which with high probability the

zero boundary LE dominates the free boundary LE. In the case of infinitely many lines, this is hard to

argue but nonetheless we show that indeed such a reverse coupling exists where the requisite reverse

domination holds up to a small shift, which is enough for our purposes.

To accomplish this we rely on (5-2) which allows us to ignore the curves with index larger than a chosen

threshold on a finite domain by raising the floor by an appropriately chosen amount which effectively

reduces the case to finitely many lines. The reverse coupling strategy can now be employed as long as

we can show that with high probability there exist random times in the finite domain where the top few

curves in a pinned ensemble, say, Y as in the previous proof, are higher than that of an independently

chosen infinite ensemble X . Note now that there is a tradeoff in the choice of the domain size t . The

smaller it is, the lower the floor is since by (5-2) the growth of the maximum is controlled on such a

domain. On the other hand, choosing the domain to be too small makes it harder for the top few lines

of Y to have large enough fluctuations in order to dominate the corresponding lines in X at some time.

To ensure that a desirable domain exists, we will rely on the stretched exponential tail estimates

developed in Corollary 3.2.

Proof of Theorem 3.5. We start by arguing as in (6-2). Namely, define the random variables X ′
t = X1(t),

X = X1(0), where X denotes the LE with law µ0. As before, consider the line ensemble Y defined

by (6-3), where Y ∞,t has zero boundary condition on [−t/2, t/2], and Y ′
∞,t has zero boundary condition

on [t/2, 3t/2]. Call Wt the height at zero of the top line of Y ∞,t and call W ′
t the height at t of the top line

of Y ′
∞,t . Clearly, W ′

t ,Wt are independent. Moreover, by stochastic domination and translation invariance,

E[Wt ] = E[W ′
t ] f E[X ] = E[X ′

t ] and E[W 2
t ] = E[(W ′

t )
2] f E[X2] = E[(X ′

t)
2]. (6-4)
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Now for any coupling of (X, X ′
t), (W

′
t ,Wt), by independence of W ′

t ,Wt one has

Cov(X1(0), X1(t))= E[X X ′
t ] − E[X ] E[X ′

t ]
= E[Wt ] E[W ′

t ] − E[X ] E[X ′
t ] + E[Wt1

′
t ] + E[W ′

t1t ] + E[1t1
′
t ], (6-5)

where 1t = X − Wt and 1′
t = X ′

t − W ′
t . Therefore, using (6-4), translation invariance, and a2 − b2 f

2a(a − b), for a g b g 0, the absolute value of (6-5) is bounded by

2 E[X ] E[1t ] + 2 |E[Wt1
′
t ]| + |E[1t1

′
t ]|. (6-6)

We note that this is valid for any coupling of (X, X ′
t), (W

′
t ,Wt), and that while the inequalities (6-4)

ensure that E[1t ]= E[1′
t ] g 0, not all couplings have1t ,1

′
t g 0 pointwise. From (6-6), Theorem 3.1, and

Schwarz’ inequality, we see that the desired bound
∣∣Cov(X1(0), X1(t))

∣∣ f C exp(−c(log t)3/7) follows

once we prove that for suitable constants c,C > 0,

E[(1t)
2] f Cϕ(t)2, (6-7)

where we define

ϕ(t) := exp(−c(log t)3/7). (6-8)

By (6-4),

E[(1t)
2] = E[(X − Wt)

2] f 2 E[X2] − 2 E[X Wt ] = 2 E[X1t ]. (6-9)

We are going to show that there exists a coupling of (X, X ′
t), (W

′
t ,Wt) and an event Et such that on Et

one has 1t f ϕ(t)2 and such that

P(Ec
t )f Cϕ(t)4. (6-10)

In this case,

E[X1t ] f ϕ(t)2E[X ] + E[X1t1Ec
t
] f Cϕ(t)2 +

√
P(Ec

t ) E[X2(1t)
2] f 2Cϕ(t)2, (6-11)

where in the first equality we use the positivity of X . In the final inequality we use E[X2(1t)
2] f C ,

which follows, for example, from the crude bound |1t | f X + Wt and applying Theorem 3.1. From

(6-11) and (6-9) we infer (6-7) with a different constant C . Thus, it remains to prove (6-10) and hence

the proof is now complete with the aid of the following lemma. We end by pointing out that the same

argument verbatim works for any fixed k and hence shows that Theorem 3.5 continues to hold in this

case as well. □

Though we only need to produce a coupling of the top lines X1 and Y 1, for a later application in the

proof of Theorem 3.7, as in Theorem 3.4, we will design a coupling of X with Y ∞,t , the ∞-LE with zero

boundary conditions on [−t/2, t/2], such that with high probability the top i lines are close to each other,

for any fixed i , provided t is large enough.

Lemma 6.1. Given any i and S g 0, for all large enough t , there exists a coupling of Y ∞,t and X , and

an event Et such that on Et one has

X j (s)− Y
j

∞,t(s)f ϕ(t)2, j = 1, . . . , i, s ∈ [−S, S],

and such that P(Ec
t )f ϕ(t)2, where ϕ(t) is defined in (6-8).
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Proof. Let Y k,t denote the k-line ensemble with zero boundary condition on [−t/2, t/2]. We take t > 0

large and k ∈ N as a function of t defined by k =
⌊(

1
A

log t
)1/a⌋

, where a > 0 and A > 0 are constants to

be tuned later, so that

exp(Aka)f t f exp(A(k + 1)a). (6-12)

By monotonicity, there exists a coupling of (Y ∞,t , Y k,t) such that

Y
j

∞,t { Y
j

k,t ,

for every j . Therefore, it will be sufficient to show that there exists a coupling of (X t , Y k,t) such that

X j (s)− Y
j

k,t(s)f ϕ(t)2, j = 1, . . . , i, s ∈ [−S, S]. (6-13)

Indeed, we then obtain the coupling claimed in the lemma by first sampling the paths Y k,t and then inde-

pendently sampling the X t and Y ∞,t , using the conditional distributions from the couplings of (X t , Y k,t)

and (Y ∞,t , Y k,t), respectively.

To prove (6-13), we are going to use an enhanced version of the coupling argument in the proof of

Lemma 4.1. We start by ensuring that all lines below the k-th line X k are below a certain height throughout

the whole interval. From Markov’s inequality and Corollary 2.8, for any u > 0 and t large enough one has

P(Ft)g 1 − Ck log t

u
, Ft := { max

s∈[−t/2,t/2]
X k+1(s)f u¼−k/3}.

Using (6-12) and setting u := ¼k/6, one has

P(Ft)g 1 − C¼−k/7, (6-14)

for all t large enough. In other words, the (k+1)-th line exceeds the height ¼−k/6 in [−t/2, t/2] with

probability O(¼−k/7).

Next, consider the discrete time steps s j = −t/2 + 2 j − 1, j = 1, . . . , jmax, where jmax = +t/2,.

Similarly, let u j = t/2 − 2 j + 1, j = 1, . . . , jmax. Set v := kb, with b > 0 to be fixed later, and consider

the indexes

ℓ∗ = inf{ j ∈ {1, . . . , jmax} : Y i
k,t(s j )g v¼−(i−1)/3,∀i = 1, . . . , k},

r∗ = inf{ j ∈ {1, . . . , jmax} : Y i
k,t(u j )g v¼−(i−1)/3,∀i = 1, . . . , k}.

Accordingly, we define the random times Äℓ = sℓ∗ and Är = ur∗ , and consider the events

Bt = {Äℓ <−t/4, Är > t/4}, G t =
k⋂

i=1

G i
t , G i

t = {X i (Äℓ)f v¼−(i−1)/3} ∩ {X i (Är )f v¼−(i−1)/3}.

We start with independent samples of the infinite line ensemble X and the k-line ensemble Y k,t with

zero boundary conditions on [−t/2, t/2], and consider the event

Et = Ft ∩ G t ∩ Bt .



224 PIETRO CAPUTO AND SHIRSHENDU GANGULY

If Et occurs, then by definition of the events Ft ,G t and Bt , at the stopping domain [Äℓ, Är ] the boundary

values of Y k,t are higher than the boundary values of the top k lines of X and the (k+1)-th line of X does

not exceed height ¼−k/6. Thus, on this event we may resample {(X i (s), Y i
k,t(s)), s ∈ [Äℓ, Är ]} according

to the monotone coupling which by construction guarantees that

X i (s)f Y i
k,t(s)+ ¼−k/6, s ∈ [−t/4, t/4], i = 1, . . . , k, (6-15)

with probability one. This follows from the fact that the resampling of the top k lines of X , on the event Ft ,

using stochastic domination, can be performed with an effective floor at height ¼−k/6, and therefore

one can compare with the lines Y i
k,t , i = 1, . . . , k, with floor at zero, with an overall shift by ¼−k/6. If

instead Et does not occur, then we keep the independent samples of (X , Y k,t) everywhere. The previous

observations and the strong BG property guarantee that this is a valid coupling. Note that above we

crucially used the fact that [Äℓ, Är ] is a stopping domain.

From (6-15) it follows that, if ¼−k/6 f ϕ(t)2, then on the event Et we have (6-13). It remains to show

that P(Ec
t )f ϕ(t)2 holds. One has

P(Ec
t )f P(Fc

t )+ P(Gc
t )+ P(Bc

t ).

Now, (6-14) shows that P(Fc
t )fC¼−k/7, while using the independence of (Äℓ, Är ) and the line ensemble X ,

Corollary 3.2 and a union bound imply

P(Gc
t )f 2k exp(−ck3b/2), (6-16)

for some constant c > 0. We turn to an upper bound on P(Bc
t ).

Note that the points s j are the midpoints of the intervals I j of size 2, where

I j = [−t/2 + 2( j − 1),−t/2 + 2 j], j = 1, . . . , jmax.

By monotonicity, see Lemma 2.3 and Remark 2.4, we can replace Y k,T by the ensemble obtained by

pinning all k paths at zero height at the endpoints of the intervals I j . Call Z i , i = 1, . . . , k, the lines

of this pinned process. We define the index ℓ′∗ as the smallest j such that Z i (s j ) g v¼−(i−1)/3 for all

i = 1, . . . , k. Since the intervals are independent, one has

P(Äℓ g −t/4)f P(ℓ′∗ > +t/8,)f (1 − pk(v))
+t/8, f e−pk(v)+t/8,,

where pk(v) is defined as the probability that the ¼-tilted k-line ensemble Y k,2 with zero boundary

conditions on the interval [−1, 1] satisfies

Y i
k,2(0)g v¼−(i−1)/3, i = 1, . . . , k. (6-17)

By symmetry, the same bound applies to P(Är f t/4). It follows that

P(Bc
t )f P(Äℓ g −t/4)+ P(Är f t/4)f 2e−pk(v)+t/8,.
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In Lemma 6.2 below we show that for all k ∈ N, v g 1, pk(v) g e−Ckv2

, for some constant C > 0, see

also the remark following that lemma for a discussion on the true asymptotics. Taking v = kb, we obtain

pk(v)g e−Ck1+2b

.

Summarizing, since t g eAka

as in (6-12), if a = 1 + 2b and A is large enough, it follows that

P(Bc
t )f 2 exp(−c eka

), (6-18)

for some constant c > 0.

Therefore, from (6-14), (6-16) and (6-18) we have

P(Ec
t )f ¼−k/7 + k exp(−ck3b/2)+ 2 exp(−c eka

).

By choosing b = 2
3
, a = 1 + 2b = 7

3
, we obtain (6-10) with ϕ(t)= e−ck for some new constant c > 0. By

adjusting the value of c we can also ensure that ¼−k/6 f ϕ(t)2 as required to have the inequality (6-13)

on the event Et . By our definition of k in (6-12), this proves the desired correlation decay with ϕ(t)=
exp(−c(log t)¶), and ¶ = 1/a = 3

7
. □

Lemma 6.2. There exists a constant C > 0, such that for any k ∈ N, v g 1, the probability pk(v) of the

event defined in (6-17) satisfies

pk(v)g e−Ckv2

.

Note that the above bound is expected to be suboptimal when k is much larger than log v, where the

one-point estimate in Corollary 3.2 is expected to yield a bound e−Ckv3/2+o(1)

. On the other hand when k

is much smaller, say k = 1, this is the right behavior as on a fixed domain size, the one-point tail of the

top line is indeed Gaussian and not given by Theorem 3.1 .

Proof. We use a geometric construction involving the nested trapezoidal shapes defined as follows. Given

parameters 0 < ai < bi < 1 and hi > 0, consider the i-th trapezoid 5i defined by the piecewise linear

function

5i (t)=





0 if t ∈ [−1,−bi ] ∪ [bi , 1],
hi (bi +t)

bi −ai
if t ∈ [−bi ,−ai ],

hi if t ∈ [−ai , ai ],
hi (bi −t)

bi −ai
if t ∈ [ai , bi ].

(6-19)

We choose

bi := ¼−2i/3, ai := 1
2
(¼2/3 + 1)¼−2(i+1)/3, hi := v¼−(i−1)/3.

Note that ai is the midpoint in the interval [bi+1, bi ], and one has 5i+1 z5i ; see Figure 6.

Consider the ¼-tilted k-line ensemble Y k,2 on the interval [−1, 1] with zero boundary conditions, and

let A denote the event that for each i = 1, . . . , k one has the i-th line above the i-th trapezoid:

A = {Y i
k,2 {5i : i = 1, . . . , k}.

By construction, one has pk(v) g P(A). By monotonicity we may replace the ensemble Y k,2 by the

ensemble Ỹ k obtained by pinning the i-th path Y i
k,2 at zero outside of the interval [−ai−1, ai−1], for each
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hi

hi+1

2v

−1 1−bi −bi+1−ai bi+1 ai bi0

Figure 6. The trapezoids 5i and 5i+1.

i = 1, . . . , k, where we set a0 = 1. Thus, we have

pk(v)g P(Ỹ i
k {5i : i = 1, . . . , k); (6-20)

see Figure 7.

Let Ei denote the event that Ỹ i
k {5i . Conditioned on Ei , to compute the probability of Ei+1 one may, by

monotonicity, impose a ceiling at height hi and remove all paths below the (i+1)-th path. This shows that

pk(v)g
k∏

i=1

µi (v),

where µi (v) is defined as the probability that the random path Zi on the interval [−ai−1, ai−1], with zero

boundary condition, with a floor at zero, a ceiling at height hi−1, with area tilt ¼i−1, satisfies Zi {5i .

Here we may set h0 = ¼1/3v for the ceiling acting on the top path. It remains to show that there exists

an absolute constant C > 0 such that for all v g 1, for all i ∈ N,

µi (v)g e−Cv2

. (6-21)

To prove (6-21) we observe that by the scaling from Lemma 2.5 applied to a single path, one has that

µi (v) is the probability that the random path À on the interval [−a, a], with zero boundary condition,

with a floor at zero, a ceiling at height ¼1/3v, with area tilt 1, satisfies À {5, where 5̃ is the trapezoid

h1

h3

h2

−1 1a2 a10

Figure 7. A sketch of the event in (6-20) in the case k = 3.
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v

¼1/3v

−a a−1 1−ã

Figure 8. The rescaled trapezoid 5̃ and a sketch of the event in (6-22).

defined by (6-19) with ai , bi , hi replaced by ã, b̃, h̃, respectively, and where

b̃ = ¼2(i−1)/3bi = 1, h̃ = ¼(i−1)/3hi = v,

a = ¼2(i−1)/3ai−1 = 1
2
(¼2/3 + 1), ã = ¼2(i−1)/3ai = 1

2
(1 + ¼−2/3).

Therefore,

µi (v)g P(À { 5̃); (6-22)

see Figure 8.

To estimate the probability P(À { 5̃) we may write

P(À { 5̃)= E(e−
∫ a

−a
À0(s) ds; 5̃z À0 z ¼1/3v)

E(e−
∫ a

−a
À0(s) ds; À0 z ¼1/3v)

g e−2a¼1/3v
P(5̃z À0 z ¼1/3v),

where now À0 is the simple Brownian excursion on [−a, a], without area tilt and without ceiling.

Since v g 1 and ¼ > 1, observe that {5̃z À0 z ¼1/3v} is ensured by À0 rising up to 1
2
(v+¼1/3v) at −1

and 1 and staying inside the rectangle [−1, 1] × [v, ¼1/3v]. The probability of the first event is dictated

by Gaussian tails of Brownian excursion, see, e.g., [30, Section 2.10], and that of the second event is

a constant bounded away from 0. Thus overall we get

P(5̃z À0 z ¼1/3v)g e−Cv2

,

for all v g 1, and for some constant C = C(¼) > 0 for all ¼ > 1. By adjusting the value of the constant C

we arrive at the desired estimate (6-21). □

We conclude this section with the proof of Theorem 3.3 relying on the construction in (6-19).

6.1. Proof of Theorem 3.3. We will employ monotonicity and the strategy outlined in Figure 7. Note

first that as a simple consequence of ordering,

P(X1(0)f ε)= P(X i (0)f ε : i f K ) (6-23)

for any K . Now suppose there was no interaction between the paths, i.e., if the i-th path was an independent

FS diffusion with tilting factor ¼i−1. Then from the above display, the proof would follow if we can prove
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that for each such FS diffusion Y i
FS,

P(Y i
FS(0)f ε)f ε2, say.

Now note that the above bound cannot possibly be true for all i since for any i , the typical value of Y i
FS(0) is

of order ¼−(i−1)/3. However our proof will indeed proceed by showing that an approximate independence

holds true and that the above estimate also continues to hold, as long as i f K = c log(1/ε) for some

appropriate c.

We start with a generalized version of (3-3).

Lemma 6.3. There exists a universal constant C > 0, such that for any i ∈ N,

P(Y i
FS(0)f ε)f Cε3¼i−1.

In particular, P(Y i
FS(0)f ε)f Cε2, for all i such that ¼i−1 f 1/ε.

Proof. By monotonicity, P(Y i
FS(0)f ε)f P(Ỹ i

FS(0)f ε) where Ỹ i
FS has the same law as Y i

FS except now

it is pinned at zero at ±¼−2(i−1)/3. By Brownian scaling,

P(Ỹ i
FS(0)f ε)= P(Ỹ 1

FS(0)f ε¼(i−1)/3),

where Ỹ 1
FS is a Brownian excursion B(s) on [−1, 1] with the tilting factor

exp

(
−

∫ 1

−1

B(s) ds

)
.

By Gaussian tails of the maximum of a Brownian excursion on [−1, 1], the expectation of the above

exponential is a constant, say 1/C1, and since the above density term is bounded by 1,

P(Ỹ 1
FS(0)f ε¼(i−1)/3)f C1P(B(0)f ε¼(i−1)/3)f C2ε

3¼i−1,

for some constant C2 > 0, where the last estimate follows from standard repulsion estimates for Brownian

excursion which, e.g., can be found in [30, p. 79, Section 2.10]. □

Equipped with this estimate we return to the proof of Theorem 3.3. Now by monotonicity, the right-

hand side of (6-23), can only increase on removal of all lines beyond K as well as introducing boundary

conditions where now the i-th curve is pinned at 0 at ±xi where xK = c¼¼
−2K/3 and xi−1 − xi = C¼¼

−2i/3

where c¼,C¼ are constants depending on ¼ to be fixed later.

An advantage of this pinning is that the independent Ferrari–Spohn diffusions Ỹ i
FS with pinnings at ±xi

have a nontrivial chance of being nonintersecting. As depicted in Figure 7 for the i-th curve consider

a trapezoid 5i of width and height comparable to ¼−2i/3 and ¼−i/3, respectively. The exact construction

can be done as in (6-19), with the choice of the parameter v being 1. By construction 5i are nested and by

scaling arguments it is easy to see that Ỹ i
FS stays within 5i−1 \5i with a probability bounded away from 0

independently of i , say c. We denote by {Ỹ i
FS ∈5i−1 \5i } the latter event. Thus, using also Lemma 6.3,

P(X i (0)f ε : i f K )f
∏K

i=1 P(Ỹ i
FS(0)f ε)

∏K
i=1 P(Ỹ i

FS ∈5i−1 \5i )
f ε2K

cK
,

for some universal constant c, as long as ¼−K g ε, which finishes the proof.
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7. Uniqueness

This section is devoted to the proof of Theorem 3.7. We will again employ the reverse coupling strategy

in the way outlined before the proof of Theorem 3.5, with the difference that now X is replaced by the

paths, denoted by Z , with law ¿, where ¿ stands for a generic uniformly tight ¼-tilted measure satisfying

the asymptotic pinning condition in (2-11).

Note that as commented before the proof of Theorem 3.5, one-point tail estimates were crucial in the

implementation of this strategy, for which we relied on Corollary 3.2 which delivers such estimates for

the zero boundary LE. Thus in this general case, our first step is to establish a counterpart tail bound

simply under the assumption of UT. The most important part of the proof is a bootstrapping result which

establishes that

UT =⇒ UC,

reversing (5-3), and hence showing their equivalence. This will allow us to appeal to our previously

established bounds in Lemma 5.6 yielding the tail estimates needed to carry out the program.

7.1. Uniformly tight implies uniformly confined. The first step delivers the above mentioned crucial

input which shows that an asymptotically pinned at zero, uniformly tight LE is also uniformly confined

(recall from Definitions 2.2, 3.6, and 5.1).

Theorem 7.1 (UT =⇒ UC). Suppose ¿ is the law of a UT ¼-tilted LE satisfying (2-11) to be denoted by

Z = {Z i }ig1. Then ¿ is also UC. Namely, there exists a constant C > 0 such that for all k g 0 and s ∈ R,

E[Z k+1(s)] f C¼−k/3. (7-1)

Moreover, for all k g 0, S > 0 and s ∈ R,

E[ max
t∈[−S,S]

Z k+1(s + t)] f C¼−k/3 log(1 + |¼2k/3S|). (7-2)

Once Theorem 7.1 is available, we obtain stretched exponential tails by Lemma 5.6: there exist

constants c,C > 0 and ³ > 0 such that for any k and any s ∈ R, x > 0,

P[Z k+1(s) > ¼−k/3x] f C e−c x³ . (7-3)

To prove Theorem 7.1, we start with a result for the ensemble with bounded boundary data. We

let Z i
∞,T (s), i = 1, 2, . . . , n, s ∈ [−T, T ], denote the infinite ¼-tilted LE on [−T, T ] with boundary

data all equal to a given constant L > 0. This can be defined as the limit as n → ∞ of the finite

¼-tilted LE Z i
n,T (s), i = 1, 2, . . . , n, s ∈ [−T, T ], with boundary data all equal to L , the existence being

guaranteed by tightness and monotonicity, as in the case of zero boundary conditions treated in [10].

Proposition 7.2. Fix L > 0 and let Z i
∞,T (s), i = 1, 2, . . . , n, s ∈ [−T, T ], denote the infinite ¼-tilted LE

on [−T, T ] with boundary data all equal to L. There exists a constant T0 = T0(L) > 0 such that for all

T g T0, for all k g 0,

E[Z k+1
∞,T (0)] f C0¼

−k/3, (7-4)
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where C0 is an absolute constant (independent of L). Moreover, for all 0 f S f T/2,

E[ max
s∈[−S,S]

Z k+1
∞,T (s)] f C0¼

−k/3 log(2 + |¼2k/3S|). (7-5)

Notice the important difference with the apparently similar estimate in Corollary 2.8. In the latter, the

line ensemble has either free or zero boundary conditions, while here it has a fixed height boundary L ,

the same for every path, and this is a huge difference for low lying paths.

We reiterate that the field Z∞,T appearing in the above statement is well defined, by taking limits n →∞
of an ensemble of n paths and using monotonicity. Using a floor at L and Theorem 2.7 one can immediately

obtain rough upper bounds on the paths Z k
∞,T , but Proposition 7.2 is a much finer statement providing

information on the rapid decrease of the k-th path to the correct scale ¼−k/3.

Before proving Proposition 7.2 we quickly finish the proof of Theorem 7.1.

Proof of Theorem 7.1 assuming Proposition 7.2. Let Z = {Z i : i g 1} denote the set of random lines

with law ¿. Given the uniform tightness hypothesis on ¿, for any i ∈ N let L i > 0 be such that

supt∈R
P(Z1(t)g L i )f 2−i . Recalling the statement of Proposition 7.2, we may assume without loss of

generality that the constants Ti := T0(L i ) form a nondecreasing sequence. Define the events

Ai :=
∞⋂

j=i

{Z1(±T j )f L j }.

By Borel–Cantelli lemma, 1(Ai ) ↑ 1, a.s., i → ∞. Finally, fixing S as in the second part of the theorem,

let i0 be such that Ti > 2S when i g i0.

Now for any i g i0, observe that Ai is measurable with respect to Ã(Z1(s) : |s| g Ti ). Further,

to apply the asymptotic pinning hypothesis (2-11), for any ε > 0, let B(n, T, ε) be the event that

sups∈[−T,T ] Zn+1(s)f ε.

Then it follows by Proposition 7.2 that for any k < n − 1,

E[Z k+1(0)1Ai
1B(n,Ti ,ε)] f E[Z k+1(0) | 1Ai

= 1,1B(n,Ti ,ε) = 1] f C0¼
−k/3 + ε,

E[ max
t∈[−S,S]

Z k+1(t)1Ai
1B(n,Ti ,ε)] f E[ max

t∈[−S,S]
Z k+1(t) | 1Ai

= 1,1B(n,Ti ,ε) = 1]

f C0¼
−k/3 log(2 + |¼2k/3S|)+ ε.

Note that we used monotonicity, the BG property of Z on the domain [−Ti , Ti ] with the top n − 1

lines, and the fact that on the event Ai ∩ B(n, Ti , ε) the hypothesis of Proposition 7.2 is satisfied, by the

definition of Ti as a function of L i . Moreover, we have raised the boundary condition induced by Zn to a

flat floor at height ε (since conditioning on B(n, Ti , ε) permits that), which leads to the extra ε appearing

in the bounds above. Moreover, note that the constant C0 is independent of L i .

We will now finish the proof with a couple of applications of the monotone convergence theorem. Note

that since Z is assumed to satisfy (2-11), for any ε, Ti , we have 1B(n,Ti ,ε) ↑ 1, a.s. as n → ∞. Therefore,

E[Z k+1(0)1Ai
] f C0¼

−k/3 + ε and E[ max
t∈[−S,S]

Z k+1(t)1Ai
] f C0¼

−k/3 log(2 + |¼2k/3S|)+ ε.
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Since ε was arbitrary, using 1Ai
↑ 1, a.s. proves (7-1) and (7-2) for the case s = 0. Applying the above

argument to the LE shifted by any real number s finishes the proof. □

We now turn to the proof of the key Proposition 7.2.

7.2. Nested shapes and curved maxima. To prove Proposition 7.2 we want to define nested shapes

Æi+1 z Æi , where for each i g 0, Æi : [−T, T ] → R+ is a function such that Æi (s) restricted to s ∈
[−T/2, T/2] is of the form ¼−i/3 log(1 + |s¼2i/3|) up to a suitable vertical shift and such that with high

probability Z i+1
∞,T z Æi throughout [−T, T ]. To do this we will consider the ensemble Z i

n,T with n lines

and with the same boundary condition L on [−T, T ], and will prove estimates that are uniform in the

number of lines n. We start by defining a scaled version of the nested shapes Æi .

Fix some parameters ¶ ∈
(
0, 1

2

)
, ³ ∈

(
3
4
, 1

)
, L ∈ R+. We define, for all T large, and for any given

choice of the vertical shift parameters hi ∈ R+,

È
hi

i (s)=
{

L i + εi if s ∈ [−Ti ,−Ti + T ³
i ] ∪ [Ti − T ³

i , Ti ],
hi +9(s) if s ∈ [−Ti + T ³

i , Ti − T ³
i ],

εi := ¼i/4 ( T ¶, L i := L¼i/3, Ti := T¼2i/3, 9(s) := D log(1 + |s|),
(7-6)

for some constant D to be fixed below. We assume that the hi are such that the curved part of È
hi

i is

lower than the flat part, that is,

hi +9(Ti − T ³
i )f L i + εi . (7-7)

Since T will be taken large enough, this will be automatically satisfied in what follows. Thus, for each

i ∈ N, È
hi

i is a function on the interval [−Ti , Ti ] which looks approximately like Figure 9.

Next, we define the rescaled function Æ
hi

i (s) := ¼−i/3È
hi

i (¼
2i/3s), s ∈ [−T, T ]. In other words,

Æ
hi

i (s)=
{

L + ε̃i if s ∈ [−T,−T + ti ] ∪ [T − ti , T ],
h̃i + ¼−i/39(s¼2i/3) if s ∈ [−T + ti , T − ti ],

ε̃i := ¼−i/3εi , h̃i := ¼−i/3hi , ti := T ³¼−(1−³)2i/3.

(7-8)

Notice that for each i g 0, Æ
hi

i is a function on the interval [−T, T ]. The key technical step in the proof

of Proposition 7.2 can be stated as follows.

hi

0

L i

L i + εi

−Ti Ti−Ti + T ³
i

Figure 9. A sketch of the function È
hi
i in (7-6).
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Lemma 7.3. Let Z i
n,T (s), i = 1, . . . , n, s ∈ [−T, T ], denote the n-line ensemble on [−T, T ] with

boundary data all equal to L. There exist some absolute constants c,C > 0, a collection of random

variables h0, h1, . . . with supi E[hi ] f C , and a constant T0 = T0(L), such that for all T g T0, for all

n ∈ N, the ensemble {Z i
n,T } can be coupled to (h0, . . . , hn−1) in such a way that for all 0 f i < n, with

probability at least 1 − Ce−(T¼i )c ,

Z
j+1
n,T (s)f Æ

h j

j (s), s ∈ [−T, T ], j = i, i + 1, . . . , n − 1. (7-9)

Let us first show how Proposition 7.2 follows from Lemma 7.3. By monotonicity, one has convergence

of the line ensemble {Z i
n,T }ig1 to {Z i

∞,T }ig1 and therefore it is sufficient to establish (7-4) and (7-5) for

the ensemble {Z i
n,T }ig1, with a constant C independent of n. Let Ai denote the event that (7-9) holds

under the coupling introduced in Lemma 7.3, so that P(Ac
i )f Ce−(T¼i )c . Notice that

E[ max
s∈[−T,T ]

Z i+1
n,T (s)1Ac

i
] f P(Ac

i )
1/2

E
[
( max

s∈[−T,T ]
Z i

∞,T (s))
2
]1/2

f C e(T¼
i )c/2 T ¶,

for some new constants C, ¶ > 0, where we have used a rough estimate on the second moment of the

maximum of the top path in the infinite line ensemble Z∞,T . The latter can be obtained, for instance, by

adding a floor at the boundary height L and then using the bounds in Corollary 5.5 for the zero boundary

measure with a floor at zero. Note that since we are taking T large enough depending on L , the above

constant C can be taken independent of L .

Thus, to prove Proposition 7.2 it is sufficient to establish

E[ max
s∈[−S,S]

Z i+1
n,T (s)1Ai

] f C¼−i/3 log(2 + ¼2i/3S) (7-10)

with an absolute constant C , for all S ∈ [0, T/2]. On the event Ai , we know that Z i
n,T (s)f Æ

hi

i (s), and

since ti f T/2, one has

¼i/3 Z i+1
n,T (s)f hi + D log(1 + |s|¼2i/3), s ∈ [−T/2, T/2].

Using supi E[hi ]<∞ we obtain the desired estimate (7-10). It remains to prove Lemma 7.3.

7.3. Proof of Lemma 7.3. Let us begin with a high-level description of the ideas of the proof. To simplify

the notation we write Æi instead of Æ
hi

i and Èi instead of È
hi

i . One consequence of our definitions is that

the rescaled functions Æi defined in (7-8) describe nested shapes; see (7-12) and Figure 10. Towards the

proof of (7-9), by monotonicity, for each i we may raise the boundary of the path Z i+1
n,T from L to L + ε̃i+1,

and thus the probability of the event (7-9) is bounded below by the probability that this modified path, for

each i , is contained in the region between the two shapes Æi and Æi+1; see Figure 11. If we start from the

bottom path then a simple recursion together with monotonicity allows us to reduce the problem to the

analysis of a single path, call it Zi+1, with a floor at Æi+1, for each i . The key step is then an estimate of

the probability that this path Zi+1 satisfies Zi+1 z Æi . To prove this, we use Lemma 5.4 to ensure that

Zi+1 comes down rapidly enough from the boundary, so that we may resample in the bulk of our interval
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h̃i+1

h̃i

0

L

L + ε̃i+1

L + ε̃i

−T T−T + ti+1 T − ti

Figure 10. A sketch of the two shapes Æi+1 z Æi .

using boundary data that are only a small vertical shift from the floor Æi+1. At this point we apply a first

moment estimate for the maximum of an area-tilted path with a concave floor that was derived in [9]. It is

precisely this confinement estimate, combined with scaling and recursion, that will allow us to construct

the random variables hi representing the random vertical shifts in the definition of the nested shapes Æi ,

and to guarantee that their expected values satisfy the required uniform bounds supi E[hi ] f C .

We now turn to the technical details of the proof. As mentioned above, we proceed recursively, starting

from the bottom path Zn
n,T , and use monotonicity at each step to raise the boundary condition and to

impose a floor. Namely, if we assume that Z i+2
n,T satisfies Z i+2

n,T z Æi+1 in [−T, T ], then we can dominate

Z i+1
n,T by a single random line Zi+1 with area tilt ¼i , with boundary data Æi+1(−T )= Æi+1(T )= L + ε̃i+1

and with a floor at Æi+1(s), s ∈ [−T, T ]. We are going to show that this random line Zi+1 satisfies

P(Zi+1 z Æi )g 1 − Ce−(T¼i )c , (7-11)

for some constants c,C > 0 independent of n and i . Once we have such a bound, we can obtain the

desired estimate, starting from Zn , where the floor is Æn := 0, and then stopping at the desired path i , to

0

L i + ε̂i

L i + εi

−Ti Ti−T̂i −Ti + T ³
i

vi

w

Figure 11. Sketch of a realization of the path Wi satisfying the event Wi z È
hi
i in (7-15). The

path is conditioned to stay above the floor Ài from (7-16).
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obtain that the probability of the event Ai in (7-9) satisfies, by the union bound,

P(Ai )g 1 −
n∑

j=i

Ce−(T¼ j )c g 1 − C ′e−(T¼i )c ,

for some new constant C ′. Thus the proof of Lemma 7.3 has been reduced to (7-11), for every 0 f i < n.

Before proving (7-11), we first observe that

Æi (s)g Æi+1(s), s ∈ [−T, T ]. (7-12)

This guarantees, in particular, that the event in (7-11) is not empty, since Zi+1 is conditioned to stay

above Æi+1. To prove (7-12), notice that ti+1 = ¼−2(1−³)/3ti < ti , and using also (7-7), one has

¼i/3(Æi (s)−Æi+1(s))g εi − ¼−1/3εi+1,

for s ∈ [−T,−T + ti ] ∪ [T − ti , T ], and

¼i/3(Æi (s)−Æi+1(s))= hi − ¼−1/3hi+1 +9(s¼2i/3)− ¼−1/39(s¼2(i+1)/3),

for s ∈ [−T + ti , T − ti ]. By definition of εi we see that there exists c1 = c1(¼) > 0 such that

εi − ¼−1/3εi+1 g c1εi . (7-13)

Notice also that if C1 is a large enough constant then

¼−1/39(x¼2/3)f C1 + ¼−1/49(x), x ∈ R.

Therefore,

¼i/3(Æi (s)−Æi+1(s))g hi − ¼−1/3hi+1 − C1 + c29(s¼
2i/3),

for s ∈ [−T + ti , T − ti ], where c2 = 1 − ¼−1/4 > 0. In particular, if

hi g C1 + ¼−1/3hi+1, (7-14)

then the right-hand side above is nonnegative and therefore Æi g Æi+1 as desired; see Figure 10. Note that

the relations (7-14) may be assumed to hold without loss of generality, since the only requirement on the

variables hi is that supi E[hi ] f C .

We turn to the proof of (7-11). We first apply the scaling as in Lemma 2.5. It follows that the probability

in (7-11) can be evaluated as

P(Zi+1 z Æ
hi

i )= P(Wi+1 z È
hi

i ), (7-15)

where now Wi+1, i = 0, . . . , n−1, denotes the single line on [−Ti , Ti ], with area tilt 1, with boundary data

¼i/3Æ
hi+1

i+1 (−T )= ¼i/3Æ
hi+1

i+1 (T )= L i + ¼i/3ε̃i+1 = L i + ε̂i ,

where we define ε̂i := ¼i/3ε̃i+1 = ¼−1/3εi+1, and with floor given by

Ài (s) := ¼i/3Æ
hi+1

i+1 (s¼
−2i/3)= ¼−1/3È

hi+1

i+1 (s¼
2/3), s ∈ [−Ti , Ti ]. (7-16)

Note that Ài (0)= ¼−1/3hi+1. We refer to Figure 11 for a drawing of the event in (7-15).
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Note that from (7-13) we know that εi − ε̂i g c1εi . Define w := L i + ε̂i + 1
2

c1εi , where the constant c1

is the same as in (7-13). Let us also define

T̂i := ¼2i/3(T − ti+1)= Ti − T ³
i ¼

−2(1−³)/3,

and note that T̂i > Ti − T ³
i ; see Figure 11. We first show that

P(Wi+1(s)f w,∀s ∈ [−Ti , Ti ])g 1 − Ce−(T¼i )c .

This can be achieved by considering a global floor at height L i + ε̂i and using the bound in Lemma 5.3

on the probability that the maximum of a Ferrari–Spohn diffusion exceeds the height 1
2

c1εi in an interval

of size 2Ti , since by definition (7-6) εi is larger than
√

T ¶¼i/4.

Thus, by monotonicity we can now restrict to a path in [−T̂i , T̂i ] with boundary data at w, a ceiling at w

and a floor at Ài (s), s ∈ [−T̂i , T̂i ]. Call W̃i the associated path. Set vi = Ài (T̂i ) as in Figure 11 and write

ki = max{W̃i (−Ti + T ³
i ), W̃i (Ti − T ³

i )} − vi .

We will show that

E[ki ] f C, (7-17)

for some constant C . Note that we are considering a single line with area tilt 1, with boundary at w and

ceiling at w and we ask for it to come down to vi + ki within a time

1 := T̂i − (Ti − T ³
i )= T ³

i (1 − ¼−2(1−³)/3)g c2T ³
i ,

for some constant c2 > 0. We may add a floor at vi by monotonicity. Next, we apply Lemma 5.4, with T

replaced by T̂i and with T ³ replaced by1, and with a floor shifted upwards by vi . Note that Ti/2 f T̂i f Ti

and that by taking 3
4
< ³′ < ³ we can write 1g (T̂i )

³′
and thus the lemma applies. We obtain that with

probability at least 1 − Ce−cT c
i the height goes down from the boundary reaching below height vi + K

within the intervals [−T̂i ,−Ti + T ³
i ] and [T̂i , Ti − T ³

i ], for an absolute constant K (which plays the role

of the constant called L in Lemma 5.4). Let us call E this favorable event. On the complement of E we

may estimate ki by using the ceiling w so that ki f w f L i + εi f L i + (¼i/4 ( T ¶) so that

E[ki ; Ec] f C(L i + (¼i/4 ( T ¶))e−cT c
i f C,

for some absolute constant C provided T is large enough depending on L . On the event E one can use

boundary conditions vi + K on a stopping domain which includes [−Ti +T ³
i , Ti −T ³

i ], and we can further

impose a floor at vi + K . We then obtain the estimate E[ki ; E] f C by simply applying the one-point

estimate for the single line with Ferrari–Spohn distribution. This proves (7-17).

Finally, once (7-17) is available, we need to show that for a suitable choice of the random variables hi

one has the desired domination within the region [−Ti + T ³
i , Ti − T ³

i ]. This will be achieved by means

of the curved maxima with concave floor established in [9]. By monotonicity and the definition of the

random variables ki , see also Figure 11, we can consider a single line with left and right boundary

conditions at height vi + ki and with floor at k̂i + Ài (s), for s ∈ [−Ti + T ³
i , Ti − T ³

i ], where we define

k̂i := ki + vi − Ài (−Ti + T ³
i ).
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In order to apply the result from [9] we shift it vertically by −k̂i − Ài (0) and consider the path Ŵi+1

on [−Ti + T ³
i , Ti − T ³

i ], with area tilt 1, with floor at À̂i (s) := Ài (s)− Ài (0), with left and right boundary

conditions at height À̂i (Ti − T ³
i ). Then we consider the curved maximum

0i := max
s∈[−Ti +T ³i ,Ti −T ³i ]

[
Ŵi+1 − D log(1 + |s|)

]
+,

where [ · ]+ denotes the positive part. From the estimate established in [9, Equation (3.8)] it follows that

E[0i ] f C, (7-18)

if the constant D is large enough. As already noted after Theorem 2.7 the bound in [9] is derived for curved

maxima with respect to any concave power law function 9(s)= |s|ε, ε ∈
(
0, 1

2

)
but it can be extended,

with the same proof, to the case of 9(s)= D log(1 + |s|) if D is large enough. In conclusion, by setting

hi = Ài (0)+ k̂i +0i = ¼−1/3hi+1 + k̂i +0i , (7-19)

we have obtained that the line Wi+1 from (7-15) satisfies

Wi+1(s)f hi + D log(1 + |s|)= È
hi

i (s), s ∈ [−Ti , Ti ],

where È
hi

i is defined in (7-6). Recursively, starting at hn := 0, (7-19) defines the sequence hi , and one

obtains the desired bound supi E[hi ] <∞, provided the same holds for k̂i , 0i . Noting that k̂i f 1 + ki

and using the bounds (7-17) and (7-18), combined with (7-15), this proves (7-11).

Remark 7.4. For simplicity, we have stated Proposition 7.2 for fixed bounded boundary data L = O(1).

However, it is not difficult to check that the exact same argument given in the proof, namely Lemma 7.3,

can be applied with boundary data L = O(T ¶) to obtain the same conclusions, provided ¶ < 1
2

— indeed,

the proof was based on the estimate from Lemma 5.4, which holds for any boundary height up to T 1/2,

and the rest of the argument can be repeated without modification with L = O(T ¶), ¶ < 1
2
. In particular,

the statements (7-4) and (7-5) hold also for the line ensemble Z̃∞,T defined as in the statement of

Proposition 7.2, this time with boundary data L = T ¶, ¶ ∈
(
0, 1

2

)
.

7.4. Proof of Theorem 3.7. To finish the proof of Theorem 3.7 we first need the counterpart result

of Lemma 6.1. We use the same notation, that is, we will use Y ∞,t to denote the infinite LE with

zero boundary conditions on [−t/2, t/2] and note that its infinite volume limit has law µ0. Moreover,

we write Z for the uniformly tight LE in the statement of Theorem 3.7. By monotonicity, the latter

stochastically dominates the former. However, as in Lemma 6.1, the next result shows that with high

probability a reversing coupling can be constructed such that the top i lines are close to each other, for

any fixed i , provided t is large enough.

Lemma 7.5. There exists ¶ > 0 such that given any i and S g 0, for all large enough t , there exists a

coupling of Y ∞,t and Z , and an event Et such that on Et one has

Z j (s)− Y
j
∞,t(s)f ϕ(t)2, j = 1, . . . , i, s ∈ [−S, S],

and such that P(Ec
t )f ϕ(t)2, where ϕ(t) := exp(−c log(t)¶) for some absolute constant c > 0.
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Note that the definition of ϕ(t) has been altered a bit compared to Lemma 6.1 where ¶ was taken to

be 3
7
. This is because we will be relying on (7-3) which is a consequence of Theorem 7.1 and Lemma 5.6

which does not exactly specify the exponent in the tail estimate, in contrast with Theorem 3.1, where the

tail behavior is explicit. Nonetheless, this will not affect the outcome.

Proof of Lemma 7.5. The proof is verbatim the argument in the proof of Lemma 6.1 once two modifications

are made. To deduce (6-14), the input from Corollary 2.8 needs to be replaced by the counterpart input (7-2).

Similarly (7-3) replaces Corollary 3.2 to deliver (6-16). □

We now have all the ingredients to complete the proof of Theorem 3.7. Let X denote the paths with

law µ0. As already mentioned, under the monotone coupling of Z and X , with probability one, for any

i g 1,

Z i { X i . (7-20)

On the other hand, by Lemma 7.5 and the monotonicity Y ∞,t z X , for all fixed i ∈ N and S> 0, reasoning

as in (6-13), for any ε > 0, there exists another coupling such that with probability at least 1 − ε,

Z j (s)f X j (s)+ ε, j = 1, . . . , i, s ∈ [−S, S]. (7-21)

The proof is essentially done at this point barring a few measure-theoretic details which we seek to provide

now. Borrowing notation from the proof of Corollary 4.2, fix m ∈ N and let S = (s1, . . . , sm) ∈ [−t, t]m ,

I = (i1, . . . , im) ∈ {1, . . . , i}m , and let T = (t1, . . . , tm) ∈ R
m
+ and consider the event

E = E(S, I, T )= {Y ∈� : Y i j (s j ) > t j , j = 1, . . . ,m}.

It suffices to show that for each m ∈ N, and for each choice of S, I, T ,

µ0(E)= P(X ∈ E)= P(Z ∈ E)= ¿(E).

Since the event E is increasing (in the sense of the partial order (2-12)), by (7-20) it follows that

P(X ∈ E)f P(Z ∈ E).

Inequality (7-21) on the other hand implies that for any ε > 0,

P(X ∈ Eε)g P(Z ∈ E)− ε,
where

Eε = {Y ∈� : Y i j (s j ) > t j − ε, j = 1, . . . ,m}.

By invoking the absolute continuity with respect to independent Brownian motions for any fixed number

of lines on any compact domain established in [10, Theorem 1.4], it follows that E is a continuity set

for X . Therefore,

P(X ∈ E)= P(Z ∈ E). □

We finish with the proof of Corollary 3.8.
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Proof. By Theorem 2.10, the family of measures µ
f

n,T as n and T increase to ∞ is tight. Further, by

Corollary 2.8, and a similar reasoning, say, using Fatou’s lemma as in Remark 2.9, it follows that any

limit point as n, T → ∞, must be UC. Hence it is UT and satisfies (2-11). Thus by Theorem 3.7 any

limit point must agree with µ0. This finishes the proof. □
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