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ABSTRACT

Secure collaborative analytics (SCA) enables the processing of ana-
lytical SQL queries across data from multiple owners, even when
direct data sharing is not possible. While traditional SCA provides
strong privacy through data-oblivious methods, the significant over-
head has limited its practical use. Recent SCA variants that allow
controlled leakages under differential privacy (DP) strike balance
between privacy and efficiency but still face challenges like un-
bounded privacy loss, costly execution plan, and lossy processing.

To address these challenges, we introduce SPECIAL, the first
SCA system that simultaneously ensures bounded privacy loss, ad-
vanced query planning, and lossless processing. SPECIAL employs
a novel synopsis-assisted secure processing model, where a one-time
privacy cost is used to generate private synopses from owner data.
These synopses enable SPECIAL to estimate compaction sizes for
secure operations (e.g., filter, join) and index encrypted data with-
out additional privacy loss. These estimates and indexes can be
prepared before runtime, enabling efficient query planning and
accurate cost estimations. By leveraging one-sided noise mecha-
nisms and private upper bound techniques, SPECIAL guarantees
lossless processing for complex queries (e.g., multi-join). Our com-
prehensive benchmarks demonstrate that SPECIAL outperforms
state-of-the-art SCAs, with up to 80X faster query times, 900X
smaller memory usage for complex queries, and up to 89x reduced
privacy loss in continual processing.
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1 INTRODUCTION

Organizations, such as hospitals, frequently hold sensitive data
in separate silos to comply with privacy laws, despite the valu-
able insights that could be gained from sharing this information.
Recent advancement of Secure Collaborative Analytics (SCA) [7-
9, 25,33, 44, 54, 55, 57, 70, 71] provides an exciting solution to tackle
this dilemma. These systems leverage advanced multi-party secure
computation (MPC) [76] primitives to empower multiple data own-
ers, who previously could not directly share data, to collaboratively
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process analytical queries over their combined data while ensuring
the privacy of each individual’s data.

While MPC can effectively conceal data values [76], its security
guarantees do not immediately extend to the protection of execu-
tion transcripts. Consequently, data-dependent processing patterns
such as memory traces and read/write volumes can still reveal crit-
ical information, risking privacy breaches [11, 15, 29, 38, 50, 60, 78]
even when the core data remains encrypted. To ensure strong pri-
vacy, modern SCA systems utilize data-oblivious primitives that
exhaustively pad query processing complexities to a worst-case and
data-independent upper bound [7, 44, 54]. However, such stringent
protections can largely reduce system efficiency and hinder the
generalization of conventional optimization techniques to SCA,
which are typically data-dependent [44]. To address this, recent
efforts [8, 55, 70, 71] have introduced Differentially Private SCA
(DPSCA). This approach allows controlled information leakage un-
der DP [23] to mitigate constant worst-case overhead. For instance,
systems under this model can dynamically compact an intermediate
query size to a noisy estimate close to the actual size, avoiding ex-
haustive padding. As such, queries under DPSCA experience largely
boosted efficiencies (e.g., up to 10°x faster [71]) compared to their
“no leakage” counterparts. Despite these substantial performance
gains, existing DPSCAs still face critical limitations that impede
their practical uses, as elaborated below:

o L-1. Unbounded privacy loss. Most DPSCA systems utilize a per-
operator privacy expenditure model [8, 16, 19, 55, 70, 71], meaning
each query operator (e.g., join, filter) independently consumes a
portion of the privacy budget. This approach can lead to either
unbounded privacy loss or the forced cessation of query responses
upon budget exhaustion. To mitigate this, some studies [13, 56,
77] propose private, locality-sensitive grouping, incurring a one-
time privacy cost to pre-group data based on specific attributes.
Subsequent queries on those attributes can be directly applied to
a smaller subset and need no additional privacy budget. However,
this method only supports simple queries (e.g., point and range);
complex queries like joins still suffer from unbounded privacy loss.

e L-2. Unoptimized execution plan. Conventional query planners can
pre-estimate sizes for equivalent plans of a given query and select
the most efficient plan with minimized intermediate sizes before
execution [12, 61]. In contrast, SCA systems lack this capability,
and even DPSCA designs [8, 9, 55, 69, 71, 77] can only reactively
determine plan sizes during runtime. This inherent limitation often
forces existing systems to settle for less efficient query plans, such as
costly join orders, which lead to significantly inflated intermediate
sizes (§ 7.2) and substantially hinder performance.

e L-3. Lossy processing. Noise from randomized mechanisms in
DPSCA also introduces a unique accuracy issue (e.g., conventional
DP mechanisms may generate negative noise, applying which to
obfuscate the sizes of intermediate query results can cause losing



qualified real tuples), and unfortunately, no existing DPSCA can
mitigate such loss for complex queries [28, 69-71, 77]. Furthermore,
stronger DP settings can further increase noise variance, which
amplifies errors, significantly impacting the utility of SCA systems.

1.1 Overview of SPECIAL

In this work, we introduce SPECIAL, an innovative SCA system
that resolves the aforementioned limitations all at once through a
new paradigm called synopsis-assisted secure processing. At its core,
SPECIAL incurs a one-time privacy cost to gather DP synopses
(statistics of base tables) from owners’ data. These synopses are
then used to accelerate complex query processing, and enhance SCA
query planning. Notably, SPECIAL is the first system to provide all
of the following benefits: (1) Bounded privacy—the privacy loss in
SPECIAL is strictly limited to the one-time synopses release stage,
with absotely no additional privacy cost during complex query
processing and planning; (2) Advanced query planning—it builds an
advanced SCA planner that can exploit plan sizes before runtime;
and (3) Lossless processing—it ensures exact results with no data
omissions. An overview of SPECIAL is shown in Figure 1.
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Figure 1: Overview of SPECIAL workflow.

SPECIAL operates under a standard server-aided MPC model [37]
with three key participants: data owners, at least two SPECIAL
servers, and a vetted analyst. The process begins with data own-
ers securely outsourcing their data, typically through secret shar-
ing [37, 70, 71, 77], and privately releasing corresponding DP syn-
opses (§ 4) to the servers. SPECIAL introduces a set of novel prim-
itives (§ 5) that can leverage these synopses to accelerate secure
query operations. Once the data and synopses are in place, analysts
can submit Select-Project-Join-Aggregation (SPJA) queries [61] for
analytics. To process queries, a private planner (§ 6), running on
SPECIAL servers, strategically orchestrates SPECIAL primitives to
process the query and optimize performance. Finally, the results
are securely returned to the analyst.

1.2 Unique challenges and key contributions

Leveraging DP synopses in SCA holds significant promise for achiev-
ing our desired objectives. However, this also introduces unique
challenges. Below, we highlight the key challenges and summarize
our non-trivial contributions to address them:

e C-1. How to select proper synopses? Even for a single relation, one
can find numerous attribute combinations for generating synopses.
Improper selection can lead to large errors (e.g. using too many syn-
opses or high-dimensional attributes [79]), or reduced functionali-
ties (e.g., using only simple attributes [77]). Hence, a key challenge
is selecting a limited set of DP synopses to optimize the privacy
budget for complex query processing. Our approach is informed by

two observations: (i) secure joins are resource-intensive and need
prioritized acceleration, and (ii) synopses for common filtering pred-
icates are vital as they allow pre-built indexes on base relations for
fast access. Consequently, we propose a focused strategy (§ 4) that
targets low-dimensional (1D and 2D) attributes frequently involved
in joins and filters within a representative workload.

e C-2. How to enforce lossless processing? Private synopses do not
immediately implies lossless guarantees. Thus, a second challenge
is designing practical approaches to achieve lossless results without
violating privacy goals. To address this, we employ one-sided DP
noise (either strictly positive or negative, § 4) in generating syn-
opses, and design novel primitives (§ 5) based on them to pessimisti-
cally estimate filter cardinalities and intervals of index structures.
To ensure lossless processing of complex joins, we extend upon
cutting-edge join upper bound techniques [34] to privately estimate
lossless join sizes using DP synopses. To our knowledge, this is the
first study to support private join upper bound estimation.

e C-3. How DP synopses can empower efficient query processing?
The use of DP synopses in SCA is largely underexplored, leav-
ing a knowledge gap regarding their potential to enhance query
efficiency. To navigate this potential, we explore various use of
synopses in accelerating secure processing including private in-
dexes SPEIDX (§ 5.2), and compacted oblivious operations SPEop
(§ 5.3). We also design a novel private query planner (§ 6) that
efficiently orchestrate the execution of SPECIAL primitives (e.g.,
SPEIDX, SPEOP) to process SPJA queries. The planner uses avail-
able synopses to privately estimate intermediate result sizes and
operation costs for a set of equivalent execution plans of a given
query. It then executes the one with the lowest estimated cost.

e C-4. How to systematically evaluate SPECIAL? A major is the
absence of open benchmarks. We address this by initiating an open-
source evaluation set, accessible to the public. Specifically, we use
public financial data [1] and design eight test queries, ranging from
simple linear queries to complex 5-way joins. We also re-produce
an open version of the HealthLNK benchmark. We evaluate our
prototype, SPECIAL, against the state-of-the-art (SOTA) DPSCA
system, Shrinkwrap [8], and the conventional SCA system, SM-
CQL [7]. Results indicate that SPECIAL outperforms Shrinkwrap,
reducing query latency by up to 80.3x, and SMCQL, with at least a
114x reduction in query latency. Additionally, SPECIAL improves
memory efficiency in complex join processing by more than 900x
compared to both systems. Moreover, scaling experiments show
that SPECIAL can effectively scale up to 8.8M rows dataset and up
to 9-way complex joins. All benchmarks, including our prototype
implementation, are open-sourced and available at [45].

2 BACKGROUND

General notations. We consider the logical database D to contain
multiple private (base) relations {D1, D, ...}, where each relation
D; is owned by a specific party P;. A base relation D (we omit sub-
script for simplicity) has a set of attributes attr(D). The domain of
an attribute A € attr(D) is denoted by dom(A), and the combined
domain of a collection of attributes A = {Aj,Az,...} C attr(D)
is denoted by dom(A) = [[4eca dom(A). For a tuple t € D, and
A C attr(D), we use t.A to denote the attribute value of A in t. A
logical query, represented by q(D), applies transformations and



computations on P. In this work, we focus on SPJA [61] queries.
Frequency (count). Given D, A C attr(D), and a set of values v €
dom(A), the frequency (count) of v in D is the total number of tuples
t € D with t.A = v. In addition, the max frequency moments (MF)
of A is defined as mf(A, D) = maxyegom(a) [{t € D | tA=V}|.
Histograms. Given D, and A C attr(D), the (equal-width) his-
togram h(A, D) = (c1, ¢, ..., cn) is a list of counts for the attribute
values in A. Specifically, h partitions dom(A) into m “equal-sized”
domain intervals (By, ..., B;;), and a count ¢; € h is the number of
tuples ¢t € D with t.A in the interval of B;.

Query planning. Modern databases parse queries into physical
plans [61] that can be executed by the underlying query engine.
These plans specify the operations like scans, joins, and sorts, and
the order in which they’re performed. The same query can have
multiple equivalent execution plans, but their performance can
vary greatly depending on resource usage and data access patterns.
Query planning [12], done before runtime, involves selecting cost-
efficient plans from these options. A key part of this process is
accurately estimating intermediate result sizes, known as cardi-
nality estimation (CE) [31], which relies heavily on table statistics.
Two crucial statistics in modern cardinality estimation methods are:
(i) histograms, which are vital for estimating selectivities in filters,
and (ii) max frequency, which is crucial for estimating join sizes.

Multi-party secure computation (MPC). MPC [10, 26, 46, 76]
is a cryptographic technique that allows multiple parties Py, Po, ...
to jointly compute a function f(xi, Xz, ...) over their own private
input x;. MPC ensures no unauthorized information is revealed to
any party, except the desired output of f, emulating a computation
as if performed by a trusted third party. Traditional MPC required
all parties to actively participate in intensive computations. How-
ever, recent server-aided MPC [37, 48, 59] schemes allow offloading
computations to powerful servers, without sacrificing security. In
this model, parties secretly share their inputs with servers, which
jointly evaluate an MPC protocol to reconstruct the secrets and
compute the function.

Differential privacy [23]. DP ensures that modifying a single
input tuple to a mechanism produces only a negligible change in its
output. To elaborate, consider D and D’ as two relations differing
by just one tuple, then DP defines the following.

Definition 2.1 ((¢,6)-DP). Givene > 0, and é € (0,1). A random-
ized mechanism M is said to be (¢, 5)-DP if for all D ~ D’ pairs, and
any possible output o C Range(M), the following holds:

Pr[M(D) € o] < ePr [M(D’) €0| +6

Secret sharing and secure array. SPECIAL uses the 2-out-of-2
boolean secret share [4] over ring Z,s. for securely outsourcing
owners’ data and storing query execution results. Specifically, each
data, x, is divided into two shares: x1, x2 that are uniformly dis-
tributed over the ring Z,s. such that x = x1 @ x2. Each server
S;i receives one secret shares, s;, where i € {0, 1}. By retrieving
shares from any two servers, an authorized party can successfully
reconstruct the value of x. However, a single server alone learns
nothing about x. For clarity and to abstract out the lower-level
details, we leverage a logically unified data structure, namely the
secure array [8, 71], denoted as (x) = ({x1), {(x2),...), which is a
collection of secret-shared relational tuples.

Oblivious (relational) operators. Oblivious operators are data-
independent MPC protocols that implement the same functional-
ities as their plaintext database counterparts (e.g., filter and join).
Data-independent execution requires that the control flow and
memory access patterns of a function are indistinguishable given
different inputs of the same size, and typically requires costly com-
putation. For example, a linear scan is required to fulfill oblivious
filtering [80], and join requires nested-loop over the two inputs [25].
The output sizes of such operators are usually padded with dummy
tuples to the worst case: N rows for filters and N? for joins, given
size N inputs. The dummy tuples will not affect the query result
but can significantly impact the performance [25, 80]. To enhance
efficiency while maintaining strong privacy, DPSCAs introduce a
new type of oblivious operators [8, 55, 56, 71]. These operators
typically involve two steps: Compute and Compact. The Compute
step is fully oblivious, while the Compact resizes the output, often
by obliviously sorting valid tuples to the front and trimming the
output to a noisy DP size (the true size plus DP noise). While this
approach can significantly reduce the computation cost and query
sizes, it may lead to lossy query processing if the DP size is smaller
than the true size (e.g., negative DP noise), as valid tuples could
be excluded during the compaction [70, 71, 77]. We emphasize that
when DP sizes exceed true sizes, there is no accuracy loss as it only
includes extra dummy data that do not impact accuracy [25, 80].

Private indexes. In conventional databases, indexes are powerful
data structures that map attribute values to positions in a sorted ar-
ray, allowing a predicate selection to quickly access the desired data
via index lookup without the need for full table scan. However, tra-
ditional indexes are unsuitable in SCAs due to their data-dependent
nature, which can easily lead to privacy breaches. To address this,
recent research has proposed DP indexes [57], where the mapping
of attribute values to their positions is intentionally distorted with
DP noise. To process queries, the system first pre-fetch a small
set of data using DP indexes, followed by oblivious selection. This
effectively avoids full table oblivious scan and sorting-based re-
sult compaction. However, the uncertainty inherent in DP indexes
can lead to the loss of valid tuples. For example, in the DP index
of [57], a true index range of positions [10, 20] might be distorted
into positions [12, 17], causing data at position 10,11, 18,19 and
20 to be missed. Nevertheless, if DP indexes overestimate the range,
subsequent oblivious selection can losslessly identify all valid tuples.

3 SYSTEM AND PRIVACY MODEL

In general, SPECIAL follows a standard server-aided MPC [37]
model, involving (i) a set of mutually distrustful data owners P4, ..., Pp,
(ii) two non-colluding servers Sy and Sy, and (iii) a trusted analyst.
We assume an admissible adversary [48] A, capable of corrupting
n — 1 out of n clients and at most one of the two servers. An in-
stance of such adversary can be a malicious server that creates Sybil
owners to form a malicious collation, attempting to steal sensitive
information from an honest owner. Additionally, A is considered
honest-but-curious, meaning it follows the protocol without de-
viation but may try to infer information from observed protocol
transcripts, such as randomness, memory access patterns, and com-
munication messages. The combination of these information is
referred to as the view of A. We also assume A is computationally



bounded as a probabilistic polynomial time (p.p.t.) adversary, which
is a standard requirement in MPC protocols to ensure that adver-
saries cannot break cryptographic primitives. This threat model
is consistent with prior SCA designs [7, 8, 48, 70, 71]. Given this
setup, we design SPECIAL to satisfy the following:

Definition 3.1 (MPC protocol with DP leakage). Given a set of
parties (owners) P; with private data D; and a secure query proto-
colII that applies over D = {D1, Dy, - - - }. We define a randomized
mechanism Lkg(D) = {Lkg(D1), Lkg(Dz2), - - - } as the leakage pro-
file, consisting of the control flow and access patterns of running IT
over D. The protocol I1 is said to be secure with DP leakage if, for
the subset of uncorrupted parties with dataD C D, leakage profile
Lkg(D) C Lkg(D), and any p.p.t. adversary A:

o Lkg(D) satisfies (€, 0)-DP (definition 2.1).
o There exists a p.p.t. simulator S with only access to public param-
eters pp and Lkg(D) that satisfies:

Pr [&1{ (VIEW™ (D, pp) = 1)]
¢Y)
<Pr [.?l (VIEWS(Lkg(D), pp)) = 1] + negl(k)

where VIEW!! is A’s view in I1’s execution and VIEWS is a simulated
view produced by S using Lkg; pp denotes all public parameters, and
negl(x) is a negligible function related to a security parameter k.

Simply put, Definition 3.1 requires that the knowledge any p.p.t.
adversary adversary can gain about each individual tuple of an
honest owner, by observing the protocol execution, is bounded to
what can be inferred from the outputs of the (¢, §)-DP mechanism
Lkg. We stress that this notion focuses on DP at the event (tuple)
level without loss of generality. Due to the group-privacy properties
of DP [22, 40, 66, 75], event-level DP can be extended to user-level
DP. For instance, in a logical database D where any single user
owns at most [ tuples, if a protocol satisfies (¢, §) event-level DP,
it also satisfies (le, le(l_l)eé) user-level DP. Moreover, we say that
SPECIAL can be relaxed to employ a weaker corruption model,
such as requiring a supermajority of owners and servers to remain
uncorrupted, to enhance efficiency [44, 64]. This adjustment does
not change the privacy guarantee outlined in Definition 3.1, but it
does affect the security assumptions. Under the relaxed corruption
model, Definition 3.1 is only satisfied when at least two-thirds of
the parties remain uncorrupted. Due to space concerns, we defer
the complete privacy proof of SPECIAL to our full version [18].

4 SPECIAL SYNOPSES

We now discuss the details of private synopses used in SPECIAL,
while in later sections we will show how they accelerate query
processing (§ 5) and aid in query planning (§ 6).

Challenges. We reiterate the main challenges in generating private
synopses for a relation include: (C-1) selecting a set of attribute
combinations that enable functional and efficient query processing;
(C-2) ensuring that the subsequent query processing based on the
private synopses is lossless.

Key ideas. Given a SPJA query, join operations typically need
prioritized acceleration, as they are more resource-intensive than
other operations. A k-way join can have 0(nk) complexity without
optimizations [7, 8, 25, 71, 80]. Additionally, synopses for frequently

queried filter attributes play an important role in efficient query
processing, as they enable fast indexing (§ 5.2) and effective filtering
of unnecessary data before heavy joins. As such, our first key idea
is to focus on histograms-based synopses that cover frequently
queried join and filter attributes. To minimize noise, we focus on
low-dimensional synopses: only 1D or 2D histograms.

To address the second challenge, our approach combines two
strategies. First, to support accurate indexing and filtering, we use
one-sided DP noise to generate DP histograms that consistently
overestimate or underestimate attribute distributions. We will show
later that such special histograms allow lossless filtering and index-
ing that reliably overestimate true filter sizes and indexing ranges
(§ 5.2). Second, for lossless join output compaction, we incorpo-
rate noisy max frequency moments (MF) into the synopses. MF
allows us to build on advanced join upper bound techniques [34]
to privately estimate join sizes without data loss (§ 5.2).

4.1 Synopses generation

We now elaborate on the details of synopsis generation, which
mainly contains two phases: (i) Attributes selection, where the SPE-
CIAL servers select appropriate attributes for the generation, which
are then distributed to owners; (ii) Local synopses release, where
the owners create corresponding synopses using a DP mechanism
and upload them to SPECIAL servers.

Attributes selection (servers). The first step is to identify a set of
attributes for deriving synopses. In general, we consider the exis-
tence of a representative workload, Qgr [42], which can be sourced
from a warm-up run or annotated by the administrator. Note that
the representative workload does not involve any private data and
thus is leakage-free. The servers first identify representative at-
tribute pairs, pair = {pair; }>1, for each private relation D € D
via Qr. The designated pairs include: (i) 2-way attribute pairs, which
correspond to frequently queried filter-join key combinations; (ii)
frequently queried individual attributes not covered by these pairs.
By default, each pairy. = (Ag, Aj) contains two valid attributes (case
i), but either Ag or Aj may be empty (case ii).
Synopses release (owners). Next, servers pushes the identified
pairs to owners, and subsequently, the owners independently dis-
patche private synopses and return them to servers. We now focus
on the DP synopses generation mechanism run by each owner,
Algorithm 1 illustrates the workflow.

In general, we expect owners to set a desired privacy budget
for their data (using parameters € and ). Algorithm 1 produces
synopses formalized as :

Definition 4.1 (SPECIAL synopses). Given Qr, we consider for
each relation D, its corresponding synopsis synop is the collection of
{(pairy, H(pairy, D), MFg) } k> 1, such that
o pairy. = (Ag, Aj) € QR is a frequently queried attribute pair.

e H(pairg, D) = {h*,h™} is the DP bounding histogram for pairy,
where h™ (resp. h™) is a DP histogram that overestimate (resp.
underestimate) the true histogram of pairy.

o MF}. represents a collection of privately overestimated join key MFs
categorized by pairy . Ag.

We now present a detailed explanation of generating these synop-
sis structures, starting with the private bounding histograms (Alg 1,



Algorithm 1 DP synopsis gen Msynop (in the view of P)

Input: pair = {pairy } ;> from servers; private data D.
1: P self-determines privacy parameters €, §, and init synop < 0
2: for each pair do
3: h(pairy, D) < HistGen(pairy, D)

DP histograms:
4 h*(pairy, D) < h+ Lap*(e, 8, h.shape)
5: h™ (pairg, D) < h+ Lap~ (¢, 6, h.shape)

> adding independently sampled noise to every bin ofh*, h~

DP max frequencies:

6: if Aj € pairy = 0 or Aj is unique valued then MF; = ()
7: else if Ag € pairg # 0 then
> assuming h partitions dom(Ag) into {By, ..., Bm}

8 Df oaqeB, (D) for € =1,2,...m
9 compute noisy MF table, MF; = {R(Aj, DY} i<o<m

10: else MF;. = R(Aj, D)
11: synop «— synop U (pairy, {h*,h™ },MFy)
12: release synop, €, § to servers

lines 2:5). Specifically, for each pairy, each owner first constructs
a histogram h(pairy, D). By default, we assume there exists global
parameters (e.g., bin sizes) for each attribute, that ensure consistent
data partitioning among all owners. Next, the owner derives two
noisy histograms, h*(pair;, D) and h™ (pairy, D), by adding inde-
pendently sampled one-sided Laplace noise (Definition 4.2) to every
bin of h(pairy, D). This guarantees that h* always overestimates
the true histogram, while h™ consistently underestimates it.

Definition 4.2 (One-sided Laplace variable). Lap* (e, §) = max(0, z)
(resp. Lap™ (€, 8) = min(0, z)) is a one-sided Laplace random variable
in the range of [0, 00) (resp. (—o0,0]) if z is drawn from a distribution
with the following density function
e -1
€1

where p=1— % In(5(e€ +1)) (resp. p = éln(&(e6 +1)) —1).

Priz=x] = e~ €lx=Hl (2)

Next, we detail the generation of (noisy) join key MFs (Alg 1
lines 6:10). We assume that both Ay and Aj are non-empty and
that h(pairy, D) partitions dom(Ag) into bins {Bs, ..., Bn}. Each
owner then generates a table of noisy MFs, {ﬁ(Aj,D[)}lggm,
where each entry mf (A;, DY) represents an independently generated
MF statistic for the join key attribute Aj, calculated over a specific
subset of data filtered by the attribute A, such that

M (4), D) e (Geount(a) (Gaver (D)) ()

here Geount( A isa group-by-count operation over Aj, and maxe
is a report noisy max mechanism [23]. It first adds i.i.d. noise from
the exponential distribution Exp(%) to each grouped count, then
outputs the largest noisy count. We stress that Msynop Will not
generate noisy MFs for non-join key attributes, and when Ag is
empty, a global MF will be generated instead of MF tables (Alg 1:10).
Moreover, since SPECIAL enables owners to label attributes as
unique-valued, if Aj is known to be unique-valued, then R(Aj, )
is al\)\ﬁys 1. Nevertheless, as exponential noises are non-negative,
thus mf > mf holds for all cases.

THEOREM 4.3. Given |pair| = ¢, €, > 0, the synopsis generation

(Algorithm 1) is (€, S)—DP where é < 6e4/cIn(1/6), and$ = (c+1)6

For space concern, we move complete proofs to the full ver-
sion [18]. In a sketch, adding Lap™ (or Lap™) to a single bin is
(€, 6)-DP. By parallel and sequential composition, generating H is
(2€, 26)-DP. Moreover, each noisy max is (¢, 0)-DP, and by parallel
composition, the generation of the entire MF table is also (¢, 0)-DP.
In this way, we know that the generation of each (pairy, H,MFy) is
at most (3¢, 25)-DP. Given there are in total ¢ such pairs, and thus
the total privacy loss is subject to c-fold advanced composition [23].

Synopsis transformations. We say that one can perform trans-
formations on released synopses without incurring extra privacy
loss, per the post-processing theorem of DP [23]. Now, we out-
line the key synopsis transformation relevant to SPECIAL’s design.
First, given any (2d) bounding histogram H(pair, D) with both
Ag, Aj € pair are non-empty, one can derive the (1d) bounding
histograms, i.e. H(Aj, D) and H(Ag, D), for any single attribute Ag
or Aj by marginal sums h*, h™ € H(pair, D) over Aj or Ag, respec-
tively. This enables the creation of statistics on individual attributes,
even when Ag and A;j are not included as a standalone synopsis
attribute. Moreover, it’s possible to derive relevant join key statis-
tics following a selection on the base relation. For example, given
Ag, Aj € pair # 0, and let D’ « 04, cyqis(D), one can obtain the
(1d) bounding histogram H(A;, D’) by conducting a selective mar-
ginal sum of h*,h™ € H(pair, D) over bins of A, that intersect with
vals. Beyond bounding histograms, join key MFs over pre-filtered
data can also be computed by

(45, D') = min (p,ualseo 1 (A DY NF(A, D)) (&)

Note that E(AJ,D) exists if Aj is also included as a standalone
synopsis attribute; otherwise, Eq 4 yields only the first term.

5 SPECIAL PRIMITIVES

We next introduce the secure primitives in SPECIAL. One major
challenge in designing these primitives is the knowledge gap on
how private synopses can accelerate oblivious query processing, i.e.,
C-3. To address this, we explore various usage of synopses, includ-
ing creating private indexes (SPEIDX § 5.2) and designing compacted
oblivious operations (SPEop § 5.3). Given that joins are the most
resource-intensive operations, we optimize join algorithms by com-
bining private indexing and compaction techniques to develop a
novel, parallel-friendly oblivious join (§ 5.3). Another challenge
is ensuring lossless processing, which we tackle by integrating
mechanisms that pessimistically estimate selection cardinalities,
indexing ranges, and join sizes using synopses (§ 4) and advanced
upper bound techniques [34]. For simplicity, we assume all input
relations are of size n and all 1D histograms contain m bins.

5.1 Basic Operations

SPECIAL supports conventional fully-oblivious operators [7], which
logically the same as non-private ones but with data-independent
execution and worst-case padding for results. We briefly introduce
these operations: (i) Default data access (SeqACC). By default,
query execution begins with loading all data into a secure array via
sequential scan. Each loaded tuple gets a secret bit ret (initially ‘0°),



marking its validity; (ii) SELECT. This secure filter o, (R) performs
a linear scan over the secure array (R), updating the ret bit to ‘1’

for tuples satisfying predicate p and ‘0’ for others; (iii) PROJECT.

Removes irrelevant attributes from relation (R), but retains the ret
bit; (iv) JOIN. Implements a secure 0-join Ry >y Ry by computing
the cartesian product (Ry X R1) and marking joined tuples with
SELECT. The output is padded to the worst-case maximum size; (v)
COUNT, SUM, MIN/MAX. These aggregation operators scan the secure
array and update a secret-shared aggregation value for each tuple;
(vi) ORDER-BY, DISTINCT, GROUP-BY (AGG). Built on the oblivious

sort primitive [6]. ORDER-BY sorts the array by a given attribute.

DISTINCT sorts and then identifies unique tuples, marking only the
last in a sequence of identical tuples with ret = ‘1’. GROUP-BY (AGG)
first uses DISTINCT to find unique tuples. For each distinct tuple
(ret set to ‘1’), it appends an aggregation value derived from the
tuple and a dummy attribute (e.g., -1°) for non-distinct tuples.

5.2 SPECIAL Index SPEIDX

Existing index techniques in SCA have several drawbacks: loss
of qualified data [57], reliance on intricate data structures with
large overhead [13, 56, 77], and restricted query support [13, 77].
Furthermore, all these techniques only support indexing the base
relations. SPEIDx offers a breakthrough by enabling the creation
of lossless indexes directly on outsourced data and the query of
intermediate results, eliminating the need for extra structures or
storing dummy data.

In general, SPE1Dx builds upon the typical indexing model that
utilizes cumulative frequencies (CF) [43]. Specifically, given D sorted
by A € attr(D), all records t € D where t.A = x can be indexed
by the interval [g(x — 1), g(x)], where g(x) = |{t | t.A < x}| is
the CF function. For better illustration, we show an example index
lookup in Figure 2: to get all records with an attribute value of
24, one may compute [g(23),g(24)] = [217,248] and access the
relevant data from the subset D[217 : 248]. To make this indexing
method private and lossless, the key idea of SPEIDX is to derive
two noisy CF curves from synopses (i.e., bounding histograms).
One curve, g (x), consistently overestimates g(x), while the other,
g~ (x), consistently underestimates it. Then for any attribute value
x, we can now derive a private interval [g~ (x — 1),g*(x)] that
losslessly indexes all the desired records. As illustrated in Figure 2,
the SPECIAL index might estimate the index range for attribute
value 24 as [g~(23), g% (24)] = [198, 267].
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Figure 2: True (left) vs. SPECIAL (right) index for x = 24

In what follows, we provide the formal explanations on how
SPEIDx derives indexes from DP synopses. Specifically, SPEIpx
first determines the bounding histograms H(A, D), which may be
either transformed from an available 2D histogram H(pair, D) with

A € pair, or sourced directly if H(A, D) is already included in the
synopses. It then constructs the noisy mapping as follows:

Definition 5.1 (SPECIAL index). Given D sorted by A, the bounding
histogram H(A, D) = {h*,h™}, and assumeh* = (c}, ....c};,),h™ =
(cs -+ C) partitionsdom(A) into{By, ..., Bm }. We say SPEIDX(A, D)
{idx; = [loj, hi;]}1<i<m is the SPECIAL index of D over A with:

e Vi>1 hij=min([D|, X} _, ¢}).
e log=0,andVi=>2lo; = Z;C_:ll max (0, c];).

By this construction, all tuples ¢t € D such that t.A € B; will
be organized into the subset D[idx;] € D. This subset can be
quickly accessed if D is already sorted, without the need for special
data structures or inclusion of dummy tuples. Depending on how
bounding histograms are constructed, SPEIDX(A, D) can support
indexing lookups with varying granularity. This can range from
indexing individual attribute values (where each B; corresponds
to a single domain value) to indexing a range of of values. The
bounding histogram’s pessimistic estimation ensures that all tuples
where t.A € B; are accurately contained within D[idx;], thereby
achieving lossless indexing. In contrast to existing methods that are
limited to indexing base relations [13, 57, 77], SPEIDX extends its
capabilities to create private indexes on query intermediate results.
For instance, consider D’ «— 04+ ¢yq15 (D) Where the attribute pair
(A*, A) is included in synop. Here, SPEIDX can derive H(A, D)
from H(A*, D) and subsequently build indexes on D’. Importantly,
since index creation is a post-processing procedure using available
DP synopses, it incurs no additional privacy loss.

Indexed store and fast data access IdxAcc. SPEIDX enables a
new storage layout for outsourced data, namely indexed datastore.
Specifically, by analyzing a representative workload Qg, one may
identify the “hottest” attribute per base relation, sort them according
to the “hottest” attribute, and then build indexes over the sorted data.
This storage layout enables fast indexed access (IdxAcc) to retrieve
a compact subset of data from the outsourced relations, thereby
eliminating the need for a full table sequential scan (SeqAcc) and
can directly produce a compact input. We emphasize that the SPE-
CIAL design does not require replicating the outsourced datastore
to accommodate multiple query types [13, 77]. However, creating
compact replicas (e.g., column replicas [35] over frequently queried
attributes) can be optionally employed to enhance query process-
ing speed. Moreover, the generation of all aforementioned objects
(indexed store and column replicas) requires only three primitives:
projection, oblivious sorting, and SPEIDX. In other words, this im-
plies that one can selectively adjust these objects to align with
dynamic query workloads, without incurring extra privacy loss.

5.3 SPECIAL Operators SPEopr

We introduce SPEOP, a set of novel synopsis-assisted operators that
maintain full obliviousness, while enabling lossless compaction. To
our knowledge, SPEoP is the first primitive of its kind in any SCA.

Oblivious compaction: OPAC. is a fundamental operation critical
to other SPEoP primitives. Given input (R), OPAC sorts it based
on the secret bit ret, moving tuples with ret = ‘1’ to the front.
Then, OPAC retains only the first k tuples from the sorted array. The
compaction is lossless if k is greater than or equal to the number of
tuples with ret = ‘1’; otherwise, it is lossy.



SPECIAL selections: (OP)SELECT, (SP)SELECT, (DC)SELECT. Let
R to be a relation and A € attr(R), we now introduce three ad-
vanced selections that implements 04¢yq15 (R)-

(OP)SELECT. is mainly implemented based on the oblivious com-
paction (OPAC) operation. Specifically, the operation first conducts
a standard SELECT on the input secure array (R) to label selected
tuples, followed by an OPAC to to eliminate a large portion of non-
matching tuples. To determine the compaction size cs, (OP) SELECT
examines the synopsis of R and pessimistically estimates the car-
dinality of 04¢yq1s(R) as shown in Algorithm 2. Since cs never
underestimates the actual cardinality, and thus, the compaction is
lossless with no missing tuples. Moreover, as OPAC is fully oblivi-
ous and cs is determined completely from post-processing over DP
synopsis, thus, (OP)SELECT causes no privacy loss.

Algorithm 2 CardEst(o4cyq1s(R), Synop)

h=0,c=0

. if H(A,R) € synop thenh « h* € H(A,R)

. else if 3 pair € synop, s.t. A € pair then

h « marginal sum h* € H(A, R) over (pair \ A).
. else return cs = |R|

: return cs = min(|R|, X2, ¢; € h: (B, Nwals # 0))
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(SP)SELECT. The running complexity of (OP)SELECT depends on
OPAC, which is typically linearithmic (see § 6.1 or [58]). However,
when CardEst(o4¢yqrs (R), synop) is relatively small, oblivious se-
lection can be achieved without necessarily incurring linearithmic
cost. Specifically, we consider (SP)SELECT, which first creates an
empty output array (R, ) with size equals to cs before any compu-
tations. Next, it evaluates two linear scans over (R), where the first
scan obliviously marks all selected tuples, and in the second scan,
it privately writes all marked tuples into (R, ). Specifically, in the
second scan, (SP)SELECT internally maintains the last actual write
position idx in (R,). Then for every newly accessed tuple (t) in
(R), a write action occurs on all tuples in (R,). If (¢) is selected,
then an actual write is made that writes (t) to (Ro[idx + 1]) and a
dummy write is made to elsewhere. If not, dummy writes are made
throughout (R,). We say that, in the context of the secret-shared
secure array (a), a dummy write to (a[i]) is simply a re-sharing of
a[i] through secure protocols without changing its value.

(DC)SELECT. Finally, if the underlying data is already indexable
on A, a direct pre-fetch can be applied to avoid full table scan
and compaction. The operator simply looks up SPEIDX (A, R), and
accesses R[a, b], where a = min;(idx;.lo), b = max;(idx;.hi), and
idx; dentoes the index in SPEIDX (A, R) with bin B; N [a,b] # 0. A
standard SELECT is then applied to R[a, b].

SPECIAL join: (MX)JOIN. We now introduce a novel MF-Index
based oblivious join operation. The advancements of (MX)JOIN
stand out in three aspects. First, compared to the standard JOIN,
(MX) JOIN stands out for its ability to significantly compact the
output size, coupled with a highly parallelizable fast processing
mode. Second, existing DP oblivious joins typically require spending
privacy budget [21] to learn join sensitivity [21] or necessitate
truncation on joined tuples [8, 71]. (MX) JOIN eliminates this need.
Moreover, (MX) JOIN is unique as the first oblivious join that enables

lossless output compaction without extra privacy loss. We illustrate
the construction details in Algorithm 3.

Algorithm 3 (MX) JOIN (base and pre-filtered relations)

Input: relations Ry, Ry; join attribute A;j; we consider synopses
(histograms) of A;j are partitioned into bins By, ...Bp.
. if MXReady(Ro, R1) == True then BucketJoin(Ro, Ry, A;)
. else if Ry, Ry are either base or pre-filtered relation then
for b € {0,1} do
derive E(Aj, Rp,) from synopy, (§ 4)
build index SPEIDX(A), Rp) = {idx;}i=1,..m (§ 5.2)
if Vb , mf (A}, Ry), and SPEIDX (A}, Ry) # null then
7: oblivious sort Ry, Ry on Aj, BucketJoin(Ro, Ry, Aj)
8: else assert “not applicable for (MX) JOIN”
BucketJoin(Ro, Ry, A)):
9: fori=1,2,..,mdo
O T (Ryy) using (DC)SELECT/ SPEIDX(4;, Ro1)
11: compute O; « ((130' 4 (R)ll)) via standard JOIN
IRT IR —= -
o) anu;j,Rl)) XM Ro) i (4 R)
13: Rout < Rout U OPAC(O;, cs;)
14: return Ryt

LS N T I

>

12: ¢s; <— min (

In general, (MX)JOIN can be applied to two types of data: the
base and pre-filtered relations where the join key attribute is in-
cluded in synop. Specifically, (MX) JOIN starts with computing the
join key MFs (Alg 3:4) and constructing private indexes (Alg 3:5)
for both inputs. All these operations are conducted through “pri-
vacy cost-free” transformations using available DP synopses. Once
these objects are obtained, the algorithm employs oblivious sort to
rearrange both inputs (Alg 3:6,7), rendering them indexable with
tuples logically distributed into independent buckets by join key
values. Next, (MX)JOIN simply adopts standard JOIN to join tuples
exclusively within the same buckets (Alg 3:10). Finally, (MX)JOIN
performs per-bucket output compaction, where it first determines
the MF join bound [34] for each bucket join and invokes OPAC to
compact the output according to the learned size (Alg 3:11,12). As
bucket-wise operations are independent, the aforementioned steps
lend themselves well to parallelized processing. As (MX)JOIN de-
rives join compaction sizes completely from post-processing of DP
synopses, it thus incurs no extra privacy loss. Additionally, the
noisy MF bounds guarantee that compaction sizes are consistently
overestimated, ensuring lossless compaction of join results.

6 SPECIAL PLANNER

Current DPSCA designs struggle with costly execution plans be-
cause they cannot pre-estimate query intermediate sizes, and thus
unable to identify effective execution plans with minimized cost.
SPECIAL overcomes this challenge by introducing a novel query
planner that uses synopses for size estimation, and thus enabling
both private and efficient SCA query planning.

At ahigh level, our planner is modeled after the Selinger-style op-
timizer [12]. It uses a bottom-up, dynamic programming approach
to enumerate all equivalent plans for a given query, estimates their
costs (heavily influenced by intermediate sizes) using available



Table 1: Asymptotic costs for secure operators

Operator Input I/O (Ci,) Eval. (Ceya) Output I/O (Cout)

PROJECT 0o(n) N/A o(n)
Agg. O(n) O(n) o(1)
Group & Order O(n) O(nlog? n) O(n)
SELECT O(n) O(n) O(n)

(OP)SELECT O(n) O(nlogn) hist_bound
(SP)SELECT o(n) 0(n) 0(1)
(DC)SELECT idx_bound N/A N/A
JOIN 0(n) 0(n?) 0o(n%)

(MX) JOIN O(n) Oo(n?)* mf_bound

* Assuming the max size of the indexed buckets is bounded by O( @ ).
synopses, and selects the plan with minimal cost. The introduc-
tion of SPECIAL primitives significantly impacts cost modeling for
oblivious operations, rendering existing models [8, 44] inadequate.
Furthermore, the design-space challenge of query planning per-
sists, and the extensive equivalent plan search space necessitates
strategies to simplify the search process. To address these, we first
systematically analyze the complexities of SPECIAL primitives and
develop a new cost model (§ 6.1). We then design protocol-specific
heuristics (§ 6.2) tailored to our planner to narrow the search space.

6.1 Cost Model

We adopt the standard SCA cost framework [8] to develop SPE-
CIAL’s cost model, viewing the cost of a secure execution plan as the
sum of each operator’s I/O and secure evaluation costs. Specifically,
given a plan with £ operators, opy, ..., op,, and let I = {I1, ..., Ip},
O = {04, ..., Op}, to be the input and output sizes of each operators.
The plan cost is:

Cost = XL, CP (1) + C%% (1) + Cori (O3) (5)

eval out

Here, Cj, represents the data access cost (input I/O), primarily cap-
turing the expenses when moving data from persistent storage
to an in-memory secure array. Coyt denotes the output I/O cost,
modeling the expenses when writing operator results into output
arrays. Cey,| accounts for the secure computing cost for evaluating
an operator, typically constituting the dominant cost. Note that, in
practice, the exact formulas for Ciy,, Cout, and Cey, can vary depend-
ing on the specific secure protocol employed (garbled circuits [76],
secret sharing [46], etc.) as well as the particular hardware configu-
rations in use. Nonetheless, the understanding of the asymptotic
costs is adequate for comprehending the principles of SCA query
planning and optimization strategies [8, 44]. In what follows, we
provide detailed analysis on the asymptotic costs for each SPECIAL
operator. Similarly, we assume that all input data sizes mentioned
henceforth in this section are of size n, and all 1D histograms have
m bins. Table 1 summarizes the operator costs.

Oblivious sorting and compaction. While oblivious sorting al-
gorithms with optimal O(nlogn) complexity exist, they often ne-
cessitate either impractically large constants [3, 27] or client-side
memory [5], both do not fit with SCA scenario. Consequently, we
will consider the well-established bitonic sorting based implemen-
tation for oblivious sort, which come with O(nlog? n) complexity.
Nonetheless, efficient OPAC implementations with O(nlogn) com-
plexity remain achievable [58].

Projection, grouping and aggregation. The PROJECT accesses
private relations and discards unnecessary columns independently

on each server, which is naturally oblivious. Thus, I/O costs domi-
nate this operation, with both input and output costs bounded by
O(n). The costs of ORDER-BY, DISTINCT, and GROUP-BY are domi-
nated by oblivious sorting, resulting in a complexity of O(nlog? n).
Additionally, as these operators do not reduce output sizes, both
Cin and Coyt are bounded by O(n). Finally, the cost of aggregations,
i.e. COUNT, SUM, and MIN/MAX subjects to a oblivious linear scan,
typically outputting a single secret-shared value. Hence, its Cey, is
bounded by O(n), with Ci, at O(n) and Coyt at O(1).

Selections. The primary cost of SELECT stems from an oblivi-
ous linear scan, making Cgy, within O(n). Since SELECT does
not shrink the output size, both Cj, and Coyt are within O(n).
(OP) SELECT requires an oblivious compaction (OPAC) before writing
outputs, where OPAC usually yields an O(nlogn) complexity [58].
Consequently, its Cey ) is bounded by O(nlogn) with input I/O
cost same as SELECT. However, as (OP) SELECT compacts output
size, Cout is reduced to hist_bound = O (X g, nyais+0 [Bil), where
B; Nwals # (0 are bins in the synopsis histogram intersecting
with selection conditions. If 3 g,nya1s520 |Bil ~ O(1), (SP)SELECT
becomes preferable, with its running cost dominated by a two-
phase linear scan, and thus Cey,| is now O(n), and the output cost
is O(1). (DC)SELECT is the most efficient selection, though it re-
quires indexable input data. All costs are directly related to the
size of the indexed data, so Cj,, Ceyals and Coyt are all bounded
by idx_bound = O (max;(idx;.hi) — min;(idx;.lo)). Here, idx; are
indexed regions that intersect with selection conditions.

Joins. Both JOIN and (MX)JOIN have O(n) data access costs, but
differ in Ce, ) and Coyt. JOIN, conducting a Cartesian product for
two input tables, has Cgy, and Cout both bounded by O(n?). Com-
pared to JOIN, in the worst-case scenario where the join keys fol-
low a highly biased distribution, i.e. max bucket size reaches O(n),
(MX) JOIN’s asymptotic cost is at most O(n? log n). However, when
join keys are distributed more uniformly, the cost can be asymp-
totically better. For instance, with m = log n and assuming a max

bucket size of O({-%.), each bucket join costs O( "—Z), leading to

a total cost of O(r;)f)r,l equivalent to JOIN. Recall ti(l)atnbucket joins
in (MX)JOIN can be executed concurrently, hence, the process%ng
latency is indeed dominated by the bucket-wise cost, i.e. O( long ).
Additionally, the output cost is lowered from O(n?) to the sum of
per-bucket MF upper bounds (Alg 3:11), which can be substantially

less if the join key MFs are low.

6.2 Heuristics

H-1. Filter push down. is a common query planning optimiza-
tion, moves selection operations to the earliest possible stage to
reduce data processed by subsequent operations. In conventional
SCAs, data obliviousness often requires padding selection sizes,
making filter pushdown ineffective [25, 44, 54, 80]. However, SPE-
CIAL’s innovative selection methods enable compacting selections
to approximate true cardinalities without compromising privacy,
restoring the effectiveness of filter pushdown. Hence, we include
filter push down as one of the optimization heuristic for SPEPLAN.
H-2. Predicates fusion. Let R to be any relation, A, Ay, ..., Ap C
attr(R), and v = {v1,va, ..., v }. We say that for multiple selection
over R such that 04, ey, (.04, ey (R)), one can always fuse them
into one selection oz v (R). This can reduce the number of secure



computation invocations from k rounds to just one. Additionally,
the selection size can be estimated as ming, (CardEst(oa,eq, (R))).

H-3. Join statistics propagation. A key property of SPECIAL
join, (MX) JOIN, is that the output is already indexed and bucketized
by the join key. Therefore, for any output R of (MX)JOIN comput-
ing Ry a4, Ry, a new index SPEIDX(A), R) across R can be easily
derived. Moreover, as per [34], one can also update the MF for R
by computing ﬁ(Aj,R) = ﬁ(Aj,Ro) X E(Aj, R1). As a result, we
say that the output of (MX)JOIN as MF-and-index-ready, enabling
direct application of another (MX)JOIN on the same join attribute.

7 EVALUATION

In this section, we present evaluation results of our proposed frame-
work. Specifically, we address the following questions: Question-1:
Does SPECIAL offer efficiency and privacy advantages over exist-
ing SCAs? Question-2: For SPECIAL design, is there a trade-off
between privacy guarantees and system efficiency? How different
synopses scenarios affect system performance? Question-3: Can
SPECIAL scale complex analytical (e.g. multi-way join) queries to
large-scale (multi-million rows) datasets?

7.1 Experimental setups

Baseline systems and SPECIAL prototype. We compare SPE-
CIAL with two baseline systems: Shrinkwrap [8], the SOTA DPSCA,
and SMCQL [7] (also used as a baseline for Shrinkwrap). For con-
sistency, we consider the same circuit-model implementations for
both baseline systems and the SPECIAL prototype. While some
works [44, 54] similar to SMCQL use exhaustive padding but im-
prove efficiency through protocol-level optimizations, we exclude
them from our benchmarks for fair comparison concerns. We re-
implemented key query features for the two baseline systems and
built SPECIAL using the same MPC package ( EMPtoolkit-0.2.5).
All implementations are open-sourced [45].

Datasets and workloads. We developed two open benchmarks.
The first reproduces the HealthLNK benchmark used by Shrinkwrap
and SMCQL which simulates a real-world scenario where medical
researchers want to perform secure analytics across multiple co-
horts’ sensitive data. We use an open schema [62] to generate a
scalable synthetic dataset with 4 tables, 222K rows and 24 columns.
The benchmark involves four multi-cohort medical study queries,
identical to those used in Shrinkwrap and SMCQL. Our second
benchmark simulates secure collaborative analytics within the fi-
nancial sector. Imagine multiple banks needing to analyze their
combined, private data to study loan and financial statistics—all
without compromising sensitive customer information. We use the
anonymized Czech Financial Dataset [1] for this, assuming each
entry represents data owned by a different bank or financial organi-
zation unable to directly share information. This dataset comprises
8 relational tables with a total of 55 columns and 1.1 million rows.
For testing workloads, we design eight query workloads, ranging
from simple linear queries to complex multi-way join-aggregation
queries. A brief summary of the workloads is provided in Table 2.

Default configurations. For SPECIAL, we employ a per-table
privacy budget allocation strategy. Each table is allocated a one-time
privacy budget of € = 1.5 and § = 0.00005 for synopses generation,

Table 2: Query workloads

Bench. Query Type Description
Dosage Study | Binary Join | Expanding binary join.
Comorbidity | Binary Join | Non-expanding binary join.
Aspirin count | Multi Join | 3 way mixed join

3 Join Aspirin | Multi Join | 4 way mixed join

HealthLNK

FQ1 Linear Point query.

FQ2 Linear Range query.

FQ3 Binary Join | Non-expanding binary join.

. . FQ4 Binary Join | Expanding binary join.

Financial FSS Multiy]oin 3-£ay mi)%ed joirz]s?

FQ6 Multi Join | 3-way all expanding joins.

FQ7 Multi Join | 4-way mixed joins.

FQ8 Multi Join | 5-way mixed joins.

and is evenly distributed across all DP synopses. For Shrinkwrap, we
adopt their default per-query privacy allocation, assigning a privacy
budget of € = 1.5 and § = 0.00005 to each query, as outlined in [8]. It
is important to note that this configuration means Shrinkwrap will
not offer guarantees on the bounded privacy loss across multiple
queries. For the HealthLNK benchmark, we use Dosage and Aspirin
as representative workloads, and for the Financial benchmark, we
use FQ2, FQ4, and FQ8. Unless further elaborated, these workloads
will also serve as default testing queries for our evaluation. For all
equal-width histograms generated in SPECIAL, we configure them
to have at most 8 bins. Moreover, for baseline systems, as they do
not have join ordering optimizations, thus we will assume a random
join order for them. We conduct all experiments on bare-metal Mac
machines with M2 Max CPUs and 96GB unified memory.

7.2 End-to-end comparisons

To address Question-1, we first conduct an end-to-end perfor-
mance comparison of SPECIAL, Shrinkwrap, and SMCQL across all
benchmark workloads. The results are summarized in Figure 4, 5.
We cannot complete full benchmark for SMCQL due to high mem-
ory cost, so we project evaluations for FQ4 (using 10% data) and
omit results for other complex workloads.
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7 sMcQL

Figure 4: End-to-end comparison: query latency
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Figure 5: End-to-end comparison: memory usage

Observation 1. SPECIAL outperforms Shrinkwrap and SM-
CQL in query latency across all benchmarks, reaching up to
3618.3x for linear queries, 114X for binary joins, and 80.3X
for multi-joins. Figure 4 shows the comparison results in query
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Figure 3: In-depth comparisons in execution plans: (i) The exhaustive padding in SMCQL can lead to significant memory blowup;
(ii) Both SMCQL and Shrinkwrap suffer from unoptimized join ordering; (iii) Although Shrinkwrap reduces intermediate sizes,
it still requires substantial memory to materialize join outputs; (iv) SPECIAL can identify efficient join execution orders to
reduce intermediate sizes; (v) IdxAcc can significantly reduce input I/O costs.

time. First, SPECIAL shows significant speedups for linear queries,
reaching up to 3618.3% (FQ2). This large performance gain is mainly
attributed to its index-based fast data access. By directly fetching
private data through DP indexes, SPECIAL eliminate substantial
I/O costs (e.g., sequential reads) and bypass the need for secure com-
putations (e.g., oblivious filter). Second, we observe that in binary
joins, SPECIAL has a less pronounced advantage over Shrinkwrap.
This is because binary joins have a single join order, eliminating the
potential for join ordering problems (where different join orders
lead to significantly different performance). Consequently, even
though Shrinkwrap does not optimize join orders, it doesn’t experi-
ence efficiency losses in this scenario. However, for more complex
multi-way joins, SPECIAL’s advantage becomes more pronounced
again. For instance, more than 80X speedup in FQ7. This is because
SPECIAL can pre-select efficient join orders before runtime.

Observation 2. SPECIAL shows profound improvement in
memory usage (Figure 5) against baseline systems, especially
in complex multi-way joins. This is primarily due to two factors:
First, the (MX)JOIN used by SPECIAL is more memory-efficient
compared to the joins implemented by Shrinkwrap and SMCQL.
Second, SPECIAL’s capability to identify optimal execution plans
significantly reduces total intermediate sizes, which is particularly
beneficial for complex joins that suffer from sub-optimal or exhaus-
tive padding in other systems. To better understand the substantial
improvements SPECIAL achieves—for instance, up to 928.2X over
Shrinkwrap and more than 10°x over SMCQL—we will zoom into
a specific query, FQ6, and compare the detailed execution plans of
the three systems. The choice of FQ6 is strategic because its com-
plexity sufficiently highlights the differences in execution plans,
yet it remains simple enough for clear visual representation. Our
comparison features four execution plans: a plaintext optimal plan,
illustrating the ground truth optimal execution; a hypothetical SM-
CQL plan (with projected cardinalities); and two actual execution
plans from our experiments with Shrinkwrap and SPECIAL. The
detailed comparisons and observations are summarized in Figure 3.

To continue address Question-1, we now compare the privacy
guarantees of SPECIAL with the baseline systems (Figure 6). Specif-
ically, we focus on comparing cumulative privacy loss in multiple
query answering, w.r.t. two composition models: advanced compo-
sition (Adv.)[23] and concentrated composition (CDP.)[14].
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Figure 6: End-to-end comparison privacy loss.

Observation 3. Under continual query answering, SPECIAL
demonstrates significantly lower privacy loss compared to
Shrinkwrap, achieving up to 89.01x and 38.91X improvements
in the Adv. and CDP modes, respectively. The privacy loss
of SPECIAL is bounded to the initial synopsis release stage, so
continual query answering does not incur additional privacy loss.
In contrast, Shrinkwrap’s privacy loss accumulates over time as
each new query allocates a fresh privacy budget. Consequently, its
privacy loss exhibits a logarithmic growth, as shown in Figure 6.
This accumulation can result in significant privacy degradation
when processing a large number of queries. For example, answering
100 queries in Shrinkwrap could result in a privacy loss of € >
100 in Adv. and € = 60 in CDP., respecitvely, even if each query
only uses a small privacy budget of € = 1.5. As such, SPECIAL
demonstrate significant improve in privacy guarantees towards
SOTA DPSCA. Even when compared to standard SCA (e.g., SMCQL)
with no privacy loss due to exhaustive padding, our system incurs
only a small and fixed privacy cost (e.g. € = 1.5 per table) while
delivering substantial performance gains.



7.3 Privacy efficiency tradeoffs

We address Question-2 by evaluating SPECIAL at various privacy
levels. Specifically, we maintain § constant while varying € from
0.1 to 10 and assess the performance across default testing queries.
The results are shown in Figure 7.
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Figure 7: Privacy vs. Performance trade-offs

Observation 4. The privacy-efficiency tradeoff generally ex-
ists but exhibits varying trends at different privacy levels.
For instance, SPECIAL shows a clear tradeoff at higher pri-
vacy levels (¢ < 1), while at lower privacy levels (¢ > 1), the
tradeoff becomes less pronounced. When ¢ increases from 0.1
to 1, both memory usage and query latency for all test queries
significantly decrease. However, increasing e from 1 to 10 shows
no significant performance gains. This may indicate that once €
exceeds 1, the impact of noises on cardinality estimation or index
building is alredy minimal, and further reductions in € do not lead
to notable improvements. Therefore, if high privacy protection is
required, practitioners should carefully fine-tune privacy param-
eters to optimize performance. Conversely, if performance is the
priority, setting € near 1 is typically sufficient.

7.4 Synopses impacts micro benchmarks

We continue to address Question-2 to explore how synopses sce-
narios may affect SPECIAL’s performance. Specifically, we study
two key settings: (i) How different bin numbers (BinNum) in syn-
opses can impact the efficiency of (IDX)JOIN, and (ii) how synopsis
coverage levels for a single query can affect its overall execution. We
will conduct micro-benchmarks for a thorough investigation. Note
that simulate different synopses scenario on both HealthLNK and
Financial benchmarks can be challenging (e.g., joins typically occur
on the same key, so it is hard to simulate partial coverage), hence, to
better control experimental variables and accurately assess impacts,
we will now use synthetic data and workloads.
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Figure 8: BinNum experiments.

Table 3: Synopses coverage experiments.

Synopses Coverage | Time (ms) | Improv. | Mem. (bytes) | Improv.
No coveragee 1831703 baseline 129048576 baseline
. 2 way (1]JK) 276340 6.6X 28481424 4.5%
Jm&gey 3 way (2 JKs) 29200 62.7% 905808 142.5%
All way (3 JKs) 6097 300.4x 65088 1982.7x
1 input 444463 4.1x 40327680 3.2x
Filter* 2 inputs 108205 16.9x 12602400 10.2%
3 inputs 24486 74.8X 3943200 32.72X
All inputs 6847 267.5% 1303200 99x

* We synthesize a random selectivity between (0, 0.33) for each filter operation.

We first study how the BinNums impact the performance of
(IDX)JOIN. To study this, we synthesize two join queries on fixed
input data, generate join key synopses with varying bin numbers (2
to 64), and measure the performance of (IDX)JOIN in processing
the queries. The results are shown in Figure 8.

Observation 6. The running time of (IDX)JOIN initially de-
creases but then increases as the BinNum grows. The memory
usage consistently increases. (IDX)JOIN partitions larger joins
into smaller sub-joins, but since we rely on DP indexes for parti-
tioning, each sub-join inevitably includes additional dummy data.
This increased plan size directly translates to higher memory usage
and will grow when BinNum increases (more noises in DP indexes).
On the other hand, partitioning large joins into smaller ones can en-
hance join efficiency, which is why we initially observe a decrease
in execution time as BinNums increase (e.g., 2 to 8). However, the
trade-off arises when the number of bins becomes excessive (e.g.,
> 8). The overhead of handling the increased dummy data starts to
outweigh the benefits gained from partitioning. At this point, the
performance improvement plateaus and starts to degrade as the
system struggles with the inflated plan sizes.

We now study how synopses coverage impacts query perfor-
mance. We synthesize and test a 4-way join query under two con-
trolled scenarios: (i) JK coverage: We focus on varying the level of
JK coverage, starting from 1 out of 3 JKs to full coverage, while
ensuring no filter synopses are present. We then measure how this
impacts query performance; and (ii) Filter coverage: We maintain
full JK coverage and change the coverage of filter synopses on the
query’s input tables, ranging from 1 out of 4 inputs to full cover-
age. This allows us to examine the isolated effect of filter synopsis
coverage on performance. Results are in Table 3.

Observation 7. For both groups, query efficiency significantly
improves as synopses coverage grows. Nevertheless, even at
the lowest coverage level, queries can still achieve notable
speedups. Even with minimal synopsis coverage—like boosting
only one join or applying synopses to just one input table—we
observe significant speedups of 6.6x and 4.1X, respectively. This
demonstrates the potential for substantial performance gains even
with limited synopsis availability. Moreover, real-world workloads
often involve joins on the same keys and similar filtered inputs (e.g.,
HealthLNK workloads), suggesting that high synopsis coverage is
achievable even with a small set of representative workloads. As
demonstrated by Table 3, adding even a single additional synop-
sis, whether for join keys or table filters, can yield a substantial
performance boost (up to 10X) in query execution efficiency.



Table 4: Scaling query complexity experiments

Join scale Query time (ms) | Improv. | Memory (bytes) | Improv.
Shrinkwrap Q6 58342782 baseline 3354165360 baseline

7 (FQ8 » FQ3) 1330602 43.8x 5334360 628X

8 (FQ8 1 FQ5) 11789800 4.9%x 7901016 424x

9 (FQ8 < FQ3 x FQ4) 13306150 4.4x 8999352 328x

7.5 Scaling experiments

To address Question-3, we stress SPECIAL with two types of scaled
workloads: (i) scaled data: we duplicate the raw dataset to sizes of
2X, 4%, and 8X and evaluate default testing queries; (ii) scaled query
complexity: We use standard inputs, but simulate complex multi
joins (up to 9-way) by chaining together multiple join workloads.
The results are shown in Figure 9 and Table 4.
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Figure 9: Scaling data experiments.

Observation 8. SPECIAL shows large potential to scale up to
multi-million data, even for complex 5-way joins. Figure 9
shows SPECIAL’s effective scaling: up to 8% data for linear queries
and binary joins, and up to 4X data for complex 5-way joins like
Q8. For instance, Q2 can be completed within 290ms under 8%, and
in fact, since selection is bypassed (due to index access), thus the
cost is mainly on I/O costs. Q4 finishes in 289 minutes at the same
scale 8%, while the more complex 5-way join Q8 takes less than
280 minutes for 4x data. As a reference, Shrinkwrap would require
over 1035 minutes to complete Q8 even with unscaled data.

Observation 9. SPECIAL can effectively process very large
joins (e.g., 9-ways). Table 4 shows that the query processing time
of SPECIAL at 9-way scale can still be 4.4 faster than Shrinkwrap
at 3-way join scale (Q6), and the memory improvement is even more
evident that is 328 smaller. We stress that these significant memory
savings can become even more crucial when processing massive
datasets. Techniques like Shrinkwrap or SMCQL, might be forced
to rely on much slower persistent storage to handle intermediate
results that exceed memory capacity. In contrast, SPECIAL can still
maintain a fully in-memory query mode, potentially leading to even
more pronounced efficiency gains in such scenarios.

8 RELATED WORK

SCA systems. Two main approaches exist for designing MPC-
based SCA systems. The first is peer-to-peer (P2P) paradigm (2, 49, 54,
67, 74], where the goal is to improve efficiency by decomposing ana-
lytical queries and pushing them to data owners, so that they can ei-
ther directly process in clear or running MPCs across a small group
of parties. Unfortunately, this approach imposes large overhead on
data owners, especially for complex operations like joins. Given that
real-world data owners often lack robust computing resources and

service capabilities, the P2P paradigm is hard to scale and support
reliable SCA services to external analysts. The other paradigm is the
server-aided-MPC model [8, 9, 37, 41, 44, 48, 57, 64, 70, 71, 77]. This
model allows data owners to outsource both expensive MPC com-
putations and secure data storage to a set of capable servers, which
can then jointly evaluate MPC to provide reliable SCA services.
SPECIAL is built upon the server-aided-MPC model and under a
strong “all but one”corruption assumption. Moreover, SPECIAL’s
core design is protocol-agnostic, which allows interoperability with
various MPC models, including the P2P or a weaker corruption
where a supermajority of servers need to be honest [41, 44, 64].

DP leakages. Leakage-abuse attacks [11, 15, 29, 38, 50, 60, 78], ex-
ploit data-dependent processing patterns, are persistent threats to
SCA systems. To mitigate these risks, oblivious computation [5, 17,
20, 36, 39, 47, 52, 53, 58, 63, 65, 72, 73] have become the de facto
solution. While this technique ensures the strongest privacy guaran-
tees by eliminating any data-dependent leakages, it also introduces
a fundamental contention with modern database optimizations,
which often rely heavily on data-dependent operations [8, 69-71].
To this end, many recent efforts seek a practical balance in the
privacy-performance trade-off by allowing controlled leakage un-
der DP [38, 16, 19, 28, 32, 51, 55, 56, 68—71, 77]. However, a common
issue of these approaches is unbounded privacy loss. While some
works propose to address this [13, 56, 77], their approaches are re-
stricted to only simple linear queries. SPECIAL addresses all these
limitations together, and to our knowledge, is the first SCA system
that can simultaneously ensure both bounded privacy and lossless
results for complex SPJA queries.

SCA query planning. Query planning [61] is crucial in conven-
tional databases. Conventional planners can exploit size disparities
across different query plans to choose efficient ones with smaller
sizes [24, 30, 31]. However, such techniques use data-dependent
information and are typically prohibited in SCA. A handful of stud-
ies [7, 44, 54, 67] that explore query planning within SCA frame-
works primarily rely on data-independent metrics for planning,
which usually lead to only moderate optimizations. Shrinkwrap [8]
introduced a private planning method that optimally compacts
intermediate sizes by efficiently allocating privacy budgets to mini-
mize dummy data. However, it cannot pre-determine an optimal
join order. SPECIAL offers an advanced query planner capable of
pre-estimating intermediate sizes and comparing execution costs
among different plan structures before runtime.

9 CONCLUSION

We introduce SPECIAL, the first SCA system that simultaneously
supports: (i) handling complex queries with bounded privacy loss;
(ii) advanced query planning that effectively exploit plan interme-
diate sizes before runtime; and (iii) delivering exact query results
without missing tuples. This is achieved through a novel synopses-
assisted SCA design, where a set of private table statistics are re-
leased with one-time privacy cost to guide subsequent secure SCA
planning and processing.
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