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In this paper, we propose an augmented subspace based adaptive proper orthogonal decomposition 
(POD) method for solving the time dependent partial differential equations. We use the difference 
between the approximation obtained in the augmented subspace and that obtained in the original 
POD subspace to construct an error indicator, by which we obtain a general framework for 
augmented subspace based adaptive POD method. We then provide two strategies to construct the 
augmented subspaces, the residual type augmented subspace and the coarse-grid approximation 
type augmented subspace. We apply our new methods to two typical 3D advection-diffusion 
equations with the advection being the Kolmogorov flow and the ABC flow. Numerical results 
show that both the residual type augmented subspace based adaptive POD method and the coarse-
grid approximation type augmented subspace based adaptive POD method are more efficient than 
the existing adaptive POD methods, especially for the advection dominated models.

1. Introduction

Time dependent partial differential equations arise in many important fields, e.g., the seawater intrusion [2], the heat transfer [11], 
semiconductor devices [41] and fluid equations [25,3,42,62,59,38]. The study about the numerical methods for the time dependent 
partial differential equations is an important and attractive research topic. There are some classical numerical discretization methods 
for the spatial discretization of the time dependent partial differential equations, e.g., the finite element method [8], the finite 
difference method [54] and the plane wave method [30]. Usually, the semi-discretized systems resulted from applying these classical 
spatial discretization methods for a time dependent partial differential equations are of huge dimensional. If we use these classical 
spatial discretization methods at each time interval, the computational cost will be very expensive, especially for complex systems.

Therefore, some efficient and accurate model order reduction methods have been proposed to reduce the dimension of discretized 
system and then the computational costs [4,49,13,40,7]. The basic idea for the model order reduction method is to project the 
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continuous system onto a low-dimensional approximation subspace whose dimension is significantly less than that of the classical 
discretization space. Proper orthogonal decomposition (POD) is a commonly used model order reduction technique [24,33,48,39,21]. 
The typical steps for using a POD method to solve a time dependent partial differential equation are as follows. First, choose some 
classical discretization method to discretize the continuous equation in some time interval, and solve the resulted high-dimensional 
discretized systems to get a set of snapshots. Then, construct the POD modes by minimizing the error between these modes and the 
snapshots, which is equivalent to solving an ÿý dimensional eigenvalue problem [53,25,51]. Here ÿý is the number of snapshots. At 
last, project the original system onto the subspace spanned by the POD modes, which is also called POD subspace, and solve the 
resulted discretized systems in the following time intervals. In the actual calculation, singular value decomposition (SVD) is usually 
used to obtain the POD modes from the snapshots [37,48,10]. By choosing the snapshots properly, the number of the POD modes 
will usually be of magnitude smaller than the degrees of freedom resulted by the classical spacial discretization methods.

There are many applications of the POD method in scientific and engineering computing. For instance, in [17], a group proper 
orthogonal decomposition (GPOD) method was introduced to simulate the nonlinear Burgers equation. In [35], the POD method was 
used to solve the time-domain Maxwell’s equations. In [34], a reduced-order finite element formulation based on POD method was 
established for the Allen-Cahn equation. Other applications include studies of turbulence [19,55], process identification [27,28] and 
control in chemical engineering [44,61], etc. We refer to [57,58] for more introduction to the POD method.

There are also some existing works on the error analysis for the POD method. For example, Kunisch and Volkwein estimated the 
error of the POD approximation for linear and nonlinear evolution equations in [31,32]. In [22], Xin et al. analyzed the convergence 
of the POD approximation for viscous G-equation by decomposing the data into a mean-free part and a mean part. More works about 
the numerical analysis for the POD method can be referred to [26,36,12,29] and references therein.

The classical POD method for time dependent partial differential equations only uses the snapshots obtained in the early time 
interval to construct the POD modes. Once the POD modes are obtained, they will be fixed and not updated during the time evolution 
any more. However, the solution of the system may change a lot over time. Therefore, if the POD modes are not updated as time 
evolution, the approximation error obtained by the POD method may become larger and larger.

In order to improve the accuracy of the POD method in the whole time interval, some adaptive POD methods which update 
the POD modes as time evolution have been introduced in recent years [14,15,50,56,45]. In [14,50,56], the authors constructed 
some residual type error estimators, based on which some residual based adaptive POD methods are proposed for simulation of time 
dependent problems. In [15], the authors proposed a two-grid based adaptive POD method. For this method, they first constructed 
two finite element spaces, a coarse finite element space and a fine finite element space, and then used the error obtained in the coarse 
finite element space to construct the error indicator, by which people then see whether it is necessary to update the POD subspace in 
the fine mesh or not. We refer to [15] for more details about the two-grid based adaptive POD method.

In this paper, we propose a new approach for developing some adaptive POD methods for the time dependent partial differential 
equations. The main idea of our approach is to use some auxiliary modes to augment the current POD subspace to build an augmented 
subspace. We then use the difference between the approximation obtained in the augmented subspace and that obtained in original 
POD subspace to develop an error indicator. Using this idea, we obtain a general framework for augmented subspace based adaptive 
POD method. We then provide two specific strategies to obtain the auxiliary mode, one is using the residual corresponding to the 
POD approximation as the auxiliary mode, the other is using a coarse-grid approximation as the auxiliary mode. Using the residual 
to enrich the current POD subspace is inspired by [5]. Using the coarse-grid approximation to augment the subspace is inspired by 
[15]. In [15], the authors used the error obtained in a coarse finite element space to act as the error indicator, while in this paper, we 
use the approximation in the coarse finite element space to augment the POD subspace, and then develop an error indicator. Besides, 
following the idea of [50], we introduce a weight to each mode when updating the POD subspace to improve the performance of the 
method.

The rest of this paper is organized as follows. In Section 2, we give some preliminaries, including the general framework of the 
adaptive POD method, the comparison of computational complexity for different POD type methods and the simple descriptions of 
two typical adaptive POD methods. In Section 3, we propose a general framework for the augmented subspace based adaptive POD 
method, and then provide two specific strategies to construct the augmented subspace, the residual type augmented subspace and 
the coarse-grid approximation type augmented subspace. Besides, we also introduce a weighting strategy to update the POD modes 
in Section 3. In Section 4, we apply the two-grid based adaptive POD method and our augmented subspace based adaptive POD 
methods to the simulation of some typical time dependent partial differential equations, i.e., the advection-diffusion equation with 
three dimensional velocity field, including both the Kolmogorov flow and the ABC flow. The numerical results show the accuracy 
and efficiency of our new methods. In Section 5, we give some concluding remarks. Finally, we provide some additional numerical 
results for the advection dominated models with different coarse meshes and different error indicator thresholds in Appendix A.

2. Preliminaries

We first recall some definition and notation. We shall use the standard notation for Sobolev spaces and their associated norms 
and seminorms; see, e.g., [1]. Let ý be a Banach space with norm ‖ ∗ ‖ý and ÿý(0, ÿ ; ý ) be a Banach space equipped with the norm

‖ÿ‖ÿý(0,ÿ ;ý ) =

»
¼¼½

ÿ

∫
0

‖ÿ(ý)‖ý
ý
dý

¾
¿¿À

1
ý

,1 ≤ ý <∞.

We call ÿ ∈ ÿ(0, ÿ ; ý ) if
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‖ÿ‖ÿ(0,ÿ ;ý ) = max
ý∈[0,ÿ ]

‖ÿ(ý)‖ý <∞.

In this paper, vectors and matrices will be denoted by bold letters.
We consider the following general time dependent partial differential equations:

⎧⎪«⎪¬

ÿý − ÿΔÿ+ý (ý, ÿ, ÿ, ý) ⋅∇ÿ+ ý (ý, ÿ, ÿ, ý)ÿ = ÿ (ý, ÿ, ÿ, ý) , in Ω× (0, ÿ ]

ÿ (ý, ÿ, ÿ,0) = ℎ (ý, ÿ, ÿ) ,

ÿ (ý+ ÿ, ÿ, ÿ, ý) = ÿ (ý, ÿ+ ÿ, ÿ, ý) = ÿ (ý, ÿ, ÿ+ ÿ, ý) = ÿ (ý, ÿ, ÿ, ý) ,

(1)

where Ω = [0, ÿ]3, ÿ ∈ ÿ2
(
0, ÿ ;ÿ2(Ω)

)
, ý ∈ ÿ (0, ÿ ;ÿ∞ (Ω)), ý ∈ ÿ

(
0, ÿ ;ÿ 1,∞(Ω)3

)
, ℎ ∈ ÿ2(Ω) and ÿ is a constant. We take an 

inner product with ÿ in (1) and define a bilinear form to simplify the variational form

ÿ(ý;ÿ, ÿ) = ÿ (∇ÿ,∇ÿ) − ÿ ∫
ÿΩ

ÿÿ

ÿÿ
ÿýÿ + (ý ⋅∇ÿ, ÿ) + (ýÿ, ÿ) ,∀ÿ, ÿ ∈ÿ1(Ω),

where (⋅, ⋅) stands for the inner product in ÿ2(Ω). We obtain the variational form of the Eq. (1) as follows: find ÿ ∈ ÿ2 (0, ÿ ;ý ), 
ÿý ∈ÿ

2 (0, ÿ ;ý ∗) such that

(
ÿý, ÿ

)
+ ÿ (ý;ÿ, ÿ) = (ÿ, ÿ) ,∀ÿ ∈ ý , (2)

where

ý =
{
ÿ ∈ÿ1(Ω) ∶ ÿ|ý=0 = ÿ|ý=ÿ , ÿ|ÿ=0 = ÿ|ÿ=ÿ , ÿ|ÿ=0 = ÿ|ÿ=ÿ

}
,

and ý ∗ is the dual space of V.

2.1. Standard discretization

We first consider the standard temporal discretization of (2). There are many existing temporal discretization methods, such as 
Euler method and implicit Euler method [23], which can be used to discretize (2). Here, we choose the implicit Euler method. We first 
divide the time interval into ý ∈ ℕ subintervals with equal length ÿý = ÿ ∕ý , and let ÿý(ý, ÿ, ÿ) be the approximation of ÿ(ý, ÿ, ÿ, ýý), 
ÿý(ý, ÿ, ÿ) = ÿ (ý, ÿ, ÿ, ýý), where ýý = ý ⋅ ÿý, for ý ∈ {0,1,⋯ ,ý}. Then we can get the semi-discretization scheme of (2) as follows:

(
ÿý(ý, ÿ, ÿ) − ÿý−1(ý, ÿ, ÿ)

ÿý
, ÿ

)
+ ÿ

(
ýý;ÿ

ý(ý, ÿ, ÿ), ÿ
)
=

(
ÿý(ý, ÿ, ÿ), ÿ

)
, ÿ ∈ ý . (3)

We then consider the classical spatial discretization of (3). Here, we choose the finite element method to discretize (3). Let ℎ be 
a shape regular family of nested conforming mesh over Ω with size ℎ: there exists a constant ÿ∗ such that

ℎÿ

ÿÿ
≤ ÿ∗, ∀ ÿ ∈ ℎ, (4)

where ℎÿ is the diameter of ÿ for each ÿ ∈ ℎ, ÿÿ is the diameter of the biggest ball contained in ÿ , and ℎ = max
{
ℎÿ ∶ ÿ ∈ ℎ}. Let 

ýℎ be a subspace of continuous functions on Ω such that

ýℎ =
{
ÿℎ ∶ ÿℎ|ÿ ∈ ℙÿ ,∀ ÿ ∈ ℎ and ÿℎ ∈ ÿ0(Ω)

}
,

where ℙÿ is a set of polynomials on element ÿ . Let 
{
ÿℎ,1, ÿℎ,2,⋯ , ÿℎ,ýý

}
be a basis of ýℎ with ýý being the degrees of freedom. 

Denote

ÿℎ ∶=
(
ÿℎ,1, ÿℎ,2,⋯ , ÿℎ,ýý

)
.

The standard finite element discretization of (3) can be formulated as follows: find ÿý
ℎ
(ý, ÿ, ÿ) ∈ ýℎ, such that

(
ÿý
ℎ
(ý, ÿ, ÿ) − ÿý−1

ℎ
(ý, ÿ, ÿ)

ÿý
, ÿℎ

)
+ ÿ

(
ýý;ÿ

ý
ℎ
(ý, ÿ, ÿ), ÿℎ

)
=

(
ÿý(ý, ÿ, ÿ), ÿℎ

)
, ÿℎ ∈ ýℎ. (5)

Note that ÿý
ℎ
(ý, ÿ, ÿ) can be expressed as

ÿý
ℎ
(ý, ÿ, ÿ) =

ýý∑
ÿ=1

ÿý
ℎ,ÿ
ÿℎ,ÿ (ý, ÿ, ÿ) . (6)

Inserting (6) into (5), and setting ÿℎ = ÿℎ,ÿ , ÿ = 1, 2, ⋯ , ýý , respectively, we have
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Algorithm 1 POD_Mode (ýℎ, ÿ, ÿℎ, ÿ, ÿℎ).

Input: ýℎ, ÿ, ÿℎ =
(
ÿℎ,1, ÿℎ,2,⋯ , ÿℎ,ÿ

)
;

Output: m and POD modes Ψℎ =
(
ÿℎ,1, ÿℎ,2,⋯ , ÿℎ,ÿ

)
;

1: Perform SVD on ýℎ to obtain ýℎ =ýÿýÿ , where S = diag 
{
ÿ1, ÿ2,⋯ , ÿÿ

}
with ÿ1 ≥ ÿ2 ≥⋯ ≥ ÿÿ > 0;

2: Set ÿ =min

{
ý ∶

ý∑
ÿ=1

ÿÿ,ÿ > ÿ ⋅ Trace(ÿ)

}
;

3:
(
ÿℎ,1, ÿℎ,2,⋯ , ÿℎ,ÿ

)
=ÿℎý[∶, 1 ∶ÿ];

»¼¼½

ýý∑
ÿ=1

ÿý
ℎ,ÿ
ÿℎ,ÿ −

ýý∑
ÿ=1

ÿý−1
ℎ,ÿ

ÿℎ,ÿ, ÿℎ,ÿ

¾¿¿À
+ ÿý ⋅ ÿ

»¼¼½
ýý;

ýý∑
ÿ=1

ÿý
ℎ,ÿ
ÿℎ,ÿ, ÿℎ,ÿ

¾¿¿À
= ÿý ⋅

(
ÿý, ÿℎ,ÿ

)
. (7)

Define

ý
ý
ℎ,ÿÿ

=
(
ÿℎ,ÿ , ÿℎ,ÿ

)
+ ÿý ⋅ ÿ

(
ýý;ÿℎ,ÿ , ÿℎ,ÿ

)
, ÿ

ý
ℎ
=

(
ÿý
ℎ,1
, ÿý
ℎ,2
,⋯ , ÿý

ℎ,ýý

)ÿ
,

ÿ
ý
ℎ
= ÿý ⋅

((
ÿý, ÿℎ,1

)
,⋯ ,

(
ÿý, ÿℎ,ýý

))ÿ
, ÿℎ,ÿÿ =

(
ÿℎ,ÿ , ÿℎ,ÿ

)
.

Then (7) can be rewritten as the following algebraic form

ý
ý
ℎ
ÿ
ý
ℎ
= ÿ

ý
ℎ
+ÿℎÿ

ý−1
ℎ

, (8)

where ýý
ℎ
=

(
ý
ý
ℎ,ÿÿ

)
ýý×ýý

and ÿℎ =
(
ÿℎ,ÿÿ

)
ýý×ýý

.

2.2. Adaptive POD method

In this subsection, we first recall the general procedure for getting a POD reduced order model of a time dependent partial 
differential equation. First, we choose some classical discretization method to discretize (3) in some time interval. Here we discretize 
(3) in the finite element space ýℎ for ý ∈ [0, ÿ0], and solve the resulted high dimensional discretized systems, and then collect the 
numerical solution at different times ý0, ýÿý , ⋯, ýÿý⋅ÿý to obtain the snapshot matrix ýℎ. Here, ÿý is an integer parameter and 

ÿý = + ÿ0
ÿý⋅ÿý

,, where +∗, means the round down. Then, we perform SVD on ýℎ, and obtain ýℎ = ýÿýÿ. Note that the diagonal 
elements in ÿ are arranged from largest to smallest, we set the number of POD modes by

ÿ =min

{
ý ∶

ý∑
ÿ=1

ÿÿ,ÿ > ÿ1 ⋅ Trace(ÿ)

}
, (9)

where ÿ1 is a given parameter, and set ý̃ =ý[∶, 1 ∶ÿ]. Then the POD modes are

ÿℎ =
(
ÿℎ,1, ÿℎ,2,⋯ , ÿℎ,ÿ

)
∶=ÿℎý̃.

The process for constructing POD modes can be summarized as a routine POD_Mode (ýℎ, ÿ1, ÿℎ, ÿ, ÿℎ) in Algorithm 1, see also [15]. 
At last, we project (3) onto the POD subspace ýℎ,POD = span

{
ÿℎ,1,⋯ , ÿℎ,ÿ

}
when ý > ÿ0. The POD approximation ÿý

ℎ,POD
(ý, ÿ, ÿ) can 

be expressed as

ÿý
ℎ,POD

(ý, ÿ, ÿ) =

ÿ∑
ÿ=1

ÿý
ℎ,ÿ
ÿℎ,ÿ(ý, ÿ, ÿ). (10)

Inserting (10) into (3), and setting ÿ = ÿℎ,ÿ , ÿ = 1, 2, ⋯ , ÿ, respectively, we obtain
(

ÿ∑
ÿ=1

ÿý
ℎ,ÿ
ÿℎ,ÿ −

ÿ∑
ÿ=1

ÿý−1
ℎ,ÿ

ÿℎ,ÿ, ÿℎ,ÿ

)
+ ÿý ⋅ ÿ

(
ýý;

ÿ∑
ÿ=1

ÿý
ℎ,ÿ
ÿℎ,ÿ, ÿℎ,ÿ

)
= ÿý ⋅

(
ÿý, ÿℎ,ÿ

)
. (11)

Define

ý̄
ý
ℎ,ÿÿ

=
(
ÿℎ,ÿ , ÿℎ,ÿ

)
+ ÿý ⋅ ÿ

(
ýý;ÿℎ,ÿ , ÿℎ,ÿ

)
, ÿ

ý
ℎ,POD

=
(
ÿý
ℎ,1
, ÿý
ℎ,2
,⋯ , ÿý

ℎ,ÿ

)ÿ
,

ÿ̄
ý
ℎ
= ÿý ⋅

((
ÿý, ÿℎ,1),⋯ , (ÿý, ÿℎ,ÿ

))ÿ
, ÿ̄ℎ,ÿÿ =

(
ÿℎ,ÿ , ÿℎ,ÿ

)
.

Then (11) can be rewritten as the following algebraic form

ý̄
ý
ℎ
ÿ
ý
ℎ,POD

= ÿ̄
ý
ℎ
+ ÿ̄ℎÿ

ý−1
ℎ,POD

, (12)

where ý̄ý
ℎ
=

(
ý̄
ý
ℎ,ÿÿ

)
ÿ×ÿ

and ÿ̄ℎ =
(
ÿ̄ℎ,ÿÿ

)
ÿ×ÿ

.
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From the expression of the POD modes, i.e., ÿℎ =ÿℎý̃, the above equation can also be written as

ý̃
ÿ
ý
ý
ℎ
ý̃ÿ

ý
ℎ,POD

= ý̃
ÿ
ÿ
ý
ℎ
+ ý̃

ÿ
ÿℎý̃ÿ

ý−1
ℎ,POD

,

where ýý
ℎ
=

(
ý
ý
ℎ,ÿÿ

)
ýý×ýý

and ÿℎ =
(
ÿℎ,ÿÿ

)
ýý×ýý

.

As we mentioned before, the classical POD method only uses the snapshots obtained in time interval [0, ÿ0] to construct the POD 
modes. Once the POD modes are obtained, they will not be updated during the time evolution. However, the solution may change a 
lot over time. In order to improve the accuracy of the POD method in the whole time interval, more and more researchers have paid 
attention to the study of adaptive POD method in recent years [14,15,50,56,45]. Here, we provide a brief introduction.

Motivated by the procedure for adaptive finite element method [16], in [15], the authors summarized the procedure of adaptive 
POD method as a loop constructed by the following four steps:

1. Solve: Solve the Eq. (3) in the POD subspace span
{
ÿℎ,1,⋯ , ÿℎ,ÿ

}
.

2. Estimate: Construct an error indicator ÿý at time instant ýý to estimate the error of the approximation obtained in current POD 
subspace.

3. Mark: Mark the time instant ýý when the POD subspace is needed to be updated.
4. Update: Update the POD subspace at the marked time instant.

The step Solve is just the procedure for obtaining the approximations by the classical POD method we introduced above. The step
Estimate is crucial for an adaptive POD method, which determines the efficiency and accuracy of the method. The step Mark picks 
out the time instant when the POD modes are needed to be updated. For the step Update, it is worthy of noting that, if the time 
instant ý = ÿ ⋅ ÿý is marked, we will go back to the previous time instant ý1 = (ÿ −1) ⋅ ÿý to restart the collection of the approximations 
in the finite element space every ÿý time-step and get the snapshots matrix ÿℎ,1 . In order to obtain the new POD modes, we perform 
SVD on ÿℎ,1 to obtain ÿℎ,1 = ý1ÿ1ý

ÿ
1
. Then, we obtain the number of POD modes ÿ1 by (9) but with a different parameter ÿ2. 

In order to keep most of the POD modes, we perform SVD on ÿℎ,2 = [ý1[∶, 1 ∶ ÿ1], ̃ý], and get ÿℎ,2 = ý2ÿ2ý
ÿ
2
. Then, we get the 

number of POD modes ÿ by (9) but with a parameter ÿ3. Finally we set ý̃ =ý2[∶, 1 ∶ÿ] and obtain the updated POD modes by

ÿℎ =
(
ÿℎ,1, ÿℎ,2,⋯ , ÿℎ,ÿ

)
=ÿℎý̃.

For the convenience of the following discussion, we summarize the process for the step Update as routine Update_POD_Mode
(ÿℎ,1, ÿ2, ÿ3, ÿℎ, ÿ, ÿℎ) in Algorithm 2, which is first introduced in [15].

Algorithm 2 Update_POD_Mode (ÿℎ,1, ÿ2, ÿ3, ÿℎ, ÿ, ÿℎ).

Input: ÿℎ,1, ÿ2, ÿ3, ÿℎ = (ÿℎ,1, ÿℎ,2, ⋯ , ÿℎ,ÿ), ÿ and ÿ old POD modes ÿℎ, ÿℎ =ÿℎý̃.
Output: new ÿ and new ÿ POD modes 

{
ÿℎ,1, ÿℎ,2,⋯ , ÿℎ,ÿ

}
.

1: Perform SVD on ÿℎ,1 to obtain ÿℎ,1 =ý1ÿ1ý
ÿ
1
, where ÿ

ÿ
= diag 

{
ÿ1,1, ÿ1,2,⋯ , ÿ1,ÿ1

}
with ÿ1,1 ≥ ÿ1,2 ≥⋯ ≥ ÿ1,ÿ1 > 0;

2: Set ÿ1 =min

{
ý ∶

ý∑
ÿ=1

ÿ1,ÿÿ > ÿ2 ⋅ Trace(ÿ1)

}
;

3: Perform SVD on ÿℎ,2 = [ý1[∶, 1 ∶ÿ1], ̃ý], and obtain ÿℎ,2 =ý2ÿ2ý
ÿ
2
, where ÿ

ÿ
= diag 

{
ÿ2,1, ÿ2,2,⋯ , ÿ2,ÿ2

}
with ÿ2,1 ≥ ÿ2,2 ≥⋯ ≥ ÿ2,ÿ2 > 0;

4: Set ÿ =min

{
ý ∶

ý∑
ÿ=1

ÿ2,ÿÿ > ÿ3 ⋅ Trace(ÿ2)

}
, and ̃ý =ý2[∶, 1 ∶ÿ];

5: (ÿℎ,1, ÿℎ,2, ⋯ , ÿℎ,ÿ) =ÿℎý̃;

We then obtain the framework of the adaptive POD method as Algorithm 3.

Algorithm 3 Framework of the adaptive POD method.
1: Given ÿ0 , ÿ , ÿý , ÿÿ , ÿý, ÿ1 , ÿ2 , ÿ3 , ÿ0 and the mesh ℎ ;
2: Discretize (3) in the standard finite element space ýℎ on interval [0, ÿ0] and obtain the snapshots matrix ýℎ ;
3: Construct POD modes ÿℎ by POD_Mode (ýℎ , ÿ1, ÿℎ , ÿ, ÿℎ);
4: ý = ÿ0 , ý =

ÿ0

ÿý
;

5: while ý ≤ ÿ do
6: ý = ý + ÿý, k = k + 1;
7: Discretize (3) in the POD subspace ýℎ,POD = span

{
ÿℎ,1, ÿℎ,2,⋯ , ÿℎ,ÿ

}
, and obtain the POD approximations ÿý

ℎ,POD
;

8: Compute the error indicator ÿý by some strategy;
9: if ÿý > ÿ0 then
10: ý = ý − ÿý, k = k - 1;
11: Discretize (3) in ýℎ on interval [ý, ý + ÿÿ ] and get snapshots ÿℎ,1 , then update POD modes ÿℎ by Update_POD_Mode (ÿℎ,1, ÿ2, ÿ3, ÿℎ , ÿ, ÿℎ);

12: ý = ý + ÿÿ

ÿý
;

13: end if
14: end while
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2.3. Complexity

In this subsection, we analyze the computational complexity of the standard finite element method, the standard POD method 
and the adaptive POD method introduced above. By comparing the computational complexity of these methods, the advantages of 
the POD type methods will be shown. We use  (ÿ) to represent the complexity of a function that increases linearly with respect to ÿ.

Case I: ý, ý and ÿ are separable in time and space
We first consider the case that ý, ý and ÿ are separable in time and space. In this case, ý can be expressed as

ý(ý, ÿ, ÿ, ý) = ýÿ(ý, ÿ, ÿ) +ýÿ(ý, ÿ, ÿ)ý3(ý).

For the standard finite element method, the main computational costs at each time instant are those for building the discretized 
system and solving the discretized system. We first consider the cost for building the discretized system. We note that during the build-
ing of the linear system (8), only the terms 

(
ý ⋅∇ÿℎ,ÿ , ÿℎ,ÿ

)
, 
(
ýÿℎ,ÿ , ÿℎ,ÿ

)
and 

(
ÿ,ÿℎ,ÿ

)
are changed as the evolution of time. Let ýý

denote the degree of freedoms for the finite element discretization. We only need to compute 
(
ýÿ ⋅∇ÿℎ,ÿ , ÿℎ,ÿ

)
and 

(
ýÿ ⋅∇ÿℎ,ÿ , ÿℎ,ÿ

)
once, and then multiply 

(
ýÿ ⋅∇ÿℎ,ÿ , ÿℎ,ÿ

)
by ý3(ý) at each time instant to obtain 

(
ý ⋅∇ÿℎ,ÿ , ÿℎ,ÿ

)
. For a fixed i, there are only few 

j such that 
(
∇ÿℎ,ÿ , ÿℎ,ÿ

)
is not 0. This means the computational complexity of the multiplication by ý3(ý) is  

(
ýý

)
. Therefore, the 

computational complexity for building 
(
ý ⋅∇ÿℎ,ÿ , ÿℎ,ÿ

)
is  

(
ýý

)
at each time instant. Similarly, we have that the computational 

complexity for 
(
ýÿℎ,ÿ , ÿℎ,ÿ

)
and 

(
ÿ,ÿℎ,ÿ

)
is also  

(
ýý

)
. Therefore, the computational complexity for building the linear system (8)

is  
(
ýý

)
. We then see the cost for solving the discretized linear system. For solution of (8), since ýý

ℎ
is sparse, there are many solvers 

[52,46] which can deal with it at a cost of  
(
ýý

)
. Hence, the computational cost at each time instant is  

(
ýý

)
, and the total cost 

for the time interval [0, ÿ ] is

(
ýý

)
×
ÿ

ÿý
.

We then turn to see the computational complexity of the standard POD method. When ý ∈ [0, ÿ0], we need to discrete the system (3)
in the finite element space and then solve the discretized system (8). By the analysis for the standard finite element discretization, we 
know that the cost is  

(
ýý

)
at each time instant. For the construction of the POD modes, we need to perform SVD on ýℎ ∈ℝ

ýý×ÿý , 

where ÿý = + ÿ0
ÿý⋅ÿý

, as we mentioned above. Since only the left singular vectors and the singular values need to be calculated, the 
computational complexity is  

(
ÿ2ýýý

)
[20], where ÿ2ý ≪ ýý . When ý > ÿ0, we need to project (3) onto the POD subspace and 

then solve the discretized system (12). Since ý, ý and ÿ are separable in time and space, as we mentioned above, we only need 
to calculate 

(
ýÿ ⋅∇ÿℎ,ÿ , ÿℎ,ÿ

)
and 

(
ýÿ ⋅∇ÿℎ,ÿ , ÿℎ,ÿ

)
once, which costs  

(
ýý

)
, and then multiply it by ý3(ý) at each time instant to 

obtain 
(
ý ⋅∇ÿℎ,ÿ , ÿℎ,ÿ

)
, where ÿ, ÿ = 1, 2, ⋯ , ÿ. The computational complexity for computing 

(
ýÿℎ,ÿ , ÿℎ,ÿ

)
and 

(
ÿ,ÿℎ,ÿ

)
is similar to 

that for computing 
(
ý ⋅∇ÿℎ,ÿ , ÿℎ,ÿ

)
. Hence, the complexity for building the linear system (12) is  

(
ÿ2

)
at each time instant. For 

solving the discretized system (12), since ý̄ý
ℎ
is a small dense matrix, we usually use some direct method to solve it, which costs 

 
(
ÿ3

)
. Therefore the total computational cost is

(
ýý

)
×

(
ÿ0

ÿý
+ 1

)
+(

ÿ2
ý
ýý

)
+(

ÿ3
)
×
ÿ − ÿ0

ÿý
.

We now look at the computational cost for the adaptive POD method. Except for the costs same as those for the standard POD 
method, some additional costs are needed for steps Estimate, Mark and Update. For the step Estimate, different methods have 
different ways to design the error indicator. We denote the computational cost for this part in each time instant as ýest . The cost for 
the step Mark can be neglected. The main cost for the step Update is that for obtaining the standard finite element approximations 
on interval [ý, ý + ÿÿ ]. From the analysis for the standard finite element method, we know that the cost for this part is  

(
ýý

)
at each 

time instant. Let ÿý denote the number of update for POD modes. Therefore, the total computational cost for SVD is  
(
ÿ2ýýý

)
×2ÿý. 

Since the number of POD modes will increase as the updating continues, we denote ÿý average number of POD modes in the adaptive 
POD method. By the analysis for the standard POD method, the cost for building the POD linear system is

(
ýý

)
× ÿý +(

ÿ2
ý

)
×
ÿ − ÿ0 − ÿý ⋅ ÿÿ

ÿý
,

and the cost for solving the discretized system at each time instant is  
(
ÿ3
ý

)
. Therefore, the total computational cost is

(ýý) ×

(
ÿ0 + ÿý ⋅ ÿÿ

ÿý
+ ÿý + 1

)
+(

ÿ2ýýý

)
×

(
2ÿý + 1

)
+(

ÿ3
ý

)
×
ÿ − ÿ0 − ÿý ⋅ ÿÿ

ÿý
+ ýest ×

ÿ − ÿ0 − ÿý ⋅ ÿ

ÿý
.

We summarize the total computational cost for each method in Table 1. Usually, we have ÿ0 ≪ ÿ , ÿ3 ≪ ýý and ÿ
3
ý
≪ ýý . 

Therefore, we can see that the POD type methods usually cost less CPU time than the standard finite element method. Then we focus 
on the cost for the adaptive POD method. If an error indicator is cheaper, the term ýest will be less. If an error indicator is more 
sensitive, it will require fewer number of update ÿý to achieve the same accuracy, then it may decrease the degree of freedoms ÿý
at the same time. Therefore, the construction of the error indicator plays an important role in reducing the cost for the adaptive POD 
method.
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Table 1
Complexity of different methods for the case of ý, ý and ÿ being separable in time and space.

Method Complexity

standard finite element (
ýý

)
×

ÿ

ÿý

standard POD method (
ýý

)
×

(
ÿ0

ÿý
+ 1

)
+(

ÿ2
ý
ýý

)
+(

ÿ3
)
×

ÿ−ÿ0

ÿý

adaptive POD method (
ýý

)
×

(
ÿ0+ÿý ⋅ÿÿ

ÿý
+ ÿý + 1

)
+(

ÿ2
ý
ýý

)
×

(
2ÿý + 1

)

+ (
ÿ3
ý

)
×

ÿ−ÿ0−ÿý ⋅ÿÿ

ÿý
+ ýest ×

ÿ−ÿ0−ÿý ⋅ÿÿ

ÿý

Table 2
Total complexity of different methods for the case of ý, ý, and ÿ being not separable in time 
and space.

Method Complexity

standard finite element (
ýý

)
×

ÿ

ÿý

standard POD method (
ýý

)
×

(
ÿ

ÿý

)
+(

ÿ2
ý
ýý

)
+(

ÿ3
)
×

ÿ−ÿ0

ÿý

adaptive POD method (
ýý

)
×

(
ÿ

ÿý
+ ÿý

)
+(

ÿ2
ý
ýý

)
×

(
2ÿý + 1

)

+ (
ÿ3
ý

)
×

ÿ−ÿ0−ÿý ⋅ÿÿ

ÿý
+ ýest ×

ÿ−ÿ0−ÿý ⋅ÿÿ

ÿý

Case II: ý, ý and ÿ are not separable in time and space
We now consider the case that ý, ý and ÿ are not separable in time and space.
For the standard finite element method, we have to build the linear system (8) in all time instants. Similar to the case that ý, 

ý, and ÿ are separable, the computational cost for building the linear system (8) in each time instant is  
(
ýý

)
, while the cost for 

solving the discretized linear system is  
(
ýý

)
. Therefore, the total time cost for all the time interval [0, ÿ ] is also

(
ýý

)
×
ÿ

ÿý
.

While for the standard POD method and the adaptive POD method, the only difference in computational cost between this case 
and the case that ý, ý, and ÿ are separable lies in building the linear system (12). For this case, we have to calculate 

(
ý ⋅∇ÿℎ,ÿ , ÿℎ,ÿ

)
, (

ýÿℎ,ÿ , ÿℎ,ÿ
)
and 

(
ÿ,ÿℎ,ÿ

)
in all time instants. The cost for all the other parts is the same as that for the case that ý, ý, and ÿ are 

separable.
Therefore, the computational cost for the standard POD method is

(
ýý

)
×

(
ÿ0

ÿý

)
+(

ÿ2ýýý

)
+

((
ÿ3

)
+(

ýý

))
×
ÿ − ÿ0

ÿý

=(
ýý

)
×

(
ÿ

ÿý

)
+(

ÿ2
ý
ýý

)
+(

ÿ3
)
×
ÿ − ÿ0

ÿý

While the computational cost for the adaptive POD method is

(
ýý

)
×

(
ÿ0 + ÿý ⋅ ÿÿ

ÿý
+ ÿý

)
+(

ÿ2ýýý

)
×

(
2ÿý + 1

)
+

((
ÿ3
ý

)
+(

ýý

))
×
ÿ − ÿ0 − ÿý ⋅ ÿÿ

ÿý

+ ýest ×
ÿ − ÿ0 − ÿý ⋅ ÿ

ÿý

=(
ýý

)
×

(
ÿ

ÿý
+ ÿý

)
+(

ÿ2ýýý

)
×

(
2ÿý + 1

)
+(

ÿ3
ý

)
×
ÿ − ÿ0 − ÿý ⋅ ÿÿ

ÿý
+ ýest ×

ÿ − ÿ0 − ÿý ⋅ ÿ

ÿý

Similar to the case that ý, ý and ÿ are separable in time and space, we summarize the total computational cost for each method 
in Table 2.

If we take a detailed look at the Table 2, we can find that the computational cost for this case is much larger than the case ý, ý, 
and ÿ being separable, since the computation for building the linear system (12) is  

(
ýý

)
at each time instant.

Here, we propose a strategy to reduce the computational cost. We take 
(
ý ⋅∇ÿℎ,ÿ , ÿℎ,ÿ

)
for an example to illustrate the strategy. We 

divide the time interval [ÿ0, ÿ ] into ý ∈ℕ subintervals with equal length Δÿ = (ÿ −ÿ0)∕ý and set ÿý = ÿ0 +ý ⋅Δÿ , ý = 1, 2, ⋯ , ý , 
ÿý ≪ Δÿ . For each time interval [ÿý, ÿý+1], let ý

∗ be its middle point. For any ý ∈ [ÿý, ÿý+1], we expand the function ý(ý, ý) at ý
∗ by 

Taylor expansion as follows:

ý(ý, ý) = ý(ý, ý∗) +
ÿý(ý, ý)

ÿý

||||ý=ý∗
(
ý− ý∗

)
+
ÿ2ý (ý, ý)

ÿý2

||||ý=ý∗ (ý− ý
∗)2 + ý

(
(ý− ý∗)2

)
.

Then we can do the similar operation as for the case ý being separable in time and space to evaluate 
(
ý ⋅∇ÿℎ,ÿ , ÿℎ,ÿ

)
. We only need 

to compute

(
ý(ý, ý∗) ⋅∇ÿℎ,ÿ , ÿℎ,ÿ

)
,

(
ÿý(ý, ý)

ÿý

||||ý=ý∗ ⋅∇ÿℎ,ÿ , ÿℎ,ÿ
)
,

(
ÿ2ý (ý, ý)

ÿý2

||||ý=ý∗ ⋅∇ÿℎ,ÿ , ÿℎ,ÿ
)
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Table 3
Total complexity of different methods with new strategy for the case of ý, ý, and 
ÿ being not separable in time and space.

Method Complexity

standard POD method (
ýý

)
×

(
ÿ

Δÿ
+ 1

)
+(

ÿ2
ý
ýý

)
+(

ÿ3
)
×

ÿ−ÿ0

ÿý

adaptive POD method (
ýý

)
×

(
ÿ

Δÿ
+ ÿý + 1

)
+(

ÿ2
ý
ýý

)
×

(
2ÿý + 1

)

+ (
ÿ3
ý

)
×

ÿ−ÿ0−ÿý ⋅ÿÿ

ÿý
+ ýest ×

ÿ−ÿ0−ÿý ⋅ÿÿ

ÿý

once in time interval [ÿý, ÿý+1], which costs (ýý). Then we multiply each element 
(
ÿý(ý, ý)

ÿý

||||ý=ý∗ ⋅∇ÿℎ,ÿ , ÿℎ,ÿ
)
by (ý− ý∗), and 

multiply 
(
ÿ2ý (ý, ý)

ÿý2

||||ý=ý∗ ⋅∇ÿℎ,ÿ , ÿℎ,ÿ
)
by (ý − ý∗)2 at each time instant, which costs  

(
ÿ2

)
. Therefore, the cost for computing 

(
ý ⋅∇ÿℎ,ÿ , ÿℎ,ÿ

)
on each Δÿ is

(
ýý

)
+(

ÿ2
)
×
Δÿ

ÿý
.

Similarly, the cost for computing 
(
ýÿℎ,ÿ , ÿℎ,ÿ

)
and 

(
ÿ,ÿℎ,ÿ

)
is also

(
ýý

)
+(

ÿ2
)
×
Δÿ

ÿý
.

Therefore, the total cost for building the linear system (12) is

(
ýý

)
×
ÿ − ÿ0

Δÿ
+(

ÿ2
)
×
ÿ − ÿ0

ÿý
.

By using this strategy, the time cost for the standard POD method and adaptive POD method are shown in Table 3. Since Δÿ ≫ ÿý, 
we see that the computational cost is largely reduced compared with Table 2.

2.4. Typical existing adaptive POD methods

There are some existing works on adaptive POD methods [14,50,15]. The main difference between different adaptive POD methods 
lies in the construction of the error indicator. Here, we introduce two typical methods, one is the residual based adaptive POD method 
[14,50], the other is the two-grid based adaptive POD method [15].

For the residual based adaptive POD method, the residual is used to construct the error indicator. In detail, the error indicator ÿý
at time instant ý = ý ⋅ ÿý is defined as

ÿý =
‖ýý

ℎ
ý̃ÿ

ý
ℎ,POD

− ÿ
ý
ℎ
−ÿℎý̃ÿ

ý−1
ℎ,POD

‖2
‖ÿý

ℎ
+ÿℎý̃ÿ

ý−1
ℎ,POD

‖2
. (13)

We see that the computational cost ýest for ÿý is  
(
ýý

)
, the total computational cost for all steps Estimate is

(
ýý

)
×
ÿ − ÿ0 − ÿý ⋅ ÿÿ

ÿý
.

For the two-grid based adaptive POD method, two finite element spaces are constructed, the coarse finite element space ýÿ and 
the fine finite element space ýℎ. The fine finite element space is used to construct the POD modes, while the coarse finite element 
space is used to design the error indicator. Let Δý be the coarse time step. The error indicator ÿý at time instant ý = ý ⋅Δý is constructed 
by the approximations in the coarse finite element space ýÿ , that is,

ÿý =
‖ÿý

ÿ
− ÿý

ÿ,POD
‖2

‖ÿý
ÿ

‖2
. (14)

Here ÿý
ÿ
, ÿý

ÿ,POD
are the standard finite element approximation and the adaptive POD approximation, respectively. For a given ÿ0 , if 

ÿý > ÿ0, the time instant ý = ý ⋅Δý will be picked out.
Let ýÿ denote the degrees of freedom of the coarse space. According to the complexity analysis above, the cost for obtaining the 

finite element approximations in coarse space is  
(
ýÿ

)
×

ÿ

Δý
, and the computational cost for obtaining the adaptive POD approxi-

mations in coarse space is

(
ýÿ

)
×

(
ÿ0 + ÿý ⋅ ÿÿ

Δý
+ ÿý + 1

)
+(

ÿ2ýýÿ

)
× (2ÿý + 1) +(

ÿ3
ý

)
×
ÿ − ÿ0 − ÿý ⋅ ÿÿ

Δý
.

Therefore, the computational cost for Estimate is

(
ýÿ

)
×

(
ÿ + ÿ0 + ÿý ⋅ ÿÿ

Δý
+ ÿý + 1

)
+(

ÿ2ýýÿ

)
× (2ÿý + 1) +(

ÿ3
ý

)
×
ÿ − ÿ0 − ÿý ⋅ ÿÿ

Δý
.
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Since ýÿ ≪ýý , and ÿý ≪ Δý, the cost for step Estimate in the two-grid based adaptive POD method is usually much cheaper than 
that for step Estimate in the residual based adaptive POD method.

3. Augmented subspace based adaptive POD method

As we mentioned above, the main difference between different adaptive POD methods is the construction of the error indicator. 
In this section, we introduce a new approach for developing some new adaptive POD methods, based on introducing a new error 
indicator.

3.1. General framework of the augmented subspace based adaptive POD method

The main idea of our new approach is to use some auxiliary modes to augment the current POD subspace, and then use the gap 
between the approximation obtained in the augmented subspace and that obtained in the original POD subspace to develop an error 
indicator.

Recall that the POD subspace is denoted as ýℎ,POD = span
{
ÿℎ,1,⋯ , ÿℎ,ÿ

}
. Let ÿℎ,ÿ+1, ⋯, ÿℎ,ÿ+ÿ be some modes which are nor-

malized and orthogonal against each other, and orthogonal against ýℎ,POD . Then, we augment the subspace ýℎ,POD by ý̃ℎ,POD =

ýℎ,POD ⊕ span
{
ÿℎ,ÿ+1,⋯ , ÿℎ,ÿ+ÿ

}
. Next we design the error indicator ÿý at time instant ý = ý ⋅ ÿý.

At time instant ý = (ý − 1) ⋅ ÿý, the POD approximation in the subspace ýℎ,POD can be expressed as

ÿý−1
ℎ,POD

(ý, ÿ, ÿ) =

ÿ∑
ÿ=1

ÿý−1
ℎ,ÿ

ÿℎ,ÿ (ý, ÿ, ÿ) . (15)

The approximation in the augmented subspace ý̃ℎ,POD at time instant ý = ý ⋅ ÿý can be expressed as

ÿ̃ý
ℎ,POD

(ý, ÿ, ÿ) =

ÿ+ÿ∑
ÿ=1

ÿ̃ý
ℎ,ÿ
ÿℎ,ÿ (ý, ÿ, ÿ) . (16)

Inserting (15) and (16) into (3), and setting ÿ = ÿℎ,ÿ , ÿ = 1, 2, ⋯ , ÿ + ÿ, respectively, we get
(
ÿ+ÿ∑
ÿ=1

ÿ̃ý
ℎ,ÿ
ÿℎ,ÿ −

ÿ∑
ÿ=1

ÿý−1
ℎ,ÿ

ÿℎ,ÿ, ÿℎ,ÿ

)
+ ÿý ⋅ ÿ

(
ýý;

ÿ+ÿ∑
ÿ=1

ÿ̃ý
ℎ,ÿ
ÿℎ,ÿ, ÿℎ,ÿ

)
= ÿý ⋅

(
ÿý, ÿℎ,ÿ

)
. (17)

The equation (17) can be rewritten as(
ÿ+ÿ∑
ÿ=1

ÿ̃ý
ℎ,ÿ
ÿℎ,ÿ, ÿℎ,ÿ

)
+ ÿý ⋅ ÿ

(
ýý;

ÿ+ÿ∑
ÿ=1

ÿ̃ý
ℎ,ÿ
ÿℎ,ÿ, ÿℎ,ÿ

)
= ÿý ⋅

(
ÿý, ÿℎ,ÿ

)
+

(
ÿ∑
ÿ=1

ÿý−1
ℎ,ÿ

ÿℎ,ÿ, ÿℎ,ÿ

)
. (18)

Define

ý̃
ý
ℎ,ÿÿ

=
(
ÿℎ,ÿ , ÿℎ,ÿ

)
+ ÿý ⋅ ÿ

(
ýý;ÿℎ,ÿ , ÿℎ,ÿ

)
,

ÿ̃
ý
ℎ
= ÿý ⋅

(
(ÿý, ÿℎ,1),⋯ , (ÿý, ÿℎ,ÿ+ÿ)

)ÿ
, ÿ̃ℎ,ÿÿ =

(
ÿℎ,ÿ , ÿℎ,ÿ

)
,

ÿ
ý−1
ℎ,POD

=
(
ÿý−1
ℎ,1

,⋯ , ÿý−1
ℎ,ÿ

)ÿ
, ÿ̃ý
ℎ,POD

=
(
ÿ̃ý
ℎ,1
,⋯ , ÿ̃ý

ℎ,ÿ+ÿ

)ÿ
.

Then we obtain the following algebraic system from (18)

ý̃
ý
ℎ
ÿ̃
ý
ℎ,POD

= ÿ̃
ý
ℎ
+ ÿ̃ℎÿ

ý−1
ℎ,POD

, (19)

where ý̃ý
ℎ
=

(
ý̃
ý
ℎ,ÿÿ

)
(ÿ+ÿ)×(ÿ+ÿ)

and ÿ̃ℎ =
(
ÿ̃ℎ,ÿÿ

)
(ÿ+ÿ)×(ÿ+ÿ)

.

We define the error indicator ÿý at time instant ý = ý ⋅ ÿý as

ÿý =
‖ÿ̃ý

ℎ,POD
− ÿý

ℎ,POD
‖2

‖ÿ̃ý
ℎ,POD

‖2
. (20)

For the convenience of the following discussion, we summarize the process for computing the error indicator as routine Er-
ror_Indicator (ýý

ℎ
, ÿý
ℎ
, ÿℎ, ý̄

ý
ℎ
, ̄ÿý
ℎ
, ÿ̄ℎ, ÿ

ý−1
ℎ,POD

, ýý, ÿℎ, ÿý) in Algorithm 4, where ýý denotes the ÿ auxiliary vectors at time instant 
ý = ý ⋅ ÿý. We now see the computational cost of the step Estimate at each time instant. Denote the cost for constructing the auxiliary 
modes as ýÿÿý. The operation of orthogonalization requires dot product of two vectors ÿ ⋅ ÿý + ÿ(ÿ − 1)∕2 times, where ÿý is the 
number of vectors in ý̃, and the operation of normalization requires dot product of two vectors only ÿ times. Note that the cost for 
dot product of two vectors with length ýý is  

(
ýý

)
and ÿý, ÿ ≪ýý , the computational cost for all the operations of orthogonal 

normalization is  
(
ýý

)
. We note that the matrix in (21) can be obtained from the previously calculated linear system (12) except for 

the terms which contain ýý, we only require to compute the elements of the last ÿ rows and the last ÿ columns of the matrix. Thanks 
to the sparsity of ýý

ℎ
and ÿℎ, the cost for building the augmented linear system is  

(
ýý

)
. Since the size of the linear system in (21)
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Algorithm 4 Error_Indicator (ýý
ℎ
, ÿý
ℎ
, ÿℎ, ý̄

ý
ℎ
, ̄ÿý
ℎ
, ÿ̄ℎ, ÿ

ý−1
ℎ,POD

, ÿý
ℎ,POD

, ýý, ÿℎ, ÿý).

Input: ýý
ℎ
, ÿý

ℎ
, ÿℎ, ̄ýý

ℎ
, ̄ÿý

ℎ
, ÿ̄ℎ, ÿý−1ℎ,POD

, ÿý
ℎ,POD

, ýý and ÿℎ , ÿℎ =ÿℎý̃;
Output: ÿý ;

1: Orthogonalize the vectors ýý against ̃ý and make them normalized and orthogonal against each other. Denote the orthogonalized and normalized vectors still as 
ýý ;

2: Compute ̃ÿý
ℎ,POD

by

[
ý̄
ý
ℎ

ý̃ÿý
ý
ℎ
ýý

ý
ÿ
ý
ý
ý
ℎ
ý̃ ý

ÿ
ý
ý
ý
ℎ
ýý

]
ÿ̃
ý
ℎ,POD

=

[
ÿ̄
ý
ℎ

ý
ÿ
ý
ÿ
ý
ℎ

]
+

[
ÿ̄ℎ

ý
ÿ
ý
ÿℎý̃

]
ÿ
ý−1
ℎ,POD

; (21)

3: Obtain the error indicator ÿý by (20);

is only ÿ more than that of linear system (12), similar to the analysis for the adaptive POD method, the cost for computing ̃ÿý
ℎ,POD

is 

 
(
(ÿý + ÿ)3

)
. The computational cost for ÿý in (20) is  

(
ýý

)
. Therefore, the cost for step Estimate at each time instant is

(
ýý

)
+(

(ÿý + ÿ)3
)
+ ýÿÿý.

Remark 1. By some simple formal analysis, we can see that it is reasonable to use ÿý defined in (20) as an error indicator. It is obvious 
that

ÿý
ℎ,POD

− ÿ̃ý
ℎ,POD

= ÿý
ℎ,POD

− ÿý
ℎ
+ ÿý

ℎ
− ÿ̃ý

ℎ,POD
. (22)

Since ýℎ,POD ⊂ ý̃ℎ,POD ⊂ ýℎ, we have

‖ÿý
ℎ
− ÿ̃ý

ℎ,POD
‖2 ≤ ‖ÿý

ℎ
− ÿý

ℎ,POD
‖2. (23)

From (22) and (23), we easily obtain

1

2
‖ÿý

ℎ,POD
− ÿ̃ý

ℎ,POD
‖2 ≤ ‖ÿý

ℎ
− ÿý

ℎ,POD
‖2.

In further, if there exists 0 < ÿ < 1, s.t. ‖ÿý
ℎ
− ÿ̃ý

ℎ,POD
‖2 ≤ ÿ‖ÿýℎ − ÿýℎ,POD‖2, then from (22) we have

‖ÿý
ℎ
− ÿý

ℎ,POD
‖2 ≤ ‖ÿý

ℎ
− ÿ̃ý

ℎ,POD
‖2 + ‖ÿý

ℎ,POD
− ÿ̃ý

ℎ,POD
‖2 ≤ ÿ‖ÿýℎ − ÿýℎ,POD‖2 + ‖ÿý

ℎ,POD
− ÿ̃ý

ℎ,POD
‖2,

from which we get

‖ÿý
ℎ
− ÿý

ℎ,POD
‖2 ≤ 1

1 − ÿ
‖ÿý

ℎ,POD
− ÿ̃ý

ℎ,POD
‖2.

Therefore,

1

2
‖ÿý

ℎ,POD
− ÿ̃ý

ℎ,POD
‖2 ≤ ‖ÿý

ℎ
− ÿý

ℎ,POD
‖2 ≤ 1

1 − ÿ
‖ÿý

ℎ,POD
− ÿ̃ý

ℎ,POD
‖2. (24)

We want to point out that the analysis given above is some explanatory analysis. The error bound given in (24) is meaningful only 
when ÿ is as close as possible to 0. However, it is usually very difficult to find some auxiliary modes to make the condition that ÿ is 
as close as possible to 0 holds true.

Implementing the new error indicator defined in (20) into step 8 of Algorithm 3, we then obtain the general framework of our 
augmented subspace based adaptive POD method, as shown in Algorithm 5.

3.2. Specific augmented subspace based adaptive POD methods

The key for constructing the auxiliary modes includes two points: one is that the auxiliary modes can not be orthogonal to the 
exact solution, and it is better that the angles between these auxiliary modes and the exact solution are far away from ÿ∕2, the other is 
that they should be cheap to be constructed. We now provide two specific methods for obtaining the auxiliary modes. For simplicity, 
we only consider the case of ÿ = 1.

3.2.1. Coarse-grid approximation type augmented subspace
We see from [15] that the solution obtained in the coarse finite element space is a good approximation for the solution obtained in 

the fine finite element space. Moreover, the computational cost for obtaining the solution approximation in the coarse finite element 
space is far less than that for obtaining the solution approximation in the fine finite element space. Therefore, here, we consider to use 
the approximated solution obtained in the coarse finite element space as the auxiliary mode to augment the current POD subspace.

We denote ÿý
ÿ
the finite element approximation in coarse finite element space ýÿ at each time instant ý = ý ⋅ Δý, where ý =

0, 1, ⋯ , + ÿ

Δý
, and Δý still denotes the coarse time step, ÿý ≪Δý. We denote the interpolation of ÿý

ÿ
in the fine finite element space by 

ÿý
ÿ,ý

. We set
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Algorithm 5 General framework of the augmented subspace based adaptive POD method.
1: Given ÿý, ÿ0 , ÿÿ , ÿ , ÿ1 , ÿ2 , ÿ3 , ÿý , ÿ0 and the mesh ℎ ;
2: Discretize (3) in ýℎ on interval [0, ÿ0] and obtain ýý

ℎ
, ÿý

ℎ
, ÿℎ , ÿýℎ , ∀ý ∈ [0, +ÿ0∕ÿý,], then obtain snapshots ýℎ at different times ý0 , ýÿý , ⋯, ýÿý ⋅ÿý ;

3: Construct POD modes ÿℎ =
{
ÿℎ,1,⋯ , ÿℎ,ÿ

}
by POD_Mode (ýℎ, ÿ1, ÿℎ, ÿ, ÿℎ);

4: ý = ÿ0 , ý =
ÿ0

ÿý
;

5: while ý ≤ ÿ do
6: ý = ý + ÿý, ý = ý + 1;
7: Discretize (3) in the POD subspace ýℎ,POD = span

{
ÿℎ,1,⋯ , ÿℎ,ÿ

}
, then obtain ý̄ý

ℎ
, ̄ÿý

ℎ
, ÿ̄ℎ and ÿýℎ,POD ;

8: Provide some auxiliary vectors ý
ý
,

9: Compute error indicator ÿý by Error_Indicator (ýý
ℎ
, ÿý

ℎ
, ÿℎ, ̄ýý

ℎ
, ̄ÿý

ℎ
, ÿ̄ℎ, ÿý−1ℎ,POD

, ÿý
ℎ,POD

, ýý, ÿℎ, ÿý);
10: if ÿý > ÿ0 then
11: ý = ý − ÿý, ý = ý − 1;
12: Discretize (3) in ýℎ on interval [ý, ý + ÿÿ ] to get ÿý+ÿℎ

, ÿ = 1, ⋯ , ÿÿ
ÿý
, then obtain snapshots ÿℎ,1 ;

13: Update POD modes ÿℎ by Update_POD_Mode (ÿℎ,1, ÿ2, ÿ3, ÿℎ, ÿ, ÿℎ);

14: ý = ý + ÿÿ

ÿý
;

15: end if
16: end while

ýý = ÿ
ý
ÿ,ý

,

where ý = Δý

ÿý
ý.

Since we need to compute the auxiliary modes for the whole time interval in advance, the algorithm is a little different from the 
Algorithm 5. The whole routine of the augmented subspace based adaptive POD method with coarse-grid approximation is shown in 
Algorithm 6.

Algorithm 6 Augmented subspace based adaptive POD method with coarse-grid approximation.
1: Given ÿý, Δý, ÿ0 , ÿÿ , ÿ , ÿ1 , ÿ2 , ÿ3 , ÿ0 , ÿý and the mesh ℎ , ÿ ;
2: Discretize (3) in ýÿ on interval [0, ÿ ], and obtain the approximations {ÿý

ÿ
}, ∀ý ∈ [0, + ÿ

Δý
,];

3: Interpolate {ÿý
ÿ
} to the fine finite element space, then obtain the interpolations {ÿý

ÿ,ý
};

4: Discretize (3) in ýℎ on interval [0, ÿ0] and obtain ýý
ℎ
, ÿý

ℎ
, ÿℎ , ÿýℎ , ∀ý ∈ [0, +ÿ0∕ÿý,], then obtain snapshots ýℎ at different times ý0 , ýÿý , ⋯, ýÿý ⋅ÿý ;

5: Construct POD modes ÿℎ =
{
ÿℎ,1,⋯ , ÿℎ,ÿ

}
by POD_Mode (ýℎ, ÿ1, ÿℎ, ÿ, ÿℎ);

6: ý = ÿ0 , ý =
ÿ0

ÿý
, ý = Δý

ÿý
;

7: while ý ≤ ÿ do
8: ý = ý + ÿý, ý = ý + 1;
9: Discretize (3) in the subspace ýℎ,POD = span

{
ÿℎ,1,⋯ , ÿℎ,ÿ

}
, then obtain ý̄ý

ℎ
, ̄ÿý

ℎ
, ÿ̄ℎ and ÿýℎ,POD ;

10: if ý%ý = 0 then
11: ý =

ý

ý
;

12: Compute error indicator ÿý by Error_Indicator (ýý
ℎ
, ÿý

ℎ
, ÿℎ, ̄ýý

ℎ
, ̄ÿý

ℎ
, ÿ̄ℎ, ÿý−1ℎ,POD

, ÿý
ℎ,POD

, ÿý
ÿ,ý

, ÿℎ, ÿý);
13: if ÿý > ÿ0 then
14: ý = ý − ÿý, ý = ý − 1;
15: Discretize (3) in ýℎ on interval [ý, ý + ÿÿ ] to get ÿý+ÿℎ

, ÿ = 1, ⋯ , ÿÿ
ÿý
, then obtain snapshots ÿℎ,1 ;

16: Update POD modes ÿℎ by Update_POD_Mode (ÿℎ,1, ÿ2, ÿ3, ÿℎ, ÿ, ÿℎ);

17: ý = ý + ÿÿ

ÿý
;

18: end if
19: end if
20: end while

Next we analyze the computational complexity of the step Estimate for this strategy. As we mentioned above, the cost for obtaining 
the finite element approximation at each time instant in the coarse finite element space is  

(
ýÿ

)
. The cost for interpolating a function 

in the coarse finite element space to the fine finite element space is  
(
ýý

)
. From the analysis in the Subsection 3.1, the cost for step

Estimate at each time instant is

(
ýý

)
+(

ÿ3
ý

)
+(

ýÿ

)
.

We only need to compute the error indicator at each coarse time step. Therefore, the total cost for Estimate is

((
ýý

)
+(

ÿ3
ý

))
×
ÿ − ÿ0 − ÿý ⋅ ÿÿ

Δý
+

((
ýÿ

)
+(

ýý

))
×
ÿ

Δý
.

Since ÿý ≪Δý and ýÿ ≪ýý , the cost for Estimate is relatively cheap compared with the cost for the other parts.

3.2.2. Residual type augmented subspace
Motivated by [5], here we consider using the residual corresponding to the POD approximation at time instant ý = ý ⋅ ÿý

ýý =ý
ý
ℎ
ý̃ÿ

ý
ℎ,POD

− ÿ
ý
ℎ
−ÿℎý̃ÿ

ý−1
ℎ,POD

as the auxiliary mode. Applying ýý into step 8 of Algorithm 5, we obtain the residual type augmented subspace based adaptive POD 
method.
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Algorithm 7 POD_Mode_Weight(ýℎ, ÿ, ÿℎ, ÿ, ÿ, ÿℎ).

Input: ýℎ, ÿ, ÿℎ =
(
ÿℎ,1, ÿℎ,2,⋯ , ÿℎ,ÿ

)
;

Output: m, POD modes Ψℎ =
(
ÿℎ,1, ÿℎ,2,⋯ , ÿℎ,ÿ

)
and ÿ;

1: Perform SVD on ýℎ to obtain ýℎ =ýÿýÿ , where S = diag 
{
ÿ1, ÿ2,⋯ , ÿÿ

}
with ÿ1 ≥ ÿ2 ≥⋯ ≥ ÿÿ > 0;

2: Set ÿ =min

{
ý|

ý∑
ÿ=1

ÿÿ,ÿ > ÿ ⋅ Trace(ÿ)

}
;

3:
(
ÿℎ,1, ÿℎ,2,⋯ , ÿℎ,ÿ

)
=ÿℎý[∶, 1 ∶ÿ];

Algorithm 8 Update_POD_Mode_Weight (ÿℎ,1, ÿ2, ÿ3, ÿℎ, ÿ, ÿ2, ÿ, ÿℎ).

Input: ÿℎ,1, ÿ2, ÿ3, ÿℎ = (ÿℎ,1, ÿℎ,2, ⋯ , ÿℎ,ÿ), ÿ, ÿ2 , ÿ and ÿ old POD modes ÿℎ, ÿℎ =ÿℎý̃.
Output: new ÿ, new ÿ2 and new ÿ POD modes 

{
ÿℎ,1, ÿℎ,2,⋯ , ÿℎ,ÿ

}
.

1: Perform SVD on ÿℎ,1 to obtain ÿℎ,1 =ý1ÿ1ý
ÿ
1
, where ÿ

ÿ
= diag 

{
ÿ1,1, ÿ1,2,⋯ , ÿ1,ÿ1

}
with ÿ1,1 ≥ ÿ1,2 ≥⋯ ≥ ÿ1,ÿ1 > 0;

2: Set ÿ1 =min

{
ý ∶

ý∑
ÿ=1

ÿ1,ÿÿ > ÿ2 ⋅ Trace(ÿ1)

}
, ÿ̂ÿ =min

⎧⎪⎪«⎪⎪¬

ÿ2,ÿ√
ÿ∑
ý=1

(ÿ2,ý)
2

,
ï|ÿÿ |ð√
ÿ∑
ý=1

ï|ÿý|ð2

«⎪⎪¬⎪⎪­

, ÿÿ =
ÿ1,ÿ√
ÿ1∑
ý=1

(ÿ1,ý)
2

.

3: Perform SVD on

ÿℎ,2 = [ÿ̂1ý̃[∶,1],⋯ , ÿ̂ÿý̃[∶,ÿ], ÿ1ý1[∶,1],⋯ , ÿÿ1
ý1[∶,ÿ1]],

and obtain ÿℎ,2 =ý2ÿ2ý
ÿ
2
, where ÿ

ÿ
= diag 

{
ÿ2,1, ÿ2,2,⋯ , ÿ2,ÿ2

}
with ÿ2,1 ≥ ÿ2,2 ≥⋯ ≥ ÿ2,ÿ2 > 0;

4: Set ÿ =min

{
ý ∶

ý∑
ÿ=1

ÿ2,ÿÿ > ÿ3 ⋅ Trace(ÿ2)

}
, and ̃ý =ý2[∶, 1 ∶ÿ];

5: (ÿℎ,1, ÿℎ,2, ⋯ , ÿℎ,ÿ) =ÿℎý̃;

We now see the computational cost. The cost for computing the residual is  
(
ýý

)
. From the analysis in the Subsection 3.1, the 

cost for step Estimate at each time instant is

(
ýý

)
+(

ÿ3
ý

)
.

3.3. Weighting strategy

Inspired by [50], we introduce some weight to each mode when updating the POD modes. We hope this strategy can improve the 
efficiency of the POD modes. Recall that the POD approximation at the time instant ý = ý ⋅ ÿý can be expressed as

ÿý
ℎ,POD

(ý, ÿ, ÿ) =

ÿ∑
ÿ=1

ÿý
ℎ,ÿ
ÿℎ,ÿ (ý, ÿ, ÿ) ,

where ÿ denotes the number of the POD modes. A little different from Subsection 2.2, we update the POD modes by performing SVD 
on

ÿℎ,2 = [ÿ̂1ý̃[∶,1],⋯ , ÿ̂ÿý̃[∶,ÿ], ÿ1ý1[∶,1],⋯ , ÿÿ1
ý1[∶,ÿ1]],

where the weights ÿ̂ÿ and ÿÿ are defined as

ÿ̂ÿ =min

⎧⎪⎪«⎪⎪¬

ÿ2,ÿ√
ÿ∑
ý=1

(ÿ2,ý)
2

,
ï|ÿÿ |ð√
ÿ∑
ý=1

ï|ÿý|ð2

«⎪⎪¬⎪⎪­

, ÿÿ =
ÿ1,ÿ√

ÿ1∑
ý=1

(ÿ1,ý)
2

.

Here ÿ2,ÿ , ÿ1,ÿ are the singular values corresponding to ý̃[∶, ÿ] and ý1[∶, ÿ], respectively, and ï|ÿÿ |ð is the temporal mean value of 
|ÿý
ℎ,ÿ

| provided by the POD solution over the last time interval solved by the POD method.
We set ÿ ∶= [ï|ÿ1|ð, ï|ÿ2|ð, ⋯ , ï|ÿÿ|ð]. For the convenience of the following discussion, we summarize this process for the POD 

modes as routine POD_Mode_Weight (ýℎ, ÿ, ÿℎ, ÿ, ÿ, ÿℎ) in Algorithm 7 and the step Update as routine Update_POD_Mode_
Weight (ÿℎ,1, ÿ2, ÿ3, ÿℎ, ÿ, ÿ2, ÿ, ÿℎ) in Algorithm 8.

Replace Algorithm 1 and Algorithm 2 in Algorithm 5 by Algorithm 7 and Algorithm 8, respectively, and compute ÿ before 
updating the POD modes, then we obtain the general framework of the weighting augmented subspace based adaptive POD method, 
see Algorithm 9 for the details.
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Algorithm 9 General framework of the weighting augmented subspace based adaptive POD method.
1: Given ÿý, ÿ0 , ÿÿ , ÿ , ÿ1 , ÿ2 , ÿ3 , ÿ0 , ÿý and the mesh ℎ ;
2: Discretize (3) in ýℎ on interval [0, ÿ0] and obtain ýý

ℎ
, ÿý

ℎ
, ÿℎ , ÿýℎ , ∀ý ∈ [0, +ÿ0∕ÿý,], then obtain snapshots ýℎ at different times ý0 , ýÿý , ⋯, ýÿý ⋅ÿý ;

3: Construct POD modes ÿℎ =
{
ÿℎ,1,⋯ , ÿℎ,ÿ

}
by POD_Mode_Weight (ýℎ, ÿ1, ÿℎ, ÿ, ÿ, ÿℎ);

4: ý = ÿ0 , ý =
ÿ0

ÿý
;

5: while ý ≤ ÿ do
6: ý = ý + ÿý, ý = ý + 1;
7: Discretize (3) in the POD subspace ýℎ,POD = span

{
ÿℎ,1,⋯ , ÿℎ,ÿ

}
, then obtain ý̄ý

ℎ
, ̄ÿý

ℎ
, ÿ̄ℎ and ÿýℎ,POD ;

8: Provide some auxiliary vectors ý
ý
,

9: Compute error indicator ÿý by Error_Indicator (ýý
ℎ
, ÿý

ℎ
, ÿℎ, ̄ýý

ℎ
, ̄ÿý

ℎ
, ÿ̄ℎ, ÿý−1ℎ,POD

, ÿý
ℎ,POD

, ýý, ÿℎ, ÿý);
10: if ÿý > ÿ0 then
11: ý = ý − ÿý, ý = ý − 1;
12: Compute ÿ = [ï|ÿ1|ð, ï|ÿ2|ð, ⋯ , ï|ÿÿ|ð];
13: Discretize (3) in ýℎ on interval [ý, ý + ÿÿ ] to get ÿý+ÿℎ

, ÿ = 1, ⋯ , ÿÿ
ÿý
, then obtain snapshots ÿℎ,1 ;

14: Update POD modes ÿℎ by Update_POD_Mode_Weight (ÿℎ,1, ÿ2, ÿ3, ÿℎ, ÿ, ÿ, ÿ, ÿℎ);

15: ý = ý + ÿÿ

ÿý
;

16: end if
17: end while

4. Numerical examples

In this section, we will use two typical fluid advection fields with chaotic streamlines, the Kolmogorov flow and the ABC flow, to 
show the accuracy and efficiency of our augmented subspace based adaptive POD method.

We use the standard finite element method approximation as the reference solution, and compare our new methods with the 
standard POD method and the two-grid based adaptive POD method, respectively. Since the two-grid based adaptive POD method 
has been compared with some other existing adaptive POD methods and has shown to be more efficient than the other adaptive POD 
methods in [15], we do not compare our new methods with the other adaptive POD methods here.

The relative error of the approximation obtained at each time instant is calculated by

Error =
‖ÿý

ℎ
− ÿý

ℎ,∗
‖2

‖ÿý
ℎ
‖2

, (25)

where ÿý
ℎ
and ÿý

ℎ,∗
represent the finite element approximations and different types of the POD approximations at different times ý = ýý, 

respectively. The numerical experiments are carried out on the high performance computers LSSC-IV of the State Key Laboratory of 
Scientific and Engineering Computing, Chinese Academy of Sciences, and our code is based on the toolbox PHG [47].

In the following discussions, we denote the standard finite element method, the standard POD method and the two-grid based 
adaptive POD method as “FEM”, “POD” and “TG-APOD”, respectively. For the augmented subspace based adaptive POD methods, we 
denote the methods based on residual and coarse-grid approximation as “Res-Aug-APOD” and “Coarse-Aug-APOD”, respectively. We 
add “-W” to each method to denote the method in Algorithm 9 where some weights are introduced to each mode when updating the 
POD modes. To compare more clearly, we will bold the best results among those obtained by different methods for each case of ÿ.

4.1. Kolmogorov flow

We consider the following advection-diffusion equation with the advection being the Kolmogorov flow [43,6],

⎧⎪«⎪¬

ÿý − ÿΔÿ+ý(ý, ÿ, ÿ, ý) ⋅∇ÿ = ÿ (ý, ÿ, ÿ, ý), (ý, ÿ, ÿ) ∈ Ω, ý ∈ [0, ÿ ],

ÿ(ý, ÿ, ÿ,0) = 0,

ÿ(ý+ 2ÿ, ÿ, ÿ, ý) = ÿ(ý, ÿ+ 2ÿ, ÿ, ý) = ÿ(ý, ÿ, ÿ+ 2ÿ, ý) = ÿ(ý, ÿ, ÿ, ý),

(26)

where

ý(ý, ÿ, ÿ, ý) = (cos(ÿ), cos(ÿ), cos(ý)) + (sin(ÿ), sin(ý), sin(ÿ)) cos(ý),

ÿ (ý, ÿ, ÿ, ý) = −cos(ÿ) − sin(ÿ) ⋅ cos(ý),

Ω= [0,2ÿ]3, ÿ = 100.

We will test 6 different cases with ÿ = 1, 0.5, 0.1, 0.05, 0.01, 0.005, respectively. We first divide Ω into 6 tetrahedrons to act as the 
initial mesh. Then we refine the initial mesh 23 times uniformly using bisection to obtain the fine mesh for cases of ÿ = 1, 0.5, 0.1, 0.05, 
and refine the initial mesh 24 times to obtain the fine mesh for cases of ÿ = 0.01, 0.005. We use the piecewise linear function as the 
finite element basis and set ÿý = 5 × 10−3. For all the POD type methods, we set ÿ0 = 5, ÿý = 20. For the adaptive POD methods, we 
set ÿÿ = 4. In all the numerical experiments, we choose the parameters ÿÿ (ÿ = 1, 2, 3) as ÿ1 = ÿ2 = 0.999, ÿ3 = 1.0 −1.0 ×10−8. For the 
methods TG-APOD and Coarse-Aug-APOD, we refine the initial mesh 14 times to obtain the coarse mesh for cases of ÿ = 1, 0.5, 0.1, 
and refine the initial mesh 15 times to obtain the coarse mesh for cases of ÿ = 0.05, 0.01 and refine the initial mesh 16 times to 
obtain the coarse mesh for case of ÿ = 0.005. The time steps corresponding to the coarse finite element spaces are 0.2, 0.125 and 0.1, 
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Fig. 1. The evolution curves of the error indicator and the error obtained by the method Residual-Aug-APOD for solution of (26) with ÿ = 1, 0.5, 0.1, 0.05, 0.01, 0.005, 
respectively. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

respectively. We use 72 processors to do the simulation for cases of the fine mesh being obtained by refining the initial mesh 23 times, 
and 180 processors for cases of the fine mesh being obtained by refining the initial mesh 24 times.

We first show the variation of the error and the error indicator obtained by our methods Res-Aug-APOD and Coarse-Aug-APOD 
in Fig. 1 and Fig. 2, respectively. The sub-figures at the top describe the variation curves of error and error indicator on time interval 
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Fig. 2. The evolution curves of the error indicator and the error obtained by the method Coarse-Aug-APOD for solution of (26) with ÿ = 1, 0.5, 0.1, 0.05, 0.01, 0.005, 
respectively.
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Table 4
The results of (26) with different ÿ obtained by methods FEM, POD, TG-APOD, Res-Aug-APOD, Coarse-Aug-APOD, Res-Aug-APOD-W and Coarse-Aug-APOD-W, 
respectively.

ÿ Method ÿ0 Update Times DOFs Error Average Error Time(s)

1 FEM - - 10485760 - - 15041.77
POD - - 19 0.003877 0.001094 1859.07
TG-APOD 1 × 10−3 1 13 0.000350 0.000207 1829.59
Res-Aug-APOD 1 × 10−5 1 13 0.000465 0.000240 2582.48
Coarse-Aug-APOD 1 × 10−5 1 14 0.000347 0.000184 1900.86
Res-Aug-APOD-W 1 × 10−5 1 13 0.000465 0.000240 2590.02
Coarse-Aug-APOD-W 1 × 10−5 1 13 0.000347 0.000184 1885.10

0.5 FEM - - 10485760 - - 14772.71
POD - - 22 0.002337 0.009928 1805.14
TG-APOD 5 × 10−3 1 15 0.001546 0.001568 1685.59
Res-Aug-APOD 1 × 10−5 1 16 0.001349 0.000872 2448.96
Coarse-Aug-APOD 1 × 10−5 1 16 0.000706 0.000808 1726.65
Res-Aug-APOD-W 1 × 10−5 1 16 0.001349 0.000872 2429.59
Coarse-Aug-APOD-W 1 × 10−5 1 16 0.000706 0.000808 1752.03

0.1 FEM - - 10485760 - - 14998.48
POD - - 29 0.140401 0.223960 1943.66
TG-APOD 1 × 10−3 3 47 0.001719 0.001238 3154.18
Res-Aug-APOD 1 × 10−5 3 48 0.001428 0.000839 3874.90
Coarse-Aug-APOD 1 × 10−5 3 48 0.001428 0.000839 3182.90
Res-Aug-APOD-W 1 × 10−5 3 48 0.001428 0.000839 3845.91
Coarse-Aug-APOD-W 1 × 10−5 3 48 0.001428 0.000839 3141.46

0.05 FEM - - 10485760 - - 13188.19
POD - - 34 0.325160 0.415044 1448.42
TG-APOD 1 × 10−3 5 85 0.000620 0.000958 4754.66
Res-Aug-APOD 1 × 10−5 5 88 0.000334 0.000479 5654.76
Coarse-Aug-APOD 1 × 10−5 5 89 0.001293 0.000890 4858.62
Res-Aug-APOD-W 1 × 10−5 5 88 0.000334 0.000479 5663.85
Coarse-Aug-APOD-W 1 × 10−5 5 89 0.001293 0.000890 4822.26

0.01 FEM - - 16777216 - - 11784.99
POD - - 43 0.919008 0.777626 1267.46
TG-APOD 1 × 10−3 6 166 0.007042 0.004837 5072.23
Res-Aug-APOD 2 × 10−4 6 172 0.006008 0.003650 6338.19
Coarse-Aug-APOD 1 × 10−5 6 172 0.006208 0.003351 5280.25
Res-Aug-APOD-W 2 × 10−4 6 170 0.006011 0.003644 6196.64
Coarse-Aug-APOD-W 1 × 10−5 6 170 0.006169 0.003339 5249.77

0.005 FEM - - 16777216 - - 12526.50
POD - - 45 1.010868 0.871304 1306.83
TG-APOD 1 × 10−3 7 235 0.008957 0.007559 6661.74
Res-Aug-APOD 3 × 10−4 8 270 0.002095 0.002329 8605.53
Coarse-Aug-APOD 1 × 10−5 7 239 0.007957 0.004724 6778.84
Res-Aug-APOD-W 3 × 10−4 8 267 0.002094 0.002346 8655.01
Coarse-Aug-APOD-W 1 × 10−5 7 237 0.007974 0.004732 6679.24

[0, 50], and the sub-figures at the bottom describe those on time interval [50, 100]. The x-axis of each sub-figure is the time, the y-axis 
in the left of each sub-figure is the error which is defined by (25), while the y-axis in the right of each sub-figure is the error indicator 
defined by (20). In each sub-figure, the blue curve describes the variation of the error, the orange curve describes the variation of 
the error indicator, and the black star denotes the marked time instant when the POD modes are to be updated. It should be pointed 
out that the error at the marked time instant is that obtained before the update of the POD modes.

From each sub-figure at the bottom of Fig. 1 and Fig. 2, the time instants when the error indicator achieves its local maximizer 
coincide very well with those when the error achieves its local maximizer. This indicates that our error indicator is very effective in 
picking out the time instant when the POD subspace is needed to be updated.

However, we also observe that the error indicator is about one to two order of magnitude smaller than the exact error. In our 
opinion, the error indicator we used in this paper is not an error estimator, it is just an error detector. For an error estimator, we 
require that it can bound the error from below and above. An error detector, which may not be able to bound the error from below 
and above, but can just tell us that if the error is observable or not. In an adaptive POD method, we only need an indicator to tell us 
if we need update the POD subspace or not, whether it can bound the exact error is not important.

Some numerical results obtained by different methods are shown in Table 4. We set different thresholds ÿ0 for different adaptive 
POD methods, since the meanings of the two error indicators are different. The error indicator for the method TG-APOD can be viewed 
as an error estimator, which can bound the exact error when the approximation obtained on the coarse mesh is a good approximation 
to that obtained on the fine mesh. In fact, we can observe from the numerical tests in [15] that the variation of the error indicator 
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Table 5
The results of (26) with ÿ = 0.01, 0.005 for some cases of the weighting strategy performing well.

ÿ Method ÿ3 Update Times DOFs Error Average Error Time (s)

0.01 Res-Aug-APOD 1 − 1 × 10−4 6 164 0.008184 0.005161 6191.93
Res-Aug-APOD-W 1 − 1 × 10−4 6 143 0.006527 0.003916 5852.54
Coarse-Aug-APOD 1 − 1 × 10−4 7 180 0.008273 0.004145 5741.76
Coarse-Aug-APOD-W 1 − 1 × 10−4 6 127 0.006546 0.003728 4833.13

0.005 Coarse-Aug-APOD 1 − 1 × 10−5 7 232 0.008209 0.004821 6726.24
Coarse-Aug-APOD-W 1 − 1 × 10−5 8 228 0.003266 0.003669 7111.19

coincide the exact error very well. However, as stated above, the error indicator for the augmented subspace based adaptive POD 
method constructed in this paper is just an error detector. Although it is good enough to indicate if the current POD space need to 
be updated or not, the error indicator is about one to two order of magnitude smaller than the exact error. That’s why that the ÿ0
used in our augmented subspace based APOD method is much smaller than the exact error, while the ÿ0 used in the two-grid based 
APOD method is in the same magnitude as the exact error. Anyway, both the error estimator and error detector are OK to act as an 
indicator to tell us if we need update the POD subspace or not.

To judge the performance of different methods, we choose the best result among those obtained by each method with different 
choice of ÿ0 to be compared by a trade-off of the computational error and cost. We think this comparison is fair and meaningful.

In Table 4, “Update Times” means the number of update for the POD modes in the adaptive POD methods, “DOFs” means the 
degrees of freedom, “Error” denotes the relative error for numerical solution at t=T, “Average Error” denotes the average of relative 
error for numerical approximation at each time instant on time interval [0, ÿ ] and “Time” means the wall time for the simulation.

From Table 4, we can first see that although the number of update and the degrees of freedom for the POD type methods increase 
as the decrease of ÿ, the degrees of freedom for the POD type methods for all cases of different ÿ are much smaller than those for 
the standard finite element method. We also see that as the decrease of ÿ, the error obtained by the standard POD method increases 
dramatically, which makes the results unreliable when ÿ is close to 0. This shows that the smaller the ÿ, the more difficult the model 
to be simulated. Fortunately, results obtained by the three adaptive POD methods are still of high accuracy even for case of ÿ = 0.005, 
and the CPU time cost by the adaptive POD methods is almost less than one-half of that used by the standard finite element method. 
This shows that the adaptive POD methods behave much better than the standard POD method.

We now compare the three adaptive POD methods, TG-APOD, Res-Aug-APOD and Coarse-Aug-APOD. We see from Table 4 that 
the both two methods Coarse-Aug-APOD and Res-Aug-APOD can achieve higher accuracy than the method TG-APOD with similar 
degrees of freedom for cases of ÿ being very close to 0. Moreover, for all cases of ÿ, the method Coarse-Aug-APOD can achieve higher 
accuracy than the method TG-APOD while costing similar CPU time. For the comparison between our two augmented subspace based 
adaptive POD methods, we can see that the method Res-Aug-APOD can obtain results with comparable or even higher accuracy than 
the method Coarse-Aug-APOD, but takes more CPU time. Therefore, taking into account both the accuracy and the cost, the method 
Coarse-Aug-APOD is the most recommended one.

To see more clearly, we show the variation curves of the error obtained by the methods TG-APOD, Res-Aug-APOD and Coarse-
Aug-APOD in Fig. 3.

In Fig. 3, the x-axis is the time, the y-axis is the relative error of numerical solution obtained by adaptive POD methods. For each 
case of ÿ, the blue curve, orange curve and yellow curve denote the error obtained by the method TG-APOD, Res-Aug-APOD and 
Coarse-Aug-APOD, respectively.

From Fig. 3, we can easily see that the error over the entire time interval obtained by our methods Res-Aug-APOD and Coarse-Aug-
APOD is almost always smaller than that obtained by the method TG-APOD. Taking into account the wall time reported in Table 4, 
we can see that our new method Coarse-Aug-APOD is the most efficient one.

We then see the performance of the two methods Res-Aug-APOD-W and Coarse-Aug-APOD-W in Table 4. By comparing the results 
obtained by these two methods with those obtained by methods Res-Aug-APOD and Coarse-Aug-APOD respectively, we can see 
that the method Res-Aug-APOD-W has almost similar behavior with Res-Aug-APOD, while Coarse-Aug-APOD-W has almost similar 
behavior with Coarse-Aug-APOD. Especially, for case of ÿ = 0.01, the method Coarse-Aug-APOD-W can obtain results with a little 
higher accuracy than the method Coarse-Aug-APOD.

Besides, we have done some more tests for the Res-Aug-APOD-W and Coarse-Aug-APOD-W by using different parameter ÿ3. We 
use the cases of ÿ = 0.01, 0.005 as examples to do the tests. By comparing the results obtained by the methods Coarse-Aug-APOD and 
Coarse-Aug-APOD-W with the same parameters, we can see that for most of ÿ3, the two methods behave almost the same, however, 
there are still some cases where Coarse-Aug-APOD-W behaves better than the method Coarse-Aug-APOD, especially for cases of 
smaller ÿ3. By comparing the results obtained by methods Res-Aug-APOD and Res-Aug-APOD-W with the same parameters, we can 
obtain the similar conclusion. We pick out the cases where the methods with weighting strategy perform better than those without 
the weighting strategy, and show those results in Table 5. Anyway, from our tests we can see that the weighting strategy can improve 
the effect of the POD modes sometimes, especially for smaller ÿ3 .

For the methods TG-APOD and Coarse-Aug-APOD, we have done more tests with some other ÿ0 and different coarse meshes. Some 
results for cases of ÿ = 0.01 and ÿ = 0.005 are provided in Appendix A.
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Fig. 3. The evolution curves of the error for solution of (26) with different ÿ by methods TG-APOD, Res-Aug-APOD and Coarse-Aug-APOD, respectively.
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4.2. Arnold-Beltrami-Childress (ABC) flow

We then consider another advection-diffusion equation with the advection being the ABC flow, which plays an important role in 
fluid dynamics [18,60,9].

⎧⎪«⎪¬

ÿý − ÿΔÿ+ý(ý, ÿ, ÿ, ý) ⋅∇ÿ = ÿ (ý, ÿ, ÿ, ý), (ý, ÿ, ÿ) ∈ Ω, ý ∈ [0, ÿ ],

ÿ(ý, ÿ, ÿ,0) = 0,

ÿ(ý+ 2ÿ, ÿ, ÿ, ý) = ÿ(ý, ÿ+ 2ÿ, ÿ, ý) = ÿ(ý, ÿ, ÿ+ 2ÿ, ý) = ÿ(ý, ÿ, ÿ, ý),

(27)

where

ý(ý, ÿ, ÿ, ý) =(sin(ÿ+ sinýý) + cos(ÿ+ sinýý), sin(ý+ sinýý)

+ cos(ÿ+ sinýý), sin(ÿ+ sinýý) + cos(ý+ sinýý)),

ÿ (ý, ÿ, ÿ, ý) = − sin(ÿ+ sinýý) − cos(ÿ+ sinýý),

Ω= [0,2ÿ]3,ÿ = 100.

For this example, we also test 6 different cases with ÿ = 1, 0.5, 0.1, 0.05, 0.01, 0.005, respectively.
Similar to the example of Kolmogorov flow, we first divide Ω into 6 tetrahedrons to act as the initial mesh. Then we refine the 

initial mesh 23 times uniformly using bisection to obtain the fine mesh for cases of ÿ = 1, 0.5, 0.1, 0.05, and refine the initial mesh 24 
times to obtain the fine mesh for cases of ÿ = 0.01, 0.005. We set ý = 1.0, ÿý = 5 × 10−3 and choose the piecewise linear function as 
the finite element basis. For the POD type methods, we choose the same parameters as those for solving (26) expect the following 
settings. For the methods TG-APOD and Coarse-Aug-APOD, we refine the initial mesh 14 times to obtain the coarse mesh for cases 
of ÿ = 1, 0.5, 0.1, and refine the initial mesh 15 times to obtain the coarse mesh for cases of ÿ = 0.05, 0.01 and refine the initial mesh 
17 times to obtain the coarse mesh for case of ÿ = 0.005. The time steps corresponding to the coarse finite element spaces are 0.2, 
0.125 and 0.05 respectively. We use the similar number of processors as those for the Kolmogorov flow to do the simulation, that is, 
we use 72 processors and 180 processors for cases of the fine mesh being obtained by refining the initial mesh 23 times and 24 times, 
respectively.

Some numerical results obtained by different methods are shown in Table 6. The notations in Table 6 have the same meanings as 
those in Table 4.

Similar to the first example, from Table 6, we see that the POD type methods can save much CPU time compared with the finite 
element method. We can also see that the results obtained by the standard POD method are unreliable as the decrease of ÿ. Besides, 
the three adaptive POD methods can obtain results with high accuracy even for the case of ÿ = 0.005 with approximately a half of 
the CPU time compared with the standard finite element method. This shows that adaptive POD methods behave much better than 
the standard POD method.

We now compare the three adaptive POD methods, TG-APOD, Res-Aug-APOD and Coarse-Aug-APOD. We see from Table 6 that 
the both method Coarse-Aug-APOD and method Res-Aug-APOD can achieve higher accuracy than the method TG-APOD with similar 
degrees of freedoms, especially for cases of ÿ being very close to 0. The method Coarse-Aug-APOD can achieve higher accuracy than 
the other two methods with similar or even less CPU time cost for cases of ÿ = 0.05, 0.01, 0.005. Therefore, the method Coarse-Aug-
APOD is the most accurate and efficient one.

Then we see the behavior of the weighting strategy. By comparing the results obtained by methods Res-Aug-APOD-W and Coarse-
Aug-APOD-W with those obtained by methods Res-Aug-APOD and Coarse-Aug-APOD respectively, we see that the weighting strategy 
can improve the effect of the POD modes sometimes. Specifically, for cases of ÿ = 0.01, 0.005, the method Res-Aug-APOD-W can 
obtain results with higher accuracy but less CPU time cost than the method Res-Aug-APOD.

Similar to the first example, we show the error obtained by the methods TG-APOD, Res-Aug-APOD and Coarse-Aug-APOD in Fig. 4. 
The x-axis of each figure is the time, the y-axis is the relative error of numerical solution obtained by the adaptive POD methods.

From Fig. 4, we see clearly that the methods Res-Aug-APOD and Coarse-Aug-APOD can obtain results with higher accuracy than 
those obtained by the method TG-APOD over the entire time interval for cases of ÿ = 0.05, 0.01, 0.005. From these comparisons, we 
can also see that our new methods Res-Aug-APOD and Coarse-Aug-APOD behave much better than the method TG-APOD.

Similarly, we have tested using some other ÿ0 and different coarse meshes to do the simulation, and some more numerical results 
are provided in Appendix A.

5. Concluding remarks

In this paper, we have proposed an augmented subspace based strategy for developing an error indicator for the POD approximation 
of some time dependent partial differential equations. Based on this strategy, we obtain a general framework for the augmented 
subspace based adaptive POD method. Besides, we have provided two strategies for augmenting the POD subspace, one is using the 
residual corresponding to the current POD approximation to augment the subspace, the other is using the approximation obtained 
on a coarse grid to augment the subspace.

We have used some numerical experiments for two typical 3D advection-diffusion equations, one with the advection being the 
Kolmogorov flow and the other one with the advection being the ABC flow, to show the efficiency of our new approach. Numerical 
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Table 6
The results of (27) with different ÿ obtained by methods FEM, POD, TG-APOD, Res-Aug-APOD and Coarse-Aug-APOD, Res-Aug-APOD-W and Coarse-Aug-APOD-W, 
respectively.

ÿ Method ÿ0 Update Times DOFs Error Average Error Time (s)

1 FEM - - 10485760 - - 20427.20
POD - - 24 0.000974 0.013559 1681.67
TG-APOD 3 × 10−3 1 17 0.000335 0.000517 2304.13
Res-Aug-APOD 1 × 10−5 1 17 0.000755 0.000585 3149.87
Coarse-Aug-APOD 5 × 10−6 1 17 0.000341 0.000522 2340.55
Res-Aug-APOD-W 1 × 10−5 1 17 0.000755 0.000585 3133.89
Coarse-Aug-APOD-W 5 × 10−6 1 17 0.000341 0.000522 2344.09

0.5 FEM - - 10485760 - - 18432.76
POD - - 26 0.007569 0.069137 1625.80
TG-APOD 1 × 10−3 2 28 0.000145 0.000234 3044.43
Res-Aug-APOD 1 × 10−5 2 28 0.000279 0.000445 3835.46
Coarse-Aug-APOD 5 × 10−6 2 28 0.000154 0.000244 3064.83
Res-Aug-APOD-W 1 × 10−5 2 28 0.000279 0.000445 3865.66
Coarse-Aug-APOD-W 5 × 10−6 2 28 0.000154 0.000244 3018.50

0.1 FEM - - 10485760 - - 17362.39
POD - - 35 0.136214 0.373726 1727.87
TG-APOD 1 × 10−3 4 68 0.001716 0.001258 4940.78
Res-Aug-APOD 1 × 10−5 4 67 0.001167 0.000842 5630.27
Coarse-Aug-APOD 5 × 10−6 4 67 0.001767 0.000998 4889.35
Res-Aug-APOD-W 1 × 10−5 4 67 0.001167 0.000842 5630.14
Coarse-Aug-APOD-W 5 × 10−6 4 67 0.001767 0.000998 4805.39

0.05 FEM - - 10485760 - - 17391.44
POD - - 40 0.257052 0.514289 1814.08
TG-APOD 3 × 10−3 5 100 0.003220 0.002760 6209.27
Res-Aug-APOD 5 × 10−5 5 99 0.001698 0.001797 7080.34
Coarse-Aug-APOD 5 × 10−6 5 99 0.001352 0.001507 6222.50
Res-Aug-APOD-W 5 × 10−5 5 98 0.001711 0.001805 7031.27
Coarse-Aug-APOD-W 5 × 10−6 5 99 0.001352 0.001507 6093.91

0.01 FEM - - 16777216 - - 16065.81
POD - - 44 0.577333 0.697981 1515.37
TG-APOD 3 × 10−3 6 192 0.015234 0.012518 6640.86
Res-Aug-APOD 8 × 10−4 6 197 0.016227 0.012242 8117.78
Coarse-Aug-APOD 8 × 10−6 6 193 0.014533 0.008428 6808.99
Res-Aug-APOD-W 8 × 10−4 6 193 0.014695 0.010914 7953.35
Coarse-Aug-APOD-W 8 × 10−6 6 190 0.014493 0.008460 6923.94

0.005 FEM - - 16777216 - - 16836.62
POD - - 44 0.812194 0.836567 1554.84
TG-APOD 5 × 10−3 9 323 0.017107 0.010361 10735.34
Res-Aug-APOD 1 × 10−3 7 262 0.014846 0.009793 11758.40
Coarse-Aug-APOD 1 × 10−5 7 258 0.010908 0.007093 9406.65
Res-Aug-APOD-W 1 × 10−3 7 258 0.013419 0.009468 11285.76
Coarse-Aug-APOD-W 1 × 10−5 7 256 0.010918 0.007077 9395.15

results show that both the residual type adaptive POD method and the coarse grid approximation type adaptive POD method are 
more efficient than the existing adaptive methods, especially for cases with small ÿ. For the two methods we proposed, the coarse-
grid approximation type adaptive POD method has been shown to be more efficient. Besides, we have also introduced the weighting 
strategy to the update of POD modes. In future, we will pay more effort on the strict numerical analysis and the application to other 
types of time dependent partial differential equations as well as the construction of some other effective error indicators.
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Fig. 4. The evolution curves of the error for solution of (27) with different ÿ by methods TG-APOD, Res-Aug-APOD and Coarse-Aug-APOD, respectively.
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Table A.7
Time steps corresponding to different coarse 
meshes.

ý -Refine 14 15 16 17

Time step 0.2 0.125 0.1 0.05

Table A.8
The results of (26) with ÿ = 0.01 obtained by different POD type methods with different coarse meshes and ÿ0, respectively.

ÿ Method ÿ0 Update Times DOFs Error Average Error Time (s)

0.01 FEM - - 16777216 - - 11784.99
POD - - 43 0.919008 0.777626 1267.46
TG-APOD-14 1 × 10−3 6 167 0.009079 0.011065 5180.53
TG-APOD-15 1 × 10−3 6 166 0.007042 0.004837 5072.23
TG-APOD-16 1 × 10−3 7 196 0.005060 0.003834 5789.31

Coarse-Aug-APOD-14 5 × 10−5 5 149 0.022220 0.015238 4453.28
Coarse-Aug-APOD-14 1 × 10−5 6 173 0.008892 0.004957 5302.05
Coarse-Aug-APOD-15 5 × 10−5 5 147 0.009849 0.009620 4560.84
Coarse-Aug-APOD-15 1 × 10−5 6 172 0.006208 0.003351 5280.25
Coarse-Aug-APOD-16 5 × 10−5 5 147 0.008976 0.009054 4557.52
Coarse-Aug-APOD-16 1 × 10−5 6 172 0.006253 0.003377 5335.85
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Appendix A. Numerical experiments for different coarse meshes and different ÿÿ

In this section, we use more numerical experiments to illustrate that our new method performs better than the two-grid based 
adaptive POD method, especially for cases of ÿ = 0.01, 0.005. We denote the methods TG-APOD and Coarse-Aug-APOD with the initial 
mesh being refined ý times as TG-APOD-ý and Coarse-Aug-APOD-ý , respectively. The time steps corresponding to different coarse 
finite spaces are listed in Table A.7. With a fixed fine grid, we have tested (26) with ÿ = 0.01, 0.005 and (27) with ÿ = 0.005 by different 
coarse meshes and different threshold ÿ0, respectively.

A.1. Kolmogorov flow with ÿ = 0.01

Some numerical results of (26) with ÿ = 0.01 obtained by different methods and different parameters are shown in Table A.8. 
From Table A.8, we can first see that all adaptive POD methods can obtain results with much higher accuracy than the standard POD 
method, for all different choices for the coarse mesh and the tolerance ÿ0 . For the method TG-APOD, the finer the coarse mesh, the 
better the approximation, and of course, the higher the computational cost. While for the method Coarse-Aug-APOD, we see that if 
we reduce the size of the coarse mesh properly, the accuracy of the approximation will be improved. However, a further reduction 
of the size of coarse mesh may not improve the accuracy of the approximation obviously. Besides, we can see from these results that, 
different from the method TG-APOD, the computational cost may not change a lot as the increase of the size for the coarse mesh. 
We can also see that using the same coarse mesh, our method Coarse-Aug-APOD can obtain results with a little higher accuracy than 
those obtained by the method TG-APOD, while costing similar CPU time.

A.2. Kolmogorov flow with ÿ = 0.005

Some numerical results of (26) with ÿ = 0.005 obtained by different methods and different parameters are shown in Table A.9. 
For this case of ÿ, we can also get the similar conclusion as that from Table A.8, that is, the method Coarse-Aug-APOD can obtain 
results with a little higher accuracy than those obtained by the method TG-APOD.
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Table A.9
The results of (26) with ÿ = 0.005 obtained by different POD type methods with different coarse meshes and ÿ0, respectively.

ÿ Method ÿ0 Update Times DOFs Error Average Error Time (s)

0.005 FEM - - 16777216 - - 12526.50
POD - - 45 1.010868 0.871304 1306.83
TG-APOD-14 1 × 10−3 6 200 0.022221 0.024539 5727.87
TG-APOD-15 1 × 10−3 7 227 0.012810 0.009396 6811.02
TG-APOD-16 1 × 10−3 7 235 0.008957 0.007559 6661.74

Coarse-Aug-APOD-14 5 × 10−5 5 176 0.018007 0.018023 4893.47
Coarse-Aug-APOD-14 1 × 10−5 6 207 0.014098 0.007749 5696.05
Coarse-Aug-APOD-15 5 × 10−5 5 176 0.017100 0.017024 5084.80
Coarse-Aug-APOD-15 1 × 10−5 7 239 0.008122 0.004791 6891.73
Coarse-Aug-APOD-16 5 × 10−5 5 176 0.017162 0.016912 5295.97
Coarse-Aug-APOD-16 1 × 10−5 7 239 0.007957 0.004724 6778.84

Table A.10
The results of (27) with ÿ = 0.005 obtained by different POD type methods with different coarse meshes and ÿ0, respectively.

ÿ Method ÿ0 Update Times DOFs Error Average Error Time (s)

0.005 FEM - - 16777216 - - 16836.62
POD - - 44 0.812194 0.836567 1554.84
TG-APOD-15 5 × 10−3 6 226 0.027286 0.023730 7147.38
TG-APOD-16 5 × 10−3 7 259 0.025176 0.020051 8409.76
TG-APOD-17 5 × 10−3 9 323 0.017107 0.010361 10735.34

Coarse-Aug-APOD-15 5 × 10−5 4 159 0.065712 0.051971 5581.35
Coarse-Aug-APOD-15 1 × 10−5 5 192 0.026378 0.027074 6517.28
Coarse-Aug-APOD-15 5 × 10−6 11 390 0.001740 0.003459 12508.26
Coarse-Aug-APOD-16 5 × 10−5 5 192 0.032155 0.031447 6468.33
Coarse-Aug-APOD-16 1 × 10−5 9 323 0.011047 0.014037 10392.84
Coarse-Aug-APOD-16 5 × 10−6 12 421 0.001581 0.003247 14281.87
Coarse-Aug-APOD-17 5 × 10−5 5 192 0.025166 0.026153 7374.91
Coarse-Aug-APOD-17 1 × 10−5 7 258 0.010908 0.007093 9406.65
Coarse-Aug-APOD-17 5 × 10−6 11 389 0.001429 0.001716 12466.38

A.3. ABC flow with ÿ = 0.005

In Table A.10, we show some results of (27) with ÿ = 0.005 obtained by different methods and different parameters. Similar to the 
example of the Kolmogorov flow, we see from these results that the method Coarse-Aug-APOD can obtain results with a little higher 
accuracy than those obtained by the method TG-APOD.
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