
Journal of Computational Physics 514 (2024) 113231

Available online 1 July 2024
0021-9991/© 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

An augmented subspace based adaptive proper orthogonal
decomposition method for time dependent partial differential
equations✩

Xiaoying Dai a,b,∗, Miao Hu a,b, Jack Xin c, Aihui Zhou a,b

a LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing 100190, China
b School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
c Department of Mathematics, University of California at Irvine, Irvine, CA 92697, USA

A R T I C L E I N F O A B S T R A C T

Keywords:
Proper orthogonal decomposition
Adaptive
Augmented subspace
Galerkin projection
Error indicator

In this paper, we propose an augmented subspace based adaptive proper orthogonal decomposition
(POD) method for solving the time dependent partial differential equations. We use the difference
between the approximation obtained in the augmented subspace and that obtained in the original
POD subspace to construct an error indicator, by which we obtain a general framework for
augmented subspace based adaptive POD method. We then provide two strategies to construct the
augmented subspaces, the residual type augmented subspace and the coarse-grid approximation
type augmented subspace. We apply our new methods to two typical 3D advection-diffusion
equations with the advection being the Kolmogorov flow and the ABC flow. Numerical results
show that both the residual type augmented subspace based adaptive POD method and the coarse-
grid approximation type augmented subspace based adaptive POD method are more efficient than
the existing adaptive POD methods, especially for the advection dominated models.

1. Introduction

Time dependent partial differential equations arise in many important fields, e.g., the seawater intrusion [2], the heat transfer [11],
semiconductor devices [41] and fluid equations [25,3,42,62,59,38]. The study about the numerical methods for the time dependent
partial differential equations is an important and attractive research topic. There are some classical numerical discretization methods
for the spatial discretization of the time dependent partial differential equations, e.g., the finite element method [8], the finite
difference method [54] and the plane wave method [30]. Usually, the semi-discretized systems resulted from applying these classical
spatial discretization methods for a time dependent partial differential equations are of huge dimensional. If we use these classical
spatial discretization methods at each time interval, the computational cost will be very expensive, especially for complex systems.

Therefore, some efficient and accurate model order reduction methods have been proposed to reduce the dimension of discretized
system and then the computational costs [4,49,13,40,7]. The basic idea for the model order reduction method is to project the

✩ This work was supported by the National Key R&D Program of China under grants 2019YFA0709600 and 2019YFA0709601, the National Natural Science
Foundation of China under grants 92270206 and 11671389, and the NSF grants DMS-1952644, DMS-2151235 and DMS-2309520.
* Corresponding author at: LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science,

Chinese Academy of Sciences, Beijing 100190, China.
E-mail addresses: daixy@lsec.cc.ac.cn (X. Dai), humiao@lsec.cc.ac.cn (M. Hu), jack.xin@uci.edu (J. Xin), azhou@lsec.cc.ac.cn (A. Zhou).

https://doi.org/10.1016/j.jcp.2024.113231
Received 16 February 2023; Received in revised form 3 June 2024; Accepted 23 June 2024

Journal of Computational Physics 514 (2024) 113231

2

X. Dai, M. Hu, J. Xin et al.

continuous system onto a low-dimensional approximation subspace whose dimension is significantly less than that of the classical
discretization space. Proper orthogonal decomposition (POD) is a commonly used model order reduction technique [24,33,48,39,21].
The typical steps for using a POD method to solve a time dependent partial differential equation are as follows. First, choose some
classical discretization method to discretize the continuous equation in some time interval, and solve the resulted high-dimensional
discretized systems to get a set of snapshots. Then, construct the POD modes by minimizing the error between these modes and the
snapshots, which is equivalent to solving an ÿý dimensional eigenvalue problem [53,25,51]. Here ÿý is the number of snapshots. At
last, project the original system onto the subspace spanned by the POD modes, which is also called POD subspace, and solve the
resulted discretized systems in the following time intervals. In the actual calculation, singular value decomposition (SVD) is usually
used to obtain the POD modes from the snapshots [37,48,10]. By choosing the snapshots properly, the number of the POD modes
will usually be of magnitude smaller than the degrees of freedom resulted by the classical spacial discretization methods.

There are many applications of the POD method in scientific and engineering computing. For instance, in [17], a group proper
orthogonal decomposition (GPOD) method was introduced to simulate the nonlinear Burgers equation. In [35], the POD method was
used to solve the time-domain Maxwell’s equations. In [34], a reduced-order finite element formulation based on POD method was
established for the Allen-Cahn equation. Other applications include studies of turbulence [19,55], process identification [27,28] and
control in chemical engineering [44,61], etc. We refer to [57,58] for more introduction to the POD method.

There are also some existing works on the error analysis for the POD method. For example, Kunisch and Volkwein estimated the
error of the POD approximation for linear and nonlinear evolution equations in [31,32]. In [22], Xin et al. analyzed the convergence
of the POD approximation for viscous G-equation by decomposing the data into a mean-free part and a mean part. More works about
the numerical analysis for the POD method can be referred to [26,36,12,29] and references therein.

The classical POD method for time dependent partial differential equations only uses the snapshots obtained in the early time
interval to construct the POD modes. Once the POD modes are obtained, they will be fixed and not updated during the time evolution
any more. However, the solution of the system may change a lot over time. Therefore, if the POD modes are not updated as time
evolution, the approximation error obtained by the POD method may become larger and larger.

In order to improve the accuracy of the POD method in the whole time interval, some adaptive POD methods which update
the POD modes as time evolution have been introduced in recent years [14,15,50,56,45]. In [14,50,56], the authors constructed
some residual type error estimators, based on which some residual based adaptive POD methods are proposed for simulation of time
dependent problems. In [15], the authors proposed a two-grid based adaptive POD method. For this method, they first constructed
two finite element spaces, a coarse finite element space and a fine finite element space, and then used the error obtained in the coarse
finite element space to construct the error indicator, by which people then see whether it is necessary to update the POD subspace in
the fine mesh or not. We refer to [15] for more details about the two-grid based adaptive POD method.

In this paper, we propose a new approach for developing some adaptive POD methods for the time dependent partial differential
equations. The main idea of our approach is to use some auxiliary modes to augment the current POD subspace to build an augmented
subspace. We then use the difference between the approximation obtained in the augmented subspace and that obtained in original
POD subspace to develop an error indicator. Using this idea, we obtain a general framework for augmented subspace based adaptive
POD method. We then provide two specific strategies to obtain the auxiliary mode, one is using the residual corresponding to the
POD approximation as the auxiliary mode, the other is using a coarse-grid approximation as the auxiliary mode. Using the residual
to enrich the current POD subspace is inspired by [5]. Using the coarse-grid approximation to augment the subspace is inspired by
[15]. In [15], the authors used the error obtained in a coarse finite element space to act as the error indicator, while in this paper, we
use the approximation in the coarse finite element space to augment the POD subspace, and then develop an error indicator. Besides,
following the idea of [50], we introduce a weight to each mode when updating the POD subspace to improve the performance of the
method.

The rest of this paper is organized as follows. In Section 2, we give some preliminaries, including the general framework of the
adaptive POD method, the comparison of computational complexity for different POD type methods and the simple descriptions of
two typical adaptive POD methods. In Section 3, we propose a general framework for the augmented subspace based adaptive POD
method, and then provide two specific strategies to construct the augmented subspace, the residual type augmented subspace and
the coarse-grid approximation type augmented subspace. Besides, we also introduce a weighting strategy to update the POD modes
in Section 3. In Section 4, we apply the two-grid based adaptive POD method and our augmented subspace based adaptive POD
methods to the simulation of some typical time dependent partial differential equations, i.e., the advection-diffusion equation with
three dimensional velocity field, including both the Kolmogorov flow and the ABC flow. The numerical results show the accuracy
and efficiency of our new methods. In Section 5, we give some concluding remarks. Finally, we provide some additional numerical
results for the advection dominated models with different coarse meshes and different error indicator thresholds in Appendix A.

2. Preliminaries

We first recall some definition and notation. We shall use the standard notation for Sobolev spaces and their associated norms
and seminorms; see, e.g., [1]. Let ý be a Banach space with norm ‖ ∗ ‖ý and ÿý(0, ÿ ; ý) be a Banach space equipped with the norm

‖ÿ‖ÿý(0,ÿ ;ý) =

»
¼¼½

ÿ

∫
0

‖ÿ(ý)‖ý
ý
dý

¾
¿¿À

1
ý

,1 ≤ ý <∞.

We call ÿ ∈ ÿ(0, ÿ ; ý) if

Journal of Computational Physics 514 (2024) 113231

3

X. Dai, M. Hu, J. Xin et al.

‖ÿ‖ÿ(0,ÿ ;ý) = max
ý∈[0,ÿ]

‖ÿ(ý)‖ý <∞.

In this paper, vectors and matrices will be denoted by bold letters.
We consider the following general time dependent partial differential equations:

⎧⎪«⎪¬

ÿý − ÿΔÿ+ý (ý, ÿ, ÿ, ý) ⋅∇ÿ+ ý (ý, ÿ, ÿ, ý)ÿ = ÿ (ý, ÿ, ÿ, ý) , in Ω× (0, ÿ]

ÿ (ý, ÿ, ÿ,0) = ℎ (ý, ÿ, ÿ) ,

ÿ (ý+ ÿ, ÿ, ÿ, ý) = ÿ (ý, ÿ+ ÿ, ÿ, ý) = ÿ (ý, ÿ, ÿ+ ÿ, ý) = ÿ (ý, ÿ, ÿ, ý) ,

(1)

where Ω = [0, ÿ]3, ÿ ∈ ÿ2
(
0, ÿ ;ÿ2(Ω)

)
, ý ∈ ÿ (0, ÿ ;ÿ∞ (Ω)), ý ∈ ÿ

(
0, ÿ ;ÿ 1,∞(Ω)3

)
, ℎ ∈ ÿ2(Ω) and ÿ is a constant. We take an

inner product with ÿ in (1) and define a bilinear form to simplify the variational form

ÿ(ý;ÿ, ÿ) = ÿ (∇ÿ,∇ÿ) − ÿ ∫
ÿΩ

ÿÿ

ÿÿ
ÿýÿ + (ý ⋅∇ÿ, ÿ) + (ýÿ, ÿ) ,∀ÿ, ÿ ∈ÿ1(Ω),

where (⋅, ⋅) stands for the inner product in ÿ2(Ω). We obtain the variational form of the Eq. (1) as follows: find ÿ ∈ ÿ2 (0, ÿ ;ý),
ÿý ∈ÿ

2 (0, ÿ ;ý ∗) such that

(
ÿý, ÿ

)
+ ÿ (ý;ÿ, ÿ) = (ÿ, ÿ) ,∀ÿ ∈ ý , (2)

where

ý =
{
ÿ ∈ÿ1(Ω) ∶ ÿ|ý=0 = ÿ|ý=ÿ , ÿ|ÿ=0 = ÿ|ÿ=ÿ , ÿ|ÿ=0 = ÿ|ÿ=ÿ

}
,

and ý ∗ is the dual space of V.

2.1. Standard discretization

We first consider the standard temporal discretization of (2). There are many existing temporal discretization methods, such as
Euler method and implicit Euler method [23], which can be used to discretize (2). Here, we choose the implicit Euler method. We first
divide the time interval into ý ∈ ℕ subintervals with equal length ÿý = ÿ ∕ý , and let ÿý(ý, ÿ, ÿ) be the approximation of ÿ(ý, ÿ, ÿ, ýý),
ÿý(ý, ÿ, ÿ) = ÿ (ý, ÿ, ÿ, ýý), where ýý = ý ⋅ ÿý, for ý ∈ {0,1,⋯ ,ý}. Then we can get the semi-discretization scheme of (2) as follows:

(
ÿý(ý, ÿ, ÿ) − ÿý−1(ý, ÿ, ÿ)

ÿý
, ÿ

)
+ ÿ

(
ýý;ÿ

ý(ý, ÿ, ÿ), ÿ
)
=

(
ÿý(ý, ÿ, ÿ), ÿ

)
, ÿ ∈ ý . (3)

We then consider the classical spatial discretization of (3). Here, we choose the finite element method to discretize (3). Let ℎ be
a shape regular family of nested conforming mesh over Ω with size ℎ: there exists a constant ÿ∗ such that

ℎÿ

ÿÿ
≤ ÿ∗, ∀ ÿ ∈ ℎ, (4)

where ℎÿ is the diameter of ÿ for each ÿ ∈ ℎ, ÿÿ is the diameter of the biggest ball contained in ÿ , and ℎ = max
{
ℎÿ ∶ ÿ ∈ ℎ}. Let

ýℎ be a subspace of continuous functions on Ω such that

ýℎ =
{
ÿℎ ∶ ÿℎ|ÿ ∈ ℙÿ ,∀ ÿ ∈ ℎ and ÿℎ ∈ ÿ0(Ω)

}
,

where ℙÿ is a set of polynomials on element ÿ . Let
{
ÿℎ,1, ÿℎ,2,⋯ , ÿℎ,ýý

}
be a basis of ýℎ with ýý being the degrees of freedom.

Denote

ÿℎ ∶=
(
ÿℎ,1, ÿℎ,2,⋯ , ÿℎ,ýý

)
.

The standard finite element discretization of (3) can be formulated as follows: find ÿý
ℎ
(ý, ÿ, ÿ) ∈ ýℎ, such that

(
ÿý
ℎ
(ý, ÿ, ÿ) − ÿý−1

ℎ
(ý, ÿ, ÿ)

ÿý
, ÿℎ

)
+ ÿ

(
ýý;ÿ

ý
ℎ
(ý, ÿ, ÿ), ÿℎ

)
=

(
ÿý(ý, ÿ, ÿ), ÿℎ

)
, ÿℎ ∈ ýℎ. (5)

Note that ÿý
ℎ
(ý, ÿ, ÿ) can be expressed as

ÿý
ℎ
(ý, ÿ, ÿ) =

ýý∑
ÿ=1

ÿý
ℎ,ÿ
ÿℎ,ÿ (ý, ÿ, ÿ) . (6)

Inserting (6) into (5), and setting ÿℎ = ÿℎ,ÿ , ÿ = 1, 2, ⋯ , ýý , respectively, we have

Journal of Computational Physics 514 (2024) 113231

4

X. Dai, M. Hu, J. Xin et al.

Algorithm 1 POD_Mode (ýℎ, ÿ, ÿℎ, ÿ, ÿℎ).

Input: ýℎ, ÿ, ÿℎ =
(
ÿℎ,1, ÿℎ,2,⋯ , ÿℎ,ÿ

)
;

Output: m and POD modes Ψℎ =
(
ÿℎ,1, ÿℎ,2,⋯ , ÿℎ,ÿ

)
;

1: Perform SVD on ýℎ to obtain ýℎ =ýÿýÿ , where S = diag
{
ÿ1, ÿ2,⋯ , ÿÿ

}
with ÿ1 ≥ ÿ2 ≥⋯ ≥ ÿÿ > 0;

2: Set ÿ =min

{
ý ∶

ý∑
ÿ=1

ÿÿ,ÿ > ÿ ⋅ Trace(ÿ)

}
;

3:
(
ÿℎ,1, ÿℎ,2,⋯ , ÿℎ,ÿ

)
=ÿℎý[∶, 1 ∶ÿ];

»¼¼½

ýý∑
ÿ=1

ÿý
ℎ,ÿ
ÿℎ,ÿ −

ýý∑
ÿ=1

ÿý−1
ℎ,ÿ

ÿℎ,ÿ, ÿℎ,ÿ

¾¿¿À
+ ÿý ⋅ ÿ

»¼¼½
ýý;

ýý∑
ÿ=1

ÿý
ℎ,ÿ
ÿℎ,ÿ, ÿℎ,ÿ

¾¿¿À
= ÿý ⋅

(
ÿý, ÿℎ,ÿ

)
. (7)

Define

ý
ý
ℎ,ÿÿ

=
(
ÿℎ,ÿ , ÿℎ,ÿ

)
+ ÿý ⋅ ÿ

(
ýý;ÿℎ,ÿ , ÿℎ,ÿ

)
, ÿ

ý
ℎ
=

(
ÿý
ℎ,1
, ÿý
ℎ,2
,⋯ , ÿý

ℎ,ýý

)ÿ
,

ÿ
ý
ℎ
= ÿý ⋅

((
ÿý, ÿℎ,1

)
,⋯ ,

(
ÿý, ÿℎ,ýý

))ÿ
, ÿℎ,ÿÿ =

(
ÿℎ,ÿ , ÿℎ,ÿ

)
.

Then (7) can be rewritten as the following algebraic form

ý
ý
ℎ
ÿ
ý
ℎ
= ÿ

ý
ℎ
+ÿℎÿ

ý−1
ℎ

, (8)

where ýý
ℎ
=

(
ý
ý
ℎ,ÿÿ

)
ýý×ýý

and ÿℎ =
(
ÿℎ,ÿÿ

)
ýý×ýý

.

2.2. Adaptive POD method

In this subsection, we first recall the general procedure for getting a POD reduced order model of a time dependent partial
differential equation. First, we choose some classical discretization method to discretize (3) in some time interval. Here we discretize
(3) in the finite element space ýℎ for ý ∈ [0, ÿ0], and solve the resulted high dimensional discretized systems, and then collect the
numerical solution at different times ý0, ýÿý , ⋯, ýÿý⋅ÿý to obtain the snapshot matrix ýℎ. Here, ÿý is an integer parameter and

ÿý = + ÿ0
ÿý⋅ÿý

,, where +∗, means the round down. Then, we perform SVD on ýℎ, and obtain ýℎ = ýÿýÿ. Note that the diagonal
elements in ÿ are arranged from largest to smallest, we set the number of POD modes by

ÿ =min

{
ý ∶

ý∑
ÿ=1

ÿÿ,ÿ > ÿ1 ⋅ Trace(ÿ)

}
, (9)

where ÿ1 is a given parameter, and set ý̃ =ý[∶, 1 ∶ÿ]. Then the POD modes are

ÿℎ =
(
ÿℎ,1, ÿℎ,2,⋯ , ÿℎ,ÿ

)
∶=ÿℎý̃.

The process for constructing POD modes can be summarized as a routine POD_Mode (ýℎ, ÿ1, ÿℎ, ÿ, ÿℎ) in Algorithm 1, see also [15].
At last, we project (3) onto the POD subspace ýℎ,POD = span

{
ÿℎ,1,⋯ , ÿℎ,ÿ

}
when ý > ÿ0. The POD approximation ÿý

ℎ,POD
(ý, ÿ, ÿ) can

be expressed as

ÿý
ℎ,POD

(ý, ÿ, ÿ) =

ÿ∑
ÿ=1

ÿý
ℎ,ÿ
ÿℎ,ÿ(ý, ÿ, ÿ). (10)

Inserting (10) into (3), and setting ÿ = ÿℎ,ÿ , ÿ = 1, 2, ⋯ , ÿ, respectively, we obtain
(

ÿ∑
ÿ=1

ÿý
ℎ,ÿ
ÿℎ,ÿ −

ÿ∑
ÿ=1

ÿý−1
ℎ,ÿ

ÿℎ,ÿ, ÿℎ,ÿ

)
+ ÿý ⋅ ÿ

(
ýý;

ÿ∑
ÿ=1

ÿý
ℎ,ÿ
ÿℎ,ÿ, ÿℎ,ÿ

)
= ÿý ⋅

(
ÿý, ÿℎ,ÿ

)
. (11)

Define

ý̄
ý
ℎ,ÿÿ

=
(
ÿℎ,ÿ , ÿℎ,ÿ

)
+ ÿý ⋅ ÿ

(
ýý;ÿℎ,ÿ , ÿℎ,ÿ

)
, ÿ

ý
ℎ,POD

=
(
ÿý
ℎ,1
, ÿý
ℎ,2
,⋯ , ÿý

ℎ,ÿ

)ÿ
,

ÿ̄
ý
ℎ
= ÿý ⋅

((
ÿý, ÿℎ,1),⋯ , (ÿý, ÿℎ,ÿ

))ÿ
, ÿ̄ℎ,ÿÿ =

(
ÿℎ,ÿ , ÿℎ,ÿ

)
.

Then (11) can be rewritten as the following algebraic form

ý̄
ý
ℎ
ÿ
ý
ℎ,POD

= ÿ̄
ý
ℎ
+ ÿ̄ℎÿ

ý−1
ℎ,POD

, (12)

where ý̄ý
ℎ
=

(
ý̄
ý
ℎ,ÿÿ

)
ÿ×ÿ

and ÿ̄ℎ =
(
ÿ̄ℎ,ÿÿ

)
ÿ×ÿ

.

Journal of Computational Physics 514 (2024) 113231

5

X. Dai, M. Hu, J. Xin et al.

From the expression of the POD modes, i.e., ÿℎ =ÿℎý̃, the above equation can also be written as

ý̃
ÿ
ý
ý
ℎ
ý̃ÿ

ý
ℎ,POD

= ý̃
ÿ
ÿ
ý
ℎ
+ ý̃

ÿ
ÿℎý̃ÿ

ý−1
ℎ,POD

,

where ýý
ℎ
=

(
ý
ý
ℎ,ÿÿ

)
ýý×ýý

and ÿℎ =
(
ÿℎ,ÿÿ

)
ýý×ýý

.

As we mentioned before, the classical POD method only uses the snapshots obtained in time interval [0, ÿ0] to construct the POD
modes. Once the POD modes are obtained, they will not be updated during the time evolution. However, the solution may change a
lot over time. In order to improve the accuracy of the POD method in the whole time interval, more and more researchers have paid
attention to the study of adaptive POD method in recent years [14,15,50,56,45]. Here, we provide a brief introduction.

Motivated by the procedure for adaptive finite element method [16], in [15], the authors summarized the procedure of adaptive
POD method as a loop constructed by the following four steps:

1. Solve: Solve the Eq. (3) in the POD subspace span
{
ÿℎ,1,⋯ , ÿℎ,ÿ

}
.

2. Estimate: Construct an error indicator ÿý at time instant ýý to estimate the error of the approximation obtained in current POD
subspace.

3. Mark: Mark the time instant ýý when the POD subspace is needed to be updated.
4. Update: Update the POD subspace at the marked time instant.

The step Solve is just the procedure for obtaining the approximations by the classical POD method we introduced above. The step
Estimate is crucial for an adaptive POD method, which determines the efficiency and accuracy of the method. The step Mark picks
out the time instant when the POD modes are needed to be updated. For the step Update, it is worthy of noting that, if the time
instant ý = ÿ ⋅ ÿý is marked, we will go back to the previous time instant ý1 = (ÿ −1) ⋅ ÿý to restart the collection of the approximations
in the finite element space every ÿý time-step and get the snapshots matrix ÿℎ,1 . In order to obtain the new POD modes, we perform
SVD on ÿℎ,1 to obtain ÿℎ,1 = ý1ÿ1ý

ÿ
1
. Then, we obtain the number of POD modes ÿ1 by (9) but with a different parameter ÿ2.

In order to keep most of the POD modes, we perform SVD on ÿℎ,2 = [ý1[∶, 1 ∶ ÿ1], ̃ý], and get ÿℎ,2 = ý2ÿ2ý
ÿ
2
. Then, we get the

number of POD modes ÿ by (9) but with a parameter ÿ3. Finally we set ý̃ =ý2[∶, 1 ∶ÿ] and obtain the updated POD modes by

ÿℎ =
(
ÿℎ,1, ÿℎ,2,⋯ , ÿℎ,ÿ

)
=ÿℎý̃.

For the convenience of the following discussion, we summarize the process for the step Update as routine Update_POD_Mode
(ÿℎ,1, ÿ2, ÿ3, ÿℎ, ÿ, ÿℎ) in Algorithm 2, which is first introduced in [15].

Algorithm 2 Update_POD_Mode (ÿℎ,1, ÿ2, ÿ3, ÿℎ, ÿ, ÿℎ).

Input: ÿℎ,1, ÿ2, ÿ3, ÿℎ = (ÿℎ,1, ÿℎ,2, ⋯ , ÿℎ,ÿ), ÿ and ÿ old POD modes ÿℎ, ÿℎ =ÿℎý̃.
Output: new ÿ and new ÿ POD modes

{
ÿℎ,1, ÿℎ,2,⋯ , ÿℎ,ÿ

}
.

1: Perform SVD on ÿℎ,1 to obtain ÿℎ,1 =ý1ÿ1ý
ÿ
1
, where ÿ

ÿ
= diag

{
ÿ1,1, ÿ1,2,⋯ , ÿ1,ÿ1

}
with ÿ1,1 ≥ ÿ1,2 ≥⋯ ≥ ÿ1,ÿ1 > 0;

2: Set ÿ1 =min

{
ý ∶

ý∑
ÿ=1

ÿ1,ÿÿ > ÿ2 ⋅ Trace(ÿ1)

}
;

3: Perform SVD on ÿℎ,2 = [ý1[∶, 1 ∶ÿ1], ̃ý], and obtain ÿℎ,2 =ý2ÿ2ý
ÿ
2
, where ÿ

ÿ
= diag

{
ÿ2,1, ÿ2,2,⋯ , ÿ2,ÿ2

}
with ÿ2,1 ≥ ÿ2,2 ≥⋯ ≥ ÿ2,ÿ2 > 0;

4: Set ÿ =min

{
ý ∶

ý∑
ÿ=1

ÿ2,ÿÿ > ÿ3 ⋅ Trace(ÿ2)

}
, and ̃ý =ý2[∶, 1 ∶ÿ];

5: (ÿℎ,1, ÿℎ,2, ⋯ , ÿℎ,ÿ) =ÿℎý̃;

We then obtain the framework of the adaptive POD method as Algorithm 3.

Algorithm 3 Framework of the adaptive POD method.
1: Given ÿ0 , ÿ , ÿý , ÿÿ , ÿý, ÿ1 , ÿ2 , ÿ3 , ÿ0 and the mesh ℎ ;
2: Discretize (3) in the standard finite element space ýℎ on interval [0, ÿ0] and obtain the snapshots matrix ýℎ ;
3: Construct POD modes ÿℎ by POD_Mode (ýℎ , ÿ1, ÿℎ , ÿ, ÿℎ);
4: ý = ÿ0 , ý =

ÿ0

ÿý
;

5: while ý ≤ ÿ do
6: ý = ý + ÿý, k = k + 1;
7: Discretize (3) in the POD subspace ýℎ,POD = span

{
ÿℎ,1, ÿℎ,2,⋯ , ÿℎ,ÿ

}
, and obtain the POD approximations ÿý

ℎ,POD
;

8: Compute the error indicator ÿý by some strategy;
9: if ÿý > ÿ0 then
10: ý = ý − ÿý, k = k - 1;
11: Discretize (3) in ýℎ on interval [ý, ý + ÿÿ] and get snapshots ÿℎ,1 , then update POD modes ÿℎ by Update_POD_Mode (ÿℎ,1, ÿ2, ÿ3, ÿℎ , ÿ, ÿℎ);

12: ý = ý + ÿÿ

ÿý
;

13: end if
14: end while

Journal of Computational Physics 514 (2024) 113231

6

X. Dai, M. Hu, J. Xin et al.

2.3. Complexity

In this subsection, we analyze the computational complexity of the standard finite element method, the standard POD method
and the adaptive POD method introduced above. By comparing the computational complexity of these methods, the advantages of
the POD type methods will be shown. We use  (ÿ) to represent the complexity of a function that increases linearly with respect to ÿ.

Case I: ý, ý and ÿ are separable in time and space
We first consider the case that ý, ý and ÿ are separable in time and space. In this case, ý can be expressed as

ý(ý, ÿ, ÿ, ý) = ýÿ(ý, ÿ, ÿ) +ýÿ(ý, ÿ, ÿ)ý3(ý).

For the standard finite element method, the main computational costs at each time instant are those for building the discretized
system and solving the discretized system. We first consider the cost for building the discretized system. We note that during the build-
ing of the linear system (8), only the terms

(
ý ⋅∇ÿℎ,ÿ , ÿℎ,ÿ

)
,
(
ýÿℎ,ÿ , ÿℎ,ÿ

)
and

(
ÿ,ÿℎ,ÿ

)
are changed as the evolution of time. Let ýý

denote the degree of freedoms for the finite element discretization. We only need to compute
(
ýÿ ⋅∇ÿℎ,ÿ , ÿℎ,ÿ

)
and

(
ýÿ ⋅∇ÿℎ,ÿ , ÿℎ,ÿ

)
once, and then multiply

(
ýÿ ⋅∇ÿℎ,ÿ , ÿℎ,ÿ

)
by ý3(ý) at each time instant to obtain

(
ý ⋅∇ÿℎ,ÿ , ÿℎ,ÿ

)
. For a fixed i, there are only few

j such that
(
∇ÿℎ,ÿ , ÿℎ,ÿ

)
is not 0. This means the computational complexity of the multiplication by ý3(ý) is 

(
ýý

)
. Therefore, the

computational complexity for building
(
ý ⋅∇ÿℎ,ÿ , ÿℎ,ÿ

)
is 

(
ýý

)
at each time instant. Similarly, we have that the computational

complexity for
(
ýÿℎ,ÿ , ÿℎ,ÿ

)
and

(
ÿ,ÿℎ,ÿ

)
is also 

(
ýý

)
. Therefore, the computational complexity for building the linear system (8)

is 
(
ýý

)
. We then see the cost for solving the discretized linear system. For solution of (8), since ýý

ℎ
is sparse, there are many solvers

[52,46] which can deal with it at a cost of 
(
ýý

)
. Hence, the computational cost at each time instant is 

(
ýý

)
, and the total cost

for the time interval [0, ÿ] is

(
ýý

)
×
ÿ

ÿý
.

We then turn to see the computational complexity of the standard POD method. When ý ∈ [0, ÿ0], we need to discrete the system (3)
in the finite element space and then solve the discretized system (8). By the analysis for the standard finite element discretization, we
know that the cost is 

(
ýý

)
at each time instant. For the construction of the POD modes, we need to perform SVD on ýℎ ∈ℝ

ýý×ÿý ,

where ÿý = + ÿ0
ÿý⋅ÿý

, as we mentioned above. Since only the left singular vectors and the singular values need to be calculated, the
computational complexity is 

(
ÿ2ýýý

)
[20], where ÿ2ý ≪ ýý . When ý > ÿ0, we need to project (3) onto the POD subspace and

then solve the discretized system (12). Since ý, ý and ÿ are separable in time and space, as we mentioned above, we only need
to calculate

(
ýÿ ⋅∇ÿℎ,ÿ , ÿℎ,ÿ

)
and

(
ýÿ ⋅∇ÿℎ,ÿ , ÿℎ,ÿ

)
once, which costs 

(
ýý

)
, and then multiply it by ý3(ý) at each time instant to

obtain
(
ý ⋅∇ÿℎ,ÿ , ÿℎ,ÿ

)
, where ÿ, ÿ = 1, 2, ⋯ , ÿ. The computational complexity for computing

(
ýÿℎ,ÿ , ÿℎ,ÿ

)
and

(
ÿ,ÿℎ,ÿ

)
is similar to

that for computing
(
ý ⋅∇ÿℎ,ÿ , ÿℎ,ÿ

)
. Hence, the complexity for building the linear system (12) is 

(
ÿ2

)
at each time instant. For

solving the discretized system (12), since ý̄ý
ℎ
is a small dense matrix, we usually use some direct method to solve it, which costs


(
ÿ3

)
. Therefore the total computational cost is

(
ýý

)
×

(
ÿ0

ÿý
+ 1

)
+(

ÿ2
ý
ýý

)
+(

ÿ3
)
×
ÿ − ÿ0

ÿý
.

We now look at the computational cost for the adaptive POD method. Except for the costs same as those for the standard POD
method, some additional costs are needed for steps Estimate, Mark and Update. For the step Estimate, different methods have
different ways to design the error indicator. We denote the computational cost for this part in each time instant as ýest . The cost for
the step Mark can be neglected. The main cost for the step Update is that for obtaining the standard finite element approximations
on interval [ý, ý + ÿÿ]. From the analysis for the standard finite element method, we know that the cost for this part is 

(
ýý

)
at each

time instant. Let ÿý denote the number of update for POD modes. Therefore, the total computational cost for SVD is 
(
ÿ2ýýý

)
×2ÿý.

Since the number of POD modes will increase as the updating continues, we denote ÿý average number of POD modes in the adaptive
POD method. By the analysis for the standard POD method, the cost for building the POD linear system is

(
ýý

)
× ÿý +(

ÿ2
ý

)
×
ÿ − ÿ0 − ÿý ⋅ ÿÿ

ÿý
,

and the cost for solving the discretized system at each time instant is 
(
ÿ3
ý

)
. Therefore, the total computational cost is

(ýý) ×

(
ÿ0 + ÿý ⋅ ÿÿ

ÿý
+ ÿý + 1

)
+(

ÿ2ýýý

)
×

(
2ÿý + 1

)
+(

ÿ3
ý

)
×
ÿ − ÿ0 − ÿý ⋅ ÿÿ

ÿý
+ ýest ×

ÿ − ÿ0 − ÿý ⋅ ÿ

ÿý
.

We summarize the total computational cost for each method in Table 1. Usually, we have ÿ0 ≪ ÿ , ÿ3 ≪ ýý and ÿ
3
ý
≪ ýý .

Therefore, we can see that the POD type methods usually cost less CPU time than the standard finite element method. Then we focus
on the cost for the adaptive POD method. If an error indicator is cheaper, the term ýest will be less. If an error indicator is more
sensitive, it will require fewer number of update ÿý to achieve the same accuracy, then it may decrease the degree of freedoms ÿý
at the same time. Therefore, the construction of the error indicator plays an important role in reducing the cost for the adaptive POD
method.

Journal of Computational Physics 514 (2024) 113231

7

X. Dai, M. Hu, J. Xin et al.

Table 1
Complexity of different methods for the case of ý, ý and ÿ being separable in time and space.

Method Complexity

standard finite element (
ýý

)
×

ÿ

ÿý

standard POD method (
ýý

)
×

(
ÿ0

ÿý
+ 1

)
+(

ÿ2
ý
ýý

)
+(

ÿ3
)
×

ÿ−ÿ0

ÿý

adaptive POD method (
ýý

)
×

(
ÿ0+ÿý ⋅ÿÿ

ÿý
+ ÿý + 1

)
+(

ÿ2
ý
ýý

)
×

(
2ÿý + 1

)

+ (
ÿ3
ý

)
×

ÿ−ÿ0−ÿý ⋅ÿÿ

ÿý
+ ýest ×

ÿ−ÿ0−ÿý ⋅ÿÿ

ÿý

Table 2
Total complexity of different methods for the case of ý, ý, and ÿ being not separable in time
and space.

Method Complexity

standard finite element (
ýý

)
×

ÿ

ÿý

standard POD method (
ýý

)
×

(
ÿ

ÿý

)
+(

ÿ2
ý
ýý

)
+(

ÿ3
)
×

ÿ−ÿ0

ÿý

adaptive POD method (
ýý

)
×

(
ÿ

ÿý
+ ÿý

)
+(

ÿ2
ý
ýý

)
×

(
2ÿý + 1

)

+ (
ÿ3
ý

)
×

ÿ−ÿ0−ÿý ⋅ÿÿ

ÿý
+ ýest ×

ÿ−ÿ0−ÿý ⋅ÿÿ

ÿý

Case II: ý, ý and ÿ are not separable in time and space
We now consider the case that ý, ý and ÿ are not separable in time and space.
For the standard finite element method, we have to build the linear system (8) in all time instants. Similar to the case that ý,

ý, and ÿ are separable, the computational cost for building the linear system (8) in each time instant is 
(
ýý

)
, while the cost for

solving the discretized linear system is 
(
ýý

)
. Therefore, the total time cost for all the time interval [0, ÿ] is also

(
ýý

)
×
ÿ

ÿý
.

While for the standard POD method and the adaptive POD method, the only difference in computational cost between this case
and the case that ý, ý, and ÿ are separable lies in building the linear system (12). For this case, we have to calculate

(
ý ⋅∇ÿℎ,ÿ , ÿℎ,ÿ

)
, (

ýÿℎ,ÿ , ÿℎ,ÿ
)
and

(
ÿ,ÿℎ,ÿ

)
in all time instants. The cost for all the other parts is the same as that for the case that ý, ý, and ÿ are

separable.
Therefore, the computational cost for the standard POD method is

(
ýý

)
×

(
ÿ0

ÿý

)
+(

ÿ2ýýý

)
+

((
ÿ3

)
+(

ýý

))
×
ÿ − ÿ0

ÿý

=(
ýý

)
×

(
ÿ

ÿý

)
+(

ÿ2
ý
ýý

)
+(

ÿ3
)
×
ÿ − ÿ0

ÿý

While the computational cost for the adaptive POD method is

(
ýý

)
×

(
ÿ0 + ÿý ⋅ ÿÿ

ÿý
+ ÿý

)
+(

ÿ2ýýý

)
×

(
2ÿý + 1

)
+

((
ÿ3
ý

)
+(

ýý

))
×
ÿ − ÿ0 − ÿý ⋅ ÿÿ

ÿý

+ ýest ×
ÿ − ÿ0 − ÿý ⋅ ÿ

ÿý

=(
ýý

)
×

(
ÿ

ÿý
+ ÿý

)
+(

ÿ2ýýý

)
×

(
2ÿý + 1

)
+(

ÿ3
ý

)
×
ÿ − ÿ0 − ÿý ⋅ ÿÿ

ÿý
+ ýest ×

ÿ − ÿ0 − ÿý ⋅ ÿ

ÿý

Similar to the case that ý, ý and ÿ are separable in time and space, we summarize the total computational cost for each method
in Table 2.

If we take a detailed look at the Table 2, we can find that the computational cost for this case is much larger than the case ý, ý,
and ÿ being separable, since the computation for building the linear system (12) is 

(
ýý

)
at each time instant.

Here, we propose a strategy to reduce the computational cost. We take
(
ý ⋅∇ÿℎ,ÿ , ÿℎ,ÿ

)
for an example to illustrate the strategy. We

divide the time interval [ÿ0, ÿ] into ý ∈ℕ subintervals with equal length Δÿ = (ÿ −ÿ0)∕ý and set ÿý = ÿ0 +ý ⋅Δÿ , ý = 1, 2, ⋯ , ý ,
ÿý ≪ Δÿ . For each time interval [ÿý, ÿý+1], let ý

∗ be its middle point. For any ý ∈ [ÿý, ÿý+1], we expand the function ý(ý, ý) at ý
∗ by

Taylor expansion as follows:

ý(ý, ý) = ý(ý, ý∗) +
ÿý(ý, ý)

ÿý

||||ý=ý∗
(
ý− ý∗

)
+
ÿ2ý (ý, ý)

ÿý2

||||ý=ý∗ (ý− ý
∗)2 + ý

(
(ý− ý∗)2

)
.

Then we can do the similar operation as for the case ý being separable in time and space to evaluate
(
ý ⋅∇ÿℎ,ÿ , ÿℎ,ÿ

)
. We only need

to compute

(
ý(ý, ý∗) ⋅∇ÿℎ,ÿ , ÿℎ,ÿ

)
,

(
ÿý(ý, ý)

ÿý

||||ý=ý∗ ⋅∇ÿℎ,ÿ , ÿℎ,ÿ
)
,

(
ÿ2ý (ý, ý)

ÿý2

||||ý=ý∗ ⋅∇ÿℎ,ÿ , ÿℎ,ÿ
)

Journal of Computational Physics 514 (2024) 113231

8

X. Dai, M. Hu, J. Xin et al.

Table 3
Total complexity of different methods with new strategy for the case of ý, ý, and
ÿ being not separable in time and space.

Method Complexity

standard POD method (
ýý

)
×

(
ÿ

Δÿ
+ 1

)
+(

ÿ2
ý
ýý

)
+(

ÿ3
)
×

ÿ−ÿ0

ÿý

adaptive POD method (
ýý

)
×

(
ÿ

Δÿ
+ ÿý + 1

)
+(

ÿ2
ý
ýý

)
×

(
2ÿý + 1

)

+ (
ÿ3
ý

)
×

ÿ−ÿ0−ÿý ⋅ÿÿ

ÿý
+ ýest ×

ÿ−ÿ0−ÿý ⋅ÿÿ

ÿý

once in time interval [ÿý, ÿý+1], which costs (ýý). Then we multiply each element
(
ÿý(ý, ý)

ÿý

||||ý=ý∗ ⋅∇ÿℎ,ÿ , ÿℎ,ÿ
)
by (ý− ý∗), and

multiply
(
ÿ2ý (ý, ý)

ÿý2

||||ý=ý∗ ⋅∇ÿℎ,ÿ , ÿℎ,ÿ
)
by (ý − ý∗)2 at each time instant, which costs 

(
ÿ2

)
. Therefore, the cost for computing

(
ý ⋅∇ÿℎ,ÿ , ÿℎ,ÿ

)
on each Δÿ is

(
ýý

)
+(

ÿ2
)
×
Δÿ

ÿý
.

Similarly, the cost for computing
(
ýÿℎ,ÿ , ÿℎ,ÿ

)
and

(
ÿ,ÿℎ,ÿ

)
is also

(
ýý

)
+(

ÿ2
)
×
Δÿ

ÿý
.

Therefore, the total cost for building the linear system (12) is

(
ýý

)
×
ÿ − ÿ0

Δÿ
+(

ÿ2
)
×
ÿ − ÿ0

ÿý
.

By using this strategy, the time cost for the standard POD method and adaptive POD method are shown in Table 3. Since Δÿ ≫ ÿý,
we see that the computational cost is largely reduced compared with Table 2.

2.4. Typical existing adaptive POD methods

There are some existing works on adaptive POD methods [14,50,15]. The main difference between different adaptive POD methods
lies in the construction of the error indicator. Here, we introduce two typical methods, one is the residual based adaptive POD method
[14,50], the other is the two-grid based adaptive POD method [15].

For the residual based adaptive POD method, the residual is used to construct the error indicator. In detail, the error indicator ÿý
at time instant ý = ý ⋅ ÿý is defined as

ÿý =
‖ýý

ℎ
ý̃ÿ

ý
ℎ,POD

− ÿ
ý
ℎ
−ÿℎý̃ÿ

ý−1
ℎ,POD

‖2
‖ÿý

ℎ
+ÿℎý̃ÿ

ý−1
ℎ,POD

‖2
. (13)

We see that the computational cost ýest for ÿý is 
(
ýý

)
, the total computational cost for all steps Estimate is

(
ýý

)
×
ÿ − ÿ0 − ÿý ⋅ ÿÿ

ÿý
.

For the two-grid based adaptive POD method, two finite element spaces are constructed, the coarse finite element space ýÿ and
the fine finite element space ýℎ. The fine finite element space is used to construct the POD modes, while the coarse finite element
space is used to design the error indicator. Let Δý be the coarse time step. The error indicator ÿý at time instant ý = ý ⋅Δý is constructed
by the approximations in the coarse finite element space ýÿ , that is,

ÿý =
‖ÿý

ÿ
− ÿý

ÿ,POD
‖2

‖ÿý
ÿ

‖2
. (14)

Here ÿý
ÿ
, ÿý

ÿ,POD
are the standard finite element approximation and the adaptive POD approximation, respectively. For a given ÿ0 , if

ÿý > ÿ0, the time instant ý = ý ⋅Δý will be picked out.
Let ýÿ denote the degrees of freedom of the coarse space. According to the complexity analysis above, the cost for obtaining the

finite element approximations in coarse space is 
(
ýÿ

)
×

ÿ

Δý
, and the computational cost for obtaining the adaptive POD approxi-

mations in coarse space is

(
ýÿ

)
×

(
ÿ0 + ÿý ⋅ ÿÿ

Δý
+ ÿý + 1

)
+(

ÿ2ýýÿ

)
× (2ÿý + 1) +(

ÿ3
ý

)
×
ÿ − ÿ0 − ÿý ⋅ ÿÿ

Δý
.

Therefore, the computational cost for Estimate is

(
ýÿ

)
×

(
ÿ + ÿ0 + ÿý ⋅ ÿÿ

Δý
+ ÿý + 1

)
+(

ÿ2ýýÿ

)
× (2ÿý + 1) +(

ÿ3
ý

)
×
ÿ − ÿ0 − ÿý ⋅ ÿÿ

Δý
.

Journal of Computational Physics 514 (2024) 113231

9

X. Dai, M. Hu, J. Xin et al.

Since ýÿ ≪ýý , and ÿý ≪ Δý, the cost for step Estimate in the two-grid based adaptive POD method is usually much cheaper than
that for step Estimate in the residual based adaptive POD method.

3. Augmented subspace based adaptive POD method

As we mentioned above, the main difference between different adaptive POD methods is the construction of the error indicator.
In this section, we introduce a new approach for developing some new adaptive POD methods, based on introducing a new error
indicator.

3.1. General framework of the augmented subspace based adaptive POD method

The main idea of our new approach is to use some auxiliary modes to augment the current POD subspace, and then use the gap
between the approximation obtained in the augmented subspace and that obtained in the original POD subspace to develop an error
indicator.

Recall that the POD subspace is denoted as ýℎ,POD = span
{
ÿℎ,1,⋯ , ÿℎ,ÿ

}
. Let ÿℎ,ÿ+1, ⋯, ÿℎ,ÿ+ÿ be some modes which are nor-

malized and orthogonal against each other, and orthogonal against ýℎ,POD . Then, we augment the subspace ýℎ,POD by ý̃ℎ,POD =

ýℎ,POD ⊕ span
{
ÿℎ,ÿ+1,⋯ , ÿℎ,ÿ+ÿ

}
. Next we design the error indicator ÿý at time instant ý = ý ⋅ ÿý.

At time instant ý = (ý − 1) ⋅ ÿý, the POD approximation in the subspace ýℎ,POD can be expressed as

ÿý−1
ℎ,POD

(ý, ÿ, ÿ) =

ÿ∑
ÿ=1

ÿý−1
ℎ,ÿ

ÿℎ,ÿ (ý, ÿ, ÿ) . (15)

The approximation in the augmented subspace ý̃ℎ,POD at time instant ý = ý ⋅ ÿý can be expressed as

ÿ̃ý
ℎ,POD

(ý, ÿ, ÿ) =

ÿ+ÿ∑
ÿ=1

ÿ̃ý
ℎ,ÿ
ÿℎ,ÿ (ý, ÿ, ÿ) . (16)

Inserting (15) and (16) into (3), and setting ÿ = ÿℎ,ÿ , ÿ = 1, 2, ⋯ , ÿ + ÿ, respectively, we get
(
ÿ+ÿ∑
ÿ=1

ÿ̃ý
ℎ,ÿ
ÿℎ,ÿ −

ÿ∑
ÿ=1

ÿý−1
ℎ,ÿ

ÿℎ,ÿ, ÿℎ,ÿ

)
+ ÿý ⋅ ÿ

(
ýý;

ÿ+ÿ∑
ÿ=1

ÿ̃ý
ℎ,ÿ
ÿℎ,ÿ, ÿℎ,ÿ

)
= ÿý ⋅

(
ÿý, ÿℎ,ÿ

)
. (17)

The equation (17) can be rewritten as(
ÿ+ÿ∑
ÿ=1

ÿ̃ý
ℎ,ÿ
ÿℎ,ÿ, ÿℎ,ÿ

)
+ ÿý ⋅ ÿ

(
ýý;

ÿ+ÿ∑
ÿ=1

ÿ̃ý
ℎ,ÿ
ÿℎ,ÿ, ÿℎ,ÿ

)
= ÿý ⋅

(
ÿý, ÿℎ,ÿ

)
+

(
ÿ∑
ÿ=1

ÿý−1
ℎ,ÿ

ÿℎ,ÿ, ÿℎ,ÿ

)
. (18)

Define

ý̃
ý
ℎ,ÿÿ

=
(
ÿℎ,ÿ , ÿℎ,ÿ

)
+ ÿý ⋅ ÿ

(
ýý;ÿℎ,ÿ , ÿℎ,ÿ

)
,

ÿ̃
ý
ℎ
= ÿý ⋅

(
(ÿý, ÿℎ,1),⋯ , (ÿý, ÿℎ,ÿ+ÿ)

)ÿ
, ÿ̃ℎ,ÿÿ =

(
ÿℎ,ÿ , ÿℎ,ÿ

)
,

ÿ
ý−1
ℎ,POD

=
(
ÿý−1
ℎ,1

,⋯ , ÿý−1
ℎ,ÿ

)ÿ
, ÿ̃ý
ℎ,POD

=
(
ÿ̃ý
ℎ,1
,⋯ , ÿ̃ý

ℎ,ÿ+ÿ

)ÿ
.

Then we obtain the following algebraic system from (18)

ý̃
ý
ℎ
ÿ̃
ý
ℎ,POD

= ÿ̃
ý
ℎ
+ ÿ̃ℎÿ

ý−1
ℎ,POD

, (19)

where ý̃ý
ℎ
=

(
ý̃
ý
ℎ,ÿÿ

)
(ÿ+ÿ)×(ÿ+ÿ)

and ÿ̃ℎ =
(
ÿ̃ℎ,ÿÿ

)
(ÿ+ÿ)×(ÿ+ÿ)

.

We define the error indicator ÿý at time instant ý = ý ⋅ ÿý as

ÿý =
‖ÿ̃ý

ℎ,POD
− ÿý

ℎ,POD
‖2

‖ÿ̃ý
ℎ,POD

‖2
. (20)

For the convenience of the following discussion, we summarize the process for computing the error indicator as routine Er-
ror_Indicator (ýý

ℎ
, ÿý
ℎ
, ÿℎ, ý̄

ý
ℎ
, ̄ÿý
ℎ
, ÿ̄ℎ, ÿ

ý−1
ℎ,POD

, ýý, ÿℎ, ÿý) in Algorithm 4, where ýý denotes the ÿ auxiliary vectors at time instant
ý = ý ⋅ ÿý. We now see the computational cost of the step Estimate at each time instant. Denote the cost for constructing the auxiliary
modes as ýÿÿý. The operation of orthogonalization requires dot product of two vectors ÿ ⋅ ÿý + ÿ(ÿ − 1)∕2 times, where ÿý is the
number of vectors in ý̃, and the operation of normalization requires dot product of two vectors only ÿ times. Note that the cost for
dot product of two vectors with length ýý is 

(
ýý

)
and ÿý, ÿ ≪ýý , the computational cost for all the operations of orthogonal

normalization is 
(
ýý

)
. We note that the matrix in (21) can be obtained from the previously calculated linear system (12) except for

the terms which contain ýý, we only require to compute the elements of the last ÿ rows and the last ÿ columns of the matrix. Thanks
to the sparsity of ýý

ℎ
and ÿℎ, the cost for building the augmented linear system is 

(
ýý

)
. Since the size of the linear system in (21)

Journal of Computational Physics 514 (2024) 113231

10

X. Dai, M. Hu, J. Xin et al.

Algorithm 4 Error_Indicator (ýý
ℎ
, ÿý
ℎ
, ÿℎ, ý̄

ý
ℎ
, ̄ÿý
ℎ
, ÿ̄ℎ, ÿ

ý−1
ℎ,POD

, ÿý
ℎ,POD

, ýý, ÿℎ, ÿý).

Input: ýý
ℎ
, ÿý

ℎ
, ÿℎ, ̄ýý

ℎ
, ̄ÿý

ℎ
, ÿ̄ℎ, ÿý−1ℎ,POD

, ÿý
ℎ,POD

, ýý and ÿℎ , ÿℎ =ÿℎý̃;
Output: ÿý ;

1: Orthogonalize the vectors ýý against ̃ý and make them normalized and orthogonal against each other. Denote the orthogonalized and normalized vectors still as
ýý ;

2: Compute ̃ÿý
ℎ,POD

by

[
ý̄
ý
ℎ

ý̃ÿý
ý
ℎ
ýý

ý
ÿ
ý
ý
ý
ℎ
ý̃ ý

ÿ
ý
ý
ý
ℎ
ýý

]
ÿ̃
ý
ℎ,POD

=

[
ÿ̄
ý
ℎ

ý
ÿ
ý
ÿ
ý
ℎ

]
+

[
ÿ̄ℎ

ý
ÿ
ý
ÿℎý̃

]
ÿ
ý−1
ℎ,POD

; (21)

3: Obtain the error indicator ÿý by (20);

is only ÿ more than that of linear system (12), similar to the analysis for the adaptive POD method, the cost for computing ̃ÿý
ℎ,POD

is


(
(ÿý + ÿ)3

)
. The computational cost for ÿý in (20) is 

(
ýý

)
. Therefore, the cost for step Estimate at each time instant is

(
ýý

)
+(

(ÿý + ÿ)3
)
+ ýÿÿý.

Remark 1. By some simple formal analysis, we can see that it is reasonable to use ÿý defined in (20) as an error indicator. It is obvious
that

ÿý
ℎ,POD

− ÿ̃ý
ℎ,POD

= ÿý
ℎ,POD

− ÿý
ℎ
+ ÿý

ℎ
− ÿ̃ý

ℎ,POD
. (22)

Since ýℎ,POD ⊂ ý̃ℎ,POD ⊂ ýℎ, we have

‖ÿý
ℎ
− ÿ̃ý

ℎ,POD
‖2 ≤ ‖ÿý

ℎ
− ÿý

ℎ,POD
‖2. (23)

From (22) and (23), we easily obtain

1

2
‖ÿý

ℎ,POD
− ÿ̃ý

ℎ,POD
‖2 ≤ ‖ÿý

ℎ
− ÿý

ℎ,POD
‖2.

In further, if there exists 0 < ÿ < 1, s.t. ‖ÿý
ℎ
− ÿ̃ý

ℎ,POD
‖2 ≤ ÿ‖ÿýℎ − ÿýℎ,POD‖2, then from (22) we have

‖ÿý
ℎ
− ÿý

ℎ,POD
‖2 ≤ ‖ÿý

ℎ
− ÿ̃ý

ℎ,POD
‖2 + ‖ÿý

ℎ,POD
− ÿ̃ý

ℎ,POD
‖2 ≤ ÿ‖ÿýℎ − ÿýℎ,POD‖2 + ‖ÿý

ℎ,POD
− ÿ̃ý

ℎ,POD
‖2,

from which we get

‖ÿý
ℎ
− ÿý

ℎ,POD
‖2 ≤ 1

1 − ÿ
‖ÿý

ℎ,POD
− ÿ̃ý

ℎ,POD
‖2.

Therefore,

1

2
‖ÿý

ℎ,POD
− ÿ̃ý

ℎ,POD
‖2 ≤ ‖ÿý

ℎ
− ÿý

ℎ,POD
‖2 ≤ 1

1 − ÿ
‖ÿý

ℎ,POD
− ÿ̃ý

ℎ,POD
‖2. (24)

We want to point out that the analysis given above is some explanatory analysis. The error bound given in (24) is meaningful only
when ÿ is as close as possible to 0. However, it is usually very difficult to find some auxiliary modes to make the condition that ÿ is
as close as possible to 0 holds true.

Implementing the new error indicator defined in (20) into step 8 of Algorithm 3, we then obtain the general framework of our
augmented subspace based adaptive POD method, as shown in Algorithm 5.

3.2. Specific augmented subspace based adaptive POD methods

The key for constructing the auxiliary modes includes two points: one is that the auxiliary modes can not be orthogonal to the
exact solution, and it is better that the angles between these auxiliary modes and the exact solution are far away from ÿ∕2, the other is
that they should be cheap to be constructed. We now provide two specific methods for obtaining the auxiliary modes. For simplicity,
we only consider the case of ÿ = 1.

3.2.1. Coarse-grid approximation type augmented subspace
We see from [15] that the solution obtained in the coarse finite element space is a good approximation for the solution obtained in

the fine finite element space. Moreover, the computational cost for obtaining the solution approximation in the coarse finite element
space is far less than that for obtaining the solution approximation in the fine finite element space. Therefore, here, we consider to use
the approximated solution obtained in the coarse finite element space as the auxiliary mode to augment the current POD subspace.

We denote ÿý
ÿ
the finite element approximation in coarse finite element space ýÿ at each time instant ý = ý ⋅ Δý, where ý =

0, 1, ⋯ , + ÿ

Δý
, and Δý still denotes the coarse time step, ÿý ≪Δý. We denote the interpolation of ÿý

ÿ
in the fine finite element space by

ÿý
ÿ,ý

. We set

Journal of Computational Physics 514 (2024) 113231

11

X. Dai, M. Hu, J. Xin et al.

Algorithm 5 General framework of the augmented subspace based adaptive POD method.
1: Given ÿý, ÿ0 , ÿÿ , ÿ , ÿ1 , ÿ2 , ÿ3 , ÿý , ÿ0 and the mesh ℎ ;
2: Discretize (3) in ýℎ on interval [0, ÿ0] and obtain ýý

ℎ
, ÿý

ℎ
, ÿℎ , ÿýℎ , ∀ý ∈ [0, +ÿ0∕ÿý,], then obtain snapshots ýℎ at different times ý0 , ýÿý , ⋯, ýÿý ⋅ÿý ;

3: Construct POD modes ÿℎ =
{
ÿℎ,1,⋯ , ÿℎ,ÿ

}
by POD_Mode (ýℎ, ÿ1, ÿℎ, ÿ, ÿℎ);

4: ý = ÿ0 , ý =
ÿ0

ÿý
;

5: while ý ≤ ÿ do
6: ý = ý + ÿý, ý = ý + 1;
7: Discretize (3) in the POD subspace ýℎ,POD = span

{
ÿℎ,1,⋯ , ÿℎ,ÿ

}
, then obtain ý̄ý

ℎ
, ̄ÿý

ℎ
, ÿ̄ℎ and ÿýℎ,POD ;

8: Provide some auxiliary vectors ý
ý
,

9: Compute error indicator ÿý by Error_Indicator (ýý
ℎ
, ÿý

ℎ
, ÿℎ, ̄ýý

ℎ
, ̄ÿý

ℎ
, ÿ̄ℎ, ÿý−1ℎ,POD

, ÿý
ℎ,POD

, ýý, ÿℎ, ÿý);
10: if ÿý > ÿ0 then
11: ý = ý − ÿý, ý = ý − 1;
12: Discretize (3) in ýℎ on interval [ý, ý + ÿÿ] to get ÿý+ÿℎ

, ÿ = 1, ⋯ , ÿÿ
ÿý
, then obtain snapshots ÿℎ,1 ;

13: Update POD modes ÿℎ by Update_POD_Mode (ÿℎ,1, ÿ2, ÿ3, ÿℎ, ÿ, ÿℎ);

14: ý = ý + ÿÿ

ÿý
;

15: end if
16: end while

ýý = ÿ
ý
ÿ,ý

,

where ý = Δý

ÿý
ý.

Since we need to compute the auxiliary modes for the whole time interval in advance, the algorithm is a little different from the
Algorithm 5. The whole routine of the augmented subspace based adaptive POD method with coarse-grid approximation is shown in
Algorithm 6.

Algorithm 6 Augmented subspace based adaptive POD method with coarse-grid approximation.
1: Given ÿý, Δý, ÿ0 , ÿÿ , ÿ , ÿ1 , ÿ2 , ÿ3 , ÿ0 , ÿý and the mesh ℎ , ÿ ;
2: Discretize (3) in ýÿ on interval [0, ÿ], and obtain the approximations {ÿý

ÿ
}, ∀ý ∈ [0, + ÿ

Δý
,];

3: Interpolate {ÿý
ÿ
} to the fine finite element space, then obtain the interpolations {ÿý

ÿ,ý
};

4: Discretize (3) in ýℎ on interval [0, ÿ0] and obtain ýý
ℎ
, ÿý

ℎ
, ÿℎ , ÿýℎ , ∀ý ∈ [0, +ÿ0∕ÿý,], then obtain snapshots ýℎ at different times ý0 , ýÿý , ⋯, ýÿý ⋅ÿý ;

5: Construct POD modes ÿℎ =
{
ÿℎ,1,⋯ , ÿℎ,ÿ

}
by POD_Mode (ýℎ, ÿ1, ÿℎ, ÿ, ÿℎ);

6: ý = ÿ0 , ý =
ÿ0

ÿý
, ý = Δý

ÿý
;

7: while ý ≤ ÿ do
8: ý = ý + ÿý, ý = ý + 1;
9: Discretize (3) in the subspace ýℎ,POD = span

{
ÿℎ,1,⋯ , ÿℎ,ÿ

}
, then obtain ý̄ý

ℎ
, ̄ÿý

ℎ
, ÿ̄ℎ and ÿýℎ,POD ;

10: if ý%ý = 0 then
11: ý =

ý

ý
;

12: Compute error indicator ÿý by Error_Indicator (ýý
ℎ
, ÿý

ℎ
, ÿℎ, ̄ýý

ℎ
, ̄ÿý

ℎ
, ÿ̄ℎ, ÿý−1ℎ,POD

, ÿý
ℎ,POD

, ÿý
ÿ,ý

, ÿℎ, ÿý);
13: if ÿý > ÿ0 then
14: ý = ý − ÿý, ý = ý − 1;
15: Discretize (3) in ýℎ on interval [ý, ý + ÿÿ] to get ÿý+ÿℎ

, ÿ = 1, ⋯ , ÿÿ
ÿý
, then obtain snapshots ÿℎ,1 ;

16: Update POD modes ÿℎ by Update_POD_Mode (ÿℎ,1, ÿ2, ÿ3, ÿℎ, ÿ, ÿℎ);

17: ý = ý + ÿÿ

ÿý
;

18: end if
19: end if
20: end while

Next we analyze the computational complexity of the step Estimate for this strategy. As we mentioned above, the cost for obtaining
the finite element approximation at each time instant in the coarse finite element space is 

(
ýÿ

)
. The cost for interpolating a function

in the coarse finite element space to the fine finite element space is 
(
ýý

)
. From the analysis in the Subsection 3.1, the cost for step

Estimate at each time instant is

(
ýý

)
+(

ÿ3
ý

)
+(

ýÿ

)
.

We only need to compute the error indicator at each coarse time step. Therefore, the total cost for Estimate is

((
ýý

)
+(

ÿ3
ý

))
×
ÿ − ÿ0 − ÿý ⋅ ÿÿ

Δý
+

((
ýÿ

)
+(

ýý

))
×
ÿ

Δý
.

Since ÿý ≪Δý and ýÿ ≪ýý , the cost for Estimate is relatively cheap compared with the cost for the other parts.

3.2.2. Residual type augmented subspace
Motivated by [5], here we consider using the residual corresponding to the POD approximation at time instant ý = ý ⋅ ÿý

ýý =ý
ý
ℎ
ý̃ÿ

ý
ℎ,POD

− ÿ
ý
ℎ
−ÿℎý̃ÿ

ý−1
ℎ,POD

as the auxiliary mode. Applying ýý into step 8 of Algorithm 5, we obtain the residual type augmented subspace based adaptive POD
method.

Journal of Computational Physics 514 (2024) 113231

12

X. Dai, M. Hu, J. Xin et al.

Algorithm 7 POD_Mode_Weight(ýℎ, ÿ, ÿℎ, ÿ, ÿ, ÿℎ).

Input: ýℎ, ÿ, ÿℎ =
(
ÿℎ,1, ÿℎ,2,⋯ , ÿℎ,ÿ

)
;

Output: m, POD modes Ψℎ =
(
ÿℎ,1, ÿℎ,2,⋯ , ÿℎ,ÿ

)
and ÿ;

1: Perform SVD on ýℎ to obtain ýℎ =ýÿýÿ , where S = diag
{
ÿ1, ÿ2,⋯ , ÿÿ

}
with ÿ1 ≥ ÿ2 ≥⋯ ≥ ÿÿ > 0;

2: Set ÿ =min

{
ý|

ý∑
ÿ=1

ÿÿ,ÿ > ÿ ⋅ Trace(ÿ)

}
;

3:
(
ÿℎ,1, ÿℎ,2,⋯ , ÿℎ,ÿ

)
=ÿℎý[∶, 1 ∶ÿ];

Algorithm 8 Update_POD_Mode_Weight (ÿℎ,1, ÿ2, ÿ3, ÿℎ, ÿ, ÿ2, ÿ, ÿℎ).

Input: ÿℎ,1, ÿ2, ÿ3, ÿℎ = (ÿℎ,1, ÿℎ,2, ⋯ , ÿℎ,ÿ), ÿ, ÿ2 , ÿ and ÿ old POD modes ÿℎ, ÿℎ =ÿℎý̃.
Output: new ÿ, new ÿ2 and new ÿ POD modes

{
ÿℎ,1, ÿℎ,2,⋯ , ÿℎ,ÿ

}
.

1: Perform SVD on ÿℎ,1 to obtain ÿℎ,1 =ý1ÿ1ý
ÿ
1
, where ÿ

ÿ
= diag

{
ÿ1,1, ÿ1,2,⋯ , ÿ1,ÿ1

}
with ÿ1,1 ≥ ÿ1,2 ≥⋯ ≥ ÿ1,ÿ1 > 0;

2: Set ÿ1 =min

{
ý ∶

ý∑
ÿ=1

ÿ1,ÿÿ > ÿ2 ⋅ Trace(ÿ1)

}
, ÿ̂ÿ =min

⎧⎪⎪«⎪⎪¬

ÿ2,ÿ√
ÿ∑
ý=1

(ÿ2,ý)
2

,
ï|ÿÿ |ð√
ÿ∑
ý=1

ï|ÿý|ð2

«⎪⎪¬⎪⎪­

, ÿÿ =
ÿ1,ÿ√
ÿ1∑
ý=1

(ÿ1,ý)
2

.

3: Perform SVD on

ÿℎ,2 = [ÿ̂1ý̃[∶,1],⋯ , ÿ̂ÿý̃[∶,ÿ], ÿ1ý1[∶,1],⋯ , ÿÿ1
ý1[∶,ÿ1]],

and obtain ÿℎ,2 =ý2ÿ2ý
ÿ
2
, where ÿ

ÿ
= diag

{
ÿ2,1, ÿ2,2,⋯ , ÿ2,ÿ2

}
with ÿ2,1 ≥ ÿ2,2 ≥⋯ ≥ ÿ2,ÿ2 > 0;

4: Set ÿ =min

{
ý ∶

ý∑
ÿ=1

ÿ2,ÿÿ > ÿ3 ⋅ Trace(ÿ2)

}
, and ̃ý =ý2[∶, 1 ∶ÿ];

5: (ÿℎ,1, ÿℎ,2, ⋯ , ÿℎ,ÿ) =ÿℎý̃;

We now see the computational cost. The cost for computing the residual is 
(
ýý

)
. From the analysis in the Subsection 3.1, the

cost for step Estimate at each time instant is

(
ýý

)
+(

ÿ3
ý

)
.

3.3. Weighting strategy

Inspired by [50], we introduce some weight to each mode when updating the POD modes. We hope this strategy can improve the
efficiency of the POD modes. Recall that the POD approximation at the time instant ý = ý ⋅ ÿý can be expressed as

ÿý
ℎ,POD

(ý, ÿ, ÿ) =

ÿ∑
ÿ=1

ÿý
ℎ,ÿ
ÿℎ,ÿ (ý, ÿ, ÿ) ,

where ÿ denotes the number of the POD modes. A little different from Subsection 2.2, we update the POD modes by performing SVD
on

ÿℎ,2 = [ÿ̂1ý̃[∶,1],⋯ , ÿ̂ÿý̃[∶,ÿ], ÿ1ý1[∶,1],⋯ , ÿÿ1
ý1[∶,ÿ1]],

where the weights ÿ̂ÿ and ÿÿ are defined as

ÿ̂ÿ =min

⎧⎪⎪«⎪⎪¬

ÿ2,ÿ√
ÿ∑
ý=1

(ÿ2,ý)
2

,
ï|ÿÿ |ð√
ÿ∑
ý=1

ï|ÿý|ð2

«⎪⎪¬⎪⎪­

, ÿÿ =
ÿ1,ÿ√

ÿ1∑
ý=1

(ÿ1,ý)
2

.

Here ÿ2,ÿ , ÿ1,ÿ are the singular values corresponding to ý̃[∶, ÿ] and ý1[∶, ÿ], respectively, and ï|ÿÿ |ð is the temporal mean value of
|ÿý
ℎ,ÿ

| provided by the POD solution over the last time interval solved by the POD method.
We set ÿ ∶= [ï|ÿ1|ð, ï|ÿ2|ð, ⋯ , ï|ÿÿ|ð]. For the convenience of the following discussion, we summarize this process for the POD

modes as routine POD_Mode_Weight (ýℎ, ÿ, ÿℎ, ÿ, ÿ, ÿℎ) in Algorithm 7 and the step Update as routine Update_POD_Mode_
Weight (ÿℎ,1, ÿ2, ÿ3, ÿℎ, ÿ, ÿ2, ÿ, ÿℎ) in Algorithm 8.

Replace Algorithm 1 and Algorithm 2 in Algorithm 5 by Algorithm 7 and Algorithm 8, respectively, and compute ÿ before
updating the POD modes, then we obtain the general framework of the weighting augmented subspace based adaptive POD method,
see Algorithm 9 for the details.

Journal of Computational Physics 514 (2024) 113231

13

X. Dai, M. Hu, J. Xin et al.

Algorithm 9 General framework of the weighting augmented subspace based adaptive POD method.
1: Given ÿý, ÿ0 , ÿÿ , ÿ , ÿ1 , ÿ2 , ÿ3 , ÿ0 , ÿý and the mesh ℎ ;
2: Discretize (3) in ýℎ on interval [0, ÿ0] and obtain ýý

ℎ
, ÿý

ℎ
, ÿℎ , ÿýℎ , ∀ý ∈ [0, +ÿ0∕ÿý,], then obtain snapshots ýℎ at different times ý0 , ýÿý , ⋯, ýÿý ⋅ÿý ;

3: Construct POD modes ÿℎ =
{
ÿℎ,1,⋯ , ÿℎ,ÿ

}
by POD_Mode_Weight (ýℎ, ÿ1, ÿℎ, ÿ, ÿ, ÿℎ);

4: ý = ÿ0 , ý =
ÿ0

ÿý
;

5: while ý ≤ ÿ do
6: ý = ý + ÿý, ý = ý + 1;
7: Discretize (3) in the POD subspace ýℎ,POD = span

{
ÿℎ,1,⋯ , ÿℎ,ÿ

}
, then obtain ý̄ý

ℎ
, ̄ÿý

ℎ
, ÿ̄ℎ and ÿýℎ,POD ;

8: Provide some auxiliary vectors ý
ý
,

9: Compute error indicator ÿý by Error_Indicator (ýý
ℎ
, ÿý

ℎ
, ÿℎ, ̄ýý

ℎ
, ̄ÿý

ℎ
, ÿ̄ℎ, ÿý−1ℎ,POD

, ÿý
ℎ,POD

, ýý, ÿℎ, ÿý);
10: if ÿý > ÿ0 then
11: ý = ý − ÿý, ý = ý − 1;
12: Compute ÿ = [ï|ÿ1|ð, ï|ÿ2|ð, ⋯ , ï|ÿÿ|ð];
13: Discretize (3) in ýℎ on interval [ý, ý + ÿÿ] to get ÿý+ÿℎ

, ÿ = 1, ⋯ , ÿÿ
ÿý
, then obtain snapshots ÿℎ,1 ;

14: Update POD modes ÿℎ by Update_POD_Mode_Weight (ÿℎ,1, ÿ2, ÿ3, ÿℎ, ÿ, ÿ, ÿ, ÿℎ);

15: ý = ý + ÿÿ

ÿý
;

16: end if
17: end while

4. Numerical examples

In this section, we will use two typical fluid advection fields with chaotic streamlines, the Kolmogorov flow and the ABC flow, to
show the accuracy and efficiency of our augmented subspace based adaptive POD method.

We use the standard finite element method approximation as the reference solution, and compare our new methods with the
standard POD method and the two-grid based adaptive POD method, respectively. Since the two-grid based adaptive POD method
has been compared with some other existing adaptive POD methods and has shown to be more efficient than the other adaptive POD
methods in [15], we do not compare our new methods with the other adaptive POD methods here.

The relative error of the approximation obtained at each time instant is calculated by

Error =
‖ÿý

ℎ
− ÿý

ℎ,∗
‖2

‖ÿý
ℎ
‖2

, (25)

where ÿý
ℎ
and ÿý

ℎ,∗
represent the finite element approximations and different types of the POD approximations at different times ý = ýý,

respectively. The numerical experiments are carried out on the high performance computers LSSC-IV of the State Key Laboratory of
Scientific and Engineering Computing, Chinese Academy of Sciences, and our code is based on the toolbox PHG [47].

In the following discussions, we denote the standard finite element method, the standard POD method and the two-grid based
adaptive POD method as “FEM”, “POD” and “TG-APOD”, respectively. For the augmented subspace based adaptive POD methods, we
denote the methods based on residual and coarse-grid approximation as “Res-Aug-APOD” and “Coarse-Aug-APOD”, respectively. We
add “-W” to each method to denote the method in Algorithm 9 where some weights are introduced to each mode when updating the
POD modes. To compare more clearly, we will bold the best results among those obtained by different methods for each case of ÿ.

4.1. Kolmogorov flow

We consider the following advection-diffusion equation with the advection being the Kolmogorov flow [43,6],

⎧⎪«⎪¬

ÿý − ÿΔÿ+ý(ý, ÿ, ÿ, ý) ⋅∇ÿ = ÿ (ý, ÿ, ÿ, ý), (ý, ÿ, ÿ) ∈ Ω, ý ∈ [0, ÿ],

ÿ(ý, ÿ, ÿ,0) = 0,

ÿ(ý+ 2ÿ, ÿ, ÿ, ý) = ÿ(ý, ÿ+ 2ÿ, ÿ, ý) = ÿ(ý, ÿ, ÿ+ 2ÿ, ý) = ÿ(ý, ÿ, ÿ, ý),

(26)

where

ý(ý, ÿ, ÿ, ý) = (cos(ÿ), cos(ÿ), cos(ý)) + (sin(ÿ), sin(ý), sin(ÿ)) cos(ý),

ÿ (ý, ÿ, ÿ, ý) = −cos(ÿ) − sin(ÿ) ⋅ cos(ý),

Ω= [0,2ÿ]3, ÿ = 100.

We will test 6 different cases with ÿ = 1, 0.5, 0.1, 0.05, 0.01, 0.005, respectively. We first divide Ω into 6 tetrahedrons to act as the
initial mesh. Then we refine the initial mesh 23 times uniformly using bisection to obtain the fine mesh for cases of ÿ = 1, 0.5, 0.1, 0.05,
and refine the initial mesh 24 times to obtain the fine mesh for cases of ÿ = 0.01, 0.005. We use the piecewise linear function as the
finite element basis and set ÿý = 5 × 10−3. For all the POD type methods, we set ÿ0 = 5, ÿý = 20. For the adaptive POD methods, we
set ÿÿ = 4. In all the numerical experiments, we choose the parameters ÿÿ (ÿ = 1, 2, 3) as ÿ1 = ÿ2 = 0.999, ÿ3 = 1.0 −1.0 ×10−8. For the
methods TG-APOD and Coarse-Aug-APOD, we refine the initial mesh 14 times to obtain the coarse mesh for cases of ÿ = 1, 0.5, 0.1,
and refine the initial mesh 15 times to obtain the coarse mesh for cases of ÿ = 0.05, 0.01 and refine the initial mesh 16 times to
obtain the coarse mesh for case of ÿ = 0.005. The time steps corresponding to the coarse finite element spaces are 0.2, 0.125 and 0.1,

Journal of Computational Physics 514 (2024) 113231

14

X. Dai, M. Hu, J. Xin et al.

Fig. 1. The evolution curves of the error indicator and the error obtained by the method Residual-Aug-APOD for solution of (26) with ÿ = 1, 0.5, 0.1, 0.05, 0.01, 0.005,
respectively. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

respectively. We use 72 processors to do the simulation for cases of the fine mesh being obtained by refining the initial mesh 23 times,
and 180 processors for cases of the fine mesh being obtained by refining the initial mesh 24 times.

We first show the variation of the error and the error indicator obtained by our methods Res-Aug-APOD and Coarse-Aug-APOD
in Fig. 1 and Fig. 2, respectively. The sub-figures at the top describe the variation curves of error and error indicator on time interval

Journal of Computational Physics 514 (2024) 113231

15

X. Dai, M. Hu, J. Xin et al.

Fig. 2. The evolution curves of the error indicator and the error obtained by the method Coarse-Aug-APOD for solution of (26) with ÿ = 1, 0.5, 0.1, 0.05, 0.01, 0.005,
respectively.

Journal of Computational Physics 514 (2024) 113231

16

X. Dai, M. Hu, J. Xin et al.

Table 4
The results of (26) with different ÿ obtained by methods FEM, POD, TG-APOD, Res-Aug-APOD, Coarse-Aug-APOD, Res-Aug-APOD-W and Coarse-Aug-APOD-W,
respectively.

ÿ Method ÿ0 Update Times DOFs Error Average Error Time(s)

1 FEM - - 10485760 - - 15041.77
POD - - 19 0.003877 0.001094 1859.07
TG-APOD 1 × 10−3 1 13 0.000350 0.000207 1829.59
Res-Aug-APOD 1 × 10−5 1 13 0.000465 0.000240 2582.48
Coarse-Aug-APOD 1 × 10−5 1 14 0.000347 0.000184 1900.86
Res-Aug-APOD-W 1 × 10−5 1 13 0.000465 0.000240 2590.02
Coarse-Aug-APOD-W 1 × 10−5 1 13 0.000347 0.000184 1885.10

0.5 FEM - - 10485760 - - 14772.71
POD - - 22 0.002337 0.009928 1805.14
TG-APOD 5 × 10−3 1 15 0.001546 0.001568 1685.59
Res-Aug-APOD 1 × 10−5 1 16 0.001349 0.000872 2448.96
Coarse-Aug-APOD 1 × 10−5 1 16 0.000706 0.000808 1726.65
Res-Aug-APOD-W 1 × 10−5 1 16 0.001349 0.000872 2429.59
Coarse-Aug-APOD-W 1 × 10−5 1 16 0.000706 0.000808 1752.03

0.1 FEM - - 10485760 - - 14998.48
POD - - 29 0.140401 0.223960 1943.66
TG-APOD 1 × 10−3 3 47 0.001719 0.001238 3154.18
Res-Aug-APOD 1 × 10−5 3 48 0.001428 0.000839 3874.90
Coarse-Aug-APOD 1 × 10−5 3 48 0.001428 0.000839 3182.90
Res-Aug-APOD-W 1 × 10−5 3 48 0.001428 0.000839 3845.91
Coarse-Aug-APOD-W 1 × 10−5 3 48 0.001428 0.000839 3141.46

0.05 FEM - - 10485760 - - 13188.19
POD - - 34 0.325160 0.415044 1448.42
TG-APOD 1 × 10−3 5 85 0.000620 0.000958 4754.66
Res-Aug-APOD 1 × 10−5 5 88 0.000334 0.000479 5654.76
Coarse-Aug-APOD 1 × 10−5 5 89 0.001293 0.000890 4858.62
Res-Aug-APOD-W 1 × 10−5 5 88 0.000334 0.000479 5663.85
Coarse-Aug-APOD-W 1 × 10−5 5 89 0.001293 0.000890 4822.26

0.01 FEM - - 16777216 - - 11784.99
POD - - 43 0.919008 0.777626 1267.46
TG-APOD 1 × 10−3 6 166 0.007042 0.004837 5072.23
Res-Aug-APOD 2 × 10−4 6 172 0.006008 0.003650 6338.19
Coarse-Aug-APOD 1 × 10−5 6 172 0.006208 0.003351 5280.25
Res-Aug-APOD-W 2 × 10−4 6 170 0.006011 0.003644 6196.64
Coarse-Aug-APOD-W 1 × 10−5 6 170 0.006169 0.003339 5249.77

0.005 FEM - - 16777216 - - 12526.50
POD - - 45 1.010868 0.871304 1306.83
TG-APOD 1 × 10−3 7 235 0.008957 0.007559 6661.74
Res-Aug-APOD 3 × 10−4 8 270 0.002095 0.002329 8605.53
Coarse-Aug-APOD 1 × 10−5 7 239 0.007957 0.004724 6778.84
Res-Aug-APOD-W 3 × 10−4 8 267 0.002094 0.002346 8655.01
Coarse-Aug-APOD-W 1 × 10−5 7 237 0.007974 0.004732 6679.24

[0, 50], and the sub-figures at the bottom describe those on time interval [50, 100]. The x-axis of each sub-figure is the time, the y-axis
in the left of each sub-figure is the error which is defined by (25), while the y-axis in the right of each sub-figure is the error indicator
defined by (20). In each sub-figure, the blue curve describes the variation of the error, the orange curve describes the variation of
the error indicator, and the black star denotes the marked time instant when the POD modes are to be updated. It should be pointed
out that the error at the marked time instant is that obtained before the update of the POD modes.

From each sub-figure at the bottom of Fig. 1 and Fig. 2, the time instants when the error indicator achieves its local maximizer
coincide very well with those when the error achieves its local maximizer. This indicates that our error indicator is very effective in
picking out the time instant when the POD subspace is needed to be updated.

However, we also observe that the error indicator is about one to two order of magnitude smaller than the exact error. In our
opinion, the error indicator we used in this paper is not an error estimator, it is just an error detector. For an error estimator, we
require that it can bound the error from below and above. An error detector, which may not be able to bound the error from below
and above, but can just tell us that if the error is observable or not. In an adaptive POD method, we only need an indicator to tell us
if we need update the POD subspace or not, whether it can bound the exact error is not important.

Some numerical results obtained by different methods are shown in Table 4. We set different thresholds ÿ0 for different adaptive
POD methods, since the meanings of the two error indicators are different. The error indicator for the method TG-APOD can be viewed
as an error estimator, which can bound the exact error when the approximation obtained on the coarse mesh is a good approximation
to that obtained on the fine mesh. In fact, we can observe from the numerical tests in [15] that the variation of the error indicator

Journal of Computational Physics 514 (2024) 113231

17

X. Dai, M. Hu, J. Xin et al.

Table 5
The results of (26) with ÿ = 0.01, 0.005 for some cases of the weighting strategy performing well.

ÿ Method ÿ3 Update Times DOFs Error Average Error Time (s)

0.01 Res-Aug-APOD 1 − 1 × 10−4 6 164 0.008184 0.005161 6191.93
Res-Aug-APOD-W 1 − 1 × 10−4 6 143 0.006527 0.003916 5852.54
Coarse-Aug-APOD 1 − 1 × 10−4 7 180 0.008273 0.004145 5741.76
Coarse-Aug-APOD-W 1 − 1 × 10−4 6 127 0.006546 0.003728 4833.13

0.005 Coarse-Aug-APOD 1 − 1 × 10−5 7 232 0.008209 0.004821 6726.24
Coarse-Aug-APOD-W 1 − 1 × 10−5 8 228 0.003266 0.003669 7111.19

coincide the exact error very well. However, as stated above, the error indicator for the augmented subspace based adaptive POD
method constructed in this paper is just an error detector. Although it is good enough to indicate if the current POD space need to
be updated or not, the error indicator is about one to two order of magnitude smaller than the exact error. That’s why that the ÿ0
used in our augmented subspace based APOD method is much smaller than the exact error, while the ÿ0 used in the two-grid based
APOD method is in the same magnitude as the exact error. Anyway, both the error estimator and error detector are OK to act as an
indicator to tell us if we need update the POD subspace or not.

To judge the performance of different methods, we choose the best result among those obtained by each method with different
choice of ÿ0 to be compared by a trade-off of the computational error and cost. We think this comparison is fair and meaningful.

In Table 4, “Update Times” means the number of update for the POD modes in the adaptive POD methods, “DOFs” means the
degrees of freedom, “Error” denotes the relative error for numerical solution at t=T, “Average Error” denotes the average of relative
error for numerical approximation at each time instant on time interval [0, ÿ] and “Time” means the wall time for the simulation.

From Table 4, we can first see that although the number of update and the degrees of freedom for the POD type methods increase
as the decrease of ÿ, the degrees of freedom for the POD type methods for all cases of different ÿ are much smaller than those for
the standard finite element method. We also see that as the decrease of ÿ, the error obtained by the standard POD method increases
dramatically, which makes the results unreliable when ÿ is close to 0. This shows that the smaller the ÿ, the more difficult the model
to be simulated. Fortunately, results obtained by the three adaptive POD methods are still of high accuracy even for case of ÿ = 0.005,
and the CPU time cost by the adaptive POD methods is almost less than one-half of that used by the standard finite element method.
This shows that the adaptive POD methods behave much better than the standard POD method.

We now compare the three adaptive POD methods, TG-APOD, Res-Aug-APOD and Coarse-Aug-APOD. We see from Table 4 that
the both two methods Coarse-Aug-APOD and Res-Aug-APOD can achieve higher accuracy than the method TG-APOD with similar
degrees of freedom for cases of ÿ being very close to 0. Moreover, for all cases of ÿ, the method Coarse-Aug-APOD can achieve higher
accuracy than the method TG-APOD while costing similar CPU time. For the comparison between our two augmented subspace based
adaptive POD methods, we can see that the method Res-Aug-APOD can obtain results with comparable or even higher accuracy than
the method Coarse-Aug-APOD, but takes more CPU time. Therefore, taking into account both the accuracy and the cost, the method
Coarse-Aug-APOD is the most recommended one.

To see more clearly, we show the variation curves of the error obtained by the methods TG-APOD, Res-Aug-APOD and Coarse-
Aug-APOD in Fig. 3.

In Fig. 3, the x-axis is the time, the y-axis is the relative error of numerical solution obtained by adaptive POD methods. For each
case of ÿ, the blue curve, orange curve and yellow curve denote the error obtained by the method TG-APOD, Res-Aug-APOD and
Coarse-Aug-APOD, respectively.

From Fig. 3, we can easily see that the error over the entire time interval obtained by our methods Res-Aug-APOD and Coarse-Aug-
APOD is almost always smaller than that obtained by the method TG-APOD. Taking into account the wall time reported in Table 4,
we can see that our new method Coarse-Aug-APOD is the most efficient one.

We then see the performance of the two methods Res-Aug-APOD-W and Coarse-Aug-APOD-W in Table 4. By comparing the results
obtained by these two methods with those obtained by methods Res-Aug-APOD and Coarse-Aug-APOD respectively, we can see
that the method Res-Aug-APOD-W has almost similar behavior with Res-Aug-APOD, while Coarse-Aug-APOD-W has almost similar
behavior with Coarse-Aug-APOD. Especially, for case of ÿ = 0.01, the method Coarse-Aug-APOD-W can obtain results with a little
higher accuracy than the method Coarse-Aug-APOD.

Besides, we have done some more tests for the Res-Aug-APOD-W and Coarse-Aug-APOD-W by using different parameter ÿ3. We
use the cases of ÿ = 0.01, 0.005 as examples to do the tests. By comparing the results obtained by the methods Coarse-Aug-APOD and
Coarse-Aug-APOD-W with the same parameters, we can see that for most of ÿ3, the two methods behave almost the same, however,
there are still some cases where Coarse-Aug-APOD-W behaves better than the method Coarse-Aug-APOD, especially for cases of
smaller ÿ3. By comparing the results obtained by methods Res-Aug-APOD and Res-Aug-APOD-W with the same parameters, we can
obtain the similar conclusion. We pick out the cases where the methods with weighting strategy perform better than those without
the weighting strategy, and show those results in Table 5. Anyway, from our tests we can see that the weighting strategy can improve
the effect of the POD modes sometimes, especially for smaller ÿ3 .

For the methods TG-APOD and Coarse-Aug-APOD, we have done more tests with some other ÿ0 and different coarse meshes. Some
results for cases of ÿ = 0.01 and ÿ = 0.005 are provided in Appendix A.

Journal of Computational Physics 514 (2024) 113231

18

X. Dai, M. Hu, J. Xin et al.

Fig. 3. The evolution curves of the error for solution of (26) with different ÿ by methods TG-APOD, Res-Aug-APOD and Coarse-Aug-APOD, respectively.

Journal of Computational Physics 514 (2024) 113231

19

X. Dai, M. Hu, J. Xin et al.

4.2. Arnold-Beltrami-Childress (ABC) flow

We then consider another advection-diffusion equation with the advection being the ABC flow, which plays an important role in
fluid dynamics [18,60,9].

⎧⎪«⎪¬

ÿý − ÿΔÿ+ý(ý, ÿ, ÿ, ý) ⋅∇ÿ = ÿ (ý, ÿ, ÿ, ý), (ý, ÿ, ÿ) ∈ Ω, ý ∈ [0, ÿ],

ÿ(ý, ÿ, ÿ,0) = 0,

ÿ(ý+ 2ÿ, ÿ, ÿ, ý) = ÿ(ý, ÿ+ 2ÿ, ÿ, ý) = ÿ(ý, ÿ, ÿ+ 2ÿ, ý) = ÿ(ý, ÿ, ÿ, ý),

(27)

where

ý(ý, ÿ, ÿ, ý) =(sin(ÿ+ sinýý) + cos(ÿ+ sinýý), sin(ý+ sinýý)

+ cos(ÿ+ sinýý), sin(ÿ+ sinýý) + cos(ý+ sinýý)),

ÿ (ý, ÿ, ÿ, ý) = − sin(ÿ+ sinýý) − cos(ÿ+ sinýý),

Ω= [0,2ÿ]3,ÿ = 100.

For this example, we also test 6 different cases with ÿ = 1, 0.5, 0.1, 0.05, 0.01, 0.005, respectively.
Similar to the example of Kolmogorov flow, we first divide Ω into 6 tetrahedrons to act as the initial mesh. Then we refine the

initial mesh 23 times uniformly using bisection to obtain the fine mesh for cases of ÿ = 1, 0.5, 0.1, 0.05, and refine the initial mesh 24
times to obtain the fine mesh for cases of ÿ = 0.01, 0.005. We set ý = 1.0, ÿý = 5 × 10−3 and choose the piecewise linear function as
the finite element basis. For the POD type methods, we choose the same parameters as those for solving (26) expect the following
settings. For the methods TG-APOD and Coarse-Aug-APOD, we refine the initial mesh 14 times to obtain the coarse mesh for cases
of ÿ = 1, 0.5, 0.1, and refine the initial mesh 15 times to obtain the coarse mesh for cases of ÿ = 0.05, 0.01 and refine the initial mesh
17 times to obtain the coarse mesh for case of ÿ = 0.005. The time steps corresponding to the coarse finite element spaces are 0.2,
0.125 and 0.05 respectively. We use the similar number of processors as those for the Kolmogorov flow to do the simulation, that is,
we use 72 processors and 180 processors for cases of the fine mesh being obtained by refining the initial mesh 23 times and 24 times,
respectively.

Some numerical results obtained by different methods are shown in Table 6. The notations in Table 6 have the same meanings as
those in Table 4.

Similar to the first example, from Table 6, we see that the POD type methods can save much CPU time compared with the finite
element method. We can also see that the results obtained by the standard POD method are unreliable as the decrease of ÿ. Besides,
the three adaptive POD methods can obtain results with high accuracy even for the case of ÿ = 0.005 with approximately a half of
the CPU time compared with the standard finite element method. This shows that adaptive POD methods behave much better than
the standard POD method.

We now compare the three adaptive POD methods, TG-APOD, Res-Aug-APOD and Coarse-Aug-APOD. We see from Table 6 that
the both method Coarse-Aug-APOD and method Res-Aug-APOD can achieve higher accuracy than the method TG-APOD with similar
degrees of freedoms, especially for cases of ÿ being very close to 0. The method Coarse-Aug-APOD can achieve higher accuracy than
the other two methods with similar or even less CPU time cost for cases of ÿ = 0.05, 0.01, 0.005. Therefore, the method Coarse-Aug-
APOD is the most accurate and efficient one.

Then we see the behavior of the weighting strategy. By comparing the results obtained by methods Res-Aug-APOD-W and Coarse-
Aug-APOD-W with those obtained by methods Res-Aug-APOD and Coarse-Aug-APOD respectively, we see that the weighting strategy
can improve the effect of the POD modes sometimes. Specifically, for cases of ÿ = 0.01, 0.005, the method Res-Aug-APOD-W can
obtain results with higher accuracy but less CPU time cost than the method Res-Aug-APOD.

Similar to the first example, we show the error obtained by the methods TG-APOD, Res-Aug-APOD and Coarse-Aug-APOD in Fig. 4.
The x-axis of each figure is the time, the y-axis is the relative error of numerical solution obtained by the adaptive POD methods.

From Fig. 4, we see clearly that the methods Res-Aug-APOD and Coarse-Aug-APOD can obtain results with higher accuracy than
those obtained by the method TG-APOD over the entire time interval for cases of ÿ = 0.05, 0.01, 0.005. From these comparisons, we
can also see that our new methods Res-Aug-APOD and Coarse-Aug-APOD behave much better than the method TG-APOD.

Similarly, we have tested using some other ÿ0 and different coarse meshes to do the simulation, and some more numerical results
are provided in Appendix A.

5. Concluding remarks

In this paper, we have proposed an augmented subspace based strategy for developing an error indicator for the POD approximation
of some time dependent partial differential equations. Based on this strategy, we obtain a general framework for the augmented
subspace based adaptive POD method. Besides, we have provided two strategies for augmenting the POD subspace, one is using the
residual corresponding to the current POD approximation to augment the subspace, the other is using the approximation obtained
on a coarse grid to augment the subspace.

We have used some numerical experiments for two typical 3D advection-diffusion equations, one with the advection being the
Kolmogorov flow and the other one with the advection being the ABC flow, to show the efficiency of our new approach. Numerical

Journal of Computational Physics 514 (2024) 113231

20

X. Dai, M. Hu, J. Xin et al.

Table 6
The results of (27) with different ÿ obtained by methods FEM, POD, TG-APOD, Res-Aug-APOD and Coarse-Aug-APOD, Res-Aug-APOD-W and Coarse-Aug-APOD-W,
respectively.

ÿ Method ÿ0 Update Times DOFs Error Average Error Time (s)

1 FEM - - 10485760 - - 20427.20
POD - - 24 0.000974 0.013559 1681.67
TG-APOD 3 × 10−3 1 17 0.000335 0.000517 2304.13
Res-Aug-APOD 1 × 10−5 1 17 0.000755 0.000585 3149.87
Coarse-Aug-APOD 5 × 10−6 1 17 0.000341 0.000522 2340.55
Res-Aug-APOD-W 1 × 10−5 1 17 0.000755 0.000585 3133.89
Coarse-Aug-APOD-W 5 × 10−6 1 17 0.000341 0.000522 2344.09

0.5 FEM - - 10485760 - - 18432.76
POD - - 26 0.007569 0.069137 1625.80
TG-APOD 1 × 10−3 2 28 0.000145 0.000234 3044.43
Res-Aug-APOD 1 × 10−5 2 28 0.000279 0.000445 3835.46
Coarse-Aug-APOD 5 × 10−6 2 28 0.000154 0.000244 3064.83
Res-Aug-APOD-W 1 × 10−5 2 28 0.000279 0.000445 3865.66
Coarse-Aug-APOD-W 5 × 10−6 2 28 0.000154 0.000244 3018.50

0.1 FEM - - 10485760 - - 17362.39
POD - - 35 0.136214 0.373726 1727.87
TG-APOD 1 × 10−3 4 68 0.001716 0.001258 4940.78
Res-Aug-APOD 1 × 10−5 4 67 0.001167 0.000842 5630.27
Coarse-Aug-APOD 5 × 10−6 4 67 0.001767 0.000998 4889.35
Res-Aug-APOD-W 1 × 10−5 4 67 0.001167 0.000842 5630.14
Coarse-Aug-APOD-W 5 × 10−6 4 67 0.001767 0.000998 4805.39

0.05 FEM - - 10485760 - - 17391.44
POD - - 40 0.257052 0.514289 1814.08
TG-APOD 3 × 10−3 5 100 0.003220 0.002760 6209.27
Res-Aug-APOD 5 × 10−5 5 99 0.001698 0.001797 7080.34
Coarse-Aug-APOD 5 × 10−6 5 99 0.001352 0.001507 6222.50
Res-Aug-APOD-W 5 × 10−5 5 98 0.001711 0.001805 7031.27
Coarse-Aug-APOD-W 5 × 10−6 5 99 0.001352 0.001507 6093.91

0.01 FEM - - 16777216 - - 16065.81
POD - - 44 0.577333 0.697981 1515.37
TG-APOD 3 × 10−3 6 192 0.015234 0.012518 6640.86
Res-Aug-APOD 8 × 10−4 6 197 0.016227 0.012242 8117.78
Coarse-Aug-APOD 8 × 10−6 6 193 0.014533 0.008428 6808.99
Res-Aug-APOD-W 8 × 10−4 6 193 0.014695 0.010914 7953.35
Coarse-Aug-APOD-W 8 × 10−6 6 190 0.014493 0.008460 6923.94

0.005 FEM - - 16777216 - - 16836.62
POD - - 44 0.812194 0.836567 1554.84
TG-APOD 5 × 10−3 9 323 0.017107 0.010361 10735.34
Res-Aug-APOD 1 × 10−3 7 262 0.014846 0.009793 11758.40
Coarse-Aug-APOD 1 × 10−5 7 258 0.010908 0.007093 9406.65
Res-Aug-APOD-W 1 × 10−3 7 258 0.013419 0.009468 11285.76
Coarse-Aug-APOD-W 1 × 10−5 7 256 0.010918 0.007077 9395.15

results show that both the residual type adaptive POD method and the coarse grid approximation type adaptive POD method are
more efficient than the existing adaptive methods, especially for cases with small ÿ. For the two methods we proposed, the coarse-
grid approximation type adaptive POD method has been shown to be more efficient. Besides, we have also introduced the weighting
strategy to the update of POD modes. In future, we will pay more effort on the strict numerical analysis and the application to other
types of time dependent partial differential equations as well as the construction of some other effective error indicators.

CRediT authorship contribution statement

Xiaoying Dai: Conceptualization, Formal analysis, Funding acquisition, Investigation, Methodology, Writing – original draft.Miao
Hu: Formal analysis, Investigation, Methodology, Software, Visualization, Writing – original draft. Jack Xin: Conceptualization,
Funding acquisition, Methodology, Supervision, Validation, Writing – review & editing. Aihui Zhou: Conceptualization, Funding
acquisition, Methodology, Supervision, Validation, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Journal of Computational Physics 514 (2024) 113231

21

X. Dai, M. Hu, J. Xin et al.

Fig. 4. The evolution curves of the error for solution of (27) with different ÿ by methods TG-APOD, Res-Aug-APOD and Coarse-Aug-APOD, respectively.

Journal of Computational Physics 514 (2024) 113231

22

X. Dai, M. Hu, J. Xin et al.

Table A.7
Time steps corresponding to different coarse
meshes.

ý -Refine 14 15 16 17

Time step 0.2 0.125 0.1 0.05

Table A.8
The results of (26) with ÿ = 0.01 obtained by different POD type methods with different coarse meshes and ÿ0, respectively.

ÿ Method ÿ0 Update Times DOFs Error Average Error Time (s)

0.01 FEM - - 16777216 - - 11784.99
POD - - 43 0.919008 0.777626 1267.46
TG-APOD-14 1 × 10−3 6 167 0.009079 0.011065 5180.53
TG-APOD-15 1 × 10−3 6 166 0.007042 0.004837 5072.23
TG-APOD-16 1 × 10−3 7 196 0.005060 0.003834 5789.31

Coarse-Aug-APOD-14 5 × 10−5 5 149 0.022220 0.015238 4453.28
Coarse-Aug-APOD-14 1 × 10−5 6 173 0.008892 0.004957 5302.05
Coarse-Aug-APOD-15 5 × 10−5 5 147 0.009849 0.009620 4560.84
Coarse-Aug-APOD-15 1 × 10−5 6 172 0.006208 0.003351 5280.25
Coarse-Aug-APOD-16 5 × 10−5 5 147 0.008976 0.009054 4557.52
Coarse-Aug-APOD-16 1 × 10−5 6 172 0.006253 0.003377 5335.85

Data availability

No data was used for the research described in the article.

Acknowledgements

The authors would like to thank the anonymous referees for their constructive suggestions which enrich the contents, including
the contents about the residual type augmented subspace adaptive POD method and the weighting strategy for updating the POD
modes.

Appendix A. Numerical experiments for different coarse meshes and different ÿÿ

In this section, we use more numerical experiments to illustrate that our new method performs better than the two-grid based
adaptive POD method, especially for cases of ÿ = 0.01, 0.005. We denote the methods TG-APOD and Coarse-Aug-APOD with the initial
mesh being refined ý times as TG-APOD-ý and Coarse-Aug-APOD-ý , respectively. The time steps corresponding to different coarse
finite spaces are listed in Table A.7. With a fixed fine grid, we have tested (26) with ÿ = 0.01, 0.005 and (27) with ÿ = 0.005 by different
coarse meshes and different threshold ÿ0, respectively.

A.1. Kolmogorov flow with ÿ = 0.01

Some numerical results of (26) with ÿ = 0.01 obtained by different methods and different parameters are shown in Table A.8.
From Table A.8, we can first see that all adaptive POD methods can obtain results with much higher accuracy than the standard POD
method, for all different choices for the coarse mesh and the tolerance ÿ0 . For the method TG-APOD, the finer the coarse mesh, the
better the approximation, and of course, the higher the computational cost. While for the method Coarse-Aug-APOD, we see that if
we reduce the size of the coarse mesh properly, the accuracy of the approximation will be improved. However, a further reduction
of the size of coarse mesh may not improve the accuracy of the approximation obviously. Besides, we can see from these results that,
different from the method TG-APOD, the computational cost may not change a lot as the increase of the size for the coarse mesh.
We can also see that using the same coarse mesh, our method Coarse-Aug-APOD can obtain results with a little higher accuracy than
those obtained by the method TG-APOD, while costing similar CPU time.

A.2. Kolmogorov flow with ÿ = 0.005

Some numerical results of (26) with ÿ = 0.005 obtained by different methods and different parameters are shown in Table A.9.
For this case of ÿ, we can also get the similar conclusion as that from Table A.8, that is, the method Coarse-Aug-APOD can obtain
results with a little higher accuracy than those obtained by the method TG-APOD.

Journal of Computational Physics 514 (2024) 113231

23

X. Dai, M. Hu, J. Xin et al.

Table A.9
The results of (26) with ÿ = 0.005 obtained by different POD type methods with different coarse meshes and ÿ0, respectively.

ÿ Method ÿ0 Update Times DOFs Error Average Error Time (s)

0.005 FEM - - 16777216 - - 12526.50
POD - - 45 1.010868 0.871304 1306.83
TG-APOD-14 1 × 10−3 6 200 0.022221 0.024539 5727.87
TG-APOD-15 1 × 10−3 7 227 0.012810 0.009396 6811.02
TG-APOD-16 1 × 10−3 7 235 0.008957 0.007559 6661.74

Coarse-Aug-APOD-14 5 × 10−5 5 176 0.018007 0.018023 4893.47
Coarse-Aug-APOD-14 1 × 10−5 6 207 0.014098 0.007749 5696.05
Coarse-Aug-APOD-15 5 × 10−5 5 176 0.017100 0.017024 5084.80
Coarse-Aug-APOD-15 1 × 10−5 7 239 0.008122 0.004791 6891.73
Coarse-Aug-APOD-16 5 × 10−5 5 176 0.017162 0.016912 5295.97
Coarse-Aug-APOD-16 1 × 10−5 7 239 0.007957 0.004724 6778.84

Table A.10
The results of (27) with ÿ = 0.005 obtained by different POD type methods with different coarse meshes and ÿ0, respectively.

ÿ Method ÿ0 Update Times DOFs Error Average Error Time (s)

0.005 FEM - - 16777216 - - 16836.62
POD - - 44 0.812194 0.836567 1554.84
TG-APOD-15 5 × 10−3 6 226 0.027286 0.023730 7147.38
TG-APOD-16 5 × 10−3 7 259 0.025176 0.020051 8409.76
TG-APOD-17 5 × 10−3 9 323 0.017107 0.010361 10735.34

Coarse-Aug-APOD-15 5 × 10−5 4 159 0.065712 0.051971 5581.35
Coarse-Aug-APOD-15 1 × 10−5 5 192 0.026378 0.027074 6517.28
Coarse-Aug-APOD-15 5 × 10−6 11 390 0.001740 0.003459 12508.26
Coarse-Aug-APOD-16 5 × 10−5 5 192 0.032155 0.031447 6468.33
Coarse-Aug-APOD-16 1 × 10−5 9 323 0.011047 0.014037 10392.84
Coarse-Aug-APOD-16 5 × 10−6 12 421 0.001581 0.003247 14281.87
Coarse-Aug-APOD-17 5 × 10−5 5 192 0.025166 0.026153 7374.91
Coarse-Aug-APOD-17 1 × 10−5 7 258 0.010908 0.007093 9406.65
Coarse-Aug-APOD-17 5 × 10−6 11 389 0.001429 0.001716 12466.38

A.3. ABC flow with ÿ = 0.005

In Table A.10, we show some results of (27) with ÿ = 0.005 obtained by different methods and different parameters. Similar to the
example of the Kolmogorov flow, we see from these results that the method Coarse-Aug-APOD can obtain results with a little higher
accuracy than those obtained by the method TG-APOD.

References

[1] R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
[2] M. Bakker, Simple groundwater flow models for seawater intrusion, in: Proceedings of SWIM16, WolinIsland, Poland, 2000, pp. 180–182.
[3] G.K. Batchelor, An Introduction to Fluid Dynamics, second edition, Cambridge University Press, Cambridge, 1999.
[4] P. Benner, S. Gugercin, K. Willcox, A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev. 57 (2015) 483–531.
[5] P. Benner, P. Kürschner, J. Saak, Self-generating and efficient shift parameters in ADI methods for large Lyapunov and Sylvester equations, Electron. Trans.

Numer. Anal. 43 (2014) 142–162.
[6] V. Borue, S.A. Orszag, Numerical study of three-dimensional Kolmogorov flow at high Reynolds numbers, J. Fluid Mech. 306 (1996) 293–323.
[7] S. Boyaval, C. Le Bris, T. Lelievre, Y. Maday, N.C. Nguyen, A.T. Patera, Reduced basis techniques for stochastic problems, Arch. Comput. Methods Eng. 17 (2010)

435–454.
[8] S. Brenner, L. Scott, The Mathematical Theory of Finite Element Methods, third edition, Springer, New York, 2008.
[9] N.H. Brummell, F. Cattaneo, S.M. Tobias, Linear and nonlinear dynamo properties of time-dependent ABC flows, Fluid Dyn. Res. 28 (2001) 237–265.
[10] J. Burkardt, M. Gunzburger, H.C. Lee, POD and CVT-based reduced-order modeling of Navier-Stokes flows, Comput. Methods Appl. Mech. Eng. 196 (2006)

337–355.
[11] J.R. Cannon, The One-Dimensional Heat Equation, Addison-Wesley, Mento Park, 1984.
[12] S. Chellappa, L. Feng, P. Benner, Adaptive basis construction and improved error estimation for parametric nonlinear dynamical systems, Int. J. Numer. Methods

Eng. 121 (2020) 5320–5349.
[13] F. Chinesta, A. Huerta, G. Rozza, K. Willcox, Model Reduction Methods, second edition, Encyclopedia of Computational Mechanics, 2017, pp. 1–36.
[14] X. Dai, X. Kuang, Z. Liu, J. Xin, A. Zhou, An adaptive proper orthogonal decomposition Galerkin method for time dependent problems, preprint 2017.
[15] X. Dai, X. Kuang, J. Xin, A. Zhou, Two-grid based adaptive proper orthogonal decomposition method for time dependent partial differential equations, J. Sci.

Comput. 84 (2020) 1–27.
[16] X. Dai, J. Xu, A. Zhou, Convergence and optimal complexity of adaptive finite element eigenvalue computations, Numer. Math. 110 (2008) 313–355.
[17] B.T. Dickinson, J.R. Singler, Nonlinear model reduction using group proper orthogonal decomposition, Int. J. Numer. Anal. Model. 7 (2010) 356–372.
[18] T. Dombre, U. Frisch, J.M. Greene, M. Hénon, A. Mehr, A.M. Soward, Chaotic streamlines in the ABC flows, J. Fluid Mech. 167 (1986) 353–391.
[19] P. Druault, J. Delville, J.P. Bonnet, Proper orthogonal decomposition of the mixing layer flow into coherent structures and turbulent Gaussian fluctuations,

C. R., Méc. 333 (2005) 824–829.

Journal of Computational Physics 514 (2024) 113231

24

X. Dai, M. Hu, J. Xin et al.

[20] G.H. Golub, C.F. van Loan, Matrix Computations, fourth edition, JHU Press, 2013.
[21] C. Gräßle, M. Hinze, POD reduced-order modeling for evolution equations utilizing arbitrary finite element discretizations, Adv. Comput. Math. 44 (2018)

1941–1978.
[22] A. Gu, J. Xin, Z. Zhang, Error estimates for a POD method for solving viscous G-equation in incompressible cellular flows, SIAM J. Sci. Comput. 43 (2021)

A636–A662.
[23] Y. He, The Euler implicit/explicit scheme for the 2D time-dependent Navier-Stokes equations with smooth or non-smooth initial data, Math. Comput. 77 (2008)

2097–2124.
[24] J.S. Hesthaven, G. Rozza, B. Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations, vol. DXC, Springer, 2016.
[25] P. Holmes, J.L. Lumley, G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge University Press, Cambridge, 1996.
[26] C. Homescu, L.R. Petzold, R. Serban, Error estimation for reduced-order models of dynamical systems, SIAM J. Numer. Anal. 43 (2005) 1693–1714.
[27] T. Katayama, H. Kawauchi, G. Picci, Subspace identification of closed loop systems by the orthogonal decomposition method, Atomatica 41 (2005) 863–872.
[28] M. Khalil, S. Adhikari, A. Sarkar, Linear system identification using proper orthogonal decomposition, Mech. Syst. Signal Process. 21 (2007) 3123–3145.
[29] B. Koc, S. Rubino, M. Schneier, J. Singler, T. Iliescu, On optimal pointwise in time error bounds and difference quotients for the proper orthogonal decomposition,

SIAM J. Numer. Anal. 59 (2021) 2163–2196.
[30] D. Kosloff, R. Kosloff, A Fourier method solution for the time dependent Schrödinger equation as a tool in molecular dynamics, J. Comput. Phys. 52 (1983)

35–53.
[31] K. Kunisch, S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems, Numer. Math. 90 (2001) 117–148.
[32] K. Kunisch, S. Volkwein, Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics, SIAM J. Numer. Anal. 40 (2002) 492–515.
[33] K. Kunisch, S. Volkwein, Optimal snapshot location for computing POD basis functions, ESAIM: Math. Model. Numer. Anal. 44 (2010) 509–529.
[34] H. Li, Z. Song, A reduced-order finite element method based on proper orthogonal decomposition for the Allen-Cahn model, J. Math. Anal. Appl. 500 (2021)

125103.
[35] K. Li, T. Huang, L. Li, S. Lanteri, POD-based model order reduction with an adaptive snapshot selection for a discontinuous Galerkin approximation of the

time-domain Maxwell’s equations, J. Comput. Phys. 396 (2019) 106–128.
[36] S. Locke, J. Singler, New proper orthogonal decomposition approximation theory for PDE solution data, SIAM J. Numer. Anal. 58 (2020) 3251–3285.
[37] H.V. Ly, H.T. Tran, Modeling and control of physical processes using proper orthogonal decomposition, Math. Comput. Model. 33 (2001) 223–236.
[38] J. Lyu, Z. Wang, J. Xin, Z. Zhang, A convergent interaction particle method and computation of KPP front speeds in chaotic flows, SIAM J. Numer. Anal. 60

(2022) 1136–1167.
[39] J. Lyu, J. Xin, Y. Yu, Computing residual diffusivity by adaptive basis learning via spectral method, Numer. Math. Theory Methods Appl. 10 (2017) 351–372.
[40] Y. Maday, Reduced basis method for the rapid and reliable solution of partial differential equations, in: Proceedings of International Conference of Mathematicians,

European Mathematical Society, vol. III, 2006, pp. 1255–1270.
[41] P.A. Markowych, C.A. Ringhofer, C. Schmeiser, Semiconductor Equations, Springer, Vienna, 1990.
[42] J. Nolen, M. Rudd, J. Xin, Existence of KPP fronts in spatially-temporally periodic advection and variational principle for propagation speeds, Dyn. Partial Differ.

Equ. 2 (2005) 1–24.
[43] A.M. Obukhov, Kolmogorov flow and its laboratory simulation, Rus. Uspekhi Mat. Nauk 38 (1983) 101–111.
[44] R. Padhi, S.N. Balakrishnan, Proper orthogonal decomposition based optimal neurocontrol synthesis of a chemical reactor process using approximate dynamic

programming, Neural Netw. 16 (2003) 719–728.
[45] B. Peherstorfer, K. Willcox, Dynamic data-driven reduced-order models, Comput. Methods Appl. Mech. Eng. 291 (2015) 21–41.
[46] PETSc, http://www .mcs .anl .gov /petsc/.
[47] PHG, http://lsec .cc .ac .cn /phg/.
[48] R. Pinnau, Model reduction via proper orthogonal decomposition, in: Model Order Reduction: Theory, Research Aspects and Applications, Springer, Berlin,

Heidelberg, 2008.
[49] A. Quarteroni, G. Rozza, Reduced Order Methods for Modeling and Computational Reduction, vol. IX, Springer, Berlin, 2014.
[50] M.L. Rapún, F. Terragni, J.M. Vega, Adaptive POD-based low-dimensional modeling supported by residual estimates, Int. J. Numer. Methods Eng. 104 (2015)

844–868.
[51] C. Rowley, T. Colonius, R. Murray, Model reduction for compressible flows using POD and Galerkin projection, Physica D 189 (2004) 115–129.
[52] Y. Saad, M. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 7 (1986) 856–869.
[53] L. Sirovich, Turbulence and the dynamics of coherent structures, part I: coherent structures, Q. Appl. Math. 45 (1987) 561–571.
[54] J. Strikwerda, Finite Difference Schemes and Partial Differential Equations, SIAM, Philadelphia, 2004.
[55] M.V. Tabib, J.B. Joshi, Analysis of dominant flow structures and their flow dynamics in chemical process equipment using snapshot proper orthogonal decom-

position technique, Chem. Eng. Sci. 63 (2008) 3695–3715.
[56] F. Terragni, J.M. Vega, Simulation of complex dynamics using POD ‘on the fly’ and residual estimates, in: Dynamical Systems, Differential Equations and

Applications AIMS Proceedings, 2015, pp. 1060–1069.
[57] S. Volkwein, Model Reduction Using Proper Orthogonal Decomposition, Lecture Notes, Institute of Mathematics and Scientific Computing, vol. MXXV, University

of Graz, Graz, 2011.
[58] S. Volkwein, Proper Orthogonal Decomposition: Theory and Reduced-Order Modelling, Lecture Notes, Department of Mathematics and Statistics, University of

Konstanz, 2013.
[59] Z. Wang, J. Xin, Z. Zhang, Sharp uniform in time error estimate on a stochastic structure-preserving Lagrangian method and computation of effective diffusivity

in 3D chaotic flows, SIAM Multiscale Model. Simul. 19 (2021) 1167–1189.
[60] J. Xin, Y. Yu, A. Zlatos, Periodic orbits of the ABC flow with A = B = C = 1, SIAM J. Math. Anal. 48 (2016) 4087–4093.
[61] C. Xu, Y. Ou, E. Schuster, Sequential linear quadratic control of bilinear parabolic PDEs based on POD model reduction, Automatica 47 (2011) 418–426.
[62] P. Zu, L. Chen, J. Xin, A computational study of residual KPP front speeds in time-periodic cellular flows in the small diffusion limit, Physica D 311 (2015) 37–44.

	An augmented subspace based adaptive proper orthogonal decomposition method for time dependent partial differential equations
	1 Introduction
	2 Preliminaries
	2.1 Standard discretization
	2.2 Adaptive POD method
	2.3 Complexity
	2.4 Typical existing adaptive POD methods

	3 Augmented subspace based adaptive POD method
	3.1 General framework of the augmented subspace based adaptive POD method
	3.2 Specific augmented subspace based adaptive POD methods
	3.2.1 Coarse-grid approximation type augmented subspace
	3.2.2 Residual type augmented subspace

	3.3 Weighting strategy
	4 Numerical examples
	4.1 Kolmogorov flow
	4.2 Arnold-Beltrami-Childress (ABC) flow

	5 Concluding remarks

	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Numerical experiments for different coarse meshes and different η0
	A.1 Kolmogorov flow with ϵ=0.01
	A.2 Kolmogorov flow with ϵ=0.005
	A.3 ABC flow with ϵ=0.005

	References

