q

Check for
updates

ComFairGNN: Community Fair Graph
Neural Network

Yonas Sium®) and Qi Li

Towa State University, Ames, USA
{yas,qli}@iastate.edu

Abstract. Graph Neural Networks (GNNs) have become the leading
approach for addressing graph analytical problems in various real-world
scenarios. However, GNNs may produce biased predictions against cer-
tain demographic subgroups due to node attributes and neighbors sur-
rounding a node. Understanding the potential evaluation paradoxes due
to the complicated nature of the graph structure is crucial for devel-
oping effective GNN debiasing mechanisms. In this paper, we examine
the effectiveness of current GNN debiasing methods in terms of unfair-
ness evaluation. Specifically, we introduce a community-level strategy
to measure bias in GNNs and evaluate debiasing methods at this level.
Further, We introduce ComFairGNN, a novel framework designed to mit-
igate community-level bias in GNNs. Our approach employs a learnable
coreset-based debiasing function that addresses bias arising from diverse
local neighborhood distributions during GNNs neighborhood aggrega-
tion. Comprehensive evaluations on three benchmark datasets demon-
strate our model’s effectiveness in both accuracy and fairness metrics.

Keywords: fairness * graph neural network - bias - evaluation metrics

1 Introduction

In today’s interconnected world, graph learning supports various real-world
applications, such as social networks, recommender systems, and knowledge
graphs [3,16]. Graph Neural Networks (GNNs) are powerful for graph represen-
tation learning and are used in tasks like node classification and link prediction
by aggregating neighboring node information. However, GNNs often overlook
fairness, leading to biased decisions due to structural bias and attribute bias like
gender, race, and political ideology. These bias can cause ethical dilemmas in
critical contexts, such as job candidate evaluations, where a candidate might be
favored due to shared ethnic background or mutual acquaintances. To tackle the
outlined issue, multiple methods were suggested to evaluate and mitigate the
fairness of node representation learning on graphs. Most of these methods aim
to learn node representations that can yield statistically fair predictions across
subgroups defined based on sensitive attributes. Choosing the right metric to
evaluate bias in graphs inherently depends on the specific task at hand. The
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Fig. 1. Illustration of graph polarization: Nodes a and b from different communities
share identical labels (same colors), but GNNs learn different embeddings due to vary-
ing neighborhood label distributions.

existing methods employed graph-level metrics originally designed for other pur-
poses to address fairness concerns. The primary difficulty in addressing fairness
within graphs arises from the frequent correlation between the graph’s topology
and the sensitive attribute we aim to disregard. However, due to the complicated
nature of graph structures, conducting graph-level fairness evaluations and com-
parisons of different methods is not as straightforward as commonly reported in
the existing methods.

Real-world graphs often polarize into communities based on sensitive
attributes (e.g., age, gender, race, ideology), as shown in Fig.1, where com-
munities form through dense internal connections and sparse external links. For
example, U.S. Twitter networks show distinct political segregation [9], where
Democratic supporters dominate Northeast and West Coast interactions while
Republican supporters influence Texas, Florida, and Iowa networks. Similarly,
sports preferences on social media can reflect regional demographic differences.

In this paper, we investigate the critical issue of community fairness in graph
neural networks (GNNs) within the context of node classification. Simply using
node attributes and structural information as a debiasing mechanism can lead
to misleading fairness evaluations and loss of important information [23]|. Com-
munities, which reflect local neighborhood structures, often stem from sensitive
node attributes [17]. Specifically, GNNs generate node representations by aggre-
gating information from neighboring nodes, which can result in nodes with iden-
tical labels but differing neighborhood label distributions, as illustrated in Fig. 1.
This leads to structural biases in the learning process. Moreover, such biases may
be further amplified through multi-layered recursive neighborhood aggregation
in GNNs. While current debiasing methods primarily focus on attribute-based
fairness, they fail to address the underlying bias introduced by neighborhood
aggregation. As a result, these methods are ineffective at mitigating community-
level biases that arise from disparate neighborhood structures.

To address community fairness, we introduce the concept of local struc-
tural fairness at the community level for all nodes in the graph. This approach
recognizes that the broader structural bias affecting nodes within a commu-
nity emerges from the GNN’s aggregation process, which is influenced by the
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diverse distribution of local neighborhoods. We present ComFairGNN, a novel
community-fair Graph Neural Network compatible with any neighborhood aggre-
gation based GNN architecture. Specifically, the coreset-based debiasing function
targets the neighborhood aggregation of GNN operation, aiming to bring iden-
tical label nodes in different communities closer in the embedding space. This
approach mitigates structural disparities across communities, leading to fairer
representations for nodes with identical labels.

In summary, our paper makes three key contributions: (1) We measure the
problem of fairness and potential evaluation paradoxes at the community level
using different fairness evaluation metrics in GNNs. (2) We propose a novel
community fairness for GNNs named ComFairGNN that can balance the struc-
tural bias for identical label nodes in different communities. ComFairGNN works
with any neighborhood aggregation-based GNNs. (3) Comprehensive empirical
evaluations validate our method’s effectiveness in enhancing both fairness and
accuracy.

2 Preliminaries

We first introduce the notations. A graph G = (V, E) consists of n nodes and
edges E C V x V. The node-wise feature matrix X € R"** has k dimensions
for raw node features, with each row x; representing the feature vector for the
i-th node. The binary adjacency matrix is A € {0,1}"*™, and the learned node
representations are captured in H € R”*%, where d is the latent dimension size
and h; is the representation for the i-th node. The sensitive attribute s € {0,1}"
classifies nodes into demographic groups, with edges e,, being intragroup if
Sy = Sy and intergroup otherwise. The function N (u) returns the set of neighbors
for a node u, providing a structural node embedding. Clusters based on this
embedding are denoted as C, with C; C V for nodes in the i-th cluster and c as
the cluster count. Each C; represents a community and f measures the statistical
notion of fairness across different communities in the graph.

2.1 Graph Neural Network

Graph Neural Networks (GNNs) utilize neighborhood aggregation across multi-
ple layers. At layer [, the representation of node v, denoted as h!, € R%  is:

h! = o (AGGR ({h}] ! |u e N, };01)) (1)

where AGGR(:) is an aggregation function like mean-pooling [12] or self-
attention [21], o is an activation function, N, is v’s neighborhood set, and '
contains learnable parameters. The initial representation is hY = x,, where x,
is the input feature vector.
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2.2 Node Clustering on Structural Embedding

We partition the graph into communities using node2vec [8] embeddings com-
bined with k-means clustering [15]. Node2vec maps each node u € U to a d-
dimensional vector space f : U — R?. For each node, multiple random walks are
performed to capture the network neighborhood Ng(u), maximizing the objec-
tive:

wgmax [[ I P 1 5(w) ®
u€U u' €Ny (u)

where P(v | f(u)) is computed using softmax. These structural embeddings
are then clustered using k-means, chosen for its computational efficiency. The
k-means algorithm minimizes the within-cluster sum of squares [18]:

C
arg min Z Z DIST(z, ;) (3)

i=1xe€C;

where C; represents the i-th cluster and p; its centroid.
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Fig. 2. Overall framework of ComFairGNN

3 Proposed Method

Figure 2 illustrates the ComFairGNN framework. We first identify communities
using structural-based clustering (Fig.2(c)). For debiasing, we divide each com-
munity’s nodes into two subgroups based on sensitive features and sample coreset
nodes according to neighborhood homophily ratios. These coreset nodes contrast
against each other to mitigate structural bias (Fig.2(d)). The GNN optimizes
both task performance and coreset fairness (Fig.2(e)), debiasing neighborhood
aggregation by maximizing similarity between same-labeled nodes.
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3.1 Community Level Structural Contrast

We propose a debiasing function using coreset nodes c¢ selected from different
communities. Following [20], coresets identify crucial training examples using
heuristic criteria. We select nodes equally from subgroups Sy and &; across
communities. Since GNNs in Eq. 1 only access one-hop contexts and communities
tend to be homogeneous in sensitive attributes, selecting coreset nodes from both
groups per community helps balance structural disparities.

K K
C=JCs, Ul Crs, CV (4)

k=1 k=1

Here C' indicates the coreset sample nodes for all k € {1,...,K}. K repre-
sents the total number of communities, and Cyy ~and Cjg represent selected
sample nodes from subgroup Sy and S; in community k respectively.

To minimize structural bias between groups across communities, we maxi-
mize the similarity of similarly-labeled nodes in the coreset, allowing GNNs to
implicitly reduce community-based structural differences.

3.2 Coreset Nodes Selection for GNNs Debiasing

To fundamentally eliminate the structural bias of GNNs neighborhood aggrega-
tion, which is the key operation in GNNs, we propose to use the neighborhood
homophily distribution ratio to select the sample coreset nodes from different
communities.

Node Neighborhood Homophily Distribution Ratio: The homophily ratio
in graphs is typically defined based on the similarity between connected node
pairs. In this context, two nodes are considered similar if they share the same
node label. The formal definition of the homophily ratio is derived from this
intuition, as follows [14].

Definition 1 (Node Homophily Ratio). For a graph G = (V,€) with node
label vector y, we define the edge homophily ratio as the proportion of edges
linking nodes sharing identical labels. The formal definition is as follows:

MG (s € VD = o 30 1l =), (5)

nl .
(i,k)e€&

where |n| is the number of neighboring edges of node i in the graph and f(-) is
the indicator function.

A node in a graph is generally classified as highly homophilous when its edge
homophily ratio h(-) is high, typically falling within the range 0.5 < h(-) < 1,
assuming an appropriate label context. Conversely, a node is considered het-
erophilous when its edge homophily ratio is low. Here, h(-) denotes the edge
homophily ratio as previously defined.



ComFairGNN: Community Fair Graph Neural Network 21

Figure3 shows significant variation in neighborhood distribution ratios
among same-labeled nodes in pokec-z. Since nodes with identical labels typi-
cally share similar features, GNN’s 1-hop aggregation produces different embed-
dings for these nodes. This embedding disparity across communities may bias
the GNN. Therefore, we sample debiasing coreset nodes from all communities
based on their neighborhood distributions.
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Fig. 3. Edge distribution bias in Pokec-z: GNN embeddings vary for identical nodes
based on neighborhood labels

Fairness-Aware Graph Coreset: We aim to identify a representative subset
of training nodes V,, C Viain = [ne], where |V,| < ¢ < ny, along with an
associated set of sample weights. In nearest neighbor message passing models
(such as GCN, GAT, and GIN), node i only interacts with nodes j that are
within a shortest-path distance of D, denoted as {j € [n] | d(é,5) < D}. Here,
we assume node ¢ neighborhood distribution ratio Sect. 3.2, to select the coreset
nodes. This selection is designed to approximate the training loss £() across
all 8 € O, while maintaining fairness considerations. The graph coreset selection
problem is formulated as:

o max EZ]wz (Lfo( A, X)), i) — L(6) (6)

The coreset minimizes the maximum error across all 8, requiring both A and
X matrices to compute fp(A, X). As illustrated in Algorithm 1, to debias GNN
neighborhood aggregation at the community level, we sample from both groups
So and S7 across all communities.
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Algorithm 1. Fair Graph Coreset Selection

Require: G = (V, E), features X, groups So, S1, size K
Ensure: Coreset C C V {Selected nodes}

1: Initialize C = ), H = ENC(G) {Initial embedding}
2: for each community k in G do
3: np=[K-|Vil/|V|] {Community budget}
4 Cox = Sample(Vk N 507 |_nk/2j)

5 Cir = Sample(Vi N Sy, [nk/2])

6: C =CUCy UChg

7: end for

8: Z = PRD(H)
9: Optimize C to minimize Task Loss + Fairness Loss
0

10: return C

3.3 Training Objective and Constraints:

We focus on the task of node classification. We incorporate both the classification
loss and the fairness loss associated with the classification to enhance the training
process as illustrated in Fig. 2(e).

Classification loss: In node classification tasks, the Graph Neural Network
(GNNs) final layer typically adapts its dimensionality to align with the number
of classes. It utilizes a softmax activation function, wherein the probability of
class i is represented by the " output dimension. To optimize the model’s
parameters, we minimize the cross-entropy loss, defined as:

1 ~
Liask = _m Z Z }/z',j 10g(y;',j) (7)
i g

Here, |Y'| denotes the number of labeled examples (rows in Y'), while f/'”
represents the predicted probability of the i** example belonging to the j**
class.

Fairness Loss: As the proposed coreset selection aims to maintain fair repre-
sentations across different groups, we introduce a fairness loss on the selected
coreset samples c¢. We group the samples in ¢ based on their class label. Let
cy—o0 and cy—; denote the groups of samples in the coreset with labels 0 and 1,
respectively for binary classification. We use a similarity-based loss, trying to
achieve parity in the average pairwise similarities for the two label groups in c,
as follows:

1 1
Liair = |77 Z sim(z;, ;) — ] Z sim(z;, ;) (8)
i,JE€ECy=0 Cy:l 1,J€ECy=1

where sim(-, -) is a cosine similarity function between two samples of same label.
This fairness loss drives the coreset selection toward balancing the average intra-
label similarities between the two label groups in c. It aims to constrain the
similarity distribution of labels to be similar across the two groups, Sy and S;.
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Overall loss: By combining all the above loss terms, we formulate the overall
loss as

L= »Ctask + »Cfair (9)

4 Experiments

We aim to address the following research questions in our experiments. RQ1:
How reliable is the reported fairness score of graph debiasing methods free from
paradox at a community level? RQ2: How efficient are the existing graph fairness
evaluation methods in estimating the bias of GNNs at a community level? RQ3:
How efficient is our proposed ComFairGNN method in terms of both accuracy
and fairness at the community level?

Table 1. Comparison of GNNs on utility and bias at the graph level with different
debiasing methods.

Method Dataset |[ACCT AUCT AEO(w)| |ASP(w)| |AEO (w/o) |ASP (w/o)
Vanilla GCN Pokec-z (69.29 + 1.72 (69.51 + 2.7 |14.43 £+ 0.7 [12.88 + 0.94|-14.43 £+ 0.7/-12.88 £ 0.94
Pokec-n |70.77 £+ 1.32|70.45 £ 1.7 |18.03 £ 0.57|14.14 + 2.01/18.03 £ 0.57|14.14 + 2.01
Facebook|81.53 + 1.52 |61.62 + 2.1 |[12.73 £ 0.7 [12.30 &+ 1.0 |-12.73 £ 0.7/-12.30 £ 1.0
FairGNN Pokec-z 68.95 +£ 0.1 |72.24 £0.3 [5.17 £1.3 [7.79 £ 0.7 |-5.17 £ 1.3 |-6.79 £ 0.7
Pokec-n 69.14 £ 0.1 |70.18 £ 0.3 |4.26 £ 1.3 3.87 £ 0.7 426 £1.3 [3.87 £0.7
Facebook 85.35 £ 0.77 164.62 £ 1.6 |2.22 + 0.6 [6.36 = 1.0 [2.22 = 0.6 [6.36 = 1.0
NIFTY Pokec-z |67.34 & 1.51 |67.49 £ 1.20/5.89 £+ 1.32 |5.85 £ 0.9 5.89 £ 1.32-5.85 £ 0.9
Pokec-n |69.41 £ 1.51 [69.08 £ 1.20[8.63 £+ 1.32 |10.42 + 0.9 -8.63 £ 1.32 -10.42 £+ 0.9
Facebook|77.07 £+ 1.28 |73.05 £ 1.87/7.88 £ 1.0 895+ 1.3 |7.88 £ 1.0 [8.95+ 1.3

UGE Pokec-z 63.64 £ 2.57 |64.61 £ 2.1 [14.34 £ 2.3 11.74 £ 1.9 |-14.34 £ 2.3-11.74 £ 1.9
Pokec-n [67.48 £ 2.72 166.67 &+ 2.71/10.34 £ 2.3 [12.74 £ 1.9 -10.34 £ 2.3}-12.74 =+ 1.9
Facebook|64.33 + 0.94 |63.46 +£ 1.8 [5.69 £ 1.2 |13.17 £ 1.5 5.69 +£ 1.2 |13.17 £ 1.5
ComFairGNN Pokec-z |70.25 4+ 0.1 |71.11 + 0.3 |0.18 + 1.3 |1.00 + 0.7 [0.18 £ 1.3 |1.00 &+ 0.7
Pokec-n 69.41 £+ 0.7 |66.43 £ 0.97/0.19 + 0.45/0.90 £ 0.67-0.19 + 0.45/-0.90 + 0.67
Facebook/85.35 + 0.77|74.62 4+ 2.6 3.96 + 0.6 |7.63 1.0 [3.96 £ 0.6 |7.63 & 1.0

Table 2. Dataset statistics and community distribution

Dataset |Nodes|Edges [Features/ClassesiComm_ 1/Comm_2|Comm_3/Comm_4/Comm 5
Pokec-z [67,796/882,765276 2 309 282 259 1412 302

Pokec-n [66,569(198,353|265 2 428 360 361 389 -
Facebook|1,034 (26,749 573 2 55 37 65 - -
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4.1 Experimental Setup and Datasets

Datasets. We evaluate on three real-world datasets for node classification:
Pokec-z, Pokec-n, and Facebook. The Pokec datasets are subsets from Slovakia’s
Pokec social network [19], where nodes represent users, edges represent friend-
ships, and location is the sensitive attribute for classifying users’ work fields.
The Facebook dataset [11] similarly uses friendship connections with gender as
the sensitive attribute. Dataset statistics are summarized in Table 2.

Evaluation Metrics We use ACC and AUC scores to evaluate the utility per-
formance. To evaluate fairness, we use two commonly used fairness metrics, i.e.,
App=1|P(g=1ls=0)—P(g=1ls =1)| [7] and Ago = |P(§g =1y =1,s =
0)— P(g =1y = 1,s = 1)| [10]. § and y denote the node label prediction and
ground truth, respectively. For App and Agp, a smaller value indicates a fairer
model prediction.

Baseline Methods: We investigate the effectiveness of four state-of-the-art
GNN debiasing methods at a graph level and community level, namely FairGNN
[4], NIFTY [1], and UGE [22]|. FairGNN utilizes adversarial training to elimi-
nate sensitive attribute information from node embeddings. NIFTY improves
fairness by aligning predictions based on both perturbed and unperturbed sen-
sitive attributes. This approach generates graph counterfactuals by inverting
the sensitive feature values for all nodes while maintaining all other attributes.
UGE derives node embeddings from a neutral graph that is free of biases and
unaffected by sensitive node attributes, addressing the issue of unbiased graph
embedding. We use GCN [12] as the backbone GNN model.

Implementation Setup: We use a two-layer GCN [12] encoder and MLP
predictor for all experiments, consistent with baseline methods implemented
from PyGDebias [6]. Each method runs for 400 epochs with learning rates in
{0.1,0.01,0.001}, using hyperparameters from their original papers and repeat-
ing three times. Experiments were conducted on 16GB NVIDIA V100 GPUs.

Fairness Paradoxes: To address RQ1, we evaluate the effectiveness of current
debiasing techniques for GNNs at the community level and compare the con-
sistency of their debiasing performance when applied to the entire graph. We
first measure the group fairness of the GCN model with the debiasing method
applied to the entire original input graph G. Next, we measure the group fairness
of the same GCN model with the debiasing method applied at the community
level. We observe that the fairness performance across the communities is not
as consistent as the fairness score reported for the entire graph across datasets
for all baseline methods. For example, in Fig.4 {b, ¢, d}, we observe that the
unfairness estimation for Pokec-z dataset using AEO is higher for communities
{2, 3, 4, 5} compared to AEO for the entire dataset when FairGNN debiasing
method is used.

Over-Simplification of Fairness Evaluation RQ2: The absolute values in
ASP and AEO metrics can mask local disparities across communities. While
overall metrics might show moderate fairness when averaged, they obscure cases
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Fig. 4. Performance comparison of different GNN debiasing methods across datasets
and communities. (a) Graph-level performance across different datasets (Pokec-z,
Pokec-n, Facebook). (b, ¢, and d) Community-wise performance breakdown on Pokec-z,
Pokec-n and Facebook datasets. Showing AUC(%) and EO(%) metrics.

where a group experiences high bias in some communities and low bias in others,
as shown in Fig.4. This averaging effect fails to capture the actual fairness
experienced by individuals in different parts of the graph.

Evaluation and Main Results (RQ3). As GNNs learn by neighborhood
aggregation Sect. 2.1, we evaluate fairness within different subgraphs or commu-
nities within the larger graph. This can help identify and address local disparities
more effectively. We select Sy and S7 nodes within the community to evaluate the
model’s disparity locally, which may present more prominent biases. We select
top and bottom 15 sample homophily neighborhood distribution ratio Sect. 3.2,
from each community to formulate the representative coreset nodes from the
training set during training. These nodes are sufficient to cover the local con-
textual structures where biases are rooted. As shown in Table 1, ComFairGNN
has both the best overall classification performance than the baselines meth-
ods. In terms of fairness, ComFairGNN respectively reduces ASP and AEO by
4.9% and 4.1%, compared with the best performed baseline on both Pokec-z
and Pokec-n datasets. Additionally, as shown in Fig. 4, this pattern is consistent
across all communities in the datasets. Hence, the fairness improvement achieved
by ComFairGNN aligning with our motivation.
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Ablation Study: To validate ComFairGNN’s, we investigate different coreset
sizes of C hyperparameter. As shown in Fig.5 C' = 30 sample size relatively
performs better.

100 10

Pokec-z  --o-- Facebook Pokec-z
801 —— Pokec-n 81 —— Pokec-n
—_— —1 --+- Facebook
g 60 g 6
=} DD L ——
Z a0 Y e —
20 2
. e
0 0
10 30 50 10 30 50
C C

Fig.5. AUC and EO Performance Comparison Across Different Coreset Sizes C'

5 Related Work

5.1 Fairness in Graph

Research in Graph Neural Networks (GNNs) fairness has produced several
approaches to measure and mitigate bias. Recent works have primarily focused
on group fairness, ensuring models don’t discriminate against certain groups.
EDITS [5] modifies the adjacency matrix and node attributes to reduce the
Wasserstein distance between different groups. FairGNN [4] incorporates fairness
regularization to ensure equitable treatment in both representations and predic-
tions. UGE [22] learns unbiased node representations by eliminating sensitive
attribute influences, while NIFTY [2] enhances counterfactual fairness through
triplet-based objectives and layer-wise weight normalization. DegFairGNN [13]
addresses fairness for nodes with varying degrees within groups. However, this
approach is computationally expensive for large graphs. Additionally, like other
existing methods, DegFairGNN has not fully addressed the inherent local struc-
tural bias in graphs.

6 Conclusion

This paper examines fairness paradoxes in graph debiasing methods at the com-
munity level. By analyzing structural communities, we reveal fairness incon-
sistencies across demographic subgroups that are masked when using absolute
measures of ASP and AEO. To address community-level bias in GNN neighbor-
hood aggregation, we propose ComFairGNN, a fairness-aware framework that
modulates representative coreset nodes through embedding similarity contrast.
Experiments on three benchmark datasets demonstrate that ComFairGNN effec-
tively improves both accuracy and fairness metrics.
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