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Abstract. Graph Neural Networks (GNNs) have become the leading 
approach for addressing graph analytical problems in various real-world 
scenarios. However, GNNs may produce biased predictions against cer-
tain demographic subgroups due to node attributes and neighbors sur-
rounding a node. Understanding the potential evaluation paradoxes due 
to the complicated nature of the graph structure is crucial for devel-
oping effective GNN debiasing mechanisms. In this paper, we examine 
the effectiveness of current GNN debiasing methods in terms of unfair-
ness evaluation. Specifically, we introduce a community-level strategy 
to measure bias in GNNs and evaluate debiasing methods at this level. 
Further, We introduce ComFairGNN, a novel framework designed to mit-
igate community-level bias in GNNs. Our approach employs a learnable 
coreset-based debiasing function that addresses bias arising from diverse 
local neighborhood distributions during GNNs neighborhood aggrega-
tion. Comprehensive evaluations on three benchmark datasets demon-
strate our model’s effectiveness in both accuracy and fairness metrics. 
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1 Introduction 

In today’s interconnected world, graph learning supports various real-world 
applications, such as social networks, recommender systems, and knowledge 
graphs [ 3, 16]. Graph Neural Networks (GNNs) are powerful for graph represen-
tation learning and are used in tasks like node classification and link prediction 
by aggregating neighboring node information. However, GNNs often overlook 
fairness, leading to biased decisions due to structural bias and attribute bias like 
gender, race, and political ideology. These bias can cause ethical dilemmas in 
critical contexts, such as job candidate evaluations, where a candidate might be 
favored due to shared ethnic background or mutual acquaintances. To tackle the 
outlined issue, multiple methods were suggested to evaluate and mitigate the 
fairness of node representation learning on graphs. Most of these methods aim 
to learn node representations that can yield statistically fair predictions across 
subgroups defined based on sensitive attributes. Choosing the right metric to 
evaluate bias in graphs inherently depends on the specific task at hand. The 
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Fig. 1. Illustration of graph polarization: Nodes a and b from different communities 
share identical labels (same colors), but GNNs learn different embeddings due to vary-
ing neighborhood label distributions. 

existing methods employed graph-level metrics originally designed for other pur-
poses to address fairness concerns. The primary difficulty in addressing fairness 
within graphs arises from the frequent correlation between the graph’s topology 
and the sensitive attribute we aim to disregard. However, due to the complicated 
nature of graph structures, conducting graph-level fairness evaluations and com-
parisons of different methods is not as straightforward as commonly reported in 
the existing methods. 

Real-world graphs often polarize into communities based on sensitive 
attributes (e.g., age, gender, race, ideology), as shown in Fig. 1, where  com-
munities form through dense internal connections and sparse external links. For 
example, U.S. Twitter networks show distinct political segregation [ 9], where 
Democratic supporters dominate Northeast and West Coast interactions while 
Republican supporters influence Texas, Florida, and Iowa networks. Similarly, 
sports preferences on social media can reflect regional demographic differences. 

In this paper, we investigate the critical issue of community fairness in graph 
neural networks (GNNs) within the context of node classification. Simply using 
node attributes and structural information as a debiasing mechanism can lead 
to misleading fairness evaluations and loss of important information [ 23]. Com-
munities, which reflect local neighborhood structures, often stem from sensitive 
node attributes [ 17]. Specifically, GNNs generate node representations by aggre-
gating information from neighboring nodes, which can result in nodes with iden-
tical labels but differing neighborhood label distributions, as illustrated in Fig. 1. 
This leads to structural biases in the learning process. Moreover, such biases may 
be further amplified through multi-layered recursive neighborhood aggregation 
in GNNs. While current debiasing methods primarily focus on attribute-based 
fairness, they fail to address the underlying bias introduced by neighborhood 
aggregation. As a result, these methods are ineffective at mitigating community-
level biases that arise from disparate neighborhood structures. 

To address community fairness, we introduce the concept of local struc-
tural fairness at the community level for all nodes in the graph. This approach 
recognizes that the broader structural bias affecting nodes within a commu-
nity emerges from the GNN’s aggregation process, which is influenced by the
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diverse distribution of local neighborhoods. We present ComFairGNN, a novel 
community-fair Graph Neural Network compatible with any neighborhood aggre-
gation based GNN architecture. Specifically, the coreset-based debiasing function 
targets the neighborhood aggregation of GNN operation, aiming to bring iden-
tical label nodes in different communities closer in the embedding space. This 
approach mitigates structural disparities across communities, leading to fairer 
representations for nodes with identical labels. 

In summary, our paper makes three key contributions: (1) We measure the 
problem of fairness and potential evaluation paradoxes at the community level 
using different fairness evaluation metrics in GNNs. (2) We propose a novel 
community fairness for GNNs named ComFairGNN that can balance the struc-
tural bias for identical label nodes in different communities. ComFairGNN works 
with any neighborhood aggregation-based GNNs. (3) Comprehensive empirical 
evaluations validate our method’s effectiveness in enhancing both fairness and 
accuracy. 

2 Preliminaries 

We first introduce the notations. A graph G = (V, E) consists of n nodes and 
edges E ⊆ V × V . The node-wise feature matrix X ∈ Rn×k has k dimensions 
for raw node features, with each row xi representing the feature vector for the 
i-th node. The binary adjacency matrix is A ∈ {0, 1}n×n, and the learned node 
representations are captured in H ∈ Rn×d, where  d is the latent dimension size 
and hi is the representation for the i-th node. The sensitive attribute s ∈ {0, 1}n 

classifies nodes into demographic groups, with edges euv being intragroup if 
su = sv and intergroup otherwise. The function N(u) returns the set of neighbors 
for a node u, providing a structural node embedding. Clusters based on this 
embedding are denoted as C, with  Ci ⊆ V for nodes in the i-th cluster and c as 
the cluster count. Each Ci represents a community and f measures the statistical 
notion of fairness across different communities in the graph. 

2.1 Graph Neural Network 

Graph Neural Networks (GNNs) utilize neighborhood aggregation across multi-
ple layers. At layer l, the representation of node v, denoted as hl 

v ∈ Rdl , is:  

hl 
v = σ

(
AGGR

({hl−1 
u | u ∈ Nv}; ωl

))
(1) 

where AGGR(·) is an aggregation function like mean-pooling [ 12] or self-
attention [ 21], σ is an activation function, Nv is v’s neighborhood set, and ωl 

contains learnable parameters. The initial representation is h0 
v = xv, where  xv 

is the input feature vector.
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2.2 Node Clustering on Structural Embedding 

We partition the graph into communities using node2vec [ 8] embeddings com-
bined with k-means clustering [ 15]. Node2vec maps each node u ∈ U to a d-
dimensional vector space f : U → Rd. For each node, multiple random walks are 
performed to capture the network neighborhood Ns(u), maximizing the objec-
tive: 

arg max 
f

∏

u∈U

∏

u′∈Ns(u) 

P (u′ | f(u)) (2) 

where P (u′ | f(u)) is computed using softmax. These structural embeddings 
are then clustered using k-means, chosen for its computational efficiency. The 
k-means algorithm minimizes the within-cluster sum of squares [ 18]: 

arg min 
C∑

i=1

∑

x∈Ci 

DIST(x, μi) (3) 

where Ci represents the i-th cluster and μi its centroid. 

Fig. 2. Overall framework of ComFairGNN 

3 Proposed Method 

Figure 2 illustrates the ComFairGNN framework. We first identify communities 
using structural-based clustering (Fig. 2(c)). For debiasing, we divide each com-
munity’s nodes into two subgroups based on sensitive features and sample coreset 
nodes according to neighborhood homophily ratios. These coreset nodes contrast 
against each other to mitigate structural bias (Fig. 2(d)). The GNN optimizes 
both task performance and coreset fairness (Fig. 2(e)), debiasing neighborhood 
aggregation by maximizing similarity between same-labeled nodes.
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3.1 Community Level Structural Contrast 

We propose a debiasing function using coreset nodes c selected from different 
communities. Following [ 20], coresets identify crucial training examples using 
heuristic criteria. We select nodes equally from subgroups S0 and S1 across 
communities. Since GNNs in Eq. 1 only access one-hop contexts and communities 
tend to be homogeneous in sensitive attributes, selecting coreset nodes from both 
groups per community helps balance structural disparities. 

C = 
K⋃

k=1 

CkS0 
∪ 

K⋃

k=1 

CkS1 
⊆ V (4) 

Here C indicates the coreset sample nodes for all k ∈ {1, . . . , K}. K repre-
sents the total number of communities, and CkS0 

and CkS1 
represent selected 

sample nodes from subgroup S0 and S1 in community k respectively. 
To minimize structural bias between groups across communities, we maxi-

mize the similarity of similarly-labeled nodes in the coreset, allowing GNNs to 
implicitly reduce community-based structural differences. 

3.2 Coreset Nodes Selection for GNNs Debiasing 

To fundamentally eliminate the structural bias of GNNs neighborhood aggrega-
tion, which is the key operation in GNNs, we propose to use the neighborhood 
homophily distribution ratio to select the sample coreset nodes from different 
communities. 

Node Neighborhood Homophily Distribution Ratio: The homophily ratio 
in graphs is typically defined based on the similarity between connected node 
pairs. In this context, two nodes are considered similar if they share the same 
node label. The formal definition of the homophily ratio is derived from this 
intuition, as follows [ 14]. 

Definition 1 (Node Homophily Ratio). For a graph G = (V, E) with node 
label vector y, we define the edge homophily ratio as the proportion of edges 
linking nodes sharing identical labels. The formal definition is as follows: 

h(G, {yi; i ∈ V}) =  
1 
|n|

∑

(i,k)∈E 

f(yi = yk), (5) 

where |n| is the number of neighboring edges of node i in the graph and f(·) is 
the indicator function. 

A node in a graph is generally classified as highly homophilous when its edge 
homophily ratio h(·) is high, typically falling within the range 0.5 ≤ h(·) ≤ 1, 
assuming an appropriate label context. Conversely, a node is considered het-
erophilous when its edge homophily ratio is low. Here, h(·) denotes the edge 
homophily ratio as previously defined.
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Figure 3 shows significant variation in neighborhood distribution ratios 
among same-labeled nodes in pokec-z. Since nodes with identical labels typi-
cally share similar features, GNN’s 1-hop aggregation produces different embed-
dings for these nodes. This embedding disparity across communities may bias 
the GNN. Therefore, we sample debiasing coreset nodes from all communities 
based on their neighborhood distributions. 

Fig. 3. Edge distribution bias in Pokec-z: GNN embeddings vary for identical nodes 
based on neighborhood labels 

Fairness-Aware Graph Coreset: We aim to identify a representative subset 
of training nodes Vw ⊂ Vtrain = [nt], where  |Vw| ≤  c � nt, along with an 
associated set of sample weights. In nearest neighbor message passing models 
(such as GCN, GAT, and  GIN), node  i only interacts with nodes j that are 
within a shortest-path distance of D, denoted as {j ∈ [n] | d(i, j) < D}. Here, 
we assume node i neighborhood distribution ratio Sect. 3.2, to select the coreset 
nodes. This selection is designed to approximate the training loss L(θ) across 
all θ ∈ Θ, while maintaining fairness considerations. The graph coreset selection 
problem is formulated as: 

min 
w∈W 

max 
θ∈Θ

∣
∣
∣
∣
∣
∣

∑

i∈[nt] 

wi · �([fθ(A, X)]i, yi) − L(θ)
∣
∣
∣
∣
∣
∣

(6) 

The coreset minimizes the maximum error across all θ, requiring both A and 
X matrices to compute fθ(A, X). As illustrated in Algorithm 1, to debias GNN  
neighborhood aggregation at the community level, we sample from both groups 
S0 and S1 across all communities.
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Algorithm 1. Fair Graph Coreset Selection 
Require: G = (V, E), features X, groups S0, S1, size  K 
Ensure: Coreset C ⊆ V {Selected nodes} 
1: Initialize C = ∅, H = ENC(G) {Initial embedding} 
2: for each community k in G do 
3: nk = �K · |Vk|/|V |� {Community budget} 
4: C0k = Sample(Vk ∩ S0, �nk/2�) 
5: C1k = Sample(Vk ∩ S1, �nk/2�) 
6: C = C ∪ C0k ∪ C1k 

7: end for 
8: Z = PRD(H) 
9: Optimize C to minimize Task_Loss + Fairness_Loss 

10: return C 

3.3 Training Objective and Constraints: 

We focus on the task of node classification. We incorporate both the classification 
loss and the fairness loss associated with the classification to enhance the training 
process as illustrated in Fig. 2(e). 
Classification loss: In node classification tasks, the Graph Neural Network 
(GNNs) final layer typically adapts its dimensionality to align with the number 
of classes. It utilizes a softmax activation function, wherein the probability of 
class i is represented by the ith output dimension. To optimize the model’s 
parameters, we minimize the cross-entropy loss, defined as: 

Ltask = − 1 |Y |
∑

i

∑

j 
Yi,j log( Ŷi,j) (7) 

Here, |Y | denotes the number of labeled examples (rows in Y ), while Ŷi,j 
represents the predicted probability of the ith example belonging to the jth 

class. 
Fairness Loss: As the proposed coreset selection aims to maintain fair repre-
sentations across different groups, we introduce a fairness loss on the selected 
coreset samples c. We group  the samples  in  c based on their class label. Let 
cy=0 and cy=1 denote the groups of samples in the coreset with labels 0 and 1, 
respectively for binary classification. We use a similarity-based loss, trying to 
achieve parity in the average pairwise similarities for the two label groups in c, 
as follows: 

Lf air =

∣
∣
∣
∣
∣
∣

1 
|cy=0|

∑

i,j∈cy=0 

sim(xi, xj) − 1 
|cy=1|

∑

i,j∈cy=1 

sim(xi, xj)

∣
∣
∣
∣
∣
∣

(8) 

where sim(·, ·) is a cosine similarity function between two samples of same label. 
This fairness loss drives the coreset selection toward balancing the average intra-
label similarities between the two label groups in c. It aims to constrain the 
similarity distribution of labels to be similar across the two groups, S0 and S1.
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Overall loss: By combining all the above loss terms, we formulate the overall 
loss as 

L = Ltask + Lfair (9) 

4 Experiments 

We aim to address the following research questions in our experiments. RQ1: 
How reliable is the reported fairness score of graph debiasing methods free from 
paradox at a community level? RQ2: How efficient are the existing graph fairness 
evaluation methods in estimating the bias of GNNs at a community level? RQ3: 
How efficient is our proposed ComFairGNN method in terms of both accuracy 
and fairness at the community level? 

Table 1. Comparison of GNNs on utility and bias at the graph level with different 
debiasing methods. 

Method Dataset ACC↑ AUC↑ ΔEO(w)↓ ΔSP(w)↓ ΔEO (w/o) ΔSP (w/o) 
Vanilla GCN Pokec-z 69.29 ± 1.72 69.51 ± 2.7 14.43 ± 0.7 12.88 ± 0.94 –14.43 ± 0.7 –12.88 ± 0.94 

Pokec-n 70.77 ± 1.32 70.45 ± 1.7 18.03 ± 0.57 14.14 ± 2.01 18.03 ± 0.57 14.14 ± 2.01 
Facebook 81.53 ± 1.52 61.62 ± 2.1 12.73 ± 0.7 12.30 ± 1.0 –12.73 ± 0.7 –12.30 ± 1.0 

FairGNN Pokec-z 68.95 ± 0.1 72.24 ± 0.3 5.17 ± 1.3 7.79 ± 0.7 –5.17 ± 1.3 –6.79 ± 0.7 
Pokec-n 69.14 ± 0.1 70.18 ± 0.3 4.26 ± 1.3 3.87 ± 0.7 4.26 ± 1.3 3.87 ± 0.7 
Facebook 85.35 ± 0.77 64.62 ± 1.6 2.22 ± 0.6 6.36 ± 1.0 2.22 ± 0.6 6.36 ± 1.0 

NIFTY Pokec-z 67.34 ± 1.51 67.49 ± 1.20 5.89 ± 1.32 5.85 ± 0.9 –5.89 ± 1.32 –5.85 ± 0.9 
Pokec-n 69.41 ± 1.51 69.08 ± 1.20 8.63 ± 1.32 10.42 ± 0.9 -8.63 ± 1.32 –10.42 ± 0.9 
Facebook 77.07 ± 1.28 73.05 ± 1.87 7.88 ± 1.0 8.95 ± 1.3 7.88 ± 1.0 8.95 ± 1.3 

UGE Pokec-z 63.64 ± 2.57 64.61 ± 2.1 14.34 ± 2.3 11.74 ± 1.9 –14.34 ± 2.3 –11.74 ± 1.9 
Pokec-n 67.48 ± 2.72 66.67 ± 2.71 10.34 ± 2.3 12.74 ± 1.9 -10.34 ± 2.3 -12.74 ± 1.9 
Facebook 64.33 ± 0.94 63.46 ± 1.8 5.69 ± 1.2 13.17 ± 1.5 5.69 ± 1.2 13.17 ± 1.5 

ComFairGNN Pokec-z 70.25 ± 0.1 71.11 ± 0.3 0.18 ± 1.3 1.00 ± 0.7 0.18 ± 1.3 1.00 ± 0.7 
Pokec-n 69.41 ± 0.7 66.43 ± 0.97 0.19 ± 0.45 0.90 ± 0.67 –0.19 ± 0.45 –0.90 ± 0.67 
Facebook 85.35 ± 0.77 74.62 ± 2.6 3.96 ± 0.6 7.63 ± 1.0 3.96 ± 0.6 7.63 ± 1.0 

Table 2. Dataset statistics and community distribution 

Dataset Nodes Edges Features Classes Comm_1 Comm_2 Comm_3 Comm_4 Comm_5 
Pokec-z 67,796 882,765 276 2 309 282 259 1412 302 
Pokec-n 66,569 198,353 265 2 428 360 361 389 -
Facebook 1,034 26,749 573 2 55 37 65 - -
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4.1 Experimental Setup and Datasets 

Datasets. We evaluate on three real-world datasets for node classification: 
Pokec-z, Pokec-n, and  Facebook. The Pokec datasets are subsets from Slovakia’s 
Pokec social network [ 19], where nodes represent users, edges represent friend-
ships, and location is the sensitive attribute for classifying users’ work fields. 
The Facebook dataset [ 11] similarly uses friendship connections with gender as 
the sensitive attribute. Dataset statistics are summarized in Table 2. 

Evaluation Metrics We use ACC and AUC scores to evaluate the utility per-
formance. To evaluate fairness, we use two commonly used fairness metrics, i.e., 
ΔDP = |P (ŷ = 1|s = 0)  − P (ŷ = 1|s = 1)| [ 7] and  ΔEO = |P (ŷ = 1|y = 1, s  = 
0) − P (ŷ = 1|y = 1, s  = 1)| [ 10]. ŷ and y denote the node label prediction and 
ground truth, respectively. For ΔDP and ΔEO, a smaller value indicates a fairer 
model prediction. 

Baseline Methods: We investigate the effectiveness of four state-of-the-art 
GNN debiasing methods at a graph level and community level, namely FairGNN 
[ 4], NIFTY [ 1], and UGE [ 22]. FairGNN utilizes adversarial training to elimi-
nate sensitive attribute information from node embeddings. NIFTY improves 
fairness by aligning predictions based on both perturbed and unperturbed sen-
sitive attributes. This approach generates graph counterfactuals by inverting 
the sensitive feature values for all nodes while maintaining all other attributes. 
UGE derives node embeddings from a neutral graph that is free of biases and 
unaffected by sensitive node attributes, addressing the issue of unbiased graph 
embedding. We use GCN [ 12] as the backbone GNN model. 

Implementation Setup: We use a two-layer GCN [ 12] encoder  and MLP  
predictor for all experiments, consistent with baseline methods implemented 
from PyGDebias [ 6]. Each method runs for 400 epochs with learning rates in 
{0.1,0.01,0.001}, using hyperparameters from their original papers and repeat-
ing three times. Experiments were conducted on 16GB NVIDIA V100 GPUs. 

Fairness Paradoxes: To address RQ1, we evaluate the effectiveness of current 
debiasing techniques for GNNs at the community level and compare the con-
sistency of their debiasing performance when applied to the entire graph. We 
first measure the group fairness of the GCN model with the debiasing method 
applied to the entire original input graph G. Next, we measure the group fairness 
of the same GCN model with the debiasing method applied at the community 
level. We observe that the fairness performance across the communities is not 
as consistent as the fairness score reported for the entire graph across datasets 
for all baseline methods. For example, in Fig. 4 {b, c, d}, we observe that the 
unfairness estimation for Pokec-z dataset using ΔEO is higher for communities 
{2, 3, 4, 5} compared to ΔEO for the entire dataset when FairGNN debiasing 
method is used. 

Over-Simplification of Fairness Evaluation RQ2: The absolute values in 
ΔSP and ΔEO metrics can mask local disparities across communities. While 
overall metrics might show moderate fairness when averaged, they obscure cases
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Fig. 4. Performance comparison of different GNN debiasing methods across datasets 
and communities. (a) Graph-level performance across different datasets (Pokec-z, 
Pokec-n, Facebook). (b, c, and d) Community-wise performance breakdown on Pokec-z, 
Pokec-n and Facebook datasets. Showing AUC(%) and EO(%) metrics. 

where a group experiences high bias in some communities and low bias in others, 
as shown in Fig. 4. This averaging effect fails to capture the actual fairness 
experienced by individuals in different parts of the graph. 

Evaluation and Main Results (RQ3). As GNNs learn by neighborhood 
aggregation Sect. 2.1, we evaluate fairness within different subgraphs or commu-
nities within the larger graph. This can help identify and address local disparities 
more effectively. We select S0 and S1 nodes within the community to evaluate the 
model’s disparity locally, which may present more prominent biases. We select 
top and bottom 15 sample homophily neighborhood distribution ratio Sect. 3.2, 
from each community to formulate the representative coreset nodes from the 
training set during training. These nodes are sufficient to cover the local con-
textual structures where biases are rooted. As shown in Table 1, ComFairGNN 
has both the best overall classification performance than the baselines meth-
ods. In terms of fairness, ComFairGNN respectively reduces ΔSP and ΔEO by 
4.9% and 4.1%, compared with the best performed baseline on both Pokec-z 
and Pokec-n datasets. Additionally, as shown in Fig. 4, this pattern is consistent 
across all communities in the datasets. Hence, the fairness improvement achieved 
by ComFairGNN aligning with our motivation.
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Ablation Study: To validate ComFairGNN’s, we investigate different coreset 
sizes of C hyperparameter. As shown in Fig. 5 C = 30  sample size relatively 
performs better. 

Fig. 5. AUC and EO Performance Comparison Across Different Coreset Sizes C 

5 Related Work 

5.1 Fairness in Graph 

Research in Graph Neural Networks (GNNs) fairness has produced several 
approaches to measure and mitigate bias. Recent works have primarily focused 
on group fairness, ensuring models don’t discriminate against certain groups. 
EDITS [ 5] modifies the adjacency matrix and node attributes to reduce the 
Wasserstein distance between different groups. FairGNN [ 4] incorporates fairness 
regularization to ensure equitable treatment in both representations and predic-
tions. UGE [ 22] learns unbiased node representations by eliminating sensitive 
attribute influences, while NIFTY [ 2] enhances counterfactual fairness through 
triplet-based objectives and layer-wise weight normalization. DegFairGNN [ 13] 
addresses fairness for nodes with varying degrees within groups. However, this 
approach is computationally expensive for large graphs. Additionally, like other 
existing methods, DegFairGNN has not fully addressed the inherent local struc-
tural bias in graphs. 

6 Conclusion 

This paper examines fairness paradoxes in graph debiasing methods at the com-
munity level. By analyzing structural communities, we reveal fairness incon-
sistencies across demographic subgroups that are masked when using absolute 
measures of ΔSP and ΔEO. To address community-level bias in GNN neighbor-
hood aggregation, we propose ComFairGNN, a fairness-aware framework that 
modulates representative coreset nodes through embedding similarity contrast. 
Experiments on three benchmark datasets demonstrate that ComFairGNN effec-
tively improves both accuracy and fairness metrics.
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