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Abstract. Knowledge graph completion (KGC) is a task of inferring missing 
triples based on existing Knowledge Graphs (KGs). Both structural and seman-
tic information are vital for successful KGC. However, existing methods only 
use either the structural knowledge from the KG embeddings or the semantic 
information from pre-trained language models (PLMs), leading to suboptimal 
model performance. Moreover, since PLMs are not trained on KGs, directly using 
PLMs to encode triples may be inappropriate. To overcome these limitations, 
we propose a novel framework called Bridge, which jointly encodes structural 
and semantic information of KGs. Specifically, we strategically encode entities 
and relations separately by PLMs to better utilize the semantic knowledge of 
PLMs and enable structured representation learning via a structural learning prin-
ciple. Furthermore, to bridge the gap between KGs and PLMs, we employ a self-
supervised representation learning method called BYOL to fine-tune PLMs with 
two different views of a triple. Unlike BYOL, which uses augmentation methods 
to create two semantically similar views of the same image, potentially altering 
the semantic information. We strategically separate the triple into two parts to cre-
ate different views, thus avoiding semantic alteration. Experiments demonstrate 
that Bridge outperforms the SOTA models on three benchmark datasets. 

Keywords: Knowledge representation · Knowledge graph completion 

1 Introduction 

Knowledge graphs (KGs) are graph-structured databases composed of triples (facts), 
where each triple (h, r, t) represents a relation r between a head entity h and a tail 
entity t. KGs such as Wikidata [ 25] and WordNet [ 5] have a significant impact on vari-
ous downstream applications such as named entity recognition [ 13,33], relation extrac-
tion [ 28], and entity linking [ 34]. Nevertheless, the effectiveness of KGs has long been 
hindered by the challenge of the incompleteness problem. 

To address this issue, researchers have proposed a task known as Knowledge Graph 
Completion (KGC), which aims to predict missing relations and provides a valuable 
supplement to enhance KG’s quality. Most existing KGC methods fall into two main 
categories: structure-based and pre-trained language model (PLMs)-based methods. 
Structure-based methods represent entities and relations as low-dimensional continu-
ous embeddings, which effectively preserve their intrinsic structure [ 2, 4, 6,12]. While 
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effective in KG’s structure representation learning, these methods overlook the seman-
tic knowledge associated with entities and relations. Recently, PLM-based models have 
been proposed to leverage the semantic understanding captured by PLMs, adapting 
KGC tasks to suit the representation formats of PLMs [ 11,17,26,27,32]. 

While these models offer promising potential to enhance KGC performance, there 
is space to improve: (1) Existing structure-based methods do not explore knowledge 
provided by PLMs. (2) Existing PLM-based methods aim to convert KGC tasks to fit 
language model format and learn the relation representation from a semantic perspective 
using PLMs, overlooking the context of the relation in KGs. Consequently, they lack 
optimal alignment with structural knowledge. For example, given a triple (trade name, 
member of domain usage, metharbital) 1, the semantic of the relation member of domain 
usage is ambiguous since “it is not a standard used term in the English 2”; hence, PLMs 
may lack accurate semantic representation. Thus, it becomes imperative to enable the 
model to leverage the principle of structural learning to grasp structural knowledge 
and compensate for the limitations of semantic understanding. (3) Existing PLM-based 
methods utilize PLMs directly, overlooking the disparity between PLMs and triples 
arising from the lack of triple training during PLMs pre-training. This oversight limits 
the expressive power of PLMs and their adaption to the KG’s domain. 

To address the limitations of existing methods, we propose a two-in-one frame-
work named Bridge. To overcome the challenge of lacking structural knowledge in 
PLMs, we propose a structured triple knowledge learning phase. Specifically, we fol-
low the widely applied principle in traditional structured representation learning for 
KGs [ 1, 2,16,19,21], which posits that the relation is a translation from the head entity 
to the tail entity. We strategically extract the embedding of h, r and t separately from 
PLMs and employ various structure-based scoring functions to assess the plausibility of 
a triple. This approach allows us to reconstruct KG’s structure in the semantic embed-
ding via the structured learning principle. This principle has been widely applied in 
traditional structured representation learning for KGs, but there is no previous study 
that investigates this principle using PLM-based representation. 

However, due to the different principles between traditional structured representa-
tion learning and PLMs, there is a gap between them since PLMs are not trained on 
KGs. To bridge the gap between PLMs and KGs, we fine-tune PLMs to integrate struc-
tured knowledge from KGs into PLMs. By taking this step, we unify the space of struc-
tural and semantic knowledge, making integration of KGs and PLMs more reasonable. 
In summary, our main contributions are: 

1. We propose a general framework, Bridge, that jointly encodes structural and seman-
tic information of KGs and can incorporate various scoring functions. 

2. We utilize BYOL innovatively for fine-tuning PLM to bridge the gap between struc-
tural knowledge and PLMs. 

3. We conduct empirical studies with two widely used structural-based scoring func-
tions on three benchmark datasets. Experiment results show that Bridge consistently 
and significantly outperforms other baseline methods.

1 This is a triple from WordNet, and metharbital is an anticonvulsant drug used in the treatment 
of epilepsy. 

2 Interpretation from ChatGPT when asking “what does member of domain usage mean?”. 
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2 Related Work 

2.1 Structure-Based KGC 

Structure-based KGC aims to embed entities and relations into a low-dimensional con-
tinuous vector space while preserving their intrinsic structure through the design of 
different scoring functions. Various knowledge representation learning methods can 
be divided into the following categories: (1) Translation-based models, which assess 
the plausibility of a fact by calculating the Euclidean distance between entities and 
relations [ 2, 6, 9,21]; (2) Semantic matching-based models, which determine the plau-
sibility of a fact by calculating the semantic similarity between entities and relations 
[ 1,14,15,31]; and (3) Neural network-based models, which employ deep neural net-
works to fuse the graph network structure and content information of entities and rela-
tions [ 8,12,16,19,20,24]. All these structure-based models are limited to using graph 
structural information from KGs, and they do not leverage the rich contextual semantic 
information of PLMs to enrich the representation of entities and relations. 

2.2 PLM-Based KGC 

PLM-based KGC refers to a method for predicting missing relations in KGs using 
the implicit knowledge of PLMs. KG-BERT [ 32] is the first work to utilize PLMs for 
KGC. It treats triples in KGs as textual sequences and leverages BERT [ 10] to model 
these triples. MTL-KGC [ 11] utilizes a multi-task learning strategy to learn more rela-
tional properties. This strategy addresses the challenge faced by KG-BERT, where dis-
tinguishing lexically similar entities is difficult. To improve the inference efficiency 
of KG-BERT, StAR [ 26] partitions each triple into two asymmetric parts and subse-
quently constructs a bi-encoder to minimize the inference cost. SimKGC [ 27] proposes 
to utilize contrastive learning to improve the discriminative capability of the learned 
representation. Adopting the architecture of SimKGC, GHN [ 17] develops an innova-
tive self-information-enhanced contrastive learning approach to generate high-quality 
negative samples. MPIKGC [ 30] utilizes large language models (LLMs) to enrich the 
descriptions of entities/relations. In contrast to previous encode-only models, [ 3,18] 
explore the generation-based models that directly generate a target entity. However, all 
these methods simply involve fine-tuning PLMs directly, disregarding both the absence 
of structured knowledge in PLMs and the gap between PLMs and KGs. 

3 Preliminary 

3.1 Bootstrap Your Own Latent (BYOL) 

Bootstrap Your Own Latent (BYOL) is an approach to self-supervised image represen-
tation learning without using negative samples. It employs two networks, referred to 
as the online and target networks, working collaboratively to learn from one another. 
The online network is defined by a set of weights θ, while the target network shares the 
same architecture as the online network but utilizes a different set of weights ξ.
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Given the image x, BYOL generates two augmented views (v, v′) from the image 
x using different augmentations. These two views (v, v′) are separately processed by 
the online and the target encoders. The online network produces a representation yθ = 
fθ(v) and a projection zθ = gθ(yθ), while the target network outputs a representation 
y′

ξ = fξ(v′) and a projection z′
ξ = gξ(y′

ξ). Next, only the online network applies a 
prediction qθ(zθ), creating an asymmetric between the online and the target encoders. 
Finally, the loss function is defined as the mean squared error between the normalized 
predictions and target projections: 

Lθ,ξ � ‖q̄θ(zθ) − ̄z′
ξ‖2 2 = 2  − 2 · 〈qθ(zθ), z′

ξ〉
‖qθ(zθ)‖2 · ‖z′

ξ‖2 
, (1) 

where q̄θ(zθ) and z̄′
ξ are the l2-normalized term of qθ(zθ) and z′

ξ. 
To symmetrize the loss Lθ,ξ, BYOL swaps the two augmented views of each net-

work, feeding v′ to the online network and v to the target network to compute ˜Lθ,ξ. 
During each training step, BYOL performs a stochastic optimization step to minimize 
LBY OL 

θ,ξ = Lθ,ξ + ˜Lθ,ξ with respect to θ only. ξ are updated after each training step 
using an exponential moving average of the online parameters θ as follows: 

ξ ← τξ  + (1  − τ)θ, (2) 

where τ is a target decay rate. 

3.2 Problem Definition 

Knowledge Graph Completion The knowledge graph completion (KGC) task is to 
either predict the tail/head entity t/h given the head/tail entity h/t and the relation 
r: (h, r, ?) and (?, r, t), or predict relation r between two entities: (h, ?, t). In this work, 
we focus on head and tail entity prediction. 

4 Methodology 

In this section, we present Bridge in detail. We first introduce a structure-aware PLM 
encoder, which aims to learn structure knowledge by PLMs. Then we introduce two 
essential modules in Bridge. The first module utilizes a fine-tuning process with BYOL 
to seamlessly integrate structural knowledge from KGs into PLMs, thereby bridging the 
gap between the two. The second module aims to learn structure-enhanced triple knowl-
edge with PLMs, allowing PLMs to acquire domain knowledge of KGs. As shown in 
Fig. 1a, Bridge integrates these two modules by sequentially training two objectives. 
We take the tail entity prediction task (h, r, ?) as an example to illustrate the procedure, 
and the procedure for the head entity prediction task (?, r, t) is the same. 

4.1 Structure-Aware PLMs Encoder 

Existing structure-based and PLM-based methods can lead to suboptimal performance, 
especially when dealing with ambiguous relations. Hence, it is essential to incorporate
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Fig. 1. (a) The framework of Bridge. ⊗ represents different interaction strategies between entities 
and relations, determined by various scoring functions. (b) Structure-Aware PLM Encoder. 

structural knowledge with semantic knowledge to achieve a structure-enhanced relation 
representation. 

To facilitate structure representation learning, we use two BERT encoders. Given 
a triple  (h, r, t), the first encoder takes the textual description of the head entity h and 
relation r as input, where the textual description of the head entity h is denoted as 
(eh 

1 , e
h 
2 , · · ·  , eh 

n), and relation r is denoted as a sequence of tokens (r1, r2, · · ·  , rn), the  
input sequence is: [CLS] eh 

1 e
h 
2 · · ·  eh 

n [SEP ] r1 r2 · · ·  rn [SEP ]. The second encoder 
takes the textual description of the tail entity t as input, where the textual description of 
the tail entity t is denoted as a sequence of tokens (et 

1, e
t 
2, · · ·  , et 

n), the input sequence 
format is: [CLS] et 

1 e
t 
2 · · ·  et 

n [SEP ]. The design of these two encoders is illustrated 
in Fig. 1b. The embedding of h, r, t is computed by taking the mean pooling of the 
corresponding BERT output: 

h = M eanP ooling(eh 1 , eh 2 , · · ·  , eh n), 
r = M eanP ooling(r1, r2, · · ·  , rn), 
t = M eanP ooling(et 1, et 2, · · ·  , et n). 

(3) 

To reconstruct KG’s structure in the semantic embedding, we analyze two widely 
applied scoring functions in the KGC task, including TransE and RotatE. The corre-
sponding structure scoring functions φ(h, r, t) are designed as follows: 

φ(h, r, t) =  φ(h ⊗ r, t)T ransE = cos(h + r, t) =  
(h + r) · t
‖h + r‖‖t‖ . (4) 

φ(h, r, t) =  φ(h ⊗ r, t)RotatE = cos(h ◦ r, t) =  
(h ◦ r) · t
‖h ◦ r‖‖t‖ . (5) 

where ◦ denotes the Hadamard (element-wise) product, and ⊗ represents different inter-
action strategies between entities and relations. Note that Bridge is flexible enough to 
be generalized to other existing structure-based scoring functions. 

4.2 Fine-Tuning PLMs with BYOL 

Previous PLM-based approaches leverage PLMs directly and disregard the gap between 
structure knowledge and PLMs because PLMs are not trained on triples. Therefore,
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strategic fine-tuning PLMs is necessary. Considering the existence of one-to-many, 
many-to-one, and many-to-many relations in KGs, we exclusively consider positive 
samples and adopt BYOL [ 7] as it does not require negative samples. We generate an 
alternative view of KG by separating a triple into two parts, and leveraging the widely 
used structural principles to learn KG information. 

BYOL generates two augmented views of the same instance, with one view serving 
as the input for the online network and the other view serving as the input for the 
target network. Here, the online encoder takes the textual descriptions of the head entity 
h and relation r as input and produces an online representation hb ⊗ rb. The  target 
encoder takes the textual descriptions of the tail entity t as input and produces a target 
representation tb. The design of the encoder is elaborated in Sect. 4.1. 

The online projection network gθ takes the online representation hb ⊗ rb as input 
and outputs an online projection representation zθ: 

zθ = gθ(hb ⊗ rb) =  W2[σ(W1[hb ⊗ rb])], (6) 

where W1 and W2 are trainable parameters, gθ is a MLP network with one hid-
den layer, σ(·) is a PReLU function, and ⊗ represents different interaction strategies 
between entities and relations, determined by various scoring functions. 

The target projection network gξ takes the target representation tb as input and 
outputs a target projection representation z′

ξ: 

z′
ξ = gξ(tb) =  W4[σ(W3tb)], (7) 

where W3 and W4 are trainable parameters, gξ is a MLP network with one hidden 
layer, and σ(·) is a PReLU function. 

The prediction network qθ takes the online projection representation zθ as input and 
outputs a representation qθ(zθ) which is a prediction of the target projection representa-
tion z′

ξ, the goal is to let the online network predict the target network’s representation 
of another augmented view of the same triple: 

qθ(zθ) ≈ z′
ξ, (8) 

where qθ is a MLP network with one hidden layer. 

4.3 Structured Triple Knowledge Learning 

To reconstruct KG’s structures in the semantic embedding, after fine-tuning PLMs with 
BYOL, we employ the fine-tuned online encoder and the target encoder to facilitate 
structure learning. The online BERT encoder takes the textual description of the head 
entity h and the relation r as input. The target BERT encoder takes the textual descrip-
tion of the tail entity t as input. The structure scoring function φ(h, r, t) is utilized to 
train these two encoders further to incorporate structure knowledge into PLMs. 

4.4 Objective and Training Process 

During the Fine-tuning PLMs with BYOL phase, we optimize the PLMs for domain 
adaption in KGs using the loss Lθ,ξ, which is computed according to Eq. (1). The online
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parameters θ are updated by a stochastic optimization step to make the predictions 
qθ(zθ) closer to z′

ξ for each triple, while the target parameters φ are updated by Eq. (2). 
To symmetrize this loss, we also swap the input of the online and target encoder. 

In the Structured Triple Knowledge Learning phase, we use contrastive loss with 
additive margin [ 27] to simultaneously optimize the structure and PLMs objectives: 

L = −log e(φ(h,r,t)−γ)/τ 

e(φ(h,r,t)−γ)/τ +
∑|N | 

i=1 e
(φ(h,r,t′

i)−γ)/τ 
, (9) 

where τ denotes the temperature parameter, t′i denotes the i-th negative tail, φ(h, r, t) 
is the score function as in Eq. (4), Eq. (5), and the additive margin γ >  0 encourages 
the model to increase the score of the correct triple (h, r, t). 

5 Experimental Study 

5.1 Datasets and Evaluation Metrics 

We run experiments on three datasets: WN18RR [ 5], FB15k-237 [ 23], and Wikidata5M 
[ 29]. The statistics are shown in Table 1. We employ two evaluation metrics: Hits@K 
and mean reciprocal rank. Hits@K indicates the proportion of correct entities ranked in 
the top k positions, while MRR represents the mean reciprocal rank of correct entities. 

Table 1. Statistics of the Datasets. Columns 2–6 represent the number of entities, relations, triples 
in the training set, validation set, and the test set, respectively. 

Dataset #Ent #Rel #Train #Valid #Test 

WN18RR 40, 943 11 86, 835 3, 034 3, 134 

FB15k-237 14, 541 237 272, 115 17, 535 20, 466 

Wikidata5M-Trans 4, 594, 485 822 20, 614, 279 5, 133 5, 163 

5.2 Baseline 

We compare Bridge with two categories of baselines in Table 2. Structure-based meth-
ods aim to learn entity and relation embeddings by modeling relational structure in 
KGs. PLM-based methods aim to enrich knowledge representation by leveraging the 
semantic knowledge of PLMs but ignore the structural knowledge of KGs, and disre-
gard the disparity between PLMs and KGs, as PLMs are not trained on KGs. 

5.3 BridgeSetups 

We use the bert-base-uncased model as the initialized encoder. In the fine-tuning PLMs 
with BYOL module, we train Bridge-TransE on WN18RR, FB15k-237, and Wiki-
data5M datasets for 2, 2, and 1 epoch(s), respectively. For Bridge-RotatE, we con-
duct training on the WN18RR, FB15k-237, and Wikidata5M datasets for 1, 2, and 1 
epoch(s), respectively. The initial learning rates are 4 ∗ 10−4 , 3 ∗ 10−5 , 4 ∗ 10−5. In the
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Table 2. Main results. Bold represents the best results and underline denotes the runner-up results, 
† cites the results from [ 27], ∗ cites the results from original papers. - indicates that the original 
papers do not present results related to the corresponding dataset. 

Model WN18RR FB15k-237 Wikidata5M-Trans 

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 

Structure-based Methods 

TransE† 24.3 4.3 44.1 53.2 27.9 19.8 37.6 44.1 25.3 17.0 31.1 39.2 

DistMult† 44.4 41.2 47.0 50.4 28.1 19.9 30.1 44.6 - - - -

ComplEx† 44.9 40.9 46.9 53.0 27.8 19.4 29.7 45.0 - - - -

RotatE† 47.6 42.8 49.2 57.1 33.8 24.1 37.5 53.3 29.0 23.4 32.2 39.0 

TuckER† 47.0 44.3 48.2 52.6 35.8 26.6 39.4 54.4 - - - -

CompGCN∗ 47.9 44.3 49.4 54.6 35.5 26.4 39.0 53.5 - - - -

BKENE∗ 48.4 44.5 51.2 58.4 38.1 29.8 42.9 57.0 - - - -

CompoundE∗ 49.1 45.0 50.8 57.6 35.7 26.4 39.3 54.5 - - - -

SymCL∗ 49.1 44.8 50.4 57.6 37.1 27.6 41.1 56.6 - - - -

MGTCA∗ 51.1 47.5 52.5 59.3 39.3 29.1 42.8 58.3 - - - -

PLM-based Methods 

KG-BERT∗ - - - 52.4 - - - 42.0 - - - -

MTL-KGC∗ 33.1 20.3 38.3 59.7 26.7 17.2 29.8 45.8 - - - -

StAR∗ 40.1 24.3 49.1 70.9 29.6 20.5 32.2 48.2 - - - -

KGT5∗ 50.8 48.7 - 54.4 27.6 21.0 - 41.4 - - - -

KG-S2S∗ 57.4 53.1 59.5 66.1 33.6 25.7 37.3 49.8 - - - -

SimKGC∗ 67.1 58.5 73.1 81.7 33.3 24.6 36.2 51.0 35.3 30.1 37.4 44.8 

SimKGC-SymCL∗ 65.7 54.6 70.9 79.1 32.4 23.5 35.4 50.4 - - - -

GHN∗ 67.8 59.6 71.9 82.1 33.9 25.1 36.4 51.8 36.4 31.7 38.0 45.3 

MPIKGC-S∗ 61.5 52.8 66.8 76.9 33.2 24.5 36.3 50.9 - - - -

Bridge-TransE 69.4 59.4 74.7 85.9 38.0 31.6 41.2 57.4 45.4 40.2 47.8 55.6 

Bridge-RotatE 67.3 58.3 73.3 83.2 40.3 31.5 43.2 58.1 46.2 41.1 48.3 55.2 

structural triple knowledge learning module, we train Bridge-transE for 7, 10, and 1 
epoch(s) on the respective datasets and Bridge-RotatE for 8, 10, and 1 epoch(s). The 
corresponding initial learning rates are 1 ∗ 10−4 , 1 ∗ 10−5 , 3 ∗ 10−5. The batch size, 
additive margin γ of contrastive loss, and the temperature τ are consistent across all 
datasets, set as 1024, 0.02, and 0.05, respectively. 

5.4 Overall Evaluation Results and Analysis 

The performances of all models on three datasets are reported in Table 2. Com-
pared with the best baseline results, the improvements obtained by Bridge-TransE in 
terms of MRR, Hits@3, and Hits@10 are 2.4%, 2.2%, 4.6% on WN18RR. Mean-
while, the improvements obtained by Bridge-RotatE remain competitive with GHN. On 
Wikidata5M-Trans dataset, both Bridge-TransE and Bridge-RotatE demonstrate sub-
stantial improvements. Compared to the best baseline, GHN, Bridge-TransE achieves 
increases of 24.7% in MRR, 26.8% in Hits@1, 25.8% in Hits@3, and 22.7% in 
Hits@10. Similarly, Bridge-RotatE achieves increases of 26.9% in MRR, 29.7% in 
Hits@1, 27.1% in Hits@3, and 21.9% in Hits@10, respectively. On FB15k-237, 
Bridge-RotatE achieves the best results in MRR and Hits@3, while Bridge-TransE 
exhibits comparable performance to the best baseline results in MGTCA. Consider-
ing that FB15k-237 is much denser (average degree is ∼ 37 per entity) [ 27], MGTCA 
likely holds an advantage in utilizing abundant neighboring information for learning 
entity embeddings.
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Table 3. Ablation study on WN18RR, FB15k-237 and Wikidata5M-Trans. 

Model WN18RR FB15k-237 Wikidata5M-Trans 

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 

SimKGC 67.1 58.5 73.1 81.7 33.3 24.6 36.2 51.0 35.3 30.1 37.4 44.8 

w/o structural-TransE 58.2 45.2 64.4 79.3 31.0 24.2 31.9 44.7 30.1 27.7 30.0 38.1 

w/o BYOL-TransE 67.3 59.0 72.2 80.8 37.2 30.5 40.8 56.4 40.6 33.8 40.2 50.6 

Bridge-TransE 69.4 59.4 74.7 85.9 38.0 31.6 41.2 57.4 45.4 40.2 47.8 55.6 

w/o structural-RotatE 53.9 43.2 60.1 74.1 31.8 24.1 33.8 46.3 31.4 28.2 29.8 38.4 

w/o BYOL-RotatE 65.4 57.2 70.8 79.6 39.6 30.8 42.7 57.3 41.1 34.0 41.5 50.8 

Bridge-RotatE 67.3 58.3 73.3 83.2 40.3 31.5 43.2 58.1 46.2 41.1 48.3 55.2 

Table 4. Case study on the tail entity prediction (h, r, ?) task using the test set of Wikidata5M-
Trans. The Bold font represents the true tail entity. Top 3 shows the first three tail entities that 
SimKGC and Bridge predicted, respectively. 

Triple SimKGC Bridge 

Rank Top 3 Rank Top 3 

(rio pasion, mouth of the watercourse, Usumacinta river) 119 Golfo de Paria, El Golfo de Guayaquil, Yuma River 2 Tabasco River, Usumacinta river, tzala river 

(lewis gerhardt goldsmith, instance of, Human) 11 plant death, dispute, internet hoax 1 Human, Lists of people who disappeared, Strange deaths 

(cross country championships - short race, sport, Athletics) 4 Cross-country running, long distance race, Road run 1 Athletics, Tower running, Athletics at the Commonwealth 

5.5 Ablation Study 

To explore the effectiveness of each module, we conduct two variants of Bridge: 
(1) removing the structural Triple Knowledge Learning module (referred to as “w/o 
structural-TransE” and “w/o structural-RotatE”). For inference, we use the fine-tuned 
online BERT and target BERT to encode (h, r) and t, respectively, and rank the plau-
sibility of each triple based on their cosine similarity (refer to Eq. (4) and Eq. (5)); (2) 
remove the Fine-tuning PLMs with BYOL module (referred to as “w/o BYOL-TransE” 
and “w/o BYOL-RotatE”). The results are summarized in Table 3. 

Effectiveness of Structured Triple Knowledge Learning: Compared with Bridge-
TransE and Bridge-RotatE, the results of “w/o structural-TransE” and “w/o structural-
RotatE” reveal that removing the Structured Triple Knowledge Learning module results 
in notable decreases. This indicates that contrastive loss effectively distinguishes simi-
lar yet distinct instances. The objective of BYOL is to utilize a non-negative strategy to 
acquire a good initialization that can be applied in downstream tasks. Negative samples 
continue to play a crucial role in maintaining high performance in these downstream 
tasks [ 12,22]. The limitation of relying solely on BYOL arises from the fact that while 
the non-negative strategy can effectively minimize the gap between representations of 
distinct views from the same object, it is unable to sufficiently distinguish and disentan-
gle the representations of views originating from similar yet distinct objects. 

Effectiveness of Fine-Tuning PLMs with BYOL: Comparing with Bridge-TransE and 
Bridge-RotatE, the results of “w/o BYOL-TransE” and “w/o BYOL-RotatE” reveal that 
removing the fine-tuning BERT with BYOL module results in notable decreases across 
all metrics in Wikidata5M-Trans, and a minor decline on both WN18RR and FB15k-
237. This phenomenon illustrates the necessity for fine-tuning PLMs. While PLMs 
utilize vast, unlabeled corpora during training to construct a comprehensive language
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Table 5. Error Analysis on the tail entity prediction (h, r, ?) on WN18RR. The Bold represents 
the true tail entity. Top 3 shows the first three tail entities predicted by Bridge. 

Triple Rank Top 3 

(position, hypernym, location) 3 region, space, location 

(take a breather, derivationally related form, breathing time) 1 breathing time, rest, restfulness 

(Africa, has part, republic of cameroon) 14 Eritrea, sahara, tanganyika 

model that embodies textual content, achieving competitive performance in particular 
tasks often requires an additional fine-tuning step. The results validate our previous 
speculation that abundant data is crucial for fine-tuning the model since Wikidata5M-
Trans is larger than the other two datasets. Therefore, removing fine-tuning BERT with 
the BYOL module has a more significant negative impact on Wikidata5M-Trans. Com-
pared with SimKGC, “w/o BYOL-TransE” and “w/o BYOL-RotatE” outperforms on 
FB15k-237 and Wikidata5M-Trans. On WN18RR, “w/o BYOL-TransE” outperforms 
SimKGC in Hits@1 and MRR while being comparable in Hits@3 and Hits@10. This 
illustrates that our structural scoring function can effectively reconstruct KG’s struc-
tures in the semantic embedding. 

5.6 Case Study 

As shown in Table 4, for the first example, the top three tail entities predicted by Bridge-
TransE are rivers in Mexico and geographically close to the true tail entity Usumacinta 
river. However, the top three tail entities SimKGC predicted are rivers in South Amer-
ica. In the second example, the relation instance of has ambiguous semantic interpre-
tations. SimKGC cannot capture the semantics of this relation for this triple from the 
PLMs, resulting in incorrect predictions for the top three tail entities. Bridge-TransE can 
understand this relation from the structural perspective, allowing for better predictions. 
These two toy examples show that when the semantics of the relations are ambigu-
ous, integrating structural knowledge can help to learn a better relation representation. 
In the third example, although Bridge-TransE predicts the true tail entity Athletics, 
the prediction Cross-country running made by SimKGC can be regarded as correct. 
Cross-country running and Athletics are not mutually exclusive concepts. However, the 
evaluation metrics consider it an incorrect answer since the triple (cross country cham-
pionships - men’s short race, sport, Cross-country running) is not present in KGs. 

5.7 Error Analysis 

As shown in Table 5, in the first example, Bridge-TransE ranks the true tail entity loca-
tion as the third. However, the first two tail entities are correct based on human obser-
vation. In the second example, rest can also be a valid tail due to the fact that rest 
and breathing time are lexically similar concepts. In the third example, Bridge-TransE 
ranks the true tail entity republic of cameroon as 14th, attributed to the nature of the 
relation has part, which is a many-to-many relation. The first three tail entities pre-
dicted by Bridge-TransE are correct because they are all located in Africa. Drawing
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from these observations, some predicted triples might be correct based on human eval-
uation. However, these triples might not be present in KGs. This false negative issue 
results in diminished performance. 

5.8 Efficiency of Bridge 

We run SimKGC 3 on WN18RR and conduct an efficiency comparison with Bridge-
TransE. Table 6 illustrates the model efficiency of Bridge-TransE and SimKGC on 
WN18RR with a batch size of 1024. In Bridge-TransE, the Fine-tuning PLMs with 
BYOL step converges in 2 epochs, and the Structured Triple Knowledge Learning step 
achieves convergence in 7 epochs (9 epochs in total). The total training time is 3550 s. 
SimKGC converges in 8 epochs, and the total training time is 3331 s. Consequently, the 
overall computational cost of Bridge is comparable with SimKGC. 

Table 6. Model efficiency of Bridge-TransE and SimKGC on WN18RR. 

Model # Total Training Epoch # Total Training Time 

SimKGC 8 3331 s 

Bridge-TransE 9 3550 s 

6 Conclusion 

In this paper, we introduce Bridge, which integrates PLMs with structure-based models. 
Since no previous study investigates structural principles using PLM-based representa-
tion, we jointly encode structural and semantic information of KGs to enhance knowl-
edge representation. Further, existing work overlooks the gap between KGs and PLMs 
due to the absence of KG training in PLMs. To address this issue, we utilize BYOL to 
fine-tune PLMs. Experimental results demonstrate Bridge outperforms most baselines. 
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