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Abstract. Prompt-based methods leverage the knowledge of pre-
trained language models (PLMs) trained with a masked language model-
ing (MLM) objective; however, these methods are sensitive to template, 
verbalizer, and few-shot instance selection, particularly in cold-start set-
tings with no labeled data. Existing studies overlook the dependency 
between instances and verbalizers, where instance-label probabilities 
depend on verbalizer token proximity in the embedding space. To address 
this, we propose ColdSelect, a joint verbalizer and instance selection 
approach that models data diversity. ColdSelect maps PLM vocabu-
lary and h[MASK] embeddings into a shared space, applying dimension-
ality reduction and clustering to ensure efficient and diverse selection. 
By optimizing for minimal uncertainty and maximal diversity, ColdSe-
lect captures data relationships effectively. Experiments on eight bench-
marks demonstrate ColdSelect superiority in reducing uncertainty and 
enhancing generalization, outperforming baselines in verbalizer and few-
shot instance selection for cold-start scenarios. 

Keywords: Cold-start setting · Prompt-based Learning · Data 
Diversity Modeling 

1 Introduction 

Pre-trained language models (PLMs) trained with the masked language mod-
eling (MLM) objective [ 18] have become essential for various NLP downstream 
tasks [ 2], as their training on extensive corpora allows them to capture rich con-
textual information. Prompt-based methods capitalize on this by transforming 
classification tasks into cloze-style tasks [ 6], where PLMs predict the [MASK] 
token using suitable vocabulary tokens. This alignment with the pre-training 
objective allows prompt-based methods to deliver strong performance, even with 
limited labeled data. In this study, we focus on moderately sized masked lan-
guage models, as generative models pose challenges such as high deployment 
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costs on local hardware and privacy concerns when using APIs [ 1] for sensitive 
data. Our approach balances efficiency, performance, and data security. 

Prompt-based methods rely on two key components, templates and verbaliz-
ers, that together unlock the potential of PLMs for downstream tasks. Templates 
reframe input data into cloze-style tasks, enabling the model to leverage its pre-
trained MLM capabilities, while verbalizers map the model’s vocabulary predic-
tions to class labels, serving as the crucial link between token outputs and task-
specific categories. Templates can be manually designed [ 28, 35], automatically 
generated [ 6, 17], or constructed continuously [ 12, 14, 15]. Similarly, verbalizers 
can be divided into three categories: manual [ 28, 29], search-based [ 6, 27, 32], and 
soft verbalizers [ 8, 41]. While the manual creation of templates and verbalizers 
provides a straightforward approach, it is inherently limited by human inter-
pretation, often resulting in suboptimal representations. In contrast, automatic 
and continuous methods reduce manual effort, dynamically adapting to optimize 
the model’s performance. However, the effectiveness of prompt-based methods 
remains highly sensitive to the choice of templates [ 3], verbalizers [ 6], and few-
shot labeled instances [ 39]. This sensitivity underscores the need for approaches 
that better model the diversity and complexity of data distributions to ensure 
robust and generalizable performance. 

To enhance the performance of prompt-based methods, we focus on annotat-
ing instances and obtaining verbalizer tokens within a given labeling budget [ 11]. 
Efficient use of this budget requires a balanced approach to both instance and 
verbalizer selection, as these elements are interrelated. Ignoring this relation-
ship can result in suboptimal outcomes. Existing methods for verbalizer selec-
tion [ 6, 36] rely on randomly chosen few-shot instances, often lacking the diversity 
needed for robust generalization. Similarly, instance selection approaches [ 39] 
using fixed, manually designed verbalizers fail to capture data variability or 
adapt to nuanced label distributions. These studies overlook the dependency 
between instance and verbalizer selection. Under the MLM objective, an instance 
is more likely to predict a label accurately if the verbalizer token lies nearby in 
the embedding space. Ignoring this relationship results in redundant examples, 
noisy data, and outliers, which degrade generalization and robustness, especially 
in cold-start scenarios without labeled data. 

To address the aforementioned challenges of data diversity and uncertainty 
in cold-start scenarios, we propose ColdSelect, a novel method that jointly 
selects verbalizers and few-shot instances by modeling data diversity. Model-
ing data diversity ensures the selection of diverse instances that represent the 
corpus comprehensively, reducing redundancy and improving generalization. For 
example, in sentiment analysis tasks, including instances with varying sentiment 
intensities helps the model learn nuanced distinctions, while in news classifica-
tion, diverse examples across categories ensure balanced representation. At the 
same time, diverse verbalizer tokens for a class, such as mapping “great” and 
“magnificent” to “positive” class, effectively capture label semantics and avoid 
oversimplified mappings. Jointly optimizing instance and verbalizer selection
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within a single labeling budget maximizes efficiency and minimizes noise and 
redundancy. 

ColdSelect maps pre-softmax embeddings of PLM vocabulary tokens and 
h[MASK] embeddings into a shared space for efficient comparison. Dimensional-
ity reduction using PCA [ 38] enhances computational efficiency, while cluster-
ing methods like KMeans [ 20] and refinement with negative silhouette loss [ 26] 
ensure robust, well-separated clusters that capture the data’s diversity. Within 
the resulting clusters, instance and verbalizer selection are guided by an opti-
mization framework that operates under a labeling budget B. This framework 
minimizes labeling uncertainty at each step by balancing three critical factors: 
intra-cluster cohesion, which ensures selected instances are representative; inter-
cluster separation, which avoids redundancy across clusters; and impurity, which 
captures label diversity. At each timestamp, ColdSelect identifies the most 
informative clusters, from which the instances to annotate and verbalizer tokens 
are selected. By integrating these steps, ColdSelect ensures that the selected 
tokens and instances reflect the dataset’s diversity and maximize the model’s gen-
eralization capability, ultimately improving performance in prompt-based tasks. 

In summary, the contributions of this study are as follows: 

1. To the best of our knowledge, this is the first method to jointly and auto-
matically select instances to annotate and verbalizer tokens in a cold-start 
setting. By modeling data diversity using shared embedding spaces, cluster-
ing techniques, and a novel selection-based optimization framework, our app-
roach ensures robustness and generalization, effectively addressing sensitivity 
in prompt-based methods. 

2. The instance and verbalizer selection process is formulated as an optimiza-
tion problem designed to minimize labeling uncertainty at each step of the 
selection process. 

3. Comprehensive experiments on benchmark datasets show that ColdSelect 
successfully models data diversity and the selected instances and verbalizer 
tokens reduce labeling uncertainty, leading to improved accuracy. 

2 Related Works 

Despite the remarkable success of PLMs, their application in specific tasks 
remains challenging, particularly in cold-start scenarios where no labeled data is 
available. This limitation has led to the growing interest in prompt-based meth-
ods, which reformulate downstream tasks into cloze-style tasks to better align 
with the MLM pre-training objective. Prompt-based approaches rely on three 
key components: templates, verbalizers, and, optionally, a few labeled instances 
for fine-tuning. While significant progress has been made in automatic and con-
tinuous template generation [ 6, 12, 14, 15, 17, 28, 35], the automatic selection of 
verbalizers and few labeled instances remains underexplored, particularly in cold-
start settings. Below, we review related work in these two areas.
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Fig. 1. Overview of ColdSelect 

Few-Shot Instance Selection in Cold-Start Settings. Selecting diverse and 
representative few-shot instances is essential for improving the performance of 
prompt-based methods, particularly in cold-start scenarios where only unlabeled 
data is available. Early approaches [ 23] relied on clustering and heuristic-driven 
selection, but their inability to account for inter-sample diversity limited their 
effectiveness. Subsequent methods [ 4, 40] utilized PLMs, leveraging embedding 
spaces or MLM loss to guide instance selection. While these strategies were task-
agnostic, they often struggled with misalignment between pre-training objectives 
and downstream tasks, leading to suboptimal results. Recent efforts [ 16, 34] have  
focused on few-shot selection for large-scale language models through in-context 
learning. However, these methods lack a cohesive framework to simultaneously 
address data diversity and labeling uncertainty, leaving significant room for 
improvement. 

Verbalizer Selection. Verbalizers play a crucial role in mapping model predic-
tions to class labels. Early approaches [ 28, 29] relied on manually designed verbal-
izers, which, while effective, were time-consuming and susceptible to human bias. 
To automate this process, search-based methods [ 27, 32] identified tokens that 
maximized conditional probabilities within the LLM vocabulary. However, these 
approaches often generated tokens that lacked contextual relevance. Enhance-
ments using semantically similar tokens from external knowledge bases [ 10] 
improved token quality but failed to address data diversity and struggled with 
scalability in large vocabularies and few-shot scenarios. Soft verbalizers [ 8, 41] 
mitigated some of these limitations by learning continuous embeddings but 
required substantial labeled data, making them unsuitable for few-shot settings. 
More recently, prototypical verbalizers [ 5] leveraged few-shot training data to 
generate prototype embeddings, achieving state-of-the-art performance in auto-
mated verbalizer design. However, even these methods often fell short of manual 
verbalizers in certain cases, highlighting the need for further improvement. More 
recently, [ 36] proposed the tuning-free LLE-INC method, re-embedding the ver-
balizer space using intra-class neighborhood relationships to enhance the design. 

Unlike previous studies, ColdSelect is the first approach to jointly select 
instances and verbalizers while explicitly modeling their interdependence and 
data diversity in cold-start settings.



Modeling Data Diversity for Joint Instance and Verbalizer Selection 465

3 Preliminaries 

In this section, we describe the process of obtaining prediction probabilities in 
prompt-based learning. Given a template T , a verbalizer M : Y →  V  that maps 
the class label space Y to tokens in the PLM vocabulary V, and an input instance 
I from the unlabeled corpus D, the probability of I being assigned  a label  y ∈ Y  
is defined as: 

p(y|I) =  p([MASK] =  M(y)|IT ) =  
exp(wM(y) · h[MASK])

∑
y′∈Y exp(wM(y′) · h[MASK]) 

, (1) 

where IT = T (I) is the text obtained by applying the template T to the 
instance I, resulting in a sentence with exactly one masked token ([MASK]). 
Here, h[MASK] represents the embedding of the [MASK] token, and wv is the 
pre-softmax token embedding for the token v ∈ V  in the PLM’s vocabulary. The 
predicted label for the instance I is the label y ∈ Y  with the highest predicted 
probability. 

4 Methodology 

This section introduces ColdSelect, a method for jointly selecting verbalizers 
and few-shot instances by effectively modeling data diversity. Section 4.1 out-
lines the problem, and Sect. 4.2 highlights the instance-verbalizer relationship in 
cold-start settings. Given a dataset D with N instances, ColdSelect begins by 
extracting embeddings of the PLM’s vocabulary tokens and h[MASK] embeddings 
of dataset instances, mapping them into a shared embedding space. To capture 
the dataset’s diversity, ColdSelect applies PCA for dimensionality reduction, 
followed by KMeans clustering and negative silhouette loss to produce robust, 
well-separated clusters. To refine these clusters, vocabulary-only clusters are dis-
carded, and instances from instance-only clusters are reassigned to the nearest 
mixed clusters, ensuring that all clusters contain both instances and vocabulary 
tokens. Section 4.3 details the cluster creation process. The refined clusters are 
then passed to the Selection and Annotation module, which uses cohesion, sep-
aration, and impurity metrics to model cluster uncertainty and selects a subset 
of instances to obtain annotations and verbalizer tokens under the given budget 
B. Section 4.4 provides details about the module, and Sect. 4.5 demonstrates the 
optimality of the proposed selection process. Figure 1 provides an overview of 
ColdSelect. 

4.1 Problem Formulation 

Given a PLM L trained with MLM objective, an unlabeled corpus D containing 
N instances, a template T , and a labeling budget B, the objective is to minimize 
uncertainty in classifying instances in D into predefined labels Y (binary or multi-
class).
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4.2 Relationship Between Instance and Verbalizer Selection 

In prompt-based learning, the probability of assigning a label y ∈ Y  to an input 
instance I is defined in Eq. (1). In the equation, the dot product wM(y) ·h[MASK] 

is maximized when the embeddings are similar or have high cosine similarity, 
assuming normalized embeddings: 

cos_sim(wM(y), h[MASK]) =  
wM(y) · h[MASK]

‖wM(y)‖‖h[MASK]‖
. (2) 

To ensure optimal classification, the verbalizer token wM(y) must be close to the 
h[MASK] embedding of instances assigned to label y in the shared embedding 
space. 

4.3 Modeling Data Diversity for Cluster Creation 

Prompt-based learning utilizes PLMs to extract pre-softmax embeddings wv for 
vocabulary tokens v ∈ V  and h[MASK] embeddings for instances in the dataset 
D. Since both types of embeddings are derived from the same PLM, they are 
mapped into a shared embedding space to enable meaningful comparisons. How-
ever, the high dimensionality of these embeddings can result in uniformly high 
cosine similarity values, diminishing their discriminative power. To address this, 
we first perform dimensionality reduction to enhance the separability of embed-
dings. This is followed by clustering and cluster optimization, ensuring the effec-
tive modeling of data diversity. 

Dimensionality Reduction with PCA: To reduce the dimensionality of 
embeddings, we apply Principal Component Analysis (PCA) [ 38], which projects 
the embeddings into a lower-dimensional space while retaining most of the vari-
ance: 

z = XW, W = arg max 
W

‖XW‖F , s.t. W�W = I, (3) 

where X is the matrix of original embeddings, W is the transformation matrix, 
and z is the reduced embedding. After reduction, we normalize the embeddings 
to ensure cosine similarity effectively represents the dot product. 

Clustering with KMeans: To cluster the embeddings based on their similar-
ity, we use KMeans clustering [ 20], where the number of clusters is set to K. 
KMeans minimizes the within-cluster variance: 

Lkmeans = 
K∑

k=1

∑

x∈Ck

‖x − µk‖2 , (4)
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where Ck is the set of points in cluster k, and  µk is the cluster centroid. Cluster-
ing is performed to group vocab tokens and instance embeddings to maximize 
intra-cluster similarity and facilitate the subsequent selection of verbalizers and 
instances. 

Optimizing Clustering with Negative Silhouette Loss: Since KMeans is 
sensitive to initialization and may produce suboptimal clusters, we refine the 
clustering using negative silhouette loss [ 26], which measures cluster cohesion 
and separation. The silhouette score for a point i is defined as: 

S(i) =  
b(i) − a(i) 

max(a(i), b(i)) 
, (5) 

where a(i) is the average distance to other points in the same cluster, and b(i) 
is the smallest average distance to points in any other cluster. The objective is 
to minimize the negative silhouette score: 

Lsil = − 1 
N 

N∑

i=1 

S(i), (6) 

where N is the total number of points. This optimization ensures clusters are 
well-separated and cohesive, improving the reliability of the clustering process. 

Filtering and Cluster Refinement: After clustering, three types of clusters 
typically emerge: (1) Mixed Clusters: Contain both token and instance embed-
dings, (2) Token-Only Clusters: Contain only token embeddings, often represent-
ing outliers, and (3) Instance-Only Clusters: Contain only instance embeddings, 
typically distant from token distributions. We discard token-only clusters as 
outliers and reassign instances from instance-only clusters to the nearest mixed 
cluster based on cosine similarity to the centroid: 

Cassign = arg max 
Ck∈C 

cos_sim(µk, hI), (7) 

where µk is the centroid of cluster Ck ∈ C, and  hI is the h[MASK] embedding of 
instance I. This refinement ensures all clusters are meaningful and suitable for 
verbalizer and instance selection. 

By combining dimensionality reduction, clustering, optimization, and refine-
ment, our approach ensures that the final clusters capture the diversity and 
dependency between PLM vocab token and instance embeddings, laying the 
foundation for robust instances for annotation and verbalizer selection. 

4.4 Modeling Uncertainty for Cluster Selection and Annotation 

The objective of ColdSelect is to minimize uncertainty in classifying instances 
in D into pre-defined labels Y (binary or multi-class). To achieve this, we lever-
age three key factors, cohesion, separation, and impurity, that collectively model
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cluster uncertainty. This framework ensures efficient use of the given labeling 
budget B in a cold-start setting. Below, we outline the motivation and mathe-
matical formulation for each step in ColdSelect. 

Cohesion: For dense clusters where embeddings are close to the cluster centroid 
µk, the probability that all instances belong to the same class is high. Cohesion 
models cluster density as: 

cohesion(Ck) =  
1 

|Ck|
∑

x∈Ck 

cos_sim(x, µk), (8) 

where x ∈ Ck are the embeddings in cluster Ck, and cos_sim(x, µk) measures 
their similarity to the cluster centroid. 

Separation: Clusters far from others may represent outlier classes where all 
instances belong to the same class. Separation quantifies the distance between 
clusters as: 

separation(Ck) = max 
Ck′ �=Ck∈C 

cos_sim(µk, µk′), (9) 

where µk′ is the cluster centroid of cluster Ck′ . 

Impurity: Dense clusters may still contain instances from multiple classes, while 
sparse clusters can have low label diversity. Impurity models label diversity as: 

impurity(Ck) = 1  − maxl∈L countCk
(l) 

total(Ck) 
, (10) 

where L is the set of labels, countCk
(l) is the number of instances with label l 

in cluster Ck, and  total(Ck) is the total number of instances in Ck. 

Instance Classification Uncertainty Minimization. We model the uncertainty 
minimization problem as a cluster-level impurity minimization task. Since every 
instance belongs to a cluster, reducing impurity at the cluster level effectively 
minimizes uncertainty in instance classification. To achieve this, we prioritize 
clusters with high impurity at each step, operating on the principle that anno-
tating instances within these clusters will significantly reduce their impurity. 
Additionally, we incorporate intra-cluster cohesion and inter-cluster separation 
to ensure the selection of representative clusters while avoiding redundancy. As 
a result, at each step T , the cluster that maximizes the following equation is 
selected for annotation. 

CT = arg max 
Ck∈C 

E
[
cohesion(Ck) +  separation(Ck) +  impurity(Ck)

]
, (11) 

The inclusion of cohesion(Ck) in the cluster selection process inherently favors 
dense clusters, which is beneficial, particularly under low labeling budgets.
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Dense clusters, characterized by closely clustered embeddings, often indicate that 
instances belong to the same class, making them ideal for efficient labeling. Pri-
oritizing these clusters ensures that each labeled instance has maximum impact, 
minimizing uncertainty while conserving resources. Additionally, this strategy 
reduces noise in the early stages, creating a strong foundation for subsequent 
labeling. Over time, the balance between cohesion, separation, and impurity 
ensures that sparse and diverse clusters are also addressed, leading to optimal 
resource allocation and improved model performance. 

Initialization for Cold-Start Settings. In a cold-start scenario, where no labeled 
instances are initially available, the metrics are initialized as follows: cohesion is 
computed using Eq. (8), separation is determined using Eq. (9), and impurity is 
set to 0 for all groups. 

Dynamic Updates for Cohesion and Separation. To incorporate instance labeling 
dynamically, we replace static cluster centroids with embeddings of selected ver-
balizer tokens. Verbalizer tokens provide a more contextually relevant reference 
for cluster evaluation, as class probabilities are determined by the dot product 
between the h[MASK] embedding of an instance and these tokens. Unlike fixed 
centroids, verbalizer tokens adapt as labels are assigned, capturing evolving clus-
ter dynamics effectively. Eq. (8) and Eq. (9) are updated as follows: 
Cohesion: 

cohesion(Ck) =  
1 

|Ck|
∑

x∈Ck 

max 
v∈V&v∈Ck 

cos_sim(x, v), (12) 

where v ∈ V  are verbalizer tokens in cluster Ck. 
Separation: 

separation(Ck) = max 
v∈V&v/∈Ck 

cos_sim(µk, v). (13) 

Labeling Policy. We categorize the selected cluster CT as labeled if at least 
one instance in the cluster is already labeled. Otherwise, it is categorized as 
unlabeled. Depending on the categorization, the instance selection for labeling 
proceeds as follows: 
If CT is unlabeled, select the instance nearest to the cluster centroid µ for 
labeling: 

IselectT 
= arg max 

x∈CT 

cos_sim(x, µ). (14) 

Assign the label obtained for IselectT 
to the nearest vocab token and add it to 

V: 

vselectT 
= arg max 

v∈CT 

cos_sim(v, IselectT 
). (15) 

If CT is labeled, select the instance farthest from already labeled instances and 
obtain verbalizer token following Eq. (15): 

IselectT 
= arg max 

x∈CT 

min 
x�=x′∈labeled 

cos_sim(x, x′). (16)
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Stopping Criterion. The selection process continues until the labeling budget B 
is exhausted. By iteratively targeting clusters with maximum impurity, ColdS-
elect optimally selects instances and verbalizer tokens to reduce classification 
uncertainty and enhance model performance. 

4.5 Optimal Selection Process 

The proposed approach reduces classification uncertainty in D by integrating 
cohesion, separation, and  impurity metrics into the cluster selection process. 
This balanced scoring function enables effective exploration and exploitation, 
focusing on dense, distinct clusters initially and gradually addressing sparse or 
diverse clusters as labels are acquired. Metrics are initialized based on embedding 
proximity and dynamically updated during labeling, allowing adaptability in 
cold-start settings. By combining these metrics, the approach optimally utilizes 
the labeling budget B to reduce uncertainty, avoid redundancy, and ensure robust 
classification for diverse datasets. 

5 Experiments 

In this section, we evaluate the performance of ColdSelect in reducing 
uncertainty in classifying instances on several benchmark datasets from diverse 
domains: SST-2 [ 33], MR [ 24], CR [ 9], Subj [ 25], CoLA [ 37], AG News [ 42], 
Yelp [ 22], and IMDB [ 19] 1. Table  1 provides a summary of the datasets, includ-
ing their type, number of classes, and the templates used. 

5.1 Evaluation Metrics 

We use Accuracy (Acc.) as the primary evaluation metric across all datasets to 
measure the effectiveness of ColdSelect and baselines in reducing classification 
uncertainty. 

Table 1. Statistics of the Datasets 

Dataset Type |y| Labels #Test Instances Template 
SST-2 Sentiment Analysis 2 positive, negative 872 <S>. It was  [MASK]  
MR Sentiment Analysis 2 positive, negative 2,000 <S>. It was  [MASK]  
CR Sentiment Analysis 2 positive, negative 2,000 <S>. It was  [MASK]  
Subj Subjectivity Classification 2 subjective, objective 2,000 <S>. It was  [MASK]  
CoLA Acceptability Classification 2 grammatical, not grammatical 1,042 <S>. This is [MASK] 
AG News News Classification 4 world, sports, business, technology 7,600 [MASK] News: <S> 

Yelp-full Sentiment Analysis 5 very positive, positive, neutral, negative, very negative 38,000 <S>. It was  [MASK]  
IMDB Sentiment Analysis 2 positive, negative 25,000 <S>. It was  [MASK]

1 The code is available at  https://github.com/Mohna0310/COLDSELECT. 

https://github.com/Mohna0310/COLDSELECT
https://github.com/Mohna0310/COLDSELECT
https://github.com/Mohna0310/COLDSELECT
https://github.com/Mohna0310/COLDSELECT
https://github.com/Mohna0310/COLDSELECT
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Table 2. Few-shot instance selection results on three datasets using RoBERTa-base 
with standard finetuning, following [ 39]. Accuracy is reported on the test set, with best 
and runner-up models highlighted in bold and underlined, respectively. 

Dataset |y| |B| Random Uncertainity CAL BERT-KM Coreset Margin-KM ALPS TPC PATRON Random-g ColdSelect 

IMDB 2 32 80.2 81.9 77.8 79.2 74.5 76.7 82.2 82.8 85.5 84.1 87.37 
64 82.6 84.7 81.2 84.9 82.8 84.0 86.1 84.0 87.3 85.3 88.39 
128 86.6 87.1 87.9 88.5 87.8 88.2 87.5 88.1 89.6 88.7 90.61 

Yelp-full 5 32 30.2 32.7 36.6 35.2 32.9 32.7 36.8 32.6 35.9 34.1 39.58 
64 42.5 36.8 41.2 39.3 39.9 39.8 40.3 39.7 44.4 41.5 46.72 
128 47.7 41.3 45.7 46.4 49.4 47.1 45.1 46.8 51.2 48.9 54.16 

AG News 4 32 73.7 73.7 69.4 79.1 78.6 75.1 78.4 80.7 83.2 81.2 84.69 
64 80.0 80.0 78.5 82.4 82.0 81.1 82.6 83.0 85.3 83.8 87.16 
128 84.5 82.5 81.3 85.6 85.2 85.7 84.3 85.7 87.0 86.1 88.26 

5.2 Baseline Methods 

Since ColdSelect is the first approach to jointly select both verbalizers and 
few-shot instances, we compare it with baselines for (1) few-shot instance selec-
tion and (2) verbalizer selection. 

Few-Shot Instance Selection Baselines: Random: randomly selects samples 
for annotation. Uncertainty [ 30]: selects instances with the highest uncer-
tainty post-calibration using entropy [ 13]. CAL [ 21]: uses Kullback-Leibler (KL) 
divergence to guide sample selection. Coreset [ 31]: minimizes the maximum 
Euclidean distance between a sample and its nearest cluster centroid. BERT-
KM [ 4]: clusters embeddings using KMeans and selects samples closest to cen-
troids. Margin-KM [ 23]: selects samples based on the margin between the two 
highest probabilities within clusters. ALPS [ 40]: uses BERT’s MLM loss to 
compute surprisal embeddings for sample selection. TPC [ 7]: selects instances 
with the highest density in each cluster. PATRON [ 39]: employs a partition-
then-rewrite strategy to enhance sample diversity. Random-g: randomly selects 
refined clusters at each step, bypassing the proposed selection process while 
adhering to the labeling policy. 

Automatic Verbalizer Selection Baselines: LM-BFF [ 6]: uses T5 to automat-
ically generate verbalizers with few-shot examples. ProtoVerb [ 5]: constructs 
prototype-based verbalizers using contrastive learning. For verbalizer selection, 
we also compare ColdSelect against manual verbalizers created by humans. 

5.3 Experimental Settings 

We conduct experiments using RoBERTa-base (125M parameters) and 
RoBERTa-large (355M parameters) PLMs, following the setups of [ 39] and  [  6], 
respectively. For KMeans clustering, we set the random seed to 42 and the num-
ber of clusters to 40 and performed cluster optimization over five iterations.
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Table 3. Few-shot instance selection results on three benchmark datasets using 
RoBERTa-base, following [ 39]. Prompt-based finetuning is performed, with accuracy 
reported on the test set. Best and runner-up models are highlighted in bold and under-
lined, respectively. 

Dataset |y| |B| Random Uncertainity CAL BERT-KM Coreset Margin-KM ALPS TPC PATRON Random-g ColdSelect 

IMDB 2 32 81.8 82.4 79.6 81.7 85.5 86.0 83.5 84.5 86.5 85.2 89.48 
64 85.6 86.0 81.1 84.2 87.8 87.6 84.4 85.8 88.8 87.2 91.42 
128 87.7 88.4 83.0 88.5 88.9 89.1 88.9 88.0 89.3 88.5 91.23 

Yelp-full 5 32 48.9 46.6 47.9 45.5 46.0 47.5 47.0 49.8 50.5 49.1 53.31 
64 51.0 49.9 49.4 51.9 48.8 52.6 52.8 52.3 53.6 51.5 56.29 
128 51.3 50.8 48.7 51.5 53.7 54.2 51.7 51.0 55.6 53.2 57.16 

AG News 4 32 83.1 82.8 81.4 84.9 85.1 84.6 84.2 85.6 86.8 85.7 87.23 
64 84.5 84.3 82.6 86.5 86.4 85.9 86.2 85.6 87.4 86.8 88.18 
128 84.9 83.1 83.0 87.6 87.5 87.1 87.5 87.0 87.8 87.4 89.95 

Table 4. Performance comparison of ColdSelect with Random, Random-g, and 
other methods on five benchmark datasets using RoBERTa-large LLM, following [ 6]. 
Experiments use fixed manual templates with K = 16  few-shot instances per class to 
obtain automatic verbalizers. The maximum budget B required by Random, Random-
g, and ColdSelect are 66, 52, and  44, respectively, showing ColdSelect’s efficiency 
in balancing class labels and optimizing the labeling budget. Accuracy (%) is reported 
on test set, with the best results highlighted in bold. 

Dataset Fine-tuning Prompt-based FT LM-BFF ProtoVerb 
Rand Rand-g ColdSelect Rand Rand-g ColdSelect Rand Rand-g ColdSelect Rand Rand-g ColdSelect 

SST-2 81.4 83.0 87.5 92.7 93.1 93.0 92.6 92.8 93.2 86.9 87.0 87.1 
MR 76.9 77.8 79.5 87.0 87.5 88.9 86.6 87.0 87.8 60.0 62.4 66.2 
CR 75.8 76.3 78.0 90.3 90.7 91.5 90.2 90.6 91.7 68.7 70.1 76.8 
Subj 90.8 91.2 93.2 91.2 91.5 90.2 92.3 92.5 93.7 75.7 76.0 76.3 
CoLA 72.4 73.2 73.8 52.9 56.2 58.3 52.9 53.6 54.5 53.9 55.3 58.9 

5.4 Results and Discussion 

The results in Tables 2 and 3 demonstrate ColdSelect’s superior performance 
over PATRON and other baselines by effectively leveraging data diversity and 
label uncertainty. Unlike PATRON, which relies on prompt-based uncertainty 
propagation and a static partition-then-rewrite (PTR) strategy, ColdSelect 
dynamically updates cluster centroids with verbalizer token embeddings, ensur-
ing better alignment with evolving label distributions and reducing noise from 
outliers. By integrating cohesion, separation, and impurity metrics, ColdS-
elect balances exploration and exploitation, enabling early-stage labeling of 
dense clusters while progressively addressing sparse or diverse ones. This adapt-
ability allows ColdSelect to surpass PATRON across various datasets, includ-
ing IMDB in Table 2, where it achieves 87.37% accuracy at |B| = 32  (1.9% higher 
than PATRON), Yelp-full in Table 2, where it achieves largest accuracy gain over 
PATRON, indicating its robustness in handling highly imbalanced class distribu-
tions, and AG News in Table 3, where it scales effectively to 89.95% at |B| = 128.
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These results highlight ColdSelect’s ability to optimize labeling budgets and 
handle complex, multi-class distributions more effectively than existing methods. 

The results in Table 4 demonstrate ColdSelect’s effectiveness across all 
datasets and experimental setups, consistently outperforming Random and 
Random-g. For instance, in the Fine-tuning setting, ColdSelect achieves 
87.5% on SST-2, surpassing Random (81.4%) and Random-g (83.0%). Sim-
ilarly, on MR and CR, ColdSelect outperforms both baselines, achieving 
79.5% and 78.0%, respectively. In the Prompt-based FT setup, ColdSelect 
achieves 91.5% on CR and 58.3% on CoLA, significantly higher than Random 
and Random-g. ColdSelect’s reduced labeling budget (B = 44) compared to  
Random (B = 66) and Random-g (B = 52) highlights its efficiency in select-
ing diverse, representative instances. By ensuring that each labeled instance 
maximally reduces uncertainty, ColdSelect optimally utilizes limited annota-
tion budgets, validating its ability to optimize instance selection while improv-
ing performance across binary classification tasks. ColdSelect shows greater 
improvements in datasets with complex class distributions, such as Yelp-full 
and AG News, compared to binary tasks like SST-2. The results suggest that 
clustering-based selection of ColdSelect is particularly effective in capturing 
fine-grained distinctions between similar classes. 

The ablation study in Table 5 further supports this by showing that removing 
impurity modeling leads to a drop in accuracy across IMDB, AG News, and Yelp-
full datasets, reinforcing the importance of selecting diverse and representative 
instances. Using cohesion alone provides a baseline improvement by prioritizing 
dense clusters (e.g., 80.50% on IMDB), but it lacks robustness. Adding separation 
enhances performance (e.g., 82.20% on IMDB) by ensuring inter-cluster distinc-
tiveness, reducing redundancy, and better capturing outlier classes. Including 
impurity with cohesion offers slight gains (e.g., 81.40% on IMDB) by addressing 
label diversity within clusters. However, the full combination of all three metrics 
yields the highest accuracy across datasets (e.g., 87.37% on IMDB), demonstrat-
ing their complementary roles in capturing cluster density, distinctiveness, and 
label diversity to optimize labeling budgets effectively. 

Table 5. Ablation study on ColdSelect’s performance with B = 32  using RoBERTa-
base and standard fine-tuning, following [ 39]. Accuracy (%) on the test set is reported, 
with best and runner-up results highlighted in bold and underlined. 

Model Variant Cohesion Separation Impurity IMDB AG News Yelp-full 
Only Cohesion � 80.50 78.30 30.80 
Cohesion + Separation � � 82.20 80.10 33.70 
Cohesion + Impurity � � 81.40 79.00 32.90 
Cohesion + Separation + Impurity (ColdSelect) � � � 87.37 84.69 39.58
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6 Conclusion 

In this study, we proposed ColdSelect, a novel approach, for instance, and 
verbalizer selection in prompt-based learning, explicitly modeling data diversity 
and label uncertainty. By integrating cohesion, separation, and impurity met-
rics, ColdSelect effectively identifies representative instances and optimizes 
labeling budgets. Extensive experiments on benchmark datasets demonstrate 
that ColdSelect consistently outperforms state-of-the-art methods, achiev-
ing robust performance in both standard and prompt-based fine-tuning. These 
results validate the importance of modeling intra-cluster density, inter-cluster 
distinctiveness, and label diversity, making ColdSelect a powerful solution for 
challenging cold-start scenarios and enhancing generalization in prompt-based 
classification tasks. 

The effectiveness of ColdSelect in optimizing annotation budgets makes 
it highly applicable in low-resource NLP settings, active learning scenarios, and 
domain adaptation tasks. By reducing redundancy in labeled instances and 
improving generalization, this method can enhance model performance in real-
world applications such as customer sentiment analysis, fake news detection, and 
biomedical text classification. Moreover, its ability to optimize instance selection 
without extensive labeled data makes it particularly relevant for emerging fields 
like legal text classification, financial risk assessment, and cross-lingual NLP, 
where annotated data is often scarce. Future extensions of ColdSelect could 
explore its adaptability to multilingual and multimodal datasets, further broad-
ening its impact across diverse AI applications. 

7 Limitations and Future Work 

While ColdSelect excels in data-diverse scenarios, its reliance on PCA-based 
dimensionality reduction may introduce biases, as it assumes linear separability. 
Future work could explore adaptive non-linear transformations like kernel PCA 
or deep representation learning to enhance cluster separability. Additionally, the 
fixed labeling budget may not suit all datasets; a dynamic allocation strategy 
based on entropy minimization and cluster impurity could improve efficiency. 

ColdSelect also depends on KMeans clustering, which may not always cap-
ture complex structures in high-dimensional spaces. Alternative clustering meth-
ods like hierarchical clustering or DBSCAN could enhance robustness. Addition-
ally, integrating reinforcement learning could further refine instance selection by 
dynamically adapting to dataset characteristics. 

Acknowledgement. The work is supported by the US National Science Foundation 
under grant NSF-CAREER 2237831.



Modeling Data Diversity for Joint Instance and Verbalizer Selection 475

References 

1. Achiam, J., et al.: Gpt-4 technical report. arXiv preprint arXiv:2303.08774 (2023) 
2. Chakraborty, M., Kulkarni, A., Li, Q.: Open-domain aspect-opinion co-mining with 

double-layer span extraction. In: Proceedings of the 28th ACM SIGKDD Confer-
ence on Knowledge Discovery and Data Mining, KDD ’22, pp. 66–75. Association 
for Computing Machinery, New York (2022). https://doi.org/10.1145/3534678. 
3539386 

3. Chakraborty, M., Kulkarni, A., Li, Q.: Zero-shot approach to overcome pertur-
bation sensitivity of prompts. In: Proceedings of the 61st Annual Meeting of the 
Association for Computational Linguistics, vol. 1: Long Papers, pp. 5698–5711 
(2023) 

4. Chang, E., Shen, X., Yeh, H.S., Demberg, V.: On training instance selection for 
few-shot neural text generation. In: Proceedings of the 59th Annual Meeting of the 
ACL and the 11th IJCNLP, vol. 2: Short Papers, pp. 8–13 (2021) 

5. Cui, G., Hu, S., Ding, N., Huang, L., Liu, Z.: Prototypical verbalizer for prompt-
based few-shot tuning. In: Proceedings of the 60th Annual Meeting of the Associ-
ation for Computational Linguistics, vol. 1: Long Papers, pp. 7014–7024 (2022) 

6. Gao, T., Fisch, A., Chen, D.: Making pre-trained language models better few-shot 
learners. In: Proceedings of the 59th Annual Meeting of the ACL and the 11th 
IJCNLP, vol. 1: Long Papers, pp. 3816–3830 (2021) 

7. Hacohen, G., Dekel, A., Weinshall, D.: Active learning on a budget: opposite strate-
gies suit high and low budgets. In: International Conference on Machine Learning, 
pp. 8175–8195. PMLR (2022) 

8. Hambardzumyan, K., Khachatrian, H., May, J.: Warp: word-level adversarial repro-
gramming. In: Proceedings of the 59th Annual Meeting of the ACL and the 11th 
IJCNLP, vol. 1: Long Papers, pp. 4921–4933 (2021) 

9. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the 
tenth ACM SIGKDD International Conference on Knowledge Discovery and Data 
Mining, pp. 168–177 (2004) 

10. Hu, S., Ding, N., et al.: Knowledgeable prompt-tuning: incorporating knowledge 
into prompt verbalizer for text classification. In: Proceedings of the 60th Annual 
Meeting of the Association for Computational Linguistics, vol. 1: Long Papers, pp. 
2225–2240 (2022) 

11. Kulkarni, A., Chakraborty, M., Xie, S., Li, Q.: Optimal budget allocation for crowd-
sourcing labels for graphs. In: Evans, R.J., Shpitser, I. (eds.) Proceedings of the 
Thirty-Ninth Conference on Uncertainty in Artificial Intelligence. Proceedings of 
Machine Learning Research, vol. 216, pp. 1154–1163. PMLR (2023) 

12. Lester, B., Al-Rfou, R., Constant, N.: The power of scale for parameter-efficient 
prompt tuning. In: Proceedings of the 2021 Conference on Empirical Methods in 
Natural Language Processing. Association for Computational Linguistics (2021) 

13. Lewis, D.D., Gale, W.A.: A sequential algorithm for training text classifiers. In: 
Proceedings of the 17th Annual International ACM SIGIR Conference on Research 
and Development in Information Retrieval, pp. 3–12 (1994) 

14. Li, X.L., Liang, P.: Prefix-tuning: optimizing continuous prompts for generation. 
In: Proceedings of the 59th Annual Meeting of the ACL and the 11th IJCNLP, 
vol. 1: Long Papers, pp. 4582–4597 (2021) 

15. Liu, C., Wang, H., Xi, N., Zhao, S., Qin, B.: Global prompt cell: a portable control 
module for effective prompt tuning. In: CCF International Conference on Natural 
Language Processing and Chinese Computing, pp. 657–668 (2023)

http://arxiv.org/abs/2303.08774
https://doi.org/10.1145/3534678.3539386
https://doi.org/10.1145/3534678.3539386
https://doi.org/10.1145/3534678.3539386
https://doi.org/10.1145/3534678.3539386
https://doi.org/10.1145/3534678.3539386
https://doi.org/10.1145/3534678.3539386
https://doi.org/10.1145/3534678.3539386


476 M. Chakraborty et al.

16. Liu, J., Shen, D., et al.: What makes good in-context examples for gpt-3? In: 
Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on 
Knowledge Extraction and Integration for Deep Learning Architectures, pp. 100– 
114 (2022) 

17. Liu, X., Zheng, Y., Du, Z., et al.: Gpt understands, too. AI Open (2023) 
18. Liu, Y., Ott, M., et al.: Roberta: a robustly optimized bert pretraining approach. 

arXiv preprint arXiv:1907.11692 (2019) 
19. Maas, A., Daly, R.E., et al.: Learning word vectors for sentiment analysis. In: 

Proceedings of the 49th Annual Meeting of the Association for Computational 
Linguistics: Human Language Technologies, pp. 142–150 (2011) 

20. MacQueen, J.: Some methods for classification and analysis of multivariate obser-
vations. In: Proceedings of 5-th Berkeley Symposium on Mathematical Statistics 
and Probability/University of California Press (1967) 

21. Margatina, K., Vernikos, G., Barrault, L., Aletras, N.: Active learning by acquir-
ing contrastive examples. In: Proceedings of the 2021 Conference on Empirical 
Methods in Natural Language Processing, pp. 650–663 (2021) 

22. Meng, Y., Shen, J., Zhang, C., Han, J.: Weakly-supervised hierarchical text classi-
fication. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, 
pp. 6826–6833 (2019) 

23. Müller, T., Pérez-Torró, G., Basile, A., et al.: Active few-shot learning with fasl. 
In: International Conference on Applications of Natural Language to Information 
Systems, pp. 98–110 (2022) 

24. PANG, B.: Thumbs up? sentiment classification using machine learning techniques. 
In: Proceedings of the Conference on Empirical Methods in Natural Language 
Processing (EMNLP) 2002 (2002) 

25. PANG, B.: A sentimental education: sentiment analysis using subjectivity sum-
marization based on minimum cuts. In: Proceedings of the 42nd Meeting of the 
Association for Computational Linguistics (ACL) 2004 (2004) 

26. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation 
of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987) 

27. Schick, T., Schmid, H., Schütze, H.: Automatically identifying words that can serve 
as labels for few-shot text classification. In: Proceedings of the 28th International 
Conference on Computational Linguistics, pp. 5569–5578 (2020) 

28. Schick, T., Schütze, H.: Exploiting cloze-questions for few-shot text classification 
and natural language inference. In: Proceedings of the 16th Conference of the 
European Chapter of the Association for Computational Linguistics: Main Volume, 
pp. 255–269 (2021) 

29. Schick, T., Schütze, H.: It’s not just size that matters: small language models are 
also few-shot learners. In: Proceedings of the 2021 NAACL-HLT, pp. 2339–2352 
(2021) 

30. Schröder, C., Niekler, A., Potthast, M.: Revisiting uncertainty-based query strate-
gies for active learning with transformers. In: Findings of the ACL: ACL 2022, pp. 
2194–2203 (2022) 

31. Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set 
approach. In: International Conference on Learning Representations (2018) 

32. Shin, T., Razeghi, Y., et al.: Autoprompt: eliciting knowledge from language models 
with automatically generated prompts. In: Proceedings of the 2020 Conference 
on Empirical Methods in Natural Language Processing (EMNLP), pp. 4222–4235 
(2020)

http://arxiv.org/abs/1907.11692


Modeling Data Diversity for Joint Instance and Verbalizer Selection 477

33. Socher, R., Perelygin, A., et al.: Recursive deep models for semantic compositional-
ity over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical 
Methods in Natural Language Processing, pp. 1631–1642 (2013) 

34. Su, H., Kasai, J., et al.: Selective annotation makes language models better few-
shot learners. arXiv preprint arXiv:2209.01975 (2022) 

35. Wang, H., Liu, C., et al.: Prompt combines paraphrase: teaching pre-trained models 
to understand rare biomedical words. In: Proceedings of the 29th International 
Conference on Computational Linguistics, pp. 1422–1431 (2022) 

36. Wang, H., Zhao, S., et al.: Manifold-based verbalizer space re-embedding for 
tuning-free prompt-based classification. In: Proceedings of the AAAI Conference 
on Artificial Intelligence, vol. 38, pp. 19126–19134 (2024) 

37. Warstadt, A., Singh, A., Bowman, S.R.: Neural network acceptability judgments. 
Trans. Assoc. Comput. Linguist. 7, 625–641 (2019) 

38. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemom. Intell. 
Lab. Syst. 2(1–3), 37–52 (1987) 

39. Yu, Y., Zhang, R., et al.: Cold-start data selection for better few-shot language 
model fine-tuning: a prompt-based uncertainty propagation approach. In: Proceed-
ings of the 61st Annual Meeting of the ACL, vol. 1: Long Papers, pp. 2499–2521 
(2023) 

40. Yuan, M., Lin, H.T., Boyd-Graber, J.: Cold-start active learning through self-
supervised language modeling. In: Proceedings of the 2020 Conference on Empirical 
Methods in Natural Language Processing (EMNLP), pp. 7935–7948 (2020) 

41. Zhang, N., Li, L., et al.: Differentiable prompt makes pre-trained language models 
better few-shot learners. In: International Conference on Learning Representations 
(2021) 

42. Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text 
classification. Adv. Neural Inf. Process. Syst. 28 (2015)

http://arxiv.org/abs/2209.01975

	Modeling Data Diversity for Joint Instance and Verbalizer Selection in Cold-Start Scenarios
	1 Introduction
	2 Related Works
	3 Preliminaries
	4 Methodology
	4.1 Problem Formulation
	4.2 Relationship Between Instance and Verbalizer Selection
	4.3 Modeling Data Diversity for Cluster Creation
	4.4 Modeling Uncertainty for Cluster Selection and Annotation
	4.5 Optimal Selection Process

	5 Experiments
	5.1 Evaluation Metrics
	5.2 Baseline Methods
	5.3 Experimental Settings
	5.4 Results and Discussion

	6 Conclusion
	7 Limitations and Future Work
	References


