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Abstract. Prompt-based methods leverage the knowledge of pre-
trained language models (PLMSs) trained with a masked language model-
ing (MLM) objective; however, these methods are sensitive to template,
verbalizer, and few-shot instance selection, particularly in cold-start set-
tings with no labeled data. Existing studies overlook the dependency
between instances and verbalizers, where instance-label probabilities
depend on verbalizer token proximity in the embedding space. To address
this, we propose COLDSELECT, a joint verbalizer and instance selection
approach that models data diversity. COLDSELECT maps PLM vocabu-
lary and h{yask) embeddings into a shared space, applying dimension-
ality reduction and clustering to ensure efficient and diverse selection.
By optimizing for minimal uncertainty and maximal diversity, COLDSE-
LECT captures data relationships effectively. Experiments on eight bench-
marks demonstrate COLDSELECT superiority in reducing uncertainty and
enhancing generalization, outperforming baselines in verbalizer and few-
shot instance selection for cold-start scenarios.

Keywords: Cold-start setting - Prompt-based Learning - Data
Diversity Modeling

1 Introduction

Pre-trained language models (PLMs) trained with the masked language mod-
eling (MLM) objective [18] have become essential for various NLP downstream
tasks [2], as their training on extensive corpora allows them to capture rich con-
textual information. Prompt-based methods capitalize on this by transforming
classification tasks into cloze-style tasks [6], where PLMs predict the [MASK]
token using suitable vocabulary tokens. This alignment with the pre-training
objective allows prompt-based methods to deliver strong performance, even with
limited labeled data. In this study, we focus on moderately sized masked lan-
guage models, as generative models pose challenges such as high deployment
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costs on local hardware and privacy concerns when using APIs [1] for sensitive
data. Our approach balances efficiency, performance, and data security.

Prompt-based methods rely on two key components, templates and verbaliz-
ers, that together unlock the potential of PLMs for downstream tasks. Templates
reframe input data into cloze-style tasks, enabling the model to leverage its pre-
trained MLM capabilities, while verbalizers map the model’s vocabulary predic-
tions to class labels, serving as the crucial link between token outputs and task-
specific categories. Templates can be manually designed [28,35], automatically
generated [6,17], or constructed continuously [12,14,15]. Similarly, verbalizers
can be divided into three categories: manual [28,29], search-based [6,27,32], and
soft verbalizers [8,41]. While the manual creation of templates and verbalizers
provides a straightforward approach, it is inherently limited by human inter-
pretation, often resulting in suboptimal representations. In contrast, automatic
and continuous methods reduce manual effort, dynamically adapting to optimize
the model’s performance. However, the effectiveness of prompt-based methods
remains highly sensitive to the choice of templates [3], verbalizers [6], and few-
shot labeled instances [39]. This sensitivity underscores the need for approaches
that better model the diversity and complexity of data distributions to ensure
robust and generalizable performance.

To enhance the performance of prompt-based methods, we focus on annotat-
ing instances and obtaining verbalizer tokens within a given labeling budget [11].
Efficient use of this budget requires a balanced approach to both instance and
verbalizer selection, as these elements are interrelated. Ignoring this relation-
ship can result in suboptimal outcomes. Existing methods for verbalizer selec-
tion [6,36] rely on randomly chosen few-shot instances, often lacking the diversity
needed for robust generalization. Similarly, instance selection approaches [39]
using fixed, manually designed verbalizers fail to capture data variability or
adapt to nuanced label distributions. These studies overlook the dependency
between instance and verbalizer selection. Under the MLM objective, an instance
is more likely to predict a label accurately if the verbalizer token lies nearby in
the embedding space. Ignoring this relationship results in redundant examples,
noisy data, and outliers, which degrade generalization and robustness, especially
in cold-start scenarios without labeled data.

To address the aforementioned challenges of data diversity and uncertainty
in cold-start scenarios, we propose COLDSELECT, a novel method that jointly
selects verbalizers and few-shot instances by modeling data diversity. Model-
ing data diversity ensures the selection of diverse instances that represent the
corpus comprehensively, reducing redundancy and improving generalization. For
example, in sentiment analysis tasks, including instances with varying sentiment
intensities helps the model learn nuanced distinctions, while in news classifica-
tion, diverse examples across categories ensure balanced representation. At the
same time, diverse verbalizer tokens for a class, such as mapping “great” and
“magnificent” to “positive” class, effectively capture label semantics and avoid
oversimplified mappings. Jointly optimizing instance and verbalizer selection
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within a single labeling budget maximizes efficiency and minimizes noise and
redundancy.

COLDSELECT maps pre-softmax embeddings of PLM vocabulary tokens and
hiarask) embeddings into a shared space for efficient comparison. Dimensional-
ity reduction using PCA [38] enhances computational efficiency, while cluster-
ing methods like KMeans [20] and refinement with negative silhouette loss [26]
ensure robust, well-separated clusters that capture the data’s diversity. Within
the resulting clusters, instance and verbalizer selection are guided by an opti-
mization framework that operates under a labeling budget B. This framework
minimizes labeling uncertainty at each step by balancing three critical factors:
intra-cluster cohesion, which ensures selected instances are representative; inter-
cluster separation, which avoids redundancy across clusters; and impurity, which
captures label diversity. At each timestamp, COLDSELECT identifies the most
informative clusters, from which the instances to annotate and verbalizer tokens
are selected. By integrating these steps, COLDSELECT ensures that the selected
tokens and instances reflect the dataset’s diversity and maximize the model’s gen-
eralization capability, ultimately improving performance in prompt-based tasks.

In summary, the contributions of this study are as follows:

1. To the best of our knowledge, this is the first method to jointly and auto-
matically select instances to annotate and verbalizer tokens in a cold-start
setting. By modeling data diversity using shared embedding spaces, cluster-
ing techniques, and a novel selection-based optimization framework, our app-
roach ensures robustness and generalization, effectively addressing sensitivity
in prompt-based methods.

2. The instance and verbalizer selection process is formulated as an optimiza-
tion problem designed to minimize labeling uncertainty at each step of the
selection process.

3. Comprehensive experiments on benchmark datasets show that COLDSELECT
successfully models data diversity and the selected instances and verbalizer
tokens reduce labeling uncertainty, leading to improved accuracy.

2 Related Works

Despite the remarkable success of PLMs, their application in specific tasks
remains challenging, particularly in cold-start scenarios where no labeled data is
available. This limitation has led to the growing interest in prompt-based meth-
ods, which reformulate downstream tasks into cloze-style tasks to better align
with the MLM pre-training objective. Prompt-based approaches rely on three
key components: templates, verbalizers, and, optionally, a few labeled instances
for fine-tuning. While significant progress has been made in automatic and con-
tinuous template generation [6,12,14,15,17,28,35], the automatic selection of
verbalizers and few labeled instances remains underexplored, particularly in cold-
start settings. Below, we review related work in these two areas.
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Fig. 1. Overview of COLDSELECT

Few-Shot Instance Selection in Cold-Start Settings. Selecting diverse and
representative few-shot instances is essential for improving the performance of
prompt-based methods, particularly in cold-start scenarios where only unlabeled
data is available. Early approaches [23] relied on clustering and heuristic-driven
selection, but their inability to account for inter-sample diversity limited their
effectiveness. Subsequent methods [4,40] utilized PLMs, leveraging embedding
spaces or MLM loss to guide instance selection. While these strategies were task-
agnostic, they often struggled with misalignment between pre-training objectives
and downstream tasks, leading to suboptimal results. Recent efforts [16,34] have
focused on few-shot selection for large-scale language models through in-context
learning. However, these methods lack a cohesive framework to simultaneously
address data diversity and labeling uncertainty, leaving significant room for
improvement.

Verbalizer Selection. Verbalizers play a crucial role in mapping model predic-
tions to class labels. Early approaches [28,29] relied on manually designed verbal-
izers, which, while effective, were time-consuming and susceptible to human bias.
To automate this process, search-based methods [27,32] identified tokens that
maximized conditional probabilities within the LLM vocabulary. However, these
approaches often generated tokens that lacked contextual relevance. Enhance-
ments using semantically similar tokens from external knowledge bases [10]
improved token quality but failed to address data diversity and struggled with
scalability in large vocabularies and few-shot scenarios. Soft verbalizers [8,41]
mitigated some of these limitations by learning continuous embeddings but
required substantial labeled data, making them unsuitable for few-shot settings.
More recently, prototypical verbalizers [5] leveraged few-shot training data to
generate prototype embeddings, achieving state-of-the-art performance in auto-
mated verbalizer design. However, even these methods often fell short of manual
verbalizers in certain cases, highlighting the need for further improvement. More
recently, [36] proposed the tuning-free LLE-INC method, re-embedding the ver-
balizer space using intra-class neighborhood relationships to enhance the design.

Unlike previous studies, COLDSELECT is the first approach to jointly select
instances and verbalizers while explicitly modeling their interdependence and
data diversity in cold-start settings.
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3 Preliminaries

In this section, we describe the process of obtaining prediction probabilities in
prompt-based learning. Given a template 7, a verbalizer M : ) — V that maps
the class label space ) to tokens in the PLM vocabulary V), and an input instance
7 from the unlabeled corpus D, the probability of 7 being assigned a label y € )
is defined as:

exp(War(y) - biarask))
2yey exP(Way - hiarask))’

p(y|T) = p(IMASK] = M(y)|Z7) = (1)

where Iy = T(Z) is the text obtained by applying the template 7 to the
instance Z, resulting in a sentence with exactly one masked token ([MASK]).
Here, hiprask) represents the embedding of the [MASK] token, and w, is the
pre-softmax token embedding for the token v € V in the PLM’s vocabulary. The
predicted label for the instance Z is the label y € ) with the highest predicted
probability.

4 Methodology

This section introduces COLDSELECT, a method for jointly selecting verbalizers
and few-shot instances by effectively modeling data diversity. Section4.1 out-
lines the problem, and Sect. 4.2 highlights the instance-verbalizer relationship in
cold-start settings. Given a dataset D with N instances, COLDSELECT begins by
extracting embeddings of the PLM’s vocabulary tokens and h(y; 4 5x] embeddings
of dataset instances, mapping them into a shared embedding space. To capture
the dataset’s diversity, COLDSELECT applies PCA for dimensionality reduction,
followed by KMeans clustering and negative silhouette loss to produce robust,
well-separated clusters. To refine these clusters, vocabulary-only clusters are dis-
carded, and instances from instance-only clusters are reassigned to the nearest
mixed clusters, ensuring that all clusters contain both instances and vocabulary
tokens. Section 4.3 details the cluster creation process. The refined clusters are
then passed to the Selection and Annotation module, which uses cohesion, sep-
aration, and impurity metrics to model cluster uncertainty and selects a subset
of instances to obtain annotations and verbalizer tokens under the given budget
B. Section 4.4 provides details about the module, and Sect. 4.5 demonstrates the
optimality of the proposed selection process. Figure 1 provides an overview of
COLDSELECT.

4.1 Problem Formulation

Given a PLM £ trained with MLM objective, an unlabeled corpus D containing
N instances, a template 7, and a labeling budget B, the objective is to minimize
uncertainty in classifying instances in D into predefined labels ) (binary or multi-
class).
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4.2 Relationship Between Instance and Verbalizer Selection

In prompt-based learning, the probability of assigning a label y € J to an input
instance Z is defined in Eq. (1). In the equation, the dot product way(y)-hiarask)
is maximized when the embeddings are similar or have high cosine similarity,
assuming normalized embeddings:

WM(y) - h[MASK]

(2)

cos_sim(waq(y), Riarask)) = .

O EMASKY ™ T g Mg as |
To ensure optimal classification, the verbalizer token wa4(,) must be close to the
hiavrask) embedding of instances assigned to label y in the shared embedding
space.

4.3 Modeling Data Diversity for Cluster Creation

Prompt-based learning utilizes PLMs to extract pre-softmax embeddings w,, for
vocabulary tokens v € V and h[yr45xk) embeddings for instances in the dataset
D. Since both types of embeddings are derived from the same PLM, they are
mapped into a shared embedding space to enable meaningful comparisons. How-
ever, the high dimensionality of these embeddings can result in uniformly high
cosine similarity values, diminishing their discriminative power. To address this,
we first perform dimensionality reduction to enhance the separability of embed-
dings. This is followed by clustering and cluster optimization, ensuring the effec-
tive modeling of data diversity.

Dimensionality Reduction with PCA: To reduce the dimensionality of
embeddings, we apply Principal Component Analysis (PCA) [38], which projects
the embeddings into a lower-dimensional space while retaining most of the vari-
ance:

z=XW, W =argmax|XW|g, st.W'W=1I, (3)
w

where X is the matrix of original embeddings, W is the transformation matrix,
and z is the reduced embedding. After reduction, we normalize the embeddings
to ensure cosine similarity effectively represents the dot product.

Clustering with KMeans: To cluster the embeddings based on their similar-
ity, we use KMeans clustering [20], where the number of clusters is set to K.
KMeans minimizes the within-cluster variance:

K
ﬁkmeans = Z Z Hl‘ - Nk”Qa (4)

k=1z2€C}
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where CY is the set of points in cluster k, and uy is the cluster centroid. Cluster-
ing is performed to group vocab tokens and instance embeddings to maximize
intra-cluster similarity and facilitate the subsequent selection of verbalizers and
instances.

Optimizing Clustering with Negative Silhouette Loss: Since KMeans is
sensitive to initialization and may produce suboptimal clusters, we refine the
clustering using negative silhouette loss [26], which measures cluster cohesion
and separation. The silhouette score for a point i is defined as:

b(4) — a(i)

50 = Sax(a(@), b(0))’

()
where a(7) is the average distance to other points in the same cluster, and b(7)
is the smallest average distance to points in any other cluster. The objective is
to minimize the negative silhouette score:

N
Lot = —% _Z S(i), (6)

where N is the total number of points. This optimization ensures clusters are
well-separated and cohesive, improving the reliability of the clustering process.

Filtering and Cluster Refinement: After clustering, three types of clusters
typically emerge: (1) Mized Clusters: Contain both token and instance embed-
dings, (2) Token-Only Clusters: Contain only token embeddings, often represent-
ing outliers, and (3) Instance-Only Clusters: Contain only instance embeddings,
typically distant from token distributions. We discard token-only clusters as
outliers and reassign instances from instance-only clusters to the nearest mixed
cluster based on cosine similarity to the centroid:

Cossign = argmax cos_sim(ug, hz), (7)
CreC
where iy, is the centroid of cluster C € C, and hz is the hjyra5k] embedding of
instance Z. This refinement ensures all clusters are meaningful and suitable for
verbalizer and instance selection.

By combining dimensionality reduction, clustering, optimization, and refine-
ment, our approach ensures that the final clusters capture the diversity and
dependency between PLM vocab token and instance embeddings, laying the
foundation for robust instances for annotation and verbalizer selection.

4.4 Modeling Uncertainty for Cluster Selection and Annotation

The objective of COLDSELECT is to minimize uncertainty in classifying instances
in D into pre-defined labels Y (binary or multi-class). To achieve this, we lever-
age three key factors, cohesion, separation, and impurity, that collectively model
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cluster uncertainty. This framework ensures efficient use of the given labeling
budget B in a cold-start setting. Below, we outline the motivation and mathe-
matical formulation for each step in COLDSELECT.

Cohesion: For dense clusters where embeddings are close to the cluster centroid
1, the probability that all instances belong to the same class is high. Cohesion
models cluster density as:

1
cohesion(Cy) = m E cos_sim(z, ug), (8)
z€CY

where x € Cy are the embeddings in cluster Cy, and cos_sim(z, ug) measures
their similarity to the cluster centroid.

Separation: Clusters far from others may represent outlier classes where all
instances belong to the same class. Separation quantifies the distance between
clusters as:

separation(Cy) = o Igac}:ec cos_sim(pg, i), (9)
k/ o

where p is the cluster centroid of cluster Cy.

Impurity: Dense clusters may still contain instances from multiple classes, while
sparse clusters can have low label diversity. Impurity models label diversity as:

max;er counte, (1)
total(Cy,) ’

impurity(Cy) = 1 — (10)
where £ is the set of labels, countc, (1) is the number of instances with label [
in cluster Cf, and total(CY) is the total number of instances in Cy.

Instance Classification Uncertainty Minimization. We model the uncertainty
minimization problem as a cluster-level impurity minimization task. Since every
instance belongs to a cluster, reducing impurity at the cluster level effectively
minimizes uncertainty in instance classification. To achieve this, we prioritize
clusters with high impurity at each step, operating on the principle that anno-
tating instances within these clusters will significantly reduce their impurity.
Additionally, we incorporate intra-cluster cohesion and inter-cluster separation
to ensure the selection of representative clusters while avoiding redundancy. As
a result, at each step T, the cluster that maximizes the following equation is
selected for annotation.

Cr = argmax E[cohesion(Cy) + separation(Cy,) + impurity(Cy,)], (11)
CreC

The inclusion of cohesion(Cy) in the cluster selection process inherently favors
dense clusters, which is beneficial, particularly under low labeling budgets.
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Dense clusters, characterized by closely clustered embeddings, often indicate that
instances belong to the same class, making them ideal for efficient labeling. Pri-
oritizing these clusters ensures that each labeled instance has maximum impact,
minimizing uncertainty while conserving resources. Additionally, this strategy
reduces noise in the early stages, creating a strong foundation for subsequent
labeling. Over time, the balance between cohesion, separation, and impurity
ensures that sparse and diverse clusters are also addressed, leading to optimal
resource allocation and improved model performance.

Initialization for Cold-Start Settings. In a cold-start scenario, where no labeled
instances are initially available, the metrics are initialized as follows: cohesion is
computed using Eq. (8), separation is determined using Eq. (9), and impurity is
set to 0 for all groups.

Dynamic Updates for Cohesion and Separation. To incorporate instance labeling
dynamically, we replace static cluster centroids with embeddings of selected ver-
balizer tokens. Verbalizer tokens provide a more contextually relevant reference
for cluster evaluation, as class probabilities are determined by the dot product
between the hjysa5k) embedding of an instance and these tokens. Unlike fixed
centroids, verbalizer tokens adapt as labels are assigned, capturing evolving clus-
ter dynamics effectively. Eq. (8) and Eq. (9) are updated as follows:
Cohesion:

1
COh@SiOTL(Ck) = m Z Ug\%ﬁéck cos_sim(a:,v), (12)
z€Cly,
where v € V are verbalizer tokens in cluster C}.
Separation:
separation(Cy) = ma cos_sim(pg,v). 13
p ( k) UEV&U}éCk - (Mk ) ( )

Labeling Policy. We categorize the selected cluster Cp as labeled if at least
one instance in the cluster is already labeled. Otherwise, it is categorized as
unlabeled. Depending on the categorization, the instance selection for labeling
proceeds as follows:
If Cr is unlabeled, select the instance nearest to the cluster centroid u for
labeling:
Tselecty = argmax cos_sim(x, p1). (14)
zEeCr o

Assign the label obtained for Zgeject, to the nearest vocab token and add it to
V:

Vselecty = argmax cos_sim(v, Zserectr )- (15)

veECT

If Cr is labeled, select the instance farthest from already labeled instances and
obtain verbalizer token following Eq. (15):

Tselecty = argmax  min  cos_sim(z,z’). (16)
z€Cr T#x'€labeled -
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Stopping Criterion. The selection process continues until the labeling budget B
is exhausted. By iteratively targeting clusters with maximum impurity, COLDS-
ELECT optimally selects instances and verbalizer tokens to reduce classification
uncertainty and enhance model performance.

4.5 Optimal Selection Process

The proposed approach reduces classification uncertainty in D by integrating
cohesion, separation, and impurity metrics into the cluster selection process.
This balanced scoring function enables effective exploration and exploitation,
focusing on dense, distinct clusters initially and gradually addressing sparse or
diverse clusters as labels are acquired. Metrics are initialized based on embedding
proximity and dynamically updated during labeling, allowing adaptability in
cold-start settings. By combining these metrics, the approach optimally utilizes
the labeling budget B to reduce uncertainty, avoid redundancy, and ensure robust
classification for diverse datasets.

5 Experiments

In this section, we evaluate the performance of COLDSELECT in reducing
uncertainty in classifying instances on several benchmark datasets from diverse
domains: SST-2 [33], MR [24], CR [9], Subj [25], CoLA [37], AG News [42],
Yelp [22], and IMDB [19]'. Table 1 provides a summary of the datasets, includ-
ing their type, number of classes, and the templates used.

5.1 Evaluation Metrics

We use Accuracy (Acc.) as the primary evaluation metric across all datasets to
measure the effectiveness of COLDSELECT and baselines in reducing classification
uncertainty.

Table 1. Statistics of the Datasets

Dataset Type |y| Labels #Test Instances Template

SST-2  [Sentiment Analysis 2 positive, negative 872 <S>. It was [MASK]
MR Sentiment Analysis 2 |positive, negative 2,000 <S>. It was [MASK]
CR Sentiment Analysis 2 |positive, negative 2,000 <S>. It was [MASK]
Subj Subjectivity Classification |2 subjective, objective 2,000 <S>. It was [MASK]
CoLA  |Acceptability Classification2 \grammatical, not grammatical 1,042 <S>. This is [MASK]
AG News News Classification 4 'world, sports, business, technology 7,600 IMASK]| News: <S>
Yelp-full Sentiment Analysis 5 very positive, positive, neutral, negative, very negative 38,000 <S>. It was [MASK]
IMDB  [Sentiment Analysis 2 positive, negative 25,000 <S>. It was [MASK]

! The code is available at https://github.com/Mohna0310/COLDSELECT.
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Table 2. Few-shot instance selection results on three datasets using RoBERTa-base
with standard finetuning, following [39]. Accuracy is reported on the test set, with best
and runner-up models highlighted in bold and underlined, respectively.

Dataset ||y|||B] Random Uncertainity CAL BERT-KM|Coreset Margin-KM|/ALPS/TP C/PATRON Random-g/COLDSELECT
IMDB 2 |32 80.2 81.9 77.879.2 74.5 76.7 82.2 |82.8 |85.5 84.1 87.37
64 82.6 84.7 81.2 84.9 82.8 84.0 86.1 (84.0 |87.3 85.3 88.39
128/86.6 87.1 87.9 188.5 87.8  188.2 87.5 [88.1 89.6 88.7 90.61
Yelp-full |5 32 30.2 32.7 36.6 35.2 32,9  [32.7 36.8 32.6 |35.9 34.1 39.58
64 42.5 36.8 41.2 39.3 39.9  39.8 40.3 [39.7 44.4 41.5 46.72
12847.7 41.3 45.7 46.4 49.4 47.1 45.1 46.8 |51.2 48.9 54.16
AG News|4 32 |73.7 73.7 69.4 79.1 78.6 75.1 78.4 (80.7 83.2 81.2 84.69
64 80.0 80.0 78.5 182.4 82.0 81.1 82.6 (83.0 85.3 83.8 87.16
128)84.5 82.5 81.3 85.6 85.2 85.7 84.3 |85.7 |87.0 86.1 88.26

5.2 Baseline Methods

Since COLDSELECT is the first approach to jointly select both verbalizers and
few-shot instances, we compare it with baselines for (1) few-shot instance selec-
tion and (2) verbalizer selection.

Few-Shot Instance Selection Baselines: Random: randomly selects samples
for annotation. Uncertainty [30]: selects instances with the highest uncer-
tainty post-calibration using entropy [13]. CAL [21]: uses Kullback-Leibler (KL)
divergence to guide sample selection. Coreset [31]: minimizes the maximum
Euclidean distance between a sample and its nearest cluster centroid. BERT-
KM [4]: clusters embeddings using KMeans and selects samples closest to cen-
troids. Margin-KM [23]: selects samples based on the margin between the two
highest probabilities within clusters. ALPS [40]: uses BERT’s MLM loss to
compute surprisal embeddings for sample selection. TPC [7]: selects instances
with the highest density in each cluster. PATRON [39]: employs a partition-
then-rewrite strategy to enhance sample diversity. Random-g: randomly selects
refined clusters at each step, bypassing the proposed selection process while
adhering to the labeling policy.

Automatic Verbalizer Selection Baselines: LM-BFF [6]: uses T5 to automat-
ically generate verbalizers with few-shot examples. ProtoVerb [5]: constructs
prototype-based verbalizers using contrastive learning. For verbalizer selection,
we also compare COLDSELECT against manual verbalizers created by humans.

5.3 Experimental Settings

We conduct experiments using RoBERTa-base (125M parameters) and
RoBERTa-large (355M parameters) PLMs, following the setups of [39] and [6],
respectively. For KMeans clustering, we set the random seed to 42 and the num-
ber of clusters to 40 and performed cluster optimization over five iterations.
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Table 3. Few-shot instance selection results on three benchmark datasets using
RoBERTa-base, following [39]. Prompt-based finetuning is performed, with accuracy
reported on the test set. Best and runner-up models are highlighted in bold and under-
lined, respectively.

Dataset ||y[||B|] Random|Uncertainity CAL BERT-KM) Coreset Margin-KM ALPS'TPC|PATRON Random-g/ COLDSELECT
IMDB 2 32 81.8 82.4 79.6 81.7 85.5 86.0 83.5 |84.5 86.5 85.2 89.48
64 85.6 86.0 81.1 84.2 87.8 87.6 84.4 |85.8 |88.8 87.2 91.42
128/87.7 88.4 83.0 88.5 88.9 [89.1 88.9 |88.0 189.3 88.5 91.23
Yelp-full 5 |32 |48.9 46.6 47.9 45.5 46.0 475 47.0 49.8 [50.5 49.1 53.31
64 51.0 49.9 49.4 51.9 48.8 52.6 52.8 |52.3 |53.6 51.5 56.29
128/51.3 50.8 48.7 |51.5 53.7 54.2 51.7 |51.0 |55.6 53.2 57.16
AG News4 (32 83.1 82.8 81.4 84.9 85.1 84.6 84.2 |85.6 |86.8 85.7 87.23
64 84.5 84.3 82.6 86.5 86.4 |85.9 86.2 |85.6 |87.4 86.8 88.18
128/84.9 83.1 83.0 87.6 87.5 87.1 87.5 |87.0 |87.8 87.4 89.95

Table 4. Performance comparison of COLDSELECT with Random, Random-g, and
other methods on five benchmark datasets using RoBERTa-large LLM, following [6].
Experiments use fixed manual templates with K = 16 few-shot instances per class to
obtain automatic verbalizers. The maximum budget B required by Random, Random-
g, and COLDSELECT are 66, 52, and 44, respectively, showing COLDSELECT’s efficiency
in balancing class labels and optimizing the labeling budget. Accuracy (%) is reported
on test set, with the best results highlighted in bold.

Dataset|Fine-tuning Prompt-based FT LM-BFF ProtoVerb
Rand Rand-g/ CoLDSELECT Rand/ Rand-g CoLDSELECT Rand Rand-g/CoLDSELECT Rand Rand-g COLDSELECT
SST-2 81.4 83.0 |87.5 92.7 93.1 93.0 92.6 92.8 |93.2 86.9 [87.0 |87.1
MR [76.9 77.8 |79.5 87.0 87.5 |88.9 86.6 87.0 |87.8 60.0 62.4 |66.2
CR 75.8 [76.3 |78.0 90.3 190.7 |91.5 90.2 90.6 |91.7 68.7 [70.1 |76.8
Subj 90.8 91.2 |93.2 91.2 91.5 |90.2 92.3 92.5 |93.7 75.7 [76.0 |76.3
CoLA 724 732 |73.8 52.9 [56.2 |58.3 52.9 53.6 |54.5 53.9 [55.3 |58.9

5.4 Results and Discussion

The results in Tables 2 and 3 demonstrate COLDSELECT’s superior performance
over PATRON and other baselines by effectively leveraging data diversity and
label uncertainty. Unlike PATRON, which relies on prompt-based uncertainty
propagation and a static partition-then-rewrite (PTR) strategy, COLDSELECT
dynamically updates cluster centroids with verbalizer token embeddings, ensur-
ing better alignment with evolving label distributions and reducing noise from
outliers. By integrating cohesion, separation, and impurity metrics, COLDS-
ELECT balances exploration and exploitation, enabling early-stage labeling of
dense clusters while progressively addressing sparse or diverse ones. This adapt-
ability allows COLDSELECT to surpass PATRON across various datasets, includ-
ing IMDB in Table 2, where it achieves 87.37% accuracy at |B] = 32 (1.9% higher
than PATRON), Yelp-full in Table 2, where it achieves largest accuracy gain over
PATRON, indicating its robustness in handling highly imbalanced class distribu-
tions, and AG News in Table 3, where it scales effectively to 89.95% at |B| = 128.
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These results highlight COLDSELECT’s ability to optimize labeling budgets and
handle complex, multi-class distributions more effectively than existing methods.

The results in Table4 demonstrate COLDSELECT’s effectiveness across all
datasets and experimental setups, consistently outperforming Random and
Random-g. For instance, in the Fine-tuning setting, COLDSELECT achieves
87.5% on SST-2, surpassing Random (81.4%) and Random-g (83.0%). Sim-
ilarly, on MR and CR, COLDSELECT outperforms both baselines, achieving
79.5% and 78.0%, respectively. In the Prompt-based FT setup, COLDSELECT
achieves 91.5% on CR and 58.3% on CoLA, significantly higher than Random
and Random-g. COLDSELECT’s reduced labeling budget (B = 44) compared to
Random (B = 66) and Random-g (B = 52) highlights its efficiency in select-
ing diverse, representative instances. By ensuring that each labeled instance
maximally reduces uncertainty, COLDSELECT optimally utilizes limited annota-
tion budgets, validating its ability to optimize instance selection while improv-
ing performance across binary classification tasks. COLDSELECT shows greater
improvements in datasets with complex class distributions, such as Yelp-full
and AG News, compared to binary tasks like SST-2. The results suggest that
clustering-based selection of COLDSELECT is particularly effective in capturing
fine-grained distinctions between similar classes.

The ablation study in Table 5 further supports this by showing that removing
impurity modeling leads to a drop in accuracy across IMDB, AG News, and Yelp-
full datasets, reinforcing the importance of selecting diverse and representative
instances. Using cohesion alone provides a baseline improvement by prioritizing
dense clusters (e.g., 80.50% on IMDB), but it lacks robustness. Adding separation
enhances performance (e.g., 82.20% on IMDB) by ensuring inter-cluster distinc-
tiveness, reducing redundancy, and better capturing outlier classes. Including
impurity with cohesion offers slight gains (e.g., 81.40% on IMDB) by addressing
label diversity within clusters. However, the full combination of all three metrics
yields the highest accuracy across datasets (e.g., 87.37% on IMDB), demonstrat-
ing their complementary roles in capturing cluster density, distinctiveness, and
label diversity to optimize labeling budgets effectively.

Table 5. Ablation study on COLDSELECT’s performance with B = 32 using RoBERTa-
base and standard fine-tuning, following [39]. Accuracy (%) on the test set is reported,
with best and runner-up results highlighted in bold and underlined.

Model Variant Cohesion|Separation Impurity IMDB|AG News|Yelp-full
Only Cohesion v 80.50 (78.30 30.80
Cohesion + Separation v v 82.20 80.10 33.70
Cohesion + Impurity v v 81.40 |79.00 32.90
Cohesion + Separation + Impurity (COLDSELECT) v’ v v 87.37/84.69 |39.58
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6 Conclusion

In this study, we proposed COLDSELECT, a novel approach, for instance, and
verbalizer selection in prompt-based learning, explicitly modeling data diversity
and label uncertainty. By integrating cohesion, separation, and impurity met-
rics, COLDSELECT effectively identifies representative instances and optimizes
labeling budgets. Extensive experiments on benchmark datasets demonstrate
that COLDSELECT consistently outperforms state-of-the-art methods, achiev-
ing robust performance in both standard and prompt-based fine-tuning. These
results validate the importance of modeling intra-cluster density, inter-cluster
distinctiveness, and label diversity, making COLDSELECT a powerful solution for
challenging cold-start scenarios and enhancing generalization in prompt-based
classification tasks.

The effectiveness of COLDSELECT in optimizing annotation budgets makes
it highly applicable in low-resource NLP settings, active learning scenarios, and
domain adaptation tasks. By reducing redundancy in labeled instances and
improving generalization, this method can enhance model performance in real-
world applications such as customer sentiment analysis, fake news detection, and
biomedical text classification. Moreover, its ability to optimize instance selection
without extensive labeled data makes it particularly relevant for emerging fields
like legal text classification, financial risk assessment, and cross-lingual NLP,
where annotated data is often scarce. Future extensions of COLDSELECT could
explore its adaptability to multilingual and multimodal datasets, further broad-
ening its impact across diverse Al applications.

7 Limitations and Future Work

While COLDSELECT excels in data-diverse scenarios, its reliance on PCA-based
dimensionality reduction may introduce biases, as it assumes linear separability.
Future work could explore adaptive non-linear transformations like kernel PCA
or deep representation learning to enhance cluster separability. Additionally, the
fixed labeling budget may not suit all datasets; a dynamic allocation strategy
based on entropy minimization and cluster impurity could improve efficiency.

COLDSELECT also depends on KMeans clustering, which may not always cap-
ture complex structures in high-dimensional spaces. Alternative clustering meth-
ods like hierarchical clustering or DBSCAN could enhance robustness. Addition-
ally, integrating reinforcement learning could further refine instance selection by
dynamically adapting to dataset characteristics.
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