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Abstract
This article seeks to investigate the impact of aging on functional connectivity across different cognitive control sce-
narios, particularly emphasizing the identification of brain regions significantly associated with early aging. By con-
ceptualizing functional connectivity within each cognitive control scenario as a graph, with brain regions as nodes, 
the statistical challenge revolves around devising a regression framework to predict a binary scalar outcome (aging or 
normal) using multiple graph predictors. Popular regression methods utilizing multiplex graph predictors often face 
limitations in effectively harnessing information within and across graph layers, leading to potentially less accurate infer-
ence and predictive accuracy, especially for smaller sample sizes. To address this challenge, we propose the Bayesian 
Multiplex Graph Classifier (BMGC). Accounting for multiplex graph topology, our method models edge coefficients at 
each graph layer using bilinear interactions between the latent effects associated with the two nodes connected by the 
edge. This approach also employs a variable selection framework on node-specific latent effects from all graph layers to 
identify influential nodes linked to observed outcomes. Crucially, the proposed framework is computationally efficient 
and quantifies the uncertainty in node identification, coefficient estimation, and binary outcome prediction. BMGC 
outperforms alternative methods in terms of the aforementioned metrics in simulation studies. An additional BMGC 
validation was completed using an fMRI study of brain networks in adults. The proposed BMGC technique identified 
that sensory motor brain network obeys certain lateral symmetries, whereas the default mode network exhibits significant 
brain asymmetries associated with early aging.
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Introduction

In recent years, the study of cognitive control among aging 
adults has gained significance as a prominent and essential 
research focus. With the ongoing aging of the population, 
there is a growing need to comprehend the nuances of cog-
nitive functions in older individuals. This understanding 
is crucial not just because of the healthcare costs involved  
but also due to the significant economic and social conse-
quences linked with an aging populace. The field of cogni-
tive neuroscience stands to acquire valuable insights into 
the aging brain by examining functional connectivity in the 
human brain during cognitive control tasks. This paper uti-
lizes brain imaging data, representing functional connec-
tivity graphs derived from functional magnetic resonance 
imaging (fMRI) (Dinov, 2023; Richiardi et al., 2011), to 
investigate the interplay between cognitive decline and brain 
regions. The fMRI study focused on two distinct cognitive 
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task conditions: inhibition and initiation (Rieck et al., 2021a).  
Inhibition is broadly conceptualized as the ability to sup-
press or countermand a thought, action, or feeling. Initia-
tion, on the other hand, refers to engaging in purposeful 
goal-directed activities. For each participant, there are two 
graphs with nodes as brain regions of interest (ROIs), each 
corresponding to one of these task conditions. This dual per-
spective enables us to uncover how aging affects functional 
connectivity across various cognitive control scenarios, 
shedding light on the nuanced differences in brain network 
interactions between inhibition and initiation tasks in aging 
adults. Using the Schaefer 200 network of fMRI connectivity 
(Yang et al., 2023) for two task conditions (Z-transformed 
correlation matrices input), we examined the left and right 
hemisphere network differences in the brains of normal and 
aging adults, as quantified by the Mini-Mental State Exami-
nation score (outcome).

From a statistical standpoint, the main challenge lies in 
devising a regression framework that incorporates a binary 
outcome alongside a two-layer multiplex graph as the pre-
dictor. Our primary objective is to achieve classification of 
the binary outcome, identify the graph nodes significantly 
associated with the outcome, and estimate the regression 
impact of each layer of the multiplex graph on the outcome. 
The modeling framework proposed in this article enables 
us to tackle these challenges simultaneously. Although 
literature on generalized linear models involving a multi-
plex graph predictor is limited, some previous studies have 
addressed unsupervised modeling of multiplex graphs. How-
ever, these existing approaches do not adequately meet all 
our inferential objectives, as outlined below.

In regression involving a single-layer graph predictor, 
commonly used methods often entail transforming the 
graph into a high-dimensional set of edge weights (Craddock 
et al., 2009; Richiardi et al., 2011). Subsequent inference is 
drawn utilizing developments in generic high-dimensional 
regression architectures (Carvalho et  al., 2010; Park & 
Casella, 2008; Tibshirani, 1996), or neural network (NN) 
models (Dinh & Ho, 2020; Dinov & Velev, 2021; Polson & 
Ročková, 2018). While these approaches can be extended 
to handle multiplex graphs straightforwardly, restructuring 
the multiplex graph using these methods might inadequately 
capture the effects of intricate interconnections among nodes 
within different layers on the outcome. This potential limita-
tion could compromise the precision and interpretability of 
the regression model.

Recent advancements in the realm of object regres-
sions, featuring a scalar outcome and a single-layer graph  
predictor, have demonstrated promising capabilities in 
leveraging the graph’s structural information. Specifi-
cally, Guha and Rodriguez (2021, 2023) have introduced 
innovative Bayesian shrinkage priors designed to estimate 
the effects of nodes and edges within the graph on the 

scalar outcome. By exploiting the topology of the graph 
predictor, these proposed methods exhibit accurate out-
come prediction, robust parameter inference, and precise 
uncertainty estimates, especially in identifying influential 
graph nodes and edges. Moreover, Guha and Guhaniyogi 
(2021) have introduced a Bayesian generalized linear mod-
eling framework tailored for brain connectome data, incor-
porating low-rankness and group sparsity to identify sig-
nificant associations between a symmetric tensor response 
and scalar predictors. Additionally, Guha and Guhaniyogi 
(2024) have formulated a nonparametric Bayesian mix-
ture modeling framework for clustering subjects based 
on their individual networks and covariates, accounting 
for differences in relationships across subject groups and 
identifying network nodes associated with each covariate 
within each cluster. More recently, there has been a grow-
ing body of work on interpretable graph neural network 
approaches that provide theoretically guaranteed predic-
tions for scalar outcomes based on graph inputs. These 
approaches differ from earlier literature on graph neural 
networks (GNN) (Liu & Zhou, 2022; Zhou et al., 2020) in 
their ability to offer statistical interpretability for the con-
structed GNN (Zhou et al., 2023). Despite their successes, 
these approaches are tailored for single-layer graph predic-
tors. Extending them to handle interactions between nodes 
within different layers for a multiplex graph predictor to 
offer inference on influential nodes presents nontrivial 
modeling challenges.

An alternative strategy involves the aggregation of 
graphs from different layers to form a tensor, which is then 
employed to construct a regression framework with a scalar 
outcome and the tensor predictor. This approach can lever-
age recent advancements in tensor regression, encompass-
ing penalized optimization (Fan et al., 2019; Zhou et al., 
2013), low-rank methods (Ahmed et al., 2020; He et al., 
2018), and the Bayesian multiway shrinkage literature 
(Guhaniyogi et al., 2017; Spencer et al., 2022). However, 
these approaches do not explicitly account for the symme-
try constraint in individual layers of the multiplex graph. 
Moreover, their primary emphasis is on prediction and iden-
tifying significant edges or interconnections, rather than 
specifically identifying crucial nodes in each layer that 
influence the outcome.

Within the current body of literature, multiplex graphs 
are often regarded as random variables rather than being uti-
lized as predictors in a regression framework. In this litera-
ture, researchers predominantly concentrate on establishing 
appropriate relationships among edges and various types of 
connections defining the multiple layers (Gollini & Murphy, 
2016; Han et al., 2015; Heaney, 2014). These advancements 
have expanded the use of exponential random graph models 
(Frank & Strauss, 1986; Holland & Leinhardt, 1981) and 
latent variable models (Airoldi et al., 2008; Hoff et al., 2002; 
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Nowicki & Snijders, 2001), initially designed for a single 
graph, to facilitate inference in multiplex graphs. Further-
more, these frameworks have been extended to handle time-
varying or dynamic multiplex graphs. In such scenarios, 
stochastic processes are employed to leverage information 
across edges and over time, as noted in previous research 
(Durante et al., 2017; Hoff, 2015; Snijders et al., 2013). 
Additionally, these frameworks have also been adapted 
to accommodate multiplex graphs with covariates associ-
ated with the graph nodes, as demonstrated in prior studies  
(Contisciani et al., 2020; Xu et al., 2023; Zhang et al., 2022). 
Nevertheless, these methods for multiplex graphs are fun-
damentally unsupervised and do not align with our specific 
inferential goals.

There is a burgeoning area of research in graph repre-
sentation learning which focuses on efficiently encoding 
high-dimensional sparse graph-structured data into low-
dimensional dense vectors. This task has been extensively 
investigated across various fields, including machine learn-
ing and data mining (Chen et al., 2020; Chen et al., 2021; 
Heidari & Iosifidis, 2021; Li et  al., 2023; Ngoc et  al., 
2020; Wang et al., 2019; Zhao et al., 2022). Although much 
of this literature is oriented towards unsupervised learning, 
there is potential to adapt these methods to our context. In 
such a scenario, the low-dimensional features extracted from 
a multiplex graph can be regressed on a binary outcome, 
potentially leading to effective classification of the binary 
outcome. infer on the influential graph nodes that are signifi-
cantly associated with the binary outcome, while providing 
uncertainty estimates.

This article presents Bayesian Multiplex Graph Classi-
fier (BMGC), which is a novel generalized linear modeling 
framework tailored for a binary outcome and a multiplex 
graph predictor. Within our framework, an edge coefficient 
within each layer is expressed as a function of latent effects 
associated with the nodes linked by that specific edge. Spe-
cifically, these edge coefficients are modeled as a bilinear 
interaction between node-specific latent effects, resulting 
in a low-rank structure for the coefficients corresponding 
to the multiplex graph at each layer. This low-rank structure 
achieves parsimony, particularly beneficial when dealing 
with multiplex graphs defined on a large number of nodes. 
To facilitate the identification of network nodes significantly 
associated with the outcome, we propose a variable selection 
framework that operates jointly on latent effects across all 
layers corresponding to a particular node. This structured 
approach not only ensures simplicity but also enables precise 
classification of the binary outcome, facilitates inference 
on network nodes and edges relevant to the outcome, and 
provides well-calibrated uncertainties for both inference 
and classification. We choose the Bayesian framework for 
inference due to its natural ability to provide uncertainty in 
inference, especially in identifying influential nodes. This is 

particularly essential when dealing with a moderate sample 
size, with the number of graph edges exceeding the sample 
size by a significant margin. While our research originates 
from a neuro-scientific study, its versatility extends beyond 
this domain, making it broadly applicable in various sce-
narios involving multiplex graphs, such as genomics data.

The rest of the article proceeds as follows. “Functional 
Connectivity Data during Cognitive Control for an Adult 
Lifespan Sample” section discusses functional connectivity 
data during different tasks on cognitive control. “Model and 
Prior Formulation” section provides a detailed description 
of the regression framework with a multiplex graph predic-
tor and prior formulation on model coefficients. “Posterior 
Inference” section discusses posterior computation. Simula-
tion studies in “Simulation Study” section and the analysis 
of neuroimaging data in “Functional Magnetic Resonance 
Imaging (fMRI) Study” section demonstrate superior per-
formance of the proposed approach compared to its competi-
tors. Finally, “Conclusion and Future Work” section offers 
concluding remarks and possible future extensions. Appendix 
describes full conditional posterior distributions for all the 
model parameters. They are employed to construct Markov 
Chain Monte Carlo for model computation.

Functional Connectivity Data 
during Cognitive Control for an Adult 
Lifespan Sample

In this section, we describe the functional connectivity 
data, derived from functional magnetic resonance imaging 
(fMRI) of healthy aging adults, recorded under different 
cognitive tasks (Rieck et al., 2021b). In this study, 144 
individuals (ages 20-86) were recruited from the greater 
Toronto area to participate in a study focusing on func-
tional activity during cognitive control. The participants 
underwent scanning using a Siemens 3T MRI scanner 
as they performed cognitive control tasks designed to 
gauge functional activity during inhibition and initiation. 
Throughout the scanning process, participants reclined on 
the scanner bed with a mirror positioned in front of their 
face, reflecting a computer screen displaying the experi-
mental stimuli. Participants used earplugs and wore head-
phones to mitigate scanner noise, and communication with 
the experimenter between scans was facilitated through a 
microphone. Holding a response box in their right hand, 
participants used their index and middle fingers to respond 
to stimuli presented on the screen (specific finger responses 
were counterbalanced among participants). In all tasks, let-
ters were displayed in the center of the computer screen 
using the Courier New font against a dark gray background. 
Inhibition and initiation were measured employing a go/
no-go paradigm, wherein participants were exposed to a 
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sequence of uppercase letters. Their instruction was to 
respond (termed “go”) when encountering the letter “X” 
and refrain from responding (termed “no-go”) for all other 
letters. Non-X stimuli (i.e., “no-go” stimuli) were selected 
randomly from a pool of 20 other letters: A, B, C, D, E, 
F, G, H, I, J, L, M, N, O, P, Q, R, S, T, and U. The task 
was divided into an “inhibition” block, characterized by 
a higher number of go trials than no-go trials (120 go, 40 
no-go), and a shorter “initiation” block, where there were 
more no-go trials than go trials (20 go, 60 no-go). The 
sequence of these two blocks was randomized among par-
ticipants. Letter stimuli were displayed for a duration of 
400 ms, accompanied by an average inter-stimulus inter-
val (marked by a fixation cross) of 1200 ms, with random 
jittering ranging between 900 and 1500 ms. The overall 
duration of the go/no-go task amounted to 6 min and 24 s. 
Blood-oxygen-level dependent (BOLD) fMRI data were 
collected with a 12-channel head coil using an echo-planar 
imaging sequence with 40 axial slices acquired parallel 
to the anterior-posterior commissure. A total of 216 vol-
umes were collected for the go/no-go task. High resolution 
anatomical scans used for warping the BOLD images to 
MNI space were acquired with a T1-weighted MP-RAGE 
sequence in which 160 axial slices were collected. Func-
tional data for each task were preprocessed with a mix of 
AFNI functions as well as Octave and MATLAB scripts 
using the Optimizing of Preprocessing Pipelines for Neuro-
Imaging software package (OPPNI) (Churchill et al., 2017). 
For the current dataset, a fixed pipeline for all participants 
was conducted with the following steps: (1) rigid-body 
alignment of the timeseries to correct for movement; (2) 
removal and interpolation of outlier volumes; (3) correction 
for physiological (i.e., cardiac and respiratory) noise; (4) 
slice timing correction; (5) spatial smoothing with a 6 mm 
smoothing kernel; (6) temporal detrending; (7) regression 
of six motion parameter estimates (X, Y, and Z translation 
and rotation) on the timeseries; (8) regression of signal in 
tissue of no interest (white matter, vessels and cerebro-
spinal fluid) on the time-series; and finally (9) warping 
to MNI space and resampling to 4 mm 3 isotropic voxel.

For each participant, there are two correlation matrices 
corresponding to the two distinct task conditions: inhibi-
tion and initiation. Assessment of functional connectiv-
ity (quantified with time-series correlations between dif-
ferent brain regions) were computed using the Schaefer 
200 parcel 17 network atlas (Schaefer et al., 2018; Yeo 
et al., 2011). Functional connectivity was computed for 
the fMRI task using the CONN toolbox in MATLAB  
(Whitfield-Gabrieli & Nieto-Castanon, 2012). Func-
tional time courses for each task condition were extracted 
from the 200 parcel nodes that comprised 17 networks, 
resulting in 200 × 200 connectivity matrices. We used the 
bilateral 100 brain regions of interest (ROIs) collectively 

representing 200 nodes covering 17 different known brain-
networks. Z-transformed functional connectivity correla-
tion matrices were computed for these Schaefer-100 nodes 
to examine the underlying neurobiology of aging.

The Mini-Mental State Examination (MMSE) score 
(Mega et  al., 1996; Moon et  al., 2023) represents the 
binary cognitive outcome measure of interest we want 
to predict using the our novel Bayesian multiplex graph 
modelling framework. In this supervised prediction study, 
the outcome variable represents the integer-valued MMSE 
measure binarized into normal (0 ≤ MMSE ≤ 29) and 
aging (30 = MMSE) cohorts.

Model and Prior Formulation

Bayesian Multiplex Graph Classifier

For each subject, we observe a binary outcome y ∈ {0, 1} , 
a p-dimensional predictor x , and a L-layer multiplex graph 
predictor {G�}

L
�=1

 . A L-layer multiplex graph is defined as 
a sequence of L graphs: {G�}

L
�=1

= {(N� , E�)}
L
�=1

 , with the 
� th graph consisting of nodes N� and edges E𝛼 ⊂ N𝛼 ×N𝛼 . 
We assume that the node sets are same across different lay-
ers, i.e., N� = N�� = N  , for any 1 ≤ � ≠ �′ ≤ V  . This com-
mon set of nodes is denoted by N = {N(1), ...,N(V)} , where 
|N| = V  represents the number of nodes. We construct a 
V × V adjacency matrix W(�) ∈ ℝ

V×V from the graph predic-
tor at the �-th layer. The entry at position (v, v�) of this matrix 
signifies the strength of association between nodes N(v) and 
N(v�) , v, v� = 1, ...,V  . For the functional connectivity data, 
this entry represents the Z-transformed correlation coeffi-
cient between the functional time series observed at nodes 
N(v) and N(v�) , under a specific task condition. This article 
concentrates specifically on undirected graphs without self-
relationships within each layer, a characteristic considered 
scientifically meaningful in the functional connectivity data. 
This implies that the adjacency matrix W(�) is symmetric, 
and its diagonal entries are zero. In what follows, we rep-
resent the L-layer multiplex graph by the sequence of adja-
cency matrices W =

{
W(�)

}L

�=1
.

For each subject, the proposed high-dimensional gener-
alized linear model representing the relationship between 
the binary outcome y and the multiplex graph predictor is 
given by,

Here, G(⋅) represents the link function, with popular choices 
being logit, probit, or log-log functions. Here, � is the inter-
cept. The coefficient �x is the p-dimensional vector corre-
sponding to x , �(�) is the coefficient matrix of dimension 

(1)P(y = 1�x,W) = G−1

�
� + xT�x +

1

2

L�
�=1

⟨W(�)��(�)⟩
�
.
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V × V corresponding to the �-th layer of the graph adjacency 
matrix W(�) , and ⟨W(�)��(�)⟩ = Trace(�(�)TW(�)) denotes the 
Frobenius inner product of the matrices W(�) and �(�) . The 
Frobenius inner product serves as an extension of the dot 
product, transitioning from vector spaces to matrix spaces, 
and it naturally represents the inner product in the space 
of matrices. Similar to W(�) , we presume that the coeffi-
cient matrix �(�) is symmetric and has zero entries along 
its diagonal.

To achieve flexible modeling of the effect of the mul-
tiplex graph on the outcome, each graph edge coefficient 
is expressed as an interaction between the nodes con-
nected by the specific edge. More precisely, let �(�)

v
∈ ℝ

H 
denote the H-dimensional coordinate in the latent space, 
representing the latent effect of the node N(v) specific to 
the � th layer, 1 ≤ v ≤ V  . The coefficient correspond-
ing to the (v, v�) th edge at the �-th layer is modeled as a 
weighted inner product of latent effects for nodes N(v) 
and N(v�) , given by, � (�)

v,v�
= ⟨�(�)

v
��(�)

v�
⟩
�

(�) = �(�)T
v

�
(�)�

(�)
v�
, 

1 ≤ v ≠ v� ≤ V , � = 1, ..., L . This mechanism allows nodes 
with coordinates aligned in the same direction to positively 
impact the outcome, whereas nodes with coordinates in 
opposite directions exert a negative influence on the out-
come. The interaction effect is dependent on the H × H 
weighing matrix �(�) which is a diagonal matrix with the 
h-th diagonal entry �(�)

h
∈ {−1, 0, 1} . The diagonal ele-

ments indicate the effect of the h-th dimension of the latent 
effect �(�)

v
 on the graph coefficients. A value of 0 for �(�)

h
 

signifies that the h-th dimension of the latent effect spe-
cific to the �-th layer is not informative of the outcome. 
The aforementioned modeling of the graph coefficient leads 
to a low-order spectral decomposition of �(�) , given by, 
�
(�) = Ξ(�)T�

(�)Ξ(�) , where Ξ(�) = [�
(�)
1

∶ ⋯ ∶ �
(�)
V
] denotes 

a H × V matrix which constitutes node-specific latent effects 
at the � th layer. The assumed low-order spectral representa-
tion massively reduces the count of estimable parameters 
from LV(V − 1)∕2 to LVH + HL = HL(V + 1) , with the typi-
cal condition that H ≪ V .

Prior Distribution on Coefficients

Given that one of the primary focuses of inference is the iden-
tification of influential nodes within N  for predicting the out-
come, we employ a variable selection framework on the node-
specific latent effects. Node N(v) has no effect from any of the 
layers on the outcome if all coefficients corresponding to the 
edges connected to the node N(v) are uninformative about the 
outcome, i.e., � (�)

v,v�
= 0 for all v′ ≠ v and � = 1, ..., L . Given 

the bi-linear representation of � (�)
v,v�

 , this is achieved when the 
vth node specific latent effects at all layers are not informative 
about the outcome, which leads to �v = (�(1)T

v
, ..., �(L)T

v
)T = 0 . 

In order to infer on the influential nodes, a spike-and-slab 

mixture distribution prior (Ishwaran & Rao, 2005) is assigned 
on �v . More specifically, we set

where Δ(0) is the Dirac-delta function at 0 and K is a 
LH × LH covariance matrix. The parameter � corresponds 
to the probability of the nonzero mixture component and �v 
is a binary indicator set to 0 if �v = 0 . Thus, the posterior 
distributions of �v ’s enable identification of nodes related to 
the outcome. To account for multiplicity in multiple variable 
selection, we assign � ∼ Beta(a, b) , following the popular 
literature (Scott & Berger, 2010). The covariance matrix 
is assigned K ∼ IW(�, ILH) where IW(�, ILH) denotes an 
Inverse-Wishart distribution with a LH × LH identity matrix 
ILH and degrees of freedom �.

To learn which components of �(�)
v

 are informative, we 
assign a hierarchical prior on �(�)

h
 given by,

The hyper-parameters of the Dirichlet distribution are cho-
sen to introduce increasing shrinkage on �(�)

h
 as h grows to 

prevent overfitting due to choice of a large H. Specifically, 
Ĥ(𝛼) =

∑H

h=1
�𝜃(𝛼)

h
� estimate the dimensions of �(�)

v
 needed for 

effective modeling, also referred to as the effective dimen-
sion for �(�)

v
 . The prior specification is completed by setting 

�x ∼ N(0, Ip) and setting a non-informative prior on �.

Posterior Inference

Let w(�) and �(�) denote the upper triangular vectors 
of dimension V(V − 1)∕2 × 1 extracted from W(�) and 
�
(�) , respectively. Considering that both w(�) and �(�) 

are symmetric matrices with zero diagonal entries, the 
Frobenius inner product between W(�) and �(�) can be 
simplified as ⟨W(�)��(�)⟩ = 2w(�)T�(�) . This simplifica-
tion enables us to establish a connection between the 
modeling framework with a multiplex graph predictor 
in (1) and a binary regression framework, as represented 
by the following equation,

This article concentrates on employing the logit link func-
tion for G(⋅) to implement Markov chain Monte Carlo 
(MCMC) sampler for posterior inference on parameters. 

(2)�v
iid
∼ �vN(0,K) + (1 − �v)Δ(0), �v ∼ Ber(�),

𝜃(𝛼)
h

= Δ(1)𝜋(𝛼)
h,1

+ Δ(0)𝜋(𝛼)
h,2

+ Δ(−1)𝜋(𝛼)
h,3
,

𝛼 = 1, ..., L, h = 1, ...,H,

(𝜋(𝛼)
h,1
,𝜋(𝛼)

h,2
,𝜋(𝛼)

h,3
) ∼ Dir(1, h𝜁 , 1), 𝜁 > 1.

(3)

P
(
y = 1|{w(�)}L�=1, x

)
= G−1

(
� + xT�x +

L∑
�=1

w(�)T�(�)

)
.
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We utilize the result discussed in Theorem 1 of Polson et al. 
(2013) to obtain

where p(�) is the density of PG(1,0) distribution. With the 
outcome, ordinary vector predictor and multiplex graph pre-
dictor obtained for n subjects, {{yi, xi,Wi} ∶ i = 1, ..., n} , we 
use (4) and the data augmentation approach outlined in Pol-
son et al. (2013) for effective posterior computation. For 
subjects i = 1, ..., n , we introduce latent variables �1, ...,�n 
in the likelihood. More precisely, the augmented likelihood 
function comes in the following form,

While the original conditional posterior distributions for the 
parameters are not available in closed forms, the augmented 
full conditional distributions belong to standard families. 
Appendix provides details of the full conditional distribu-
tions of the parameters.

Let �v,1, ..., �v,S be the S post burn-in MCMC samples 
corresponding to �v . The posterior probability of node N(v) 
being significantly associated with the outcome can be 
empirically estimated as ̂P(�v = 1�y) = 1

S

∑S

s=1
�v,s . In what 

follows, we cluster logit-transformed posterior probabilities 
into three groups using a Bayesian mixture model (Fraley 

(4)

p(y�x, {w(�)}L�=1)

=
exp

�
y(� + xT�x +

∑L

�=1 w
(�)T�(�))

�

1 + exp
�
� + xT�x +

∑L

�=1 w
(�)T�(�)

�

= exp

�
(y − 0.5)

�
� + xT�x +

L�
�=1

w(�)T�(�)

��

× ∫ exp

⎛⎜⎜⎝
−
�

2

�
� + xT�x +

L�
�=1

w(�)T�(�)

�2⎞⎟⎟⎠
p(�)d�,

p(y � �x,�
(1),⋯ ,�(L),�)

∝

n�
i=1

p(yi � �x,�
(1),⋯ ,�(L),�i)

∝

n�
i=1

exp

�
(yi − 0.5)

�
� + xT

i
�x +

L�
�=1

w
(�)T
i

�(�)

�

−
�i

2

�
� + xT

i
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et al., 2012). The nodes in the cluster with the highest and 
lowest cluster means are considered as influential and unin-
fluential with respect to the outcome, respectively. We clas-
sify these nodes as “activated” and “inactivated” nodes, 
respectively. The analysis is less conclusive about the nodes 
in the third cluster, which are referred to as “inconclusive." 
These estimated probabilities also provide insight into the 
uncertainty surrounding node inference, implying that nodes 
with posterior probabilities of being influential close to 0 
or 1 are associated with less uncertainty in inference. Esti-
mating uncertainty is vital in neuroscientific settings, par-
ticularly in presence of moderate sample sizes (n) and low 
signal-to-noise ratios. Moreover, the proposed framework 
is utilized for the classification of an unobserved binary 
outcome.

Let �(�)
1
, ...,�

(�)
S

 , �x,1, ..., �x,S and �1, ...,�S be the S post 
burn-in MCMC samples for �(�) , �x and � , respectively, 
obtained after suitable burn-in and thinning. To classify an 
unobserved outcome y∗ ∈ {0, 1} associated with a newly 
observed L-layer multiplex graph predictor W∗ , and with 
predictor x∗ ∈ ℝ

p , we compute the estimated classification 
probability given a post burn-in iterate {�s, �x,s,�

(1)
s
, ...,�(L)

s
} , 

denoted by ̂
P(y∗ = 1|�s, �x,s,�

(�)
s
,W∗, x∗) ,  from (1) 

using G(⋅) as the logit link function, for s = 1, ..., S . 
The unobserved outcome y∗ is predicted to be 1 or 0 if 
1

S

∑S

s=1
̂

P(y∗ = 1��s, �x,s,�
(�)
s
,W∗, x∗) is greater than or less 

than a selected cut-off tc , respectively. To judge sensitivity to 
the choice of the cut-off, we compute ROC curves constructed 
with True Positive Rates (TPR) and False Positive Rates (FPR) 
of classification corresponding to a range of cut-off values tc . 
We present area under the ROC curve (AUC) which ranges 
between 0.5 to 1. A value of 0.5 signifies random classifica-
tion, while 1 signifies perfect classification. A higher AUC 
denotes superior classification performance by a method.

Results

In this section, we apply the proposed Bayesian Multiplex 
Graph Classifier (BMGC) method to perform inference on 
nodes and classification on multiplex graphs using both 
simulated data and real biomedical imaging data (brain 
fMRI study).

Simulation Study

First, we investigate the performance of the BMGC tech-
nique through simulation and compare it against other 
classification methods. Our evaluation involves examin-
ing BMGC’s capability to identify influential nodes and 
then comparing its performance in coefficient estimation 
and predictive inference with competing models. These 
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competitors encompass penalized optimization, Bayesian 
shrinkage methods, Bayesian tensor regression and deep 
neural networks. In each simulation scenario, the number 
of layers (L) is fixed at 2, mirroring the number of layers in 
the neuroimaging dataset under evaluation.

Simulated Data Generation

For the ith sample, i = 1, ..., n , we generate a multiplex graph 
Wi by simulating symmetric adjacency matrices W(1)

i
, ...,W

(L)

i
 

for L layers. The upper triangular vector w(�)
i

 of W(�)
i

 is inde-
pendently drawn from the normal distribution N(0, I) , and 
all diagonal entries of W(�)

i
 are set to 0. Let the true inter-

cept and the true multiplex graph coefficient be given by �0 
and �0 , respectively. The response yi for the ith sample is 
generated according to model (1) with G(⋅) as the logit link 
function. No predictor xi is included in these simulations. In 
all scenarios, we set �0 = 0.5 . We use n = 400 samples for 
model fitting and reserve n∗ = 50 samples for prediction.

Let �0 be the probability of a node being influential 
w.r.t. the outcome. We refer to (1 − �0) as the node sparsity. 
For the purpose of generating the true activation pattern 
of nodes in relation to the outcome, we simulate node-
specific activation indicators �1,0, ..., �V ,0

i.i.d.
∼ Ber(�0) . To 

simulate the � th layer of the multiplex graph coefficient 
�
(�)
0

 , we first simulate the LH0-dimensional latent effects 
corresponding to each of the V nodes, �v,0 = (�

(1)

v,0
, ..., �

(L)

v,0
)T , 

from �v,0
ind.
∼ �v,0N(0, ILH0

) + (1 − �v,0)Δ(0) , for v = 1, ...,V . 
Using these latent effects for nodes, the true coefficients 
corresponding to the (v, v�) th edge at the � th layer is con-
structed using the low-rank formulation � (�)

v,v�,0
= �

(�)T
v,0

�
(�)
v�,0

 , 
for v < v′ . We set � (�)

v,v�,0
= � (�)

v�,v,0
 and � (�)

v,v,0
= 0 to satisfy the 

symmetry and zero diagonals the graph coefficient at each 
layer, respectively. In using this setup, we assume that both 
the fitted and true graph coefficients have a low-rank struc-
ture. This assumption allows us to evaluate how well the 
proposed method captures and represents the underlying 
relationships between the graph nodes and the outcome 
variable. With this setup, we simulate data with V = 20 , 
at five different different levels of node sparsity, setting 
�0 = 0.2, 0.3, 0.4, 0.5, 0.6 , respectively.

Competing Methods and Performance Metrics

We compare the performance of the proposed BMGC model 
vis-a-vis two sets of competitors. The first set of competitors 
treats the edges between nodes in the multiplex graph predic-
tor as a “long vector of predictors” and perform binary 
regression of  the outcome yi  on the vector (
w
(�)T
i

∶ � = 1, ..., L
)T

 of dimension LV(V − 1)∕2 . This 
approach overlooks the relational nature of the multiplex 

graph predictor, potentially limiting the ability of such mod-
els to capture the effect of intricate interconnections between 
nodes on the outcome. To this end, we employ the horseshoe 
prior (Carvalho et al., 2010) and the Bayesian Lasso (Park & 
Casella, 2008) on the regression coefficients due to their 
state-of-the-art empirical performance in regressions with a 
high-dimensional predictor vector. We refer to these competi-
tors as BHS and BLasso, respectively, and implement them 
using our own codes. As a frequentist high-dimensional binary 
regression competitor, we adopt a penalized optimization 
framework with the Lasso penalty on the predictor coeffi-
cients (Tibshirani, 1996). The Lasso is implemented using 
the glmnet (Friedman et al., 2010) package in R, with the 
penalty parameter chosen through ten-fold cross-validation. 
Finally, we also implement a two-layer neural net (NN) as a 
competitor. NN models are fit using the tensorflow 
(Allaire & Chollet, 2023) and keras (Allaire & Tang, 2023) 
packages in R. The inputs to the NN models are composed 
of the upper-triangular entries of each graph layer, which are 
concatenated to create an input vector of dimension 
LV(V − 1)∕2 . The models are fit with two hidden layers, each 
having the Rectified Linear Unit (ReLU) activation function 
(Nair & Hinton, 2010). The first of these two hidden layers 
includes L1 and L2 regularization to perform shrinkage on the 
coefficients from the input layer. The output layer of each 
model uses the sigmoid activation function (Narayan, 1997). 
The L1 and L2 regularization parameters and learning rate for 
the models are tuned through five-fold cross validation. For 
training each NN, 90 percent of the training samples are used 
to fit the model, while 10 percent are used for validation. The 
batch size is equal to half of the number of samples used to 
fit the model. The second set of competitors treats every layer 
of the multiplex graph as a V × V  tensor and uses a binary 
tensor regression approach with L tensor predictors and a 
binary response. We employ the framework in Guhaniyogi 
et al. (2017) to estimate the tensor coefficients. Unlike the 
first set of competitors, this approach envisions the matrix 
structure of each graph layer. However, it does not take into 
account the symmetry of each undirected graph layer. We 
refer to this approach as TensorReg.

To infer on the performance of BMGC in terms of iden-
tifying nodes significantly associated with the outcome, we 
present the estimated posterior probability of a node being 
influential across the layers, i.e., ̂P(�v = 1|Data) . The per-
formance of the competitors in estimating multiplex graph 
coefficient � is evaluated using the scaled mean squared 
error (MSE). The MSE is defined as ||�̂−�0||2

||�0||2  , where �̂ rep-

resents a suitable point estimate of � . For instance, we use 
the frequentist point estimate for Lasso, while BMGC, BHS, 
TensorReg and BLasso employ the posterior mean of � . To 
assess predictive power of the competitors, we use the held-
out test samples to compute the AUC of the predicted 
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probabilities, ̂P(y∗ = 1|W∗) , of each model compared against 
the ground truth labels, y∗,1, ...y∗,n∗ . For the Lasso, this quan-
tity corresponds to the point estimate from the fitted model, 
while for the Bayesian competitors, this is computed using 
the mean of the posterior predictive distribution. All com-
parisons presented are averaged over five simulation 
replicates.

Simulation Results

Accuracy of Influential Node Identification  Table 1 displays 
a matrix corresponding to five different simulation settings 
under different true node sparsity (1 − �0) levels for V = 20 . 
In each matrix, the colored and white cells in the lth column 
represent the truly influential and truly uninfluential nodes 
for the lth simulation scenario, respectively, for l = 1, .., 5 . 
Overlaid on these matrices are the estimated posterior prob-
abilities ̂P(�v = 1|Data) for v = 1,⋯ , 20.

Table 1 shows remarkably accurate identification of truly 
influential nodes, with the estimated posterior probabilities 
of all influential nodes in most simulations being above 0.5 
in all five simulation scenarios. With high-node sparsity 
( �0 = 0.2 ), the estimated posterior probabilities tend to be 
very close to 1 or 0, correctly classifying nodes as influential 
or not, with very minimal uncertainty. However, as sparsity 
decreases, the uncertainty in node identification deteriorates. 
In fact, when �0 = 0.6 , the estimated posterior probabilities 
of a few influential nodes becomes close to 0.5 and a few 
un-influential nodes becomes close to 0.25, displaying more 
uncertainty in node identification.

It is crucial to underscore that one of BMGC’s key 
strengths in inference lies in its capability to identify sig-
nificant nodes in multiplex graphs, considering the inter-
actions across layers while quantifying uncertainty. This 
feature directly aligns with the inferential goals of our 
scientific study, which revolves around identification of 
brain regions of interest associated with accelerated aging. 
In contrast, prevalent frequentist or Bayesian high-dimen-
sional regression techniques, tensor regression approach or 
neural networks lack the capability for node identification 
with uncertainty in the current context. For the assessment 
of point estimation in multiplex graph coefficients, Table 2 
showcases the scaled Mean Squared Error (MSE) for each 
of the competitors across the five simulation scenarios. In all 
instances, the results consistently highlight the superior per-
formance of BMGC. The performance gap between BMGC 

Table 1   Node selection results across five simulation scenarios, each 
depicted in a separate column, with varying probabilities of node 
inclusion ( �

0
 ). Every column displays the posterior probability of 

the V = 20 nodes in the simulation setup being active, corresponding 

with various levels of node-sparsity in the truth. White and colored 
cells denote uninfluential and influential nodes, respectively. BMGC 
excels in identifying nodes, as indicated by high probabilities in 
colored cells and low probabilities in white cells

Table 2   Scaled mean squared error (MSE) of estimating multiplex 
graph coefficients for all competitors under all five simulation sce-
narios. Deep neural network (NN) only offers predictive inference, 
hence the results from NN are not shown in the table. The result cor-
responding to the best performer under all simulation scenarios is 
boldfaced

Method �
0
= 0.2 �

0
= 0.3 �

0
= 0.4 �

0
= 0.5 �

0
= 0.6

BMGC 0.9207 0.9693 0.9859 0.9910 0.9946
Lasso 1.2514 1.0781 1.0306 1.0150 1.0082
BHS 2.6233 1.6423 1.5982 1.8199 1.8967
BLasso 1.5864 1.2707 2.5810 1.5385 1.3124
TensorReg 45.4238 10.9493 11.4556 7.3167 4.4012
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and its competitors is substantial with high-node density 
(e.g., smaller values of �0 ). As node sparsity decreases, the 
performance of BMGC deteriorates and it becomes close to 
Lasso when �0 = 0.6.

To assess the out-of-sample predictive performance of the 
different models, Fig. 1 displays the area under the receiver 
operating characteristic curves (AUCs) obtained using vari-
ous classification thresholds tc (as discussed in “Posterior 

Fig. 1   Comparison of the performance of the BMGC method (blue) against alternative classification techniques (different color lines) using the 
area under the ROC curve (AUC) across different levels of the sparsity parameter �

0

Fig. 2   Comparison of the performance of the BMGC method (blue) against alternative classification techniques (different color lines) using the 
F1-Score across different levels of the sparsity parameter �

0
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Inference” section). We also show the F1-scores for all the 
competitors in Fig. 2 using tc = 0.5 as the cut-off. Both 
figures draw similar conclusions regarding comparative 
performance of the competitors. With high-node sparsity 
(small values of �0 ), the graph structure is weak, causing 
all competitors to essentially exhibit behavior similar to 
that of penalized regression. Thus, with high-node sparsity, 
all competitors show similar out-of-sample classification 
performance. As sparsity decreases, classification perfor-
mance of all competitors deteriorates, but BMGC consist-
ently maintains an advantage over the others. This indicates 
that leveraging the multiplex graph structure of the predictor 
in BMGC can improve classification accuracy. Among the 
methods that disregard the graph structure associated with 
the predictor, NN exhibits inferior performance.

Functional Magnetic Resonance Imaging  
(fMRI) Study

Next, we will apply the BMGC technique to the functional 
magnetic resonance imaging (fMRI) brain dataset. Figure 3 
shows a heatmap of the initial correlations between the ROI 
nodes in the left (columns) and right (rows) hemispheres.

Figure 4 illustrates a partial brain connectogram indicating 
specific associations between some of the left hemisphere 
brain areas. Clearly some brain regions are highly connected, 
whereas other are more isolated. For simplicity, we only 

show a fragment of connectogram reflecting the following 
10 left hemisphere (LH) central and peripheral (striatal and 
extrastriatal) visual cortex brain regions, see Table 3.

Figure 5 shows a scatter plot of the derived tripartite 
class labels, (“inactivated”, “inconclusive”, or “activated”) 
computed by our algorithm. The glyph colors and shapes of 
scatter points represent the respective probabilities of the 
left (x-axis) and right (y-axis) regions of interest (i.e., nodes 
in the brain graph network). The point 2D Cartesian coor-
dinates represent the corresponding probabilities that the 
left (x-axis) and right (y-axis) brain hemispherical regions 
are in one of the three derived class labels. Points along 
near line bisecting the plane first-quadrant correspond to 
ROIs with identical derived class labels for the left and right 
region. Hence, these ROIs correspond to brain symmetries, 
i.e., bilaterally synchronously associations with memory 
decline (according to the MMSE outcome binary label). 
Conversely, scatter points off the main diagonal correspond 
to brain asymmetries; left and right brain regions whose 
derived labels are inconsistent.

Some of these brain asymmetries have been previously 
reported in normal aging, mild cognitive impairment, 
and dementia (Lubben et al. 2021; Mandal et al. 2012; 
Thompson et al. 1998). For instance, we observed brain 
symmetries involving networks with left and right soma-
tosensory motor area (ROI: SomMotA.3), where both 
left and right probabilities are high. This indicates that in 
aging, sensory motor brain function obeys certain lateral 

Fig. 3   Heatmap of the correlations between the ROI nodes in the left and right hemispheres
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symmetries. On the other hand, in the default mode net-
work (ROI: DefaultC.Rsp.1) the difference in the derived 
class labels for the left (inactivated) and right (activated) 
suggest significant brain asymmetries associated with 
pathological aging.

In this fMRI study, to evaluate the BMGC classification 
performance against alternative methods, we computed the 
probability of the outcome being 1 (normal aging) for each 
sample (inputs are the individual correlation matrices of 
participants’ brain networks). This allowed us to construct 

ROC curves based on pairs of True Positive Rate (TPR) and 
False Positive Rate (FPR) values, obtained by varying the 
threshold of these estimated probabilities. The AUC esti-
mated for each competitor corresponds to the area under 
their respective ROC curve. We also compute F1-scores for 
all the competitors considering 0.5 as the threshold prob-
ability. Table 4 presents a comparison of the classification 
performance between the new BMGC technique and various 
alternatives (described in “Competing Methods and Perfor-
mance Metrics” section).

Fig. 4   Connectogram showing partial correlations between several different brain regions in the left hemisphere
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BMGC demonstrates superior performance compared to 
all other competitors, likely because it leverages the mul-
tiplex graph architecture within the modeling framework. 
Although Neural Networks (NN) enable capturing complex 
non-linear relationships between the outcome and the multi-
plex graph, Bayesian Horseshoe (BHS) and Bayesian Lasso 
(BLasso) exhibit slightly improved performance over NN, 
indicating the presence of sparsity in the data structure. Ten-
sorReg also performs close to BLasso and BHS, perhaps for 
not exploiting the symmetry in the graph layers. While the 

AUC values show BMGC offering more than 10% improve-
ment in performance, the F1-scores suggest slight outper-
formance of BMGC over Lasso, BHS and Blasso. Digging a 
bit deeper, we identify that the probabilities for an outcome 
being “1" or “0" lie closely around 0.5 for Lasso, BHS and 
Blasso. However, these probabilities are more separated 
from 0.5 for BMGC. Thus the probability of an outcome 
being 1 is much higher than 0.5, or the probability of an 
outcome being 0 is much lower than 0.5 for BMGC in the 
case of a correctly classified outcome. This explains the 

Table 3   The 10 left-hemisphere 
(LH) central and (striatal and 
extrastriatal) peripheral visual 
cortex brain regions in Fig. 4

Region Acronym Region Name

LH.VisCent.ExStr.1.VisCent Left-Hemisphere Extrastriatal Central Visual Cortex Region 1
LH.VisCent.ExStr.2.VisCent Left-Hemisphere Extrastriatal Central Visual Cortex Region 2
LH.VisCent.Striate.1.VisCent Left-Hemisphere Striatal Central Visual Cortex Region 1
LH.VisCent.ExStr.3.VisCent Left-Hemisphere Extrastriatal Central Visual Cortex Region 3
LH.VisCent.ExStr.4.VisCent Left-Hemisphere Extrastriatal Central Visual Cortex Region 4
LH.VisCent.ExStr.5.VisCent Left-Hemisphere Extrastriatal Central Visual Cortex Region 5
LH.VisPeri.ExStrInf.1.VisPeri Left-Hemisphere Extrastriatal Inferior Peripheral Visual Cortex Region 1
LH.VisPeri.ExStrInf.2.VisPeri Left-Hemisphere Extrastriatal Inferior Peripheral Visual Cortex Region 2
LH.VisPeri.ExStrInf.3.VisPeri Left-Hemisphere Extrastriatal Inferior Peripheral Visual Cortex Region 3
LH.VisPeri.StriCal.1.VisPeri Left-Hemisphere Striatal Caudal Peripheral Visual Cortex Region 1

Fig. 5   Bivariate plot of the derived tripartite class labels computed 
by the multilayer network method. The glyph colors and shapes of 
each scatter point represent the regions of interest (nodes in the brain 
graph network). The point locations represent the corresponding 

probabilities that the left (x-axis) and right (y-axis) brain hemispheri-
cal regions are in one of the three derived class labels (“inactivated”, 
“inconclusive”, or “activated”)
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competitors’ lower AUC values, but competitive F1-scores. 
It is worth mentioning that none of the competitors have the 
capability for node selection, a feature exclusive to BMGC.

Conclusion and Future Work

This article introduces an innovative Bayesian framework 
designed to address a classification problem characterized 
by a binary outcome and a multiplex graph predictor, with 
each layer representing an undirected graph. We model an 
edge coefficient in a specific layer using a bilinear interac-
tion of latent effects corresponding to nodes connected by 
that particular edge. A group variable selection framework 
is employed on node-specific latent effects for all layers to 
identify nodes influential in the classification of the binary 
outcome. A Bayesian framework is adopted to allow uncer-
tainty quantification in inference and prediction, especially 
in the identification of influential nodes. Our empirical 
results, derived from simulation studies, establish the supe-
riority of our method in scenarios where the regression coef-
ficients indeed exhibit a multiplex graph structure.

Our functional magnetic resonance imaging (fMRI) study 
suggests that the proposed BMGC technique may be useful 
to identify brain-network asymmetries involving left and 
right cortical regions according to their BMGC posterior 
predictive class probabilities. For each brain area, these like-
lihoods yield explicit derived class labels of association with 
any (binary, categorical, or continuous) clinical outcome of 
interest, which can be used to identify, confirm, or explore 
various pathological states.

Our framework stands at the forefront of developing a 
regression model with a binary outcome and a multiplex 
graph predictor. It is noteworthy that our framework assumes 
a bi-linear effect of graph edges on the binary outcome. 
While bi-linear edge effects have been demonstrated to effec-
tively capture intricate graph properties (Hoff et al., 2002), 
an approach that captures complex non-linear associations 
between edges of the multiplex graph and the outcome could 
potentially yield deeper scientific insights into the impact of 
aging on functional connectivity. To address this, we will 
incorporate a broader class of semi-parametric models to 
capture such complex non-linear associations in our future 
work. Our contribution will involve advancing the semi-par-
ametric regression framework by introducing multiplex graph 

predictors. This builds upon existing literature (e.g., see Zhou 
et al., 2024), where a single graph predictor is employed.

Future studies may also take a further step in examining 
the posterior probability distributions, specifically for brain 
asymmetry related to differences between the left and right 
hemispheres. Since the brain networks are the inputs, not 
the outputs of the BMGS model for classifying ROIs as 
inactive, borderline, or actively participating in the binary 
classification (output) of participants into normal and accel-
erated aging. This can facilitate drawing inference about 
connectivity pattern different cohorts does not appear feasi-
ble. For instance, it may be interesting to explore bilaterally 
the ROIs and brain networks (Schaefer-17) that are most 
probabilistically distinct between the two cohorts of normal 
(MMSE = 30) and aging (MMSE ≤ 30).

Information Sharing Statement

The complete fMRI dataset and the regional brain correla-
tion functional connectivity networks reflecting cognitive 
control throughout the adult lifespan are available online 
(https://​osf.​io/​5zyws/) Rieck et al. (2021a). As firm sup-
porters of open, reproducible and trustworthy scientific 
discovery, we have provided data, software tools, proto-
cols, interactive charts, and supplementary materials on 
these websites: https://​socr.​umich.​edu/​docs/​uploa​ds/​2024/​
fMRI_​Corr_​Pilot.​html and https://​github.​com/​jerod​a7105/ 
​Class​ifica​tion-​with-​Multi-​Layer-​Graphs.

Appendix

Below we present the full conditional posterior distributions 
for all parameters within the generalized linear model 
detailed in “Model and Prior Formulation” section.  These 
distributions are utilized for implementing a Markov Chain 
Monte Carlo (MCMC) algorithm via Gibbs sampling. The 
samples derived from the MCMC algorithm yield samples 
from the complete posterior distributions for the model 
parameters jointly, facilitating posterior inference as elabo-
rated in “Posterior Inference” section. Let �i = (yi − 0.5)∕�i , 
and � = diag

(
1

�1

, ...,
1

�n

)
 . Assuming X to be an n × p matrix 

with its ith row as xi , and A(�) to be an n × V(V − 1)∕2 

Table 4   The predictive performance, as measured by the AUC and F1-score, of BMGC and its competitors on the fMRI data. The best per-
former is highlighted in bold

Model BMGC Lasso BHS BLasso NN TensorReg

AUC​ 0.6623 0.5315 0.6035 0.5993 0.5708 0.5833
F1-Score 0.8382 0.7881 0.8033 0.8030 0.6968 0.7084

https://osf.io/5zyws/
https://socr.umich.edu/docs/uploads/2024/fMRI_Corr_Pilot.html
https://socr.umich.edu/docs/uploads/2024/fMRI_Corr_Pilot.html
https://github.com/jeroda7105/Classification-with-Multi-Layer-Graphs
https://github.com/jeroda7105/Classification-with-Multi-Layer-Graphs
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dimensional matrix with its ith row given by w(�)
i

 . Conse-
quently, the full conditional distributions for the model 
parameters are expressed as:

•	 ��− ∼ N
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