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Abstract

This article seeks to investigate the impact of aging on functional connectivity across different cognitive control sce-
narios, particularly emphasizing the identification of brain regions significantly associated with early aging. By con-
ceptualizing functional connectivity within each cognitive control scenario as a graph, with brain regions as nodes,
the statistical challenge revolves around devising a regression framework to predict a binary scalar outcome (aging or
normal) using multiple graph predictors. Popular regression methods utilizing multiplex graph predictors often face
limitations in effectively harnessing information within and across graph layers, leading to potentially less accurate infer-
ence and predictive accuracy, especially for smaller sample sizes. To address this challenge, we propose the Bayesian
Multiplex Graph Classifier (BMGC). Accounting for multiplex graph topology, our method models edge coefficients at
each graph layer using bilinear interactions between the latent effects associated with the two nodes connected by the
edge. This approach also employs a variable selection framework on node-specific latent effects from all graph layers to
identify influential nodes linked to observed outcomes. Crucially, the proposed framework is computationally efficient
and quantifies the uncertainty in node identification, coefficient estimation, and binary outcome prediction. BMGC
outperforms alternative methods in terms of the aforementioned metrics in simulation studies. An additional BMGC
validation was completed using an fMRI study of brain networks in adults. The proposed BMGC technique identified
that sensory motor brain network obeys certain lateral symmetries, whereas the default mode network exhibits significant
brain asymmetries associated with early aging.

Keywords Aging - Bayesian statistics - Functional brain connectivity - Multiplex graph classification - Variable selection

Introduction

In recent years, the study of cognitive control among aging
adults has gained significance as a prominent and essential
research focus. With the ongoing aging of the population,
there is a growing need to comprehend the nuances of cog-
nitive functions in older individuals. This understanding
is crucial not just because of the healthcare costs involved
but also due to the significant economic and social conse-
quences linked with an aging populace. The field of cogni-
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tive neuroscience stands to acquire valuable insights into
the aging brain by examining functional connectivity in the
human brain during cognitive control tasks. This paper uti-
lizes brain imaging data, representing functional connec-
tivity graphs derived from functional magnetic resonance
imaging (fMRI) (Dinov, 2023; Richiardi et al., 2011), to
investigate the interplay between cognitive decline and brain
regions. The fMRI study focused on two distinct cognitive
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task conditions: inhibition and initiation (Rieck et al., 2021a).
Inhibition is broadly conceptualized as the ability to sup-
press or countermand a thought, action, or feeling. Initia-
tion, on the other hand, refers to engaging in purposeful
goal-directed activities. For each participant, there are two
graphs with nodes as brain regions of interest (ROIs), each
corresponding to one of these task conditions. This dual per-
spective enables us to uncover how aging affects functional
connectivity across various cognitive control scenarios,
shedding light on the nuanced differences in brain network
interactions between inhibition and initiation tasks in aging
adults. Using the Schaefer 200 network of fMRI connectivity
(Yang et al., 2023) for two task conditions (Z-transformed
correlation matrices input), we examined the left and right
hemisphere network differences in the brains of normal and
aging adults, as quantified by the Mini-Mental State Exami-
nation score (outcome).

From a statistical standpoint, the main challenge lies in
devising a regression framework that incorporates a binary
outcome alongside a two-layer multiplex graph as the pre-
dictor. Our primary objective is to achieve classification of
the binary outcome, identify the graph nodes significantly
associated with the outcome, and estimate the regression
impact of each layer of the multiplex graph on the outcome.
The modeling framework proposed in this article enables
us to tackle these challenges simultaneously. Although
literature on generalized linear models involving a multi-
plex graph predictor is limited, some previous studies have
addressed unsupervised modeling of multiplex graphs. How-
ever, these existing approaches do not adequately meet all
our inferential objectives, as outlined below.

In regression involving a single-layer graph predictor,
commonly used methods often entail transforming the
graph into a high-dimensional set of edge weights (Craddock
et al., 2009; Richiardi et al., 2011). Subsequent inference is
drawn utilizing developments in generic high-dimensional
regression architectures (Carvalho et al., 2010; Park &
Casella, 2008; Tibshirani, 1996), or neural network (NN)
models (Dinh & Ho, 2020; Dinov & Velev, 2021; Polson &
Rockova, 2018). While these approaches can be extended
to handle multiplex graphs straightforwardly, restructuring
the multiplex graph using these methods might inadequately
capture the effects of intricate interconnections among nodes
within different layers on the outcome. This potential limita-
tion could compromise the precision and interpretability of
the regression model.

Recent advancements in the realm of object regres-
sions, featuring a scalar outcome and a single-layer graph
predictor, have demonstrated promising capabilities in
leveraging the graph’s structural information. Specifi-
cally, Guha and Rodriguez (2021, 2023) have introduced
innovative Bayesian shrinkage priors designed to estimate
the effects of nodes and edges within the graph on the
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scalar outcome. By exploiting the topology of the graph
predictor, these proposed methods exhibit accurate out-
come prediction, robust parameter inference, and precise
uncertainty estimates, especially in identifying influential
graph nodes and edges. Moreover, Guha and Guhaniyogi
(2021) have introduced a Bayesian generalized linear mod-
eling framework tailored for brain connectome data, incor-
porating low-rankness and group sparsity to identify sig-
nificant associations between a symmetric tensor response
and scalar predictors. Additionally, Guha and Guhaniyogi
(2024) have formulated a nonparametric Bayesian mix-
ture modeling framework for clustering subjects based
on their individual networks and covariates, accounting
for differences in relationships across subject groups and
identifying network nodes associated with each covariate
within each cluster. More recently, there has been a grow-
ing body of work on interpretable graph neural network
approaches that provide theoretically guaranteed predic-
tions for scalar outcomes based on graph inputs. These
approaches differ from earlier literature on graph neural
networks (GNN) (Liu & Zhou, 2022; Zhou et al., 2020) in
their ability to offer statistical interpretability for the con-
structed GNN (Zhou et al., 2023). Despite their successes,
these approaches are tailored for single-layer graph predic-
tors. Extending them to handle interactions between nodes
within different layers for a multiplex graph predictor to
offer inference on influential nodes presents nontrivial
modeling challenges.

An alternative strategy involves the aggregation of
graphs from different layers to form a tensor, which is then
employed to construct a regression framework with a scalar
outcome and the tensor predictor. This approach can lever-
age recent advancements in tensor regression, encompass-
ing penalized optimization (Fan et al., 2019; Zhou et al.,
2013), low-rank methods (Ahmed et al., 2020; He et al.,
2018), and the Bayesian multiway shrinkage literature
(Guhaniyogi et al., 2017; Spencer et al., 2022). However,
these approaches do not explicitly account for the symme-
try constraint in individual layers of the multiplex graph.
Moreover, their primary emphasis is on prediction and iden-
tifying significant edges or interconnections, rather than
specifically identifying crucial nodes in each layer that
influence the outcome.

Within the current body of literature, multiplex graphs
are often regarded as random variables rather than being uti-
lized as predictors in a regression framework. In this litera-
ture, researchers predominantly concentrate on establishing
appropriate relationships among edges and various types of
connections defining the multiple layers (Gollini & Murphy,
2016; Han et al., 2015; Heaney, 2014). These advancements
have expanded the use of exponential random graph models
(Frank & Strauss, 1986; Holland & Leinhardt, 1981) and
latent variable models (Airoldi et al., 2008; Hoff et al., 2002;
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Nowicki & Snijders, 2001), initially designed for a single
graph, to facilitate inference in multiplex graphs. Further-
more, these frameworks have been extended to handle time-
varying or dynamic multiplex graphs. In such scenarios,
stochastic processes are employed to leverage information
across edges and over time, as noted in previous research
(Durante et al., 2017; Hoff, 2015; Snijders et al., 2013).
Additionally, these frameworks have also been adapted
to accommodate multiplex graphs with covariates associ-
ated with the graph nodes, as demonstrated in prior studies
(Contisciani et al., 2020; Xu et al., 2023; Zhang et al., 2022).
Nevertheless, these methods for multiplex graphs are fun-
damentally unsupervised and do not align with our specific
inferential goals.

There is a burgeoning area of research in graph repre-
sentation learning which focuses on efficiently encoding
high-dimensional sparse graph-structured data into low-
dimensional dense vectors. This task has been extensively
investigated across various fields, including machine learn-
ing and data mining (Chen et al., 2020; Chen et al., 2021;
Heidari & losifidis, 2021; Li et al., 2023; Ngoc et al.,
2020; Wang et al., 2019; Zhao et al., 2022). Although much
of this literature is oriented towards unsupervised learning,
there is potential to adapt these methods to our context. In
such a scenario, the low-dimensional features extracted from
a multiplex graph can be regressed on a binary outcome,
potentially leading to effective classification of the binary
outcome. infer on the influential graph nodes that are signifi-
cantly associated with the binary outcome, while providing
uncertainty estimates.

This article presents Bayesian Multiplex Graph Classi-
fier (BMGC), which is a novel generalized linear modeling
framework tailored for a binary outcome and a multiplex
graph predictor. Within our framework, an edge coefficient
within each layer is expressed as a function of latent effects
associated with the nodes linked by that specific edge. Spe-
cifically, these edge coefficients are modeled as a bilinear
interaction between node-specific latent effects, resulting
in a low-rank structure for the coefficients corresponding
to the multiplex graph at each layer. This low-rank structure
achieves parsimony, particularly beneficial when dealing
with multiplex graphs defined on a large number of nodes.
To facilitate the identification of network nodes significantly
associated with the outcome, we propose a variable selection
framework that operates jointly on latent effects across all
layers corresponding to a particular node. This structured
approach not only ensures simplicity but also enables precise
classification of the binary outcome, facilitates inference
on network nodes and edges relevant to the outcome, and
provides well-calibrated uncertainties for both inference
and classification. We choose the Bayesian framework for
inference due to its natural ability to provide uncertainty in
inference, especially in identifying influential nodes. This is

particularly essential when dealing with a moderate sample
size, with the number of graph edges exceeding the sample
size by a significant margin. While our research originates
from a neuro-scientific study, its versatility extends beyond
this domain, making it broadly applicable in various sce-
narios involving multiplex graphs, such as genomics data.

The rest of the article proceeds as follows. “Functional
Connectivity Data during Cognitive Control for an Adult
Lifespan Sample” section discusses functional connectivity
data during different tasks on cognitive control. “Model and
Prior Formulation” section provides a detailed description
of the regression framework with a multiplex graph predic-
tor and prior formulation on model coefficients. “Posterior
Inference” section discusses posterior computation. Simula-
tion studies in “Simulation Study” section and the analysis
of neuroimaging data in “Functional Magnetic Resonance
Imaging (fMRI) Study” section demonstrate superior per-
formance of the proposed approach compared to its competi-
tors. Finally, “Conclusion and Future Work™ section offers
concluding remarks and possible future extensions. Appendix
describes full conditional posterior distributions for all the
model parameters. They are employed to construct Markov
Chain Monte Carlo for model computation.

Functional Connectivity Data
during Cognitive Control for an Adult
Lifespan Sample

In this section, we describe the functional connectivity
data, derived from functional magnetic resonance imaging
(fMRI) of healthy aging adults, recorded under different
cognitive tasks (Rieck et al., 2021b). In this study, 144
individuals (ages 20-86) were recruited from the greater
Toronto area to participate in a study focusing on func-
tional activity during cognitive control. The participants
underwent scanning using a Siemens 3T MRI scanner
as they performed cognitive control tasks designed to
gauge functional activity during inhibition and initiation.
Throughout the scanning process, participants reclined on
the scanner bed with a mirror positioned in front of their
face, reflecting a computer screen displaying the experi-
mental stimuli. Participants used earplugs and wore head-
phones to mitigate scanner noise, and communication with
the experimenter between scans was facilitated through a
microphone. Holding a response box in their right hand,
participants used their index and middle fingers to respond
to stimuli presented on the screen (specific finger responses
were counterbalanced among participants). In all tasks, let-
ters were displayed in the center of the computer screen
using the Courier New font against a dark gray background.
Inhibition and initiation were measured employing a go/
no-go paradigm, wherein participants were exposed to a
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sequence of uppercase letters. Their instruction was to
respond (termed “go”’) when encountering the letter “X”
and refrain from responding (termed “no-go”) for all other
letters. Non-X stimuli (i.e., “no-go” stimuli) were selected
randomly from a pool of 20 other letters: A, B, C, D, E,
F,G,H LJ,L,LM,N,O,P,Q,R,S, T, and U. The task
was divided into an “inhibition” block, characterized by
a higher number of go trials than no-go trials (120 go, 40
no-go), and a shorter “initiation” block, where there were
more no-go trials than go trials (20 go, 60 no-go). The
sequence of these two blocks was randomized among par-
ticipants. Letter stimuli were displayed for a duration of
400 ms, accompanied by an average inter-stimulus inter-
val (marked by a fixation cross) of 1200 ms, with random
jittering ranging between 900 and 1500 ms. The overall
duration of the go/no-go task amounted to 6 min and 24 s.
Blood-oxygen-level dependent (BOLD) fMRI data were
collected with a 12-channel head coil using an echo-planar
imaging sequence with 40 axial slices acquired parallel
to the anterior-posterior commissure. A total of 216 vol-
umes were collected for the go/no-go task. High resolution
anatomical scans used for warping the BOLD images to
MNI space were acquired with a T1-weighted MP-RAGE
sequence in which 160 axial slices were collected. Func-
tional data for each task were preprocessed with a mix of
AFNI functions as well as Octave and MATLAB scripts
using the Optimizing of Preprocessing Pipelines for Neuro-
Imaging software package (OPPNI) (Churchill et al., 2017).
For the current dataset, a fixed pipeline for all participants
was conducted with the following steps: (1) rigid-body
alignment of the timeseries to correct for movement; (2)
removal and interpolation of outlier volumes; (3) correction
for physiological (i.e., cardiac and respiratory) noise; (4)
slice timing correction; (5) spatial smoothing with a 6 mm
smoothing kernel; (6) temporal detrending; (7) regression
of six motion parameter estimates (X, Y, and Z translation
and rotation) on the timeseries; (8) regression of signal in
tissue of no interest (white matter, vessels and cerebro-
spinal fluid) on the time-series; and finally (9) warping
to MNI space and resampling to 4 mm 3 isotropic voxel.
For each participant, there are two correlation matrices
corresponding to the two distinct task conditions: inhibi-
tion and initiation. Assessment of functional connectiv-
ity (quantified with time-series correlations between dif-
ferent brain regions) were computed using the Schaefer
200 parcel 17 network atlas (Schaefer et al., 2018; Yeo
et al., 2011). Functional connectivity was computed for
the fMRI task using the CONN toolbox in MATLAB
(Whitfield-Gabrieli & Nieto-Castanon, 2012). Func-
tional time courses for each task condition were extracted
from the 200 parcel nodes that comprised 17 networks,
resulting in 200 x 200 connectivity matrices. We used the
bilateral 100 brain regions of interest (ROIs) collectively
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representing 200 nodes covering 17 different known brain-
networks. Z-transformed functional connectivity correla-
tion matrices were computed for these Schaefer-100 nodes
to examine the underlying neurobiology of aging.

The Mini-Mental State Examination (MMSE) score
(Mega et al., 1996; Moon et al., 2023) represents the
binary cognitive outcome measure of interest we want
to predict using the our novel Bayesian multiplex graph
modelling framework. In this supervised prediction study,
the outcome variable represents the integer-valued MMSE
measure binarized into normal (0 < MMSE < 29) and
aging (30 = MMSE) cohorts.

Model and Prior Formulation
Bayesian Multiplex Graph Classifier

For each subject, we observe a binary outcome y € {0, 1},
a p-dimensional predictor x, and a L-layer multiplex graph
predictor {ga}ﬁzl. A L-layer multiplex graph is defined as
a sequence of L graphs: {G, }._ = {(N,.&,)}:_,. with the
ath graph consisting of nodes N, and edges £, C N, X N,.
We assume that the node sets are same across different lay-
ers,i.e, N, = N, =N, foranyl < a # ' < V. This com-
mon set of nodes is denoted by N = {/\/(1), ...,N(V)}, where
|N] = V represents the number of nodes. We construct a
V x V adjacency matrix W* € RY*V from the graph predic-
tor at the a-th layer. The entry at position (v, V') of this matrix
signifies the strength of association between nodes A and
Ny v =1, ..., V. For the functional connectivity data,
this entry represents the Z-transformed correlation coeffi-
cient between the functional time series observed at nodes
N and A, under a specific task condition. This article
concentrates specifically on undirected graphs without self-
relationships within each layer, a characteristic considered
scientifically meaningful in the functional connectivity data.
This implies that the adjacency matrix W® is symmetric,
and its diagonal entries are zero. In what follows, we rep-
resent the L-layer multiplex graph by the sequence of adja-
cency matrices W = { W }izl.

For each subject, the proposed high-dimensional gener-
alized linear model representing the relationship between
the binary outcome y and the multiplex graph predictor is
given by,

L
— 1 a a
PGy =11, W) = G 1(# +xp+ 3 2w >>>- M

Here, G(-) represents the link function, with popular choices
being logit, probit, or log-log functions. Here, u is the inter-
cept. The coefficient B, is the p-dimensional vector corre-
sponding to x, I'® is the coefficient matrix of dimension
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V X V corresponding to the a-th layer of the graph adjacency
matrix W, and (W@ |T@) = Trace(I'™T W®) denotes the
Frobenius inner product of the matrices W' and I'®. The
Frobenius inner product serves as an extension of the dot
product, transitioning from vector spaces to matrix spaces,
and it naturally represents the inner product in the space
of matrices. Similar to W("), we presume that the coeffi-
cient matrix I'® is symmetric and has zero entries along
its diagonal.

To achieve flexible modeling of the effect of the mul-
tiplex graph on the outcome, each graph edge coefficient
is expressed as an interaction between the nodes con-
nected by the specific edge. More precisely, let éff”) e RA
denote the H-dimensional coordinate in the latent space,
representing the latent effect of the node A" specific to
the ath layer, 1 <v < V. The coefficient correspond-
ing to the (v,Vv)th edge at the a-th layer is modeled as a
weighted inner product of latent effects for nodes N
and A, given by, 7% = (£1€1 )gu = £TOE,
1<v#Vv <V,a=1,..,L. This mechanism allows nodes
with coordinates aligned in the same direction to positively
impact the outcome, whereas nodes with coordinates in
opposite directions exert a negative influence on the out-
come. The interaction effect is dependent on the H X H
weighing matrix ®® which is a diagonal matrix with the
h-th diagonal entry 0}(,") € {—1,0,1}. The diagonal ele-
ments indicate the effect of the #-th dimension of the latent
effect 53’) on the graph coefficients. A value of 0 for 02“)
signifies that the s-th dimension of the latent effect spe-
cific to the a-th layer is not informative of the outcome.
The aforementioned modeling of the graph coefficient leads
to a low-order spectral decomposition of I'®, given by,
'@ = 20T@WEW® where 2@ = [5(10’) Dl §§f’)] denotes
a H x V matrix which constitutes node-specific latent effects
at the ath layer. The assumed low-order spectral representa-
tion massively reduces the count of estimable parameters
from LV(V — 1)/2to LVH + HL = HL(V + 1), with the typi-
cal condition that H < V.

Prior Distribution on Coefficients

Given that one of the primary focuses of inference is the iden-
tification of influential nodes within A/ for predicting the out-
come, we employ a variable selection framework on the node-
specific latent effects. Node A" has no effect from any of the
layers on the outcome if all coefficients corresponding to the
edges connected to the node NV are uninformative about the
outcome, i.e., y( “ =0 for all v/ #vanda =1,...,L. Given
the bi-linear representatlon of y(“),, this is achleved when the
vth node specific latent effects at all layers are not mformatlve
about the outcome, which leadsto &, = (§(v1)T, ey §(VL)T)T =

In order to infer on the influential nodes, a spike—and—slab

mixture distribution prior (Ishwaran & Rao, 2005) is assigned
on &,. More specifically, we set

£~ nNO.K)+ (1 - n)A0), 1, ~ Ber(s), @

where A(0) is the Dirac-delta function at 0 and K is a
LH X LH covariance matrix. The parameter 6 corresponds
to the probability of the nonzero mixture component and #,
is a binary indicator set to 0 if £, = 0. Thus, the posterior
distributions of #,’s enable identification of nodes related to
the outcome. To account for multiplicity in multiple variable
selection, we assign 6 ~ Beta(a, b), following the popular
literature (Scott & Berger, 2010). The covariance matrix
is assigned K ~ IW(v,I;) where IW(v,I;;) denotes an
Inverse-Wishart distribution with a LH X LH identity matrix
I, and degrees of freedom v.

To learn which components of é("’) are informative, we
assign a hierarchical prior on 6’(”) given by,

0 = A(l)ft(") +A(O)7t(“) + A(-D7'

h3’
a=1,.,L h=1,.
(n ,(1“]), e “”) Dir(l,hg,l), E> 1

The hyper-parameters of the Dirichlet distribution are cho-
(a)
sen to introduce increasing shrinkage on 6, as h grows to
prevent overflttlng due to choice of a large H. Specifically,
A@ =y" i |0(“)| estimate the dimensions of £ needed for
effective modeling, also referred to as the effective dimen-
. () . . pe . . .
sion for & The pr10F spec1f1caF10n 18 C().mpleFed by setting
B, ~ N(0,1,) and setting a non-informative prior on 4.

Posterior Inference

Let w@ and y® denote the upper triangular vectors
of dimension V(V —1)/2 x 1 extracted from W@ and
'Y respectively. Considering that both w® and y®
are symmetric matrices with zero diagonal entries, the
Frobenius inner product between W® and I'® can be
simplified as (W |T@) = 2w@Ty@ This simplifica-
tion enables us to establish a connection between the
modeling framework with a multiplex graph predictor
in (1) and a binary regression framework, as represented
by the following equation,

L
P(y=1|{w9}_ x) = G‘l<u +x'B + Zw(“)Ty(“))

a=1
3)
This article concentrates on employing the logit link func-
tion for G(:) to implement Markov chain Monte Carlo
(MCMC) sampler for posterior inference on parameters.
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We utilize the result discussed in Theorem 1 of Polson et al.
(2013) to obtain

pOlx, (W@t
exp {y(u +xB + ¥ w(”)rr(“))}

1 +exp {/4 +xTB + ¥ w<“)Ty<“)}

L
= exp {(y - 0.5><u 2B+ Y w(“)Ty(“)> }
a=1

2
L
X / exp —% </4 +xp, + Z w(“)Ty(“)> (w)dw,

a=1

“
where p(w) is the density of PG(1,0) distribution. With the
outcome, ordinary vector predictor and multiplex graph pre-
dictor obtained for n subjects, { {y;,x;, W;} : i =1,...,n}, we
use (4) and the data augmentation approach outlined in Pol-
son et al. (2013) for effective posterior computation. For
subjects i = 1, ..., n, we introduce latent variables w,, ..., »,
in the likelihood. More precisely, the augmented likelihood
function comes in the following form,

p(y | ﬁx’r(l)’ ,F(L),a))

n
X Hp(yz | ﬁX’ I‘(l)’ ot ’F(L)’ wi)
i=1

1 L
x H exp {(yi - 0-5)(/4 + xiTﬁx + Z wl(,“)T},(a))

i=1 a=1

a=1

~ Hexp{ [(yz ' .5)
L 2
+ ZW(Q)Tﬁ(“)>] .

2
L
; T
- 7’(#+x3ﬂx+ > ﬂ(“)>

— (u+x!B,

While the original conditional posterior distributions for the
parameters are not available in closed forms, the augmented
full conditional distributions belong to standard families.
Appendix provides details of the full conditional distribu-
tions of the parameters.

Let n,,,...,11, 5 be the S post burn-in MCMC samples
corresponding to #,. The posterior probability of node N
being significantly assoc1ated with the outcome can be
empirically estimated as P(n, = 1|y) zs:l 1,5~ In what
follows, we cluster logit-transformed posterior probabilities
into three groups using a Bayesian mixture model (Fraley
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et al., 2012). The nodes in the cluster with the highest and
lowest cluster means are considered as influential and unin-
fluential with respect to the outcome, respectively. We clas-
sify these nodes as “activated” and “inactivated” nodes,
respectively. The analysis is less conclusive about the nodes
in the third cluster, which are referred to as “inconclusive."
These estimated probabilities also provide insight into the
uncertainty surrounding node inference, implying that nodes
with posterior probabilities of being influential close to 0
or 1 are associated with less uncertainty in inference. Esti-
mating uncertainty is vital in neuroscientific settings, par-
ticularly in presence of moderate sample sizes (n) and low
signal-to-noise ratios. Moreover, the proposed framework
is utilized for the classification of an unobserved binary
outcome.

Let I'7,..T%, B ... Bys and py, ...
burn-in MCMC samples for I‘(”‘), B, and u, respectively,
obtained after suitable burn-in and thinning. To classify an
unobserved outcome y, € {0, 1} associated with a newly
observed L-layer multiplex graph predictor W, and with
predictor x, € R”, we compute the estimated classification
probability given a post burn—i/nit\erate {u,, ﬂm, Fil), e FEL) 1,
denoted by P(y, = 1|y, p,,.T'”, W, x,), from (1)
using G(-) as the logit link function, for s=1,...,S.
The unobserved outcome y, is predicted to be 1 or O if

, g be the S post

é Zle P(y, = 1ug, B, I“Ef’), W,,x,) is greater than or less
than a selected cut-off ¢, respectively. To judge sensitivity to
the choice of the cut-off, we compute ROC curves constructed
with True Positive Rates (TPR) and False Positive Rates (FPR)
of classification corresponding to a range of cut-off values z,.
We present area under the ROC curve (AUC) which ranges
between 0.5 to 1. A value of 0.5 signifies random classifica-
tion, while 1 signifies perfect classification. A higher AUC
denotes superior classification performance by a method.

Results

In this section, we apply the proposed Bayesian Multiplex
Graph Classifier (BMGC) method to perform inference on
nodes and classification on multiplex graphs using both
simulated data and real biomedical imaging data (brain
fMRI study).

Simulation Study

First, we investigate the performance of the BMGC tech-
nique through simulation and compare it against other
classification methods. Our evaluation involves examin-
ing BMGC'’s capability to identify influential nodes and
then comparing its performance in coefficient estimation
and predictive inference with competing models. These
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competitors encompass penalized optimization, Bayesian
shrinkage methods, Bayesian tensor regression and deep
neural networks. In each simulation scenario, the number
of layers (L) is fixed at 2, mirroring the number of layers in
the neuroimaging dataset under evaluation.

Simulated Data Generation

For the ith sample, i = 1, ..., n, we generate a multiplex graph
W, by simulating symmetric adjacency matrices Wl(.]), vy WSL)
for L layers. The upper triangular vector wl@ of nga) is inde-
pendently drawn from the normal distribution N(0,I), and
all diagonal entries of Wl(.“) are set to 0. Let the true inter-
cept and the true multiplex graph coefficient be given by y
and Iy, respectively. The response y; for the ith sample is
generated according to model (1) with G(-) as the logit link
function. No predictor x; is included in these simulations. In
all scenarios, we set y, = 0.5. We use n = 400 samples for
model fitting and reserve n, = 50 samples for prediction.
Let 6, be the probability of a node being influential
w.r.t. the outcome. We refer to (1 — &) as the node sparsity.
For the purpose of generating the true activation pattern
of nodes in relation to the outcome, we simulate node-
specific activation indicators #; , ...,nV’OI'L ‘Ber(6,). To
simulate the ath layer of the multiplex graph coefficient
I‘g’), we first simulate the LH-dimensional latent effects

corresponding to each of the V nodes, &, , = (!,‘510), wees §tL) T

ind.
fromé&,, ~ n,oNO. 1)+ (1 —n,0)A0), forv=1,... V.
Using these latent effects for nodes, the true coefficients
corresponding to the (v,Vv')th edge at the ath layer is con-
structed using the low-rank formulation y'* == ®7g®

v ,0 v,0 2v.0°
for v < v'. We set 7’5?3,0 = yiff)vqo and 7/&?,0 = 0 to satisfy the
symmetry and zero diagonals the graph coefficient at each
layer, respectively. In using this setup, we assume that both
the fitted and true graph coefficients have a low-rank struc-
ture. This assumption allows us to evaluate how well the
proposed method captures and represents the underlying
relationships between the graph nodes and the outcome
variable. With this setup, we simulate data with V = 20,
at five different different levels of node sparsity, setting

6y =0.2,0.3,0.4,0.5, 0.6, respectively.

Competing Methods and Performance Metrics

We compare the performance of the proposed BMGC model
vis-a-vis two sets of competitors. The first set of competitors
treats the edges between nodes in the multiplex graph predic-
tor as a “long vector of predictors” and perform binary
regression of the outcome y;, on the vector

T
(" s a=1,.,L) of dimension LV(V = 1)/2. This

approach overlooks the relational nature of the multiplex

graph predictor, potentially limiting the ability of such mod-
els to capture the effect of intricate interconnections between
nodes on the outcome. To this end, we employ the horseshoe
prior (Carvalho et al., 2010) and the Bayesian Lasso (Park &
Casella, 2008) on the regression coefficients due to their
state-of-the-art empirical performance in regressions with a
high-dimensional predictor vector. We refer to these competi-
tors as BHS and BLasso, respectively, and implement them
using our own codes. As a frequentist high-dimensional binary
regression competitor, we adopt a penalized optimization
framework with the Lasso penalty on the predictor coeffi-
cients (Tibshirani, 1996). The Lasso is implemented using
the glmnet (Friedman et al., 2010) package in R, with the
penalty parameter chosen through ten-fold cross-validation.
Finally, we also implement a two-layer neural net (NN) as a
competitor. NN models are fit using the tensorflow
(Allaire & Chollet, 2023) and keras (Allaire & Tang, 2023)
packages in R. The inputs to the NN models are composed
of the upper-triangular entries of each graph layer, which are
concatenated to create an input vector of dimension
LV(V — 1)/2. The models are fit with two hidden layers, each
having the Rectified Linear Unit (ReL.U) activation function
(Nair & Hinton, 2010). The first of these two hidden layers
includes L, and L, regularization to perform shrinkage on the
coefficients from the input layer. The output layer of each
model uses the sigmoid activation function (Narayan, 1997).
The L, and L, regularization parameters and learning rate for
the models are tuned through five-fold cross validation. For
training each NN, 90 percent of the training samples are used
to fit the model, while 10 percent are used for validation. The
batch size is equal to half of the number of samples used to
fit the model. The second set of competitors treats every layer
of the multiplex graph as a V X V tensor and uses a binary
tensor regression approach with L tensor predictors and a
binary response. We employ the framework in Guhaniyogi
et al. (2017) to estimate the tensor coefficients. Unlike the
first set of competitors, this approach envisions the matrix
structure of each graph layer. However, it does not take into
account the symmetry of each undirected graph layer. We
refer to this approach as TensorReg.

To infer on the performance of BMGC in terms of iden-
tifying nodes significantly associated with the outcome, we
present the estimated posterior probability of a node being

influential across the layers, i.e., P(#, ;WData). The per-
formance of the competitors in estimating multiplex graph
coefficient I is evaluated using the scaled mean squared

error (MSE). The MSE is defined as L=l
0

resents a suitable point estimate of I'. For instance, we use
the frequentist point estimate for Lasso, while BMGC, BHS,
TensorReg and BLasso employ the posterior mean of I'. To
assess predictive power of the competitors, we use the held-
out test samples to compute the AUC of the predicted

where T rep-
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Table 1 Node selection results across five simulation scenarios, each
depicted in a separate column, with varying probabilities of node
inclusion (8,). Every column displays the posterior probability of
the V = 20 nodes in the simulation setup being active, corresponding

with various levels of node-sparsity in the truth. White and colored
cells denote uninfluential and influential nodes, respectively. BMGC
excels in identifying nodes, as indicated by high probabilities in
colored cells and low probabilities in white cells

Node | 6o =0.2 | 6o =0.3
1 0.9800 0.8737
2 0.1003 0.3243
3 0.9807 0.9283
4 0.0343 0.0617
5 0.0380 0.9307
6 0.0250 0.1157
7 0.0653 0.0330
8 0.9770 0.8007
9 0.0083 0.0400
10 0.0090 0.8343
11 0.0087 0.0937
12 0.9697 0.8960
13 0.0107 0.0290
14 0.0047 0.0113
15 0.0060 0.0170
16 0.0110 0.0307
17 0.0143 0.0173
18 0.0077 0.0567
19 0.0073 0.0580
20 0.0073 0.0213

probabilities, P(y*/=1\|W*), of each model compared against
the ground truth labels, y, ;, ...y, , . For the Lasso, this quan-
tity corresponds to the point estimate from the fitted model,
while for the Bayesian competitors, this is computed using
the mean of the posterior predictive distribution. All com-
parisons presented are averaged over five simulation
replicates.

Simulation Results

Accuracy of Influential Node Identification Table 1 displays
a matrix corresponding to five different simulation settings
under different true node sparsity (1 — §,) levels for V = 20.
In each matrix, the colored and white cells in the /th column
represent the truly influential and truly uninfluential nodes
for the /th simulation scenario, respectively, for/ =1, ..,5.
Overlaid on these matrices are the estimated posterior prob-
abilities P(y, = 1|Data) forv =1, ---,20.

Table 1 shows remarkably accurate identification of truly
influential nodes, with the estimated posterior probabilities
of all influential nodes in most simulations being above 0.5
in all five simulation scenarios. With high-node sparsity
(6p = 0.2), the estimated posterior probabilities tend to be
very close to 1 or 0, correctly classifying nodes as influential
or not, with very minimal uncertainty. However, as sparsity
decreases, the uncertainty in node identification deteriorates.
In fact, when 6, = 0.6, the estimated posterior probabilities
of a few influential nodes becomes close to 0.5 and a few
un-influential nodes becomes close to 0.25, displaying more
uncertainty in node identification.

@ Springer

60=04 | 5 =0.5 | 3o =0.6
0.8553 0.7837 0.6230
0.1480 0.2700 0.2357
0.8143 0.8997 0.7960
0.1280 0.2030 0.2227
0.5587 0.7590 0.8277
0.0740 0.2440 0.2267
0.0757 0.2343 0.2047
0.9263 0.6573 0.6943
0.3840 0.7753 0.3637
0.9260 0.6807 0.6743
0.8603 0.7623 0.5460
0.8763 0.9057 0.7413
0.0307 0.0950 0.0933
0.0487 0.1620 0.8287
0.0367 0.1313 0.8203
0.0223 0.8750 0.6587
0.1127 0.5250 0.7757
0.0477 0.1003 0.0993
0.1203 0.1797 0.1130
0.0720 0.0683 0.1397

It is crucial to underscore that one of BMGC’s key
strengths in inference lies in its capability to identify sig-
nificant nodes in multiplex graphs, considering the inter-
actions across layers while quantifying uncertainty. This
feature directly aligns with the inferential goals of our
scientific study, which revolves around identification of
brain regions of interest associated with accelerated aging.
In contrast, prevalent frequentist or Bayesian high-dimen-
sional regression techniques, tensor regression approach or
neural networks lack the capability for node identification
with uncertainty in the current context. For the assessment
of point estimation in multiplex graph coefficients, Table 2
showcases the scaled Mean Squared Error (MSE) for each
of the competitors across the five simulation scenarios. In all
instances, the results consistently highlight the superior per-
formance of BMGC. The performance gap between BMGC

Table2 Scaled mean squared error (MSE) of estimating multiplex
graph coefficients for all competitors under all five simulation sce-
narios. Deep neural network (NN) only offers predictive inference,
hence the results from NN are not shown in the table. The result cor-
responding to the best performer under all simulation scenarios is
boldfaced

Method 6,=02 6,=03 6,=04 5,=05 5,=06
BMGC 09207  0.9693  0.9859 0.9910  0.9946
Lasso 12514 1.0781  1.0306 1.0150  1.0082
BHS 26233 16423 15982 1.8199  1.8967
BLasso 15864 12707 25810 15385 13124
TensorReg 454238 109493 114556 7.3167  4.4012
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Fig. 1 Comparison of the performance of the BMGC method (blue) against alternative classification techniques (different color lines) using the
area under the ROC curve (AUC) across different levels of the sparsity parameter &,

and its competitors is substantial with high-node density To assess the out-of-sample predictive performance of the
(e.g., smaller values of §,). As node sparsity decreases, the  different models, Fig. 1 displays the area under the receiver
performance of BMGC deteriorates and it becomes close to  operating characteristic curves (AUCs) obtained using vari-

Lasso when ¢, = 0.6. ous classification thresholds . (as discussed in “Posterior
—a— BMGC
Lasso
BHS
0.9 Blasso

NN
TensorReg

0.85

0.8

F1-Score

e
5
a

0.6

Fig.2 Comparison of the performance of the BMGC method (blue) against alternative classification techniques (different color lines) using the
F1-Score across different levels of the sparsity parameter 6,
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Inference” section). We also show the F1-scores for all the
competitors in Fig. 2 using f. = 0.5 as the cut-off. Both
figures draw similar conclusions regarding comparative
performance of the competitors. With high-node sparsity
(small values of §;), the graph structure is weak, causing
all competitors to essentially exhibit behavior similar to
that of penalized regression. Thus, with high-node sparsity,
all competitors show similar out-of-sample classification
performance. As sparsity decreases, classification perfor-
mance of all competitors deteriorates, but BMGC consist-
ently maintains an advantage over the others. This indicates
that leveraging the multiplex graph structure of the predictor
in BMGC can improve classification accuracy. Among the
methods that disregard the graph structure associated with
the predictor, NN exhibits inferior performance.

Functional Magnetic Resonance Imaging
(fMRI) Study

Next, we will apply the BMGC technique to the functional
magnetic resonance imaging (fMRI) brain dataset. Figure 3
shows a heatmap of the initial correlations between the ROI
nodes in the left (columns) and right (rows) hemispheres.
Figure 4 illustrates a partial brain connectogram indicating
specific associations between some of the left hemisphere
brain areas. Clearly some brain regions are highly connected,
whereas other are more isolated. For simplicity, we only
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show a fragment of connectogram reflecting the following
10 left hemisphere (LH) central and peripheral (striatal and
extrastriatal) visual cortex brain regions, see Table 3.

Figure 5 shows a scatter plot of the derived tripartite
class labels, (“inactivated”, “inconclusive”, or “activated’)
computed by our algorithm. The glyph colors and shapes of
scatter points represent the respective probabilities of the
left (x-axis) and right (y-axis) regions of interest (i.e., nodes
in the brain graph network). The point 2D Cartesian coor-
dinates represent the corresponding probabilities that the
left (x-axis) and right (y-axis) brain hemispherical regions
are in one of the three derived class labels. Points along
near line bisecting the plane first-quadrant correspond to
ROIs with identical derived class labels for the left and right
region. Hence, these ROIs correspond to brain symmetries,
i.e., bilaterally synchronously associations with memory
decline (according to the MMSE outcome binary label).
Conversely, scatter points off the main diagonal correspond
to brain asymmetries; left and right brain regions whose
derived labels are inconsistent.

Some of these brain asymmetries have been previously
reported in normal aging, mild cognitive impairment,
and dementia (Lubben et al. 2021; Mandal et al. 2012;
Thompson et al. 1998). For instance, we observed brain
symmetries involving networks with left and right soma-
tosensory motor area (ROI: SomMotA.3), where both
left and right probabilities are high. This indicates that in
aging, sensory motor brain function obeys certain lateral
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Fig.3 Heatmap of the correlations between the ROI nodes in the left and right hemispheres
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LH, VisCent Exsyy. VisCent
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LH.VisCent.ExStr.5_VisCent

Fig.4 Connectogram showing partial correlations between several different brain regions in the left hemisphere

symmetries. On the other hand, in the default mode net-
work (ROI: DefaultC.Rsp.1) the difference in the derived
class labels for the left (inactivated) and right (activated)
suggest significant brain asymmetries associated with
pathological aging.

In this fMRI study, to evaluate the BMGC classification
performance against alternative methods, we computed the
probability of the outcome being 1 (normal aging) for each
sample (inputs are the individual correlation matrices of
participants’ brain networks). This allowed us to construct

ROC curves based on pairs of True Positive Rate (TPR) and
False Positive Rate (FPR) values, obtained by varying the
threshold of these estimated probabilities. The AUC esti-
mated for each competitor corresponds to the area under
their respective ROC curve. We also compute F1-scores for
all the competitors considering 0.5 as the threshold prob-
ability. Table 4 presents a comparison of the classification
performance between the new BMGC technique and various
alternatives (described in “Competing Methods and Perfor-
mance Metrics” section).
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Table 3 The 10 left-hemisphere
(LH) central and (striatal and
extrastriatal) peripheral visual
cortex brain regions in Fig. 4

Region Acronym Region Name

LH.VisCent.ExStr.1.VisCent
LH.VisCent.ExStr.2.VisCent
LH.VisCent.Striate.1.VisCent
LH.VisCent.ExStr.3.VisCent
LH.VisCent.ExStr.4.VisCent
LH.VisCent.ExStr.5.VisCent
LH.VisPeri.ExStrInf.1.VisPeri
LH.VisPeri.ExStrInf.2.VisPeri
LH.VisPeri.ExStrInf.3.VisPeri
LH.VisPeri.StriCal.1.VisPeri

Left-Hemisphere Extrastriatal Central Visual Cortex Region 1
Left-Hemisphere Extrastriatal Central Visual Cortex Region 2
Left-Hemisphere Striatal Central Visual Cortex Region 1
Left-Hemisphere Extrastriatal Central Visual Cortex Region 3
Left-Hemisphere Extrastriatal Central Visual Cortex Region 4
Left-Hemisphere Extrastriatal Central Visual Cortex Region 5
Left-Hemisphere Extrastriatal Inferior Peripheral Visual Cortex Region 1
Left-Hemisphere Extrastriatal Inferior Peripheral Visual Cortex Region 2
Left-Hemisphere Extrastriatal Inferior Peripheral Visual Cortex Region 3
Left-Hemisphere Striatal Caudal Peripheral Visual Cortex Region 1

BMGC demonstrates superior performance compared to
all other competitors, likely because it leverages the mul-
tiplex graph architecture within the modeling framework.
Although Neural Networks (NN) enable capturing complex
non-linear relationships between the outcome and the multi-
plex graph, Bayesian Horseshoe (BHS) and Bayesian Lasso
(BLasso) exhibit slightly improved performance over NN,
indicating the presence of sparsity in the data structure. Ten-
sorReg also performs close to BLasso and BHS, perhaps for
not exploiting the symmetry in the graph layers. While the

AUC values show BMGC offering more than 10% improve-
ment in performance, the Fl-scores suggest slight outper-
formance of BMGC over Lasso, BHS and Blasso. Digging a
bit deeper, we identify that the probabilities for an outcome
being “1" or “0" lie closely around 0.5 for Lasso, BHS and
Blasso. However, these probabilities are more separated
from 0.5 for BMGC. Thus the probability of an outcome
being 1 is much higher than 0.5, or the probability of an
outcome being 0 is much lower than 0.5 for BMGC in the
case of a correctly classified outcome. This explains the

Right Hemi Probability

Derived Tri-partite Class Labels Color=LH Label hape=RH Label

ROI: DefaultB PFCd.1

LH_Prob: 059
RH_Prob: 061
LH Label: 3
RH Label: 3

| —

- |

Left Brain Hemisphere Probability

Fig.5 Bivariate plot of the derived tripartite class labels computed
by the multilayer network method. The glyph colors and shapes of
each scatter point represent the regions of interest (nodes in the brain
graph network). The point locations represent the corresponding
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cal regions are in one of the three derived class labels (“inactivated”,
“inconclusive”, or “activated”)
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Table 4 The predictive performance, as measured by the AUC and Fl-score, of BMGC and its competitors on the fMRI data. The best per-

former is highlighted in bold

Model BMGC Lasso BHS BLasso NN TensorReg
AUC 0.6623 0.5315 0.6035 0.5993 0.5708 0.5833
F1-Score 0.8382 0.7881 0.8033 0.8030 0.6968 0.7084

competitors’ lower AUC values, but competitive F1-scores.
It is worth mentioning that none of the competitors have the
capability for node selection, a feature exclusive to BMGC.

Conclusion and Future Work

This article introduces an innovative Bayesian framework
designed to address a classification problem characterized
by a binary outcome and a multiplex graph predictor, with
each layer representing an undirected graph. We model an
edge coefficient in a specific layer using a bilinear interac-
tion of latent effects corresponding to nodes connected by
that particular edge. A group variable selection framework
is employed on node-specific latent effects for all layers to
identify nodes influential in the classification of the binary
outcome. A Bayesian framework is adopted to allow uncer-
tainty quantification in inference and prediction, especially
in the identification of influential nodes. Our empirical
results, derived from simulation studies, establish the supe-
riority of our method in scenarios where the regression coef-
ficients indeed exhibit a multiplex graph structure.

Our functional magnetic resonance imaging (fMRI) study
suggests that the proposed BMGC technique may be useful
to identify brain-network asymmetries involving left and
right cortical regions according to their BMGC posterior
predictive class probabilities. For each brain area, these like-
lihoods yield explicit derived class labels of association with
any (binary, categorical, or continuous) clinical outcome of
interest, which can be used to identify, confirm, or explore
various pathological states.

Our framework stands at the forefront of developing a
regression model with a binary outcome and a multiplex
graph predictor. It is noteworthy that our framework assumes
a bi-linear effect of graph edges on the binary outcome.
While bi-linear edge effects have been demonstrated to effec-
tively capture intricate graph properties (Hoff et al., 2002),
an approach that captures complex non-linear associations
between edges of the multiplex graph and the outcome could
potentially yield deeper scientific insights into the impact of
aging on functional connectivity. To address this, we will
incorporate a broader class of semi-parametric models to
capture such complex non-linear associations in our future
work. Our contribution will involve advancing the semi-par-
ametric regression framework by introducing multiplex graph

predictors. This builds upon existing literature (e.g., see Zhou
et al., 2024), where a single graph predictor is employed.

Future studies may also take a further step in examining
the posterior probability distributions, specifically for brain
asymmetry related to differences between the left and right
hemispheres. Since the brain networks are the inputs, not
the outputs of the BMGS model for classifying ROIs as
inactive, borderline, or actively participating in the binary
classification (output) of participants into normal and accel-
erated aging. This can facilitate drawing inference about
connectivity pattern different cohorts does not appear feasi-
ble. For instance, it may be interesting to explore bilaterally
the ROIs and brain networks (Schaefer-17) that are most
probabilistically distinct between the two cohorts of normal
(MMSE = 30) and aging (MMSE < 30).

Information Sharing Statement

The complete fMRI dataset and the regional brain correla-
tion functional connectivity networks reflecting cognitive
control throughout the adult lifespan are available online
(https://osf.io/5zyws/) Rieck et al. (2021a). As firm sup-
porters of open, reproducible and trustworthy scientific
discovery, we have provided data, software tools, proto-
cols, interactive charts, and supplementary materials on
these websites: https://socr.umich.edu/docs/uploads/2024/
fMRI_Corr_Pilot.html and https://github.com/jeroda7105/
Classification-with-Multi-Layer-Graphs.

Appendix

Below we present the full conditional posterior distributions
for all parameters within the generalized linear model
detailed in “Model and Prior Formulation” section. These
distributions are utilized for implementing a Markov Chain
Monte Carlo (MCMC) algorithm via Gibbs sampling. The
samples derived from the MCMC algorithm yield samples
from the complete posterior distributions for the model
parameters jointly, facilitating posterior inference as elabo-
rated in “Posterior Inference” section. Letk; = (y; — 0.5)/w;,
and Q = diag(a%l, ey u% ) Assuming X to be an n X p matrix

n

with its ith row as x;, and A® to be an nx V(V — 1)/2
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dimensional matrix with its ith row given by wﬁa). Conse-
quently, the full conditional distributions for the model
parameters are expressed as:

O k-Xg %, AY) 1
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