L))

Check for
updates

Forum of Mathematics, Pi (2025), Vol. 13:¢6 1-139
doi:10.1017/fmp.2024.12 CAMBRIDGE
UNIVERSITY PRESS

RESEARCH ARTICLE

Smooth imploding solutions for 3D compressible fluids

Tristan Buckmaster ~ !, Gonzalo Cao-Labora"~ 2 and Javier Gémez-Serrano >

1 Department of Mathematics, University of Maryland, 4176 Campus Dr, William E. Kirwan Hall, 20742, College Park, MD, USA;
School of Mathematics, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ, 08540, USA;

Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, NJ, 08540, USA;

Current address: Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY, 10012,
USA; E-mail: buckmaster @cims.nyu.edu.

2Department of Mathematics, Massachusetts Institute of Technology, 182 Memorial Drive, Cambridge, MA, 02139, USA;
Current address: Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY, 10012,
USA; E-mail: gc2703 @nyu.edu.

3Departament de Matematiques i Informatica, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, Barcelona,
08007, Spain;

Centre de Recerca Matematica, Edifici C, Campus Bellaterra, Bellaterra, 08193, Spain;

Current address: Department of Mathematics, Brown University, 314 Kassar House, 151 Thayer Street, Providence, RI, 02912,
USA; E-mail: javier_gomez_serrano@brown.edu (corresponding author).

Received: 9 September 2022; Revised: 14 April 2024; Accepted: 25 July 2024
2020 Mathematics Subject Classification: Primary — 35Q30; Secondary — 35Q35, 76N10, 65G30

Abstract

Building upon the pioneering work of Merle, Raphaél, Rodnianski and Szeftel [67, 68, 69], we construct exact,
smooth self-similar imploding solutions to the 3D isentropic compressible Euler equations for ideal gases for all
adiabatic exponents y > 1. For the particular case y = % (corresponding to a diatomic gas — for example, oxygen,
hydrogen, nitrogen), akin to the result [68], we show the existence of a sequence of smooth, self-similar imploding
solutions. In addition, we provide simplified proofs of linear stability [67] and nonlinear stability [69], which allow
us to construct asymptotically self-similar imploding solutions to the compressible Navier-Stokes equations with
density independent viscosity for the case y = % Moreover, unlike [69], the solutions constructed have density
bounded away from zero and converge to a constant at infinity, representing the first example of singularity formation
in such a setting.
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1. Introduction

In this paper, we construct self-similar imploding solutions to the 3D isentropic compressible Euler
equations

O (pu) +div(pu @ u) + Vp(p) =0,

. (1.1)
0, p +div(pu) =0,

where here u is the velocity and p the density, and we will assume the ideal gas law p(p) = % pY
for v > 1. Additionally, these self-similar solutions to Euler will be used as a basis to construct
asymptotically self-similar solutions to the 3D isentropic compressible Navier-Stokes equations with
density independent viscosity

0 (pu) +div(pu ® u) + Vp(p) — p1Au — (p1 + p2) Vdivu = 0,
. (1.2)

orp +div(pu) =0,
for Lamé viscosity coefficients (u1, up) satisfying gy > 0 and 2u; + pp > 0. In the case of the Navier-
Stokes equations, we will assume the initial density to be constant at infinity in order to rule out the

possibility that the singularities are an artifact of vacuum. Local well-posedness for the compressible
Euler and Navier-Stokes equations (1.2) is classical (cf. [20, 29, 49, 55, 60, 65, 74]).
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1.1. Background

1.1.1. Shock wave singularities

The prototypical singularity for the Euler equations is a shock wave, occurring when the speed of a
disturbance exceeds the local speed of sound. Mathematically, one would like to provide a detailed
description of both the formation of a shock and its development past the first singularity.

The first rigorous result in this direction is due to Lax [59]. Lax showed that in 1D, when writing the
equation in terms of its Riemann invariants, one can use the method of characteristics to prove finite
time singularity formation. The existence of finite time singularities in 2D and 3D was demonstrated
by Sideris in [81] via a virial type argument. Lebaud, in her seminal thesis work [61], provided the first
detailed description of shock formation, in the context of one-dimensional p-systems, as well as proving
development (see [22, 58] for generalizations of Lebaud’s result).

In higher dimensions, Alinhac [3, 2] was the first to provide a detailed description of shock formation
for a class of quasilinear wave equations. Yin in [91] was able to adapt the work of Lebaud in order to
prove shock formation and development in 3D under spherical symmetry (cf. [25]). Within the sub-class
of irrotational solutions, Christodoulou and Miao [26] gave the first proof of shock formation in higher
dimensions in the absence of symmetry (cf. [24]). The work was extended by Luk and Speck to the 2D
setting with nontrivial vorticity in [62].

In the work [14], the first author, Shkoller and Vicol developed a new self-similar framework in order
to prove the existence and stability of shock wave formation for the Euler equations under azimuthal
symmetry. This new framework provided the foundation for the works [13, 15] by the same authors,
which provided the first full detailed description of 3D shock formation in the presence of nontrivial
vorticity and nonconstant entropy (see [63] for a recent related work of Luk and Speck in the framework
of Christodoulou). As described above, the shock formation problem has been studied up to the time of
the first singularity. The problem of maximal development has been very recently studied by Abbrescia
and Speck [1] and by Shkoller and Vicol [80] using two very different approaches, in which solutions
of the Euler equations are constructed for times that are much larger than the first blow-up time. In
particular, the hypersurface of pre-shocks (or first singularities) is classified, and this is precisely the
data required for the development problem.

In 2D, under azimuthal symmetry, the first author together with Drivas, Shkoller and Vicol were able
to develop the singularity considered in the earlier work [14] in order to give the first full description of
shock development, including the first description of weak discontinuities conjectured by Landau and
Lifschitz.

1.1.2. Imploding solutions

While shock waves are the prototypical and possibly the sole stable form of singularity for the Euler
equations, they are not the only form of singularity that can form from smooth initial data. It is a
fundamentally interesting problem, both from a mathematical perspective and a physical perspective, to
classify other forms of singularities resulting from smooth initial data.

Motivated by the classical work of Guderley [41] (cf. [23, 84]) on imploding solutions, Merle,
Raphaél, Rodnianski and Szeftel, in the breakthrough work [68], rigorously proved the existence of
smooth radially symmetric imploding solutions to the isentropic compressible Euler equations for which
the velocity and density become infinite at the time of singularity (cf. [51, 52]). The work [68] differs
from the prior work of Guderley [41] in a significant way: the solutions [68] are smooth up until blow up,
whereas the solutions [4 1] represent solutions for which a shock has already formed. It should be noted
that the solutions described in [68] are highly unstable, which would make observing such solutions in
numerical simulations or physical experiments extremely difficult. However, given that the structure of
the solutions is now known, these solutions can be numerically computed as was done by Biasi in [10],
which provides a detailed numerical survey of the Merle et al. solutions.

In the companion works [67, 69], the solutions constructed in [68] have been used to construct
asymptotically self-similar solutions to both the compressible Navier-Stokes equation (1.2) and the
defocusing nonlinear Schrodinger equation — the later result resolving a major open problem in the field.
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Figure 1. Imploding solutions in (U, S) variables. Note that a singular coordinate change has been
made in order to compactify the (U, S) coordinates.

To describe the solutions of [68], one must rewrite (1.1) in isentropic, radial form:
1 1 )
Ou+udgu+ —0og(p?¥) =0 and &,p+ —=0r(R°pu) =0, (1.3)
Yp R?

where for matters of simplicity, we restricted the problem to 3 dimensions. Letting o = é p?, for
a= 774 denote the rescaled sound speed, one makes the following self-similar anzatz:

1
_,-1_R R — 5.1 R R
u(R,t)=r ﬂU(IOg((T_I)l )) and o (R,t)=a 2r 7S (log((r—t)l ) (1.4)
where here r is a self-similar scaling parameter to be determined. Defining a new self-similar variable

& =log( T R . ), then (1.3) reduces to an autonomous system of the form
—1) 7

dU _ Ny (U,S)

dé ~ D(U.S) °

and 45 = J5(U9) (1.5)

The phase portrait for the case y = %, r = 1.079404 is represented in Figure 1. The red, green and
black curves represent the vanishing of D, Ny and Ny respectively. Py is a point in the compactified
phase portrait, with finite value of U but S = +co, and it will correspond to the values of (U/R, S/R)
at the origin for our profiles. P, is the point (0, 0), and it will correspond to values of the profiles at
R = oo (both profiles decay). P is a regular singular point of the dynamical system (1.5), and hence,
one can construct integral curves which cross Pg. There exist two smooth integral curves that cross Py:
one tangent to the direction v_ and the other one tangent to v,. The curve tangent to v, corresponds to
the Guderley solution, whereas the curve tangent to v_ corresponds to solution found in [68]. In order
to create a globally defined self-similar solution, one must find an integral curve connecting Py to Py
via Ps. It is impossible to achieve this with the Guderley solution with a continuous integral curve;
however, by adding a shock discontinuity, one may jump from one point in the phase portrait to another
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and hence describe a globally defined self-similar solution. The major difficulty faced in [68] is that
the alternate smooth integral curve in general also does not connect Py to P; rather, it intersects the
sonic line D = 0 at a point other than P leading to a solution that is not globally defined.! The authors,
however, showed that for almost every y > 1, there exists an infinite sequence {r;}, depending on v,
converging to some r*, such that there exists a smooth curve connecting Py to P.,. The condition on
v for which the result holds is described in terms of the nonvanishing of an analytic function. This
condition is not proven for any specific y; however, it may be checked numerically. The analysis in [68]
becomes singular at y = %, and so this specific, physically important case, corresponding to monatomic
gas (helium), is not included in their theorem.

In the work [69], the authors used the solutions of [68] in order to show that for almost every

2*—‘35, there exists an asymptotically self-similar solution to the compressible Navier-Stokes

l<y<
equation (1.2) that blows up in finite time. Existence of finite-time blow up for compressible Navier-
Stokes was known previously for the case of compactly supported density [90] and rapidly decaying
density [78]. Neither works, however, give a precise description of the singularity formation. Within this
range of vy, there exist self-similar solutions to the Euler equations for which the dissipation terms for
the corresponding self-similar Navier-Stokes problem can be treated as exponentially decaying forcing
due to the specific self-similar scaling. Applying stability analysis borrowed from [67], the authors then
use the solutions of [69] to construct asymptotically self-similar solutions to (1.2) via a Brouwer fixed
point argument. One caveat of the work [69] is that the initial density of solutions is required to decay
at infinity. Ideally, one would like to remove this condition in order to rule out the importance of the
solution at infinity in the singularity formation process.
The works [68] and [69] leave open two important questions:

1. Do imploding solutions for Euler exist for all y > 1?
2. Can one construct imploding solutions to the Navier-Stokes equation with initial density constant at
infinity?

1.2. Main results

Theorem 1.1. Ler y € (1,+00). There exists r® (y) € (r3(y),rs(y)), such that there exists a smooth
solution to (1.5) starting at Py and ending at P, = (0, 0), where (r3(y), ra(y)) are defined in Section 1.4.
This gives a smooth and radially symmetric self-similar solution to (1.3) of the form (1.4).

Theorem 1.2. Let v = 7/5 and n € N be an odd number large enough. There exists r'™ (y) €
(rn(y), rns1 (7)) such that there exists a smooth solution to (1.5) starting at Py and ending at P, where

rj(y) is defined in Section 1.4. This gives a smooth and radially symmetric self-similar solution to (1.3)
of the form (1.4).

Theorem 1.3. Let y = 7/5 and n € N be an odd number large enough. Let (UE, SE) be the profiles of
Theorem 1.2, solving (1.5). Then, for sufficiently small T > 0, there exists a radially symmetric initial
data (ug, po) such that we have the following:

1. The initial density py is constant at infinity:

lim po(x) = pe.
|x|—00

2. The initial data (ug, po) is smooth and has finite energy:

1/ ) 1 /
= [ poluol ™+ ———— [ (po—pc)” < co.
2 y(y-1) ‘

IThe problem of constructing non-smooth global solutions is, however, comparatively simple, involving gluing a curve from
Py to P and the unique curve connecting P to Py. It is unclear what the physical significance of such solutions is, as they have
essentially no stability properties even modulo a finite dimensional space.
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3. At time T, the solution (u, p) becomes singular at the origin: for any € > 0

lim sup |u(R,t)|=0c0 and lim p(0,t) = co.
t—T Re[0,&) t—T

4. The solution (u, p) blows up in an asymptotically self-similar manner: for any fixed ¢ > 0,
. T-t 1 E . Lo L E
lmTl regiu ((T —1)r exp(g—“),t) =U"(¢) and hrrTl alrigto ((T —1)r exp(g—“),t) =857 (&).
- t—
Moreover, there exists a finite codimensional manifold of radially symmetric initial data satisfying the

above conclusions (see Remark 8.4 for more details).

Remark 1.4. For simplicity, we will only prove Theorem 1.3 for the case y; = 1 and uy = —1. The
general case follows analogously with minor changes to the energy estimates in Section 8.

Remark 1.5. We note that as a corollary of the proof of Theorem 1.3, the statement of Theorem 1.3
holds with the Navier-Stokes equations (1.2) replaced by the Euler equations (1.1) for y = 7/5. With
some minor work, Theorem 1.3 can be extended to all y > 1 in the case of Euler by making use of the
self-similar profiles of Theorem 1.1.

1.3. Self-similar implosion in terms of Riemann invariants
Motivated by the works [13, 14, 15], we introduce the Riemann invariants

w=u+0c and z=u-o, (1.6)
so that

w—=2z
2

1
u:z(w+z) and o =

One can now diagonalize (1.3) in terms of w and z, in order to rewrite (1.3) as a nonlinear transport
equation

1 a
ow + E(W +z+a(w—2))0rw + ﬁ(w2 -) =0,

1 o 1.7
Gzt 5wtz —alw=2)dkz = 55 (w? - 2%) =0.
Employing the self-similar ansatz
1 R 1 R
Rt)=—- — Rt)y=—-—-Z 1.8
WRD) =~ W(E) and (R0 =~ Z(&). (1.8)
where we recall ¢ = log( T R . ), then we obtain
—1) 7
1 1
(r+ 5((1 +20)W+ (1 —a)Z))W+ (1 + E(W +Z+a(W-2)))0:W - %Zz =0,
1.9)
1 1
(r+ 3 (1= )W+ (1+20)Z)Z + (1 + (W + Z = a(W = 2)))d¢Z - %WZ =0.
Rearranging, we obtain the autonomous system
o —r+3((1+20)W+(1-)Z2)W+ %2> Ny
en T L+i(W+Z+a(W-2)) Dy’
(1.10)
5.7 —r+ 31 -a)W+ (1+20)2)Z+ EW? Ny
S 1+i(W+Z—a(W-2) "Dy
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Figure 2. Imploding solutions in (W, Z) variables. Note that a singular coordinate change has been
made in order to compactify the (W, Z) coordinates. We have indicated in orange the type of smooth
solutions we will find, crossing through P with direction v_. On the left of Py the solution converges to
P, while on the right, we show three possibilities for its behavior (it can start at Dw = 0, at Py or at
DZ = O)

Figure 2 represents the phase portrait for the region W — Z > 0 for which the density is positive.
The red, purple and green lines correspond to Dz = 0, Dy = 0 and Nz = 0, respectively. A key
difference to the system (1.5) is that the denominator Dy does not vanish at Py, which simplifies the
analysis in a neighborhood of Ps. Unlike the self-similar variables (U, S), the variables (W, Z) satisfy
transport equations, which leads to the possibility of employing transport arguments in order to simplify
the stability analysis. In particular, the (W, Z) variables give rise to a very geometric understanding of
the imploding solution in terms of the trajectories of the W and Z waves: Py is an unstable fixed point
for the trajectories of Z-waves. Let P divide space into an interior (backward acoustic cone emanating
from the singular point) and exterior region. Z-waves in the exterior region cannot cross into the interior
region, whereas Z-waves in the interior region cross the origin to become W-waves, whereupon they
cross P and travel to the exterior region. Since the system (1.10) is autonomous, we are free to fix the
location & for which the solutions crosses Py. As such, we make the choice that Py is located at & = 0.

Due to the singular nature of the coordinate transformation R +— ¢ for R near 0, it is also helpful to
introduce alternate self-similar coordinates. If we write

r=—L —epo),
(T -0

and write
wRA) = (T =0 TIWE) = W),

R (1.11)
(RO =r (T -1y ' 2(0) = 2 ().
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then (1.7) becomes

(r— )W+ (Z+ %(W+Z+a(W — Z)o W+ 2‘Y—£(W2 _ 2% =0,
: (1.12)
(r—1DZ+(¢+ %(W+Z —a(W=2)))d; 2 - 2"‘—§(W2 ~ 2% =0.

This form of the equation will be useful in studying the solution at the origin { = 0. A time-dependent
version of these equations will also be used to study stability. Since we will be looking for solutions that
are smooth at the origin, we can extend the solution to all of ¢ € R by requiring that Z(¢) = -W(={),
The equations reduce to a single equation in W:

(r=DW() +( + %(W(é’) = W(=¢) +aW() + W(=()))d: V(L) + %(Wz(é“) - W*(=¢) =0.
(1.13)

We first begin with a result for the maximal time of existence of solutions to the ODE (1.9). We also
show that the system does not have periodic orbits.

Proposition 1.6. Let (W, Zy) € RZ such that Dw (Wi, Zy) # 0and Dz (Wi, Zy) # 0 and let &4 € R.
There exists a smooth solution W (&), Z(&) : (&1,&2) — Rto (1.9) such that W(&x) = Wy, Z(&x) = Zx
and

o Either (W(&), Z(£)) tends to a point of {Dw = 0} U{Dz = 0} as & — &, or to infinity or to an
equilibrium point. Moreover, 1 = —oo in the latter case.

o Either (W(§),Z(£)) tends to a point of {Dw = 0} U {Dz = 0} as & — &, or to infinity or to an
equilibrium point. Moreover, &, = +oo in the latter case.

The proof of Proposition 1.6 is given in Appendix A.1.

Remark 1.7. By local existence and uniqueness, we can divide the phase portrait in disjoint orbits
ending either at the nullsets of Dy, D or infinity. Let Q be the region where Dy > 0,Dz < 0. Let
Q;r) be the subset of points whose trajectories emanate from the halfline of Dz = 0 located to the right

of Pg and Qér) be the points for whose trajectory emanates from Dy = 0.

1.4. Smooth self-similar imploding solution
In order to further analyze P, it is helpful to consider the dynamical system under the change of
variables £ — ¢ where 8y, = —Dw Dz0¢. The equation (1.10) becomes

yW =-NwDz and 8yZ=-NzDw, (1.14)

and P becomes a stable stationary point of (1.14). The smooth integral curves of (1.10) correspond to
slope-matching smooth curves with limit Py.
It is illustrative to consider the following simple system:

x:/l+-x’ .).):/]'—y’

for some A_ < A, < 0, which correspond to the eigenvalues of the system’s Jacobian. So long as
k = /}1_; ¢ N, the only smooth integral curves are along x = 0 and y = 0. There do, however, exist non-

smooth solutions of the form y = Cx* which are C¥ regular and whose Taylor series agrees with the
solution y = 0 up to order | k] (i.e., the largest integer smaller or equal to k).
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Returning to our ODE (1.14), define - < A, < 0 to be the eigenvalues of the Jacobian of (1.14)
at Py, and define

A

k=—.
A4

(1.15)
If v_, v, are the eigenvectors of the Jacobian of (1.14) associated with the eigenvalues A_, A, then we
will be considering the smooth solutions of (1.10) with tangent parallel to v_ — the Guderley solutions
correspond to the direction v,. These two directions are illustrated in Figure 2.

We restrict the self-similar parameter r to 1 < r < r*, where

2 5
241 l<y<d,
(y) = 4 (V2y5+1) (1.16)
Y 3y-1
_oy=r y > §'
2+V3(y-1) 3

In this regime, k will be a monotonically increasing function of r, converging to co as r — r* (see
Lemma 2.1).

To study the behavior of the smooth solution corresponding to the direction v_ around P, which we
denote (W), Z(")), we apply a Frobenius-like series expansion of the solution. As will be shown in
Section 2.2, letting (W,,, Z,,) denote the n-th Taylor coefficient of (W), Z(")) expanded at Py, then for
n>?2,

Fz(l’,y, Wo, e ,Wn,Z(), . e 7ZI’l—1)

Wn:FW(r,')’,WO,---7Wn717ZOa---’Zn71) and Z,l= .
n—k(r)
(1.17)

where (Fyw, Fz) are given in Section 2.2. For j € N, we define r; such that j = k(r;). Note that the
denominator in (1.17) becomes singular as k(r) approaches n and switches sign at k(r) = n. This has a
wiggling effect on the integral curve of the smooth solution, which in turn allows us to show that for a
subsetof y > 1 and odd n > 3,

1. For r € (ry, rps1), the solution to the left of Py converges to Po, as & — oo.
2. For r = r, + &, the solution to the right of P; intersects the line Dy = 0.
3. For r = r,41 — &, the solution to the right of P intersects the line Dz = 0.

More specifically, we show the above holds for n = 3 and y € (1, +00), as well as the case y = % and n
sufficiently large.? If we can prove 2 and 3, by a simple shooting argument, we obtain that there exists
an r € (ry, rp+1) such that the solution curve connects Py to Py. Moreover, 1 implies that the solution
connects Ps to Po,. We note that for the Einstein-Euler and Euler-Poisson systems, Guo, HadZi¢ and
Jang in [43] and [42] apply similar arguments in the context of non-autonomous ODE:s.

For the special case y = %, we aim at constructing a sequence of self-similar scalings r(/) satisfying
rj < r) < rjs+1, for j odd and sufficiently large, as well as the corresponding smooth global solutions.
A key ingredient to proving this is to determine a sign and lower bound on the Taylor coefficients of
order j. Contrarily to the y > % case, fory < %, and r = r*, one may obtain a nontrivial Taylor expansion
of the corresponding curve passing through P. By continuity, for » < r*, the corresponding Taylor
series converges to that of r = r*. Then, fixing r < r*, r sufficiently close to r*, one can deduce the sign
and magnitudes of lower-order Taylor coefficients from those of r*. With this information, one can use an
inductive argument to deduce information about the higher-order coefficients. Furthermore, we employ
a computer-assisted proof to compute the first 10000 coefficient pairs (W;, Z;) at r = r* with rigorous
error bounds. While there is certainly room for improvement in terms of the amount of coefficients that
we had to calculate using a computer-assisted approach, we decided to keep the asymptotic part of the

2We are, however, not aware of any counterexamples for y > 1 and n > 3 odd. The requirement that n is odd is used to ensure
1 holds.
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10 T. Buckmaster, G. Cao-Labora and J. Gomez-Serrano

analysis that treats the higher-order coefficients as simple as possible, at the expense of a slightly larger
computation time. This part of the calculation takes about 14 hours on a single CPU.

In order to perform rigorous, error-free calculations, interval arithmetic will be used as part of the
proof whenever needed. The main idea underlying this technique is to work with intervals which have
representable numbers by the computer as endpoints in order to guarantee that the true result at any point
belongs to the interval by which is represented. By doing so, we control all the errors (rounding, floating
point arithmetic, etc.) incurred by the computer program while calculating the necessary quantities. Over
the intervals, we define an arithmetic in such a way that we are guaranteed that for every x € X,y €Y,

xxyeXxY,

for any operation *. For example,

+[p3] = [x+y.T+71,

[x.%] X [y.5] = [min{xy, x3. Ty, T3}, max{xy, x3. %y, 3}].

We can also define the interval version of a function f(X) as an interval I that satisfies that for every
x € X, f(x) € I. Even though in this paper we will only make use of basic functions, more complicated
ones (such as special functions) over intervals can be defined as well.

Very early computer-assisted proofs were mostly constrained to finite dimensional problems [34, 85].
Slowly, more and more computational power has enabled harder problems to be tackled, including
partial differential equations. We mention the pioneering papers of Plum [76, 77] and Nakao [71, 72]
in this context, and more recent advances done by Fazekas—Pacella—Plum [33] for the Lane Emden
equation, van den Berg—Hénot-Lessard [88] for semilinear elliptic equations, Dahne—Gémez-Serrano—
Hou and Gémez-Serrano—Orriols [28, 40] for inverse spectral problems, Jaquette—Lessard—Takayasu
[50] for the non-conservative NLS equations, Dahne—Gémez-Serrano [27] for the Burgers-Hilbert
equation, Takayasu—Lessard—Jaquette—Okamoto [82] for the complex in time nonlinear heat equation
and Breden—Engel [11] for chaos in stochastically perturbed Hopf systems. We make no claim that this
list is exhaustive, but we would like to emphasize the broad directions of the problems that the field
(computer-assisted proofs in PDE) has been able to undertake over the last few years.

In the context of fluid mechanics, we highlight the following authors and equations: Kobayashi
[57] and Stokes’ extreme waves; Chen—Hou—Huang [21] and De Gregorio; Castro—Cérdoba—G6mez-
Serrano [19] and SQG; Enciso—-Gémez-Serrano—Vergara [31] and Whitham; Arioli-Koch, Figueras—
De la Llave, Gameiro—Lessard, Figueras—Gameiro-Lessard—De la Llave, Zgliczynski, Zgliczynski—
Mischaikow [5, 35, 36, 37, 92, 93] and Kuramoto—Shivasinsky; van den Berg—Breden-Lessard—van
Veen, Arioli—-Gazzola—Koch, Bedrossian—Punshon-Smith [4, 8, 87] and Navier-Stokes.

We also refer the reader to the books [70, 86] and to the survey [38] and the book [73] for a more
specific treatment of computer-assisted proofs in PDE.

In our concrete case, we will use the computer in two different parts of our strategy:

1. Computing (with rigorous bounds) a high amount of Taylor coefficients of a solution of an ODE at
a singular point (Lemma A.27, Lemma A.28).

2. Validating the sign of polynomials of degree 7—11 with coefficients depending on 2 parameters using
a branch and bound method (Proposition 3.2, Proposition 3.5, Proposition 4.5).

There is a rich history of papers that have used any of these two strategies in other contexts.

Regarding the first one, in the context of the parameterization method of stable and unstable manifolds
for ODE, Cabré—Fontich—de la Llave [16, 17, 18]; for parabolic PDE, van den Berg—Jaquette—Mireles-
James [89] and Barker—Mireles-James—Morgan [7]; and for DDEs, Hénot-Lessard—Mireles-James [48§]
are examples. See also the book by Haro—Canadell-Figueras—Luque—Mondelo [47] for a more compre-
hensive list of references. A similar strategy has been employed to solve ODE by means of a Taylor
expansion and automatic differentiation by Berz—Makino [9] and is also implemented in the CAPD
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library by Kapela—Mrozek—Wilczak—Zgliczynski [54] and the COSY INFINITY library by Makino-
Berz [66].

Regarding the second one, we highlight examples of computer-assisted proofs involving branch and
bound methods — for example, the work of Day—Kalies—Wanner [30] in homology, Tanaka [83] in elliptic
PDE, Gémez-Serrano—Granero-Belinchén [39] in the Muskat problem, Banhelyi—Csendes—Krisztin—
Neumaier [6] in Wright’s conjecture, Hales [45] in the Kepler conjecture, or Kearfott [56] in constrained
optimization problems. See also the book by Hansen—Walster [46] for more references.

We remark that in the recent paper [44], the authors Guo, HadZié, Jang and Schrecker apply arguments
of a very similar flavor (Taylor expansions, dynamical systems arguments and computer-assisted proofs)
to construct smooth self-similar solutions the gravitational Euler-Poisson system.

1.5. Stability of the Euler solutions and the existence of asymptotically self-similar Navier-Stokes
solutions

Let us begin by rewriting (1.2) under spherical symmetry, and in terms of the rescaled sound speed o:

1 2
A+ udgu + acdro — ——0Or (R*dgu) + B 0,
R’p R2p (1.18)

0,0 + uORo + %O’BR (Rzu) =0.

We recall that for simplicity, we fixed ¢; = 1 and pp, = —1. We again define our Riemann invariants as in
(1.6). However, in place of the ansatz (1.11), we instead consider the following time-dependent ansatz:

w(R, 1) = r (T - t)’_l‘IW(ﬁ, - eIy
—1) 7

Z(R,t) =r (T - t)rfl—lg(L _log(Z"—t)).

(T-0)7°
‘We then define the self-similar variables
log(T — ¢ R !
s:_L), g:—l:esR:exp(‘f)_
r (T-0)r

The equation (1.18) then becomes

1
(@ +r=DW+ (4 5V + Z+a(W = 2)I W+ %(w2 _ 22
r1+521/a

" ale(W=-2)%

oGS (o,(L20; (W + 2)) - 20W + ),

(1.19)
1
@ +r=DZ+(+ W+ Z - a(WV - 2))dcZ - %(w2 - 2%
I+L~1/a-1 A
a2
= r l e(Z—r+i(1—r))S (6((4«28((W+Z)) _ 2(W+Z)) ]
ol (W - 2))s
The last term can be treated as an error so long as
1
—6diS=2—r+;(1—r) <0, (1.20)
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or equivalently,

2y

r> .
y+1

(1.21)
Given that we intend to restrict » < r*, by the definition of * given in (1.16), we conclude that we require

2
y<l+—,

V3

which is clearly satisfied for y = %

Given a smooth globally defined self-similar solution to the Euler equation corresponding to a self-
similar variable r satisfying (1.21), to prove the existence of an asymptotically self-similar solution
to the Navier-Stokes equations, it will be sufficient to show the nonlinear stability of such a solution
modulo finite modes of instability. The main ingredient is to first show linear stability of the self-similar
Euler solutions. This was achieved in [67] by writing the equation as a nonlinear wave equation and
proving stability in terms of carefully weighted spaces. In the present work, a simpler approach is taken
exploiting locality and the transport structure of the equation written in Riemann variables. In place of
weighted spaces, we modify the equation outside a neighborhood of the backwards acoustic cone of
the singularity in order to restrict the region of interest. Differing from the work [67], we exploit the
transport structure of the Riemann invariants in order to simplify the stability analysis. The nonlinear
stability will rely on a topological argument in a similar vain to [67, 75] (see [12] for an alternate
approach based on a Newton scheme).

1.6. Organization of paper

Section 2 describes Frobenius-like series expansions of the solution at Py and Py. In Section 3 and
Section 4, we apply barrier arguments to describe the solution in the region outside (respectively inside)
the backwards acoustic cone of the singularity. In Section 5, we complete the analysis of Section 3 for
the case of y = 7/5 and r — r*. The section collects analysis related to the r — r* asymptotic limit. In
Section 6, Theorem 1.1 and Theorem 1.2 are proved by combining the result of Proposition 4.1 with a
shooting argument in order to connect P to Py by a smooth solution. Section 7 is dedicated to showing
that the linearized operator of the Euler equations around the self-similar profile generates a contraction
semigroup modulo finitely many instabilities. Finally in Section 8, we use the linear stability analysis
of Section 7 in combination with a bootstrap and a topological argument in order to prove nonlinear
stability for the Navier-Stokes equations for a manifold of initial data of finite codimension. In particular,
Section & contains the proof of Theorem 1.3. Appendix A contains technical lemmas used throughout
the proofs and properties of the phase portrait in the case y = % Appendix B summarizes the details of
the computer-assisted proofs.

2. Expansion around P and P,

In this section, we describe the Frobenius-like series expansions of the smooth solutions passing through
P and starting at Py. The general approach will be to obtain a recurrence for the coefficients of the
expansion from imposing the ODE on the expansion. In the case of Py, we will obtain that the recurrence
can be solved for k£ ¢ N (due to a factor of the type m — k on the equation for the m-th coefficient).
In the case of Py, we will need to ensure that the appropriate conditions are met so that the profiles,
in Cartesian variables, are smooth at R = 0. The most elegant way of doing so will be reexpressing
our recurrence in terms of a new function W, that encodes W for positive arguments and a reflected
version of Z for negative arguments. The smoothness of WV at the origin will yield smoothness of both
our profiles at the origin.
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2.1. First-order expansion

‘We label the two solutions to Dz = Nz = 0:

YVr+(y+ DRy =3y> =2yr+10y —3r -3

Py = (Wo, Z0) = (

4y -1)?
72r+(7—3)7€1—3y2—67r+6y+9r—7)
4(y - 1)2 ’
== s (Yr=(y+ DRy =3y*=2yr+10y -3r -3
PS_( 0> 0)_( 4(‘)/_1)2
)’27+(3—7)R1—372—67r+6y+9r—7)
4(y - 1)? ’

where

Ri = ¥2(r =37 = 2y(32 61 +7) + (9r> - 14r +9).

13

2.1

(2.2)

2.3)

The points P, and Py are the only intersections of Dz = Nz = 0, so any possible smooth profile going

from Py to P, will need to pass through one of them in order to cross Dz = 0.

Let us consider the derivative of the smooth solutions to the ODE (1.10) with respect to & at P. The

derivative of W at P; to both solutions is given by

_ NW(Ps)

W= ———.
' Dw(Py)

Applying L’Hopital, the derivative of Z at P satisfies the second-degree equation

VDz(Ps) - (Wi,Z1)Z1 = VNz(Ps) - (W1, Z1),

(2.4)

(2.5)

which leads to two possible values of Z; corresponding to the two smooth solutions passing through

Py. The solution that we will work with corresponds to the vector v_ = (W}, Z;), where

V(=3 (R1+6)=3y(r=3)+2r)+ Ry +5r+5

Wi ,
4(y - 1)?
5 B =7V +y+ 1) r+y(y(9y =3R1 =25) + 10R) —=4(y = 1)R2 +27) = 3R +4(y - )R2 -3
a Ay - 12(y+1) ’
(2.6)
and
1
R =~ (176 = 277)y = 7)) = (Gy = 9)((y = )y + 2 + (y(y(18y = 52) +.50) = B)r
| 2.7

+R1IO(y =2y +((2=3y)y+5)r+5) + 18)2.

This value of Z; corresponds to the smooth solution that agrees up to order | k| with all the non-smooth

solutions around Pj (the simple example given in Section 1.4 is illustrative of this behavior).
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Define the vector v, by v, = (W, zZ 1), where

5 3y =7y +y+ 1) r —y(y(9y —=3R1 = 25) + I0R; +4(y — )R2 +27) + 3R +4(y - DR, +3
== ’
4y = 1)2(y+ 1)

Then the two smooth solutions at Py have & derivatives v, = (W}, Z;) and v_ = (W;, Z}).
The vectors v_, v, are eigenvectors of the Jacobian J at P of the reparameterized system (1.14). In

particular, the Jacobian J at Py is given by

7 = (Nw (Py)ow Dz (Ps) Nw (Ps)dzDz(Py) 2.8)
DW(Ps)aWNZ(Ps) DW(Ps)azNZ(Ps) ’ .
Note if v = (vw, vz) is an eigenvector of J, then it must satisfy the equation
(Nw (Ps)VDz(Ps) - v,Dw (Ps)VNz(Ps) - v) Av =0. (2.9)

Then, applying (2.4) and (2.5), we see that (2.9) is satisfied for v = v_, v, and hence v_,v, are
eigenvectors of J. We let A, and A_ be the eigenvalues corresponding to v_ and v,, respectively. We

obtain the equations

Nw (P
L= % (0w Dy (PYW + 05D 2(P)Z1). 2.10)
A= +/l+ = NW (PS)OWDZ(PS) + DW(PS)GZNZ(PS)~ (211)

Lemma 2.1. Let Dz | = VD z(Py)(Wi, Z1). Then,

k(r) = _Z1azDZ(Pg)Z—1 aZNZ(Ps)’ 2.12)

where we recall in (1.15) we defined k(r) = ::—i Moreover, we have that k(r) is a smooth monotonically
increasing function for r € [1,r*(vy)) such that r(1) = 1, lim,_,,+ k(r) = +oc0 and k’(r) > 0 for all

r € (1,r*(y)). Thus, k(r) is a bijection between [1,r*(y)) and [1, +0).
Proof. Note that the parenthesis in (2.10) is Dz 1. Then from (2.10) and (2.11), we obtain

Widw D z(Ps) + %ﬁff)azNz(Ps) — (0w Dz (Ps)Wy + 0zDz(Ps)Z1)
- Dz,

WiDw (Pq
IIVW“(/I(JS) )azNZ(Ps) - aZDZ(PS)Zl
Dz,

Noting also that W; = ngv gz; , we get the expression (2.12).

In terms of Z;, we have that the fact that (W1, Zl) is an eigenvector of J means

_ NW(PS)VDZ(PS) : (Wls Zl) (2 13)
= W, . .

Ay

Dividing this by (2.10), we get that
Dy, 4+ +y) 5 - Ra

" Dzi ~4+(1+y) 5 +Ry

(2.14)

k(r)

https://doi.org/10.1017/fmp.2024.12 Published online by Cambridge University Press



Forum of Mathematics, Pi 15

where D z1=VDgz - (W, Z 1), and we have substituted Dz i, D z.1 by their expressions in terms of
v, 1, Ri.

Now, we claim that k(1) = 1. From (2.14), it suffices to show that R, = 0 at » = 1. From (2.3), we
have R; = 2(y — 1) for r = 1. Plugging that into (2.7), we deduce that R, = 0 for r = 1.

We also claim that k(r) — +c0asr — r*. From Lemma A.11, we have that Dz ; > Oforr € [1,77),
and from Lemma A.12, we have sz,l > Oforr € [1,r*]. Using that Dz ; = 0 for r = r* (Lemma A.9),
we conclude the desired limit.

Lastly, we show that k’(r) > O from equation (2.14) via a computer-assisted proof. The code
can be found in the supplementary material, and details about the implementation can be found in
Appendix B. O

2.2. Taylor expansion around Pg (& = 0)

Let (W) (£),Z")(£)) denote the smooth solution corresponding to the direction v_ defined in the
previous section. Now consider its Taylor expansion around Pj (i.e., & = 0):

00 )

1 1
W@ =3 —Wag", and 2" (§) = > —Zu". (2.15)

n=0 " n=0 "’
Let us also define the Taylor coefficients of Dw, Dz, Nw, Nz as follows:

S Sl
Dw(W(€).20 @) = ) —Dwat".  Dz(W(©).27(€) = 3 — Dz ué".

n=0 " n=0 "

Sl Sk
Nw (WD @), 20 @) = ) —Nwat"s  NzW(©.27(©) = ) —Nzat".
n=0 n=0 '

For o € {W,Z}, D,(W, Z) are first-degree polynomials in W and Z; hence,
Doy =VD, - (Wy,Z,), oe{W,Z}, n>1, (2.16)

with the special case D, g = D,(Ps). In the case of N,, we have second-degree polynomials, so the
gradient is not constant in (W, Z). However, the Hessian matrix is, and we get the expression

K

n—1
-1
Now = VNo| -(Wn,z,,)+2(’f 1)<Wn_j,zn_j)<HNo><Wj,z,-)i o {W,Z}, nz1,
- J
J=1
(2.17)

with the special case N, g = No(Ps).

Proposition 2.2. Forn € N, letr € (ry, rp+1). If there is a solution to ODE (1.10) passing through P at
& = 0 with gradient (W1, Z1), their Taylor coefficients Wy, Z,,, for m > 2 satisfy the recursion relation

m-2

m—1
Dw oW = Nw o1 = )| ( . )Dw,m_l_,-wj+1, (2.18)
7=0
m-2 m
ZnDz1(m—k)=- Z (j)DZ,m—ij+1
j=1
+ (NZ,m - (aZNZ(Ps))Zm) - ZleaWDZ(Px)- (219)
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Moreover, the coefficients are iteratively solvable as both the coefficients Dw o and Dz 1(m — k) are
nonzero, and the expansion of the second line in (2.19) contains no terms involving Z,,.

Proof. Taking m — 1 derivatives in equation (1.10), we obtain
07~ (Dw (W, 2)8:W) = 97~ (Nw (W, 2)).

Expanding the derivatives, we immediately obtain (2.18). Moreover, Dw o # O as a consequence of
Lemma A.10. Taking m derivatives in the equation (1.10), we analogously obtain

m-2

m
sz,IZm = NZ,m - Z ( .)DZ,m—ij+1-
= \J
Now, we subtract the terms with Z,, in the quantities Nw ,, and Dz ,,, obtaining
m-2 m
Zm (mDz,1 — 07Nz (Ps) +Z102Dz) = — Z ( .)DZ,m—ij+l
j=1
+ (NZ,m - azNz(Ps)Zm) + Zl (_DZ,m + ZmazDz) .

Note that the terms in the second line do not depend on Z,,, as we have subtracted the dependence of
Dz ,, and Nz ,, on Z,, (see equations (2.16) and (2.17)). Then, applying (2.12), we obtain (2.19). We
have Dz ; # 0 as aresult of Lemma A.11. O

Proposition 2.3. Let n € N and I C (ry, rps1) a closed interval. There exists an absolute constant C
(depending on I and vy) such that we have the bounds

Wil +12:| < C™*hi. (2.20)

For& < 1/C, the series W) (£) = Y W;& /il and Z) (&) = . Z;&'/i! solve the ODE (1.10). Moreover,
the functions W) (£), Z") (£) are continuous with respect to r € 1.

Proof. In this proof, we will use the following notation:
w; = W,‘/i!, i = Zi/i!, do’[ = Do,[/l'!, and Noji = No’i/i!.

Then, from equations (2.16)—(2.19), we have

m-2

Dw oW = 1w et = Y dw 1w (j + 1), 2.21)
=0
m=2

ez (m=k) == dzm ;(j+1)zjm
j=1

+ (nz,m — (0zNz(Ps))zm) —ZiwmOw Dz (Py), (2.22)
8m
doym = VDo - (Wi, Zm), (2.23)
Nom = VNo|  + (W, 2 )+ir§j(w i Zm—i) (AN (Wi, z:)T (2.24)
o,m o P, ms><m m v m—js><im—j ° JoJs .
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We recall Dy o, Dz,1 # 0 from Lemmas A.10 and A.11, so they are lower bounded in /. Let €; denote
the Catalan numbers. Then for some constant M, we inductively assume the bounds

[wil + |zi| +|doi| + |no.i| < €;M72 (2.25)

for 3 < i < m. Since the constant C in (2.20) is allowed to depend on n, choosing C sufficiently large,
(2.20) trivially holds for all i < 2n + 2. Let us now assume m > 2n + 2. By (2.21), we have

m-3 m—1

W] < |”W m|+Z(J+1)|dWm j||W1+l|+ Z (J‘+1)|dW,m7j’|Wj+l‘
j=2 j€{0,1,
m-2,m-1}

m-2
SCuMM A M € 6y + €M
=0
< M™2C,00. (2.26)

Now we bound g,,+1 using (2.25) and (2.26):

|gm+1] S Wnat] +

1 <,
1 2 el feme g Do+ 12
j=1
< M"2C,00. (2.27)

We bound z,,41 using (2.25), (2.26), (2.27)and k < n+1 < 3

m—1
|zm+1] S - Z; ldz,me1—; G+ Dzja| + |gmet | + Wit |
j:
m—1
< M2 Z €m+1—j€j+l + Mm_2¢m+2
J=1
< M™72G,.5. (2.28)

Finally, from (2.23)—(2.26) and (2.28), we obtain

domst] + [noms1| S CazM™ 2. (2.29)

Then, (2.25) follows for i = m + 1 by (2.26), (2.28), (2.29), the assumption that M is chosen to be
sufficiently large and €,,.3 < 4C,,,1» < 16C,,,4.

Choosing C sufficiently large, from (2.25), we obtain (2.20). In particular, the series has a radius of
convergence of at least 1/C, independently of r € I (although depending on I).

Lastly, we need to prove the continuity of the series with respect to the parameter . We introduce
the dependence of W;, Z; with r, denoting the coefficients by W, (r), Z;(r). Let W (&) = W (r) L g

and denote similarly by Z(") the series formed by Z;(r). We show continuity with respect to r for W(r> ;
an analogous proof applies for Z("). Let &£ > 0, § > 0. For r, 7 € I with |r — 7| < &, we can bound

N-1
W€ - W6 < 35 )~ W<r>|'§' Z|w<)|'§' Z|w<)|"
j=0 j=N " J=N
il €1/
< 0 Wi = WiMI=r +2CZCJ|§|J
Jj=0 j=N
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As & < 1/C, we can take N large enough so that the last sum is smaller than £/2. As the coefficients
W;(r) are continuous, there also exist 6; such that |W;(r) — W;(¥)| < &/(2N) as long as |[r — 7| < 6.
Therefore, taking |6| < min;—o -1 d;, we have that (W) — Wwr+d)| < ¢ and this shows continuity
with respect to 7. O

As one can see from (2.19), the n-th coefficient of the Taylor series is of order O(|k —n|™"),as k — n
(equivalently, »r — r,). All the previous coefficients of the Taylor series are not singular as k — n.
However, the higher-order coefficients will not be O(1), smce they depend on Z,, via the Taylor series
recursion. The following Corollary studies the order in =ni of the higher-order Taylor coefficients

Corollary 2.4. We have the following asymptotics for r in a neighborhood of ry,, with n € N:
(Wil S 1+ 1k —n"L5] and 1 Z| S 1+ |k —n| L5 ] (2.30)

In particular, for m < n, we have |Wy,,| = O(1), and for m < n, we have |Z,,| = O(1). We also have that
1Znl = O(1 + |k = n|™).

Proof. From Proposition 2.2, we can iteratively calculate W,,, and Z,, with equations (2.16), (2.17),
(2.18) and (2.19). Each coefficient is a rational function of the previous coefficients. From Lemma A.10
and Lemma A.11, we have Dw o and Dz | remain bounded away from O for » in a neighborhood of r,,.
We trivially have that for m < n, the factor m — k in (2.19) also remains bounded away from 0. Then
the result holds trivially for W,,, in the case m < n and for Z,,, in the case m < n. The case m = n for Z,,
similarly holds using in addition that k() has nonzero derivative at r = r,,, (Lemma 2.1).

For m > n, each coefficient is a rational function of the previous one, with denominators only
involving Dz 1, Dw o and m — k, all of them bounded away from zero and infinity in a neighborhood
of r,,, (as m > n). We will prove (2.30) via induction in m, supposing it holds for all coefficients of
order < m.

We start proving the induction step for W,,,. As a consequence of the induction hypothesis, we know

that D, ; and N, ; are of the order O (1 + |k - nI‘L%J) for every i < m. From expression (2.18) and
the induction hypothesis, we have

‘k.

(Wil < 1+k—n| I-»11J+Z(l+|k—n| l'nlJ)(1+|k—n|l J)<1+|k—n| %], @2.31)
j=0

where we have used the floor concavity property |x] + [ y] > [x + y] for all x, y € R*. Thus, we obtain
the desired estimate on |W,,,|.
Now consider Z,,,. For the first line of (2.19), we have

m=2
m—j-1

( )DZm, ” Z(1+|k—n| |5 J)(1+|k—n| HJ)<1+|k—n| %51 232)

J=1

Now consider the second line of (2.19). Since the expansion of Nz ,, — dzNz(Ps)Z,, does not
involve Z,,, we have from the induction hypothesis and (2.31) that

|(Nzm = (0zNz(P5))Zm) — ZiWimOw Dz (Ps)|

m—1 m—1
< D VAWl +1Zil) Wil + D 1Zil (Zini| +1 21| Wi
i=0 i=1
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i—-1 m—1
< 3 W lk =l LD @ k= L) 3 (0 k= LS (14 = L5
i=0 i=1

+1+|k - n|‘|-7:%12J
< 1+ |k —n L5l (2.33)

Combining (2.32) and (2.33), we obtain the desired estimate on |Z,,| and hence conclude the proof by
induction. o

2.3. Taylor expansion around P,

We now aim to construct smooth solutions emanating from Py and reaching P, at & = 0. Let us recall
that Py is a point in the compactification of the phase portrait that corresponds to ¢ = 0, and where
S = +o0 and U has finite value (in W, Z coordinates, Py is at infinity along a line parallel to W — Z = 0).
Due to the singular nature of the coordinate change R +— ¢ near R = 0, and the singular nature of Py, it
is useful to instead work in terms of the self-similar coordinate ¢ = exp(¢&). Moreover, we will extend the
values of ¢ to negative £ as well considering a function WW({) on the whole real line that is associated
with W for £ > 0 and with Z for negative { (see a precise definition below). In particular, we will search
for a solution W to (1.13) for ¢ € [—1, 1] satisfying (W(1),-W(-1)) = (W, Zp). Such a solution
would correspond to a profile

W(&) =exp(=E)W(exp(§)),  Z(&) = —exp(=§)W(=exp(£)), (2.34)

solving equation (1.10). Thus, one can understand Z as the natural continuation along Py ({ = 0) of
the W solution. Moreover, we will see that the singular nature of the point Py is captured in the factors
exp(=£) of (2.34), so that the function W({) is smooth at ¢ = 0.

Proposition 2.5. For any A > 0, there exists a solution VW to (1.13) in a neighborhood of { = 0 which
can be written in terms of a convergent power series

W)= wil', (2.35)
i=0

such that wy = A. Moreover, letting v = 7/5 and r sufficiently close to r*(y), ory > 1 withr € (r3,rs),
there exists a value of A such that the solution can be continued to ¢ € [—1, 1] and (W(1),-W(-1)) =
(Wo, Zy). The solution corresponding to that value of A is continuous with respect to r.

Proof. Let us start by writing

V= 5OV - WD) +alW(Q) + W(=2)
G=={(r= DWW -W(-0)),

so that (1.13) can be rewritten as
VoW =G. (2.36)

The coeflicients w; will be determined by substituting the series (2.35) into the equation (2.36) in order
to obtain a recursion formula. Writing V() = X2, vi¢" and G({) = X2 g:{" yields the expression

n—-1

(n+Dvowner = gn — Z(i + Dvaiwist, (2.37)
0
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where

vi=1;i-1 + % (1 +a+(1- a')(—l)i“) ,
i
gi=-rw; - ]lz|ia'z wiwis i1 =21 awowisi . (2.38)
j=1

8i
Rewriting (2.37) and using vy = a@wy, we obtain

n-1

awo(n+ 1+ 2L Wast = &n = (i + DVaiwien, (2.39)
i=0

which gives an inductive definition of w; given wg = A. We now prove that the corresponding series is
analytic in a small neighborhood of the origin. We inductively assume that

lwil + 18| + [vil < €;M™" forall2 <i<n,

where we recall €; denotes the Catalan numbers. We trivially get for i = 0, 1 that |w;| + |g;| + |vi| < 1.
Then from (2.39), we have

-2
1 n
w s—'+Zi+lv_-w- + |vullwi| + nlvi||w
et = gy (Bl 20+ D Wl b onlbal vl
n-2
S €M+ mm! Z C-iCin

i=1

S M "N (Cpi1 +Ci2) S MTIE,yy. (2.40)

Here, we used that €,,,; = 27 €;€,_; and €41 < €; < ;1. We can then use this bound together
with the inductive hypothesis to bound g, and v,. For g,+1, we have

n
et S Dot + [ D wiwn ool + willwaeal | € M€,
i=2

Finally, (2.40) implies |v,.1| < M""'€,1, closing the induction. Since €; < 4, then we obtain that the
power series that the series W({) = X2, w;{" is analytic in a small neighborhood (-6, 6) of the origin.

Under the change of variables W(log{) = %W(( ) (and analogously with Z), we have that (2.36)
reads like ODE (1.10). Thus, we set (W(log ), Z(log $)) = 2(W($),-W(-%)) and solve (1.10). As
each coefficient w; is continuous with r, we have that W, for a fixed £ € (=6/2, 62), is continuous with
respect to r. This is done in exactly the same way as we did for (W) (£), Z(")(¢)) in Proposition 2.3.
Thus, the continuations W and Z are also continuous with respect to » because of the stability of the
ODE with respect to r.

Finally, we need to prove that the solution (W,Z) reaches P,. If we consider the field
(NwDz,NzDw) (which reverses time because Dz < 0), our solution corresponds to a trajectory
arriving at Py. Let H be sufficiently large, P*!) be the point P, + (H, —H) and P) be the point in the
same vertical as P“¥) and lying in Dz = 0. We call 7H) the triangle formed by P, P*!) and P(H),
which is drawn in Figure 3. We have that

W (log ) + Z (log £) = 2w + 0(0) = —

-1)
—3(7 ) +0(9).
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R AN Y
\ AN 3\\\ \\\ |
B \ \ \\

5
Figure 3. Field (NwDz,NzDw) in (W, Z) coordinates for y = % and r = %. The shaded area
corresponds to the triangle TV,

Let us argue that for { > 0 sufficiently small and H sufficiently large (depending on ¢), we will have

that (W (log £), Z(log ¢)) lies in 7). We just need to show that _;t(yr__ll)) is bigger than Wy + Z (which
is the value of W + Z along the line Py P(H)). We have that

—4(r - 1) 1

—— - Wy +Zp) = ——= (-7+9 -3yr-3Ry),

30 - 1) (Wo + Zo) 6()/—1)( +9y+r=3yr 1)

so we just need to show the right parenthesis is positive. Now,

(<74 9y +7r = 3yrP —9RZ = 16(r — 1)(2+ (=5 + 39)r) > 16( - N X=X =9

where in the last inequality, we used r < 2 — % from Lemma A.6. Therefore, it suffices to show
=7 +9y +r—3yr > 0. Using again that r < 2 — %, we have that

-D(1+3
—7+9y+r—3yr>w>0.

We conclude that (W (log ), Z(log )) lies in 7).

We now show that the solution cannot come from the boundary of 7H) except from point Pj.
It suffices checking that the normal component of the field (NzDw, Nw D7) at each side of 7 ()
points outwards (except at the extremum Py). For the vertical segment P, P(H) | this is guaranteed by

Lemma A.21, and for the side PyP(H), this is guaranteed by Lemma A.22. For the side P(H) P(H),
this follows from the fact that Ny D > 0 (Lemma A.16). Using Proposition 1.6, the fact that 7 %) is
bounded and that there are no equilibrium points in 7 %) the trajectory has to come from Pj. The fact
that there are no equilibrium points on 7 ) follows from 7 ) ¢ Q and Lemma A.17 except for P~
in the case y = 7/5, r sufficiently close to r* and the equilibrium point P. In that case, note that as
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y =17/5, Py is the point with highest Z of 7(#), and by Lemma A.17, P~ has larger Z, so we deduce
P g TH). o

From now on, we will always choose A such that the solution reaches P, at £ = O (that is, { = 1).
We will let (W2, Z?) to be that solution in (W, Z) variables. Therefore, in (W, Z) variables, we get the
Taylor expansion

eI el

We(€) = Aeé + WS 2@ = DY 25T (2.41)
= ' =0 '

for some W? ;= (=17 zy? i Moreover, the series (without the e™¢ term) converges uniformly for
& < M < 0 for some M sufficiently negative.

Remark 2.6. Note from the proof that the solution (W?, Z¢) will stay in the region Q for & < 0. That
is because the curve (W2 (&), Z2(£)) for & € [-M’,0] will stay in some 7™ for sufficiently large M
(as seen in the proof), and therefore, as TM) - Q, we get that (W2, Z?) stays in Q for all £ < 0.

Note also that W?(¢) is decreasing for all ¢ € (—o0, 0]. This follows from the fact that Dy > 0in Q
and Ny < 0in 7™ for every M from Lemma A.16.

3. Left of P

This section is dedicated to showing properties of the solution left of P in the phase portrait, which in
the self-similar radial variable & corresponds to the region & > 0, or equivalently, the region outside the
backwards acoustic cone of the singularity. In particular, the main goal of this section is to prove the
following proposition.

Proposition 3.1. Suppose either n = 3 with y € (1,+00) or that n € N is odd and sufficiently large
withy = 7/5. Let r € (ry, ps1). The smooth solution W) (&), Z\") (&) defined in Proposition 2.3 can
be continued up to & = +oo, and it satisfies limf_)wo(W(r) (&), Z7(€)) = (0,0) = Poo. Moreover, the
solution stays in the region where Dy > 0,Dz > 0 forall ¢ > 0.

We will prove Proposition 3.1 using a double barrier argument. We will consider a barrier for the
near-left region (b"!(s)) and another one for the far-left region (b()). The field will point upwards
along the barrier b(¢). The smooth solution starts below it, and so the barrier will be insufficient to
bound the behavior of the smooth solution. The barrier b™ (s) will have the field pointing upwards, start
above the smooth solution and will be valid over an interval sufficiently long to intersect " (¢). Then,
concatenating b™ (s) (up to its intersection) with bf(7), one obtains a barrier bounding the trajectory of
the smooth solution.

Let us define the far-left barrier as bf(7) = (bev (1), bﬂZ (1)), where

1 1
bl (1) = Wo + By Wit + Ethz and bY(1) = Zg+ B1Zit + 53312, (3.1

where B, By and B3 will be chosen to enforce that (bgv (1), bﬂz (1)) = P~ and a first-order cancellation
at this point. The point P~ is defined as the only solution to Ny (W, Z) = Nz(W, Z) = 0 in the region
{W > Z} (there are two solutions in the symmetry axis W = Z and another two solutions outside the
axis, one in each halfplane). P is given explicitly by

2(\/§—l)r _2(1+\/§)r
3y-1 ~ 3y -1

Pe = (X0, Yp) = (3.2)

https://doi.org/10.1017/fmp.2024.12 Published online by Cambridge University Press



Forum of Mathematics, Pi 23

Moreover, if we do a first-order expansion around P, we observe that one eigenvector of the matrix
((VNw)/Dw,(VNz)/Dz) is given by (X;,Y;) with

0= —\/2 (53 - 3y (4593 — 110y +88)) r + (27y% - 30y +7)2 + By (yBy(y +20) — 94) +28) +25)r2
+3V3y2(r = 5) + 2V3y(r +7) = V3(r +3),
X, = —2(37+4\/§—9) (372 (r2 —3) —6y(r —2)r +6y —r(r+4) - 1),

Y, =®(3(\/§—1)yr—(\/§—3)(3y—1)—(3+\/§)r).

In order to achieve the desired cancellations, we then choose

(Yo — Zo) X1 — (Xo — Wo)Y)
X1Z, - WiY;

By =2 (Xo - Wy - BiWy),

By =2Yo-Zo- Bi1Z)).

By =2

s

(3.3)

It is clear that the definitions of B, and B3 ensure that bgv (1) = Xp and bﬂz(l) =Yy, respectively. B is
defined so that (X1, Y)) is proportional to b1/ (0). In particular, we will require

d
0=X1,Y)A Ebﬂh:l

= (X1,Y1) A (B1W; + By, B1Z| + B3)
= (X1, Y1) A (B1(=W1,=Z1) +2(Xo — Wo, Yo — Zp)) .

Solving for By, one obtains the first equation of (3.3).
In order to check the validity of the barrier, we need to show the positivity of the seventh-degree
polynomial

PY(1) = b () Nw (b (1)) Dz (b" (1)) - b () Nz (B (1)) Dw (b (1)). (3.4)

Note that the vector (bg’(t), —b%v' (1)) is normal to the curve bfl(7) and points in the upwards direction.

Proposition 3.2. Let y € (1,+c0) and r € (r3,r4). We have that P'(t) > 0 for every t € (0,1).
Moreover, we have that Dy (b (1)) > 0 and D (b (1)) > 0 for any t € (0, 1].

Proof. The statement P(r) > 0 for every t € (0, 1) is proven via a computer-assisted proof. The
code can be found in the supplementary material, and we refer to Appendix B for details about the
implementation.

With respect to D (b(¢)) > 0, note that this is a second-degree polynomial vanishing at ¢ = 0. For
t > 0 small enough, Dz (b"(t)) > 0 since the slope of bfl(z) coincides with the slope of the smooth
solution (and Dz ; > 0 by Lemma A.11). Now, as Dz(P<) > 0 (Lemma A.20), the second-degree
polynomial D (b(¢)) cannot be non-positive at any 0 < 7y < 1 because otherwise D (b (7)) would
have three roots by continuity (one at r = 0, and two in (0, 1)).

Lastly, Dy (b'(¢)) is also a second-degree polynomial which is positive at # = 0 and ¢ = 1. It would
need to have two roots in [0, 1] in order to be negative for some ¢ € [0, 1]. That is impossible since
its derivative at 0 is positive: bf1(¢) agrees up to first order with the smooth solution and Dy, ; > 0 by
Lemma A.26. ]

For the case y = 7/5 and r € (ry, rps1) for n odd large enough, we instead consider the barrier

1% W z z
bY (1) = (Wo + Wit + 7%2 - (Wo + W+ 72) £, 70+ Zit + 728 - (ZO +Z+ 72) t3) . (35)

https://doi.org/10.1017/fmp.2024.12 Published online by Cambridge University Press



24 T. Buckmaster, G. Cao-Labora and J. Gomez-Serrano

It is clear that the barrier matches up to second order at zero and that bg /s (1) = P = (0,0). In the very
same way as before, we define the polynomial

7/5(t) - bg/,s Z(I)NW(b7/5(t))DZ(b7/5(t)) bg/; W(t)NZ(b7/5(t))DW (b7/5(t))- (3-6)
We have the same type of result.

Proposition 3.3. Let v = 7/5, n € N large enough and r € (ry, rp+1). We have that P 75 (t) > 0 for
everyt € (0, 1). Moreover, we also have that D (b 5(t)) > 0fort e (0,1) and Dz(b 5(t)) > 0 for
te(0,1)\ [t‘7"/5, 7/5] for some t7/5,t;’7§ such that Dz(b /S(I‘ /5)) =Dz(b /5(t(7)7§)) =

Moreover, the points P7/5 7/5( 7/5) and P‘;% = /5 %) are located to the left ofP

Proof. We have that Dy, (b1 /S(t)) is a third-degree polynomial. Calculating this polynomial at
r =r*(7/5), we obtain

DW(bE/S(t))L 3;6 ( _52 (3«/5— 10) Py (57«/’ 91); 33 (3«/’ 5) £ +198 («/’ 1)) .
As all the coefficients are positive, and we obtain that the coefficients of Dy, (b 75 (7)) are still positive
for r sufficiently close to 7*(7/5), so that Dy, (b1 /5(t)) > 0fort e (0,1).

With respect to P7 /s
coefficients of bg /5 (1) agree with those of the smooth solution passing through Ps. We also have that
Pg/s(l) = 0 because Ny (Pw) = Nz(Ps) =0and Dw (Ps) = Dz (Pw) = 1. Moreover, we have that

(1), we observe that this polynomial is a multiple of 7> since the first three

PRA(1) = b5 (1)D7(Pe) VNW (Poo) - B /(1) = b [ (1) Dy (Peo) VNZ(Pos) - b /5(1)
= b5, (1(=r,0) - b (1) = B /5, (1)(0,=r) - B /5(1) = 0

Therefore, we see that Pﬂ 5(t) =(1-1) 3Qﬂ 5(t) for some sixth-degree polynomial Qg /S(I). We just
need to show that Q 75 (1) > O for ¢ € (0, 1). Calculating Q7/5 (t) at r = r*, we obtain
0l5(n)] _ =375 (178453725 - 22507109 £ + 25 (242253290V5 - 88777981 ) 1°
r=r*
+10 (1945028708\/3 - 2421950855) * + 660 (12759056‘/3 - 8257439) P

+7260 (1604200\/5 - 2790277) 2 21780 (137\/5 - 38799) 1 +313632 (6133\/5 - 7995) .

As all the coefficients are positive, they will be positive for r sufficiently close to r*, and therefore, for r
sufficiently close to r*, we have that Q /S(I) >0 fort e (0,1).

With respect to Dz, we have that Dz (b 75 (7)) is a multiple of 7 (as it vanishes at zero), and moreover,

2, 1 2
2 ezt

1
DZ(b7/5(t)) = 3.7

for some DHZ’3. We have that Dz ; > 0 from Lemma A.11, so the polynomial is initially positive.

However, at r = r*, we have that Dz = 0, DZ 2 = 192694‘f < 0and 22 Z 2= 2452‘;3‘f > 0. Therefore,

it is clear that for r sufficiently close to r*, we have two real roots of the second-degree polynomial
(3.7), which we define to be £ _ and £%. Moreover as Dﬂ 5 > 0, the sign of (3.7) is positive except for

7/5 7/5°
m out
te [t 5]
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Lastly, we just need to show that bg 5 (ti7‘>5) is located to the left of Pj; that is, we need to check

~Dy,- \/DZZ’2 ~8D2, DY /3

bl < Wp. (3.8)
/5.W fl
2Dz,3/3
This is checked in Lemma A.15. O
We define the near-left barrier to be
1
1 i
byw(s) = Z ﬁWiS ,
=0 (3.9)
1.
b, (s) = i—|zisl
i=0

and define b} (s) = (b, (5), b7 ,(5)). We have the following:

Lemma 3.4. Let n = 3 withanyy € (1, +c0) or either n € N odd and sufficiently large withy = 7/5. Let
r € (Fn,Tns1). We have that (W) (€), Z)(&)) is initially above b™ (s) for s and ¢ sufficiently small.
That is, for the same value of W, Z is higher for the smooth solution.

Proof. Both curves (W), Z())(£) and b (s) agree in their Taylor expansions around Py up to order
n. If the (n + 1)-th coefficient is given by a term (W, |, Zn+1)(£l++ll)!, this will have a normal component
over the tangent line of size —(Wy, Z1) A (Wy41, Z"+1)(;1+T)! (where the sign is positive for a deviation

above the tangent line at P and negative for a deviation below the tangent line at Py).
Therefore, we just need to check

(W1, Z1) A Wast, Zna1) > 0 © WiZyy — ZiWpa < 0.

This is done in Lemma A.26 for the case of n = 3. For the case of v = 7/5 and n odd sufficiently
large, this will follow from Section 5, concretely from Corollary 5.9. O

We now consider the (4n — 1)-th degree polynomial
Pl (5) = by 7 (s)Nw (b () Dz (b (5)) = by iy (s)NZ (B} () Dw (b (5)).  (3.10)

whose sign determines the direction of the normal component of the barrier along 5% (s). In particular,
we want Pﬁl(t) to be positive, as this corresponds to the field pointing upwards.

Proposition 3.5. Let y > 1, n = 3 and r € (r3,r4). There exist sy and ty depending on r such that
bz(t*) = b"(s4). Moreover, P'(s) > 0, Dz (b (s)) > 0 and Dy (b (s)) > O for every s € (0, 5y].

Proof. We first formulate the barrier »(¢) in implicit form using the resultant

B\W, Wy - W 0
2 Bw Wo-Ww
B\Zy Zy-Zz 0 |

5 Bz Z-z

BY(W,2z) = (3.11)

SIS

so that the equation b(#,) = b"(s4) can be reformulated as B (b%(z,)) = 0. Let us fix s_ = 35/100.
We will divide the proof in five steps:

1. Foreveryy > 1, the polynomial Bf (bgl(s)) is negative for s > O sufficiently small forall » € (r3,r4).
2. For every y > 1, the polynomial B (b3 (s_(k — 3)) is positive for all r € (r3, r4).
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Figure 4. Region T for the case y =7/5 and r sufficiently close to r*.

3. Forevery v > 1, we have Pg‘l(s) >0foralls € (0,s_(k—23))and r € (r3,r4).
4. For every y > 1, we have DW(bgl(s)) >0foralls € (0,s-(k—3)) and r € (r3,r4).
5. For every y > 1, we have Dz(bgl(s)) >Qforalls € (0,s_(k—3))and r € (r3,r4).

From items 1 and 2, by continuity, there exists a value s, € (0, s_(r — r3)] such that B"(b§'(s+)) = 0

and therefore, there exists 7, such that bfl (ty) = bgl (s%)- Then, items 3, 4 and 5 give us the desired result.
Finally, we prove each of those steps with a computer-assisted proof. The code can be found in the
supplementary material. We refer to Appendix B for details about the implementation. O

Lastly, we require an analogous Proposition for the case where y = 7/5 and k sufficiently large.

Proposition 3.6. Let y = 7/5, and n odd sufficiently large. There exist s7/5in and t7)sinc Such that
7/5 n(t7/5 int) = b° (S7/5 int)- Moreover, P"l(s) > 0 and DW(b“I(s)) > 0 for every s € (0, 57/5,int)-
Lastly, either Dz(b%(s)) > 0 for s € (0, 57/5,int], or there exists some s.,

Dz (b" (s 0 and the point b"\(s! ) is located to the left of Py.

2/5.ne < S7/5.int such that

7/5,int)) - 7/5,in
The proof will require an asymptotic analysis of the Taylor series done in Section 5, and it can be
found at the end of that section.

Proof of Proposition 3.1. Fory =7/5 and n sufficiently laIge, we can consider the closed region T of
the plane which has a corner at P and is enclosed by b7/5 2 (1), bg/s(t), Dz =0, the diagonal W = Z

and the vertical line W = W, (starting at (Wy, Wp), ending at P). The intersection between b“l5 (1)

and bﬁ 5(t) is proven in Proposition 3.6. There are two intersection points between b1l /5(1) and Dz =0
as indlcated in Proposition 3.3. Note that Proposition 3.3 glves us two cases. In the first case, we go

from P, to P, by following b 1/5 (s) for 0 < s < §7/5 int, then b7/5 up to P17"/5, then Dz =0 up to P;"/lg

and finally b 75 (1) up to P. In the second case, the path is the same except that we connect directly
b“1 with Dz = 0 at b“l(s7/5 int

part of 7 is always located to the left of Py (by Proposition 3.6 or Proposition 3.3). For general y and
r € (r3,r4), the endpoint of b(7) at t = 1 is P, so we consider the same region with the addition of
the barrier b (¢) = (Xo—t,Yy +1) fort € [0, %(Xo —Yp)]. That is, we take 7T to be enclosed by b‘;l(t),
bi(1), b2 (t), W + Z = 0 and W = W,. The intersection between bg‘l(t) and bf(7) is guaranteed by
Proposition 3.5. We show a sketch of region 7 in Figure 4 and Figure 5.

We will now show that the region 7 does not intersect the line Dy = 0. We first show that the line
Dyw = 0 does not intersect b"(¢) and b (). For the case r € (r3, r4), this follows as a consequence of
Proposition 3.5 and Proposition 3.2, and for the case y = 7/5, n odd sufficiently large, this is follows

). We should notice that in any case, the region of Dz = 0 which forms
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0,~ O

Figure 5. Region T for the casey > 1 andr € (r3,r4).

from Proposition 3.3 and Proposition 3.6. In the case r € (r3,r4), the fact that the line Dy = 0 does
not intersect b3 (¢) follows from Lemma A.19. Moreover, as Dy is increasing with Z along W = W,
and is also increasing with ¢ along (¢, t), we conclude that Dy > O in all 7. As Dy = 0 is a straight
line and 7 is connected, we obtain that Dy > O inall 7. The same reasoning allows us to say that 7
only intersects Dz = 0 at P and (in the case where y = and r sufficiently close to r*) the points in
the segment between P™ and P°"t defined in Proposition 3. 3

The smooth solution W) (¢), Z(") (¢) is in T for small enough & due to Lemma 3.4 and the fact that
W, < 0 (Lemmas A.26 and A.7). It cannot exit 7~ through b™ (¢), b7 (¢) or b*"2(¢) due to Proposition 3.5
and Proposition 3.6 (for 5" (r)), Proposition 3.2 and Proposition 3.3 (for bf()) and Lemma A.19 (for
beX(r), r € (r3,74)). In the case of y = % and r close enough to r*, it cannot exit through Dz = 0
because that region is always located to the left of Py, and the field points inwards there (Lemma A .22).
It cannot exit through the line W = Z because that line is an invariant of the field (Nw /Dw,Nz/Dz
is proportional to (1, 1) in that diagonal). Also, it cannot exit through W = W since Ny /Dw < 0
(Dw > 0 from last paragraph and Ny < 0 from Lemma A.20).

Therefore, as 7 is bounded, Proposition 1.6 yields that either (W), Z(")) converges to some point
of T with Dy = 0 or Dz = 0 or it converges to some equilibrium point inside 7 as ¢ — +oo. There
are no points with Dy = 0 due to the second paragraph. The solution cannot converge to the points
of Dz = 0 in the segment [P‘7“/5, P‘;‘;;] because the field points inwards to 7 in that segment (due to
Proposition 3.3 and Lemma A.22). Now, we show that the situation where the solution converges to Py
is also not possible. As P is the point with mlmmum Z in Bo(Ps) NT for & small enough,> we would
need to have points in 7 arbitrarily close to Py with N2 D > 0. In order to show that this does not happen,
we just need to check that Dz > Oand Nz > 0in (7 '\ {P ) N B (Py) for £ small enough. As the corner
of 7T at Py has less than x radians (because W < 0), we just need to check VD7 (Py) - (W1, Z;) > 0,
VDz(PS) . (0, 1), VNz(PS) . (WI,ZI) > 0 and VNz(PS) . (0, 1) > 0. Clearly, 0zDz = (‘y + 1)/4 >0
and Dz 1,Nz1,0zNz(Ps) > 0 due to Lemmas A.11, A.26 and A.7.

Thus, we conclude that W), Z(") converge to some equilibrium point of 7 — that is, some point
with Ny = Nz = 0. There are four solutions to that system, which are (0,0), (-7, —r), Pe,—P<. The
point —P« clearly lies in the half-plane Z > W, so it is not in 7. The point (—r, —r) is also never in 7.

3This is a consequence of 7 N Bz (Py) lying the the sector to the left of Ps bounded by W = W, and Dz = 0, for sufficiently
small &. The fact that 7 N B (Ps) lies on Dz > 0 follows from the previous considerations, as we showed that 7 is inside
Dz > 0. The fact that 7 N B (Py) liesin W < W for & small enough follows from noting that Py is the corner of 97 formed
between W = Wy and b™ (¢) and b"’,{,’(O) = W) < 0by Lemmas A.26 and A.7.
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For the case y = 7/5, n sufficiently large, this is trivial and for the r € (r3, r4) case, this is because
b () intersects W = Z at some point above (—r, —r) (Lemma A.26).

Finally, we show that the solution does not converge to P<. For the case y = 7/5 with n sufficiently
large, this point is discarded arguing that P~ is not in 7. We can parametrize bg /5(1) by W because

bg/s(t) is decreasing by Lemma A.24, so all the points (bg/s,w (¢),Z) with Z < bg/s,z(’) are outside
T. That is the case of P~ due to Lemma A.24. Now we show that the solution does not converge to P~
for the general y case with r € (r3,r4). Note that P< is a saddle point of the field (Nw Dz, NzDw)
due to Lemma A.17. Therefore, there is only one direction along for trajectories converging to P, and
will be given by the eigenvector of negative eigenvalue, v_. We will see that there are not points in T
approaching P~ in direction v_ (or —v_), and that will conclude the proof.

Let us fix the angles —7 < §_ < 8, < 6_+7m < m,sothat _, 6_+x indicate the angles of v_, —v_ and
0+, 0, + m indicate the angles of v, —v.. Locally around P, the angular component of the field around
a saddle point points counterclockwise in the region ® = (6_,6,) U (6- + «, 6, + m), while it points
clockwise in the region ¢, = (64,0_ + 1) U (0- + 7, 04 + 27m). Let 6g, Oexira € [—7, ) be the angles at
which those barriers arrive to P<. Note Oexira = 371/4 and note also 65 < 37/4 by Lemma A.25. As the
field points inwards to 7 on the barriers b and 5", we get that 63 € @y and Oexira € O¢,. Therefore,
the set (6f, Oextra) N {0 — m,0_,0,,0_ + m, 0, + } has an odd number of elements. If there are three
elements, we get Oexra — 01 > 7, which contradicts Lemma A.25, so there is only one element. If that
element is 8_ or 6_ + m, we would get that g € Oy, and Oexra € O, Which is also a contradiction.
Thus, 6_,0_ + 7 ¢ (0q, Ocxira)- O

4. Right of P,

This section is dedicated to showing properties of the solution right of Py in the phase portrait, which
in the self-similar radial variable & corresponds to the region & < 0, or equivalently, the region within
acoustic cone of the singularity. In particular, the main goal of this section is to prove the following
proposition.

Proposition 4.1. Let us consider the smooth solution of Proposition 2.3 for ¢ < 0. Let either n = 3 for
v > 1 orn € N odd, and sufficiently large for v = 7/5. Then, there exist r, € (ry, rn+1) such that the
smooth solution (W) (&), ZW) (£)) lies in QY“) andrg € (ryp, rus1) such that the smooth solution lies

in Qér") (Where here, QY) and Qér) are defined in Remark 1.7).

The strategy for the proof of this proposition will be similar to the proof of Proposition 3.1. We will
consider a near-right barrier that matches up to the n-th (or (n + 1)-th) coefficients with the smooth
solution, and we will also consider a far-right barrier that intersects the near-right barrier within the
interval of its validity. This approach is similar to the one employed on the left, since in both cases,
we need to use a local barrier that matches up to n-th order with the smooth solution in order to
capture the singular behavior of Z,,. As in Section 3, we also concatenate this barrier with a global
barrier (the far-right barrier) that matches better the behavior of the solution far from Ps. The main

difference with respect to Section 3 is that here, we will work asymptotically as r — r; orr —r, ..
We consider the near-right barrier

nq .
byw (1) = Z i—,Wi(—f)',

i=0

n l . ﬁ
b (1) = Y —Zi(—1) N Zn (=)
w2 (1) ;i, (=0 2™

where (3, is sufficiently large. We will always assume that » — r,, (or rp4; — r) is sufficiently small
depending on 3, (or 5,+1). We will use the standard big-O notation whenever the implicit constant does
not depend on S,, and whenever we use Og,, the implicit constant is allowed to depend on 3.
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We also define the curve b} (1) = (b‘r‘:W (1), by, (1)) and consider the (4n+3)-th degree polynomial

Py (1) = by 7 ()Nw (b (1)) Dz (b, (1)) = by 3y (1)Nz (b, (1)) Dw (b (1)). 4.1
As usual, the sign of P)'(¢) indicates the direction of the normal component of the field in this barrier.

We have the following result for this sign.

Proposition 4.2. Let either n € {3,4} for vy > 1 or n € N sufficiently large for y = 7/5. There exist
constants &, ¢ such that

e Fornevenandr € (r, — &,1,), we have P¥(t) < 0 for all t € (0, c(n — k)'/™).
e For n odd, B, sufficiently large and v € (rp,rn + &), we have P (t) > 0 for all t € (0,c(k -
! 2p,)

Proof. First, note that P (¢) is a multiple of ¢"*! since " (¢) matches the smooth solution up to
n-th order. By Corollary 2.4, the only terms in b)(#) which are not O(1) in a neighborhood of r,

are %Zn(—t)" and ﬁznﬁn(—t)"“, which are Og, (k—ln) Summing the terms, the asymptotics for

P} (t) are given by
PY (1) = C1 Zpt"™ + G227
+0 (["+1)+0 ﬁ +0 [2—n +0 ﬂ +0 ﬂ
Bn Bn k—n Bn (k_n)2 Bn (k_n)3 Bn (k—n)4 ’
4.2)

for small ¢ and |k — n|. In order to calculate C;, we take n + 1 derivatives in P, () and look for the terms
with a factor Z,, (as the rest of terms will be O (1), thus contributing to O (#**!) in (4.2)). Note that P% (¢)
already involves one derivative, so we will have terms with n + 2 derivatives in total. At ¢ = 0, we have

(=129 P = (n+ 1)BuZn(=91) Dz (b)) Ny (b)) + Z1 (=)' Dz (b)) Nw (b))
= Wi(=0:)" ' Nz (b})Dw (b)) + O(1Zy)).
Collecting the terms involving Z, 3,,, we define

Cy=—(n+1)Dz 1Nw(Ps) = Z10zD7z(Ps)Nw (Ps) + Wi0zNz(Ps)Dw (Ps) 43)
= Nw (Ps) (—(n+1)Dz1 — Z10zD7(Ps) + 327Nz (Py)), )
so that we obtain
(=01 PR\ (0) = C3ZufBn + O(1Zn)).

As |r, — r| < £ and we are taking & small, we may evaluate the sign of C3 by looking at its sign at
r = ry, which by continuity will remain the same sign in a neighborhood of k = n. Let us recall from

Lemma 2.1 that k = %, where sz,l =VDy(Py) - (Wi, 7)) and Z; was defined in (2.1). Thus, using
(43)atk=n= g;: yields
C3 «
=-Dz1-Dz1—210zDz(Pg) +0zNz(P;)
Nw o

=Dz, - dwDz(Py)Wi = 9zDz(Py) (Z1 + Z1) + 9zNz (Py). 44
Note Z;, Z are the two solutions of the second-degree equation

97D 77} + (0w Dz (Ps)Wi — dw Nz (Ps)) 21 — dw Nz (Ps)W; =0,
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and hence,

S _OwDz(Ps)W) — 0w Nz (Py)
! ! aZDZ(PS)

Substituting this expression into (4.4) and canceling terms, we deduce
C3=-Nw oDz,

Using Lemmas A.26 and A.11, we conclude that C3 > 0 for k = n, and thus, it is positive for r in a
sufficiently small neighborhood of r,,.
‘We have that

1
T (n+1Z,

(_1)n+1
(n+1)!

Ci (=0,)"™' P (0) > (BaC3+0(1)).

Therefore, choosing §3,, sufficiently large, r close enough to r,, and using that C3 > 0,

. Gl
Cy) = (-, c > LGl 4.5
sign(C1) = (=1) 1> 5 (4.5)
We calculate the term C, in (4.2). Taking 21 — 1 derivatives in P™(¢) and looking for terms with Z2,
we obtain
2n 92n-1 pnr 2n—1 n nr
(D202 Py = |7 20 D2 (B Nw (P) + Op, (Z)
Therefore,
1 2n -1 l+a 1
C=—— 0zDz(Ps)Nw (Ps) = ——— ————Nw (P 0, 4.6
2 (2n—1)!( ) 2Dz (Ps)Nw (Ps) = — FTCEE w(Ps) < (4.6)

where the sign is due to Lemma A.26.

Now that we have analyzed C; and C, in (4.5) and (4.6); let us go back to (4.2) and consider the
cases of n odd and even separately.

Odd n case. We have that

IBnC3

€L > e )

>0 and C; <0

by (4.5) and (4.6). Moreover, we have that for odd » and r sufficiently close to r,, from above, Z,, > 0
(Corollary 5.8 and Lemma A.31); moreover, assuming in addition that 83, is sufficiently large, and
"2 < " 2(k — n) By, the equation (4.2) yields

G

e " 2|Co|Zu(k = n) .

1
PY (1) > Eclz,,t’”‘ + G722 > 7,8,

Hence, since Z,,(k —n) = O(1), and we may choose ¢ sufficiently small, we obtain that P} (z) > 0.
Even n case. For this case, we obtain that for 8, sufficiently large,

C
C1<—m<0 and C2<0

by (4.5) and (4.6). Moreover, for n even and r close to r,, from below, we have that Z,, > 0 (Lemma A.31
and Corollary 5.8). Therefore, taking g, sufficiently large, r close enough from below to r, and
t <e(n—k)'n (4.2)yields
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1 5 et t2n t3n—l t4n—1
Pgr(l‘) < ECZZ”t - +0ﬁn ( )

=02 (=k)? " (n—k)

C
= Zrzltz”_1 (72 +0g, (c(n Yy 4 CZ")) ,

which is negative as long as c is chosen small enough since C, < 0. m}

Lemma 4.3. Let n = 3 withy > 1 or n € N odd and sufficiently large for vy = 7/5. There exists € > 0
sufficiently small such that the following holds. For every r € (ry+1 — €,1y), we have a value tp > 0
with Dz (b}, (1)) < 0 fort € (0,tp) and Dz (b}, (tp)) = 0. Moreover, we have tp < (n+1 k)ln
asr —r, .,

Proof. We have that Dz (b}, (7)) is a (n + 2)-th degree polynomial, which is multiple of 7 since
Dz(by,1(0)) = Dz(Ps) =0

Moreover, we have that at ¢ = 0,

{a’Dzw“:l(z))—( 1)IVD (Py)(Wysts Zns1),  forl <i<n+1, wn

A2D 2 (B™ (1)) = (~1)VD 7 (Py)(0, Zus1 Bus)-

Corollary 2.4 tells us that all the coefficients of Dz (b}, (7)) are O(1) for r in a small neighborhood of
Fn+1, €xcept for the (n + 1)-th and (n + 2)-th coeflicients, which are Og,,, (m) We can thus write

87Dz (Pg)Zyit"!
(n+1)!

Dz (™ (1)) = Dzt + (4.8)

+2
2 Bn+1
+0(t)+0( +1—k)'

We have that —Dz | < 0 as a consequence of Lemma A.11 and Lemma A.7 and
l+a
aZDZ(Ps)ZrHI = TZ;'HI >0

by Corollary 5.8 and Lemma A.31. Therefore, the polynomial Dz (b, (¢)) is initially negative.

Taking t = C(n + 1 — k)'/* and using Corollary 2.4, we can choose C sufficiently large so that

97Dz (Py)Zyut
|Dz.11] < %

can also choose ¢ sufficiently small so that the error O (%) + O(t"*?B,41/(n+ 1 —k)) in (4.8) is smaller

than 1 %’. With those choices, using (4.8) yields

| for r € (rp+1 — €, ru+1). This constant C is allowed to depend on n. We

0zDz(Ps)Znuit"™'  2|8z2Dz(Ps) Znnit""!

(n+1)! "3 (n+1)! >0

Dz (b (1) 2

because Z,+1 > 0. The proof of Z,,;; > 0is in Lemma A.31 for n = 3 and will be done in Corollary 5.8
for the case y = 7/5.

As Dz (b}, (1)) is initially negative and is positive atz = C(n+1 - k)'/" by continuity there exists
a first time 1p € (0,C(n + 1 — k)'/™) at which Dz (b}, (tp)) = 0 and Dz ()", (¢)) is negative up
totp. ]

Lemma 4.4. Let either y € (1,+00) with n = 3 or y = 7/5 with n a sufficiently large odd number.

There exist Bps1, € > 0 such that for every r € (rps1 — &, rns1), the smooth solution (W) (£), Z) (£))
is above the near-right barrier b}, (t) for & < 0 small enough in absolute value.
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Proof. First note that by definition, the Taylor expansion of b, (=) agrees with the smooth solution
up to order n + 1 at P. In particular, we have

t"+2

by (1) = (W (=1), 27 (=1)) = gy (0, =B Zust) = (~Wisz, =Zus2)) + Op,.., ("),

Both 57", (¢) and (W) (=1), Z") (~1)) start with slope (-W,, —Z;). Then, in order for by, (1) to begin
below the smooth solution, it suffices to check the geometric condition

(=W1,=Z1) A ((0, =Bn+1Zn41) = (=Wis2,—Zp42)) <0,
or equivalently,
Brs1Zns W1 < WiZyso — WyinZ;y.

Note that both sides are of order o] by Corollary 2.4 and n > 3. The case n = 3 follows from
the fact that Z4 > 0 (Lemma A.31) and W1 < 0 (Lemma A.26), taking B4 sufficiently large. The case
v =7/5 with n odd and sufficiently large would follow as long as we have Z,+; > 0, since W; < 0 is
guaranteed by Lemma A.7. The proof that Z,,,; > 0 will be delayed to Section 5 — specifically, this will
be a consequence of Corollary 5.8). O

We define a far-right barrier by
Bfr(W, Z) = (W -Wo-FZ+ FzZ())(W +7Z— F()) — Fl(W +7Z—-Wy - Z()). (4.9)
‘We define the coefficient Fyy = 34(r 1])) = 2wy, where w1 is given in Proposition 2.5, and we set F, = 1/2.
The coeflicient F; will be fixed later (given by (4.10)).
It is clear that BT (W, Zo) = 0, and thus, the curve passes through P;. As the second-degree summand
has a factor W + Z — Fy, it is clear that B (W, Z) = 0 has an asymptotic line parallel to the direction of
Py. The value of Fj is the asymptotic value of W + Z for the trajectory matching at Py (this corresponds

to matching another order at Py). The value of Fiis chosen so that the slope of BT(W,Z) = 0 at P,
matches that of the smooth solution; that is, VB™(P,) (W), Z;) = 0. Therefore,

Wo+Zo—Fo—F1,-F(Wo+Zo— Fo) = F1) - (W1,Z1) =0
which yields

1LY VAR 4
Fi = (Wy + Z F{ = . 4.10
1=Wo+2Zp- 0)W+Zl oW1 Z, (4.10)

In order to parametrize the curve B = 0, we solve the system

(bfva (s) - Wg) + (bfzf(s) - zo) =,
B (bl (5), b3 (5)) = (b} (5) = Wo) = Fa(b5(5) = Z0)) (s + Wo + Zo = Fo) = Fis =0

for s ranging from 0 to s = Fy — Wy — Z,. Solving the system, we obtain

fr F]S F]S
b, (5) = Wo+ iy (F2s+ s FO) Wo+ mhy (F2s+ £ ) i
fr _ _ Fis _ _ _Fis ’
bz(s) =Zo+ F2+1 (S STWorzooFy ) = 20+ F2+l (s st )
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and we define b (s) = (bf,rv (s), bfZr (5)) which goes from P; at time s = 0 to Py at s = s'. We also
define the barrier condition as

P(s) = b " () Dz (b (1)) Nw (b™(1)) = by (1) Dw (b (1)) Nz (b™ (1)), (4.12)

which is a rational function with powers of (s — s ) in the denominator.

Let us remark that the value of F, = 1/2 is chosen ad-hoc so that P (s) is positive. In contrast, Fy
and Fj are carefully chosen to get cancellations of B at P, or Py. In particular, F, does not enforce any
cancellation, and any slight modification of it would still yield a valid barrier.

Proposition 4.5. Let either n = 3 with 'y > 1 or n € N odd and sufficiently large with y = 7/5. Forr
close enough from above to r,, we have that P(s) > 0 for all s € (0, sT).

Proof. By continuity of P with respect to r, we just need to prove this for » = r3 in the case of n = 3
and for r close enough to r*(7/5) for y = 7/5. We prove the statement via a computer-assisted proof.
The code can be found in the supplementary material, and we refer to Appendix B for details about the
implementation. O

Lemma 4.6. Let n = 3 with y > 1 or n € N odd sufficiently large with vy = 7/5. There exists € > 0
such that for every r € (ry,rn + &), there exists a value tr with BT(b™(tr)) = 0 and BT (b™ (1)) < 0
fort € (0,tF). Moreover, we have that tp <, (k —n)'/ ("2,

Proof. We consider the (2n + 2)-th degree polynomial BT(b™(r)). We have that
B (b™(0)) = BT (Py) = 0 and VB™(P,)(W), Z;) = 0 due to our choice of F;. Therefore, the terms in
the polynomial have 7% as a common factor. Taking into account Corollary 2.4, all the coefficients in
by (t) are O(1) around r ~ r, except the n-th and (n + 1)-th coefficients of b% (¢). We get

" a;r ) ahr 3 t"+1 t2n t2"+1
B (p™ () = —2¢ n M PE
b )= 51+ i =y O )+05"(k—n)+0((k—n)2)+oﬁ"((k—n)2)
o 4.13)
=2 24 o(1)) 4 — (14 0(1)
) n!(k — n) ’

where in the last equality we are assuming ¢ < C(k — n)!/("=2 for some sufficiently large C and using
that k — n is sufficiently small depending on S,,.
We proceed to calculate a5 and a;". We have that

fr

H
BY(W,Z) = VBT (P)(W = Wy, Z — Zo)" + (W — W, Z — Zo)

> (W-=Wo,Z-2Zp)7

= (=s — Fy, Fas™ — F))(W = Wo,Z - Z)"

1 (1-F)/2

+(W—W0,Z—Z0)((1_F2)/2 —F

) (W=Wo,Z-Z)".

Therefore, using F» = 1/2, we obtain that
a‘z“

1
2 2

(—sﬁng —F\Wy+s57,/2 - Fy 22) + W2+ WiZ, )2 - Z2)2

fr

S oo Z]/Z—W] 2 2
=— |-Wo+2/2-Wo+Zp)——— |+ W + W1 Z,/2-Z7/2,

2( 2+ 2Z2/2 — (Wa + Z) Wit Z: ) 1 1\Zy/ i/

and
ay i all Z1/2-W
- 2—F)Z I Y e
= (52 R Zu(-1)" = =T 5 e £
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where we have used F; = sf 212w First, note that sg > (0 due to Lemma A.13. Second, we have that

o Wi+Z,
% < —lforr=r3withy > 1andr = r*(7/5) for y = 7/5 due to Lemma A.29. These two facts

allow us to conclude

nr

a -3
P jsfi,Zn <0, (4.14)

where Z,, > 0 (Corollary 5.8 for y = 7/5, n sufficiently large and Lemma A.31 for r € (r3,74)).
However, we have that Lemma A.30 guarantees a5" > 0.
Going back to (4.13), we have that Bfr(bﬁr (1)) is initially positive for sufficiently small # > 0. Define

nlalt
_ 2 |1/(n-2)
tg = . 4.15
G A 4.15)
Using (4.13) and (4.14), we have that
ayr a™r nla’t
BT (b™(16)) = =121+ 0(1)) + —2—¢*. 2 1(1+0(1
(b1(16) = (1 +o(1) + s+ |2 (1 o(1)
;r nr
2 n
==t —|——— | (1 +0(1)) +0(1
2 ( ‘(k—n)sg,Zn (Tro) ())

nr

)
< -2 (1+o(D)).

A

By continuity, there exists some ¢z € (0,1¢) such that BT(b™ (1)) = 0. Moreover, as B (b™(¢)) is
a polynomial, we can take ¢z to be the first such zero, so that B (5™ (¢)) > 0 for 0 < t < tg. Lastly,
by (4.15), we conclude that 1 < tg <, (k —n)/ ("2, o

Lemma 4.7. Let either v > 1 with n = 3 or y = 7/5 with n € N odd, large enough. There exists
£,8,Bno > 0 such that for every r € (rp,ry + &), Bn > Buno and & € (0,6), the smooth solution
(W (&), Z0)(€)) is below the near-right barrier b™ (1).

Proof. We have to compare the first Taylor coefficients on the barrier which differ from those of the
smooth solution (with & replaced with —¢) — that is, the n + 1-th. As n + 1 is even, they are given by
(Wy41, Zps1) for the smooth solution and (0, 8,Z,,) for b™(¢). Therefore, b} (¢) is above the smooth
one close to Py if

(=W1,=Z1) A (0, BnZn) > (W1, =Z1) A Wns1, Zns1)s
or equivalently,
BrnZnWy < W1Zyy1 — Wpn Zy.

The case n = 3 follows from the fact that Wi < 0 (Lemma A.26) and Z3 > 0 (Lemma A.31) provided
that we take (3, sufficiently large. For the case y = 7/5, n large enough, Lemma A.7 guarantees W; < 0,
so we just need Z,, > 0 in order to conclude the statement. The proof that Z,, > 0 will be delayed to
Section 5: specifically, this will follow from Corollary 5.8. O

Proof of Proposition 4.1. Letus start with the existence of r,,. From Proposition 4.2 and Lemmas 4.3 and

4.4, we have an € > 0 small enough and a 8,4 sufficiently large such that for every r € (rp41 — &, rn+1),

the following holds:

1. The smooth solution (W) (&), Z(") (£)) is above the barrier by, (t) for 0 > & > —e¢, for some € > 0
sufficiently small.

2. There is a constant C; such that P)" (1) < O forevery ¢ € (0,Cy(n+1 - k)'my.

3. There exists tp > 0 such that Dz (b}, (tp)) = 0, Dz(b},,(¢)) < 0 for t < tp; with tp <
Cy(n+1—k)l/n=D,
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Therefore, taking r close enough to r,,,| from below, we can ensure that P2r+ ! () < Oup to the intersection
of b}, (t) with Dz = 0. Consider the region delimited by b}, () and Dz = 0 inside €. The region
is bounded, and the solution cannot exit that region. Moreover, the solution cannot converge to an
equilibrium point by Lemma A.17 (and Lemma A.18 for the case of P-, y = 7/5, r sufficiently close
to r*). Therefore, by Proposition 1.6, the solution must end in the right halfline of D = 0 starting at
Py, thus lying in Qir"). This concludes the first part of Proposition 4.1.

From Proposition 4.2, Lemma 4.6 and Lemma 4.7, we choose S, sufficiently large and € > 0
sufficiently small, depending on 8, (in particular, we assume 8, < (k —n)~"/(?"). Then the following
holds:

1. The smooth solution (W) (&), Z(") (£)) stays initially below the barrier b (¢) for —e < & < 0 for
some € > 0 sufficiently small.

2. There is a constant C such that P () > 0 for every ¢ € (0, 8,C; (k — n)'/ (=2,

3. There exists a 0 < tp < Ca(k — n)"/"=2) such that BT(b™(tr)) = 0 and B™(b™(r)) < O for
0<t<tr.

We conclude that P}’ (¢) > 0 up to tf, for r close enough to r,, from above.

We define the barrier b)) * B to be b (t) up to tF and then B = 0 (with some parametrization
starting at 77 ) up to Py. Using Proposition 4.5 and the fact that P)'(z) > O up to ¢, we know that the
component of the field (Nyw Dz, Nz Dy ) points downwards. Let us consider Q, the part of Q below
b x BT,

The smooth solution (W) (£), Z(") (£)) is in Qg for =& > 0 sufficiently small by point 1 above and
cannot exit through b}' B'" since the normal component points downwards. In particular, it cannot
hit the halfline of Dz = 0 to the right of P, so by Remark 1.7, it cannot lie in Qird). In other words

QuC Qérd) . As Qg is open, it cannot have points of 69;”) . Therefore, Q  C ng ) and weare done. O

5. Complete Section 3 for the case r — r*

In this section, we fix y = 7/5. Our objective here is to complete the analysis we did in Section 3 for the
case of y = 7/5 and n sufficiently large. We will prove Proposition 3.6, and in Corollary 5.9, we will
also conclude the proof of Lemma 3.4 for this case of v = 7/5 and k sufficiently large.

In order to do so, first we need to control the growth of the Taylor coefficients of the solution. In
particular, we need to obtain the sign of Z,, (with a lower bound of its magnitude) in order to guarantee
that the behavior of the smooth solution when r ~ r; or r ~ r, _, is the expected one.

Let us define C, = lim,_,+ %DD%. With this definition, we will have that for 1 <« i < n, the

coeflicient Z; is approximately equal to C. i—',‘(Zi,l . This idea is formalized in the following lemma. Let
us define also the quantity C,, = 0.95C.,.

Lemma 5.1. For k sufficiently large and i < k we have that

Wi
<4, 5.1
‘ Z; |~ ©-1)
- ((+D2k| | Zin - (i+ 1Dk .
C.———| <=2 < 5006, ——= 160, 52
i+1-k| |z ir1—k fori < (5-2)
- ((+D2k| | Zi - (i+1)%k ,
s | < < s > 160, 3
s e i e S fori =160 (5-3)
- (i+1)%%k
Zint —C*%Z,- < 0.05Zs1| fori > 10000. (5.4)

Note that the inequality (5.4) is strictly stronger than (5.3).

https://doi.org/10.1017/fmp.2024.12 Published online by Cambridge University Press



36 T. Buckmaster, G. Cao-Labora and J. Gomez-Serrano

Inequality (5.2) and inequality (5.3) for i < 10000 are proven via a computer-assisted argument
(see Lemma A.28). Moreover, (5.1) for i < 10000 is also proven via a computer-assisted proof (see
Lemma A.27). In both cases, strict inequalities at r = r*(7/5) are shown, and then one obtains the result
by invoking continuity.

The proof of Lemma 5.1 will follow by induction. In Lemma 5.6, we show that given that the
estimates in Lemma 5.1 hold for all i < m for 10000 < m < k, then (5.1) holds for i = m. In Lemma 5.7
we show that given that the estimates in Lemma 5.1 hold for all i < m and (5.1) holds for i < m, where
10000 < m < k, then (5.4) holds for i = m.

The proof of (5.4) will be strongly based on the log-convexity of the Taylor terms. We will have that
|Zal | Zi—a|l > |Zp| - |Zi—p| when a < b < i —b <i— a. This will allow us to justify that all the terms
in the Taylor recursion are dominated by the most extreme ones (those terms Z,Z;_, on which either
a €{0,1} ora € {i — 1,i}). Note that this log-convexity does not hold when i > k since, for example,
taking k approximately equal to n, and n even, we have that |Z3,, 2| |Z, /2| = O(|k —n|"") as k — n, while
|Z,|> = O(|k —n|™2) as k — n. Therefore, for k sufficiently close to n, we have | Z,|* > |Z3,/2| - | Zy 2|
However, since Z, is the first coefficient that blows up as k — n, it will be enough to have a lower bound
on that coefficient to control the Taylor series, since the next ones will go with higher powers of &.

Remark 5.2. From Lemma A.7, we have that that

Dz >

r—or* Z,1

= 1/726(=29 + 12V5) = —0.0029851 . . .,

so that C, = 0.95C, is negative and 0.00283 < |C.| < 0.00284.
Corollary 5.3. Assume (5.2)—(5.4) hold for alli < m. Ifk is sufficiently large, then for alli < m, we have

Wi
—| < 2. 5.5
’Zi - >5)

Proof. The inequality is shown for i < 160 in Lemma A.27.
Recall that the inequality (5.4) is stronger than (5.3). Then, (5.1), (5.3) and (5.4) imply

Zi
Z;

Wil <4 =k _ge.
Zl' l2k

‘ < 4|C.|

Then, we conclude by using Remark 5.2. O

Whenever we use the sign < in this section, the implicit constant will not depend on n. We also use
the descending Pochhammer notation a(,) = a(a —1)(a —2) ... (a — b + 1) for any real a and positive
integer b. For simplicity, assume that Zjb-:a is the sum starting at [a] and ending at | | whenever a, b
are not integers.

5.1. Convexity lemmas from our assumptions

Lemma 5.4. Assume (5.2)—(5.4) hold for alli < m. Let j > 2 and m < k. Assume also j < (m+1)/2,
and m > 10000. Then we have the following:

e For j < 160, we have

m+1 m+1 600\’
( ; )|ZjZm+1—j|S( | )|lem|( ) ,

m

2 2 600\’ 60

m+ m+ '

( . )|ZjZm+2_j| < ( )|ZzZm| (—) .
j 2 m
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e For 160 < j < m/10, we have that

m+1 m+1 1 .
. NZjZp1-5] < |Z1Zim| —5 (1/3)/,
J 1 m G.7)
m+2 m+2 1 i '
; |Z; Znsa-j| < ) |Zzzm|$(1/3) .
e For j > m/10, we have that
m+1 m+1 :
( . )|zjzm+1_,-| < ( | )|zlzm|<3/4)f/“,
/ (5.8)

m+2 m+2 .
( ; )|ijm+z_j|s( X )|zzzm|(3/4)f/“.

We note that the first inequality of (5.6) is also trivially true for j = 1.

Before we prove this lemma, let us prove an elementary bound on binomial coefficients. We first
recall the classical bound

2 (E)" <nl< «/ﬁ(g)"eﬁ. (5.9)

e
From this bound, we obtain the following bound on binomial coefficients.

Lemma 5.5. The following holds for any n > 1.

o If1<j < n/2, it holds that ()" < 33,

o If j <n/10, it holds that (7)™ < o

Proof. For the first one, use Stirling’s bound and note that JJ(";# = f(a)" where @ = j/n and
f(a) = a®(1 — a)'~?. Checking the bound f(a) < 4 for any a € [0, 1/2] concludes the proof. The

second claim is clear from the definition of binomial number. ]

Proof of Lemma 5.4. For the sake of brevity, let us just prove the first bound on each item (the proof for
the second is exactly the same changing the indices accordingly). Let us start with (5.8). We bound

159 . Jj-1 . 2 159 (N2 [RA p Pt
- (i+1)k - (i+1)%k (500/3)"° (j1)? |3C.k|
Zj|<|Z 500C, ———— 3C,c————|<1Z , 5.10
Z8 "];[ i+1-k ll;[() ir1-x| =141 6o (k=2)-1 (>-10)
and similarly,
[ = k)| (m o+ 1= 12
|Zins1-1] < 1Zu] N IEICE (5.11)
Substituting in these bounds and using the bound % < 1, along with Lemma 5.5, we obtain

(m+1 m+1

377160 500159 (m + 1)2 (m + 1\ 2
; )|zjzm+1_j|s( ; )|zl||zm| ( )

160! j
3j—159 . 500159 ﬁ

160! 47

m+1
s( | )|zl||zm|<m+1)
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< (’” N 1)|zl||zm|<3/4>f/ (374" N (m + 1>M)

160!

< (’““)mnz 13/4)7M,

where we used j < m/10 in the third inequality, and in the last inequality, we used that the last factor is
bounded by 1 for m > 10000. To obtain this last observation, we note

33+ \/1089 +4 (1og (g‘) - 11) log (;-‘) — 410g(2) + log(9)
log (256)

In particular, the inequality holds for m > 100. Thus, the desired inequality holds as a consequence of

a4 (/4™ ymn+ 1)) <0 form >
m

(500/3)'% _

1 1 . 4 10000/11
000100 - (3/4) <

Let us now show (5.7). We apply (5.10), (5.11), Lemma 5.5 using 160 < j < m/10,

3j—160 . 500159 ]‘
160! (9(m+1)/10)7

m+1 +1
( ] )lZ Zm+l ]| <( )lZl||Zm|(m+1)

1 10751 500
9 mi-9 3160.160!

: 1
m+1 1 - o (10j 150019 ¢ 27
( ] )IZIHZmlWVz”]m (e—m) e
m+1
1

<

+1 7112
1Z111Znl 35

IA

3160 . 160!

1 10\’ 2-500!%
7 11Z 10
)| 1zl 55 5m (—em)

< Z
- 3160 160!

10/

where we used (5.9). Observe that i o

160 < j < {5 and m > 10000, we have

) <Oforj < ﬂo. Then (5.7) follows once we note that for

em

0 (107} 25001 | 2-500'% . 1600!6°
——— <m
3160 . 160! (3¢)190 - 160!

Finally, let us show (5.6) for j < 160. Then by (5.2), we have

= i1
1k i11500C..k|
Gk <1z, [500C. K] 512)

Z|<|z 500C, —_—
Z ll'“‘ k (k =2)-1)

and (5.11) holds. Thus,

m+1 m+1 m—j+1)1500/!
( )|zzm+1,|<(j)|zl||zm|( j*+1D)

m!

<

m+ 101 (m — j + 1)™=7+3 (500e)/~!
|21||Z |—
100 mmt

]1 m—j+1 j-1
S(’" P (S () (%)
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Then to conclude, we observe that

d [(m-j+1 mol 50\ <0
dj m 6 -

which is negative so long as j < 6+Tm, which is clearly satisfied. Then, substituting j = 2, we obtain

(5.6) as a consequence of

101 (m—j+1\" 7" (5¢\71 101 (m=1\"" (5
— (=L = <—=|— —<1
100\ m 6 100\ m 6

for m > 10000. O

5.2. Closing the induction for W;
Let us recall the following bounds from Lemma A.8. If r € (ry, ry41), for n sufficiently large, then for

any i, j € {W,Z},

Dw o < 2|Zl, |Z1] <3/10, [|Wi]| £1/2,

5.13
|0;No(Ps)| <2, 10;Do] £3/5, [0;0;N(Ps)| <7/5. ©-13)

Lemma 5.6. Assuming the estimates in Lemma 5.1 hold for all i < m where we take 10000 < m < k,
then (5.1) holds fori = m.

Proof. Let us rewrite equation (2.18) as

Dw oW1 = (0zNw (Ps) = W10zDw)Zy + (Nw m — 0zNw (Ps)Zp)

m—1

5.14
~ Widw Dz (PO Wy = (",1)Dw,m_jwj+1 =T+I+I+1V. 619
- J
Jj=1
Taking the limit r — r* yields
lim (0zNw (Ps) — W10zDw) 2
1 zNw (Ps) = W10zDw) = )
rort ’ 5+3V5
(see Lemma A.7). Thus, if we take k sufficiently large, we obtain
|I|<( 2 +(1))|Z|<2|Z| (5.15)
< o <= . .
5+3V5 s

Now consider II. Applying (5.1)—(5.4), (5.5), Lemma 5.4 and (5.13),

m—1

1
] = (O N (P)Won + 5

m
=

( )(Wj,Zj)THNW W s Zon)

mj2
m
< 2AWpl +5 ) (j)|z,-| [HNw |1 Zn|
j=1

m/2 m
< 8|Zm-1| + 142 (J')|Zj||Zm—j|
=
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160 1oyl Mo o om2 .
< 8|Zn |+14( )|zlzm N Z(—) = >3+ Y @34
mm "M et jom/10
<8|Z, |+21m|Z | 10 ! + !
71119 * 1000 * 1000
Slk—m 1700
< Sm|Zpy| < oMy 1< < —=|Zul, (5.16)
|Cy|mk

where in the last inequality we used Remark 5.2. Here, we used the estimate

|HNw | o <rnax Z |(HNW),J\ <—
1.2 j=12

To estimate III, we first note that by (5.1)—(5.4),

41k — m| 1500
Wil £4Zp1| £ ———— Zpl,
| m| | m 1| |C*|m kl ml m2 | m|

using again Remark 5.2. Therefore, using (5.13), we obtain

1 3 1500 450
[T < 25 T —|Zn| = |Zm|. (5.17)
Lastly, let us consider IV. We remark that Dy ; = % for i > 1. Then applying (5.1)—(5.4),
(5.5), Lemma 5.4 and (5.13),

m—1

|IV < ( )|3Wm ]+22m ]||Wj+1|

J=1

IA
w| B
N
A’—
~. 3
—

N

~

Jj=1
m/2
<13 (".’)|Z||zm,|
=1\
60 600\/-! m/10 m)2 _
< V3m|Zi | Zy | Z( | e D ame Y G
=1 j=160 Jj=m/10
< 4M|Zy||Zinor| € — o | Zi] < @w . (5.18)

m|Cy|

where we used Remark 5.2 in the last inequality.
Then combining (5.15)—(5.18), we obtain

2 1700 450 2000
[Dw oWann| < (5 +—=+—+ == 1Znl| < |Zn].
m m m

Noting
2
llm DW 0= )
r—r* 1 + \/5
from Lemma A.7, then for k sufficiently large, we obtain our claim. O
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5.3. Closing the induction for Z;

Lemma 5.7. Assuming the estimates in Lemma 5.1 hold for all i < m where we take 10000 < m < k,
and (5.1) holds for i = m, then (5.4) holds fori =m

Proof. Let us recall (2.19)

m—2

m+1 m+1
ZnDz(m+1-k) = —( )DZ,ZZm - Z ( . )DZ,m+lij+1
m-—1 = J

+ (Nzm+1 = (0zNz(Ps)) Zims1) = ZyWpis10w Dz (Ps)
- —%(1 +m)Dz2Zp +1+ 1 +1IL

Applying (5.5), Lemma 5.4 and (5.13),

13 1
|I| <z (m+ )(3 |Wm+1 j|+2|Zm+1 ]|) |Z]+1|
5 = Jj
8 "2 (m +
ngzl( )l 2
16 "R (m 11
S? Z ( ] )|Zm+l ]||Z]+1|
(m+2)/2 .
DY i [ 7
T5 4 om+2\ m2-j
j=2
10 600 | m/10 (m=2)/2 _
s—<m+1>|zlz 1D (m) v D Y+ Y jaa!
j=2 j=161 Jj=m/10
< %lzml. (5.19)

Applying (5.1), (5.5), Lemma 5.4 and (5.13),

m/2
m+1 T
= N . j s i : —J» -J
11| = |dw Nz (P >Wm+1|+Z( ; )l(W] Z))THNz - Wns1-j» Zms1 )|
j=1
m/2

m+1
s2|Wm+1|+(m+1)|(W1,zl)THNz~(Wm,zm>l+2( j )!(W,,Z>THNZ Wons1=j» Zms1-))|
j=2
e m+ 1
< 8|Zm| + (m+ 1)|(W1,Z1)THNZ ' (Wm’Zm)|+SZ( j )|Z ||Zm+l j|
j=2

< 8|Zul + (m+1)|(Wy,Z))THNz - (Wm,zm)l

10 1600\~ m/10 (m+1)/2
+5(m+1)|ZlZm|(Z (—) - Z (1/3)7 + Z (3/4)1‘/11)

j=2 j=161 Jj=m/10

< (m+1)|(Wi,Z)THNz - Wy, Z)| + E'Z’"|' (5.20)
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Note

HNz(Py) =

-1 y-3

yz YT =l 1 =2
2 o—y) s\-2-7)
and lim, .« (W}, Z;) = (5 - 3\/3) (%, —é) from Lemma A.7. Hence,

1
lim (Wi, Z0)"HNz - (Wi, Zin) = === (3Y5 = 5) (TWon +8Z,0).
Thus, for k sufficiently large, we have
T 1 3
(Wi, Z)THNz - (Wi, Zn)| < 5 (IWinl + 1Zinl) < 5 1Zn]

Combining this estimate with (5.20), we obtain
I < m|Z,,|.

Finally, applying (5.1), (5.13) to III yields
3 3
| =| - ZWpn10wDz| < — -4 Zp| - 5< < |Zml. (5.21)
Hence, combining (5.19)—(5.21), we obtain

1 1 3
Zmi1Dz1(m+1—k)+ %(1 + m)Dz,zZm‘ < |1 + 0 + 100 < (ﬁ +1+ —) m\Z| < Sm|Zn
m

Thus,
2Dz 3
Z +1—-k)——————— < —\|Z,|.
et O =) G mD ' < e DDzl "
Using
lim Dy = — (19 - 9V5)
R &) ’
from Lemma A.7, we obtain
2Dy 2
Z +1—-k)——————+Z,,| < —=1|Zul,
ma1 (M ) (m n l)sz,z m 50| ml
from which we obtain (5.4). O

5.4. Further corollaries of Lemma 5.1

Corollary 5.8. Let y = 7/5, n odd sufficiently large and r € (ry,rp+1). We have that Z,, > 0 and
Zu+1 < 0. Moreover, we have

(5.22)

n!

. Z0| 1/n
In particular, ( nl(k — n)) X n.
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Proof. By Lemma A.28, we have
Z10000 + 6 - 10%6770] < 106770,

which by a liberal choice of implicit constant may be rewritten as

(€. 10000 10000! k10000 < “Zm0 = ioooo 1110000 (1.05)10000
[(10000 — k)(10000)] ~ 10000! ~ (10000 — &) (10000)| 0.95

Then, applying (5.4) successively yields

e T ik (1.05)"
O S T T |(n = k)m| \0.95

We notice that (k —n)(n—1)! < [(n— k)| < (k —n)n!, which follows by canceling the factor (k — n)

and bounding 1 < (k—n+1) <2,2 < (k—n+2)<3,....Thus, we obtain (5.22).
Finally, we note the statement Z,,,; < 0 follows as a consequence of (5.4) and (5.22). m]

Note that this Corollary concludes the proof of Lemmas 4.4 and 4.7.

Corollary 5.9. We have that for y = 7/5 and n odd and sufficiently large (r € (ry, rns1)),

Z1 Wy
Znsl — 0.
n+1 W,
Proof. From Lemma 5.1, we have that |W,,41| < |Z,] < (’:;ll)zkk |Zi1] S ‘Z"“l . Using Corollary 5
we have Z,,41 < 0. O

Let us note that this Corollary ends the proof of Lemma 3.4 for the case of v =7/5 and sufficiently
large odd n. We will now show how Lemma 5.1 implies log-convexity of

From Lemma 5.1, we can compare the size of |Z;| with |Z;;;|. The followmg Lemma just applies
Lemma 5.1 for all i = a,a + 1,...n — 1 and concatenates those bounds in order to obtain a direct
comparison between |Z,| and |Z,|.

Lemma 5.10. For k sufficiently large, we have that for any a < n = | k|,

a/n -1 u(nn—a)
IZa| < é n 1.05 (k _n)a/n—l_a/nj-
al! " \n! a 0.95

Proof. Let us start supposing a < n, so that a/n — |a/n] = a/n. Writing % = ?:1 jl% and
% = ;’ | } Zo , the statement is equivalent to
l—a/n n (l/}’l a(u a)
Z; Z; 1.05\ =
) {1 ) e
|Z] 117k izatl |Zj_1|]k a 0.95
_ a
Using Lemma 5.1, the left-hand-side is < []¢ e T ]C* (%) and the parenthesis in the right-hand-side

is > ]_[J.:a+1 ijC*. Thus, it just suffices to show
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l1-a/n aln a(,l @)

a(l-a/n) n .~
jC. 1.05 an
< _ _
) WL Ry (a) (0.95 (k=)

j=1 j=a+l

1-a/n _
(1.5 o
Jj=1 J =a+ a

l1-a/n n'/a' “ n -1 ain
:(n!/(n—a)!) s((n—a)!(k—n)) (a) (k= m)™~.

As the last inequality is in fact an equality, we are done with the case a < n. For the case a = n, all the
implications work the same except the last one, as we should erase the factor (k — n) (this is because
H;’za +1(k = j) has no factors for a = n, so we cannot extract a factor (k — n)). Thus, erasing the factors
(k — n) (and their powers) in all the equations, the proof works the same for a = n. Asa/n — |a/n] =

for a = n, the statement is also correct in that case. m]

Q

l._[k—]é

SR

[
.:Q

5.5. Estimates on P - Validity of the near-left barrier

Let us recall bEI’W (s) = "_0 - Sigt b“1 2(8) =21, T'S " and

P (s) = by, (s)Nw (b3 () Dz (b (s)) = bl 4y, ()NZ (B (5))Dw (b} (5)).

In order to obtain the sign of P2 (s), we prove the following lemma:

D2l nt

Proposition 5.11. For any s with 0 < s"% < 335, D, 7, we have
Zn Nw oD 1 Z\’ 1
Pf,l(S)=n—'¥ s (1+0( ))+n(—j’) 87Dz Ny 052" (1+0(—)). (5.23)
! n! n

Moreover, letting

1
99 |D |\ 72
Dz,] n! ) , (5.24)

S7/5val = (100 20,D7 Zn

we have that P"(s) > 0 for s € (0, 57/5,val)-

Before we prove Proposition 5.11, we need a few auxiliary lemmas.
In what follows, it will be useful to introduce the following notation: Let us define the discrepancy ¢
of a number a as

¢(a) =min{a,n —a} and {(a,b,c,d) ="{(a)+€(b)+{(c)+{(d).

_(n) (0.95)\
~\a)\1.05 '

The brackets behave asymptotically like the binomial coefficients in the sense that they are symmetric.

We have [Z]_l < nla if a is fixed, and we also have [Z]_l < #3_5(‘” forany 1 < a < nwith £(a) > 10.

The strategy toward Proposition 5.11 is to develop a Taylor series for P?(s) and bound all the
terms except the dominant ones. In Lemma 5.12, we will bound the i-th coefficient for i < n, and in
Lemma 5.13, we will extract the main contributions of the (n + 1)-th and (2rn — 1)-th terms. Those
correspond to the main terms in (5.23). Lastly, in the proof of Proposition 5.11, we will deal with all

We also define

n

a
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the i-th Taylor coefficients, fori > n+2, i # 2n — 1. In all those proofs, we will develop the expressions

in terms of |Z;| (or |W;| < |Z;-1]), and we will observe that the term arising from |Z,||Zp||Z||Z4]
is proportional to [2]71 [2]71 [2]71 [’;]71. Since that is smaller than n=¢(¢?-¢-4)we will be able to
show that the terms with small discrepancy dominate, and they will correspond exactly to the main

contributions from the (n + 1)-th and (2n — 1)-th terms of the Taylor series.

Lemma 5.12. Let n be an odd number sufficiently large and i < n. We have that

o' PO _ (|zn| )"/" (k = myi/n-Liim]
n!

TG-n! * ! min{7.¢(i)}
Proof. Letus recall (3.10):
Pyl (s) = by 7 ()Nw (B3 () Dz (b (5)) = by ()NZ (B} (5)) Dw (B3 ().
We have that | Do | < 18,07, (s)| and |9;(Nz (b} ()] < 185(BY ,(5)*)] + 105y ()] < 195 (b (5)*)].

Using Lemma 5.10,

!
e ZalIZ 12l Zal

[— [— ’ (l B
;"' PR (0) 5 10771 (b)) 5 ()b} £ (5))(0)] = Z (@-Dibleld!
i!
S ;mwanzbnzcnzu

. |Zn| ifn i/n—|i/n) n -l n -l n -1 n -1
51!(7) (k —n) Z A B Ll (5.25)
: Ji

where
Ji={(a,b,c,d)eZ': 0<ab,c,d<n and a+b+c+d=i}.

In the last inequality, we also used that the function x—| x| is subadditive. Let us decompose J; = J/UJ,”
with J/, J/' given by

J/=TJin{(a,b,c,d) € Z* : t(a,b,c,d) > 10},
J/ =TJn{(a,b,c,d) € Z*: t(a,b,c,d) < 10}.

As |T/| n3, we have that

-1

a7 [n] " n n 1 1
< T |— < —. 5.26
SELEVE T o <5 529
T
However, |jl."| < 1, so we deduce
a7 a7 ] e 1
; [a] [b H Jl S |n}??‘ abed) St (5.27)
where we are using superadditivity of the discrepancy: €(a) + £(b) + €(c) + £(d) = £(i).
Plugging in (5.26) and (5.27) into (5.25), we conclude the proof. m]

Now, recall that 3.~ PA(0) = 0 for any i < n+ 1. The previous lemma will guarantee that 9:~! P"(0)
are not dominant for i # n + 2,2n. Let us thus analyze the precise order of the (n + 2)-th and (2n)-th
derivatives of P.
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Lemma 5.13. We have that for odd n, sufficiently large,

OHPN0) _ Zy NwoDzp 1
m+Dl w2 (HO(Z))’ 5-28)
§2n=1pnl (o Z\ 1

Proof. The strategy is similar to the one in Lemma 5.12. The main difference is that in Lemma 5.12,
we bounded every term, while here, we will identify the dominant terms (which will be the ones with
the least discrepancy) and bound the rest.

Let us start showing (5.28). Let us define

+1
B = (n 2 )ZnNW,ODZ,Z + (n + l)nZnNW,lDZ,l + (n + I)ZINW,nDZ,l

n+1
+(n+1)ZoNw oDz + (n+1)Z1Nw 1Z, — ) WuNz2Dw o — (n+1)nW,Nz 1Dw ;
—(m+1)W Nz, Dw 1 - (n+1)WoNz ,Dw o - (n+1)W Nz 1Dw ,
—WiNz n1Dw 0, (5.30)

which corresponds to all the monomials of 37*! P2 (0) where there are factors with n derivatives. In
particular, following the same reasoning as in (5.25), we have that

|8n+an1(O) _ B| < (n+2)! |Z,| 1+2/n & _n)Z/" Z [n]—l [n:|_1 [n
soon ~ ' —|a c

n! b
J

117!
[d] , (5.31)

where
J={(a,b,c,d)€Z*: 0<ab,c,d<n, a+b+c+d=n+2 and {(a)+{(b)+L(c)+(d) >4},

Note that for any tuple (a, b, ¢, d) witha+b+c+d = n+2, we have that £(a, b, c,d) > £(n+2) =2 and
that the discrepancy is even. As B from equation (5.30) contains precisely the monomials of discrepancy
2 of 3" P1(0), every addend in the right-hand side of (5.31) has discrepancy greater or equal than 4.

Now, using the same reasoning as in the proof of Lemma 5.12 (decomposing J according to the
discrepancy being smaller or greater than 10), we have that

SEPEIET <% 532
a b c dl ~n* ’

-1

However, from (5.30), we see that

n+1
B:( : )z,,NW,ODZﬁo(n2|zn|DZ,1)+0(n|z,,|)+0(n2|w,,|)

n+1
= ( ) )Zan,oDz,z +0(n|Zy,l), (5.33)

since |[Dz 1| < % < % (Lemma A.7) and |W,| < |Z,-1| < n|Z,| (Lemma 5.1).
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From equations (5.31)—(5.33), we conclude that

an+1pl(0) 1 (n+1 nZ| 1 (1Za]\ "
= Z.Nw oDz >+ 0O +0 = k —n)2n
(n+1)! (n+1)!( 2 ) nTW.05Z.2 ((n+1)!) n3(n!) (k=n)
/n
_ NwoDzaZu , (|Z 1Zal 1 (1Zal(n=K)\?
—”TFO(W i TRl
Zn Nw oD
—nZnwobza (6 (1))
n! 2 n

where we have used Corollary 5.8 in the last equality and the fact that [Nw oDz 2| 2 1 (Lemma A.7).
Now, let us show (5.29). Let us define

n—1

—~ (2n-1
B ( ) (ZnNW,ODZ,n - WnNZ,nDW,O - WnNZ,ODW,n) s (534)

which corresponds to all the monomials of 3! P2(0) where there are two factors with n derivatives.
In particular, following the same reasoning as in (5.25), we have that

iaZn—anl(O) _ B| < (21/1)’ (|Z_"|)2 Z [n]_l |:n:|_1 [n]_l [n]_l (5 35)
s n ~ \ = a b c | ’ .

where

J={(a,b,c,d)eZ*: 0<ab,c,d<n, a+b+c+d=2n and ((a)+{(b)+(c)+€(d)>2}.
Note that for any tuple (a, b, ¢, d) with a + b + ¢ + d = 2n, we have that the discrepancy is even. As B
from equation (5.34) contains precisely the monomials of discrepancy 0 of 67*! P1(0), every addend

in the right-hand side of (5.35) has discrepancy greater or equal than 2.
Now, using the same reasoning as in the proof of Lemma 5.12, we have that

> HRARA R 530

d n
However, from (5.34) and using |W,,| < |Z,-1| < %|Zn| (Lemma 5.1), we have that

B = B

_ 2n—1
n—1

2n —1 1
)Nw,oazDZZ,% +0 (( )lzn|2—3)
n—1 n

2
Z
= (2n-1)!-nNw 007Dz ( "’) +0

n:

2
(2n - 1)! (Z—’:) iz) (5.37)
n

Finally, using (5.35)—(5.37), we conclude that

) A% Z,\* 1 1Za])\* 1
———~ =nNw 00zDz | — oll—] =]|+0 -
ey wezBz 1T FON ) 2T n
2
Zn 1
=l’l(—) NW’OazDZ (1+0(—))
n! n
In the second equality, we used |Nw 00zDz| = ¥|Nw,0| 2> 1 from Lemma A.7. ]
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Proof of Proposition 5. ] ] Let us start showing equation (5.23). First of all, let us notice that the

assumption s" 2 < 3|2a—| yields

N Ve
5 < ( : ) < -
|Z,| n

as a consequence of Corollary 5.8. Applying Lemma 5.12, we obtain

O PYO) iy _n_ 1 1Zals\"™" _ 1Zals" 1 N
(-1 > ® g pmnme@y \“al SRS s2nmin{7,{’(i)}( )
|Zn |S" s2i/n—4

ST (L))

Zo|s™ . . .
where we have used % < 5% from our hypothesis on s. Let us consider the case i > 2n + 1. Then,

since s < 1/n and as 2i/n — 4 > 0, we have

S2i/n—4 1

pmin{7,£(i)} S n2i/n—4nmin{7,€(i)}'

This can be further bounded, up to a constant multiple by forall i > 2n+ 1 and i # 3n. For the cases
i =2n+ 1, 3n, this quantity can be bounded by a constant multlple of % Thus,

4n 1 pnl
aoi-tpilo Znls™ 1
E ( )s’ ! O(nsl s -—).

(-1 n! n

i=2n+1

Now, for the case n+3 <i < 2n—1,we havei/n— |i/n] =i/n— 1, and we argue with Lemma 5.12 as
follows:

i—1 pnl ny\ifn
-1 P (0) RN 1 _n |Z,|s (k = )i/
(l _ 1)| pmin{7,0(0)} g n!

(i-m)/n (5.38)
< s (115" iona (1ZalCh =) !
= n! n! pmin{7,6(i)} "
. (i-n)/n
Labeling Z = 5" "2 (W) , we have by Corollary 5.8
1Zals"™2 (1 Zalk = ) | a3
I(n_2>/(l-_n_2) _ nls ( n n )znn -2n (k B n)
n! n!
1 05 2i+4n
in-n2-2n
< |nk"|CuI"
< (e (553
n(=2i+dn) 21 +4n)
1 05|C | in-n2-2n
< n'"(n+
> (" (n+ D505 ’
where we used the hypothesis s~ < Z_I in the second line. Now, raising the inequality to the = —th

power, we obtain Z < n4"=20/("=2) Going back to (5.38), we have that

az IPnI(O) l ' - (|Zn|s") n(4n—2i)/(n—2)

(l Y n! pmin{7,£(0)}
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Note

p(4n=2)/ (n-2) - % fori=n+3,2n—-1
pmin{7.60} "~ % forn+4<i<2n-2°

Therefore, we obtain

-1 4i_
< aé IP;IL](O) i-1 _ 0 |Zp]s™ 1
T TR (e B
i=n+3 (l : :
which concludes the proof of equation (5.23).
Now, from equation (5.23), we have that
Z, D 1 Z 1
PU(s) = Zns™ Ny o[22 (1+0( =]+ Z26,Dz5" 2 (1+0(=]]], (5.39)
n! ’ 2 n n! n
n-2 _ 31Dza| n! n-2 _ 99 1Dza| n!

uptos"" = 55-5- 7. In particular, taking s7/5 va1 such that s
(5.39) is valid, and moreover,

75 wal = 10028, Dy 7, the approximation

100 | Z, S
> — |—0zDzs"
= 99 n'az zZS

Dz,
2

for s < s7/5,va1- Therefore, for n sufficiently large, the sign of P;‘l'(s) for every 0 < s < s7/5 val is given
by the sign of Z,,Nw oDz . Using Lemma A.7, and the fact that Z,, > 0 from Corollary 5.8, we have
that P"'(s) > O up to 5$7/5,val- |

5.6. Intersection with the far-left barrier and proof of Proposition 3.6
Let us recall that for y = 7/5 and n sufficiently large, we take the far-left barrier to be
1 W 1 Z
bg/s(l‘) = (Wo + Wit + EWQIZ - (WQ + W + 72) l‘3,Z() +Z1t+ EZZZ‘Z - (Z() +7Z1+ 72) t3) .
We formulate the barrier in implicit form looking at
f 1 3, b0
B (W, Z) = Res: (= (Wo+ Wi+ SWa | £+ SWar 4 Wit + Wo = W,

| 1
- (Zo 7+ EZz) £ 52t + 21t + Zo Z)

~ (o wi+ %) W, W) Wo-W 0 0
0 ~ (Wo+ i+ %) W, Wi Wo-W 0
0 0 “(Worwi+ ) %W wo-w
- —(ZO+ZI+%) 2 Z Zo-7Z 0 o |
0 —(ZO+ZI+%) 2 Zy Zo-Z O
0 0 “(n+2+%) % oz z-z
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which is positive if (W, Z) is above the the barrier and negative if it is below. Thus, we study the function
f(s) = BM(b"(s)). Let us define

1 Z,
as = 663 x:()f(s)’ and ap = n—!ang/S(Wo,Z()). (540)

Lemma 5.14. Let n be an odd number sufficiently large, y = % andr € (ry, rps1). We have that az < 0
and a,, > 0.

Proof. The statement a, > 0 follows from ﬁng/S(Wo,Zo) > 0 (Lemma A.7) and Z, > 0O
(Corollary 5.8). The proof of a3 < 0 is computer-assisted and can be found in the supplementary
material, and we refer to Appendix B for the implementation. O

Lemma 5.15. For any given constant C > 0, and 0 < s"3 < C;—i,

(5.41)

3 n
az|s® + |ay|s
f(s)=a3s3+ans"+0(—| 3| [an ),

n

where the implicit constant in the big-O notation is permitted to depend on C.

Proof. This will follow in a very similar way as Lemma 5.13, using Lemma 5.10 to bound intermediate
terms, so we omit most of the details. First of all, let us note that s < 1/n from Corollary 5.8.

Now, we note that f(s) is a 3n-th degree polynomial multiple of s> because both B! and 5™ agree
up to second order. Therefore,

3n
@) = a3 +ans"+ ) %(3§f)(0)+($|(0§’f)(0)|—an . (542

i=4,i#zn

As Bg /s (W, Z) is a third-degree polynomial, similarly to Lemma 5.13, we have that the i-th coefficient
is bounded as

|Zal|Zp || Zc |
a'blc!

1 i i i

Sl@NOs s s’ Y
a+b+c=i,
0<a,b,c<n

Z,s"\/" n| " [n] n]™ {11 azn=1 p=n~1
- k _ tn=lg=p—lp=p—lc=n s 543
~( n! ) ué:; [a] [b} H e -

0<a,b,c<n

and

Lo Vo ZdIZoZ] | Wal| ZIZ 7] | 12
EUCHICIEYA FIER DY LAY VT IS ,

alb!c! n! |~ a'b!c! n!
a+b+c=n, a+b+c=n,
0<a,b,c<n 0<a,b,c<n
—1p =17 7-1
Z,s" n n n k—n
< 2= Z (k—n)| + . (5.44)

n! a b c n3

a+b+c=n, -

0<a,b,c<n

From (5.44), we directly see that the last term of (5.42) satisfies the stated bound in (5.41). Thus, we
just need to bound the sum in (5.42).

From (5.43), we see that the term with i = n+1 also satisfies the bound in (5.41), since ’ Zns” ‘ =0(1/n)

n!

and Z,s"/n! < 1. The terms with n + 2 < i < 2n — 2 added all together also satisfy the bound, as
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the parenthesis is O(1/n?) (so that the sum of all those terms is O(%|an|s")). For the terms with
2n — 1 < i < 3n, note that

Z,s" i/n Z,s" i/n—1 B
[Z25) < ol (25 < dadsty 02,

so they are all O(1/n?)|a,|s" and their sum also satisfies the stated bound in (5.41).
3 n
Lastly, we need to show that the contribution of terms with4 < i < n—1in(5.42)is O (M)

We have
a+b+c i, [ ] [

n-1 i i/n
|ai|sl 3 §i3 Z, (k_”)
O<abc<n

n-l1 -3 (i-3)/(n-3) (3n-3i)/(n(n-3))
Zn Z -k
SSsz( 2 ) & >)

|
= n:

z )
S

0<a, b c<n

-1

Zn(n k)

where we have used Corollary 5.8 for bounding and our hypothesis for boundlng s < L.
Lastly, one can check that the sum in (5.45) is 0(1 /n), and this concludes our statement because
lasz| = 1. ]

Proof of Proposition 3.6. Combining Lemma 5.14 and Lemma 5.15, we have that f(s) < 0 for s small
enough and f(s) > O for

1/(n-3)
_ 2|as|
|02 B s(Wo. Zo) | /n!

In particular, there exists a value of s7/5 ;,; With s;’/‘;m JES z L such that B /5( 1/5(s7 /5,int)) = 05 that
is, the far-left and near-left barriers intersect.
As we know that the near-left barrier is valid up to

s

99 |Dz,| nt)"/"?
Ky =
vl =\ 10026,D, Z,

for n sufficiently large, it is clear that 57/5 va1 > $7/5,int-
From Proposition 5.11, we have that P%(s) > 0 up to s7/5,val > 57/5.int» and that b7 (s) intersects

() at $7/5,int- Let us check that Dz (b (s)) > 0 and Dw (b1 (s)) > 0 for s € (0, si"%). Now, notice

7/5 /5

that

o s dzDwZ 1+1Z,|s"/n!
Dw (b(5)) = Dw.o+ Y =VDw(Py) - (Wi, Z) = Dy g + 225" 4.0 (M)
1! n: n

i=1

for s"71 < g— using the same reasoning as the one used in Proposition 5.11 or Lemma 5.15. Noting
that 9z Dw = % Z(asy= 5) and Dw o > 0 (Lemma A.10), we get the result for Dy, (b"(s)).
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In order to treat the case of Dz (b"(s)), note that Dz, > 0, so Dz (b"(s)) is initially positive.

However, if b,‘;l(s) crosses Dz = 0 between P, and P, before si7“/ts, by Lemma A.22, we would have that

the field (Nw Dz, Nz Dyw ) points upwards at that point contradicting P (s) > 0, from Proposition 3.6.
If b"(s) crosses Dz = 0 to the left of Py, at some other time s < si7“/‘5, we fall under the second case
considered in Proposition 3.6. O

6. Proof of Theorems 1.1 and 1.2

We finally give the proof of Theorem 1.1 and Theorem 1.2. By Proposition 3.1, we have that in either
the case y € (1,+o0) and r € (r3,r4) or the case y = % and r € (ry, rp+1) for n odd and sufficiently
large, the smooth solution (W), Z(")), given in Proposition 2.3, connects P; to P,. It remains to apply
a shooting argument, in conjunction with Proposition 4.1, to show that the smooth solution connects P
to Py.

Let us fix n € N odd and r € (ry,, rp4+1). Due to Proposition 4.1, we know that there exist rg4,r, €
(7, Fne1) such that (W) Z()) lies in Qgr) and Qgr), respectively. Set 6 > 0 sufficiently small such
that for all r € [rq,r,], the Taylor series (2.15) for (W), Z(")) converges for all &£ € [-6,0]. By
Lemma A.26 and Lemma A.7, W; < 0. Thus, by continuity and compactness, we may take ¢ smaller if
need be to guarantee that

d
2w
de & <0

for all £ € [—4,0]. In particular, the curve (W), Z(") for & € [—6,0] is a graph with respect to its W
coordinate.

Let (W2 (&), Z?2(&)) be the curve defined in (2.41). By Remark 2.6, W2 (£) is increasing with |£] for
& € (—00,0]. Thus, the curve (W2 (&), Z2(£)) is also a graph with respect to its W coordinate.

Fix (W, Z,) = (W) (=6), Z(") (=6)), and define Z¢ to be such that (W., Z°) is a point on the curve
(W2(£),Z2(&)). We then define e : [rg,r,] — Rby

e(ry=2.-272.

By definition, e is a continuous function in r. Moreover, as a consequence of Proposition 4.1 we have
e(rq) < 0 and e(r,) > 0. Hence, by continuity, there exists a r € (rq,r,) such that e(r) = 0.
Therefore, by the uniqueness in Proposition 1.6, for r = "), we have (W), Z(")) = (W2 (&), Z2 (£)).
Thus, we conclude that the smooth curve corresponding to » = ™ connects Py to P, through the point
Py, concluding the proofs of Theorem 1.1 and Theorem [.2.

7. Linear Stability of the Profile

In this section, we will study the linearized operator of the Euler equations around the self-similar
profiles we have found. The stability for the Euler equation will follow in general, while in the Navier-
Stokes case, we need to restrict the parameter r to a regime where the self-similar profile dominates the
dissipation. The strategy will be to cut off the equation and study the linearized operator in a compact
region || < 2. Following the strategy of [67], we show that the linearized operator is maximal and
accretive in the appropriate spaces. Maximality corresponds to the existence of solutions of the ODE
determined by this operator, while accretivity corresponds to the fact that the operator has damping.
Both properties give us, via a functional analysis argument, that the compactified linearized operator
generates a contraction semigroup modulo finitely many instabilities. That is the main result of this
section. The nonlinear stability and the treatment of the equation outside our compact region || < 2
will be delayed to Section 8.
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Remark 7.1. Let us note that from the proof that for r = ", W) (£) is increasing in & € (=0, 0], s0
in particular, W) (¢) > 0 for all £ € (—co, 0]. Moreover, we have that D, (W), Z(")) < 0 for & < 0,
and for the y = % case, this implies that Z(")(¢) < 0 for & < 0. Thus, in the y = %, we have that
(W (&), 27 (£)) lies in the region W > 0, Z < 0 for & € (-0, 0].

7.1. Linearization and localization

Let (W, Z) represent an exact self-similar solution to the Euler equations solving (1.12). We now
consider a solution (W, Z) to the time-dependent Navier-Stokes equation (1.19) and the difference

(W,Z)y=W-W, Z - 2Z).

Then, (VT/, Z) satisfy the equations

 lva, oo~ o (l-a. . aZ\=
(6s+r—1+%W+TQG¢W)W+(§+§(W+Z+a(W—Z)))6¢W+( 2“6§W—“—)z
r1+$21/a—1

Tl (W= 2)h

P2k (1-r))s (ag(gzag(w +2))-20W+ Z))

l =~ = e A = )
—§(W+Z+a(W—Z))8{W—Z(W - 72,

(6s+r—1+%2+“7“a{2)2'+(§+%(V_V+Z—0/(W—Z)))3£Z+(1;aafz_%)W

1
r1+;21/a—1

Qe (W-2))

o2+ (1-r))s (34(4234 W+2))-20/V+ Z))

1 — - _ _ -
—E(W+Z—oz(W—Z))(9§Z+%(WZ—ZZ). (7.1)
Defining
1 - -1 -
DW2F—1+%W+ ;a[)gW, Dz:r’—l+%z+ ;aagz,

Vip = L4 3 (WA Z+a(W-2), V=045 (W+Z-a(W-2),

l-a, - aZ l-a, 5 aW
HW = T(){W—?, HZ = T(?;Z—T,
o~ _ ~ = (7.2)
! X 2 5
Foiv = —§(W+ Z+a(W-2))0;W - Z(W -7,
1 ~ = - — =
Fuz=-5W+Z-a(W-2)0,Z+ za—g(w2 - 7%,
plriol/a-l ]
Fais = -G (9 (P20, (W + 2) 20+ 2))
alle (W= 2))e
then (7.1) becomes
(05 + Dy )W + Vig 0, W + Hig Z = Fais + Foy 57 = Fir -
(05 + Dz)z+ VZ@_{Z+ sz = Fuis + ‘Fnl,z =: ]:Z
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where Fyis, ]:nl,W’ Fnl’ > are, respectively, the dissipative forcing, the nonlinear forcing term in the

equation for W and the the nonlinear forcing term in the equation for Z. Since we look for solutions
(W, Z) which are smooth when transformed into Cartesian coordinates, we may extend the solutions
to ¢ € R by imposing the restriction

Z(0) = -W(=¢) orequivalently Z(¢) = -W(=0).
Then, (7.1) becomes

(05 + Dy (D)W () + Vig (D) W(L) = Hig (OW(=0) = Fais () + Fyy i (). (7.4)

We also let U = # and § = Wz_ £ be the self-similar velocity and sound speed, respectively, which
satisfy the equations

(Os+r— DU+ (L +U)O U+ aSd; S = Fuis,

asS (7.5)
(Os+7r = DS+ (L +U)I: S + ?ag(gzm =
Welet U = W2+ Z and S = 2 W-Z denote the self-similar velocity and sound speed of the exact self-similar
Euler profile. Taking the difference
(675) = (Z/{ - g’u - g)
leads to the equation
~ - =~ oA o . TFa 7 Sa © ]:nlw-i-]:nlz
Os+r=DU+({+U)0;U+aS0;S + U6(U+ aS0; S = Fyis + — 5 =,
Foo-Fuis (7.6)
By +r - 1S+ (L +0)d S+ g—a;(g U)+Ud,S + g—az(g 0) = =2

In order to simply our analysis, we will now introduce cut-offs and additional damping to (7.3) and
(7.6) which will have the effect of localizing our analysis around a nelghborhood of the acoustic light-
cone of the singularity. Let y be a cut-off function which is 1 for |{| < 2 and it is supported on || <
Define also x> to be a cut-off function such that x»({) =1 for || < % and it is supported on [{| <
For a large constant J > 0, define

[TN-ITIAS

D,w=J(1-x1)+x2Dyw. D, 7z=J(-x1)+x2Dz,
Viw =x2Vw, Viz=x2Vz, H,w=x2Hw, H,z=x2Hz, Fiw=x2Fw Fiz=x2Fz.

We then consider the truncated equations

(s + Dy )Wy +V, w0 Wy + Hy wZy = Fy iy

_ _ _ (1.7
(6‘y + D,’Z)Z, + V,’Zagzt + H[,ZWt = ‘FI,W'

Note that the truncated equations are not themselves closed since (VT/ Z) appear in the forcmg terms.

Addmg the equations (7.3) closes (7.7). The truncated analogue of (U, S), given by (U;, S;) = 3 L(W, +

Z,, Wt Zt) satisfy the equations
FowtFiz

2 9

F

t.Z

(@5 +J(1=x1) )27 = D), + 12 (L + D05, + B0, (20)) + x2 (00,5 + 250, (£20)) = L2502
(7.8)

B +J(1 = x1) + x2(r — )T, + x2 ((§+ ﬁ)8§ﬁ+a§8§§) + (ﬁagl_]+a§8§§) -
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To further distinguish the original equation, we will adopt the notation

=W, Z.=Z, D,w=Dy, D.z=Dg,
Ve,W = VW’ Ve,z = VZ’ He,W = HW’ He,z = HZ’ ]:e,W = ]:W’ ]:e,z = ]:Z»

where here, the subscript ‘e’ stands for extended. Then by an abuse of notation, we free up the notation U,
S.W,Z, Dy, Dz, Viv. Vz. Hiy» "z, Fyir» F to refer to either the corresponding notation with the ‘t
or ‘e’ subscript. For the remainder of the section, we will restrict our attention to the truncated equation,
and so we will drop the ‘t’ subscript. In particular, we will consider the linear operator £ = (Lw, Lz)
associated with (7.7) where

—LwW,Z2) =DyW+VyoW+HwyZ and —-Lz(W,Z)=DzZ+V;0;Z+H;W,
orin (U, S) variables, £ = (Ly, Ls) where
—Ly(U,S) = (J(1=x1) + x2(r = 1))U + x2 (({+0)0; U + @S0 S) + x2 (Ud; U + S8, S) ,
~Ls(U,8) = (1= x) + ;o = D)S + 12 (£ + D)9 S + B0, (V) ) +x2 (U6 S+ 50, (220
(7.9)

The parameter J will be chosen sufficiently large in order that the operator £ is well behaved in the
: 6

region [z, 2].
Using the definition of £ = (Ly, Lg) in (7.9), we may rewrite (7.7) as

85(U,S) = L(U, S) + Fru + Fr.dis» (7.10)

where

Fow + ‘Fnl,Z fnl,w - fnl,z

nl, W
) s X2 )

Fim = (F, 5. F, 35) = [x2 and Frdis = (x2Fdis, 0).

Dissipativity of the operator

Remark 7.2. For some m (which will be chosen to be sufficiently large), we consider the space X to be
the subspace of tuples (U, §), where U is a radially symmetric vector field and S a radially symmetric
smooth function, and where U, S € Hém(B (0,2)). We equip X with the usual H>™ norm

IS = [ (8701 + @752 0P +57).
B(0,2)
Similarly, we let H>" denote the corresponding homogeneous norm.
Moreover, we will sometimes consider the function W () = S(|Z]) + sign({)U(|£|) defined for
{ € [-2,2]. We will say that W € X if the corresponding pair (U, S) (which can be uniquely determined
from W) is in X. By abuse of notation, we define the H>" norm on W as ||W/||g2m = ||(U, S)||zy2m in

that case.
We then define the domain of our linear operator £ = (Ly, Ls) to be the space

D(L) ={(U,S) € X|(LyU, LsS) € X}.

Lemma 7.3. For any N, there exists a finite codimension subspace of X where for any 0 < i < 2m, the
following holds:

1
A" U]z ISla < 5z I1S1l2-

Ui < e

N2m—i
We let Yy denote that subspace.
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Proof. First of all, note that by interpolation, it suffices to show the claim for i = 0. Now, for a pair
(U, S), we consider the torus T> = [—x,7]? and extend U;(y), S(y) to be zero for y € T3 \ B(0,2).
Consider the Fourier series of U;, S as functions over T°.

Now, we let the space Yy to be the finite codimension subspace of X defined by the finite set of linear
equations

Ui(k) =0, S(k) =0, Vk €Z3, |k| < N
fori = 1,2, 3. Then, for such U;, we have that

U2 = D K0 (0] 2 = N2 37 {0;(k)| > = N*™ |1 Uyl 0.

kez3 kez3

The same reasoning applies to S, and we conclude our result. O

Lemma7.4. There exists sufficiently large N depending on J, which is chosen sufficiently large depending
on m such that if Py is the orthogonal projection Py : X — Yy, then Py o L is dissipative on Yy,
satisfying the bound

R(Pn © L(U,S), (U, 8))gm < = 1(U, )32

forall (U,S) €Yy.

Proof. We will use the notation O,, to indicate cases where the constant may depend on m, while we
use O as usual our usual big-O notation (the constant is universal).

First note that since Py o L is a real operator, mapping real valued function to real valued functions,
it suffices to prove the bound

(PN o L(U,S), (U, 8))gzm < = [(U, )| gram

for (U, S) real valued.
Let us study the inner product (L(U, S), (U, S)) g2m, and we will treat the projection at the end. Let
us recall that

—Ly(U,8) =J(1 = x)U + x2 ((r = 1)U +Ud;U + @S0 S) + (x2(£ + V)0 U + ax250,S)
=J(1 - x)U+ x2Ky +Vu,

—Ls(U,8) =J(1=x1)S+x2 ((r = )S+ U S +aSdiv(U)) + (x2({ + U)0z S + ax2Sdiv(U))
=J(1 = xS+ 2Ks + Vs.

Now, we proceed to study the terms in
L) WS = [ AT =)V 4 xaK + Vi) - ATU
502 (7.11)
+/ A" (J(1 = xS + x2Ks + Vs) A™S.
B(0,2)
First of all, let us note that

J / A™ (1= y)U) - AU = J / (1= ) A" U + O (U2 (10 llms + [Tz 1))
B(0,2) B(0,2)

J / A™ (1= x1)S)-A"S = J / (1= X0 IA™SP + O (J11Sgzm (1Ullgams + 11 gm)) -
B(0,2) B(0,2)
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Choosing N sufficiently large, dependent on J, which in turn is chosen sufficiently large, dependent on m,

we can ensure as a consequence of Lemma 7.3 that the error is O (||(U, S) ||§12m). Therefore, we get that

s [ am—wamu =g [ - amuR 0 (1))
B(0,2) B(0,2) (7.12)

s [ A ams =g [ - niansE 0 (IS
B(0,2) B(0,2)

For the terms A™(x2/K) in (7.11), we note the following: The terms where all the derivatives fall
on U or S are bounded in L? as O(||(U, S)||z2m), where the implicit constant is independent of .
The rest of the terms have at most 2m — 1 derivatives on U or S, so are simply bounded in L? as
O (|U||gg2m-1 + ||S||gg2m-1). Putting this altogether yields

/3(0 ) (A" (x2Ku) - A™U + A" (x2Ks)A™S) = O (Ul gg2m-1 + Sl g2m-1) (U, $) | rom )

+0 (1. 910,

H?2m

=0 (1. )1, (7.13)

The last equality is due to the fact that we take N large enough in terms of m and apply Lemma 7.3.
Lastly, let us treat the terms coming from Vy and Vs in (7.11). From Lemma A .4,

/ A"Vy -AmU=/ ,\(z(y+l7)-VAmU~AmU+2m/ V (x2(y + 0)) (A™U)?
B(0,2) B(0,2) B(0,2)

+a// )(2§VAmS-AmU+2ma/ A™SV (x2S) AU
B(0,2) B(0,2)
+ Om (1Ullg2m (WUl gg2m-1 + IS gg2m-1)) 5

/ A"V - AT'S = / x2(y+0) - VA™SA™S + 2m/ 9 (x2(£ +0)) (A™S)?
B(0,2) B(0,2) B(0,2)

+a/ )(ggdiv(AmU)AmS+2ma/ V(x2S)A™UA™S
B(0,2) B(0,2)
+ O (ISllg2m (Ul gzm-1 + ISl g2m-1)) - (7.14)

If we take N sufficiently large in terms of m and use Lemma 7.3, these errors are O (||(U, S)||?.{2m).
Therefore, we see from (7.14) that

/ AmVU -AmU=2m/ V(Xg(y+[7)) |AmU|2+Il+Iz+2mI3+0(”(U,S)”ézm),
B(0,2) B(0,2)

/ AmVSAmS=2m/ V(xa(y +0)) (A™S)* + T4 +Is+2mI3+0(||(U,S)||i-12m),
B(0,2) B(0,2)

(7.15)
where we have defined
I, = / x2(y+U)-VA™U - AU, I = a/ ¥2SVA™S - A™U,
B(0,2) B(0,2)

I3 = a/ AmSV()(Qg) . AmU, I4 = / Xz(y + [j) . VAmSAmS,

B(0,2) B(0,2)
Is = a/ Y2SA™Sdiv(A™U). (7.16)

B(0,2)
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Integrating by parts, we see that
1 . [ 7 m m
Li+Zi=-3 [ divGa(+0) (140 + 47S7) = 0 (0.9 (7.17)
B(0,2)

Integration by parts also shows that

Ih+1s= —a// V(x2S) - A"UA™S = O (||(U, S)||i[2m) . (7.18)
B(0,2)
Finally, we also have

4mIs > —2ma /

(|A'"U|2 + (AmS)2) 19 (29)\. (7.19)
B(0,2)

Plugging (7.17)—(7.19) into (7.15), we obtain

/ (AmVU-AmU+AmVSA’"S)22m/ (V(Xz(y+l7))—a|8§(/\/2§)|)(|A'"U|2+(A'”S)2)
B(0,2) B(0,2)

+0 (10 ) - (7.20)

Plugging (7.12), (7.13) and (7.20) in (7.11), we obtain that

L. S). (U > [ o V=20 20 (V0204 00) = ald (29)) (187 UF + (A75)?)

~CIWU. (721)
for some absolute constant C. Now, we claim that we can choose J > m such that

(J(1 = x1) +2m (Vx2(y + 0)) — ald; (x25)])) = C +2. (7.22)

In order to show (7.22), let us divide B(0, 2) in two regions. We define R; as the region where y, = 1

and define R, as the region of B(0,2) where y» < 1. In particular, we have that y; = 0 on R;.
Region R;. In this region, as y» = 1 and y; < 1, it suffices to show

2m (V((y +0)) = |0z (S)]) = C+2.
As we can choose m sufficiently large, we just need to show that
1+8,U - a|(')§S_| >e&

for some & > 0 and every ¢ € [0,7/5]. This is implied by Lemma A.36 taking & = ndamp-
Region R;. In this region, as y; = 0, it suffices to satisfy

J > =2m (V(xa(y + U)) — a|d; (x295)]) + C +2.

It is trivial that we can satisfy this inequality because the right-hand side is a bounded function for
£ € [0,2], and we can take J sufficiently large, depending on m.
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Therefore, we conclude that (7.22) holds, and inserting this in (7.21), we conclude

(LU, S), (U, 8))gom < =2I(U, ) 3y2n- (7.23)

Assuming N is sufficiently large, applying Lemma 7.3, the bound (7.23) yields

(LU, S), (U, ))gem < =I(U, ) lIy2m-

Note that (1 — Py ) o L(U, S) has image in a finite dimension space which is the orthogonal complement
to the space Yy where (U, S) lie. Therefore, ((1 — Py) o L(U, S), (U, S))g2m = 0, and we conclude
(PN 0 L(U,S), (U, ) gz < =[1(U, )12 5

that is, that our operator Py o L is dissipative on Yy . O

Maximality

Before we prove our main maximality result, let us prove the following auxiliary lemma that will help
us deal with the point { = 2 where both Vi and V; vanish.

Lemma 7.5. For A > 0 and a < 2, consider the following ODE:
A+Du+Vu' = f, u(a) = uop, (7.24)

on the region [a, 2], for smooth D, V and f. For some a < b < 2, let us further assume that V(x) = 0 for
x € [b,2] and V(x) > O for x € [a, b). Then, assuming A > 0 is sufficiently large, (7.24) has a unique
smooth solution. Moreover, (u, ) may be taken to be vector valued, in which case u is a vector, and D
is taken to be matrix valued and V remains scalar valued.

Proof. For concreteness, let us assume @ = 0 and b = 1. We also assume u to be scalar valued since the
vector valued case will follow from an identical proof.

By standard ODE theory, there exists a unique smooth u to (7.24) on the region [0, 1). Moreover,
assuming A > 0 is sufficiently large, on the region [1, 2], (7.24) has the unique smooth solution u = %.
Thus, it suffices to verify that the resulting solution u is smooth at x = 1. In particular, we need to show

lirrll u™  exists for all n.
xX—1"

By the Leibniz rule,

n n
Vul™ = —(A+ D +nV)u" - Z (:)u("k”)v(k) - Z (Z)u("k)D(k) + .
k=2 k=1

]:n

By Gronwall’s inequality, for 0 < xo < x < 1, x¢ sufficiently close to 1, we have

)u(”) (x)| < e_/x):) s ’u(") (xo)‘ + ‘/xx % (lj:n(x,” + |M(n> (x)

0

<ok (‘u(")(xo)|+/x % (di,efxff ﬁ) (1FaC) 1+ Clu™ ()

(DG + 0V (<))

) dx’)

< e_fxx v

1
(n) (n)
RO R { (CCTRRER T
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for some constant C independent of n, where we used that 7 ||V’[| .« [, 1] can be made arbitrarily small

xo,l
by assuming x to be sufficiently close to 1. Assuming % < %, we obtain

Hum)

(n) | ya
< + ) .
L [x0.x] |Ll ()C()) ” n”L [x0,x]

By induction on n (and an appropriate choice of x( for each n), we conclude that u is smoothatx = 1. O

Lemma 7.6. Consider J,m, N chosen as in Lemma 7.4. For sufficiently large A > 0, we have that for
every F = (Fy, Fs) € X, then there exists (U, S) € D(L) such that

(—,CU +/l)U =Fy and (—,CS + /l)S = Fs. (7.25)
Proof. Let us rewrite the equation (7.25) in terms of

U)+S) for >0

W) = {—U(—g) +8(=0) forz <0’

which leads to the equation
A+Dy)W + V5o W+HyZ = Fw. (7.26)
where

Fy({) + Fs(¢) forf 20

Z({)=-W(={) and FW(o:{_FU(_/;).;-FS(—g) forf <0°

We consider first the problem (7.26) for the case Fw = yJF, where F is analytic and y is a cut-off
function that is 1 on [—%, %] and has compact support in [-2,2]. Clearly, such Fy, are dense in X. Let
us rewrite (7.26) as

Vg0 W = Fy — (A+Dy)W = Hyy Z . (7.27)

Gw

For the analysis around Pg, it will also be useful to write a separate equation for Z:
A+DZ)Z+V30;Z+H;W =Fz.
and

V30,7 =Fz —(A+Dz)Z —H,W. (7.28)

Gz(W.,Z)

Consider the formal power series expansions of (W,Z) at £ = 1 (i.e, W = Y,5owi({ - 1)" and
Z = 350zi({ = 1)"). Writing in addition V7 = };5gvz ;({ = )" and Gz (W, Z) = 3;5082.:({ = 1),
then substituting these expansions into (7.27) and (7.28) yields

n—1
(n+ D)Vig oWaet = 8w = Y i+ DV uWist, (7.29)
i=0
n—1
(n+1)vz 12041 = 8Z 041 — Z(i + DVZ pi1-iZisl- (7.30)
i=0
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Let us rewrite gz 41 as

87Z.n+1 = 8z .nt1 — (A+Dz(1)zp41.
Then, (7.30) can be rewritten as

n—1

A+ Dz (1) + (n+ DVz Vanet = Ezmet = Y G+ DV i iZiet. (7.31)

i=0
Thus, assuming A is sufficiently large and using vz ; = Dz | > 0 (Lemma (A.11)), one may solve the
recurrence relations (7.29) and (7.30) uniquely by setting wo = A, and zo is determined from (7.28).
Furthermore, from the analyticity of (W, Z) at £ = 1 (which is a consequence of Proposition Proposition

2.3) and F, we obtain that the series converges absolutely to obtain a solution (W, Z) in a neighborhood
of ¢ = 1. The solution can be extended to a C* solution on ¢ € (0, %) by standard ODE arguments,

using that the only zero of V5 (£) or Vyy (£) with £ € (0, 2) is Vz(1) = 0. This just follows from the
observation that V; = ¢ Dg and Vi, = ¢ Dﬁ, (where we use the superindex E to indicate we refer to the
Euler scaling and self-similar profiles from Sections 2—6). Applying Lemma 7.5, we can further extend
the solution to a C* solution on ¢ € (0, 2]. Note in order to apply Lemma 7.5, we let (a, b) = (g, g
and u = (W, V—VZVV).

We will apply a shooting argument in order to choose A such that W is smooth at { = 0. First we

show that there exists A* such that if (W, Z4-) and (W_4+, Z_4+) correspond to the smooth solutions
to (7.27) and (7.28) for £ € (0, 1] satisfying W(1) = A* and W(1) = —A*, respectively, then we have

Wi +Zas 21, Wepe+Zog < -1 (7.32)

forall £ € (0, 1].
Note that by (7.28), we have that

1

Zs-(1) = 1+D,() (-Hz(DA™ + Fz(1)). (7.33)

Note for y = % we have
lim 75 (1) = 5 (5 3V5) <0

Hence, for & sufficiently large, by cont1nu1ty, Hz (1) < 0. Thus, choosing A > Dz (1) and A* > =~

from (7.33), we obtain ZA (1) > C/l ~ for C some depending on Dz (1).

We claim that W4+ > 5- and Zx- /1 for all £ € (0, 1] and some large constant C’ > C. Suppose
the statement is false. Then there must exist alargest £’ € (0, 1) such that either

. Wa () = and Wi () 2 0.
2. Za- () = /IC, and Z;‘*(f') > 0.

Consider the first the case. If Wx-({’) = AT*, then

Wi () = —W (Fw = AWar — Dy War — Hiy Zar)
¢=¢
1 Wa (L) aW()Wa (L) =ZNZa () 1-a, -, ,
< VW(é”) (_ 2 - {/ - 2 6(W(§ )ZA*(g)
—AA* aZ() l-a, -\ Za()
- . .34
S4Vw(§')+( &’ 2 W({)) Viy (&) (7.34)
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In the second line, we absorbed many terms by —’IWTA*. In the third line, we used that Wa-({’) = AT*,
Vyy is positive and W is positive by Remark 7.1. Thus, we arrive at a contradiction, using that

= Tagw <0 (7.35)

from Lemma A.37 and Z4+ > CA—,; > 0.
Now consider the second case, Z: ;) = % Thus, we get

’ ’ 1
ZA*({ = —|V2| (—FZ +AZA* + DZZA* + HZWA*)

{=g’
1-a

2

0, ZW - -
» Z

N

< = (IIleloo +(A+C")Zx +

1 1 C// 1
< —(1Fzllo + A" | = + ~ Too VA
=W, (” Al (C’ C’,l) 100 A )‘(:g’

A* A*C// A*
e )

a(WWys — ZZA*)) ‘
{=¢

+ - 7.36
c Cc'a 200 (7.36)
In the first inequality, we have used that V7 ({’) < 0. In the second one, we have bounded most of the

terms from D7 A 4+ simply by C"'Z,-, being C” a constant sufficiently large. In the third one, we used
our value for Z4- = % and the fact that Z is negative for ¢ € (0, 1] (Remark 7.1), and we also used

(7.37)

l-a. = aW -1
—_—— < E—
Ie 100

from Lemma A.38. Choosing C’ = 400 and A*, A to be sufficiently large, we get a contradiction from
(7.36).

The second inequality of (7.32) follows analogously, enlarging A* if needed.

As a consequence of (7.32), for any 0 < § < 1, there exists a map Fs : [—1,1] — [-A*, A*] such
that if (W, Z) is the smooth solution on (0, 2] corresponding to W(1) = Fs(z), then

W)+ Z(6) = z.

We now want to show such solutions (W, Z) can be bounded on the region [§, 2], independent of the
choice of ¢ and z € [-1, 1]. We introduce a parameter M (that will be taken sufficiently large), and we
note that on the region [ﬁ, 2], we have the bound

WI+1Z] < G

for some constant C, depending on A and M, independent of z and 6.
Since A may be chosen sufficiently large, dependent on Fy, Fz, we can rewrite (7.27) and (7.28) as

Vig0W = =SWW + 227 +0 (1WW2+ 22),

¢ ¢ (7.38)
- a -~ :
V28§Z:—ZZZ+ZWW+0(/1 W2 z2).

: _W+Z ¢_ W-Z -
Setting U = 754, § = #5=, and using

“WW+ZZ==U+S)(U+S)+ (U -S)(U-S8)=-2US-2S8U,
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we obtain
1 1 @ _ -

- — )% (—205-2 WU2 + 82
o U (ZVW ZVZ)g,“( USs - 250) +0 (U2 + 52)

= @ M+O(ﬂ U2+S2),

Vig(0) ¢ (7.39)

98 = [ 4 2 (<205 -250) + 0 (WU + 52)
7\ 2vw 2V, ) ¢

:0(/1 U2+S2).

We used that Vi (0) = =V (0) and that % is uniformly bounded close to = 0.

Defining C; = %}SW(/O()O(—;’ From (7.39), we obtain

QU
‘8(U+L
’ 4

<CGAVU2+82 and [0, S| < CANVU? + §2 (7.40)

for some new constant C3 > 0. Let us define

A=

Czim" B=CWU2+S2 and G=U2+S (7.41)

Let us work under the hypothesis that A > 10B for some {. Without loss of generality, let us also assume
that U(Z) > 0. Then,

2 2
sy CUQ CU_G(Up (@ (@VP+F)| 1o o
—0;A=—0¢ - - =

> == A- B> MIA,
4 ¢ ¢ 4 4 4
BG’ (A%/Cy 22CE AC?
-0;B=-—-<B +2C3AB < A+2C3AB = A+2C3AB < C4AA,
¢ 26~ TRy ‘10, : 10MC, ’ N

where Cy is independent of M, A. Then, taking M to be sufficiently large so that M > 10Cy4, we see that
the hypothesis A > 10B for some {’, implies that the same hypothesis holds for all smaller ¢ € [d, {’].
Taking £’ to be the largest £ € [, ﬁ] such that A > 10B (or ¢’ = ¢ if there is no such  exists), we
obtain the following:

e In the region (8, "), we have A > 10B, and moreover, U({) has constant sign in this interval.

o In the region ({’, ﬁ), we have A < 10B.

Let us first treat the region £/ < ¢ < ﬁ As A < 10B, we obtain that |[U’| < 11C3AVU? + S2. Thus,

|G’ ({)| < 24C54G.
Integrating, we get that for all £ € ({ , ﬁ),

24C;

1
G <G|—|e™ <Cp.a, 7.42
() < (/IM)e <Cuma (71.42)
where Cyy , is sufficiently large depending on M and A (independent of z, §).
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In the region 6 < ¢ < ¢’, using A > 10B in equation (7.40), we see that U’ has the same sign as

_CgU, so U? is decreasing in § < ¢ < ¢’. Therefore, for £ € [8, ('], we have

U] < U] < 2|z <2. (7.43)
Using (7.43) in (7.40), we obtain that
|S7] < 2C34 + C34]S|.
Using the initial condition |S({”)| < Ca,a implied by (7.42), we deduce that for ¢ € [d, {’],
1S(O)1 < Cams (7.44)

for some Cyy_, sufficiently large, independent of z and §. Finally, recalling W = U + S, Z = U - S,
(7.42)—(7.44) give us a bound on |W| and |Z| independent of 6, z for all £ € (6, ﬁ)

To summarize, there exists amap Fs : [—1,1] — [-A*, A*] suchthatif (W, Z) is the smooth solution
on (0, 2] corresponding to W(1) = Fs(z), then W (&) + Z(6) = z and we have a bound on |W| and |Z|

independent of 9, z for all £ € (6 , MLA) Now we wish to show that there exists a continuous solution

map G, mapping any wq to an analytic solution (W, Z) to equation (7.26) on the region { € (—%, %)
such that W(0) = wy. With these two maps, F and G, we will be able use a fixed point argument to
construct a smooth solution to (7.26) on ¢ € [-2,2].

We will now repeat an expansion argument in line with the expansion in the proof of Proposition 2.5.
Writing W = Y50 wil', Vig = isovil', Gw = 20 8¢  and W = ;50 w;{’, then substituting these
formal expansions into (7.27), we obtain

n—1
(n+ 1)VW,OWnH =8n — Z(l + 1)VW,n7iWi+1~
i=0

Let us rewrite g, as
&n = &n = 212 aWoWny1,
then, using viy o = a@wg we have

n—1

awo (n+1+215,) Waet = &n — Z(i + 1)V iWisl- (7.45)
i=0

Since wq # 0, then (7.45) can be used to define w; given wq. Since (W, Z, Fy ) are analytic, it is easy
to see that the formal series converges producing an analytic solution in a small neighborhood of £ = 0.
Let us denote the solution map wo — W restricted to wy € [-2C, 2C] by G. Then by continuity, there
exists some ¢’ > 0 such that the solutions in the range of G are all analytic on the region ¢ € [-¢’,¢’].
Now, we consider the map wg — G(wq)(8) for some 0 < § < ¢ sufficiently small. We can take §
sufficiently small so that:

e In the range of G, we have |W + Z| = [W({) - W(={)| < 1 for all € (=6, 9).
e The map wg — G(wg)(5) has a range that covers [—C, C] (recall wy € [-2C,2C]).
e The map wo — G(wy) () is injective.

The first two items follow from W({) = wg + O(8) when ¢ € (-6, 6), so let us argue the third one.
Considering wo, w(, € [-2C,2C], we use (7.45) to define w;, w via the Taylor recurrence. We have

G(wo)(6) = G(wg)(8) = wo = wh+ > (wi =w){'. (7.46)

i>1
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Now, from (7.45), and using the formula for g,, from (2.38), we have

n

awg (n+1+21a,) (Wnet —wiyy) = (1 =r)(wa —wy,) — Ly Z(wa"”’j - W;-W;H_j)

J=1

n—1
- Z(l + 1)VW,n—i(Wi+l - W:-+1)-
i=0
Letting d; = w; — w, we see that

n n
nldua] 7Y ldil+ > 1dj] - wner- .
i=0 j=1

Choosing ¢ sufficiently small, we can assume |w;| < 1/(36), and in that case, the equation above allows
to close an induction argument for the bound |d;| < C|dp|/(25), for some constant C independent of
8, wo, w(, and ¢ sufficiently small. Therefore, |w; —w;| < [wo—w|/ (26)%, and from (7.46), we conclude
the injectivity.

Now, since wy — G(wg)(d) is injective and covers [—C, C], we define H : [-C,C] — [-2C,2C]
to be its inverse map restricted to [—C, C]|. Therefore, H takes the value of a smooth solution W at
{ = ¢ and outputs the value that W has at { = 0. Now, we consider the following map z — z’,
where 7’ is defined as follows. First, we construct (W, Z) = Fs(z), which we recall that is the smooth
solution on (0,2] with W(6) + Z(6) = z. Then, we apply H(W(8)) to obtain the value of wy that
generates a smooth solution around ¢ = 0 with that corresponding value of W(¢). Finally, we let
W = G(H(W(6)) be the smooth solution generated by that wg, and define z’ = W(8) — W(=9) to be
its corresponding value of W + Z at £ = 6. Since z — z’ maps the interval [-1, 1] to [—1, 1] and it is
continuous, Brouwer’s fixed point theorem ensures the existence of a fixed point z. For such z, we have
that W(8) + Z(8) = z = 2’ = W(6) — W(=6). Note that by construction of the map z — z’, we always
have W(8) = W(§), since the definition of W (&) = G(H(W(6)) is the solution constructed via a Taylor
series at zero that passes through (&, W(6)). Therefore, we have that (W (6), Z(8)) = (W (8), =W (-9)),
and by standard uniqueness of ODE solutions, we conclude they are the same solution. Since W () is
smooth for ¢ € (=68, 6) and (W(¢), Z(¢)) for ¢ € (0,2], we see that W(¢) is smooth for ¢ € [-2,2].

Let N be the space of functions that can be written as F = y(Fy, Fs), for (Fy, Fs) analytic and y
a smooth cut-off function, 1 on [0, %] and compactly supported on [0, 2).# Then for every F € N, we
have shown there exists (U, S) € D(L) satisfying (7.25). Now given a F' € X and a sequence F; € N
converging to F in X, it remains to show that the corresponding sequence (U;,S;) € D(L) solving
(7.25) converges in D(L).

Observe that

(Fi = Fj, (Ui =Uj, Si = Si)pom = (—LWU; = Uj, Si =8;), (Ui =Uj, Si = Sj))pom
+ 2| Wi = Uy i =)
2 ||PNLWUi = Uj, Si = Sp)|[3ym + (T = PN)LU: = Uj, Si = S)|[31m
+ |Wr = Uy, 85 = Sy
2 AU = Uj. Si =S5y -

where we used Lemma 7.4, that £ is bounded on the finite dimensional orthogonal complement of Yy
and that we are free to take A arbitrarily large. By Cauchy—Schwarz, we conclude

= Uy $i=5)lgom = = Pl

Thus, since F; forms a Cauchy sequence, so is (U}, S;), which concludes the proof. O

41t is important to note that we are not fixing y; each element of N may be defined in terms of a different y.
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Corollary 7.7. For all 64 > 0 sufficiently small, we can write our linearized operator L as
L=A)-0,+K

for some Ay maximally dissipative on X, and K is some compact operator on X.

Proof. First of all, recall that Py : X — Y}y is the projection onto the finite dimensional subspace Yy .
From Lemma 7.4 we have that

(L(U,S), (U, 8))pom < =1V, )l

for every (U, S) € Yn, so in particular, Py L + d, is dissipative on Y .
Lemma 7.6 implies that Py L + 6, — A : X — X is surjective for sufficiently large A. Since
Y~ has finite codimension cody (YN) the surjectivity of £ + 6, — 4 on X implies that there exists

some finite codimension space Yn C Yy (of finite codimension codx (YN) < 2cody (Yy)) such that
PNE +0g—A: YN — YN is surjective on YN Here, PN denotes the orthogonal projection to YN

Thus, we get that PNL+6 ¢ is a maximally dissipative operator on the finite codimension space Yn.
Let Ap be a maximally dissipative operator on X that agrees with £ + ¢, on Yy . For instance, one may
define A to be —Id on Y3, and this clearly makes Ag : X — X maximally dissipative. In particular,
we have the equality Py £ = Ag — 6 ¢ over the finite codimension space Yn. Letting K; = (1 — Py)L,
which is compact because it has finite dimensional rank, we get £ = Ag — 6, + K over 171\1.

Then, let K> be an operator which is zero over YN, and it is defined as £ — Ag + 6, — K; on ?ﬁ
Again, K, is compact, as it has finite dimensional rank. Moreover, we get that the equality

£=A0—5g+K1+K2

holds both over ?N and over ?,{,. Therefore, it holds over all X, and letting K = K + K», we conclude
that £ = Ag — 64 + K for some Ap maximally dissipative, 6, > 0 and K compact. O

7.2. Abstract results on maximally dissipative operators
We first recall some basic properties of maximally dissipative operators (see [64, 79]).

Lemma 7.8 (Properties of maximally dissipative operators). Let Ay be a maximally dissipative operator
on a Hilbert space H. Then, we have that

e Ay is closed.
e 0(Ag) c{1eC:R(1Q) <0}
e For every A1 € C with RA > 0, we have that (—Ag + 1) : D(Ag) — H is a bijection and moreover

(=40 + D) LoDy < RD7.
o A is also maximally dissipative.
o (Lumer-Phillips theorem): Aq generates a strongly continuous semigroup on H.

Definition 7.9. We define the growth bound of a semigroup 7 on H as
wo(T) = inf {w € R, 3M,, such thatVz > 0, ||IT(1)|| < M,,e""'}.
We also define
Wess(T) = inf {w € R, 3M,, such that V¢ > 0, [|T(#)less < Mwe"'},
where the essential seminorm is defined as

IT(@)lless = inf ||T(2) - K.
K compact
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Lemma 7.10 (Growth bound [32]). Let us suppose that A generates the continuous semigroup T. Let
0 (A) be the spectrum of A and let us consider s(A) = sup ¢ 4y R(2). Then

wo(T) = max {weg(T), s(A)} .

Moreover, for any, w > wess(T) have that o-(A) N {1 € C : R(A) > w} is a finite set of eigenvalues
with finite algebraic multiplicity.

Lemma 7.11. Let Ag be a maximally dissipative operator and consider A = Ay — 04 + K where 64 > 0
and K compact. Then we have

1. The set A = o(A) N {d € C: R(A) > —6,4/2} is finite and formed only by eigenvalues of A.
Moreover, each A € A has finite algebraic multiplicity. That is, if we let u  to be the first natural such
that ker(A — AId)*t = ker(A — Ald)**!, we have that the vector space

V= @ ker(A — Ad)* (7.47)
AeEA

is finite dimensional.
2. Consider A* = Aj — 65 + K™ and let A = 0(A*) N {2 € C: R(A) > —6,4/2}. As before, we define

V= EB ker(A* — Ald)a, (7.48)
AEN*

We have that both V and V** are invariant under A. We also have that A* = A and py = ;13.
Moreover, we have the decomposition H =V @& V*+,

3. The linear transformation Aly : V — V obtained by restricting A to the finite dimensional space V
has all its eigenvalues with real part larger than —64/2. In particular, there is some basis such that
we can express

Ji Ai 6¢/10
Aly = - . , where Ji= A ,
' Je ; 68/{510
where A; are the eigenvalues of Aly . In that basis, we have that
wl - Aly -w > — Os Wl VweRN. (7.49)

10

Moreover, letting T (t) be the semigroup generated by A, for any v € V**+, we have
IT @Vl < eIyl (7.50)
Lemma 7.11 is very similar to Lemma 3.3 in [67]. We, however, provide a proof for completeness.

Proof. Ttem 1. Lemma 7.8 tells us that A generates a contraction semigroup 7y (t). Therefore, we have
that Ag — &, generates a contraction semigroup T (1) = e~ %' T (¢), such that wo(7}), Wess (T1) < —0g.
Thus, as K is compact, Ag — 6, — K generates a continuous semigroup 7'(¢) as well, and as wegs is
invariant under compact perturbations, we have that wee (T') < —J,. In particular, applying Lemma 7.10
forw = _716g» we see that A consists of finitely many eigenvalues with finite algebraic multiplicity.
The fact that the spaces ker(A — A;1d)#? are linearly independent for a finite set of different A; is
well-known in linear algebra.
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Item 2. 1t is clear that ker(A — AId)“* is invariant under A: if v € ker(A — AId)#*, we just have
0= (A - Ad)**ly = (A - ATd)* (Av) — A(A — AId)“y = (A — ATd)* (Av).

As a consequence, V remains invariant under A.
Applying the argument from Item 1 to A*, we find that A* is finite, and consequently, V* is finite dimen-
sional. In addition, as above, we find that V* is invariant under A*. Therefore, for any v € V*+,w € V*

(Av,w) = (v, A"w) =0,

since A*w € V*. Thus, Av € V**, and we have shown that V** is invariant under A.
Now suppose 1 € A* \ A. As R(1) > —6,/2 and 1 ¢ A; hence, the resolvent (A — Ald)~!is a
bounded operator. Therefore, (A* — AId)u = v is equivalent to

(w,u) = (A = A1d)""'w, v), Yw e H.

By the Riesz representation theorem, we have a unique such # € H, and moreover, the map v — u is
bounded. This shows that A* C A; however, since A** = A, an analogous argument for A* shows that
AC F, and hence, A* = A.

Before showing that the multiplicities are equal, let us show that H = V & V**. Let us note that V is
the image of H under the projector

_ b -l
P(A) = o /F (Ad - A)~" da.

for some curve I' enclosing A. However, as A = A*, we get that P(A*) = P(A)*. Therefore, using
Im(P(A*))t = ker(P(A)) and the decomposition H = ker(P(A)) & Im(P(A)) (since P(A) is a
projector) yields the desired decomposition H = V**+ @ V.,

Lastly, let us show that y, = ,u’%. Without loss of generality, assume p, > /J%. Then we have that

<(A — A1d)H, w> - <v, (A* - Ild)*'%w> =0 Vv eker(A—Ald)", w e ker(A — AId)"T.

However, as u, > ,LL*T there exists some v € V such that the term v/ = (A — AId)" Ty # 0. It is clear
that v/ € V, since V is an invariant subspace of A. Therefore, we have that v/ € V, v/ € V*+ and v # 0.
However, this is impossible due to the decomposition H =V @ V*+,

Item 3. If A is an eigenvalue of Aly, we have that there exists v € V with Av = Av. Asv € V, we
have that A € A, and therefore, R (1) > —6,/2.

Now, we express Ay in its Jordan normal form and obtain some blocks J; with A; on the diagonal
and 1 on the superdiagonal of each block. Consider D; to be the diagonal matrix with elements
1,64/10, (6g/10)2, ... on its diagonal. Then, we have that D;IZD,- = J;, so we can obtain the desired
form by applying the change of basis dictated by D; to the Jordan normal form.

In order to show (7.49), we show that A|y + 61%[ is semipositive definite. It suffices to show that each
of its blocks J; + %I is semipositive definite. Suppose that the block is of size k. Then, as RA > —6—“’,
we have

T 69 Sk 2 g S 5 2, .2
wl - (J; + 1—01)-W > Z To%i = I_OZ [willw sl = EZ(WJ. +wig = 2w;llwjal) > 0.
= j=1 =

As V* is invariant under A, we can consider Ty,(t) = T|y++(t), the restriction to the semigroup to
that space, which is clearly generated by Ay = Aly«+.
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On the one hand, we have that
Wess (Tsta) = Wess(T) < _6gs (7.51)
since those contraction semigroups differ by a compact operator.
On the other hand, if o (A;) had any element A with R (1) > —64/2, we can apply the same reasoning

asin 1 to say that A has to be an eigenvalue. Thus, we would have an eigenvector v € V*+ with Av = Ay
and R (1) > —J4/2. This is a contradiction since ker(A — Ald) c V for those A. Thus, we get that

o(Ay) C{1eC:R() < —6,/2}. (7.52)

Combining (7.51) and (7.52) via Lemma 7.10, we get that wo(Tsa) < —d4/2, and we conclude the
proof. O

7.3. Smoothness of eigenfunctions

Let us remark that due to Corollary 7.7, we have that our operator £ can be written as Ag — 6, + K
for some K compact, g > 0 and Agp maximally dissipative. Therefore, we are under the hypothesis of
Lemma 7.11 on the space X. From now on, let us denote

Pw(U,8) = Ply(U,S)  and  Pus(U,S) = Ply-(U,S).

Lemma 7.12. Let (U,, S,) be radially symmetric. Let yo be a cut-off function supported on [0, %] which
takes value 1 in [0, 1]. Then, there exists an absolute constant C independent of m, J, N such that

[ xo020@.5)- 8+ [ o@£s@.505, < ¢ [0 (102 +5).
Proof. Let us denote
7= [ 0(0£o@.5) T+ [ 00(0Ls@ 55,

Let us note that on the support of y(, we have that y; = y» = 1. Therefore, in this region, we have the
equalities

Lu(U,,S,) = (r - 1+0; (U . %)) U, +aS,VS + (y + U)VU, + aSVS,,
Ls(Ur,S:) = (r =1+ adiv(0))S; + 35U, + (y + U) - VS, + aSdiv(U,).

Taking C big enough such that r — 1 + ||S|| 1 + ||17||H1 < %, we have

C _ _ - -
<5 [0 (18P +5)+ [ x@0+0)-50, T +a [ 0595,
¢ [20@0+0)-555 o [ (@Sav@)s,
Therefore, we get

7<% [ 0@ (TGP +8)+5 [0@0+0) - v(18P+5)+a [ wsav(S - 7)

< (%+ div(xo(y + U))

2
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Corollary 7.13. If A is an eigenvalue of our operator L, we necessarily have that R(1) < C.

Proof. Letv = (vy, vs) be an eigenfunction of L. As these may be complex, let us write vy = vy, +i v;']
and vg = vg +iv3 for their decompositions into real and imaginary parts. Let us also denote v" = (v, v§)
and v' = (v, v). As the operator £ sends real functions into real functions, we have that

/XO% (VU Luv+ vsﬁsvs) = / xo (v - Luvy, +veLsvs) + / xo (Vi) - Luviy +viLsv)
<€ [ (10 P+ 092 + 1 P+ 04)?).

where in the last inequality, we used Lemma 7.12 for the pairs (vy,, v§) and (véj, vg). Using that v is an
eigenfunction of eigenvalue A in the left-hand side of the previous equation, we obtain that

R [ xo (P 1vsP) < € [ o (P + busP)

This concludes our claim. O

Lemma 7.14. If 6, > 0 is chosen sufficiently small and {v; y,vis}i=1,...n are the eigenfunctions
corresponding to the eigenvalues A defined in Lemma 7.11 applied to the operator Agy defined in
Corollary 7.7, then {v; v, vi.s}i=1,....N are smooth.

.....

Proof. Fixing 6, > O sufficiently small, let {v; i, v; s}i=1,..~ be the eigenfunctions corresponding
to the eigenvalues A defined in Lemma 7.11 applied to the operator Ay defined in Corollary 7.7. By
Sobolev embedding, the eigenfunctions are C>"~!.

Fix i, let A + J, be the eigenvalue associated with (v; v, v; s) and define (W,Z) = (v;y + vis,
viu — vi,s). Then

A+Dyp)W + Vo W+HpyZ =0
A+Dz)Z+V70;Z+Hz;W =0.

We extend (W, Z) in the usual way by requiring Z(¢) = —=W(={). By simple ODE analysis, we obtain
that (W, Z) are smooth away from £ = 0,1. At £ = 0, 1, and we compare (W, Z) to the power series.
At ¢ =1, we may use (7.31) in order to construct a power series expansion around ¢ = 1. In order to

construct the series, we are using that R > —&, and hence. the prefactor
(A+Dz(1)+(n+1)vz,)

in (7.31) is positive assuming that n > 2m — 1 and m is chosen sufficiently large, dependent on

04 — here, we are also using the lower bound Lemma A.11 on vz Let (W, Z) denote the solution

obtained via power series expansion in a small neighborhood [1 — §, 1 + d] of £ = 1 such that W(1) =

W (1). We necessarily have that all derivatives of (W, Z) and (W, Z) agree up to order 2m — 1 at £ = 1.

Let (W,Z) = (W —W,Z —W). Then for £ € [1 - 6,1+ 6], we have (W, Z) = O((¢ - 1)¥"1).
Suppose for { € [1 — 6,1 +d], C is chosen larger enough such that

1 N 1 < C
Vwl Wzl ST

|DWi+|HWi+ | Dz|+|Hz| < C and

Then, by Gronwall, we have for 1 +6 < ¢ < 1 +6,

1

|Wi + |Z| b FCCH (|W(1 + 5)| + |Z(1 +5)|) < §2m=1-C(C+[A])
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By an energy estimate, we can bound A independent of m. Then since m can be chosen sufficiently large,
we can take & to zero to conclude that (W, Z) = 0 in the region ¢ € [1, 1 + 6]. An analogous argument
holds in the region ¢ € [1 — ¢, 1]. In particular, we have shown that (W, Z) is smooth in a neighborhood
of £ = 1. A similar Gronwall argument using (7.45) to construct the local analytic solution can be used
to prove (W, Z) are smooth in a neighborhood of £ = 0. O

Corollary 7.15. There exists a finite dimensional orthonormal basis of smooth functions
{Wiv,¥isti=1... .~ forthe space V defined in Lemma 7.11 for the operator Ag defined in Corollary 7.7.

Proof. Let {v;y, Vi s}i=1
eachi=1,..., M, define

M be the sequence of smooth eigenvectors defined in Lemma 7.14. For

.....

Wiu.dis) =RFiu,Vis) and  im,u,Yiem,s) = IFiu, Vis)-

Each (!/;i,U, zﬂi,s) is smooth by definition and span V. The sequence of functions {y; v, ¥i.s}i=1....N
can then be constructed via a standard Gram-Schmidt argument. O

Remark 7.16. Let us note that, moreover, with our definition of £, the functions y; 17, ¥; s are compactly
supported in { < %, which is the support of y>. As the functions y; ¢y and i; s are linear combinations
of ¥;,u and ;. s, respectively, it suffices to check that ; ; and ;s are supported on £ < 2.

Indeed, note on the one hand that £(i};) = 4;(¥i v, ¥i,s) with R(2;) > =5, /2. On the other hand,
from (7.9), we get that

LWiu.¥is)=—TWiu.¥is), (7.53)

outside the support of y».

As J is taken to be sufficiently large, -J < 1 « %Sg < A;. Equation (7.53) contradicts that A; is the
eigenvalue of i; unless both i; ;7 and i; s vanish identically outside the support of y>. Thus, ¥; 7, ¥; s
are compactly supported on ¢ < %

8. Nonlinear stability

For brevity, we will use the notation [|-||x in place of ||| 2 (g/o,2)) (this is consistent with the definition
of the space X given in Remark 7.2).

Our aim is to show that there exists a finite codimensional manifold of initial data that lead to
asymptotically self-similar implosion. To make this more precise, suppose we are given initial data
(U, S;) such that the difference v, S4) = (U, S)) — (U, S) satisfies the following assumptions:

10l IISpll < 61, ||X2fjé,,-||x, Ix2Syllx <6 and S§(¢) = %51 forevery £ € R¥, (8.1)
where here, 6 and ¢; are constants satisfying the relation
6(3)/2 < 0] Koy k1,
and Yy is the cut-off function defined in Section 7. o
We will moreover assume a high-order weighted energy estimate on (U, S)). For some {y and 7,,

yet to be determined, we let ¢ be a smooth function that is 1 on the region [—{o, {o] and behaves like
£20=m) for ¢ > £p. We then assume (U}, Sp) satisfies the bound

4 / ((AKu(;)2+ (AKS(’,)2) > (O d¢ < E? (8.2)
0
for K satisfying 69 < 1/K < 1,,.
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For the convenience of the reader, we collect the following chain of inequalities:
1 3/2 1 1 1
— 0TI K00 K K = K = K = L7y K O K dgis = 0(1),
S0 E K m

where we recall d, is defined at the beginning of Section 7.3 and dg;s is defined in (1.20).
With the assumptions (8.1) and (8.2), we will show there exists {ai}{\:’ | satisfying |a| < 61, such that
the initial data

N N
U, S =T+ T+ > @i, S+55+ > awis (8.3)
i=1 i=1

leads to a global solution (U4, S) to (7.5), and moreover, if one sets (U, §) =U,S) - (U,S), then
lim U(Z,5) =0
§—00

for any {. The key ingredient to proving this statement is the linear stability of truncated problem
considered in Section 7. To make this link precise, given (U, So), define its truncation (Up ¢, So;) as

(Uo,t» So,¢) = x2(Up, So)- (8.4)

We then let (U, S;) be the solution to truncated equation (7.7) corresponding to such initial data. Let

us recall that all the cut-offs introduced in the truncated equation are constantly equal to 1 for || < g.

We thus have the following.

Lemma 8.1. The solution to the truncated equation and the solution to the original equation agree on
6

Proof. Subtracting the two solutions written in terms of their (U, S) variables, we obtain that their

difference (U, S) satisfies

(O +r = DU + (L +U)0;U + 88,5+ U8, U +aSd;§ =0,
(O +7 = DS+ (L +0)8;S +a8div(U) + U S + aSdiv(U) = 0
on a ball B(0, 6/5) and with zero initial conditions on that ball. Applying energy estimates, we see that

0 . 0 .
% (|U|2+52) < —/ c+inE (|U|2+S2) —/ aniv(SU)+C1/ (U2+52)
2 JB.6/5) B(0,6/5) 2 B(0,6/5) B(0,6/5)

+U .
s—/ (5_(|U|2+Sz)+assu)+cz/ (U2+S2)
8B(0,6/5) \ 2 B(0,6/5)
~¢-U+al
s/ u(|U|2+S2)+C3/ (U2+Sz)
8B(0,6/5) 2 B(0,6/5)

sc3/ (|U|2+s2),
B(0,6/5)

where C;, C,, C3 are some absolute constants, and we have used Lemma A.33 in the last inequality. In

particular, as U and § are zero at time sg in B (0, g), we conclude that they are zero for all times, and

both solutions agree for all times and ¢ € [0, ¢]. O

Given a solution (U, S;) to (7.7), we will consider || Pyns (Us, S¢)||x . Our first result is to show that as
long as the unstable modes are controlled, we can control the extended solution (4, S) in a high-order
weighted Sobolev norm. In particular, we will bound
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P (5 = [ ((0KU ) + (35 S(0)2) ¥ O 85)

Specifically, in Section 8.1, we will prove the following:

Proposition 8.2. Let us take 6(3)/ ) 1 < 8. Let us assume that our initial data satisfies

|

— - S — — ~ . 4
1o S0.0llx < 5. 100l I18olles < 61, Eax(s0) < So+8§25  86)

and that letting Uy = U + Uo, S = S+ S, its derivatives satisfy the decay estimates

VU] + VS| s <2> and  |VU| +|V?So| < (;j (8.7)
Moreover, let us assume that our solution is defined for s € [so, s1] and for every s € [sg, s1], we have
1Puns (U 50 (9)1x < 1. (8.8)

Then, we have the bounds
Exx <E and |[Ullzs, |ISllzs < 6o 8.9)

forall s € [sg,s1].

By local existence and a standard continuation argument, Proposition 8.2 implies that the solution
(U, S) is well defined and satisfies the bound (8.9) so long as the unstable modes satisfy the bound
”Puns(Uts SI)HX < 61-

In Section 8.2, we will prove, via a standard topological argument, the existence of a choice of {a;}
leading to a global bounded converging asymptotically to (U, §).

Proposition 8.3. Let us consider (U!, §(’)) smooth and satisfying the initial conditions

~, o~ 6 ) E 96
(TG, So.)lx < =20 Eak U, Siso) < = ITglles, ISlles < =
g 4 4 10°
51 | (8.10)
S48, = 2 VS +IVUl < = IV +IVES)] S =
025 VSl +IVil < 7 VUl + V7Sl < 0
and moreover such that Puns( 0. S ) =0, for = )(ZU and S = /\(ZS Then, we have that

there exist specific values of a; such that we have the followmg Let (L{o, So) be deﬁned by (8.3) and
(Uo,,Sot)deﬁnedby(84) LetalsoUo—L{o—U So—So—S UOt—Z/[Ot X2U SQ;—S()t X2S

Then, the equations (7.6) and (7.8) can be solved globally for all s > so, and moreover, we obtain
smooth solutions that satisfy the estimates

(T, S0)llx < 61 10% =50, 8.11)
and

Tl + ISelle < 61”10 (5750), (8.12)

where we recall U, and S, refer to the whole perturbation (without any cut-off) solving the extended
equation (7.6).

Given the inequalities in (8.10), we may safely assume that the equations 8.6—8.7 will be satisfied for
Up, Sp.
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Now, let us see how to conclude Theorem 1.3 from Proposition 8.3. The proofs of Proposition 8.2
and Proposition 8.3 will be delayed for now and will constitute the bulk of this section.
Let us specify the initial data (U], S)). We consider ,, > 3 such that U< %6 | for ¢ > ¢, and let

By =1{¢ 1 { >} and Bs = {{ 2 8(0) < 261}.

We let x3 : R>o — R be a smooth cut-off function supported on [0, 1] and equal to 1 on [0, 1/2], and
we let 4 > 1 be a parameter to be fixed. We define the initial data U/, S(’) as follows:

03(0) = -U(0xs (1-d(.Bp)).  and 56(§)=(%51—5(5)))(3(1@({,935)),

where d is the distance function. That is, we fix l~/(’) and §(’) to be —U and %(5 | — § in the regions By and
B respectively. Outside that region, our definition gives a smooth extension of U/, §(’) that guarantees
that they are supported in a %-neighborhood of By and By, respectively.

Let us note that I{; is zero for { large enough and S is 3 701 for £ large enough. This clearly follows

from the fact that U/ and S decay (Lemma A.39), so for Ie suﬁimently large, we will have ¢ € By and

€ Bg. Let us also note that By, Bg C (3, o) because ¢, > 3 and Lemma A.32. Therefore, as U 4 S’

are supported in ——nelghborhoods of By and Bs (and A > 1), we have that U(’), S’ are zero for { < 2.
Now, all the estimates from (8.10) are trivial. We have U o= S’ = 0 because U’ S’ are zero

for { < 2. As Uy, S are constant for £ large enough, we have that the’1ntegral defining Exx (U], SO)2

converges, so it is less than %2 provided we take E sufficiently large. We clearly have
AR 3 & ¢/ 3
|U0|, |SO| < =0; and S+SO > =01,
4 4
for ¢ € By and By, respectively. Therefore, taking A to be large enough, the third and fourth inequalities

from (8.10) are satisfied because U “and S are supported on 5 nelghborhoods of By, Bs. The two last
inequalities of (8.10) follow dlrectly from the fact that I, S ¥ are constant for sufficiently large .

Now, we apply Proposition 8.3 to (17’,5(’)). Note that as ¢; y,y; s are supported in { < 2
(Remark 7.16), we have that

U () =0 and So(0) = %61 for ¢ large enough. (8.13)

Moreover, Proposition 8.3 gives us a global solution (ﬁ , §) to (7.6), which taking U = U+U and
S = U + U yields a solution (U, S) to (7.5). Undoing the self-similar change of variables by taking

|
u(R, 1) = =" VUL, 5),  o(R1)=~-e"VS(L,s), (8.14)
r
where
R=2¢e", e =T —t=e%" —y,
we obtain that u(R,t),o(R,t) for t € [0,T) satisfy equation (1.18). We may recover p from taking
= (ao-)z]7, and then (u, p) satisfies (1.3). It is clear from (8.13) and the changes performed that
u(R, 0) will be zero for R large enough and p(R, 0) will be constant for R large enough (let us denote

that constant by p.). Then, the items 1 and 2 of Theorem 1.3 are satisfied.
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Moreover, we see from Proposition 8.3 and (8.14) that

lim (T~ NV (0, 1) = §(0),
t—

so we see that 0(0, 7) tends to +oco since S(0) > 0 as a consequence of Lemma A.32. This implies the
p limit stated in item 3 of Theorem 1.3.

In addition, we know from Proposition 8.3 that 2/(1,s) — U(1) and S(,s) — S(¢) as s — oo,
which implies item 4 of Theorem 1.3.

Finally, we show the u limit stated in item 3 of Theorem 1.3. First note that

Wo+Zy Dwo+Dzpo 1= Dw o _q

o =-— 2 2

Then, assuming r is sufficiently close to r*, we obtain from Lemma A.7 that U(1) # 0. Since
UL, s) — U(Z), we obtain the u limit stated in item 3 of Theorem 1.3.

Remark 8.4. Observe that our construction of (ﬁé :S%) allows for small perturbations in all the norms
considered (the norms appearing in (8.10)). The functions ({4, Sp) can be defined as before in (8.3) up
to small perturbations in the coefficients a;. In particular, the conclusion of Proposition 8.3 holds for a
finite codimension manifold of radial initial data.

8.1. Proof of Proposition 8.2

We will prove Proposition 8.2 via a bootstrap argument. Thus, we will assume equations 8.6-8.9 hold
for s € [s9, s1] and show an improvement on (8.9) — specifically,

1
=5, (8.15)

IA

T ), (1SC, 8) I

IA
N =

Erx (S) E (8 16)
for all s € [0, s1]. Showing the improved bounds (8.15) and (8.16) would clearly conclude the proof of
Proposition 8.2 because E»k (s), U, s)||l~ and ||S(-, 5)||r~ are continuous with respect to s.

From now on, and for the rest of this subsection, we will always assume that (8.6)—(8.9) hold and
that s € [sg, s1]. In order to show equations (8.15) and (8.16), we divide the proof in three steps. First,
we will derive a series of consequences of the assumptions (8.6)—(8.9). Secondly, we will show (8.15),
and thirdly, we will show (8.16). This subsection is organized in three different parts according to those
three steps.

Before doing any of those steps, let us introduce some definitions. Due to Lemma A.39, and recalling
that 68/ ) 1 < dp < 1, we know that there exists a value of {y such that

.. .. . )
§(2) 2260 forall <&y and [VS(0)], [VU(Q)] < ?1 forall £ > . (8.17)
In particular, from [|S]|z~ < o in (8.9), we have that

S(&) =6y forall £ < ¢y (8.18)

Let us also define the weight ¢(¢) that we will use for the energy. We fix

1 for { < &,
= 2(1-nw)
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and choose ¢(¢) in the region ¢y < ¢ < 4(p so that it is smooth and

% <2(l-n,) and @) >1 (8.19)

hold globally.

8.1.1. Consequences of the bootstrap
Let us stress once again that for all the results in this subsection, we are implicitly assuming that
(8.6)—~(8.9) hold and that s € [sq, s1].

Lemma 8.5. We have the following inequalities for the 2K — 1 derivatives:

_ _ _ _ E
¢(2K l)/2|VzK lu|+¢(2K 1)/2|V2K 18| < é/l/ijl/z_ (820)
Moreover, for 0 < j < 2K —2 and { > o, we have
= /(2K -1
o1V + ¢V S| < oKDk [__E e (8.21)
~ % [\2g12 ’
Finally, for 0 < j < 2K — 2, we also have the global inequality
.
167297 S Iz + 1672V SliLe + 167V UL + 167V UL 5 (557E) ™ (8.22)
0

Proof. We have the following bound on any 2K — 1-th derivative of S:

1025718(¢)] < / |0°% S| dz
4

102K o2 2 2K 1z ® 1 12
<[ [ st o] ([ e

e o ! v
E(/z z2¢<z>2KdZ) SE(&M)M) skemes 62

This yields the estimate on V>X~1S implied by (8.20).
_ Now, for the region £ > {p, we have that IS()] < 8o, and by (8.9), we also have that
IS(£)] < 8o. Therefore, |S()| < dp. Using interpolation (Lemma A.1) between |S({)| < 8o and
1/2 .
oK |V2K’18|% < 1 in the region [, +00), we conclude the estimate on V/S implied by (8.21).
Integrating (8.23), we obtain

N

0*572S(0)| < E 4" =Eg”, (8.24)
$(50)* 0

which shows (8.22) for S and j = 2K — 2. Standard L* interpolation (Gagliardo-Nirenberg) yields

J
iy 2 =\ K=
1672V Sl (B(0.00)) (é”(;/ E) A (8.25)

using that in B(0, {y), we have that ¢ = 1. For the region ¢ > (p, note that weighted interpolation
(Lemma A.1) between ||S||L~ < 1 and (8.24) yields

J
; : 1/2 =\ 2K=2
62V Sl (B0,00)) < ((0/ E) ,
which together with (8.25) shows (8.22) for S.
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In order to obtain the bound for S, recall that S = S + §, and then note that l¢7/2v7 8| > < ldueto
Lemma A.39. Therefore, we conclllgie the desired bound also for S. The bounds for I/ and U are proven
in the same way as we did with S, S. ]

Lemma 8.6. We have that
—(r-1)
s <£> .
4\

Proof. The statement clearly holds for ¢ < ¢y from (8.18). Thus, let us work on the region O = [, ).
Let us recall that S solves

(Os+r=1)S+y-VS+U - VS +aSdiv(ld) =0. (8.26)
By (8.21), we have that

l]lL= o) + [ISllL= (o) < do,

- 1) = _ (8.27)
16" >VUllz(0) + 18" VSim (o) 5 65K PETVEVCKD < OB < 6

4/5

Let us also define w; ;(s) = (g'“'e(s“‘:))FI S(Ze*™3, s). Then, using (8.27) in (8.26), we obtain that

s os—5\"1/2 (3 (s-5 = s—8 7 r—
Ouog 5(5)| < 8% (Ze) 2 (2e09) T s 83 (o) T . (828)
Now, note that = Ly 5 <= 1 because r < r*(y) < 3 — V3; hence,
s—§ l(lfnw)
¢(§€Y \)2+2 277W < (ge ) 10 Se%(x—ﬁ)’
o

where we used that 7,, is sufficiently small and assumed /' > /. Thus, we obtain

I g 5(5)] 5 8B (8.29)

for any s > § with §, s € [s0, s1] and any g“ > {o.
Integrating (8.29), we obtain

flp“@)gﬁngnsﬁ“<a%@ (8.30)

Now, for any £ € O and s € [sq, 51], there existsf > (o, 5 €[50, 51] such that (g'“', §) € {lo} X [s0,s1] U
[£0,0) x {so} and e*~* = ¢. Fixing such conditions for Z, §, we have

&&@z%. (8.31)

This is due to (8.18) for £ = £y and due to (8.6) for § = sg. From (8.30)—(8.31), we conclude

P #r—1
w{’S(ls) > 1¢ -6
4 2 & 4 gy

1 1
{r > 15
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Recalling that £ = Ce’~%, we get that

{r 1
&

for £ > ¢, and this completes the proof. o

1S5(L,5) 2

Lemma 8.7. Assume { > {y. Then, we have that

1
IVS()] S, 7 (8.32)
where here, we use the notation <s, to imply that the implicit constant in the inequality may depend

ondj.
Proof. From (7.5), we have that
(Os +7) VS + (VO S+ V(U -VS) +aV (div(h)S) =0
Now, let us define w 4(s) = £"e ™57V ([e*~5, 5). With this definition and using (8.22), we have that
10s0¢ ()] Sor [ o (E655) | 5, (Ee55) 22 (8.33)
SWLLS =6 P (565_§) NI . .
Now, we assume that either { = {p or § = s59. Therefore,
wp () =085 s 1 (8.34)
Using both (8.33) and (8.34), we obtain that
U)Z,;v‘(s) 361 1+ / e(—2+2nw+r)(s—§) < 1’
S

and this shows our estimate for any (£, s) = (£e*~%, s) such that s > § and either / = {; or § = s¢. As
any (£, s) with £ > £y, s > 59 can be written in that way, this finishes our proof. O

Lemma 8.8. We have that

ol _ 1\ K2)
¢! ( 5 /a) <o (U (1297 (8.35)
forany0 < j <2K-1.
Proof. First, let us note that
1 1 [VIS| VI S|
w(m) Si Sire Z e (8.36)

Ji+tje=]

Equation (8. 35) follows clearly for the case { < {p by uniform bounds on ¢ in this region and the
inequality = /‘H} <4, e <5, 1 implied by equation (8.18). Therefore, let us assume from now that
¢ 2 Lo

Now, we want to analyze each factor in (8.36) for { > . We first claim that forany 1 < j < 2K -1,
we have

HOPUISO| e ()T s <o, (8.37)
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In order to see this, we apply interpolation (as in Lemma A.1) between (8.20) and (8.32), obtaining

j-1

= [VISE 90 Pp ()%= (¢12) 77

2]( 2
1 2,

wiscH) (g% 017)

Now, as &+ < 17,, < 1, observe that (p(0) %= 24, (7(-m)(14k57) 2 1. This concludes (8.37).
Now using (8.37) and the lower bound from Lemma 8.6, we get that

VIS 1 ; *5
V8 <ar £o@y P (o 1RY R gyt

_
K2

< ¢ (¢712) T g R,

Plugging this into (8.36), we have that

1
J
" )

Using again Lemma 8.6 to bound <~

1),-/@1@2)

<o SO (¢ (o)

5 = 7= » we obtain the desired result. O

Lemma 8.9. There exist values C1, C independent of all the other parameters such that

C
VS| + |VU| < Z, (8.38)
and
2 2 C
V-S| + |V UISZ (8.39)

for every ¢ > Cj.
Proof. From (7.5), letting W =U + S and Z =U — S, we have

2aS
By +7 = DW + ({ +U +aS)0W = Fas — —=1,
¢ (8.40)
2aS )
(65 +r — 1)Z+ (§+L{ - CYS)&(Z = fdis + TU
Denote Ew = (U + aS) and Ez = (U — aS). Taking one derivative in (8.40), we obtain
5 SuU
(8S + V)aé'W + (( + EW)(?(W = (94]-}15 - 2&3( ? - B(EW(%W,
Su (8.41)
(s +7)0; Z + ({ + E2)0; Z = O Fuis + 200, (7) - 0;Ez0;Z,
and taking two derivatives in (8.40)
2 3 2 2 (SU 2 2
(0s +7+ 1)3_{W + (£ + Ew)agW = Ggfdis - 2a8{ ? - 20§EW6{W - 34wa9¢W’
(8.42)

Su
(B +r+ 1)0;Z + (£ + Ez)0} Z = 07 Fuis + 200 (?) ~20;Ez0;Z - 0;E70;Z.
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Now, we claim

1
’Bgfdisl < Z, and |(9é%]-‘diS < ? (8.43)
We have
|(9 Fii | < ¢ 0disS0 V*U| " [V2U||VS|
e Sl/a Sl+l/a
(8.44)

27| < pmonn (VUL IVUIVS] | [VUIIVES] | [V2UIVSP
Y dis| S € Sl/a Si+l/a Sl+l/a S2+l/a

Using (8.18) and (8.22) in (8.44), we see that for { < {p,

o

s E)%= Sais50/2
0r Fui <Se” disSO— < e~ dis S0/ < —,
¢V dis
1+1/a I
N 0
4
2 Saeso - (}/ZE)ZK’Z Saiss0/2
02 Fyis| < e 0as%0 < ¢ Gaiss0/2 —,
4 2+1/a é'
N 0

s0 (8.43) holds for the region ¢ < . For the region > £y, from (8.21), we have
$RVIU + ¢ VS| < 1

where we have used that ¢y is sufficiently large, dependent on E. Thus, from Lemma 8.6 and (8.44), we
see that

¢—3/2

— —Oaiss0 p=3+4n+(r=1) (1+3
£~ (=D (1+1/a) Sop € TN (),

|07 Fais| S5, € 0%

2 . —8dis SO ¢_ —8dis SO _4+477w+(r_1)(2+$)
|a£]:dls Soi € - (=D @+]a) Se € 4 :

Thus, using that (r — 1) (2 + l) < 2 (due to Lemma A.6), n,, is sufficiently small and that e~ %% is
sufficiently small depending on d;, we conclude (8.43) for £ > (.
Using L*-interpolation between |0/, |S| < &g and (8.22), we have that for i € {0, 1,2},
. . — . 12
10Ul +10; S| < 10, Ul +10, S|+ 10, Ul +10; S| < 10, U| + 19, S| +60/ .

In particular, using Lemma A.39, this shows our statement for C; < { < 66 1/ 2, so from now on, we will

-1/2

take C{ = ¢, '~, and we can assume { > C/. In particular, we have

. . . . 1 r-1
|62Z/l| + |628| + |6’{EW| + |62EZ| <65 +90,° <1, Vi € {0,1,2}. (8.45)

ol
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(8.43) and (8.45), then from (8.41), we obtain

'(a‘, +r—1- ETW) LOW + (L +Ew)d (L0, W)| <2+ %gagw,

(8.46)
E -1
’(as +r—1- TZ) (0;Z+({+E2)0,(£0:Z)| <2+ "Tgagz.
Now, let us define the trajectories
Yy (s)=({+Ew)=¢(+U+aS, Y, (s)=({+Ez)={+U-aS (8.47)

starting at (Z, 5) such that either £ = Cj or § = s0. Using (8.45) and noting that &y is sufficiently small
depending on 7,,, we can assume that Yy, Y are increasing and have derivatives between l%{ and
%{ . Thus,

19_05 <Yy, Y, < %g and PN < Yy Y, < Fel 17910, (8.48)

Let us also define
0 =Yy -9;,WoYw and ©% =Y, -0,Z0Y5. (8.49)

Using definitions (8.47) and (8.49) in (8.46), together with (8.45), we get

-1
3,0 + (r - 1)O®)| < 2+ 2—r10 0] (8.50)
foro e {W, Z}.
Now, we claim that there exists some C», sufficiently large and independent of all the other parameters,
such that
]@”V’ (:v‘)( =[{o,W(.8)| < C2 and |®<Z> ('s')| =|¢0:2(¢,9)| < Co. 8.51)

This is a consequence of
C(IVUIE 9 +IVSIE9)) < 1,

which is trivial for £ = C; and follows from (8.7) for § = so.
Taking C3 = C, + -3 we have that |®(W)| s |®(S)| < Cs. This is clearly true at s = § due to (8.51),

r—1’

and the inequality cannot break due to (8.50). Therefore, we get that

C C
|0, W o Yw| < ﬁ and  [0,Z 04| < Y—;
which yields
lo,W| < % and 0,2 < % (8.52)

and completes the proof of (8.38).
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Now, we study (8.42). First of all, let us note that

1+a/ 1-a C3
10, W] |(92EW| 0 WI |03 W + — 037 < v (|5§W|+|@§Z|),
8.53
2 l-a , 1+a/ 2 G (1 2 (853
10:21[02Ez| = 10: 71 |~—2 2w + — 2927 7 (12w +10221).
and
S 1 0;SU 2 1+C2
‘2 ag(—) < S +da T (|862L{|+|L{628|) o+ (102wl +1027).
s e 4 /4
(8.54)
where we used (8.45) and (8.52). Let us also note from (8.52) that
C C
|6,Ew| < ?3 and  |0;Ez| < ?3 (8.55)

Taking C3 larger if needed, and using (8.43), (8.45) and (8.53)—(8.55) in (8.42), we get that

'(a fr-1- ZETW) LW +( + Ew)ig (£37w)

4
<2+Ci+ % (lg“zc')ZWl + |§26§Z|) ,

4C;

2E
'( z <2+c3+—(|§Za§W|+|gza§Z|).

Oy +r—1- T) F03Z + (¢ +EZ)o; (fﬁgz)

Defining
EW) =% - (WoYw) and E@ =Y2 . (ZoYy), (8.56)

using (8.45) and recalling that £, Yw, Yz > C| = l/ is sufficiently large, we have

0,2+ (- 1)E™)| <243+ r-| (|“<W>(
1

2
oY'2 _z 26 (Y OYW)|

< 2+c32+—r101 (E™]

+2@) o (Y;'o YW)‘) ,

(8.57)

—Z[E™ o (0 o )|

0,2@ + (- DEP| <243+ r- |“<Z>|
107>

S2+C§+rw<

E<Z)| +EW) o (15 o YZ)|>,

where in the second and fourth lines, we used (8.48). We can pick a constant C4 sufficiently large so that

=) (9)| = 207 (0025 + T(E.5) + 82,59 + Z.9))| <

B (8.58)
B2 ()| = |00} (05 + U9 - $E.9 - SE.9)| < s

This is clear if { =C { (as Cy4 can depend on Cy) and follows from equation (8.7) for § = s.
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Finally, taking Cs = Cy + -2 (2 + C2), we conclude that E(W), 2(%) < Cs. This follows from (8.58)
for s = 5, and the inequality cannot break for s > § due to equation (8.57). Therefore,

Cs C
2WoYwl< —  and  [92Zo Y| < =,
Y2, ~ 2
which yields
C C
2W] < = and  [62Z] < . (8.59)
¢ ‘ ¢
Finally, as any Cartesian second derivative of a radial function is a linear combination of 62 —( and ;2 ,
we conclude (8.39) from (8.45), (8.52) and (8.59). m]
Corollary 8.10. There exists some absolute constant C such that
VUl 2 + IV2S]l;2 < C. (8.60)
Moreover,
VUl + VS sk B2, 8.61)

Proof. Let C,Cy be the constants from the statement of Lemma 8.9. Let C; = max{Cj, 1}. Using
Lemma 8.9, we have

d¢ © 1
2 2 _ 2 2 _ 2 2
VU2 50,007y < € /B Zp=4nC | (7dr=4nCP - < 4nC (8.62)

©0.cpe ¢ Iy )

On the ball B(0, C;), we have

VU2 0.0y < CHIVUIE < C3 (1T e + 192D 1

IA

C; (||U||Wzm + ||U||z§ 31| 2K 2U||2K )

A

148K (Eg“l/z)ZK T <, (8.63)

where in the third inequality, we used (8.9), (8.22) and Lemma A.39. Combining (8.62) and (8.63) and
taking C sufficiently large, we obtain equation (8.60) for V2. The result for V2S is obtained in an
analogous way.

Then, estimate (8.61) just follows from L>-interpolation. For I/, we have

VUl < IIVZUIIZK * IIVZKUIIZK 3
Then the required estimate on U/ follows by (8.60) and noting that
IV Ulz < 1A% Ul < E.
An analogous estimate holds for S. O
Lemma 8.11. We have that

Feaillo I Frally < s1e722 0 el [Frmlly < o1 (8.64)
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Proof. Writing the expression for Fg;s from (7.2) in (U, S) coordinates, we have that

so/2|Au|
Sl/a’

o~ Gaiss A < e~ 0disS/2 o= bdis
Sl /@

| Fe.dis] < (8.65)

Lemma 8.5 and Lemma 8.6 give us

|AU| é»(r—l)/a/
Sl/a ~6 ¢

<o 1, (8.66)

using the definition of ¢ and the inequality Z=1 < 2 from Lemma A.6. Combining (8.65) and (8.66),

a
and using that s¢ is large enough (depending on o, 61), we obtain the bound for F, gis.

Using the embedding L*(B(0,2)) — L*(B(0,2)), we get
2 2 2 m 2 2 m 2
”-Ft,dis”X = ||X2-7:e,dis||x = ||X2-7:e,dis||L2 + ”A (Xl]:e,dis)an < ||Fe,dis||Lw + ”A -Ft,dis”Lz- (8.67)

Note for ¢ < g,we have that S(¢) > §(¢) =6 2 1, soé < 1. Therefore,

AU . 1
—0disS | A M —OdisS i+2 J
e~ %ass |A (S]/“) Ses € Z |V U |V (sl/a)
i+j=2m
<o, €00 Z V2| Z IV/S]...|VieS|
i+j=2m Jitetje=j
<s, o~ 0dis0/2 ;= Baiss /2 (8.68)

From (8.68), noting that s is chosen sufficiently large in terms of §1, we get that
IA™ T islF, < e 0ans/2emdaso/d / 1 < §pedass/2, (8.69)
B(0,2)

Plugging (8.69) and the first bound of the statement into (8.67), we obtain the second bound of the
statement.

Now, let us show the estimate for || F, n||ze~. Writing Fy from (7.2) in (U, S) coordinates, we have
that

n n

Fomt = (]-" . Lg) - (—ﬁagﬁ — 89,5, -0, S - aS‘div(ﬁ)) . (8.70)

We know from (8.9) that ||U|| ., ||S||.~ < o and from Lemma 8.5 that || V2K 20U || ., | V2K 2S||,.~ < E.
Using L*-interpolation between both bounds, we obtain

2K-2-¢

1Tl e + Sy es < 6,752 E%= (8.71)
for 0 < £ < 2K — 2. Applying (8.71) to (8.70), we obtain

5\ CK-2)
) < 4y, (8.72)

2
1Fy ol + 17, sllee < 62 (5—0

where the last inequality is due to the fact that 63/ 2«6 1.
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For the last inequality of (8.64), using that H>™ is an algebra, from (8.71). we get that
IA™ Q2 Fry )z + IA™ O Py )2 < 1Fy glix + 11F, 5llx

o (1Dl + ISTwncs ) (1T lhwose + 18Tl
< 6(()2K—2—2m)/(2K—2) F2m/(2K-2) 6(()2K =3-2m)/(2K~2) [5(2m+1)/ (2K -2)

-0

g (4m+1)/ (2K -2)
2( ) < 61, (8.73)
00

3/2

where in the last inequality, we used m < K, 6,'" < 6; and E < 5%)'

Equation (8.72) and the embedding L°°(B(0, 2)) — L*(B(0,2)) yield

2 Fy gllez + 2y 5l < 60 BV < 61, (8.74)

where we used (5(3)/2 < 61 and 0g < % Combining (8.73) with (8.74), we conclude our bound for
]:t,nl- O

8.1.2. Proof of the bootstrap estimate (8.15)
Our strategy will be the following. First, we will show that we have L™ estimates in a compact region
{ < g As the extended and truncated solutions agree on that region (Lemma 8.1), we can do that for

the truncated equation, for which we have very precise information about its linearized operator (due to
Section 7). Then, we will propagate those L estimates for the extended equation to the region { > g
using trajectory estimates.

Lemma 8.12. Under the bootstrap assumptions (8.9), we get the stronger bound

10N B0.6/5) + IS (B(0.6/5)) < 61/6¢- (8.75)

Proof. By Lemma 8.1, the truncated solution and the extended solution agree on B (O, g) Then,

—\2
1Uellze s 0.6/5) = 1T llz=(80.6/5) S NUellzm(B0.6/5)) < N0t llgam s 0.6/5)) < /B(O ) (AmUt) ,
’ (8.76)

where we used that the H>"(B(0,2)) norm is equivalent to the H2m@(0, 2)) norm since U, vanishes
at the boundary. An analogous calculation shows the same bound for S.. Now, we claim

~ ~ 4
1(Us, Sollx < (2 + 5_) 1. (8.77)
8

It is clear that (8.75) follows directly from (8.76) and (8.77), so it remains to show (8.77).

Clearly, (8.77) is true at s = s9 by our assumptions on the initial conditions (8.6). Let us recall that
by (8.8), the unstable part Puns(U S) =(1- sta)(U S) will have X norm at most J;, so in order to
show (8.77), we just need to ensure that || Py, (1, &) [|lx < 61(1+4/5,).

Let us recall that the truncated problem (7.7) reads

as(ﬁts S:t) + E(ﬁt, S:t) = ]:t,dis +]:t,n]7

where the forcings F; gis, F+ n are calculated via solving the extended equation.
Projecting the previous equation and using that £ is invariant on V**, we get

asPsla(ﬁt’ Srt) + ﬁPsta(Ut’ §t) = Pstaft,dis + Pstaft,nl~ (878)
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By Duhamel, the solution to the linear equation (8.78) is given by

S
PaT(5):5:(5)) = T(6)Paa T 50 + [ T(5 = 5) (PuFra(®) + PasFo ()
S0
where we recall that 7T'(s) is the contraction semigroup generated by L. Recall also that
[1(Ut 0, Sr.0)llx < 81 due to the hypothesis of Proposition 8.2 and that the semigroup has an expo-
nential decay in the stable space from (7.50). Using those two observations together with Lemma 8.11,
we estimate

and we are done. O

~ —~ s - - 4
Psta(Ut(s),S,(s))”X <6 +/ 261~ 570)8/2 g5 < (1 + 5_) 51,

) 8

Now as §1/d; < 0, it is clear that we get (8.15) in the region ¢ < g. The objective is to extend
the estimate from Lemma 8.12 to the whole space. We will chose some parameter £ and divide the
argument in two different regions, the region 6/5 < ¢ < ¢ and the region ¢ > ;. The strategy is
similar for both regions, since it will be based on trajectory estimates. The fundamental difference is that
in the region 6/5 < ¢ < {, the profiles are not small, and we will not be able to extract decay for the
perturbation along the trajectories. However, one can bound the amount of time the trajectory stays in
this region by a constant, and therefore, the profiles will only grow by a constant factor between £ = 6/5
and ¢ = ;. In contrast, the profiles will be small for { > £;, and one can show that the damping part of
the linearized operator dominates in this regime. This will give exponential decay for the perturbations
in the region { > (.

Let us recall the equation for W, which reads

.1 .~ 1 . 1-a. — 1- . 7\ ~
@ +r—1+2W+ 2o, W+ ¢+ +‘”W+—“z)a{W+( “a‘,«W—“—)z
¢ ‘ 2 ‘ - e (8.79)
= Fais + Fal,w -
Let us define
. l+a
J() = —IWI —IBng —|Z|+ 10 Z]. (8.80)

Let us define the trajectories Y&f*’s*) and Yg*’s*) solving the following ODEs:

s Y({* 8*)( ) = (Y((* s*)( )+ W(Y(g* ‘*)(s)) + 5 Z(y({* \*)(S))) (8.81)

2

s Y((* v*)( ) = (Y((* Y*)( )+ 5 W(Y(Z* Y*)( )) + Z(Y(‘r* S*)( ))) (8.82)

and starting at the point Y‘(/é*’s*)(s*) = Y(Zg*’s*)(s*) = (. To ease the notation, we usually omit
superindex ({u, Sx)-
Using (8.80)—(8.82), from (8.79), we obtain
|0+ 7 = D (Tw ()] < 261 + 7 (Fw () (WEw DI +1ZFw D), (8:83)

where we have also used Lemma 8.11 to bound the forcings. In an analogous way, we obtain

|0+ 7 = DZ(V2(9)| = 261 + I (T2(5) (W (T2 () +1Z(F2(5))) (8.84)
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Let us also note that there exists some large enough constant C; such that for any (s, s) such that
either {, = g or s, = §¢, we have

_ ~ 5
IW (Las 5315 1Z(Las 50)| < clé—‘. (8.85)
8

This follows from (8.6) for s, = s and from Lemma 8.12 for {, = 9 . We will always assume that our

trajectories start at a point ({4, sx) that is either in [9

5,00) x {so} or in {3} X [s0, s1], so the above

condition will always be satisﬁed
Observe also that for £ > 3, the right-hand sides of (8.81) and (8.82) are larger than and

respectively, for some absolute constant Cy, due to Lemma A.33. Therefore, as {x > 5 , We obtaln that
(9 Y ( ) > o o(s) Yé,{*,s*) (S) > Z*e(s—s*)/C(), (886)

where o € {W, Z}, and in the second inequality, we are integrating the first inequality one from s, to s.
Now, we estimate W, Z in the region (g“ s) € [g, ) X [0, 51]. As the profiles decay (Lemma A.39),

there exists some ¢ such that J(¢) < 2 for £ > ;. We treat different the cases where ¢ 3 <{<{and
¢> .

Case g < ¢ < (. Let us fix a large enough constant C; so that J({) + (r — 1) < Cy for ¢ € [g, {1].
Then, from (8.83)—(8.84), we have

,s)| <26, +Cs (|vT/(YW (s),s)| + ‘Z(Yw(s),s))) ,

(8.87)
,s)| <26, + G, (|W(Yz(s),s)| + |Z(Yz(s),s)|) .

Now, we claim that

\W(Z,9)I,1Z(Z,9)] < (51 LeCs¢ (8.88)
8

for some constant C3 sufficiently large. It is clear that this holds whenever ¢ = g or § = 5o due to (8.85).
Let us show (8.88) by contradiction. Let s, the first time at which (8.88) fails. Assume that it fails at
{ = {p and, without loss of generality, assume that

C151 C3§b Cid1 C3§b

(8.89)

W (&, sp) = and 1Z(&pysp)| < ——

g g

because the case where W ({5, sp) is negative or the case where the bound fails for Z are analogous.
As (&b, sp) € [£.41] X [0, 511, and the field of the ODE of Yy is positive (see (8.86)), there is a

unique starting point ({x, s+) € [£,41] % {s0} U {£} x [s0, s1] such that the trajectory (Y((* ) (s), )

passes through (£, sp). That is, Y(éx5%) (s5;,) = ;. Let us fix that pair (¢, 5).
As equation (8.88) ceases to hold along (Y (s), s) at time s}, the derivative of the left-hand side is
greater than the derivative of the right-hand side, yielding

0
B (), 50) = LLeCIw 0 03,y (51)

g
S C1C36, eCJYW(Sb)YW(Sb) _ G166, ec3§b§_b7 (8.90)
6g C() 6g CO

where in the second inequality, we used (8.85).
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However, plugging (8.89) into (8.87) at time 55, we get

- . 2C0 0
AW Xw (s),5)| <261+ C=1"LeCade < 40,0 L eCrte, (8.91)
S=Sp 6g 68

where in the last inequality, we used 6, < 1 and Cy, C; > 1 (they are constants large enough; we can
enlarge them if needed).
Comparing (8.90) with (8.91), we get a contradiction as long as C3g—l(’) > 4C,, which can be easily

enforced by taking C3 = 4%‘}? because ¢ > g. Therefore, we conclude that (8.88) holds, which gives
a uniform bound
~ = Cié C
WL IZ(E 9] € =D < 26 (8.92)
Og Og

for the reglon < ¢ £ { and some large constant Cy4. As 4 01 < dp, note that we now have (8.15) in
Zs’

the region ¢ < § 1. Finally, let us treat the region { > (.
Case ¢ > (. First of all, note that the previous case yields that

~ = 5
W1, 9),1Z(&1, 8) < c45—1 (8.93)
8

for all s € [sq, s1]. Let us recall that ¢| was defined so that |J({)] < ’4;1 in this region ¢ > {;. Therefore,
from (8.83) and (8.84), we have

. F—1/ ~ _
@+ 7 = DW(Tw (), 9)] < 261+ = (IFC )iz + 129 leoz.0 )
(8.94)

_ . F—1/ ~ _
@+ = DZ(V2(9.9)| < 260+ = (IFCemi.00 + 126, )12,

We claim that

(8.95)
g

for all £ > ¢ and s € [sg, s1]. This clearly holds at = £} or s = sg due to (8.6) and (8.93). Let s,
be the first time at which equation (8.95) breaks down, and suppose that happens at {;. Without loss
of generality, assume that W(Zp, s3) = 2C4 . Let us consider the trajectory passing through (p, sp)-
Then, from (8.94), we have

0 < 8,W (Y (s), s)(

1) — -
<-(r-1) (zc —1) 2261+ D (10 or o + 1260 e 1)
g
01
< (r - ]) (2C4—) +261 + (r - ]) (C45_)
8
-1
< -
2 5g

In the third inequality, we used that (8.95) is still true at s = s, with a non-strict inequality by continuity.
Thus, we get a contradiction, and this shows that such ({p, sp) cannot exist, so (8.95) holds for any
{ > and s > sg.

Combining equation (8.95) with Lemma 8.12 and equation (8.92), and using that g—; < 0p, We
conclude equation (8.15).
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8.1.3. Proof of bootstrap estimate (8.16)

As in the previous subsections, we work under the assumptions (8.6)—(8.9). In this subsection, we will
show the improved bound (8.16), concluding the proof of Proposition 8.2. We will do so via high-order
weighted energy estimates, which we will do directly on our extended equation.

We divide the proof in three steps. First, we will show that the dominant terms on a high derivative
of a quadratic term are those where all (or all except one) derivatives fall on the same factor. The second
step will be to treat the dominant terms in the energy calculation, using integration by parts in a similar
way as one would do for the classical energy estimates. In our third and final step, we treat the term
coming from the dissipation, which one cannot expect to bound (since it has more derivatives than our
energy). Thus, the strategy is to extract the correct sign for this term.

We take K Laplacians in (7.5). Note that AKX (yF) = yAX F + 2KdivAX~'F for any vector field F.
Thus,

AR (yVS) =y - AKVS +2KdivAKIVS = y - VAKS + 2KAK S,

(8.96)
AKX (yVUy) = y - AKVU; + 2KdivAK=IVY; = y - VAR U, + 2K AK Y.

We have also used that AVf = VA f and that A f = divV f. Taking K Laplacians in (7.5) and using
(8.96), we obtain

rl+% —04iss A K Aul
/e’ Si/a’ (8.97)
(0s +r — 1 +2K)AKS +y - VAR S + aAK (Sdivid) + AK (U - VS) = 0.

(Os +r — 1+ 2K)AKU; +y - VAKU; + AK (U - VU) + AR (56,S) =

Now, we multiply each equation by ¢*) AKUf; or *?KAK S, respectively, in order to do energy
estimates. First of all, we claim that as a consequence of Lemma A.5,

”(AK(L{ VUy) - UVAK U, - 2K6§UAKZ/{,~) o8| ,=o(B),

(4% (sV8) - SVAKS - 2KV SAKS) ¢ L =0(E).
||(A’<(u VS) -U - VAKS —2K8,U - AKS) |, =0, (529

“(AK (Sdiv(Ud)) — Sdiv(AKU) - 2KVS - AKU) k| =0

However, to apply Lemma A.5, we need to verify its hypotheses.

Verifying the Hypotheses of Lemma A.5. We start checking Hypothesis (A.25). Let2 < j < 2K -1,
B= %,p = % We have that

. . . . 2
/ (|V]Z/{| + |VJS|)2 (|V2K+1—]u| + |V2K+1—JS|)
R3

. . 1/p .  \2p/(p-1)
< (/ (|V]U| i |V]S|)2p) (/ (|V2K+I_JM| + |V2K+l—]S|) p/(p )
R3 R3
2(1-pB)

1-1/p

2B _ B
< (1920l + 1928l ) (19251212 + V2K 1S 2
2(1-p) _ _ 2p
(1922l + 19280 ) (192K U2 + 192K S

2 2
< (192l + 192K Sz ) (19Ul + 1928 )

2K -

Ex= (8.99)

N
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where in the first inequality, we use Holder and in the second one, we use endpoint Gagliardo-Nirenberg

for each integral. In the last inequality, we are also using (8.61) and |V2Ll | +|V2S| < 1, which follows

from |[V2U|+|V2S| < 1 which itself follows from 1nterpolat1ng |U I, IS] < 6o (equation (8.9)) with (8.22).
Now let B, = R\ B(0, {o). Now, we let 8’ = 1 and g = 5. We have that

. . . . 2
/ (|VJU|+|VJS|)2 (|V2K+1—ju|+|VzK+1—jS|) ¢2K
B>

) . , 1/q ] ' 24/(qg-1) / 1-1/q
< (/ (|VJU| + |VJS|) (1¢2KB q) (/ (|V2K+l—]u| + |V2K+1—]S|) ¢2qK(l—’8)/((1_])
B> B,
2K 2K 2K 2(1-8")

< [ (IVUlIL= 8| + 198 (3 7 (||¢ VEU,2 + IV 8||L2)

2
+ (VU ) + 19l i)

21-4 2
(VUL + 198z ) (19K UG 2 + 192K S¢K 2

2
+ (19Ul 35 + 19 Sl s) |

< [53’3'15‘—3’ +5O] : [53‘1"3')1?3’ +50] < 8. (8.100)

In the first inequality, we used Holder. In the second inequality, we used Gagliardo-Nirenberg
(Lemma A.2). In the third inequality, we used that | V>X/||;> < ||AXU]|;> (and the same for S), and

VUl 5y + IVSIe (82 < VUL 5y + VSl 52 + 10255 + ISl (5y) S So-

Combining (8.99) with (8.100), we see that Hypothesis (A.25) is satisfied.
Now, let us check Hypothesis (A.26). The first part trivially holds due to our bootstrap hypothesis
(8.9). For the second part, note that Corollary 8.10 yields

IV XU, < E (8.101)

1
E1/(K-3)"

so we just need to treat the region £ > o. Let By = R\ B(0, o). Using Lemma A.3, we have that

||¢K 1/2472/(2K)V2K IU”LZ(BI) < ||¢ VZKu”Lz(B )”472“ ||L2(B ) < E] 1/(21() (8102)
where we have used that [|U/||z=, [I{7?[l;2(s,) < 1. Now, note that </g>£1;; < 1 because ¢'/? < 17w
and < n,y. Therefore, multiplying the weight in (8.102) by 7 4,), /2 , we obtain

1 < ET1CK) (8.103)
PO oy ' '

Combining (8.101) with (8.103), we conclude Hypothesis (A.26) holds for . The case of S is completely
analogous.

Finally, let us check Hypothesis (A.27). The second part follows directly from (8.38) in Lemma 8.9.
For the first part, note that
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Ul < Ty + 1Tl
~n(2K-5)/(2K-2 ~n3/(2K-2 2513/ (2K-2
S 1+ 0K (DTN CE2) (JTPLCK2 4 v2K2) 2K 2)

S1+6

~ L

3/(2K-2)
1/2( 41/2) <1

where we have used Lemma A.39, L®-interpolation, ||U|| .~ < & (from (8.9)) and equation (8.22).
The proof is analogous for S, and this concludes checking all the hypotheses of Lemma A.5.

Main energy calculation. Let us go back to (8.97). Let J denote the dissipative term

T = / L’ —6dissAK$u AKU¢2K

Then, using (8.98), we obtain that

Oy
2

(E3) = (2K+r-1)E2K+;/div(y¢2’<) (a%u)? + (K 5)?)
—i / U-VARUAR U 6K - 2K / A UNKUY K
i=1

—a/SVAKS~AKU¢2K —2Ka/AKSVS-AKU¢2K

—/L{~VAKSAKS¢2K —2K/34L1(A’<3)2¢2’<

- a// Sdiv(AKU)AK Sp?K — 2Ka/ VS - AKUAK S K + T + O(E?)
= “2KEZ, + % / div (y¢2K + U™ ) (AKUP + (AK $)?)

—ZK/a,;u((AKU)%(AKS)Z) #?K

—a// Sdiv(AKS - AKU)p?K —41<a/ AKSYS - ARUSK + T +O(E?)
< —21</(1 +9,U - a|VS)) ((AKU)2 + (AK3)2) #?K

+5 [ @I+ eIV (AKU2 + 4K S2)+ T +0(E)

- —2K/ (1 +9.U - a|VS| - v ¢| (+ U+ a/S)) ((A’%{)Z + (AKS)Z) 0K + T +0(EY),
(8.104)

where we have used (8.9). Now, we claim that
(1 +0U — a|VS| - | ;" ( + U] +aS)) (8.105)

for some positive constant 7. In the region ¢ < ¢y, we have that V¢ = 0 and 1 + 84(7 — a|VS|
Ndamp > 0 due to Lemma A.36. Therefore, taking ¢p small enough and using that |9, U, VS|
662K_1)/<2K_2)E_1/(2K_2) (equation (8.71)), we conclude that (8.105) holds for n < %ndamp and ¢ < {p.

NIV
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In the region ¢ > £y, equation (8.105) reduces to show

vols

-5

since the remaining terms are 0(6(()2K_1)/(2K_2)El/(ZK‘z)) by (8.71).
Using that |V¢|¢ < 2(1-n,,)¢, we conclude that taking § small enough (8.105) holds for < %Uw-
Putting everything together, we have that (8.105) holds globally for n = %min{ndamp,nw}, and
plugging this in (8.104), we conclude

p _
> (E3) < —KnE +O(EY) +.7. (8.106)

Sign on the dissipative term. We proceed by estimating 7 by subtracting off the highest-order term.
Letting

3 K772
2 (VAU ok
=2 ] s ¢

integrating by parts, and using Cauchy-Schwarz, we have that

all® %S T 4 G2 <QZ Sl L u| 92K +1-i 1 ? 2K+1-i 2
rl+l/a + ¢ Sl/a ¢
1/2 1 1/2
Gl (2K - 1) (/ |¢92KU|2¢2K) st V( )
st |||«

ji‘ (2K - 1)

Sl 1) v
2K+1-i 2K+1-i
> [ Siatupe (o (o)) o )

2K -1 2 1/2
2K -1 Sl ki |1 2K +1-i
5 () S s e 1)) o

i=2

=G(Q1+ D+ Q3), (8.107)

where we have divided the integrals in the regions B; = B(0, (o) and B, = R? \ ;. Using Lemma 8.8,
we have that

_ e 2
Qi Sk.£.60.00 KE'? ||S””<§>2(' Veg(2) IHU» SKE.sodo L (8.108)

where in the last equality, we have used Lemma A.6 and S()"~1 < 1 by Lemma 8.6.
In order to bound Q,, we use again Lemma 8.8 and note that ¢({) < x 1in Bi. We obtain

172

2K 1
D2 SK.E.s0 (/ SYotuP )y = )

1 \\2
SKLE,60.4 (-/Bl m) SKLE,60.4 L (8.109)
where in the second inequality, we also used (8.20) (fori = 2K — 1) and (8.21) (for i < 2K —2).
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Lastly, let us bound Q3. Note that in 3,, we have (8.20), which yields
. . _ 1 21%71
i i/2
IVitdle SE(§1/2¢1/2) )

Plugging this into Q3 and using Lemma 8.8, we obtain

2K Sl/a 1 2,5771 A1) 2K +1—i 172
Qs Sk .5 ( / —(—) @)= (e K)
KB Z; ¢ \{o(0) ( )

Noting that 1 <s,, ¢ (O)? ¢(£)7", and using Lemma 8.6, we get

2K —(r-1)/a e 1/2
Q3 SK,E,60.00 Z (/ mT@) = )<§>2r‘1¢‘2)
i=2

2K 1 12
=X ([f o)
i=2

@023\
S"”5"50’»‘“( ¢3(4))
SKLE, 00, 1>

where in the third line, we used Lemma A.6.
Using (8.108)—(8.110) in (8.107), we conclude that

1/a

@
= ,0disS 2
r1+1/a/e ‘7+ g

SeoK.E.z0 9

Thus, as s is sufficiently large in terms of K, E, 8¢, {o, we get

a,l/(l g2 eddisso/Z

1
Saiss T 4 G2 < —(Ge%0%ais/4 < +
e T +G" < 2ge <3 >

rltl/a
and in particular,

1+1/a
J < 2r o~ 0aiss0/2
alla

Plugging (8.111) into (8.106), we deduce

0 2 2 ~ 2 ~ 2 2
S (E3) < ~KnE} +CE> < C (5B} + E )

for some universal constant C. In the second inequality, we are using that K can be taken large enough

in terms of C, n — in particular, such that K > 5]—7C

Finally, as Eox (so) < E/2, it is clear that Esk (s) can never go above E /2, as it would contradict

93

(8.110)

(8.111)

(8.112)

(8.112). Therefore, Eox (s) < E /2, and we conclude (8.16). This finishes the proof of Proposition 8.2.

8.2. Topological argument for the initial unstable coefficients

In this subsection, we prove Proposition 8.3. In particular, we will always assume (8.6) and (8.7).
Whenever we have (8.8), we may apply Proposition 8.2 and thus deduce (8.9). In such cases, we are in

the hypotheses of the previous subsection, so we may use any result of that subsection.
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For this subsection, we will assume that all the variables make reference to the truncated equation,
and we will use the subscript ’e’ whenever we want to make reference to the extended equation.
Let us define

N
6i(5) = ((Tr(29), S Wiwsis)) s K8 = Y Wiu Yis)ki(s):

i=1

Note that as (7, ¥;.s) form an orthonormal base of V (by Corollary 7.15), the norm /3; Kl.2 is just
the norm inherited from X, which we denote by |«|x. We will also work with another norm on «x. We
define the metric B to be the canonical metric associated to the basis of item 3 in Lemma 7.11 (where
we take A = £ due to Corollary 7.7). In particular, equation (7.49) yields

(Lk(s),k(s))p > 13”’ k(5)[3. (8.113)

As any two norms are equivalent on a finite dimensional vector space, we have that | - |[x and | - |5 are
equivalent norms. Moreover, both depend only on the space X and ¢, so we have that [w(|x <, [wlg S
lw(s)lx.

It will be useful to consider the following exponentially contracting regions for the unstable modes:

R(s) = {w e RN | |w|x < e 100 (=50}
R [T (8.114)
R(s)={we RN | Iw|p < 6110 e*m%(s*»?o)},

where we clearly have ﬁ(s) € R(s) as |w|x <m |w|B.

Lemma 8.13. Provided that k(s) € R(s) for s € [so, s1] and assuming our initial data hypothesis

| (@0, 00)llx < 61, (8.115)

we have that
1@ 3) (-, 5)llx < 361e72 %070, (8.116)
1FuCs)lly < 85/ 0 (=50, 8.117)

Proof. First of all, note that x(s) € R(s) implies (8.8), so we have (8.9), and we are in the hypothesis
of the previous subsection.
We claim that

1Paa (. ) (-, 9)llx < 2616770750, (8.118)
Ttis clear that (8.118) implies (8.116), since || Puns (i, ) |lx = |k (s)], which is smaller than &; e~ 10 % (s=50)

by hypothesis. Therefore, it suffices to show (8.117) or (8.118). Assume by contradiction that either
(8.117) or (8.118) are violated at some first time s’ < s;.

Case 1: (8.118) breaks at s = s”. Let s € [s0, s"]. By (8.64), 01 < 85 < d4is, continuity on (8.117)
and that sq is chosen sufficiently large dependent on d;, we have

9
| Fais (-, 9)lly < Sre0s/2 < 632700 (s=s0)

32 95 (8.119)
[ Fni (- 5)llx < 63/ %m0 (s7s0),

However, as the stable space V** is invariant under £ (by Lemma 7.11), we get the commutation
relation Pg, L = LPg,. Therefore, taking the projection Py, on (7.10), we get

asPsta(ﬁ, 5—) = EPsta(ﬁ’ 5) + Py Fn1 + Pya Fis-
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By Duhamel, we get
s S
Psta(“('a 5), 0'('a S)) = T(S - SO)Psta(MO’ 0'0) +/ T(S - §)Psta]:nl('s S)ds"'/ T(S - s:)Psta]:dis('a S)ds
S0 S0
Now, using the bound on T'(s) over Vi, (equation (7.50)), we get
~ _ _1 S—8, ~ ~ § _1 s—§ . - .
1P (2(-, 5), T (- ) lIx < 72257 (g, 79) |1x + / e 2% (| Fu (- 9) llx + 1 Fais (- $)1x) d5

S0

IA

oo 120 [ tnlennrieagg

S0

IA

e_% g (S—So)(gl + 26?/26_% Og (s=50) / e—l% g (8-50)/2 g

S0

IA

12 3
1+ 1 516*%51;(5*‘?0) < _51e*%5g(S*So)'
Og 2

In the second inequality, we used (8.119) and (8.115). Clearly, this last inequality at s = s’ implies
(8.118), so that we arrive to contradiction, because we supposed (8.118) broke at time s = s”.

Case 2: (8.117) breaks at s = s’. By assumption, we have
1 Fa (- s)llx = 62T 0 (=), (8.120)
By continuity on (8.118), we also have
1P E) (-, s)lx < 61e72 0670,
so using that |k(s")| < 816109 (s'=s0) by hypothesis, we get
IGE @) (- s")|lx < 261 2% (5=50), (8.121)

Interpolating between (8.22) and (8.121), we get that

’ 2(1_2m7i1 — m+ WA

(@l 2merco + 1T lyyamers)? (616_%% >) ) gt 8P o0 (8.122)

where we used m <« K and 0] < % in the last inequality.
From (8.70), we obtain that
~ ~ 2 % — 2 84 (s'=50)
nl 2m,0 S u 2m+1,00 (oa 2m+1,00 S e S . .
I Fatllw 2meo < (llullyy + o llwomie)” S 67 €00 (8.123)
This clearly contradicts (8.120). m]

As the unstable space V is invariant under £ (by Lemma 7.11, with A = £ from Corollary 7.7), we
get the commutation relation Py, L = LPn. Therefore, taking the projection Pyys on (7.10), we get
that « satisfies the ODE

{K/(S) = ElVK(S) + PunsFdis + PunsFul, (8.124)

ki(s0) = a;

for some initial values a;.
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For the solution corresponding to the initial data given in (8.3), for |a| < ¢, we define the stopping
time
sq = inf {s : k(s) ¢ R}.
>80

s

Lemma 8.14 (Outgoing property). Let us suppose |a;| < 6o and that k € R at times s € [s0,s1] and
that at time s1 > so, we have

7

11
|k(s1)|p = 610 ™10 % (s1750), (8.125)

That is, k(s1) € 6(7€(s1)). Then, we have that k(s) ¢ ’fé(s) for s close enough to sy from above. That
is, k(s) exits R(s) at s = s.

Proof. Given that k(s;) € 6(7€(s1)), we have that k(is) will be exiting ﬁ(s) attime s = s if and only if

, 7

(&' (1), k(51))B > —Eéglk(sl)lé, (8.126)
which using (8.124) can be written as
7

((Llvk(s1), k(51))B + (PunsFdis» K(51))B + {Puns 1, (51))B) > _Eégl’((sl)hzg- (8.127)

On the one hand, we have from equation (8.113) that

_ 5g 2

(Llvk(s1),k(s1))p = <o |« (8.128)

On the other hand, we have that

(PunsFdis» k(1)) + (PunsFn1 (-, 51), k(51)) < || PunsFais (-5 SI)HB lk(s1)|B + || PunsFutllgl&(s1) |8
k(s1)1%

51%foefmag<w>
|k(s1)]2
< (1 Fais Gy s llx + 1w Co s llx) — u
67[)6—[70 Og(s1—50)

<Sm (”Punsfdis(', SI)HX + ”Puns]:nl(', S])”X)

1
1
|k (s1) I3

3
515 e*% Sg(si=so) """ 7B
I
611706—]770(% (s1=50)

IA

4
51102—%6g(s1—so)|K(S1)|%’ (8.129)

where we used equation (8.125) in the second line and Lemma 8.11 in the fourth one.
Combining equations (8.128) and (8.129), and choosing ¢; sufficiently small dependent on 6., we
conclude equation (8.127). |

Proposition 8.15. There exists specific initial conditions a; such that |alx < 8| and the k(s) defined by
the ODE (8.124) satisfies that k(s) € R for all s > so.
Moreover, for such initial conditions a; = k;(sy), we have that

_~—~ _7 o
1, 7)|lx < 61 ™% (750,

Proof. We argue by contradiction, so let us suppose that for any such initial conditions a;, there exists
a time of exit s, such that «; exits R after s = s, and let us define b;(a) = k;(s,). Due to Lemma 8.14,
we can equivalently define (b;, s,) letting

Sq = ilslf{s tk(s) ¢ ﬁ(s)} and b; = k;(sq).
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__ First, let us argue that the mapping a — s, is continuous (in the domain where s, # +00). Leta,a €
R(sp) sothat s, sz are finite, and let x(s) and &(s) be the unstable modes corresponding to the solutions
with initial conditions dictated by @ and a. By local existence of solutions [29], we can extend «(s) up
to some time s, + & for some ¢ sufficiently small. Also, by Lemma 8.14 (and again taking ¢ sufficiently
small), we can ensure that (s, + &) ¢ R(s, +¢&). Let g’ = —dB(K(Sa +¢&),R(sq +¢€)). By stablhty
[29], there exists ¢ sufficiently small such that |a — a|p < § guarantees |k(sq + &) — k(54 + &)|p < 26 .

In that case, k(s, +¢&) ¢ ﬁ(sa +¢), and we deduce s; < s, +&. In a symmetric way, we can find § such
that if |a — d@|g < 6, then s, < sz +&. Thus, we conclude that a — s, is continuous. As a consequence,
b; = k;(s4) is also continuous with respect to a, as it is the composition of continuous functions.

Now, we define the mapping H : Bg(1) — dBg(1) as follows. For each ¢ € V with || < 1,

u —
consider a = 6" and evolve (8.124) with k(so) = a. As we are supposing every initial data exits R(s)

at some s, we have a time sa and the corresponding values b; (a) such that |b(a)|p = ¢, 1 e % (5a=50) We

now consider H (1) to be m, which is trivially on the boundary of Bg(1). As b(a) is continuous,
we also get that H is continuous. Moreover, note that H is just the identity on the boundary of the ball,

as lalg = 61{7lJ implies s, = sg and b(a) = a due to Lemma 8.14.

Therefore, we have constructed a mapping H from the the unit ball on V to its boundary which is
continuous and is the identity restricted to its boundary. The map —H would therefore have no fixed
point, contradicting Brouwer’s fixed point theorem. Therefore, there must exist at least a N-tuple of
values for a; such that «(s) € R(s) for all s > s.

Now, with that value for a;, we conclude the unstable projections of u, o in X are always bounded by
1) 16‘% S¢(s=%0)  Therefore, for such a;, we have (8.8), so we can apply Proposition 8.2 and obtain (8.9),
which gives us the desired bounds. O

From Proposition 8.15, we conclude the bound 8.11 on Proposition 8.3. Moreover, by Proposition 8.2,
we see that Erk, ||5 ||z and ||S]|L~ remain bounded uniformly in time. Thus, the local-wellposedness
results [29] imply that the solution to (7.6) can be continued for all times. As (7.8) is a linear equation,
and the forcing remains bounded due to Lemma 8.11, it can also be continued for all times.

Thus, the only thing that remains to show from Pr0p0s1t10n 8.3 is equation (8.12). Let us show it. In
the region ¢ < 5, Lemma 8.1 gives us that U =U,and S; = S,, so

1Uelleo10,6/51 + ISelleepo.6/51 < NUrllze +11Sellze < I1(Ur, So)lIx-

Therefore, for { < 5, we obtain equation (8. 17) from (8.11).

Now let us show equatlon (8.12)for ¢ > 2 From now on, we will only refer to the extended equation,
so we drop the subindex ‘e’. The approach w111 be similar to the one we followed for closing the L*
estimates. Let us change to W, Z variables and recall the definitions of J(¢), Yw, Y, from (8.80)-
(8.82). Whenever we want to indicate the initial condition of Y, (s), we will use the notation Y{E{*’S*) (s),
which is the only trajectory such that Y,(s4) = {%. Let us also recall that there exists some ¢; such that
(@l < 5 forZ > £i.

For the reg1on < ¢ < {1, we argue by contradiction. Let us note that in this region, equation (8.87)
holds for a sufﬁmently large C». Let Cy, C5 be sufficiently large constants. We claim

\W(Z,5).1Z(£.5)] < C16y¢7 1098 (5750) o3¢ (8.130)

in the reglon < ¢ < ;. Note that if C is taken sufficiently large, this is satisfied at s = so because of

our initial condltlons hypothesis and at { = 5, because we already have (8.12) in the region ¢ < g. In

order to show it for other { and s, we argue by contradiction and suppose that (8.130) holds until time
sp > 5o, and is broken at some point {; € (g, e 1]. Without loss of generality, we have that

W(Zp, sp) = C161eC% 7000500 and | Z(Ly, 55)] < €165 e 0% (0750 (8.131)
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because the cases where (8.130) breaks with W being negative or where it breaks for Z are analogous.

Let ({«, s«) such that either £, = g or sy = so and Y‘(,g*’s*)(sb) = (p. As s}, is the first time at which
equation (8.130) breaks, we have that

A, (W(Y‘()é*,s*)’ S))

7 y({xa5%)
> Oy (Cléle_még(s_SO)eC3YW ) )

S=S5p 5=5p
v (LxrSx)
7 i (S a5%) 7 Y (Sb)
> €15 e 1008 (550 O VG (o) | L5 o, W 707
101 10°¢73 Co
S €16 0B CiTir ) C3 6 (8.132)
> C 5

where in the second inequality, we used equation (8.86) and in the third one Y‘(,g*’s*) > g (by (8.86)).
However, combining (8.87) with (8.131), we see that

Oss=5, W (Y\(/é*’s*)(s), S))’ <(Cr+ 2)51e%‘sg(sb_s‘))ecﬁs’g*j”<S”). (8.133)

Now, comparing (8.132) and (8.133), and taking C5 sufficiently large with respect to Ci, we arrive
to contradiction. Therefore, we conclude (8.130) for some constants Cy, C3. As C3,{; are constants,
e©3¢1 < 1, so this shows (8.12) in the region & < ¢ < ¢;.

Finally, we need to show (8.12) in the region { > ;. We will do it by bootstrap. Let C4 be a
sufficiently large constant and let us assume that

Wl [21.00) + |1 Z 11100y < 2Ca61e” 100 (5750), (8.134)
We will show the reinforced estimate

IWllo 1200 + 1Z | gy.00) < Cadre” 0% —50), (8.135)
which implies that (8.134) cannot be broken. From equations (8.79)—(8.80), we get that

l+a. 1-a. —
aW+Ta,Z)(9§W

<J(©) (IVT’|+IZI)+}'diS+}‘n1,W. (8.136)

(6S+r—1)V~V+(§+

Using equation (8.134) in (8.136), and recalling that J({) < r4;1 in the region ¢ > {7, we obtain that

lta, l-a,) . ~
+QW+TQZ)65W

~1 ‘
< rTcs]cw-f*o%“—W + Fais + Farw.  (8.137)

(8S+r—1)VT/+({+

We recall from (8.64) that
| Fais| < 616_5di55/2 < 5%6—5&;(3—»?0)/2' (8.138)
In addition, as £ > £, we have from (7.2) that

Fawl < (W1 121) (1] + 16, W1)

< 1 0 (ss0) (|W| + |a§vT/|), (8.139)
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where we bounded the first factor by (8.134). Now from (8.20), we get that |6§K ‘1W| < E, and from
(8.134), we get that |W| < 6. Applying L interpolation between those two bounds, we get

— 2K-2 _
0, W] < 6FTERT < 61/,
Plugging this into (8.139), we obtain that
[Faw | 5 672 moetm0), (8.140)

Using equations (8.138) and (8.140) in (8.137), we obtain that

l+a. l1-a. —
W+TZ)(9_(W

'((95 +r—DHW+ (5 + < _r; 161C4e_%5g(s—so) +5?/26_%5g(3—30).

Recalling the definition of Yy, from (8.81), we can rewrite this equation as

172

_ 16 -
|0+ = D (T (5), )] < (% + ‘—) Cyoreostm < 3 =1

Cub1e" 10 (5=50) (8.141)
Cy

Now, we conclude (8.135) by contradiction. Equation (8.135) clearly holds for s = s¢, and also holds
for { = {1 because we know (8.12) in the region g < ¢ < (1. Moreover, if (8.135) breaks for some
trajectory at sp, without loss of generality, we would have

0, (Yw ()|,

> Oy (C451€_%6g<S_SO)) > —%51C4€_%6g(5b_S0).

=sp S=Sp

However, (8.141) implies

3(r-1 ~Log(s—s) _ _2r=1)

asvT/(YW(s))| < —(r = 1)Caye7 100 (5p=50) 4 = Cadie Ca§ye7 100 (5750)
S=5p

s0 we obtain the desired contradiction. The cases where (8.135) breaks with W being negative, or where
it breaks for Z, are handled completely analogously.

Therefore, we have shown (8.135) under the assumption of (8.134), which allows us to conclude
(8.135) by bootstrap. This proves (8.12) for { > {j, so it finalizes the proof of Proposition 8.3.

A. Auxiliary Lemmas
A.1. Proof of Proposition 1.6.

Proof of Proposition 1.6. Let us start by proving that there are no non-degenerate closed curves C (not
crossing the nullsets of the denominators) such that the field (g—x, g—i) is tangent with constant direction
to the curve at each point of C. If there was such a curve, it would also be tangent to the polynomial
field F = (Ntz, Nsz).

By Poincaré-Hopf theorem, there has to be some equilibrium point P in the interior of C. Moreover,
as C does not cross Dy = 0 or Dz = 0, any equilibrium point inside C has to be a solution of
Nw = Nz = 0. Thus, C has to be in the region W > Z, by Lemma A.17, the only such point is P~ and it

is a saddle point forally > 1,r < #(;11) By Poincaré-Hopf theorem, a closed orbit cannot contain

just a saddle equilibrium point, so we conclude there is no such curve C for all y > 1, r < Sy

263 (y-1)"
Note that by Lemma A.23, this covers the case y > 1, r € (r3,r4).

Now, let us show that such curve C does not exist also in the case y = 7/5 and r close enough to r*.
By the same reasoning as above, C has to encircle the point P~ (which is no longer a saddle point).
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By Lemma A.17, we have that P~ lies in the region Dw > 0,Dz < 0, and as C does not intersect
Dw = 0or Dz = 0, we have that C is also contained in the region Q (that is, the region where
Dw > 0,Dz < 0). Now, we let P’_ be the intersection of the branch of Ny = 0 passing through P~
with the nullset Dz = 0. We also let P’/ be the point in the same horizontal of P~ which lies over
Dz = 0. We define the region T to be the triangular region enclosed by Ny = 0, the horizontal segment
from P- to P”, and Dz = 0. We call those parts of 7 by Si, Sz, S3, respectively. As T is a region
from P< to Dz = 0, and our curve C encloses P~ and stays in Dz < 0, it necessarily has to pass
through 7 and has to cross either S; or S, in the outwards direction. We get our final contradiction by
Lemma A.14, which asserts that the field (Nw Dz, Nz Dyw ) points inwards to 7 both in S; and S, for
v =7/5 and r sufficiently close to r*.

By our previous reasoning, the orbits of our system are the orbits of the modified field
(Nw Dz, NzDw ), as long as the orbit does not intersect the nullset of Dy, or Dz. By Picard-Lindel6f’s
theorem, those trajectories exist locally. Moreover, by Poincaré-Bedixson (and the previous fact that
there are no periodic orbits), every bounded semitrajectory converges to an equilibrium point.

However, those trajectories may intersect Dw = 0 or Dz = 0, which give singularities for the
change of variables between the fields (Nw /Dw,Nz/Dz) and (Nw Dz, NzDyw ). Therefore, we add
the possibility that the trajectory of the original system intersects those nullsets. We have thus seen
that the trajectories (from left or right) either are unbounded, or converge to an equilibrium point, or
converge to a point of the nullsets Dy =0,Dz = 0.

In the case of reaching an equilibrium, as all equilibria are hyperbolic, Hartman-Grobman ensures
that the rate of convergence is exponentially fast, reaching the equilibrium in infinite time. O

A.2. Interpolation Lemmas

Lemma A.1. Let a > 1 and consider O = [a, ). Let By € (0,1). Then, forany 0 <i < n, B, € R, we
have the interpolation inequality

8208 £ () ooy Sn P2 @)ty P20 F O o) + WP @ oy - (AD)

Proof. First, let us define

X 1
) — @, — m+1,
(%) /O yidy =

and g(x) = x® f(®(x)) for some @] > 0, a; to be fixed later. Using Faa di Bruno for the m-th derivative
of the composition and identifying the only term where m derivatives fall on f, we have

m—1
8 g(x) = xR fO (@ ()| S Y O (@it (mod, (A2)
i=0

where i corresponds to the quantity of derivatives falling on f.
Let O = [®7!(a), +00) C [1,+c0). By the Kolmogorov-Landau inequality on the halfline, we have

m _ I-m/n | qn m/n
1028(0) gy S IRy E 82 OIS . (A3)

Using (A.2) and (A.3), we obtain

m—1

ceme fo @) s ”f(])((I)(x))xa1j+az—(m—1) S HE Ol 510t @5 -
Jj=0

(Ad)
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Applying (A.4) i times, we conclude that for any 0 <i < n,

[+ £ @)

~ 1-i/n n i/n
L=(&) <n ||8(x)||Lw(0) + ||8(X)||Lw(6)||5xg(x)||Lw(5), (A.5)

However, taking m = n in (A.2) and using (A.5), we see that

By g(x) —x e £ (@) e )

n—1
1-7 .
peioy S0 18y + 3 g0l S 1028 (I
=0

1 -1
< lg@lea) + I8 5 1028 I 2.

so there exists some constant C,, such that
n _ ajntay p(n) _ _ 1/n n (n-1)/n
1078 ()l 5y < X2 AP Lo () + Cullg (D)l 5 +Cnllg(X)Ile(a)||(9xg(X)IILm(5)
< ™ ® f O (D)) ) + Callg @l )

@@ ¢, 198Wle
n 6n/(n—l) n/(n - 1)

n n 1 n
< e f O (@) w y + 51928 () 1 3+ O (I8 )

+C,

where the second inequality holds for any C > 0due to Young’s inequality, and for the third inequality,
we chose C = 2C,,. Therefore, we get

1828l (5) S 18D lILwg) + K2 £ (@) 5 (A6)

Now, plugging in (A.6) into (A.5), we obtain

aji+ay £(i) — 1-i/n ain+ay ¢(n) i/n
o fO@@)| S 8@y + I8N e 0 @)

= I F @O o) + 6 (@D A a2 @I 5
(A7)

@+l and writing (A.7) in terms of z, we obtain

a2

Zal+] z
‘ A L>(0)

~n [ +

L>(0) (a1 + 1)@=t

Letting z = ®(x) = ﬁx

l—i/n ajn+a i/n

aji+ay () _ap 1 2 ( )
z ap+ fl (Z) Z"l”f(Z) z ap+l f n (Z)

L>(0) L2(0)

Taking a1 > O such that 81 = =%~ and taking @, = (1 + @)B,, we obtain the desired inequality. It is

a1+l

clear that this imposes 31 € (0, 1). O

Lemma A.2. Let a > 1 and consider © = R3\ B(0,a). Let k € (0,1 —2/n). We have that for any
0<i<n,

(/ lx|2k"(|vff|<x>)p)l/p< ( / |2 (19" £1(x))? ﬁ/znf(x)n”ﬁ +If @)L=y, (A8)
@) = o L2 ©r '
B

— 7 1 _
where B=i/n and; =3.
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Proof. First, due to Gagliardo-Nirenberg inequality for bounded domains, we have that there exist
absolute constants Cy, C, such that we have

IV A1 ay < CUIV £I 2 4y WAIESE 4y + Cll F I (A9)

where A is the annulus where 1 < |x| < 4. Now, for any 4, let 1A be the annulus A < |x| < 24. We can
write (A.9) in terms of f(x) = f(Ax) which is a function defined on 1A. We obtain

APV sP

LP(1A) < Cl/lzn/l 3 ||an’l”L2(/lA) ||f||L°°(/1A) + C2||f/l||£°°(/lA)' (A.10)

Noting that ip = nf8p = 2n, we have that

PG, o < OB IT s N2 + G20 e
< C /12’(" ”an/l”Lz(/lA) ”f”L""(/lA) + C2/l_l ”f’lllfm(/lA)’ (Al 1)

where in the second inequality, we used 1 — k > 2/n. Now, note that any function g defined over 1A has
a corresponding f defined over A such that g = f). Therefore, (A.11) holds for all g over 1A.

Finally, we combine all those estimates at different scales. Set A; = a2/=7 . Let us consider functions
gj such that g; = g fora2/ < |x| < a2/*! and g; is supported on some A ;A, and moreover, we have that

”ngj”Lz(/le) < C3||ngj||L2(Bj) and  ||g;jll=(a,4) < G3llgjllL=(5)

for B; = {x : a2/ < |x| < a2/*'} c A, A and some constant C; > 0. Using (A.11) for g;, we have that

/ P (1981 ))” < @2 Vg7

j=0
2 2 -2 -1
C1 Y A IV gl ) N8P0, a) + €2 D, A gm0
Jj=z0 Jj=z0

2 —
16"CiC gl oy D 47" IV gill s, + 16" C2CT gL ) D 45"
Jj=0 j=0

2
16"CLCY gllio) D A3 V"8l 1a s, + 16"C2C gl e 0) -
Jj=0

IA

IA

As a > 1, we have that % < 2, and this concludes our proof. Note that Cy, C,, C3, p are independent of
K, n,d. O

Lemma A.3. Let a > 1 and consider O = R\ B(0,a). Let k € (0,1 —2/n) and k" € R. We have that
forany 0 <i<n,

| nk+x’ an(x)

< 7)) 3 B!

X<V £ll2 0y S (A.12)

L2(0) ”l L2(0) 12(0)°
where B =i/n.

Proof. We will follow an analogous strategy to the proof of Lemma A.3. The principal difference is
that in place of (A.9), we use the following Gagliardo-Nirenberg inequality:

2(1-
“VlfHLZ(A) < Cl ||an||L2(A) ”f”L(Z(AIL:) +C2”f||22(A)9 (A13)

where A is the annulus where 1 < |x| < 4 and Cy, C, are some absolute constants. Given (A.13), one
argues in a completely analogous manner as for Lemma A.3. O
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Lemma A4. Let f, g be radially symmetric scalar funcitons over R and F, G to be radially symmetric
vector fields over R3. Let us assume that f,F; € W™ and g,G; € H*". We have the following

inequalities:
[A™(FVG;) = FVA™G; = 2md; FA™G || ,2 Sm IIF llw2meo |G llggzm-1, (A.14)
IA™(fVg) — fVA™ g =2mV fA"gll 2 S | fllw2m I8l gpzm-1, (A.15)
[A™(FVg) — FVA™g — 2md; FA™g||,» <m IFllw2m.e l1gllpg2m-1. (A.16)
IA™(fdiv(G)) = fdiv(A™G) =2mV fA™ Gl 12 Sm | fllwzme G llg2m-1. (A.17)

Proof. Equation (A.15) and equation (A.17) are clear by examination because we are subtracting
exactly the terms where m or m + 1 derivatives fall on g or G. For equation (A.17), note also that
div(A™G) = A™div(G) because AG = Vdiv(G) for radial G.

Let us consider the equation (A.16) by expanding A™(FVg). We clearly have

A™(FVg) = (Z 7| D Fidig=), >, 51-2) 8)
i J J i
m—1
+ Z 2m Z Ok F 0k 0, (Z 312) g [+ O (IFllwame l|gllp2m-1)
J k i

= FVA™g +2m Z Ok F;0k0; A" g + Oy (|| F |lymes || gllggomer ) - (A.18)
[

F;0;

Now, we claim that for a radially symmetric field F,

yayb F
0, F — —
(‘ 4)

which follows just from writing Fj, = F %", where F is the radial component of F, and expanding

04 (F’%’) Using (A.19), we see that

OabF

0aFp = , (A.19)

_ F YiYj o F
§ O Fiod;A™ g = (a F——) § Lo d A" g+ —ATg
£ J J 4 ’ 52 J I

m- F m
=(64F—Z)62A 1g+ZA g
F 2 F
=0, F - —|[A"g - Z9,A™! )+—Am
¢ 4)( T 8T
F-F
= 0, FA™g + = /gagAm—lg. (A.20)

In the second equality, we have used that 3 ; 2 ky —=L0x0; = 62 , which follows from the fact that [64 ,
and

aczyfa —nyaza —Zwa,,k. (A21)

Substituting (A.20) in (A.18), we have

-F/¢

0; F
A™(FVg) = FVA™g +2m (6§FAmg + %@Am—lg) + O (I Fllyy2meIgllpzm-t) . (A22)
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Finally, note that ||@H

proof of (A.16).
Finally, let us show (A.14). Analyzing A" (FVG;), we have that

S ||F|lw2m.~ because of the radial symmetry of F. This completes the

A™(FVG;) = F -VA™G; +2m Y 0;Fxd;0k A" G; + O (||F |lyy2meo || Gl pgom-1)
J J %% H
Tk

=F-VA™G; +2m (agF - ?) 07 (%A”HG)

+2m (A’"G + O (| Fllyy2me |G llgg2m-1)

200, -

VA" G; +2m (6[F - 5) % (AmG ;
’ )¢ ¢

2am- ‘G)
+2m EA"Gi+ 0 (1F Iy G lggne1)

0cF = %y, 200, -2
i f ¢
+0 (IFllyomeslIG llggom1) (A.23)

=F- VAmGi + ZmagFAmGi —-2m

-F/¢

Noting as before that a‘FT is bounded in L™ because of the symmetry and noting that

200, -2

: A™'G = (30, - div) A" G, (A.24)

we conclude (A.14). O

Lemma A.5. Let us assume that U is a radially symmetric vector field and S is a radially symmetric
scalar field. Let us denote the radial variable by {. Let ¢ be some radially symmetric weight with ¢ > 1,
¢ =10nB(0,1) and $(&)'/* < ¢ for ¢ > 1.

Moreover, we assume that for any 0 <i < 2K, we have

. . . . 2 _
/ (|V’U|+|V18|)2(|V2K+1—‘U|+|V2K+1"S|) oK < gE? (A.25)
R3

for some & < 27K Let us also assume

IAKUSKIL,, 1AK S5, < B2, V¥ Uk SO 4«)1 Al IV S gK ST é,)l 7. < €E%,
(A.26)
and
s ISl s 1 (VUG Pl VS Pl < 1. (A27)
Then, we have
H(AK(L{ VU) - UVAK U, - 2K6§L{AKL{,») ok|| =0 (E). (A.28)
H(AK(SVS) _SVAKS - 2KVSAKS) ok|| =0 (8). (A.29)
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(8% @ vs) -u - vaKS - 2k0,U - AKS) 65

=0 (E), (A.30)

12

H(AK(SdiV(U)) _ Sdiv(AKU) - 2KVS - AKu) k| =0 H). (A31)

Proof. Equations (A.29) and (A.31) just follow from distributing the derivatives in AKX (SVS) or
AK (Sdiv(U)), respectively. For example, equation (A.29) follows from

2K-2
¢% [AK(SVS) - SVAKS - 2kVSAK S| < Z (ZK)WZK"SIIVMSMK,

i
i=0

so that

Equation (A.31) is shown in a completely analogous way.
Let us now show (A.30). Reasoning in the exact same way as we did to obtain (A.22), we have that

ocU-UJL

AKUVS) —UvAaKS -2k (6(UAKS+ 4AK‘IS)'

2K-2
< |V2KY| VS| + 22K Z VK- |Vt S,

i=1
Using (A.25) and (A.26), we obtain that
H(AK(L{ V) - U - VAKS —2K9.U - AKS) ¢

642/{ —U/é ¢K
7 712174

< E+2K&'’E

L2

+ 2K G1E
12

()2t VK-8

‘QU—UM

<2k

Lm‘

<év>l/2¢l/4

L

U -4
sE(uH—" ) g

) . (A.32)
Lo

Consider the regions B; = B(0, 1) and B, = R? \ B;. We have that

H@u—um

o U -UJL
7 —_— 60Ul 5,y + 1 L5,

<|
Lo ¢ L=(By)
< WUl + 10Ul sy + Wl
<1, (A.33)

<§>1/2¢1/4

where in the first inequality, we used ¢(2) /4 < £'/2, and in the last inequality, we used (A.27). Plugging
(A.33) into (A.32), we conclude (A.30).
Lastly, let us show (A.28). In the same way as we obtained (A.23), we have that

IU =%y, 200, -2

AR U - VU) —U - VARU; - 2K0UAKU; + 2K A

A Y

2K-2
< IV2Ku||vu| + 22K Z V2K ||V 4.
i=1
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Using (A.24), (A.25) and (A.26), we get that

H(AK(U - VUy) - U - VARY; - 2K(9§UAKU1‘) ox

K
2K ¢

IN

_u
aé“u{ §<{>1/z¢1/4

Lo

u
U -4

<2KE\2E <{>1/2¢1/4
B ¢

L

Finally, using (A.33), we conclude (A.28).

Explicit computations

W(?)a( - div)AK_IU

+2E.

L2

L2

Lemma A.6. For everyy > 1, we have that r*(y) < 2 — % Equivalently,

2> (r*(y)-1) (2+ l)
a

We also have r*(y) <7y.

Proof. Fory < %, we have that

21 r()=

(M- m) -1

T

which is positive, asy — 1 < 2v2. However, for y > %,

(y—l)((2\/§—3)7—\/§+2)

Lo
2-— -1 ()=
Y

> 0.

(\/5(7— 1) +2)y

This concludes the proof of r*(y) < 2 — i As a consequence, we get

ry) -y <-y+2--

so we also get y > r*(y). Finally, note that

2> (r(y) - 1) (z+ 1) 1> (r(y) - 1)
a ')/—

Lemma A.7. Fory =7/5, we have that

. 19 -9v5
Mim Dzo=—5— <0
-1
llmeo=\/§ 0,
* 2
. 5
lim NWQ———+\/§<0
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Oa
Y

Y

1
e ——>ri(y)-1e2-—-<r(y).
Y Y

-1

+E+2KG12E

O

5-3vV5

lim Wi = \/_ < 0,
r—r* 4

lim Zl = \/g_ > > 0,
ror* 6

lim* azNZ (PS) =

3(=5+7V5) -0,
20
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-1 25 —
lisz]k=3\/§ >(), limsz]:S—Wg>O,
ror* ’ 4 r—r* ’ 12
, 1-v5 _ Dza 294125
rlglrl*(azNW(Ps) -Wi0zDw) = <0, rlglrl* WDy 776 <0,

—58951 + 265595 .
1254528 > Jim Zg = =V5 < 0.

lim 07 BY 5(Wo, Zo) = 625
Proof. We compute the limits using their formulas and obtain the results above. )
Lemma A.8. Fory =7/5 and n sufficiently large with r € (r,, rp+1), we have
Dw o < 2|Z], 1Z,| < 3/10, Wil <1/2,
|0; No(Py)| < 2, |0;Do| < 3/5, |0;0;No(Ps)| <7/5,
foranyi,j e {W,Z}.

Proof. The first three items follow from the limits of Dw o, Zo, Z; and W as r — r* in Lemma A.7.
For |0;No(Py)| < 2, note that

7 29 4

4 4v§ 2 vg b
and all the components on those limits are smaller than 2 in absolute value. Lastly, for the last two items,
let us write the expressions of D, N, for y = 7/5, which are

Tim VN (Py) = lim YNz (Py) = (% (7\/3 - 5) , 23—0 (7«/3 - 5)) ,

3.2
Dw(W.Z)=1+W+2Z  Nw(W.2Z)=-rW - — - ==

2 3 772 2wWZ W2
Dz(W,Z) =1+ W+ _Z, Ny (W,Z)=—rZ — — - "= 4 |
z(W,2) =1+ W+ zW.2)=—rZ-95 -5 * 7

It is clear that any first derivative of D, is at most 3/5 in absolute value and any second derivative of
N, is at most 7/5 in absolute value. m]

Lemma A.9. Let y € (1,+00). We have that Dz 1 =0 for r = r*(y).
Proof. We separate in two cases: 1 <y < % and y > % For each case, we compute the limit

1+y
4

3_
lim Dz, = lim (1+—Twi+—22]=0
using equation (2.6). )
Lemma A.10. Let us recall Dw o = Dw (Wo, Zo). For every y € (1,+00) and r € (1,r*(y)), we have
DW’() > 0.
Proof. We have that
y+(y=3)r+1+R, S v+ (y=-3)r+1

20y-1) 20y -1

Now, if y > 3, this is clearly positive. If y < 3, we see that 1 +y — (3 — y)r decreases with r. Therefore,
it suffices to check that 1 +y — (3 — y)r*(y) > 0 to conclude that Dy o > 0. For 1 <y < % we obtain

l+y—(3—y)r*('y)=4(\;2/—_l)] > 0.
Y4

y-1

Dw o = Dw (Wy, Zp) =
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Fory > g we obtain

1+y-(3—7)r*(y)=W‘;”)((sm@)yﬂ@—s),

where both the numerator and denominator on the fraction are clearly positive since y > % The last
5-V3 5

3V o
Lemma A.11. Let us recall Dz 1 = VD z(Ps)(W1, Z1). For every y € (1,+c0) and r € [1,r*(y)), we
have Dz 1 > 0.

factor is also positive since

Proof. Firstofall, Dz j = — 3757+(]Z(72f;72 221 40 it suffices to show that the numerator is negative.

Using Lemma A.6, we have that

3—5y+(1+y)rs3—5y+(1+7)(2—%)=w<0. (A.34)

Y
Therefore, the proof would follow if we show that

0<B+r=5y+ry) = (y-D*R3=CBy-DR}+ By =51 -3y+(y+)r)Ri.  (A35)
Now, using Lemma A.6 again, we have

Y

1—3y+(7+1)r<1—3y+(7+1)(2—
Y

Therefore, if y < 3 , both summands in (A.35) are positive, and we are done. Thus, we just need to show
that (A.35) is positive for y > 5. It suffices to show that

A=CBy-1)P’R} =By -5*(1+r-3y+ry)*>0. (A.36)

Fory > 5, we have that

dA
o =-32(y-1D(6y-2+(y-1)By+1)r) <0, and A =0,
r r=r*
so we conclude that the inequality in (A.36) for all r € (1,7*(y)). O

Lemma A.12. Let us recall D | = VD7 (Ps) (Wi, Z1). For everyy € (1,+00) and r € [1,r*(y)], we

have D z.1>0.
Proof. We have that D zZ1= w so we just need to show that the numerator is negative.
This follows from -5y + 3 + r + ry < 0, which was justified in (A.34). O

Lemma A.13. Let us recall sig =F-Wy-2y = ;‘t(yr:ll)) — Wy — Zy. Let either y > 1 and r = r3 or

vy =17/5and r = r*(7/5). We have that s > 0.
Proof. We have that

6(y — 1)s™ =9y = 3yr+r-3R; - 7. (A.37)

Lemma A.23 yields

1 1
9)/—7+(1—3y)r>97—7+(1—3y)(2——):37—2——>0,
Y Y
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so (A.37) is positive because
Oy =3yr+r—-"77%=9R? = 16(r — 1)(2 — 5r + 3yr) > 0,

where in the last inequality, we used (A.42). O

Properties of the phase portrait

Lemma A.14. Lety = 7/5 and r sufficiently close to r*. Let us recall that the region T is the triangular
region enclosed by Ny = 0, the horizontal segment from P~ to P’ and Dz = 0. We call those parts of
oT by Sy, 82, S3, respectively. Then, the field (Nw Dz, Nz Dw ) points inwards to T both in S| and S,.

Proof. The field over Ny = 0 can be simply written as (0, NzDyw ). The branch of Ny = 0 passing
through P~ can be parametrized as

Z =2W - V10rW + 11W2, W >0, (A.38)

in the region W > Z. Its derivative satisfies

’

_ 24/W(10r + 11W) — 5r — 11W

VW (10r + 11W)
CIWATVIW =5r = 1IW _ 8VrW —dr —4W _ —4(VW - Vr)? -0

VWO + 1IW)  AW(0r + 11W)  W(10r + 11W)

where we used that V11 < 7 /2 in the first inequality. Therefore, as Z decreases with W, the field
(0, NzDw ) will point inwards to 7 on Sy if NzDw > 0. We have that Dy > 0 as T is in Q. With
respect to Nz, note that it intersects our branch of Ny, at two points: (0,0) and P~ (the other two
intersections of Ny = 0 and Nz = 0 from Lemma A.17 correspond to the other branch). Therefore,
the sign of Nz at S is the opposite one to the one after P.. Taking asymptotics of Nz over the branch
(A.38), we see

8
Nz(W.2W =V10rW + 11W?) = < (2W3/2\/10r 1w - 7W2) +r (\/W\/IOr 1w - 9W)

- 2(—7 L2VIDW2 +0 (W3/2) ,

and as 2V11 < 7, we get that N is negative between P and infinity over the branch (A.38), so it is
positive over Sj.

Now let us evaluate the field over S;. As S, is horizontal, the field (Nw Dz, NzDw) will point
inwards if Nz Dw > 0. Similarly as before, Dy > 0 because T lies on Q. With respect to Nz, we have
that

Nz (Po + (1,0)) = %z (5 (1 + 3x/§) r+4t) ,

which is positive for # > 0, so we also get Nz > 0. O

Lemma A.15. Fory = %, and r close enough to r*(7/5), we have that

s D%, ~8Dz.1DY /3
7/5,W fl
2D, /3

< Wp. (A.39)

https://doi.org/10.1017/fmp.2024.12 Published online by Cambridge University Press



110 T. Buckmaster, G. Cao-Labora and J. Gémez-Serrano

Proof. Asy = £ is fixed, Proposition 2.2 together with equations (2.1), (2.2), (2.6) give formulas for
all the coefﬁments, depending on r and its radicals R, R, (given in equations (2.3), (2.7)). As b' only
depends on those coefficients, we get expressions for Dz 1, Dz, ﬂZ 3 depending on them.

Using that for y = 7/5, we have

7 1
r = Z - g\/g SR% + 4, (A40)

Rzzi\/Rl (—24\/5 5R§+4—95R1+80)—12\/§ SR2+4+ 184,

we can express both sides of equation (A.39) just in terms of R ;. Taylor expanding R |, we obtain

b ~Dz2-\D},=8D21DY /3| (3y5 s\ 15w,
7/5,W 2D 0.3 1 2 2 4
15 (2001480 + 886943\/5) R2
_ ! +0 (RS)
1936 !
| ISR: 15V5R? 3
5(3«/' 5) e +0(R1)’

so we conclude that (A.39) holds if R, is sufficiently small. However, for y = % we have that
= %(7 - \/5). From (A.40), we see that R; — 0 as r — r*, so we are done. O

Lemma A.16. Let us recall that T™) is the triangle with vertices Py, Ps + (M, —M) and Ps + (M, h),
where h is such that this third point falls on the line Dz = 0. We have that Nyy < 0 on T™) for any
M > 0.

Proof. A generic point of 7™) can be written as P = P, + (1, s), where s is between —1 and —};—g.
Thus,

HN
N (P) = Ny (Ps) +1VNw (Py) - (1) +7(1,5) =5 (L)
1
= NW’() + Zl‘((—4l’ - 4’)/W0 + )/Z() - 320) + S(’yWQ - 3W0 + 2’)/2() - ZZ()))

—tz((y — s>+ (y=3)s - 2)/)
t,. 1
=Nwo+-A+—B.
WO Ty
We have that Ny o < 0 due to Lemmas A.26 and A.7. We will conclude the proof by showing that
A<Oand B<Oforse [-1,-12].
Let us start showing B < 0. As B is a second-degree polynomial in s with positive second derivative,

it will be negative for s € [—1, i m] as long as it is negative in both extrema. We have that

16(y — 1
B|S:71 =2- 2’)/ < O, and B| e = — (7 )7 < 0,
S=TTa (1 +7)2

and this concludes B < 0.
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Now, we show A < 0. As A is an affine function of s, in order to show that it is negative for

s € [—1, —11;—5:] , it suffices to show it at both extrema. We have that

(- 1)A|S:_% = -8Ry +4 (32 = 10y +3+ (=372 + 6y + 1) ),

C

so it suffices to show C < 0. As C is an affine function of r, it suffices to check its signatr = 1 and r = r*:

c|_ =4-4r <0,
5
c =—(\/§—1)(y—1)(37—1)<0, fory > 2,
r=r* 3
2y -1) (3y _1 +4\/§1/ﬁ) s
C = 3 <0 forl<y$§.

rr (1 + L)
y-1

Finally, we need to show that A|s=_; is also negative. We have that

A

=SB0+ DR +972—227+1+(—3y2—27+17)r. (A41)

s=—

D

We again split into two cases, | <y <3 andy > 3.
For the case 1 < y < 3, we will show D < 0, which trivially gives A|s=—1 < O from (A.41). As D is
an affine function of r, it suffices to show that it is negative at r = 1 and atr = 1 + ;2 > r*. We

(1+ %)

{ 2
=3(y-3 — —-4<0.
r=l+ 22 (v )y y—1 <

For the case y > 3, we will show that 9(y + 1)*R? > D?. This clearly implies that Al;—_; < 0 from
(A.41). We have that

have that

D 1=6(7—3)(7—1)<0, and D
r=

9(y + 1)>R? - D?
16(y - 1)

=272 — 10y -5+ (—672 ~ 28y + 10) r+ (—3)/2 +2y+ 13) 2.
For y > 3, both the terms in 7 and r? in the previous equation are negative; thus, the expression is

decreasing. In particular, we can lower bound it by its value at r = r*; that is,

9(y + 1)273% - D?
16(y — 1)

>27y* =10y =5+ (—672 — 28y + 10) rr (—372 +2y+ 13) (r*)?
i 6(y—1)2(3(3—«/§)y2—2(7—x/§)y+5x/§—7)
i (V3 - 1)+2)2 '

Noting that the second-degree polynomial (3 (3 - \/§) Y2 -2 (7 - \/§) y+5V3 - 7) is positive for
v > 3, we are done. o

https://doi.org/10.1017/fmp.2024.12 Published online by Cambridge University Press



112 T. Buckmaster, G. Cao-Labora and J. Gémez-Serrano

Lemma A.17. There are three points in our phase portrait W — Z > 0 at which Ny = Nz = 0, which
are (0,0), (-r,-r), P<.

e Fory > 1 and r € (r3,r4), no equilibrium point is in the region Q. Moreover, the point P~ is a
saddle point of the field (Nw Dz, NzDw ).
e Forvy =7/5 and r sufficiently close to r*, only the point P« is in Q, and it lies in the region Z > Z,.

Proof. From Bézout’s theorem, there are at most four solutions to Ny = Nz = 0. By direct substitution
in the expressions of Ny, Nz, it is clear that (0, 0), (-r, —r),

P®:(2(\/_—l)r _2(1+\/§)r) and (_2(1+\/§)r 2(\/_—1)r),

3y-1 7 3y-1 3y-1 7 3y-1

are those four solutions. It is also clear that the last one lies in W — Z < 0. Now, recall Q is the region
of W—Z >0, where Dy > 0and D < 0. Note that D,(0,0) = 1, Dy (-r,-r) =1 —r < 0, so the
only equilibrium point that can possibly lie on Q is P.

For the case r € (r3,rs4), a direct calculation gives us

(3y=1)Dy(Po) =3y —1- (\/§(y— 1) +2)r >3y —1- (\/§(y— 1)+2) ra(y).

3y-1 .
From Lemma A.23, we have r4 < oD Therefore, in the case r € (r3,r4), we get that
3y -1
(3y =)Dz (Po) >3y — 1 - («/§(y 1 +2) e
2+V3(y - 1)

Fory =7/5and r = r*(y), we get

—3—7\/§+5\/§+\/E<
32

—3+7\/§+5\/§—\/E>

0.
32

Dy (Ps) = 0, and Dw(Ps)=

Recall that Yj is the Z coordinate of P-. Aty =7/5 and r = r*, we have

5(1+\/§)(4+\/§)
Yo=- 2 >—\/§=Zo.
4(1+\/§)

Lastly, we need to show that for the case y > 1, r € (r3,r4), we have that P~ is a saddle point of
(Nw Dz, NzDyw ). We calculate the Jacobian at P, and its eigenvalues are given by
r r

ﬂizm((—972+18)/—5)+(15)/2—lgy—l)ri@)Zm(Ai\/E),

2
B= (277/2 ~ 30y + 7) + By(y(Gy(y +20) — 94) +28) +25)r2 + (106 — 6y (4573 ~ 110y + 88)) r.

Letr’ = (3«/——1 We will show that B > 0,4 > 0 and A2— B > Qforall r € (1,r"). This directly
3(y-1)+2

gives that A, > 0,4_ < Oforr € (1,r’"). Assume r’ > ry by Lemma A.23, and we would be done.
We start with A > 0. As A is affine with respect to r, it suffices to check that A is positive for r = 1
and for r = r’. This follows from

_ (6+2¥3)y+ (9-5V3)(y - )Gy =Dy -1 _
2+(y-DV3 '

A 1=6(72—1)>0, A
r=
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Now, we show B > 0. As an auxiliary step, we will show that %B < 0. As %B is an affine function
of r, it suffices to show that for r = 1 and r = r’, we have

% _B= —12(y = D(y + D) (21y* = 30y +13) < 0,

d 2y = DGy = 1) (9(5V3 1) 77+ (15V3 - 99) 32 + (213 - 105V3) y + 533 - 81)

arh P =7 <0.
drir=r V3(y - 1) +2

Therefore, B > B|,-,, so it suffices to show that B|,—,» > 0. We have that
6(3y — 1)2(y — 1) ((19«/3 —18)y2 + (60 - 34V3)y(y — 1) +26 — 15«/§)

5 > 0.
(\/§y_\/§+2)

r=r’

Finally, let us show that A% — B > 0. We have that

AT B :9y2—67+1+(4—12y)r+(—3y2+6y+1)r2.
24(y-1DBy -1
c
Now note that C is a second order polynomial of r and
d
C7]=6(72—1)>0, Cl =0 and ;,,C=‘2‘/§(7‘1)(3V‘1)<0'

In particular, for any ¢ sufficiently small, C is positive at r = r’ — £. As C is a polynomial of r, positive
at r = 1 and r = v’ — ¢, it has an even quantity of roots (counted with multiplicity) in the interval
(1,7r" — €). Therefore, as C is a second-degree polynomial of r and it has a root at r = r’, there are no
roots in the interval [1,7" — €). As we can take ¢ sufficiently small, we conclude that C is positive for
allr € [1,77). O

Lemma A.18. Let y = 7/5 and r sufficiently close to r*(7/5). Let P’ = (Wy — Tpw, Zo) for Tpw =
% (\/4r2 —4r+11-2r+ 3). We have that Dvw (P’) = 0 and that along the horizontal segment [P, Py],
the field (Nw Dw , Nz Dw ) points downwards.

Proof. Using the formulas for Wy, Zy in (2.1), we get that Dy (P”) = 0. Then, we need to show that the
sign of the third-degree polynomial Nz (W — t, Zg)Dw (Wy — t, Zy) is negative for ¢t € (0, Tpw). We
clearly have that Nz (Wy —t, Zo) Dw (Wy —t, Zy) vanishes at O (because Nz (Py) = 0) and Tpw (because
Dw (P") =0). Atr = r*, we have
Nz(Wo—t,Zo)Dz(Wo —1,Zy) _
t(Tpw — 1)

-3
%(7@—54) <0,

so the first-degree polynomial above is negative also for r sufficiently close to r*. O
Lemma A.19. Let us recall that for y € (1,+c0) and r € (r3, r4), we define

™" (1) = (Xo — 1, Yo +1),

where Xy, Yy are defined in (3.2). Let us also define t;’“ra = %(Xo —Yy). We have that Dy (b (t)) > 0
and D7 (b (1)) > 0 for all t € (0, t;’“ra]. Moreover, if we let

Pextra(t) - (1’ 1) . (NW (bextra(t))DZ(beXtra(t)’ Nz(bextra(t))DW(bextra(t)) ,

we have that P*"™(t) > 0 for all t € (0, t;"“a),
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Proof. By direct calculation, we get that
textra = 2@"
f 3y—-1°
(6y = 2)Dw (6™ (1)) =23y = 1) +2 (V3y = V3-2) r = (y = D3y - 1),

(6y =2)D2(b™™(1)) = 23y = 1) =2 (V3y = V3+2) r+ (y = DGy - 1),

By-1)°
1(y-1
The second expression is clearly decreasing, and the third one increasing. With respect to the fourth

one, note that =3y +2r+1 < —y+1 < 0 due to Lemma A.6, so it is also decreasing. Thus, we just need
to show the following quantities are positive:

L PRA(r) = —4N3r(=3y +2r + 1) + (3y — 1)(2r + 1 = 3y)r.

(6y = 2)Dw (D™ (15™)) = =2 — 4r + 6y > 0,
(6y —2)Dz (b¥(0)) = =2 + 6y + 2r(=2 + V3 = V3y),

3y - 1)?
ty-1

The first and the third expressions are trivially positive (recall r* < y from Lemma A.6). The second

S PR (1) = —2V3r(1+2r - 3y) > 0.

expression is clearly decreasing with r, and it vanishes at r = —2+\3f§/(_1 i Therefore, we just need to show
Y-
3y-1 .. . 73
that r4 < oD This is shown in Lemma A.23. |

Lemma A.20. Let S be the vertical segment between (W, Zy) and (Wy, Wy). Let either (y,r) = (7/5,r%)
or (y,r) € (1,400) X (r3,r4). We have that Ny (P) < 0 for any P € §S.

Proof. The second-degree polynomial Ny (W, y) (in y) has second derivative VT_I > 0. As we want to
show that the polynomial is negative for y € [Zy, Wp], it suffices to show it at the endpoints. Clearly,
Nw (Wy, Zp) = Nw o < 0 in our range of (y, r) because of Lemmas A.26 and A.7. Observe that

16(y = 1)*Nw (Wo, Wo) = A - B

= (3(7 -3) ()/ - %) + (=59 + 10y = )r — (1 +7)R1)
(-3 [y-3]+ 0= mrnmi).

Inthe casey =7/5,r =r*(7/5), we obtain A - B = 625( —45+17v/5) < 0. From now on, let us assume
r € (r3,r4).

We first show B > 0.If y € (1, 3), as (y —3)(y+1)r decreases with r, and r < rq < 3y-1

m, we get

oy N Csretopon Y-t
B>(3(7 3)(y 3)+( S5y“+ 10y ])2+\/§(y—1))
-(V-1) -3 -Gy -1
= > 0.
(2+V3(y-1))

Now, let us assume that y > 3. We get that

RIS =+ 1) (30 -2y + (=3 =T+ (- IR1).
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We claim fi—f <0.As|=3(y=2)y| > (y =3)?r (because y,y —2 > y—3 and 3 > r), the claim ”cll—f <0
follows from

2 2 2752 3
(30 -2y + (=37 -7) - (r-3*R} =320y - 1)’ > 0,
Therefore, to prove B > 0, we just need to show B > 0 at r = r*. We have that

8(«/5—1)@—1)2
B|r:r*: \/g,y_\/5+2 >0.

Now, let us prove A < 0. If we have =5y + 10y — 1 < 0,

A= (3(7—3) (7- %) +(=5y*+10y - )r-(1 +7)R1)
< (3(7—3) ()/—%)+(—5y2+107— 1)) =2-2y*<0.

Thus, we just need to consider the case where =5y + 10y — 1 > 0, whichisy < 1 + % From now on,
2

let us assume y < 1 + \% In that case, we have that r < ( )2 + 1. Therefore, we have that
V2,41
y-1

AS3(7—3)(7—%)+(—5y2+10y—1) ——+1

Wy =T((3yy=1+V2)y =Yy =1 +12)
X

Noting V2 > +/y — I, we see that all the terms in parenthesis in the last expression are positive, so we
conclude A < 0, and we are done. O

S_

Lemma A.21. Lety > 1. Consider the S| the diagonal halfline of slope —1 from P — that is, the halfline
given by (Wo +t,Zy —t) fort > 0. We have that

(Ntz,Nsz)~(—1,—l) >0 0}151.

Proof. We have that

2
= (NwDz +NzDw) =1 (2(y “D)r+4(y+2) +6Wo+3 (72 + 1) zo)

(W0+I,Zo—t) -
+ar(Wo+4Zg+2) +4 (W0(3ZO +2)+3yZ2 + 3y +2)Zo + 4)
= At + B.

We will just prove that A and B are both negative, which yields the desired statement.
For B, we have that

2(y - 1)
r—1

B=-99>+22y - 17+ (y=3)(3y = 5)r+ 3y - 5)R,.
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As —9y? + 22y — 17 is negative for all real v, B < 0 just follows if we show the following quantity is
positive:

(—9y2 +22y - 17) —((y =3)By =5)r+ 3y = 5)R1)> = 32(y = 2((3y = 5)r +2).

Thus, we just need to show (3y —5)r+2 > 0. This is trivial for y > %, and fory < %, Lemma A.6 yields

1 6y-5 -1
(37—5)r+2>(37—5)(2——)+2=M>O. (A42)
Y Y
Now, let us show that A < 0. We have that
4
mA = —9’y+(3’y— 1)r+7+3R1. (A43)
By Lemma A.6, we have
1 1
-9y+QBy-Dr+7< —9y+(3y—1)(2— —)+7:2+——37 < 0.
Y Y
Therefore, in order to show (A.43), it suffices to note
(-9 + By - Dr+7)2-BR)*=16(r — 1)((3y —5)r+2) >0,
where (3y — 5)r +2 > 0 was already shown in (A.42). O

Lemma A.22. Let H be the halfline of Dy = 0 which is to the right of Ps. We have that VD z -
(NwDz,NzDw) > 0 on H. Moreover, VD7 - (Nw Dz, Nz Dw) is negative between P and Py, and
positive again to the left of Ps.

Proof. The intersection of Dy =0 and Dz = 0is (-1, —1), which on the diagonal W = Z; thus, it is
the leftmost point of Dz in our region of interest W > Z. On H, we have

+1
VDz - (NwDz,NzDw) =NzDwdzDz = YTDWNZ~

Therefore, we just need to analyze the sign Nz > 0. The system Nz = Dz = 0 has two solutions (by
Bézout), which are P and P,. From their formulas (2.1) and (2.2), we see that Py is the rightmost.
Thus, Nz will have constant sign on H, so we just need to check the sign on N at infinity along the

direction of H, given by VD7 = (”T“ —1_7") We get

1 1
lim =N, =§('y2—2’y+1)=§('y—1)2>0. O

t—o0 [2

1 (1+y 3—7)

Computer-assisted Lemmas

Lemma A.23. We have that ry < —2=1 ) forally > 1.

2+V3(y-1

Proof. If y > %, the proof follows trivially because r*(y) = #{)}_1) Ifl<vy< %, the proof is
computer-assisted, and we refer to Appendix B for details about the implementation. O

Lemma A.24. Let r = r* and y = 7/5. Let us recall (3.5)

W, W V4, V4
bg/s(t) =(Wo+ Wit + 72t2_ (W0+W1 + {)t3,zo+zlt+ 7212 - (ZO+21 + 72)9),
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and (3.2)

2(\/§—1)r _2(1+\/§)r
3y—-1 ° 3y -1

Pe = (Xo,Yo) =

There exists some tw € (0, 1) such that bg/s w(tw) = Xo and bg/s 4 (tw) > Yo. That is, P~ is below
bg/s(t). Moreover, we have that bg/s’w (t) is decreasing fort € (0, ty ).

Proof. The first part of the proof is computer-assisted, and we refer to Appendix B for details about the
implementation. In order to show that bg /5w () is decreasing, we calculate the polynomial at y = 7/5,
r = r*. We obtain

1
B sy () = == (3\/5 - 5) (t(151 — 4) + 3),
which is globally negative. O
Lemma A.25. Lety > 1 and r € (r3,r4). Let Ocxyra = %ﬂ and 0y € [—n, ) be the angle

b%’(l))
(1)

0y = —arctan (

that is, the angle formed by b () for t € [0, 1] when arriving at P« att = 1.
Then, we have that 0 < Oexra and 0 > Oextra — 7.

Proof. We need to show that =7 < 65 < %’, or equivalently, that the vector —bf /(1) has angle between
-7 and 3T". That is equivalent to —bf1’(1) - (1,1) > 0. We show that bg‘,’(l) + bﬂz'(l) < 0 with a
computer-assisted proof. Details about the implementation can be found in Appendix B. O

Lemma A.26. Let y € (1,+0) and r € (r3,r4). We have that

Dw 1 >0, Nw, <0, Nz1>0, Wi <0,
Wiz Xo + Y,
Zs— vi/ Lo, 87Nz (Py) > 0, Dz (P<) > 0, % > —r.
1

Proof. The first five inequalities are done with a computer-assisted proof. We refer to Appendix B for
details about the implementation. Let us start with dz Nz (P;). We have that

16(y — 128, N (Py) = 9y — 592 — 5y — (3(7 NV 7) F+94(=3y+1)(y—3)R1 = A+BR,.
We have that

d
A= ~(y+1)(B3y*-Ty+6) <0
.

because the polynomial 3y? — 7y + 6 does not have real roots. For 1 <y < %, we get that

B 4(y+1) (Zﬁy\/)Tl+ (\/5\/)?1+4) (y - 1))

r=r* 2
(&

> 0,

y-1

https://doi.org/10.1017/fmp.2024.12 Published online by Cambridge University Press



118 T. Buckmaster, G. Cao-Labora and J. Gémez-Serrano

and for y > _ﬁ,

9(\/5—1)y2+(30—14«/§)y+9\/§—25
rert V3(y - 1)+2
9(V3-1)+(30-14V3) +9v3-25 45
V3(y—1)+2 V3(y—1)+2

Therefore, we get that A > 0 globally. If y < 3, we get that B = (=3y + 1)(y — 3) > 0, so we are done.
From now on, let us assume y > 3. We will show that A - BZR% > 0, which will conclude the proof
of the sign of 9z Nz (Ps). We have
A2 = BR? =32(y - 1)? (zy(y(9y —14)+9) + (y(y(By = 11) + 17) = 1)r? — 4y(3(y = 2)y + 7)r)
= 32(y - 1)’C,

so we need to show C > 0. We have

d2
ﬁC=—2+34y—2272+6y3 =6y(y—2)2+2y*+10y -2 >0,
-
SO

_ 2= (3 (2\/?—3)y3+(39— 12\/§)y2+(14\/§—47)y+1)
r=t 24\3(y = 1)

sM(3(2«/5—3)y-9+(39—12«/§)y-3+(14«/§—47)y+1)

S TviooT (1 +(32V3 - 11)y) <0.

Finally, we have
C+V3r-1)° . 2+V3(y-D) .

-(y-1 - -(y-1
- (9 (4«/5 - 9) V4 (300 - 156\/5) N (220\/3 - 438) v (204 - 100\/3) y— 1)

r=r*

IA

(9 (4\/5 - 9) ¥ 3+ (300 - 156x/§) V4 (220\/5 - 438) v 3+ (204 - 100\/5) y - 1)

= (57—48\/§)y3+10(56\/§— 1i)y-1<o.

Now, we show Dz (P<) > 0. We get that

(3y =)Dz (Po) =3y — 1 —r(2+\/§(y— 1)).

. . . _ 3y-1 ) 3y-1
Now, this quantity vanishes at r = EyRveTomTe and by Lemma A.23, r4 < YRV TomTe
Lastly, from (3.2),
Xo + Y, 2 -1
070 _ = T = M > 0.
2 1 -3y 3y -1 O
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Lemma A.27. Fory =7/5 and r = r*(7/5), we have that \W;[Z;| < 2 for all 0 < i < 160.

Proof. We prove the statement via a computer-assisted proof. The code can be found in the supplemen-
tary material, and we refer to Appendix B for details about the implementation. O

Lemma A.28. Lety =7/5 and r = r*(7/5). For any i < 160, we have

Zi+1

|C.(i + 1)?] <

- 500

C.(i+1)—]|.
< ' (+1) i+ 1‘
For 160 < i < 10000, we have the further refinement

1+1

|C(z+1)|<

<[|3C.(i+1)?.
Moreover,

|Z 10000 + 6 - 10779] < 106770, (A.44)

Proof. We prove the statement via a computer-assisted proof. The code can be found in the supplemen-
tary material, and we refer to Appendix B for details about the implementation. O

Lemma A.29. Let eithery > 1 andr =r3ory =7/5 and r = r*(7/5). We have that Z‘%aZW‘ < -1

Proof. The proof for r = r3 is computer-assisted. The code can be found in the supplementary material,
and details about the implementation can be found in Appendix B. For the case y = 7/5, r = r*(7/5),
we have that

Z,/2-W;

=—4<-1.
Wi+ 27, =

Lemma A.30. Let us recall
fr

R Z
(lnr_g;.o —W2+Z2/2 (W2+Zz) l/

2 2
= ) —Zl +W1+WIZ]/2—Z1/2.

Let either y > 1 andr = r3 ory =7/5 and r = r*(7/5). We have that a3’ > 0.

Proof. The proof is computer-assisted. The code can be found in the supplementary material, and details
about the implementation can be found in Appendix B. O

Lemma A.31. Let y > 1. We have that Z3z > 0 for r close enough to r3 from above and Z4 > 0O for r
close enough to r4 from below. In other words, we have that

Z3(3-k) <0 for r =r3,
Zs(4-k)>0 for r=r4.

Proof. The proof is computer-assisted, and we refer to Appendix B for details about the
implementation. m}

Additional properties of the profiles

Let us recall that W(¢) = ¢WE(€) and Z (&) = ¢ ZF (€), where & = log ¢ and (WE, ZF) is a solution to
the ODE (1.10). We use the notation D“,EV to denote the function

DL (¢) = Dw (WE (&), ZE (¢)).

We define D%, Ni;, and N% in an analogous fashion.
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Lemma A.32. We have that S > 0.

Our profile for Euler is in the region WE — Zf > 0 and cannot cross WE = ZF because it is an
invariant manifold of the ODE (1.10). Therefore, S = % > 0.

Lemma A.33. We have that Z,’ +U — S is uniformly bounded and strictly positive for { > 1. Moreover,
(+U - a/S > leforall > 2 and some & > 0 sufficiently small. We also have that { + U + aS > (&

Jorall{ > 2 8 and some &' > 0.

Proof. Passing to WE, ZE | & coordinates, the stated inequality reads
1+WE(§) ZE(é“) 2] =efDE) <0

for & > 0. Now, let us recall that our profile (W(¢), Z(£)) is given by Proposition 3.1 for & > 0. In
particular, Dg > 0.

With respect to the second claim, just note that the solution converges to P, = (0,0) (with
Dz (Ps) = 1), so in particular, we will have that Dg(f) > ¢ for & > C, where C is a sufficiently
large constant. Then, as [log(6/5), C] is a compact interval where Dg > 0, we can find an &€ > 0
sufficiently small that bounds D from below. Therefore, as e* = £, we conclude that e¥ DE (¢) > &¢.

With respect to the third claim, just note that £ + U + @S corresponds to {fD‘VEV (log £). By Proposition

3.1, we have that DE > 0 for & > 10g(6 /5), and using the same argument as in the paragraph above for
D , we conclude that efDE (&) > &’ for every ¢ > log(6/5) and some &’ > 0 sufficiently small. O

Lemma A.34. Fory =7/5, r sufficiently close to r* and { < 1, we have that 6§S > 0.

E E
Proof. Writing this in (W, Z) variables, we need to show that WE — ZF + N— ~ N2 5 0. As for <1

DE
W
(that is, £ < 0), we have Dy > 0, Dz < 0, and we can reduce to show negativity of

DY, DE(WE - zE) + NE DL - NZDE,

-1
=5W-2) (—\/4r2—14r+11+2r+W+Z—1)(\/4r2—14r+11+2r+W+Z—1).

As W > Z, it suffices to show that for & > 0, the zE stays above Zx (W) = V4r2 — 14r +11-2r-w+1.
Za (W) is a diagonal line of slope —1 passing through Py, and from the proof of Proposition 2.5 (see
also Lemma A.21), we have that our solution stays above. ]

Lemma A.35. Fory =7/5, r sufficiently close to r* and { > 1, we have that

@ l+a (1-a)?\ N§
DE + DE 0. A.45
Tva 27 W+( 2 2(1+a)) g ( )

M = -

Proof. Given that the solution is in the region Dy > 0, it suffices to show positivity for
30D€VM =-W({10r+W —-16) + Z(Z +4) + 10. (A.46)

Let us recall from the proof of Proposition 3.6 that (W¥, Z%) is contained in the triangle T delimited
by the lines W = Wy, W = Z and Dz = 0. As both T and (A.46) depend continuously on r, we reduce
to show that every point of 7 satisfies (A.46) for r = r*(7/5). Thus, let us fix r = r* from now on.

Solving (A.46) in W, we see that the previous quantity is positive if W(_)(Z) < W < W(,)(Z), where
W()(Z) are given by

W) (2) = (+5\/’ 3+\/16z2+64z 305 +294
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and the radical is positive for all Z. Now, the triangle T is contained in —1 < W < W, because the
rightmost side of T is W = Wy and the leftmost point is (—1,—1) (the intersection of Dz = 0 and
W = Z). Thus, it suffices to show that W(_y(Z) < —1 and Wy < W(4)(Z).

We have that

4(-1 =Wy (Z) =-5V5-1+ \/16Z(Z +4) —30V5 + 294,

4(Wy(Z) - W) =7 - V5 + \/16Z(Z +4) —30V5 + 294,

where we recall that the radical is positive for all Z. The second expression is clearly positive, and the
first one is also positive because

16Z(Z +4) - 30V5 + 294 — (—5\/5— 1)2 = 8(13-5V5+(Z+2)%) > 0. O

Lemma A.36. For y = 7/5 and r sufficiently close to r*, there exists a value f4amp > 0 such that
1+0;U — |07 S| > Ngamp globally.

Proof. First, observe

_ _ WE + ZE WE - zE
1+0,U —ad;S =0, (§+§ * —al > ):6;({D§)

2
1-—a N +1+QN§
E NHE’
2 DY, 2 Df

=D% +¢0;D% =DE + (A.47)

and similarly,

l+aN§, 1-aN%
> pE ' 2 DE
w V4

1+0,U+ad;S = D%, + 3, D%, = D5, + (A.48)

Let us first reduce to show that (A.47) is greater than 77damp. In the region £ < 1, Lemma A.34 yields
that 9y S > 0, so it is clear that 1 + 0;U — |0, S| is given by (A.47). With respect to the region ¢ > 1,
note that (A.48) = i;—g (A47) + (A.45). Therefore, as (A.45) is positive by Lemma A.35, is also suffices
to show that (A.47) is lower bounded by some 7gamp > 0. In order to show this, we divide in two cases:
&<0and ¢ > 0.

Case ¢ < 0. We start showing (A.47) is greater than ngamp > 0 for < 1 (that is, £ < 0). As we will
show that this is strictly positive at £ = 0 and as £ — —oco, by compactness (say, reparametrizing the
domain), we can reduce to showing that (A.47) is positive.

Let us start noting that the statement is true at £ = 0 because Dz ; > 0 due to Lemma A.7. Now, we
show it for ¢ < 0. As Dw > 0, Dz < 0 in this region, we need to show negativity for

A =50DwDz(A4T) = Z*(—=(12r + W = 23)) = 30r(W + 1) Z
+ W(=4r(QW +5) + W(W +21) + 70) + 56WZ + 80Z + 50.  (A.49)

Solving in Z, we get that we need to show Z is below

Vg(W) +30rW + 30r — S6W — 80
2(=12r — W +23)

g(W) = (=30rW — 30r + 56W + 80)> — 4(—12r — W +23) (—8rW2 —20rW + W3 4 21W2 + 70W + 50) .

Jw) =

, where

For W > W, and r close to r*, we have g(W) > 0. Note that our solution can also be parametrized
as some Z, (W) because it is decreasing in W (by Remark 2.6). We know that Z.(W) < f(W) for W
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close enough (from above) to Wy because we already checked the sign for & = 0. Moreover, we have

f(W)==-W+(6-5r)+0(1/W), while Z,(W) = -W — gf;j)) +O(1/W) from the proof of Proposition

2.5. Thus, as 6 — 5r* > _4(675_1) , we also have that Z,(W) < f(W) for W sufficiently large. Thus, by
continuity, if Z, (W) crosses f(W) at some W € (W, +o0), it has to do so in both directions. We show
that this is impossible by checking that the field (Nw Dz, Nz Dw ) points always to the same side of the
curve (W, f(W)). Indeed, defining

Py (W) = f'(W)Nw (W, f(W))Dz(W, f(W)) = Nz(W, f(W))Dw (W, f(W)),

we have that Py (W) < 0 for r sufficiently close to r*. Clearly, we have that P, (Wy) = 0 because
Nz (Py) = Dz(Pg) = 0. Moreover, we have that

p) , 2
—|_epowen =5 (17«/3 - 31) > 0,

so we get that P} (W) is negative for r close enough (from below) to r*. Therefore, it suffices to check

(‘I;f (‘YVV)3 > 0. Let us fix r = r* for the rest of this case. We have that
“Wo)3 |y

Pr (W) + Py r(W)yg(W)
Py(W) =

100(2 +3V5 - W)54/g(W)
Py (W) = 880V5W° + 872W° + 467V5WS — 5115W8 — 15117V5W7 — 74695W7 — 447170V5W°
— 864890W° — 3634655V5W> — 4535775W° — 14090850V5W* — 19856150W*
— 47811625V5W3 — 23786875W* — 72742000V5W? — 32280000W> — 104707875V5W
+80830625W — 59254375V5 + 84001875
Py (W) = —435V5W7 — 439W7 + 664V5WO + 2140W° + 21074V5W° + 41470W° + 167470V5W*
+329040W* + 887560V5W? + 853650W> + 1794425V5W? + 2377375W? + 3598525V5W
—570125W +2233125V5 — 1711375.

‘We obtain that

P (W) =Py 2(W)2Py o(W
Qr (W) = Pr (W) (Py 1(W) = Py 2(W)(W)) [P o(W) = *”‘(]0)0(2+-;fé _)W)-;’O( )

= Py 4(W)(W +V5)X(W + 1) (W = Wo)°,
where
Py 4(W) =170 (11 + \/5) w4 (—1520 - 1340\/3) W + (—45150 - 5730\/3) WS
+ (—176050 - 45630\/3) W4+ (—259900 - 123200«/5) w3

+ (216300\/5 - 795000) W2+ (991250\/5 - 2159250) W + 6247505 — 1336250.

Py 4(W) only has a single root for W > W;. Let us call x to that root. We have that Py 4(W) < 0
for W € [Wp,x) and Py 4(W) > 0 for W € (x, o). Therefore, Q¢ (W) is also negative for W €

(Wo, x) and positive for W € (x, ). Letting Py 5(W) = Py (W) — Py 2(W)+/g(W), we have that
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Py (W)Py 5(W) = Qr (W). Moreover, we have that

Py 5(10) = -625 (3087362507 +371529853V5 + \/9412199900256492638 + 2656241362034147990\/5) <0

P 5(15) = 20000 (—336818691 +1184891137V5 +,/6 (557 - 33«/3) (19411872\/3 - 461659)) >0,

so the only root of Q y (W) for W > Wy (which is simple) is a zero of Py s(W). In particular, Py (W)
does not vanish for W > W,,.

Case ¢ > 0. First of all, as (WE, ZE) goes from Py to P, = (0,0), it can be parametrized by some
compact domain; therefore, we just need to show (A.47) is positive for & > 0, and we will automatically
get a positive lower bound by compactness. As in this region we have DE | Dg > 0, this corresponds to
showing that (A.49) is positive. Solving (A.49) as in the previous case, this is true as long as W > f(W).

Let us recall that for ¢ > 0, the solution (W%, ZE) is inside a triangle T formed by the lines
Dz =0, W = Z and W = Wj; in particular, WE is between —1 and W, (left and right extrema of the
triangle) for & > 0. There are three simple roots of Dz (W, f(W)), given by —1, Wy and Wy. Using that
Dz (W, f(W)) <0 for W > Wy from the previous case, we conclude that Dz (W, f(W)) is positive for
W e (Wy, Wy) and negative for W € (=1, Wy). As DIZE > 0, this automatically yields that (WE, ZF) lies
in the region W > f(W) for W € (-1, Wy) (for a given fixed W, the points with Dz > 0 lie above those
with Dz < 0). Thus, we just need to deal with the region W € (W, Wp).

From our proof of Proposition 3.6, we have that (WE, Z) lies in the region 7 c T, which has
lower boundary b7/5(t) or b 75 (t) for W € (Wy, Wp). Thus, it suffices to show that the sign of (A.49) is

positive at b 1/5 (t) and b7/5 (1).

Let us start with bg /5 (t). We define the quantity

87/5(1) = Dw (b 5(1) Dz (b 5(1))* + — N (b 150Dz (bh S(t))+ N (] 15(0)Dw (bY5(1)).

It is clear that this is a polynomial in ¢, multiple of ¢ because b7ﬂ/5 (0)=Pgand Dz (Ps) =Nz(Ps) =0
‘We have that

/5(0) 1
roon =1 605

(205 89V5) > )

so we can reduce to show
We have that

S%s(1)
o > 0. For the rest of the treatment of b1(7), let us assume r = r*.
r=r*

8750 B 1
£ = 15552(14661\/3 —32783)

(454726725\/§t6 — 1016799875¢° — 479229660V5¢°

+1071590100£° + 899397288V5¢* — 20111134807 — 1391938278V5+% + 311246859813
+833713587V5¢% — 1864240269¢> — 834718230V5¢
+ 1866486726t + 746056440V5 — 1668233016),

and this polynomial is positive for all 7 € R.
Lastly, we need to show that (A.49) is positive at bgl/s(s) for s < 57/5,in¢ defined in the proof of

Proposition 3.6. Let us recall 57 ) 5 S g—' also from the proof of Proposition 3.6. We define
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7/5 (s) = Dw (b7/5(3))DZ(b7/5(5))2 NW (b7/5(5))DZ (b7/5(5)) + NZ(b7/5(S))DW (b7/5(3))7
which is a 3n-th degree polynomial. Following the same proof as in Lemma 5.12, we get that for
2 <i<3n,

'S5 (s) A i (f = pyiln=Lifn]
il n! pumin{7,€(i) }
Thus, we get
nl il 5 (12l m )\ AP I
§7/5(s) = 83,5(0)s z;( Lmin(7,€(1)} Z: n's Lmin{7,L(D)}
1/ (n=2) {
Now let s¢g = ( IZlI) . By Corollary 5.8, we have that so < ;. Assuming s < 59, we have
3n 1
1 1/ 2
Ss(s) = S3(0)s < 5 Zm < 52 (A.50)
=2
Moreover,
1-a 1+a/
l+a =W+ 5427 1
SM7(0) = — =Ny oDy + Dw Nz =2 = >0, (A.51)
715 2 2 o DW,ODZ,I " Dwy

where the last inequality is due to Lemma A.7. We conclude from (A.50)—(A.51) and from the fact that

50 S %thatforO < s <99,
1
$24(5) = (1 +0( ))
Dw o n

and in particular, it is positive. As we have that s7 = /5 S % = s6“2, we get that s7/5in < so for n
sufficiently large (r sufficiently close to r*), so we are done. O
Lemma A.37. We have that for all { € (0, 1),

aZ l-a,_, - -1

— - — 0 W< —.

’ 2 ¢ 100
Proof. Note that on the variables used for the Euler profile, this is just saying that our profile is in the
region
1-a Ny 1
A=aZfF - ——|WEF+ Xy — <0
¢ 2 ( DE | " 100

for & < 0. From our proof of Theorem 1.2, we know that (WE (&), ZE (¢)) € Q for ¢ < 0, and we recall
that Q is defined to be the region where Dy > 0, Dz < 0. In particular, it suffices to show that

S00ADw = W(200r +60Z — 197) + 20W2 +2Z(10Z +51) +5 (A.52)

is negative in Q. As 500ADw is continuous with respect to r and Q is independent of r, we may just
show this at r = r*, and the result will hold true in a neighborhood of r* by continuity.
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We get that 500ADyy is negative for Z € (Z(1)(W), Z2)(W)), where Z;) (W) are the two branches
of the hyperbola implicitly defined by (A.52) and they are given at r = r* by

1
Zoy(W) = 5 (—30W -51- \/500W2 +1000V5W + 2501) :

1
Zy(W) = 55 (—3OW ~51+ \/soow2 +1000V5W + 2501) :

where the second-degree polynomials inside the square root are positive for all W € R. However, Q
is given by —5—23W < Z < _—5—32W for W > —1, so we just need to show Z(l)(W) < —5—23W and
S2W < 70 (W) forall W > —1. =3

Let us start with Z(;) (W) < =% We have that

-5 -3W
20 (T - Z (W)) =1+ \/500W2 +1000V5W +2501 > 0. (A.53)

With respect to =22 < Z5) (W), we have

=53 - 50W + 3\/500(W +V5)2 +1. (A.54)

2
60 (2(2)(W)+ S W)

To show that (A.54) is positive, it suffices to show that the term with the square root dominates. That is
the case as

4500(W +V5)% +9 — (50W + 53) = 100 (20W2 + (90\/5 - 53) W+ 197) >0,

where we used W > —1 to conclude the last inequality. O

Lemma A.38. We have that for every ¢ € (0, 1),

woo1- - 1
W 1-aszs L
I'e 2 100
Proof. This is equivalent to show positivity for
1-a Ng 1
B=aWf - —— [Z2F + £ | - —,
¢ DE | 100

when & < 0. From our proof of Theorem 1.2, we know that (WE (&), ZE (¢)) € Qfor & < 0. In particular,
Dz < 0, so it suffices to show negativity for

500BDz = Z(200r — 203) +20Z% + 20W? + 60WZ + 98W — 5. (A.55)

Solving the polynomial in (A.55) in Z, one finds that (A.55) is negative for Z € (Z(_), Z(4)), where

1
Zy(W) = 0 (J_r\/40000r2 +24000rW — 812007 + 2000W2 — 32200W + 41609 — 200r — 60W + 203) .

(A.56)
Let us recall from Remark 2.6 that our solution is decreasing in W, so we can parametrize it as Z,(W).
Thus, we have to show Z_) (W) < Z.(W) < Z4) (W) for W > W,

Let us start with Z,(W) < Z(,)(W). As we know that the solution is in Q (where Dz < 0) for £ < 0,
it suffices to show that Z 4 (W) > ﬂ, asZ = ﬂ is the line at which Dz = 0. By continuity, we
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may take r = r*, and note

5+2W

120 (Z(+)(W) + ) = —100W + 150V5 — 241 + 3\/200W (10W —-30V5 + 49) — 14700V + 34509.

(A.57)

The second-degree polynomial inside the square root is always positive, and moreover, it dominates the
expression, since

9 (ZOOW (10W ~30V5 + 49) — 147005 + 34509) - (—IOOW +150V5 — 241)2
— 8000 (W+ % (5 - 3«/3))2 >0,

so (A.57) is positive.

Now, let us show Z,. (W) > Z_)(W). First of all, note from Proposition 2.5 that Z, (W) = -W+0(1).
While doing series in (A.56), we get that Z(_y (W) = %BW +0(1), so the inequality is clearly true for
W sufficiently large. For W sufficiently close (from above) to Wy, we also have that (A.55) is negative
because it is zero for W = Wy (as Dz = 0) and

(=203 +200r)(—Zy) +40Zy(—Z1) + 40Wy(—=W7) + 60Wo(—Z1) + 60Zy(—W;) +98(—W;)

-1
=Vr—r (5\/42979610\/5 — 92240400 + o(1) |,

as r — r* and V42979610V5 — 92240400 > 0.

Therefore, as Z.(W) is above Z_y(W) for W sufficiently large and for W sufficiently close to Wy,
we just need to discard the case that Z.(W) crosses Z_y(W) in both directions at some intermediate
points. This is impossible because the field (Nw Dz, Nz Dw ) points always to the left of (W, Z_y(W))
for W € (Wp, +o0). Concretely, if we define

Py(W)=Z_,(W)Nw (W, Z-)(W))Dz(W,Z-)(W)) = Nz(W,Z-)(W))Dw (W, Z () (W)),

we will show that P_y(W) > 0 for all W > Wy. As we have P_)(Wy) = O (because Nz (Ps) =
Dz(P;) =0)and

P (Wo)
im —2 2 _ L 15407v5 - 815045 > 0,
r—(r*)"- rs—r 9
P(,) (W) .
we can reduce to show that W, > (. Defining

P (W) = 200W (10W = 30V5 + 49) — 14700V5 + 3450,
P{D (W) = 28000000W* — 114000000V5W? +205000000W* — 509000000V5W? + 1158252000%

— 464135000V5W + 1041517700 + 1596837600V5 — 3572154667
PP (W) = 600000W> — 1600000V5W? + 2920000W2 — 2862000V5W + 6371200W

()
+6167650V5 — 13689861,
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we have that PE?)) (W) > 0 for all W € R. We also have that

(=) (=) (=) =)
(W = Wo)?
= 80000000W° + (78()000000 - 240000000\/5) W3 + (3051240000 - 1554000000\/5) wH

PO (W) (P(” W) —/P” (w)P? (W))

O (W)=P(W)

+ (2544792000 - 1196400000\/5) W3 + (5195893000\/5 - 11358448560) e

+ (193380463 - 85410820\/5) W — 1096899300V5 + 2427799463,

P (W)
(W-Wy)?

and the polynomial Q (W) is positive for W > Wy at r = r*. Therefore, we have that

r=r*

does not change signs for W > Wj. Its sign is positive because

\/6901— 890;)\/5
P (@)= 800000 >0

[m}
Lemma A.39. We have that our smooth self-similar profiles have the following asymptotics as { — oo:
05w+ 10,21 =0 (¢11). (A.58)

Moreover, we have that for § sufficiently small, there exists {y > O such that
IVS(O)|+|VU()| < 6% and S(') =6 (A.59)

Sforevery ' < ¢y < ¢.
Proof. To show W,Z = O({'™") and 9; W,8;Z = O({™"). Near (Wg, Zg) = 0, we have

W =—rW+OW?*+2%) 0:Z=-rZ+0(W? +272),
which implies Wg, Zg = O(g—rf) = 0(¢™"), which translates to W,Z = 0({1_r).
I Ww =Wg +0:W=0(e"%)=0(LT),

and we obtain an analogous bound for 4, Z.
Assuming (A.58) holds inductively for i = 0, ... m, then by the Leibniz rule,

(r=1+m+0(LNOFW + (L + 0L NIW = 047",
(r=1+m+0({"NFZ+ (L +0(" )N Z =0(L ).

Thus, by Gronwall, we obtain (A.58) fori =m + 1. ]

B. Implementation details of the computer-assisted part

In this appendix, we discuss the technical details about the implementation of the different rigorous
numerical computations that appear in the proofs throughout the paper. We performed the rigorous com-
putations using the Arb library [53] and specifically its C implementation. We attach the code as sup-
plementary material. See Table 2 for the specific programs/commands to run each Lemma/Proposition,
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Table 1. Performance of the code in the different Lemmas/Propositions and regions.

Lemma / Proposition y K N Time (longest K, HH:MM:SS)
Lemma 2.1 vy =5/3 N/A N/A ~ 00:00:00
Proposition 3.2 y <3 [1,68] 100 23:33:55
Proposition 3.2 y <3 [681,1000] 1000 05:13:58
Proposition 3.2 y >3 [1,100] 100 00:46:33
Proposition 3.5 (Step 1) y <3 [1,100] 100 ~ 00:00:00
Proposition 3.5 (Step 2) y <3 [1,100] 100 00:11:17
Proposition 3.5 (Step 3: P™(s_(k —3))) y <3 [1,100] 100 01:33:31
Proposition 3.5 (Step 3: %P“I(s)) y <3 [1,100] 100 00:10:04
Proposition 3.5 (Step 4) y <3 [1,10] 10 ~ 00:00:00
Proposition 3.5 (Step 5) y <3 [1,10] 10 ~ 00:00:00
Proposition 3.5 (Step 1) y >3 [1,100] 100 00:00:16
Proposition 3.5 (Step 2) y =3 [1,100] 100 01:12:38
Proposition 3.5 (Step 3: P" (s_(k — 3))) y =3 [1,100] 100 14:22:36
Proposition 3.5 (Step 3: %P“](s)) y =3 [1,100] 100 00:45:36
Proposition 3.5 (Step 4) y =3 [1,10] 10 ~ 00:00:00
Proposition 3.5 (Step 5) vy =3 [1,10] 10 ~ 00:00:00
Proposition 4.5 y <3 N/A N/A 00:00:24
Proposition 4.5 vy =3 N/A N/A 00:01:52
Lemma 5.14 715 N/A N/A ~ 00:00:00
Lemma A.23 vy <3 N/A N/A ~ 00:00:00
Lemma A.24 715 N/A N/A ~ 00:00:00
Lemma A.25 vy <3 N/A N/A 00:08:22
Lemma A.25 y >3 N/A N/A 00:01:08
Lemma A.26 (fifth inequality) y <3 [1,100] 100 ~ 00:00:00
Lemma A.26 (fifth inequality) y =3 [1,100] 100 00:00:15
Lemmas A.26 (top row) y>1 N/A N/A ~ 00:00:00
Lemmas A.27, A.28 7/5 N/A N/A 13:36:38
Lemma A.29 y>1 N/A N/A ~ 00:00:00
Lemma A.30 y>1 N/A N/A ~ 00:00:00
Lemma A.31 y>1 N/A N/A ~ 00:00:00
Lemma B.1 (top enclosure) y =3 N/A N/A 02:34:19
Lemma B.1 (bottom enclosure) y =3 N/A N/A 02:37:38
Lemma B.2 (top enclosure) y =3 N/A N/A 02:39:16
Lemma B.2 (bottom enclosure) y =3 N/A N/A 02:37:59
Lemma B.3 (top enclosure) y <3 N/A N/A 00:00:23
Lemma B.3 (bottom enclosure) y <3 N/A N/A 00:00:24
Lemma B.4 (top enclosure) y <3 N/A N/A 00:00:11
Lemma B.4 (bottom enclosure) y <3 N/A N/A 00:00:12

with more details in the Supplementary Material. Since the code is long, as an extra step in guaranteeing
correctness, we further verified the C implementation of functions against a numerical implementa-
tion in Mathematica. We only attach here the C version since it is the only mathematically rigorous
implementation. We have also sacrificed efficiency by readability, and some parts of the code could be
optimized (e.g., the splitting between the regimes y ~ 1 and y ~ oo could be optimized function by
function, or the calculation of the more complicated barriers could also be optimized, as well as the
aspect ratio — see below for a precise definition). Instead, we decided to write a much more modular
design with many small functions performing simple tasks, at the price of sometimes duplicating code.

Other times, we found empirically that the gain in precision from a higher-order method vs a lower-
order method (for example, using f (%) + l%f’([a, b]) instead of f([a, b]) as an enclosure of f)
was beaten by the computational cost of the former, and the net execution time was comparable for both
methods. In such a case, we decided to keep the lower-order method to gain in readability.

The implementation is split into several files dealing with the basic functions (such as Wy, Zy for
example), more complicated functions needed for the barriers (e.g., P"') and an additional general utility
file.

There are two versions of the basic and barriers’ files depending on whethery € [1,3] ory € [3, o0),
and an extra file with additional functions for the case y = % The rationale behind the splitting is that
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Table 2. Executables and compilation commands for the different Lemmas.

129

Lemma / Proposition y Compilation Command Executable
Lemma 2.1 y >5/3 make check_gamma_high_fast check_gamma_high_fast
Proposition 3.2 y <3 make check_gamma_low_slow check_gamma_low_Qfl
Proposition 3.2 y =3 make check_gamma_high_slow check_gamma_high_Qfl
Proposition 3.5 (Step 1) y <3 make check_gamma_low_slow check_gamma_low_Bfl_zero
Proposition 3.5 (Step 2) y <3 make check_gamma_low_slow check_gamma_low_Bfl_sminus
Proposition 3.5 (Step 3: pol (s-(k=3))) y <3 make check_gamma_low_slow check_gamma_low_Pnl_sminus
Proposition 3.5 (Step 3: %P“] (s)) y<3 make check_gamma_low_slow check_gamma_low_dPnl
Proposition 3.5 (Step 4) y <3 make check_gamma_low_slow check_gamma_low_DW_bnl
Proposition 3.5 (Step 5) y <3 make check_gamma_low_slow check_gamma_low_DZ_bnl
Proposition 3.5 (Step 1) y >3 make check_gamma_high_slow check_gamma_high_Bfl_zero
Proposition 3.5 (Step 2) y >3 make check_gamma_high_slow  check_gamma_high_Bfl_sminus
Proposition 3.5 (Step 3: P (s_(k — 3))) y >3 make check_gamma_high_slow  check_gamma_high_Pnl_sminus
Proposition 3.5 (Step 3: %P“l(s)) y >3 make check_gamma_high_slow check_gamma_high_dPnl
Proposition 3.5 (Step 4) y =3 make check_gamma_high_slow check_gamma_high_DW_bnl
Proposition 3.5 (Step 5) y >3 make check_gamma_high_slow check_gamma_high_DZ_bnl
Proposition 4.5 y =3 make check_gamma_high_slow check_gamma_high_Pfr
Proposition 4.5 y <3 make check_gamma_low_slow check_gamma_low_Pfr
Lemma 5.14 715 make check_75_fast check_75_fast
Lemma A.23 y <3 make check_gamma_low_fast check_gamma_low_fast
Lemma A.24 715 make check_75_fast check_75_fast
Lemma A.25 y <3 make check_gamma_low_fast check_gamma_low_fast
Lemma A.25 y =3 make check_gamma_high_fast check_gamma_high_fast
Lemma A.26 (fifth inequality) y <3 make check_gamma_low_slow check_gamma_low_W4Z4
Lemma A.26 (fifth inequality) vy =3 make check_gamma_high_slow check_gamma_high_W47Z4
Lemmas A.26 (top row) y <3 make check_gamma_low_fast check_gamma_low_fast
Lemmas A.26 (top row) y =3 make check_gamma_high_fast check_gamma_high_fast
Lemmas A.27, A.28 7/5 make check_75_slow check_75_slow
Lemma A.29 y <3 make check_gamma_low_fast check_gamma_low_fast
Lemma A.29 y =3 make check_gamma_high_fast check_gamma_high_fast
Lemma A.30 y <3 make check_gamma_low_fast check_gamma_low_fast
Lemma A.30 y >3 make check_gamma_high_fast check_gamma_high_fast
Lemma A.31 y <3 make check_gamma_low_fast check_gamma_low_fast
Lemma A.31 y >3 make check_gamma_high_fast check_gamma_high_fast
Lemma B.1 (top enclosure) y =3 make check_gamma_high_slow check_gamma_high_r3_top
Lemma B.1 (bottom enclosure) y >3 make check_gamma_high_slow check_gamma_high_r3_bottom
Lemma B.2 (top enclosure) y =3 make check_gamma_high_slow check_gamma_high_r4_top
Lemma B.2 (bottom enclosure) y >3 make check_gamma_high_slow check_gamma_high_r4_bottom
Lemma B.3 (top enclosure) y <3 make check_gamma_low_slow check_gamma_low_r3_top
Lemma B.3 (bottom enclosure) y <3 make check_gamma_low_slow check_gamma_low_r3_bottom
Lemma B.4 (top enclosure) y <3 make check_gamma_low_slow check_gamma_low_r4_top
Lemma B.4 (bottom enclosure) y <3 make check_gamma_low_slow check_gamma_low_r4_bottom

different desingularizations of the functions are required for the respective cases. In the former case, we
will work with the variablesy = y—1,7 = % due to the singular behavior of the functions asy — 1.1In

the latter, we will work with the variables yj,, =

Y

1e [0, %], and B, where r = % — YVinv (%) + 23_05' This

change of variables is used to map the region Q = {y;,y € [0, %], r € (r3(y), ra(y)} into a rectangular-
like region to avoid recalculating or bounding r3(y) and r4(7y) every time, leading to smaller errors.
For performance reasons and because of Lemma A.31 or Proposition 4.5, we computed an enclosure of
r3(Vinv), 74 (Viny) and 73(¥), 74 () via the following Lemmas:

Lemma B.1. Let y > 3. Then 85 € 33, where

B3 (Yiny) = (=0.12274496668801302y5 , +0.42078810964241387y]., — 0.623996430280739y5,,
+0.4105016227331515y;,, +0.20672452719140819y: . — 1.0572166089549326y; |
+1.804198700610401y2, — 0.35416295479734694 1,y +0.09216512413383933) + 1077 [~ 1, 1],
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and

13 5 3

r3 = 10 — Yinv TS 12 Eﬁ?»

Lemma B.2. Let y > 3. Then 84 € B4, where

Ba(iny) = (~0.04469537027555534y8  +0.27333057184133175y], — 0.7172811883027264y°
+0.9255018926764634 % v — 0.4952968302717332y,, — 0.6817068021865448y7
+1.8794062687026156y2, — 1.0362653478653305yiny + 0.6762522531779247) + 1077 [—1, 1],

and

13 5

rq4 = 10 — Yinv T+ 2 2_Oﬂ4

Lemma B.3. Let 1 <y < 3. Then ¥ € F3, where

73(7) = 0.12958483718253389 — 0.055797750679595685(7 — 1) + 0.025268384121421402(7 — 1)
—0.012079846976628505(7 — 1) + 0.006116771307938418(7 — 1)*
—0.0032535214532335432(7 — 1)° +0.0016116474810902726(7 — 1)¢
—0.0008337203606963439(7 — 1)” +0.001012190680858338(7 — 1)®
—0.0007409251358921898(% — 1)° — 0.00036102326965520293(7 — 1)!°
+0.0003377160636686555(7 — 1)!'! +0.0004026573999596568(7 — 1)'2
—0.00028839031633197794(7 — 1)'3 + 107°[-1, 1].

Lemma B.4. Let 1 < y < 3. Then 74 € 74, where

74(7) = 0.17138836639778826 — 0.07719915367902941(7 — 1) + 0.037195168499089215(7 — 1)*
- 0.01925242261821647(7 — 1) +0.010950870775304766(7 — 1)*
—0.0066817396642915305(7 — 1)° + 0.0023871873304486257(7 — 1)°
—0.0005906689017045608(7 — 1)” +0.005507190023795072(7 — 1)®
- 0.00526607727745243(7 — 1)° — 0.004296434160444562(7 — 1)'°
+0.0042797575355271456(7 — 1) +0.002982168551811326(7 — 1)'?
—0.0025067232778351023(7 — 1)'3 + 107°[-2, 2].

Any statement that has to be proved in Q for y > 3 will be proved in the region Q" = {yj, €
[0, 11,8 € [B3(yinv). Ba(yim)1}, or conversely, in Q' = {7 € [0,2].7 € [F3(7),74()]} in the case
v < 3, which will imply the correctness of the statement in Q thanks to the monotonicity of () with
B, r(7) with 7 as well as the monotonicity of k(r) (cf. Lemma 2.1):

Throughout the code, we will also desingularize the different variables in such a way that there is a
finite limit whenever y tends to the smgular point (either 1 or o). For example, instead of calculating
Wy or Zy, we will calculate and = respectlvely, to be able to reach the corresponding limits as
Yinv — 0.

An important desingularization in the case 1 < y < 3 is the following. If one expands W or Z
in powers of ¥ = v — 1, it is easy to obtain that W = VZ’: + W5, where W, W) are O(1). However,
Wi + Zx = O(1) introduces an extra cancellation, and this appears at many levels. In contrast with the
case y > 3, a homogeneous desingularization is not possible anymore. To remedy this situation, we
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will perform two steps. The first one is to split the recurrence for Wy and Zy into Wy, Z;, W, Z;*. In
particular, this yields

I lta,.. l-a_.
Dw.i= 5W§+Tawg“+ 2“2;“,
1. 1+ -
Dzi=57+ 2“2;‘S+ 2“W}“,

and (for W)

n-2 n-1
n—1 1 n—1 - r—1
DW,()W;:S = _Z ( j )DW,IH_J'WJI-I_?_I + Z Z ( j )(anS _ Z?S)Wrsz—l—j +N€;,n—l +RW,n—1 + WZ)/TI’
j=0 j=0
1 (n
N oy = YNy - (W21, 232 0) + 2 Z (j)(W}ls’Z;S)HNW(W::iI—j’ZEiI—j)T,
=1
. e o o 5. y-1 1 1 y-1__. vy-1
VNS = (—r S WO = D2 = IWe = (r = DWE T 2 = W = W W
i,
— l S 5 ns 1 ns
Rw.i = ,Z::‘ (j)WJ (_ZWi—j - Zzi—j) ;
and (for Z}}*)
& (n 15 (n r=1 1
ns _ _ .ozns ns _ ns S S _ ns __ ns
(n-k)Dy 2" = ]Z:; (j)Dsz g ; (j)(z,,_j Wi WS+ W, e 2V -2 )),
1 1- 1 1 1 -1 -1
+ W - T“z;'sw;gs + W+ (_E B W+ yTW(;‘s + 77235) W,
+ Q“ZS’n +Rz .,
n—1
Ans 1 n ns ~ns ns ns T
QZ,n - z J (Wj st )HNZ(W,,_1_J-’ Zn—l—j) s
j=1
5 (i 5 1
— N ns ns
Rea= 2 G) (i)
j=1
as well as Z; = -W; = -Z; | for all k > 1. Moreover, we will propagate estimates of the form

‘singular’ and ‘non-singular’ into some of the building blocks of the barriers. The second step is related
to this phenomenon and concerns the observation of the following cancellation (we write it for a generic
barrier though it applies everywhere):

Py = (b)) (Nw¥)Dz — (by )" (Nz7)Dw + (b))’ (NwDz + NzDw ),

where the barrier b = (bw, bz) is split into the singular and non-singular parts b* = (b}, b%,), b™ =
(bYy > b%), respectively, and we have used the fact that (b7,)° = —(by;,)* and we exploit an extra
cancellation in Ny Dz + Nz Dw writing it in terms of W + Z and W — Z.

The general philosophy is to run a branch and bound algorithm for all the open conditions that have
to be checked throughout the paper. We will first enclose the condition at a given box in parameter space
(which is at most 2 dimensional). For instance, in the y > 3 case, starting from a subset of Q’, where
we picked either {yiny € 7i’§V’N =[EL1, K1), Be [53(7{;\;1\/),34(7{;‘;1\/)], K, N € Z} (for the most
demanding calculations) or the full set {y;,y € [0, %] ,B € [0,0.7]} for the least demanding ones. In the
case y < 3, the least demanding intervals are taken to be {(y,7) € [0, 1] x [0.125,0.335]} U {(¥,7) €
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[1,2] x [0.085,0.195]}. For the specific values of K and N used, please see Table 1. If the enclosure
gives a definite sign, we accept (or reject) it, depending on whether the sign is the desired one or not.
If the enclosure does not give a sign, we split the box in 2 across one of the dimensions and call this
procedure recursively. The program keeps dividing unless a certain tolerance (107!°) in the maximum
length in any dimension of the box is reached, in which case the program fails. In our case, this tolerance
was never met. In order to select which direction to split by, a reasonable criterion should be to keep
an aspect ratio proportional to the gradient of the function to be evaluated. Instead, due to the costly
evaluation or estimation of that gradient, we determined empirically that keeping an aspect ratio of
around 10 optimized the running time for y > 3 (in S, yiyy variables) and an aspect ratio of % (in 7,y
variables) in the case y < 3. For example, this meant that we split along the 8 direction if the width in
the g direction was bigger than 10 times the width in the y;,, direction, otherwise along the i,y one.
For the cases where the problem is 1-dimensional, we treat is as a 2-dimensional one with width O in
one of the dimensions.

In Table 1, we presented the maximum times (per run) of the different parts of the code. In total, our
computations ran for at most about 5000 CPU hours, although a more realistic estimate is between 3000
and 4000 CPU hours. We have also included the logs from the cluster runs as supplementary material
to provide a more detailed estimate of the runtime.

We now move on to the specific details of the corresponding lemmas and propositions, in the order
in which they appear on the paper:

Details of Lemma 2.1: We start by using the formulation (2.14) writing

A(r) - BR» 3 1 1
k(r)=—2—"—""=  A(r)=-5+=—+r(1+-), B=1-—.
") A(r) + BR, ) Y ( 7) Y
It is enough to check that
(=1 +¥)y*(A(r)8,(R3) — 24’ (r)R3) < 0. (B.1)

We can write condition (B.1) as T\ (r,y) + T>(r, )R < 0, where

Ti(r,y) = 4(y — DGy - 1) (yzr “392 — ldyr+ 14y +17r - 15) ,
Ty(r,y) = (y +1)*By = 5)(r - 1).

We first show that Ti(r,y) < 0. Clearly, we just need to show negativity for
(y?r —3y* — 14yr + 14y + 17r — 15). As this expression is affine in  and r*(y) < 2 - % (by Lemma

A.6), it suffices to show negativity for the endpoints r = 1 and r =2 — % We have that

(2r=3v* = tayr+ 14y +17r = 15) | =2-24* <0,
17+ -1)2
(y2r —3y% — l4yr + 14y + 17r - 15) = 7+ y-D7 <0.
r=2-1/y 0%

Therefore, Ty (r,y) < 0. As we trivially have T>(r,y) < 0 fory < %, this concludes the case y < % For
the case y > %, it suffices to show that #(T]2 - TZZR%) > 0. We check with a computer-assisted proof

that this is positive fory > 5/3and 1 <r <2. Asr* <2 - % < 2, this ends our proof.

Details of Proposition 3.2: Our choice of 5(¢) ensures that Pf1(¢) is a 7"-degree polynomial multiple
of >(1 — t)2. Thus, it suffices to check the positivity of Q(¢r) = P(¢)/(+>(1 — 1)), which is a 379-
degree polynomial. We validate the condition that Q' (¢) is increasing, either by validating Q"(1) =
0"""(t) < 0.and Q”(1) > 0 (in the case y > 3) or by validating Q1”/(0) > 0 and Q”/(1) > 0, which
is enough since Q1" () is linear (in the case y < 3). Therefore, in both cases, Q1"(r) < 01/(1) and
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0"(1) > 0"(1) — max{Q%(1),0}. We validate Q" (1) — max{Q"’(1),0} > 0. In order to optimize the
code, we do not perform divisions by 1 — 7 or ¢ and read the coefficients of Q™ off the coefficients of P1l.

The case y < 3 presents an extra complication since Q" (7,1) ~ 7F;(7,t) + (t — 1) F5(¢) for some
smooth functions F; and F>, and thus, it is impossible to determine the sign out of a uniform bound on
the evaluation of Qf'y (which is what one can compute with the previously described desingularization)
due to its vanishing at ¥ = 0,¢ = 1. Instead, we have to Work harder and further extract the leading,

subleading and the rest of the terms out of expanding Z; = k +Z5+ yZdesmg 2, where Z;, Z¢ ZGlesmg 2

are O(1), and analogously, Wy and all the barriers. In order to extract a sign out of Q" (y, 1), we will
extract a sign out of Fi (¥, 1).

Details of Proposition 3.5: Throughout this proposition, we renormalize in y as explained above in
order to have meaningful limits of the relevant quantities as y;,y — 0. We discuss in detail the case
v > 3: the case v < 3 is done in an analogous way, considering the desingularization and splitting into
the singular and non-singular parts of the relevant quantities outlined above. For steps 1, 2, 4, 5, we
additionally consider the polynomials under the following change of variables: § = s(k — 3) to make the
validation region constant. In steps 1 and 2, we use the following formula:

et e
ﬁw[sz(k 3)2] 4 Yinv Yinv [s(k—3)] Yinv Yinv [s(k—3)]

b e o ) 1)
2 \inv ) \Yinv ) \Yinv [s(k = 3)] ) \ Yinv[s(k = 3)]

Bz (B2Zy — B3Wq) (Zi(Wo = W) = Wi (Zy - Z))
2 ylzllv an[Sz(k 3)2]

Note that there is an extra cancellation in the last parenthesis of the last term, yielding

ZiWo - W) -W1(Zo=2) _1(ZeW1 —-WaZ)) | s [ zzorm1 W Wiz,
yiznvsz(k - 3)2 2 yinv 6

Yiny ymv
2™ = Z3(k - 3).

(k- 3))

Steps 4 and 5: Here, § is split into the two cases [0,0.175] and [0.175, 0.35], and we simply evaluate
at the whole interval in §. We further desingularize D and prove the sign condition for S@—z) instead
to ensure strict inequality for § ~ 0.

Step 3: Throughout this part, we will compute P"(¢(k — 3)). A natural desingularization (in 7) would
be to consider § = 7(k — 3) and desingularize as in the previous steps. This is problematic, however,
since, for example, W3t (k — 3)3 and Z3#3(k — 3)? do not desingularize in the same way (in the latter
case, to desingularize, Z3 should be paired with a factor of k — 3). In fact, the natural desingularization

(in ¢t and k — 3) should be %. In order to overcome this complication, we will divide every
summand in ¢ by the highest possible power of k — 3 in W or Z, keeping track of it, multiply out to
compose the power series of the products and finally multiply by powers of k — 3 if needed. The reason
for doing it this way (as opposed to dividing by k — 3 whenever it is needed) is that kK —3 may potentially
be 0, so division by k — 3 will not yield any meaningful results. In particular, our methods will return
the following vectors, from which we will construct the functions N, D and b: (in parenthesis the terms

corresponding to the power series for the different degrees of 1)

1 _jnom.
ez,

Znorm l)’

1 1 1
= (Wo, Wy, sz, €W3(k =-3), Z=(Z. 2, -Zz

1

1 ’
=(W1,W2,§W3(k—3), b, = (21, 2, 2

1
Z = (W()Z(), Wi Zy+ WoZ, W Z| + EWZZO + EWOZQ,
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1 1 1 1
gwoz“"““’l + gWng(k -3+ zszl (k=3)+ s WiZs(k -3),

1 1
ng"°1m‘+6wgzl(k 3) + - szz(k 3.5 z"°fm‘+—2wgzz(k 3), Z“O"“IW(k 3))

W =(WO,2W0W1,W +W0W2,W1W2(k—3)+§W()W3(k—3),ZWZ (k—3)+§W1W3(k—3),

éWng(k 3), —W3 (k=3)%),

1 1 1 1 1
2% = (2322021, 2} + ZoZo, Z1 Za (K = 3) + 524)2;"““", 1%k =3)+ 5212;““““, gzzzg“’““’l, %(Z;"’"“’l)z),

and the powers of k — 3 we have divided by (as functions of the powers of #) are given by:
by.by =(0,1,1); Dz, Dw =(0,1,2,2); Nz,Nw =(0,1,2,2,3,4,4).

In the end, we validate P"'(5_) > 0 and P™([0, 5_]) < O.

Details of Proposition 4.5: In principle, it is clear that PT(s)(s — s)3 is a polynomial in s, as we
have up to five times the denominator (s — s ) in (4.12). However, the two cancellations at Py (because
b (0) = P, and the choice of Fy) give us that P (s)(s — s)> is multiple of s°.

However, we have that B (W, Z) is bounded if (W, Z) is the solution starting at Py (instead of
growing quadratically with |W| + |Z]). This is because W + Z — Wy — Z; is bounded over this solution
and W+Z-Fy < m over this solution (due to the choice of Fy). Those two cancellations imply

that P (s) (s — s7)? is in fact a multiple of (s — s¥)%. Therefore, it suffices to check that the sign of the
polynomial O (s5) = P(5)(s — 5)3/s? is positive.

In order to reduce the dimension of the problem, we use Lemma B.1 (so that we will evaluate at
B =pf;fory >3 and 7 = 73 for y < 3) and hence deal with a 1-dimensional problem. In the former
case, we also renormalize s via § = %—Y‘w to ensure convergence to a finite value as y;,y — O (this includes

the right scaling with respect to ¥,y in s as well). In the latter, we apply the desingularization scheme
described above without desingularizing s.

In order to bound Q' (5) = ag + a5 + a>§
we validate the conditions a> < 0 and

2 3

+a35 + as§* or O (s) = ap + a1s + axs? + azs® + ass®,

3 fr
a0—4a2+|a3|( ) +|a4|(&Y ) <0 fory>

Wl Wi

a0 = 35 + las| (s ) 4 Jaa] (sT)* <0 fory <

where we are bounding the first 3 terms of the polynomial by its maximum, given that they correspond
to a negative parabola

The case y = ,r = r* is done directly using the framework of y > 3 since the desingularization is
simpler.

Details of Lemma 5.14: Instead of computing the 6 X 6 determinant directly, we write it in block form,

C g = det(A)det(D — CA~'B) and compute the determinants on the right-
hand side. The above formula holds so long as A is invertible (which we ensure along the calculation).
The computations of the determinants on the right-hand side of the equation are comparatively more
efficient since A is triangular and the expression for A~! is simple.

3-v3
f~

apply the formula det ( A

Details of Lemma A.23: The condition is equivalent to — 74 > 0, which is what we actually

validate.

Details of Lemma A.24: In order to prove the first part, we will take the full interval Ty =
(0.6019, 0.6021) and prove that on the one hand, bg/s ,(Tw) > Yo, and on the other, bﬂ/5 w (0.6019) <

Xo. b 5 4 (0.6021) > Xo.
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Details of Lemma A.25: We apply the same renormalization/desingularization as in Proposition 3.2.

Details of Lemma A.26 (fifth inequality): The inequality is problematic due to Wy, Z4 blowing up at
r3 and Z4 blowing up at r4 as well. Instead, in the case y > 3, we implemented a method that returned
Wform’z = ﬁW‘;(k —3) and Zfo”"’z = ﬁZ;;(k —3)(k —4) adapting equations 2.18-2.19 accordingly
and proved instead

Z
Znorm,2 — (k-4 Wnorm,Z_
(k- aywpem

4 > 0.

In the case y < 3, we split Wy, = WTkS + WP, Zy = Zk + Z}® and, respectively, W. norm 2 =W;(k-3),
Zzorm’z’* = Z;(k = 3)(k — 4) for x = {5, ns}. Using that Z; = =W, for all k, it is enough to validate the
conditions

(Znorm 2, me _ Wnorm ,2, nszm(k 4)) < 0
—(Z37™A 4 (k= WO 4 (k= 3) (k = 4) (W] + Z}) > 0.

Details of Lemmas A.26 (top row inequalities): In the case y > 3, we desingularize by computing
MW and M in order for them to have finite limits as i,y — 0. Similarly, in the case y < 3, we

Yiny
desmgularlze by computing Nw oy and Nz 17 in order for them to have finite limits as ¥ — 0.

Details of Lemmas A.27, A.28: The implementation is straightforward; however, due to the large
numbers that appear throughout the process (Z1go00 ~ 10%6779), ultra-high precision is required to avoid
overestimation and to be able to extract the signs out of the relevant quantities. We used 2000 bits to
accomplish this.

Details of Lemmas A.29, A.30: In the case y > 3, we renormalize s by considering > 7— and proceed
as in previous Lemmas In the case y < 3, we do not renormalize with respect to y. We also remark that
in the case y = 5 , it is enough to validate the condition W; + Z; < 0 thanks to Lemma A.27.

Details of Lemma A.31: The inequality is also problematic due to Z3 blowing up at r3 and Z, blowing
up at r4. We generalized the implementation of Z*"™! in 3.5 to return Z/°"™! = ﬁZn(k —n) for any
norm.1* — 7*(k —n),* = {s,ns} in the case y < 3. In the latter

norm,l,ns <0

given n in the case y > 3 and to return Z,
case, since Zj, is uniformly bounded (in ) at r = ry,, it is enough to check the conditions Z;
and Z;*"" L5 5 0 at 73 and 7y, respectively.

Details of Lemmas B.1, B.2, B.3, B.4: Straightforward since the quantities are not singular.
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