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Abstract

Building upon the pioneering work of Merle, Raphaël, Rodnianski and Szeftel [67, 68, 69], we construct exact,
smooth self-similar imploding solutions to the 3D isentropic compressible Euler equations for ideal gases for all

adiabatic exponents 𝛾 > 1. For the particular case 𝛾 = 7
5 (corresponding to a diatomic gas – for example, oxygen,

hydrogen, nitrogen), akin to the result [68], we show the existence of a sequence of smooth, self-similar imploding
solutions. In addition, we provide simplified proofs of linear stability [67] and nonlinear stability [69], which allow
us to construct asymptotically self-similar imploding solutions to the compressible Navier-Stokes equations with
density independent viscosity for the case 𝛾 = 7

5 . Moreover, unlike [69], the solutions constructed have density
bounded away from zero and converge to a constant at infinity, representing the first example of singularity formation
in such a setting.
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1. Introduction

In this paper, we construct self-similar imploding solutions to the 3D isentropic compressible Euler
equations

𝜕𝑡 (𝜌𝑢) + div(𝜌𝑢 ⊗ 𝑢) + ∇𝑝(𝜌) = 0,

𝜕𝑡 𝜌 + div(𝜌𝑢) = 0,
(1.1)

where here u is the velocity and 𝜌 the density, and we will assume the ideal gas law 𝑝(𝜌) = 1
𝛾
𝜌𝛾

for 𝛾 > 1. Additionally, these self-similar solutions to Euler will be used as a basis to construct
asymptotically self-similar solutions to the 3D isentropic compressible Navier-Stokes equations with
density independent viscosity

𝜕𝑡 (𝜌𝑢) + div(𝜌𝑢 ⊗ 𝑢) + ∇𝑝(𝜌) − 𝜇1Δ𝑢 − (𝜇1 + 𝜇2)∇div𝑢 = 0,

𝜕𝑡 𝜌 + div(𝜌𝑢) = 0,
(1.2)

for Lamé viscosity coefficients (𝜇1, 𝜇2) satisfying 𝜇1 > 0 and 2𝜇1 + 𝜇2 > 0. In the case of the Navier-
Stokes equations, we will assume the initial density to be constant at infinity in order to rule out the
possibility that the singularities are an artifact of vacuum. Local well-posedness for the compressible
Euler and Navier-Stokes equations (1.2) is classical (cf. [20, 29, 49, 55, 60, 65, 74]).
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1.1. Background

1.1.1. Shock wave singularities

The prototypical singularity for the Euler equations is a shock wave, occurring when the speed of a
disturbance exceeds the local speed of sound. Mathematically, one would like to provide a detailed
description of both the formation of a shock and its development past the first singularity.

The first rigorous result in this direction is due to Lax [59]. Lax showed that in 1D, when writing the
equation in terms of its Riemann invariants, one can use the method of characteristics to prove finite
time singularity formation. The existence of finite time singularities in 2D and 3D was demonstrated
by Sideris in [81] via a virial type argument. Lebaud, in her seminal thesis work [61], provided the first
detailed description of shock formation, in the context of one-dimensional p-systems, as well as proving
development (see [22, 58] for generalizations of Lebaud’s result).

In higher dimensions, Alinhac [3, 2] was the first to provide a detailed description of shock formation
for a class of quasilinear wave equations. Yin in [91] was able to adapt the work of Lebaud in order to
prove shock formation and development in 3D under spherical symmetry (cf. [25]). Within the sub-class
of irrotational solutions, Christodoulou and Miao [26] gave the first proof of shock formation in higher
dimensions in the absence of symmetry (cf. [24]). The work was extended by Luk and Speck to the 2D
setting with nontrivial vorticity in [62].

In the work [14], the first author, Shkoller and Vicol developed a new self-similar framework in order
to prove the existence and stability of shock wave formation for the Euler equations under azimuthal

symmetry. This new framework provided the foundation for the works [13, 15] by the same authors,
which provided the first full detailed description of 3D shock formation in the presence of nontrivial
vorticity and nonconstant entropy (see [63] for a recent related work of Luk and Speck in the framework
of Christodoulou). As described above, the shock formation problem has been studied up to the time of
the first singularity. The problem of maximal development has been very recently studied by Abbrescia
and Speck [1] and by Shkoller and Vicol [80] using two very different approaches, in which solutions
of the Euler equations are constructed for times that are much larger than the first blow-up time. In
particular, the hypersurface of pre-shocks (or first singularities) is classified, and this is precisely the
data required for the development problem.

In 2D, under azimuthal symmetry, the first author together with Drivas, Shkoller and Vicol were able
to develop the singularity considered in the earlier work [14] in order to give the first full description of
shock development, including the first description of weak discontinuities conjectured by Landau and
Lifschitz.

1.1.2. Imploding solutions

While shock waves are the prototypical and possibly the sole stable form of singularity for the Euler
equations, they are not the only form of singularity that can form from smooth initial data. It is a
fundamentally interesting problem, both from a mathematical perspective and a physical perspective, to
classify other forms of singularities resulting from smooth initial data.

Motivated by the classical work of Guderley [41] (cf. [23, 84]) on imploding solutions, Merle,
Raphaël, Rodnianski and Szeftel, in the breakthrough work [68], rigorously proved the existence of
smooth radially symmetric imploding solutions to the isentropic compressible Euler equations for which
the velocity and density become infinite at the time of singularity (cf. [51, 52]). The work [68] differs
from the prior work of Guderley [41] in a significant way: the solutions [68] are smooth up until blow up,
whereas the solutions [41] represent solutions for which a shock has already formed. It should be noted
that the solutions described in [68] are highly unstable, which would make observing such solutions in
numerical simulations or physical experiments extremely difficult. However, given that the structure of
the solutions is now known, these solutions can be numerically computed as was done by Biasi in [10],
which provides a detailed numerical survey of the Merle et al. solutions.

In the companion works [67, 69], the solutions constructed in [68] have been used to construct
asymptotically self-similar solutions to both the compressible Navier-Stokes equation (1.2) and the
defocusing nonlinear Schrödinger equation – the later result resolving a major open problem in the field.
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Figure 1. Imploding solutions in (𝑈, 𝑆) variables. Note that a singular coordinate change has been

made in order to compactify the (𝑈, 𝑆) coordinates.

To describe the solutions of [68], one must rewrite (1.1) in isentropic, radial form:

𝜕𝑡𝑢 + 𝑢𝜕𝑅𝑢 +
1

𝛾𝜌
𝜕𝑅 (𝜌𝛾) = 0 and 𝜕𝑡 𝜌 +

1

𝑅2
𝜕𝑅 (𝑅2𝜌𝑢) = 0, (1.3)

where for matters of simplicity, we restricted the problem to 3 dimensions. Letting 𝜎 = 1
𝛼
𝜌𝛼, for

𝛼 =
𝛾−1

2 , denote the rescaled sound speed, one makes the following self-similar anzatz:

𝑢(𝑅, 𝑡) = 𝑟−1 𝑅
𝑇 −𝑡𝑈

(
log( 𝑅

(𝑇 −𝑡) 1
𝑟
)
)

and 𝜎(𝑅, 𝑡) = 𝛼
− 1

2 𝑟−1 𝑅
𝑇 −𝑡 𝑆

(
log( 𝑅

(𝑇 −𝑡) 1
𝑟
)
)
, (1.4)

where here r is a self-similar scaling parameter to be determined. Defining a new self-similar variable
𝜉 = log( 𝑅

(𝑇 −𝑡) 1
𝑟
), then (1.3) reduces to an autonomous system of the form

𝑑𝑈
𝑑𝜉

=
𝑁𝑈 (𝑈,𝑆)
𝐷 (𝑈,𝑆) , and 𝑑𝑆

𝑑𝜉
=

𝑁𝑆 (𝑈,𝑆)
𝐷 (𝑈,𝑆) . (1.5)

The phase portrait for the case 𝛾 = 7
5 , 𝑟 = 1.079404 is represented in Figure 1. The red, green and

black curves represent the vanishing of D, 𝑁𝑈 and 𝑁𝑆 respectively. 𝑃0 is a point in the compactified
phase portrait, with finite value of U but 𝑆 = +∞, and it will correspond to the values of (𝑈̄/𝑅, 𝑆/𝑅)
at the origin for our profiles. 𝑃∞ is the point (0, 0), and it will correspond to values of the profiles at
𝑅 = ∞ (both profiles decay). 𝑃𝑠 is a regular singular point of the dynamical system (1.5), and hence,
one can construct integral curves which cross 𝑃𝑠 . There exist two smooth integral curves that cross 𝑃𝑠:
one tangent to the direction 𝜈− and the other one tangent to 𝜈+. The curve tangent to 𝜈+ corresponds to
the Guderley solution, whereas the curve tangent to 𝜈− corresponds to solution found in [68]. In order
to create a globally defined self-similar solution, one must find an integral curve connecting 𝑃0 to 𝑃∞
via 𝑃𝑠 . It is impossible to achieve this with the Guderley solution with a continuous integral curve;
however, by adding a shock discontinuity, one may jump from one point in the phase portrait to another

https://doi.org/10.1017/fmp.2024.12 Published online by Cambridge University Press



Forum of Mathematics, Pi 5

and hence describe a globally defined self-similar solution. The major difficulty faced in [68] is that
the alternate smooth integral curve in general also does not connect 𝑃0 to 𝑃∞; rather, it intersects the
sonic line 𝐷 = 0 at a point other than 𝑃𝑠 leading to a solution that is not globally defined.1 The authors,
however, showed that for almost every 𝛾 > 1, there exists an infinite sequence {𝑟 𝑗 }, depending on 𝛾,
converging to some 𝑟∗, such that there exists a smooth curve connecting 𝑃0 to 𝑃∞. The condition on
𝛾 for which the result holds is described in terms of the nonvanishing of an analytic function. This
condition is not proven for any specific 𝛾; however, it may be checked numerically. The analysis in [68]
becomes singular at 𝛾 = 5

3 , and so this specific, physically important case, corresponding to monatomic
gas (helium), is not included in their theorem.

In the work [69], the authors used the solutions of [68] in order to show that for almost every

1 < 𝛾 < 2+
√

3√
3

, there exists an asymptotically self-similar solution to the compressible Navier-Stokes

equation (1.2) that blows up in finite time. Existence of finite-time blow up for compressible Navier-
Stokes was known previously for the case of compactly supported density [90] and rapidly decaying
density [78]. Neither works, however, give a precise description of the singularity formation. Within this
range of 𝛾, there exist self-similar solutions to the Euler equations for which the dissipation terms for
the corresponding self-similar Navier-Stokes problem can be treated as exponentially decaying forcing
due to the specific self-similar scaling. Applying stability analysis borrowed from [67], the authors then
use the solutions of [69] to construct asymptotically self-similar solutions to (1.2) via a Brouwer fixed
point argument. One caveat of the work [69] is that the initial density of solutions is required to decay
at infinity. Ideally, one would like to remove this condition in order to rule out the importance of the
solution at infinity in the singularity formation process.

The works [68] and [69] leave open two important questions:

1. Do imploding solutions for Euler exist for all 𝛾 > 1?
2. Can one construct imploding solutions to the Navier-Stokes equation with initial density constant at

infinity?

1.2. Main results

Theorem 1.1. Let 𝛾 ∈ (1, +∞). There exists 𝑟 (3) (𝛾) ∈ (𝑟3 (𝛾), 𝑟4(𝛾)), such that there exists a smooth

solution to (1.5) starting at 𝑃0 and ending at 𝑃∞ = (0, 0), where (𝑟3(𝛾), 𝑟4(𝛾)) are defined in Section 1.4.

This gives a smooth and radially symmetric self-similar solution to (1.3) of the form (1.4).

Theorem 1.2. Let 𝛾 = 7/5 and 𝑛 ∈ N be an odd number large enough. There exists 𝑟 (𝑛) (𝛾) ∈
(𝑟𝑛 (𝛾), 𝑟𝑛+1 (𝛾)) such that there exists a smooth solution to (1.5) starting at 𝑃0 and ending at 𝑃∞, where

𝑟 𝑗 (𝛾) is defined in Section 1.4. This gives a smooth and radially symmetric self-similar solution to (1.3)

of the form (1.4).

Theorem 1.3. Let 𝛾 = 7/5 and 𝑛 ∈ N be an odd number large enough. Let (𝑈𝐸 , 𝑆𝐸 ) be the profiles of

Theorem 1.2, solving (1.5). Then, for sufficiently small 𝑇 > 0, there exists a radially symmetric initial

data (𝑢0, 𝜌0) such that we have the following:

1. The initial density 𝜌0 is constant at infinity:

lim
|𝑥 |→∞

𝜌0 (𝑥) = 𝜌𝑐 .

2. The initial data (𝑢0, 𝜌0) is smooth and has finite energy:

1

2

∫
𝜌0 |𝑢0 | 2 +

1

𝛾(𝛾 − 1)

∫
(𝜌0 − 𝜌𝑐)𝛾 < ∞.

1The problem of constructing non-smooth global solutions is, however, comparatively simple, involving gluing a curve from
𝑃∞ to 𝑃𝑠 and the unique curve connecting 𝑃𝑠 to 𝑃0. It is unclear what the physical significance of such solutions is, as they have
essentially no stability properties even modulo a finite dimensional space.
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3. At time T, the solution (𝑢, 𝜌) becomes singular at the origin: for any 𝜀 > 0

lim
𝑡→𝑇

sup
𝑅∈[0, 𝜀)

|𝑢(𝑅, 𝑡) | = ∞ and lim
𝑡→𝑇

𝜌(0, 𝑡) = ∞.

4. The solution (𝑢, 𝜌) blows up in an asymptotically self-similar manner: for any fixed 𝜉 ≥ 0,

lim
𝑡→𝑇

𝑟 𝑇−𝑡
𝑅

𝑢
(
(𝑇 − 𝑡) 1

𝑟 exp(𝜉), 𝑡
)
= 𝑈𝐸 (𝜉) and lim

𝑡→𝑇
𝛼

1
2 𝑟 𝑇−𝑡

𝑅
𝜎
(
(𝑇 − 𝑡) 1

𝑟 exp(𝜉), 𝑡
)
= 𝑆𝐸 (𝜉).

Moreover, there exists a finite codimensional manifold of radially symmetric initial data satisfying the

above conclusions (see Remark 8.4 for more details).

Remark 1.4. For simplicity, we will only prove Theorem 1.3 for the case 𝜇1 = 1 and 𝜇2 = −1. The
general case follows analogously with minor changes to the energy estimates in Section 8.

Remark 1.5. We note that as a corollary of the proof of Theorem 1.3, the statement of Theorem 1.3
holds with the Navier-Stokes equations (1.2) replaced by the Euler equations (1.1) for 𝛾 = 7/5. With
some minor work, Theorem 1.3 can be extended to all 𝛾 > 1 in the case of Euler by making use of the
self-similar profiles of Theorem 1.1.

1.3. Self-similar implosion in terms of Riemann invariants

Motivated by the works [13, 14, 15], we introduce the Riemann invariants

𝑤 = 𝑢 + 𝜎 and 𝑧 = 𝑢 − 𝜎, (1.6)

so that

𝑢 =
1

2
(𝑤 + 𝑧) and 𝜎 =

𝑤 − 𝑧

2
.

One can now diagonalize (1.3) in terms of w and z, in order to rewrite (1.3) as a nonlinear transport
equation

𝜕𝑡𝑤 +
1

2
(𝑤 + 𝑧 + 𝛼(𝑤 − 𝑧))𝜕𝑅𝑤 +

𝛼

2𝑅
(𝑤2 − 𝑧2) = 0,

𝜕𝑡 𝑧 +
1

2
(𝑤 + 𝑧 − 𝛼(𝑤 − 𝑧))𝜕𝑅𝑧 −

𝛼

2𝑅
(𝑤2 − 𝑧2) = 0.

(1.7)

Employing the self-similar ansatz

𝑤(𝑅, 𝑡) = 1

𝑟
· 𝑅

𝑇 − 𝑡
𝑊 (𝜉) and 𝑧(𝑅, 𝑡) = 1

𝑟
· 𝑅

𝑇 − 𝑡
𝑍 (𝜉), (1.8)

where we recall 𝜉 = log( 𝑅

(𝑇 −𝑡) 1
𝑟
), then we obtain

(𝑟 + 1

2
((1 + 2𝛼)𝑊 + (1 − 𝛼)𝑍))𝑊 + (1 + 1

2
(𝑊 + 𝑍 + 𝛼(𝑊 − 𝑍)))𝜕𝜉𝑊 −

𝛼

2
𝑍2

= 0,

(𝑟 + 1

2
((1 − 𝛼)𝑊 + (1 + 2𝛼)𝑍))𝑍 + (1 + 1

2
(𝑊 + 𝑍 − 𝛼(𝑊 − 𝑍)))𝜕𝜉 𝑍 −

𝛼

2
𝑊2

= 0.
(1.9)

Rearranging, we obtain the autonomous system

𝜕𝜉𝑊 =
−(𝑟 + 1

2 ((1 + 2𝛼)𝑊 + (1 − 𝛼)𝑍))𝑊 + 𝛼
2 𝑍2

1 + 1
2 (𝑊 + 𝑍 + 𝛼(𝑊 − 𝑍))

=
𝑁𝑊

𝐷𝑊

,

𝜕𝜉 𝑍 =
−(𝑟 + 1

2 ((1 − 𝛼)𝑊 + (1 + 2𝛼)𝑍))𝑍 + 𝛼
2 𝑊

2

1 + 1
2 (𝑊 + 𝑍 − 𝛼(𝑊 − 𝑍))

=
𝑁𝑍

𝐷𝑍

.

(1.10)
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Figure 2. Imploding solutions in (𝑊, 𝑍) variables. Note that a singular coordinate change has been

made in order to compactify the (𝑊, 𝑍) coordinates. We have indicated in orange the type of smooth

solutions we will find, crossing through 𝑃𝑠 with direction 𝑣−. On the left of 𝑃𝑠 the solution converges to

𝑃∞, while on the right, we show three possibilities for its behavior (it can start at 𝐷𝑊 = 0, at 𝑃0 or at

𝐷𝑍 = 0).

Figure 2 represents the phase portrait for the region 𝑊 − 𝑍 > 0 for which the density is positive.
The red, purple and green lines correspond to 𝐷𝑍 = 0, 𝐷𝑊 = 0 and 𝑁𝑍 = 0, respectively. A key
difference to the system (1.5) is that the denominator 𝐷𝑊 does not vanish at 𝑃𝑠 , which simplifies the
analysis in a neighborhood of 𝑃𝑠 . Unlike the self-similar variables (𝑈, 𝑆), the variables (𝑊, 𝑍) satisfy
transport equations, which leads to the possibility of employing transport arguments in order to simplify
the stability analysis. In particular, the (𝑊, 𝑍) variables give rise to a very geometric understanding of
the imploding solution in terms of the trajectories of the W and Z waves: 𝑃𝑠 is an unstable fixed point
for the trajectories of Z-waves. Let 𝑃𝑠 divide space into an interior (backward acoustic cone emanating
from the singular point) and exterior region. Z-waves in the exterior region cannot cross into the interior
region, whereas Z-waves in the interior region cross the origin to become W-waves, whereupon they
cross 𝑃𝑠 and travel to the exterior region. Since the system (1.10) is autonomous, we are free to fix the
location 𝜉 for which the solutions crosses 𝑃𝑠 . As such, we make the choice that 𝑃𝑠 is located at 𝜉 = 0.

Due to the singular nature of the coordinate transformation 𝑅 ↦→ 𝜉 for R near 0, it is also helpful to
introduce alternate self-similar coordinates. If we write

𝜁 =
𝑅

(𝑇 − 𝑡) 1
𝑟

= exp(𝜉),

and write

𝑤(𝑅, 𝑡) = 𝑟−1(𝑇 − 𝑡)𝑟−1−1W (𝜁) = 𝑟−1 𝑅

𝑇 − 𝑡
𝑊 (𝜉),

𝑧(𝑅, 𝑡) = 𝑟−1(𝑇 − 𝑡)𝑟−1−1Z (𝜁) = 𝑟−1 𝑅

𝑇 − 𝑡
𝑍 (𝜉),

(1.11)
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then (1.7) becomes

(𝑟 − 1)W + (𝜁 + 1

2
(W + Z + 𝛼(W − Z)))𝜕𝜁W + 𝛼

2𝜁
(W2 − Z2) = 0,

(𝑟 − 1)Z + (𝜁 + 1

2
(W + Z − 𝛼(W − Z)))𝜕𝜁Z −

𝛼

2𝜁
(W2 − Z2) = 0.

(1.12)

This form of the equation will be useful in studying the solution at the origin 𝜁 = 0. A time-dependent
version of these equations will also be used to study stability. Since we will be looking for solutions that
are smooth at the origin, we can extend the solution to all of 𝜁 ∈ R by requiring that Z (𝜁) = −W (−𝜁),
The equations reduce to a single equation in W:

(𝑟 − 1)W (𝜁) + (𝜁 + 1

2
(W (𝜁) −W (−𝜁) + 𝛼(W (𝜁) +W (−𝜁))))𝜕𝜁W (𝜁) +

𝛼

2𝜁
(W2 (𝜁) −W2 (−𝜁) = 0.

(1.13)

We first begin with a result for the maximal time of existence of solutions to the ODE (1.9). We also
show that the system does not have periodic orbits.

Proposition 1.6. Let (𝑊★, 𝑍★) ∈ R2 such that 𝐷𝑊 (𝑊★, 𝑍★) ≠ 0 and 𝐷𝑍 (𝑊★, 𝑍★) ≠ 0 and let 𝜉★ ∈ R.

There exists a smooth solution 𝑊 (𝜉), 𝑍 (𝜉) : (𝜉1, 𝜉2) → R to (1.9) such that 𝑊 (𝜉★) = 𝑊★, 𝑍 (𝜉★) = 𝑍★
and

• Either (𝑊 (𝜉), 𝑍 (𝜉)) tends to a point of {𝐷𝑊 = 0} ∪ {𝐷𝑍 = 0} as 𝜉 → 𝜉+1 , or to infinity or to an

equilibrium point. Moreover, 𝜉1 = −∞ in the latter case.

• Either (𝑊 (𝜉), 𝑍 (𝜉)) tends to a point of {𝐷𝑊 = 0} ∪ {𝐷𝑍 = 0} as 𝜉 → 𝜉−2 , or to infinity or to an

equilibrium point. Moreover, 𝜉2 = +∞ in the latter case.

The proof of Proposition 1.6 is given in Appendix A.1.

Remark 1.7. By local existence and uniqueness, we can divide the phase portrait in disjoint orbits
ending either at the nullsets of 𝐷𝑊 , 𝐷𝑍 or infinity. Let Ω be the region where 𝐷𝑊 > 0, 𝐷𝑍 < 0. Let
Ω
(𝑟 )
1 be the subset of points whose trajectories emanate from the halfline of 𝐷𝑍 = 0 located to the right

of 𝑃𝑠 and Ω
(𝑟 )
2 be the points for whose trajectory emanates from 𝐷𝑊 = 0.

1.4. Smooth self-similar imploding solution

In order to further analyze 𝑃𝑠 , it is helpful to consider the dynamical system under the change of
variables 𝜉 ↦→ 𝜓 where 𝜕𝜓 = −𝐷𝑊 𝐷𝑍 𝜕𝜉 . The equation (1.10) becomes

𝜕𝜓𝑊 = −𝑁𝑊 𝐷𝑍 and 𝜕𝜓𝑍 = −𝑁𝑍𝐷𝑊 , (1.14)

and 𝑃𝑠 becomes a stable stationary point of (1.14). The smooth integral curves of (1.10) correspond to
slope-matching smooth curves with limit 𝑃𝑠 .

It is illustrative to consider the following simple system:

�𝑥 = 𝜆+𝑥, �𝑦 = 𝜆−𝑦,

for some 𝜆− < 𝜆+ < 0, which correspond to the eigenvalues of the system’s Jacobian. So long as
𝑘 =

𝜆−
𝜆+

∉ N, the only smooth integral curves are along 𝑥 = 0 and 𝑦 = 0. There do, however, exist non-

smooth solutions of the form 𝑦 = 𝐶𝑥𝑘 which are 𝐶𝑘 regular and whose Taylor series agrees with the
solution 𝑦 = 0 up to order 
𝑘� (i.e., the largest integer smaller or equal to k).
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Returning to our ODE (1.14), define 𝜆− < 𝜆+ < 0 to be the eigenvalues of the Jacobian of (1.14)
at 𝑃𝑠 , and define

𝑘 =
𝜆−
𝜆+

. (1.15)

If 𝜈−, 𝜈+ are the eigenvectors of the Jacobian of (1.14) associated with the eigenvalues 𝜆−, 𝜆+, then we
will be considering the smooth solutions of (1.10) with tangent parallel to 𝜈− – the Guderley solutions
correspond to the direction 𝜈+. These two directions are illustrated in Figure 2.

We restrict the self-similar parameter r to 1 < 𝑟 < 𝑟∗, where

𝑟∗(𝛾) =
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2(√
2
√

1
𝛾−1+1
)2 + 1 1 < 𝛾 < 5

3 ,

3𝛾−1

2+
√

3(𝛾−1) 𝛾 ≥ 5
3 .

(1.16)

In this regime, k will be a monotonically increasing function of r, converging to ∞ as 𝑟 → 𝑟∗ (see
Lemma 2.1).

To study the behavior of the smooth solution corresponding to the direction 𝜈− around 𝑃𝑠 , which we
denote (𝑊 (𝑟 ) , 𝑍 (𝑟 ) ), we apply a Frobenius-like series expansion of the solution. As will be shown in
Section 2.2, letting (𝑊𝑛, 𝑍𝑛) denote the n-th Taylor coefficient of (𝑊 (𝑟 ) , 𝑍 (𝑟 ) ) expanded at 𝑃𝑠 , then for
𝑛 ≥ 2,

𝑊𝑛 = 𝐹𝑊 (𝑟, 𝛾,𝑊0, . . . ,𝑊𝑛−1, 𝑍0, . . . , 𝑍𝑛−1) and 𝑍𝑛 =
𝐹𝑍 (𝑟, 𝛾,𝑊0, . . . ,𝑊𝑛, 𝑍0, . . . , 𝑍𝑛−1)

𝑛 − 𝑘 (𝑟) ,

(1.17)

where (𝐹𝑊 , 𝐹𝑍 ) are given in Section 2.2. For 𝑗 ∈ N, we define 𝑟 𝑗 such that 𝑗 = 𝑘 (𝑟 𝑗 ). Note that the
denominator in (1.17) becomes singular as 𝑘 (𝑟) approaches n and switches sign at 𝑘 (𝑟) = 𝑛. This has a
wiggling effect on the integral curve of the smooth solution, which in turn allows us to show that for a
subset of 𝛾 > 1 and odd 𝑛 ≥ 3,

1. For 𝑟 ∈ (𝑟𝑛, 𝑟𝑛+1), the solution to the left of 𝑃𝑠 converges to 𝑃∞ as 𝜉 →∞.
2. For 𝑟 = 𝑟𝑛 + 𝜀, the solution to the right of 𝑃𝑠 intersects the line 𝐷𝑊 = 0.
3. For 𝑟 = 𝑟𝑛+1 − 𝜀, the solution to the right of 𝑃𝑠 intersects the line 𝐷𝑍 = 0.

More specifically, we show the above holds for 𝑛 = 3 and 𝛾 ∈ (1, +∞), as well as the case 𝛾 = 7
5 and n

sufficiently large.2 If we can prove 2 and 3, by a simple shooting argument, we obtain that there exists
an 𝑟 ∈ (𝑟𝑛, 𝑟𝑛+1) such that the solution curve connects 𝑃𝑠 to 𝑃0. Moreover, 1 implies that the solution
connects 𝑃𝑠 to 𝑃∞. We note that for the Einstein-Euler and Euler-Poisson systems, Guo, Hadžić and
Jang in [43] and [42] apply similar arguments in the context of non-autonomous ODEs.

For the special case 𝛾 = 7
5 , we aim at constructing a sequence of self-similar scalings 𝑟 ( 𝑗) satisfying

𝑟 𝑗 < 𝑟 ( 𝑗) < 𝑟 𝑗+1, for j odd and sufficiently large, as well as the corresponding smooth global solutions.
A key ingredient to proving this is to determine a sign and lower bound on the Taylor coefficients of
order j. Contrarily to the 𝛾 ≥ 5

3 case, for 𝛾 < 5
3 , and 𝑟 = 𝑟∗, one may obtain a nontrivial Taylor expansion

of the corresponding curve passing through 𝑃𝑠 . By continuity, for 𝑟 < 𝑟∗, the corresponding Taylor
series converges to that of 𝑟 = 𝑟∗. Then, fixing 𝑟 < 𝑟∗, r sufficiently close to 𝑟∗, one can deduce the sign
and magnitudes of lower-order Taylor coefficients from those of 𝑟∗. With this information, one can use an
inductive argument to deduce information about the higher-order coefficients. Furthermore, we employ
a computer-assisted proof to compute the first 10000 coefficient pairs (𝑊 𝑗 , 𝑍 𝑗 ) at 𝑟 = 𝑟∗ with rigorous
error bounds. While there is certainly room for improvement in terms of the amount of coefficients that
we had to calculate using a computer-assisted approach, we decided to keep the asymptotic part of the

2We are, however, not aware of any counterexamples for 𝛾 > 1 and 𝑛 ≥ 3 odd. The requirement that n is odd is used to ensure
1 holds.
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analysis that treats the higher-order coefficients as simple as possible, at the expense of a slightly larger
computation time. This part of the calculation takes about 14 hours on a single CPU.

In order to perform rigorous, error-free calculations, interval arithmetic will be used as part of the
proof whenever needed. The main idea underlying this technique is to work with intervals which have
representable numbers by the computer as endpoints in order to guarantee that the true result at any point
belongs to the interval by which is represented. By doing so, we control all the errors (rounding, floating
point arithmetic, etc.) incurred by the computer program while calculating the necessary quantities. Over
the intervals, we define an arithmetic in such a way that we are guaranteed that for every 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ,

𝑥 ★ 𝑦 ∈ 𝑋 ★𝑌,

for any operation ★. For example,

[𝑥, 𝑥] + [𝑦, 𝑦] = [𝑥 + 𝑦, 𝑥 + 𝑦],
[𝑥, 𝑥] × [𝑦, 𝑦] = [min{𝑥𝑦, 𝑥𝑦, 𝑥𝑦, 𝑥𝑦},max{𝑥𝑦, 𝑥𝑦, 𝑥𝑦, 𝑥𝑦}] .

We can also define the interval version of a function 𝑓 (𝑋) as an interval I that satisfies that for every
𝑥 ∈ 𝑋 , 𝑓 (𝑥) ∈ 𝐼. Even though in this paper we will only make use of basic functions, more complicated
ones (such as special functions) over intervals can be defined as well.

Very early computer-assisted proofs were mostly constrained to finite dimensional problems [34, 85].
Slowly, more and more computational power has enabled harder problems to be tackled, including
partial differential equations. We mention the pioneering papers of Plum [76, 77] and Nakao [71, 72]
in this context, and more recent advances done by Fazekas–Pacella–Plum [33] for the Lane Emden
equation, van den Berg–Hénot–Lessard [88] for semilinear elliptic equations, Dahne–Gómez-Serrano–
Hou and Gómez-Serrano–Orriols [28, 40] for inverse spectral problems, Jaquette–Lessard–Takayasu
[50] for the non-conservative NLS equations, Dahne–Gómez-Serrano [27] for the Burgers-Hilbert
equation, Takayasu–Lessard–Jaquette–Okamoto [82] for the complex in time nonlinear heat equation
and Breden–Engel [11] for chaos in stochastically perturbed Hopf systems. We make no claim that this
list is exhaustive, but we would like to emphasize the broad directions of the problems that the field
(computer-assisted proofs in PDE) has been able to undertake over the last few years.

In the context of fluid mechanics, we highlight the following authors and equations: Kobayashi
[57] and Stokes’ extreme waves; Chen–Hou–Huang [21] and De Gregorio; Castro–Córdoba–Gómez-
Serrano [19] and SQG; Enciso–Gómez-Serrano–Vergara [31] and Whitham; Arioli–Koch, Figueras–
De la Llave, Gameiro–Lessard, Figueras–Gameiro–Lessard–De la Llave, Zgliczynski, Zgliczynski–
Mischaikow [5, 35, 36, 37, 92, 93] and Kuramoto–Shivasinsky; van den Berg–Breden–Lessard–van
Veen, Arioli–Gazzola–Koch, Bedrossian–Punshon-Smith [4, 8, 87] and Navier-Stokes.

We also refer the reader to the books [70, 86] and to the survey [38] and the book [73] for a more
specific treatment of computer-assisted proofs in PDE.

In our concrete case, we will use the computer in two different parts of our strategy:

1. Computing (with rigorous bounds) a high amount of Taylor coefficients of a solution of an ODE at
a singular point (Lemma A.27, Lemma A.28).

2. Validating the sign of polynomials of degree 7–11 with coefficients depending on 2 parameters using
a branch and bound method (Proposition 3.2, Proposition 3.5, Proposition 4.5).

There is a rich history of papers that have used any of these two strategies in other contexts.
Regarding the first one, in the context of the parameterization method of stable and unstable manifolds

for ODE, Cabré–Fontich–de la Llave [16, 17, 18]; for parabolic PDE, van den Berg–Jaquette–Mireles-
James [89] and Barker–Mireles-James–Morgan [7]; and for DDEs, Hénot–Lessard–Mireles-James [48]
are examples. See also the book by Haro–Canadell–Figueras–Luque–Mondelo [47] for a more compre-
hensive list of references. A similar strategy has been employed to solve ODE by means of a Taylor
expansion and automatic differentiation by Berz–Makino [9] and is also implemented in the CAPD
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library by Kapela–Mrozek–Wilczak–Zgliczynski [54] and the COSY INFINITY library by Makino–
Berz [66].

Regarding the second one, we highlight examples of computer-assisted proofs involving branch and
bound methods – for example, the work of Day–Kalies–Wanner [30] in homology, Tanaka [83] in elliptic
PDE, Gómez-Serrano–Granero-Belinchón [39] in the Muskat problem, Bánhelyi–Csendes–Krisztin–
Neumaier [6] in Wright’s conjecture, Hales [45] in the Kepler conjecture, or Kearfott [56] in constrained
optimization problems. See also the book by Hansen–Walster [46] for more references.

We remark that in the recent paper [44], the authors Guo, Hadžić, Jang and Schrecker apply arguments
of a very similar flavor (Taylor expansions, dynamical systems arguments and computer-assisted proofs)
to construct smooth self-similar solutions the gravitational Euler-Poisson system.

1.5. Stability of the Euler solutions and the existence of asymptotically self-similar Navier-Stokes

solutions

Let us begin by rewriting (1.2) under spherical symmetry, and in terms of the rescaled sound speed 𝜎:

𝜕𝑡𝑢 + 𝑢𝜕𝑅𝑢 + 𝛼𝜎𝜕𝑅𝜎 −
1

𝑅2𝜌
𝜕𝑅 (𝑅2𝜕𝑅𝑢) +

2𝑢

𝑅2𝜌
= 0,

𝜕𝑡𝜎 + 𝑢𝜕𝑅𝜎 +
𝛼

𝑅2
𝜎𝜕𝑅 (𝑅2𝑢) = 0.

(1.18)

We recall that for simplicity, we fixed 𝜇1 = 1 and 𝜇2 = −1. We again define our Riemann invariants as in
(1.6). However, in place of the ansatz (1.11), we instead consider the following time-dependent ansatz:

𝑤(𝑅, 𝑡) = 𝑟−1(𝑇 − 𝑡)𝑟−1−1W ( 𝑅

(𝑇 −𝑡) 1
𝑟
,− log(𝑇 −𝑡)

𝑟
),

𝑧(𝑅, 𝑡) = 𝑟−1(𝑇 − 𝑡)𝑟−1−1Z ( 𝑅

(𝑇 −𝑡) 1
𝑟
,− log(𝑇 −𝑡)

𝑟
).

We then define the self-similar variables

𝑠 = − log(𝑇 − 𝑡)
𝑟

, 𝜁 =
𝑅

(𝑇 − 𝑡) 1
𝑟

= 𝑒𝑠𝑅 = exp(𝜉).

The equation (1.18) then becomes

(𝜕𝑠 + 𝑟 − 1)W + (𝜁 + 1

2
(W + Z + 𝛼(W − Z)))𝜕𝜁W + 𝛼

2𝜁
(W2 − Z2)

=
𝑟1+ 1

𝛼 21/𝛼

𝛼1/𝛼𝜁2 ((W − Z)) 1
𝛼

𝑒 (2−𝑟+
1
𝛼
(1−𝑟 ))𝑠

(
𝜕𝜁 (𝜁2𝜕𝜁 (W + Z)) − 2(W + Z)

)
,

(𝜕𝑠 + 𝑟 − 1)Z + (𝜁 + 1

2
(W + Z − 𝛼(W − Z)))𝜕𝜁Z −

𝛼

2𝜁
(W2 − Z2)

=
𝑟1+ 1

𝛼 21/𝛼−1

𝛼1/𝛼𝜁2 ((W − Z)) 1
𝛼

𝑒 (2−𝑟+
1
𝛼
(1−𝑟 ))𝑠

(
𝜕𝜁 (𝜁2𝜕𝜁 (W + Z)) − 2(W + Z)

)
.

(1.19)

The last term can be treated as an error so long as

−𝛿dis = 2 − 𝑟 + 1

𝛼
(1 − 𝑟) < 0, (1.20)
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or equivalently,

𝑟 >
2𝛾

𝛾 + 1
. (1.21)

Given that we intend to restrict 𝑟 < 𝑟∗, by the definition of 𝑟∗ given in (1.16), we conclude that we require

𝛾 < 1 + 2√
3
,

which is clearly satisfied for 𝛾 = 7
5 .

Given a smooth globally defined self-similar solution to the Euler equation corresponding to a self-
similar variable r satisfying (1.21), to prove the existence of an asymptotically self-similar solution
to the Navier-Stokes equations, it will be sufficient to show the nonlinear stability of such a solution
modulo finite modes of instability. The main ingredient is to first show linear stability of the self-similar
Euler solutions. This was achieved in [67] by writing the equation as a nonlinear wave equation and
proving stability in terms of carefully weighted spaces. In the present work, a simpler approach is taken
exploiting locality and the transport structure of the equation written in Riemann variables. In place of
weighted spaces, we modify the equation outside a neighborhood of the backwards acoustic cone of
the singularity in order to restrict the region of interest. Differing from the work [67], we exploit the
transport structure of the Riemann invariants in order to simplify the stability analysis. The nonlinear
stability will rely on a topological argument in a similar vain to [67, 75] (see [12] for an alternate
approach based on a Newton scheme).

1.6. Organization of paper

Section 2 describes Frobenius-like series expansions of the solution at 𝑃𝑠 and 𝑃0. In Section 3 and
Section 4, we apply barrier arguments to describe the solution in the region outside (respectively inside)
the backwards acoustic cone of the singularity. In Section 5, we complete the analysis of Section 3 for
the case of 𝛾 = 7/5 and 𝑟 → 𝑟∗. The section collects analysis related to the 𝑟 → 𝑟∗ asymptotic limit. In
Section 6, Theorem 1.1 and Theorem 1.2 are proved by combining the result of Proposition 4.1 with a
shooting argument in order to connect 𝑃𝑠 to 𝑃0 by a smooth solution. Section 7 is dedicated to showing
that the linearized operator of the Euler equations around the self-similar profile generates a contraction
semigroup modulo finitely many instabilities. Finally in Section 8, we use the linear stability analysis
of Section 7 in combination with a bootstrap and a topological argument in order to prove nonlinear
stability for the Navier-Stokes equations for a manifold of initial data of finite codimension. In particular,
Section 8 contains the proof of Theorem 1.3. Appendix A contains technical lemmas used throughout
the proofs and properties of the phase portrait in the case 𝛾 = 7

5 . Appendix B summarizes the details of
the computer-assisted proofs.

2. Expansion around 𝑷𝒔 and 𝑷0

In this section, we describe the Frobenius-like series expansions of the smooth solutions passing through
𝑃𝑠 and starting at 𝑃0. The general approach will be to obtain a recurrence for the coefficients of the
expansion from imposing the ODE on the expansion. In the case of 𝑃𝑠 , we will obtain that the recurrence
can be solved for 𝑘 ∉ N (due to a factor of the type 𝑚 − 𝑘 on the equation for the m-th coefficient).
In the case of 𝑃0, we will need to ensure that the appropriate conditions are met so that the profiles,
in Cartesian variables, are smooth at 𝑅 = 0. The most elegant way of doing so will be reexpressing
our recurrence in terms of a new function W , that encodes W for positive arguments and a reflected
version of Z for negative arguments. The smoothness of W at the origin will yield smoothness of both
our profiles at the origin.
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2.1. First-order expansion

We label the two solutions to 𝐷𝑍 = 𝑁𝑍 = 0:

𝑃𝑠 = (𝑊0, 𝑍0) =
(𝛾2𝑟 + (𝛾 + 1)R1 − 3𝛾2 − 2𝛾𝑟 + 10𝛾 − 3𝑟 − 3

4(𝛾 − 1)2
𝛾2𝑟 + (𝛾 − 3)R1 − 3𝛾2 − 6𝛾𝑟 + 6𝛾 + 9𝑟 − 7

4(𝛾 − 1)2
)
,

(2.1)

𝑃̄𝑠 = (𝑊̄0, 𝑍̄0) =
(𝛾2𝑟 − (𝛾 + 1)R1 − 3𝛾2 − 2𝛾𝑟 + 10𝛾 − 3𝑟 − 3

4(𝛾 − 1)2
𝛾2𝑟 + (3 − 𝛾)R1 − 3𝛾2 − 6𝛾𝑟 + 6𝛾 + 9𝑟 − 7

4(𝛾 − 1)2
)
,

(2.2)

where

R1 =

√
𝛾2 (𝑟 − 3)2 − 2𝛾(3𝑟2 − 6𝑟 + 7) + (9𝑟2 − 14𝑟 + 9). (2.3)

The points 𝑃𝑠 and 𝑃̄𝑠 are the only intersections of 𝐷𝑍 = 𝑁𝑍 = 0, so any possible smooth profile going
from 𝑃0 to 𝑃∞ will need to pass through one of them in order to cross 𝐷𝑍 = 0.

Let us consider the derivative of the smooth solutions to the ODE (1.10) with respect to 𝜉 at 𝑃𝑠 . The
derivative of W at 𝑃𝑠 to both solutions is given by

𝑊1 =
𝑁𝑊 (𝑃𝑠)
𝐷𝑊 (𝑃𝑠)

. (2.4)

Applying L’Hôpital, the derivative of Z at 𝑃𝑠 satisfies the second-degree equation

∇𝐷𝑍 (𝑃𝑠) · (𝑊1, 𝑍1)𝑍1 = ∇𝑁𝑍 (𝑃𝑠) · (𝑊1, 𝑍1), (2.5)

which leads to two possible values of 𝑍1 corresponding to the two smooth solutions passing through
𝑃𝑠 . The solution that we will work with corresponds to the vector 𝜈− = (𝑊1, 𝑍1), where

𝑊1 =
𝛾 (−3 (R1 + 6) − 3𝛾(𝑟 − 3) + 2𝑟) +R1 + 5𝑟 + 5

4(𝛾 − 1)2 ,

𝑍1 =
−
(
3𝛾3 − 7𝛾2 + 𝛾 + 11

)
𝑟 + 𝛾(𝛾(9𝛾 − 3R1 − 25) + 10R1 − 4(𝛾 − 1)R2 + 27) − 3R1 + 4(𝛾 − 1)R2 − 3

4(𝛾 − 1)2 (𝛾 + 1) ,

(2.6)

and

R2 =
1

𝛾 − 1

(
𝛾((76 − 27𝛾)𝛾 − 71) −

(
(3𝛾 − 5) ((𝛾 − 5)𝛾 + 2)𝑟2

)
+ (𝛾(𝛾(18𝛾 − 52) + 50) − 8)𝑟

+R1 (9(𝛾 − 2)𝛾 + ((2 − 3𝛾)𝛾 + 5)𝑟 + 5) + 18

) 1
2

.

(2.7)

This value of 𝑍1 corresponds to the smooth solution that agrees up to order 
𝑘� with all the non-smooth
solutions around 𝑃𝑠 (the simple example given in Section 1.4 is illustrative of this behavior).
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Define the vector 𝜈+ by 𝜈+ = (𝑊1, 𝑍̌1), where

𝑍̌1 = −
(
3𝛾3 − 7𝛾2 + 𝛾 + 11

)
𝑟 − 𝛾(𝛾(9𝛾 − 3R1 − 25) + 10R1 + 4(𝛾 − 1)R2 + 27) + 3R1 + 4(𝛾 − 1)R2 + 3

4(𝛾 − 1)2 (𝛾 + 1) .

Then the two smooth solutions at 𝑃𝑠 have 𝜉 derivatives 𝜈+ = (𝑊1, 𝑍1) and 𝜈− = (𝑊1, 𝑍̌1).
The vectors 𝜈−, 𝜈+ are eigenvectors of the Jacobian J at 𝑃𝑠 of the reparameterized system (1.14). In

particular, the Jacobian J at 𝑃𝑠 is given by

𝐽 =

(
𝑁𝑊 (𝑃𝑠)𝜕𝑊 𝐷𝑍 (𝑃𝑠) 𝑁𝑊 (𝑃𝑠)𝜕𝑍𝐷𝑍 (𝑃𝑠)
𝐷𝑊 (𝑃𝑠)𝜕𝑊 𝑁𝑍 (𝑃𝑠) 𝐷𝑊 (𝑃𝑠)𝜕𝑍𝑁𝑍 (𝑃𝑠)

)
. (2.8)

Note if 𝜈 = (𝜈𝑊 , 𝜈𝑍 ) is an eigenvector of J, then it must satisfy the equation

(𝑁𝑊 (𝑃𝑠)∇𝐷𝑍 (𝑃𝑠) · 𝜈, 𝐷𝑊 (𝑃𝑠)∇𝑁𝑍 (𝑃𝑠) · 𝜈) ∧ 𝜈 = 0. (2.9)

Then, applying (2.4) and (2.5), we see that (2.9) is satisfied for 𝜈 = 𝜈−, 𝜈+ and hence 𝜈−, 𝜈+ are
eigenvectors of J. We let 𝜆+ and 𝜆− be the eigenvalues corresponding to 𝜈− and 𝜈+, respectively. We
obtain the equations

𝜆− =
𝑁𝑊 (𝑃𝑠)

𝑊1
(𝜕𝑊 𝐷𝑍 (𝑃𝑠)𝑊1 + 𝜕𝑍𝐷𝑍 (𝑃𝑠)𝑍1) , (2.10)

𝜆− + 𝜆+ = 𝑁𝑊 (𝑃𝑠)𝜕𝑊 𝐷𝑍 (𝑃𝑠) + 𝐷𝑊 (𝑃𝑠)𝜕𝑍𝑁𝑍 (𝑃𝑠). (2.11)

Lemma 2.1. Let 𝐷𝑍,1 = ∇𝐷𝑍 (𝑃𝑠) (𝑊1, 𝑍1). Then,

𝑘 (𝑟) = −𝑍1𝜕𝑍𝐷𝑍 (𝑃𝑠) − 𝜕𝑍𝑁𝑍 (𝑃𝑠)
𝐷𝑍,1

, (2.12)

where we recall in (1.15) we defined 𝑘 (𝑟) = 𝜆+
𝜆−

. Moreover, we have that 𝑘 (𝑟) is a smooth monotonically

increasing function for 𝑟 ∈ [1, 𝑟∗(𝛾)) such that 𝑟 (1) = 1, lim𝑟→𝑟∗ 𝑘 (𝑟) = +∞ and 𝑘 ′(𝑟) > 0 for all

𝑟 ∈ (1, 𝑟∗(𝛾)). Thus, 𝑘 (𝑟) is a bijection between [1, 𝑟∗(𝛾)) and [1, +∞).
Proof. Note that the parenthesis in (2.10) is 𝐷𝑍,1. Then from (2.10) and (2.11), we obtain

𝑘 (𝑟) = (𝜆+ + 𝜆−) − 𝜆−
𝜆−

=
𝑊1𝜕𝑊 𝐷𝑍 (𝑃𝑠) + 𝑊1𝐷𝑊 (𝑃𝑠)

𝑁𝑊 (𝑃𝑠) 𝜕𝑍𝑁𝑍 (𝑃𝑠) − (𝜕𝑊 𝐷𝑍 (𝑃𝑠)𝑊1 + 𝜕𝑍𝐷𝑍 (𝑃𝑠)𝑍1)
𝐷𝑍,1

=

𝑊1𝐷𝑊 (𝑃𝑠)
𝑁𝑊 (𝑃𝑠) 𝜕𝑍𝑁𝑍 (𝑃𝑠) − 𝜕𝑍𝐷𝑍 (𝑃𝑠)𝑍1

𝐷𝑍,1
.

Noting also that 𝑊1 =
𝑁𝑊 (𝑃𝑠)
𝐷𝑊 (𝑃𝑠) , we get the expression (2.12).

In terms of 𝑍̌1, we have that the fact that (𝑊1, 𝑍̌1) is an eigenvector of J means

𝜆+ =
𝑁𝑊 (𝑃𝑠)∇𝐷𝑍 (𝑃𝑠) · (𝑊1, 𝑍̌1)

𝑊1
. (2.13)

Dividing this by (2.10), we get that

𝑘 (𝑟) = 𝐷̌𝑍,1

𝐷𝑍,1
=
−4 + (1 + 𝛾) 𝑟−1

𝛾−1 −R2

−4 + (1 + 𝛾) 𝑟−1
𝛾−1 +R2

, (2.14)
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where 𝐷̌𝑍,1 = ∇𝐷𝑍 · (𝑊1, 𝑍̌1), and we have substituted 𝐷𝑍,1, 𝐷̌𝑍,1 by their expressions in terms of
𝛾, 𝑟,R𝑖 .

Now, we claim that 𝑘 (1) = 1. From (2.14), it suffices to show that R2 = 0 at 𝑟 = 1. From (2.3), we
have R1 = 2(𝛾 − 1) for 𝑟 = 1. Plugging that into (2.7), we deduce that R2 = 0 for 𝑟 = 1.

We also claim that 𝑘 (𝑟) → +∞ as 𝑟 → 𝑟∗. From Lemma A.11, we have that 𝐷𝑍,1 > 0 for 𝑟 ∈ [1, 𝑟∗),
and from Lemma A.12, we have 𝐷̌𝑍,1 > 0 for 𝑟 ∈ [1, 𝑟∗]. Using that 𝐷𝑍,1 = 0 for 𝑟 = 𝑟∗ (Lemma A.9),
we conclude the desired limit.

Lastly, we show that 𝑘 ′(𝑟) > 0 from equation (2.14) via a computer-assisted proof. The code
can be found in the supplementary material, and details about the implementation can be found in
Appendix B. �

2.2. Taylor expansion around 𝑷𝒔 (𝝃 = 0)

Let (𝑊 (𝑟 ) (𝜉), 𝑍 (𝑟 ) (𝜉)) denote the smooth solution corresponding to the direction 𝜈− defined in the
previous section. Now consider its Taylor expansion around 𝑃𝑠 (i.e., 𝜉 = 0):

𝑊 (𝑟 ) (𝜉) =
∞∑
𝑛=0

1

𝑛!
𝑊𝑛𝜉

𝑛, and 𝑍 (𝑟 ) (𝜉) =
∞∑
𝑛=0

1

𝑛!
𝑍𝑛𝜉

𝑛. (2.15)

Let us also define the Taylor coefficients of 𝐷𝑊 , 𝐷𝑍 , 𝑁𝑊 , 𝑁𝑍 as follows:

𝐷𝑊 (𝑊 (𝑟 ) (𝜉), 𝑍 (𝑟 ) (𝜉)) =
∞∑
𝑛=0

1

𝑛!
𝐷𝑊 ,𝑛𝜉

𝑛, 𝐷𝑍 (𝑊 (𝑟 ) (𝜉), 𝑍 (𝑟 ) (𝜉)) =
∞∑
𝑛=0

1

𝑛!
𝐷𝑍,𝑛𝜉

𝑛,

𝑁𝑊 (𝑊 (𝑟 ) (𝜉), 𝑍 (𝑟 ) (𝜉)) =
∞∑
𝑛=0

1

𝑛!
𝑁𝑊 ,𝑛𝜉

𝑛, 𝑁𝑍 (𝑊 (𝑟 ) (𝜉), 𝑍 (𝑟 ) (𝜉)) =
∞∑
𝑛=0

1

𝑛!
𝑁𝑍,𝑛𝜉

𝑛.

For ◦ ∈ {𝑊, 𝑍}, 𝐷◦ (𝑊, 𝑍) are first-degree polynomials in W and Z; hence,

𝐷◦,𝑛 = ∇𝐷◦ · (𝑊𝑛, 𝑍𝑛), ◦ ∈ {𝑊, 𝑍}, 𝑛 ≥ 1, (2.16)

with the special case 𝐷◦,0 = 𝐷◦ (𝑃𝑠). In the case of 𝑁◦, we have second-degree polynomials, so the
gradient is not constant in (𝑊, 𝑍). However, the Hessian matrix is, and we get the expression

𝑁◦,𝑛 = ∇𝑁◦
���
𝑃𝑠
· (𝑊𝑛, 𝑍𝑛) +

𝑛−1∑
𝑗=1

(
𝑛 − 1

𝑗 − 1

)
(𝑊𝑛− 𝑗 , 𝑍𝑛− 𝑗 ) (𝐻𝑁◦) (𝑊 𝑗 , 𝑍 𝑗 )�, ◦ ∈ {𝑊, 𝑍}, 𝑛 ≥ 1,

(2.17)

with the special case 𝑁◦,0 = 𝑁◦ (𝑃𝑠).

Proposition 2.2. For 𝑛 ∈ N, let 𝑟 ∈ (𝑟𝑛, 𝑟𝑛+1). If there is a solution to ODE (1.10) passing through 𝑃𝑠 at

𝜉 = 0 with gradient (𝑊1, 𝑍1), their Taylor coefficients 𝑊𝑚, 𝑍𝑚 for 𝑚 ≥ 2 satisfy the recursion relation

𝐷𝑊 ,0𝑊𝑚 = 𝑁𝑊 ,𝑚−1 −
𝑚−2∑
𝑗=0

(
𝑚 − 1

𝑗

)
𝐷𝑊 ,𝑚−1− 𝑗𝑊 𝑗+1, (2.18)

𝑍𝑚𝐷𝑍,1 (𝑚 − 𝑘) = −
𝑚−2∑
𝑗=1

(
𝑚

𝑗

)
𝐷𝑍,𝑚− 𝑗𝑍 𝑗+1

+
(
𝑁𝑍,𝑚 − (𝜕𝑍𝑁𝑍 (𝑃𝑠))𝑍𝑚

)
− 𝑍1𝑊𝑚𝜕𝑊 𝐷𝑍 (𝑃𝑠). (2.19)
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Moreover, the coefficients are iteratively solvable as both the coefficients 𝐷𝑊 ,0 and 𝐷𝑍,1 (𝑚 − 𝑘) are

nonzero, and the expansion of the second line in (2.19) contains no terms involving 𝑍𝑚.

Proof. Taking 𝑚 − 1 derivatives in equation (1.10), we obtain

𝜕𝑚−1
𝜉 (𝐷𝑊 (𝑊, 𝑍)𝜕𝜉𝑊) = 𝜕𝑚−1

𝜉 (𝑁𝑊 (𝑊, 𝑍)).

Expanding the derivatives, we immediately obtain (2.18). Moreover, 𝐷𝑊 ,0 ≠ 0 as a consequence of
Lemma A.10. Taking m derivatives in the equation (1.10), we analogously obtain

𝑚𝐷𝑍,1𝑍𝑚 = 𝑁𝑍,𝑚 −
𝑚−2∑
𝑗=0

(
𝑚

𝑗

)
𝐷𝑍,𝑚− 𝑗𝑍 𝑗+1.

Now, we subtract the terms with 𝑍𝑚 in the quantities 𝑁𝑊 ,𝑚 and 𝐷𝑍,𝑚, obtaining

𝑍𝑚
(
𝑚𝐷𝑍,1 − 𝜕𝑍𝑁𝑍 (𝑃𝑠) + 𝑍1𝜕𝑍𝐷𝑍

)
= −

𝑚−2∑
𝑗=1

(
𝑚

𝑗

)
𝐷𝑍,𝑚− 𝑗𝑍 𝑗+1

+
(
𝑁𝑍,𝑚 − 𝜕𝑍𝑁𝑍 (𝑃𝑠)𝑍𝑚

)
+ 𝑍1
(
−𝐷𝑍,𝑚 + 𝑍𝑚𝜕𝑍𝐷𝑍

)
.

Note that the terms in the second line do not depend on 𝑍𝑚, as we have subtracted the dependence of
𝐷𝑍,𝑚 and 𝑁𝑍,𝑚 on 𝑍𝑚 (see equations (2.16) and (2.17)). Then, applying (2.12), we obtain (2.19). We
have 𝐷𝑍,1 ≠ 0 as a result of Lemma A.11. �

Proposition 2.3. Let 𝑛 ∈ N and 𝐼 ⊂ (𝑟𝑛, 𝑟𝑛+1) a closed interval. There exists an absolute constant C

(depending on I and 𝛾) such that we have the bounds

|𝑊𝑖 | + |𝑍𝑖 | ≤ 𝐶𝑖+1𝑖!. (2.20)

For 𝜉 < 1/𝐶, the series 𝑊 (𝑟 ) (𝜉) = ∑𝑊𝑖𝜉
𝑖/𝑖! and 𝑍 (𝑟 ) (𝜉) = ∑ 𝑍𝑖𝜉

𝑖/𝑖! solve the ODE (1.10). Moreover,

the functions 𝑊 (𝑟 ) (𝜉), 𝑍 (𝑟 ) (𝜉) are continuous with respect to 𝑟 ∈ 𝐼.

Proof. In this proof, we will use the following notation:

𝑤𝑖 = 𝑊𝑖/𝑖!, 𝑧𝑖 = 𝑍𝑖/𝑖!, 𝑑◦,𝑖 = 𝐷◦,𝑖/𝑖!, and 𝑛◦,𝑖 = 𝑁◦,𝑖/𝑖!.

Then, from equations (2.16)–(2.19), we have

𝐷𝑊 ,0𝑤𝑚𝑚 = 𝑛𝑊 ,𝑚−1 −
𝑚−2∑
𝑗=0

𝑑𝑊 ,𝑚−1− 𝑗𝑤 𝑗+1 ( 𝑗 + 1), (2.21)

𝑧𝑚𝐷𝑍,1 (𝑚 − 𝑘) = −
𝑚−2∑
𝑗=1

𝑑𝑍,𝑚− 𝑗 ( 𝑗 + 1)𝑧 𝑗+1

+
(
𝑛𝑍,𝑚 − (𝜕𝑍𝑁𝑍 (𝑃𝑠))𝑧𝑚

)
︸���������������������������︷︷���������������������������︸

𝑔𝑚

−𝑍1𝑤𝑚𝜕𝑊 𝐷𝑍 (𝑃𝑠), (2.22)

𝑑◦,𝑚 = ∇𝐷◦ · (𝑤𝑚, 𝑧𝑚), (2.23)

𝑛◦,𝑚 = ∇𝑁◦
���
𝑃𝑠
· (𝑤𝑚, 𝑧𝑚) +

1

𝑚

𝑚−1∑
𝑗=1

𝑗 (𝑤𝑚− 𝑗 , 𝑧𝑚− 𝑗 ) (𝐻𝑁◦) (𝑤 𝑗 , 𝑧 𝑗 )�. (2.24)
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We recall 𝐷𝑊 ,0, 𝐷𝑍,1 ≠ 0 from Lemmas A.10 and A.11, so they are lower bounded in I. Let ℭ𝑖 denote
the Catalan numbers. Then for some constant M, we inductively assume the bounds

|𝑤𝑖 | + |𝑧𝑖 | +
��𝑑◦,𝑖 �� + ��𝑛◦,𝑖 �� ≤ ℭ𝑖𝑀

𝑖−2 (2.25)

for 3 ≤ 𝑖 ≤ 𝑚. Since the constant C in (2.20) is allowed to depend on n, choosing C sufficiently large,
(2.20) trivially holds for all 𝑖 ≤ 2𝑛 + 2. Let us now assume 𝑚 ≥ 2𝑛 + 2. By (2.21), we have

|𝑤𝑚+1 | �
1

𝑚

�����
��𝑛𝑊 ,𝑚

�� + 𝑚−3∑
𝑗=2

( 𝑗 + 1)
��𝑑𝑊 ,𝑚− 𝑗

�� ��𝑤 𝑗+1
�� + 𝑚−1∑

𝑗∈{0,1,
𝑚−2,𝑚−1}

( 𝑗 + 1)
��𝑑𝑊 ,𝑚− 𝑗

�� ��𝑤 𝑗+1
�������

� ℭ𝑚𝑀𝑚−2 + 𝑀𝑚−3
𝑚−2∑
𝑗=0

ℭ𝑚− 𝑗ℭ 𝑗+1 + ℭ𝑚𝑀𝑚−2

� 𝑀𝑚−2
ℭ𝑚+2. (2.26)

Now we bound 𝑔𝑚+1 using (2.25) and (2.26):

|𝑔𝑚+1 | � |𝑤𝑚+1 | +
1

𝑚 + 1

𝑚∑
𝑗=1

𝑗 (
��𝑤𝑚− 𝑗
�� + ��𝑧𝑚− 𝑗 ��) (��𝑤 𝑗

�� + ��𝑧 𝑗 ��)
� 𝑀𝑚−2

ℭ𝑚+2. (2.27)

We bound 𝑧𝑚+1 using (2.25), (2.26), (2.27) and 𝑘 ≤ 𝑛 + 1 ≤ 𝑚
2 :

|𝑧𝑚+1 | �
1

𝑚

���
𝑚−1∑
𝑗=1

��𝑑𝑍,𝑚+1− 𝑗 ( 𝑗 + 1)𝑧 𝑗+1
�� + |𝑔𝑚+1 | + |𝑤𝑚+1 |���

� 𝑀𝑚−2
𝑚−1∑
𝑗=1

ℭ𝑚+1− 𝑗ℭ 𝑗+1 + 𝑀𝑚−2
ℭ𝑚+2

� 𝑀𝑚−2
ℭ𝑚+3. (2.28)

Finally, from (2.23)–(2.26) and (2.28), we obtain��𝑑◦,𝑚+1�� + ��𝑛◦,𝑚+1�� � ℭ𝑚+3𝑀
𝑚−2. (2.29)

Then, (2.25) follows for 𝑖 = 𝑚 + 1 by (2.26), (2.28), (2.29), the assumption that M is chosen to be
sufficiently large and ℭ𝑚+3 ≤ 4ℭ𝑚+2 ≤ 16ℭ𝑚+1.

Choosing C sufficiently large, from (2.25), we obtain (2.20). In particular, the series has a radius of
convergence of at least 1/𝐶, independently of 𝑟 ∈ 𝐼 (although depending on I).

Lastly, we need to prove the continuity of the series with respect to the parameter r. We introduce

the dependence of 𝑊 𝑗 , 𝑍 𝑗 with r, denoting the coefficients by 𝑊 𝑗 (𝑟), 𝑍 𝑗 (𝑟). Let 𝑊 (𝑟 ) (𝜉) = ∑ 𝑗
𝑊𝑗 (𝑟 )

𝑗! 𝜉 𝑗 ,

and denote similarly by 𝑍 (𝑟 ) the series formed by 𝑍 𝑗 (𝑟). We show continuity with respect to r for 𝑊 (𝑟 ) ;
an analogous proof applies for 𝑍 (𝑟 ) . Let 𝜀 > 0, 𝛿 > 0. For 𝑟, 𝑟 ∈ 𝐼 with |𝑟 − 𝑟 | < 𝛿, we can bound

|𝑊 (𝑟 ) (𝜉) −𝑊 (𝑟 ) (𝜉) | ≤
𝑁−1∑
𝑗=0

|𝑊 𝑗 (𝑟) −𝑊 𝑗 (𝑟) |
|𝜉 | 𝑗
𝑗!
+
∞∑
𝑗=𝑁

|𝑊 𝑗 (𝑟) |
|𝜉 | 𝑗
𝑗!
+
∞∑
𝑗=𝑁

|𝑊 𝑗 (𝑟) |
|𝜉 | 𝑗
𝑗!

≤
𝑁−1∑
𝑗=0

|𝑊 𝑗 (𝑟) −𝑊 𝑗 (𝑟) |
|𝜉 | 𝑗
𝑗!
+ 2𝐶

∞∑
𝑗=𝑁

𝐶 𝑗 |𝜉 | 𝑗 .
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As 𝜉 < 1/𝐶, we can take N large enough so that the last sum is smaller than 𝜀/2. As the coefficients
𝑊 𝑗 (𝑟) are continuous, there also exist 𝛿 𝑗 such that |𝑊 𝑗 (𝑟) −𝑊 𝑗 (𝑟) | < 𝜀/(2𝑁) as long as |𝑟 − 𝑟 | < 𝛿 𝑗 .
Therefore, taking |𝛿 | < min 𝑗=0,...𝑁−1 𝛿𝑖 , we have that |𝑊 (𝑟 ) −𝑊 (𝑟+𝛿) | < 𝜀, and this shows continuity
with respect to r. �

As one can see from (2.19), the n-th coefficient of the Taylor series is of order 𝑂 (|𝑘 −𝑛|−1), as 𝑘 → 𝑛

(equivalently, 𝑟 → 𝑟𝑛). All the previous coefficients of the Taylor series are not singular as 𝑘 → 𝑛.
However, the higher-order coefficients will not be 𝑂 (1), since they depend on 𝑍𝑛 via the Taylor series
recursion. The following Corollary studies the order in 1

|𝑘−𝑛 | of the higher-order Taylor coefficients

Corollary 2.4. We have the following asymptotics for r in a neighborhood of 𝑟𝑛, with 𝑛 ∈ N:

|𝑊𝑚 | �𝑚 1 + |𝑘 − 𝑛|−
 𝑚−2
𝑛−1 � and |𝑍𝑚 | �𝑚 1 + |𝑘 − 𝑛|−
 𝑚−1

𝑛−1 � . (2.30)

In particular, for 𝑚 ≤ 𝑛, we have |𝑊𝑚 | = 𝑂 (1), and for 𝑚 < 𝑛, we have |𝑍𝑚 | = 𝑂 (1). We also have that

|𝑍𝑛 | = 𝑂 (1 + |𝑘 − 𝑛|−1).

Proof. From Proposition 2.2, we can iteratively calculate 𝑊𝑚 and 𝑍𝑚 with equations (2.16), (2.17),
(2.18) and (2.19). Each coefficient is a rational function of the previous coefficients. From Lemma A.10
and Lemma A.11, we have 𝐷𝑊 ,0 and 𝐷𝑍,1 remain bounded away from 0 for r in a neighborhood of 𝑟𝑛.
We trivially have that for 𝑚 < 𝑛, the factor 𝑚 − 𝑘 in (2.19) also remains bounded away from 0. Then
the result holds trivially for 𝑊𝑚 in the case 𝑚 ≤ 𝑛 and for 𝑍𝑚 in the case 𝑚 < 𝑛. The case 𝑚 = 𝑛 for 𝑍𝑚
similarly holds using in addition that 𝑘 (𝑟) has nonzero derivative at 𝑟 = 𝑟𝑚 (Lemma 2.1).

For 𝑚 > 𝑛, each coefficient is a rational function of the previous one, with denominators only
involving 𝐷𝑍,1, 𝐷𝑊 ,0 and 𝑚 − 𝑘 , all of them bounded away from zero and infinity in a neighborhood
of 𝑟𝑚 (as 𝑚 > 𝑛). We will prove (2.30) via induction in m, supposing it holds for all coefficients of
order < 𝑚.

We start proving the induction step for 𝑊𝑚. As a consequence of the induction hypothesis, we know

that 𝐷◦,𝑖 and 𝑁◦,𝑖 are of the order 𝑂
(
1 + |𝑘 − 𝑛|−
 𝑖−1

𝑛−1 �
)

for every 𝑖 < 𝑚. From expression (2.18) and

the induction hypothesis, we have

|𝑊𝑚 | � 1 + |𝑘 − 𝑛|−
 𝑚−2
𝑛−1 � +

𝑚−2∑
𝑗=0

(1 + |𝑘 − 𝑛|−
⌊
𝑚− 𝑗−2
𝑛−1

⌋
) (1 + |𝑘 − 𝑛|−

⌊
𝑗−1
𝑛−1

⌋
) � 1 + |𝑘 − 𝑛|−
 𝑚−2

𝑛−1 � , (2.31)

where we have used the floor concavity property 
𝑥� + 
𝑦� ≥ 
𝑥 + 𝑦� for all 𝑥, 𝑦 ∈ R+. Thus, we obtain
the desired estimate on |𝑊𝑚 |.

Now consider 𝑍𝑚. For the first line of (2.19), we have

������
𝑚−2∑
𝑗=1

(
𝑚

𝑗

)
𝐷𝑍,𝑚− 𝑗𝑍 𝑗+1

������ �
𝑚−2∑
𝑗=1

(1 + |𝑘 − 𝑛|−
⌊
𝑚− 𝑗−1
𝑛−1

⌋
) (1 + |𝑘 − 𝑛|−

⌊
𝑗

𝑛−1

⌋
) � 1 + |𝑘 − 𝑛|−
 𝑚−1

𝑛−1 � . (2.32)

Now consider the second line of (2.19). Since the expansion of 𝑁𝑍,𝑚 − 𝜕𝑍𝑁𝑍 (𝑃𝑠)𝑍𝑚 does not
involve 𝑍𝑚, we have from the induction hypothesis and (2.31) that

�� (𝑁𝑍,𝑚 − (𝜕𝑍𝑁𝑍 (𝑃𝑠))𝑍𝑚
)
− 𝑍1𝑊𝑚𝜕𝑊 𝐷𝑍 (𝑃𝑠)

��
�

𝑚−1∑
𝑖=0

(|𝑊𝑖 | + |𝑍𝑖 |) |𝑊𝑚−𝑖 | +
𝑚−1∑
𝑖=1

|𝑍𝑖 | |𝑍𝑚−𝑖 | + |𝑍1 | |𝑊𝑚 |
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�

𝑖−1∑
𝑖=0

(1 + |𝑘 − 𝑛|−
 𝑖−1
𝑛−1 � )(1 + |𝑘 − 𝑛|−
 𝑚−𝑖−2

𝑛−1 � ) +
𝑚−1∑
𝑖=1

(1 + |𝑘 − 𝑛|−
 𝑖−1
𝑛−1 � )(1 + |𝑘 − 𝑛|−
 𝑚−𝑖−1

𝑛−1 � )

+ 1 + |𝑘 − 𝑛|−
 𝑚−2
𝑛−1 �

� 1 + |𝑘 − 𝑛|−
 𝑚−2
𝑛−1 � . (2.33)

Combining (2.32) and (2.33), we obtain the desired estimate on |𝑍𝑚 | and hence conclude the proof by
induction. �

2.3. Taylor expansion around 𝑷0

We now aim to construct smooth solutions emanating from 𝑃0 and reaching 𝑃𝑠 at 𝜉 = 0. Let us recall
that 𝑃0 is a point in the compactification of the phase portrait that corresponds to 𝜉 = 0, and where
𝑆 = +∞ and U has finite value (in 𝑊, 𝑍 coordinates, 𝑃0 is at infinity along a line parallel to 𝑊 − 𝑍 = 0).
Due to the singular nature of the coordinate change 𝑅 ↦→ 𝜉 near 𝑅 = 0, and the singular nature of 𝑃0, it
is useful to instead work in terms of the self-similar coordinate 𝜁 = exp(𝜉). Moreover, we will extend the
values of 𝜁 to negative 𝜁 as well considering a function W (𝜁) on the whole real line that is associated
with W for 𝜁 > 0 and with Z for negative 𝜁 (see a precise definition below). In particular, we will search
for a solution W to (1.13) for 𝜁 ∈ [−1, 1] satisfying (W (1),−W (−1)) = (𝑊0, 𝑍0). Such a solution
would correspond to a profile

𝑊 (𝜉) = exp(−𝜉)W (exp(𝜉)), 𝑍 (𝜉) = − exp(−𝜉)W (− exp(𝜉)), (2.34)

solving equation (1.10). Thus, one can understand Z as the natural continuation along 𝑃0 (𝜁 = 0) of
the W solution. Moreover, we will see that the singular nature of the point 𝑃0 is captured in the factors
exp(−𝜉) of (2.34), so that the function W (𝜁) is smooth at 𝜁 = 0.

Proposition 2.5. For any 𝐴 > 0, there exists a solution W to (1.13) in a neighborhood of 𝜁 = 0 which

can be written in terms of a convergent power series

W (𝜁) =
∞∑
𝑖=0

𝑤𝑖𝜁
𝑖 , (2.35)

such that 𝑤0 = 𝐴. Moreover, letting 𝛾 = 7/5 and r sufficiently close to 𝑟∗(𝛾), or 𝛾 > 1 with 𝑟 ∈ (𝑟3, 𝑟4),
there exists a value of A such that the solution can be continued to 𝜁 ∈ [−1, 1] and (W (1),−W (−1)) =
(𝑊0, 𝑍0). The solution corresponding to that value of A is continuous with respect to r.

Proof. Let us start by writing

V = 𝜁 + 1

2
(W (𝜁) −W (−𝜁) + 𝛼(W (𝜁) +W (−𝜁)))

G = −
(
(𝑟 − 1)W + 𝛼

2𝜁
(W2 (𝜁) −W2(−𝜁))

)
,

so that (1.13) can be rewritten as

V𝜕𝜁W = G . (2.36)

The coefficients 𝑤𝑖 will be determined by substituting the series (2.35) into the equation (2.36) in order
to obtain a recursion formula. Writing V (𝜁) = ∑∞𝑖=0 𝑣𝑖𝜁

𝑖 and G (𝜁) = ∑∞𝑖=0 𝑔𝑖𝜁
𝑖 yields the expression

(𝑛 + 1)𝑣0𝑤𝑛+1 = 𝑔𝑛 −
𝑛−1∑
𝑖=0

(𝑖 + 1)𝑣𝑛−𝑖𝑤𝑖+1, (2.37)
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where

𝑣𝑖 = 1𝑖=1 +
𝑤𝑖

2

(
1 + 𝛼 + (1 − 𝛼) (−1)𝑖+1

)
,

𝑔𝑖 = (1 − 𝑟)𝑤𝑖 − 12 |𝑖𝛼
𝑖∑
𝑗=1

𝑤 𝑗𝑤𝑖− 𝑗+1

︸�����������������������������������︷︷�����������������������������������︸
𝑔̄𝑖

−212 |𝑖𝛼𝑤0𝑤𝑖+1. (2.38)

Rewriting (2.37) and using 𝑣0 = 𝛼𝑤0, we obtain

𝛼𝑤0 (𝑛 + 1 + 212 |𝑛)𝑤𝑛+1 = 𝑔̄𝑛 −
𝑛−1∑
𝑖=0

(𝑖 + 1)𝑣𝑛−𝑖𝑤𝑖+1, (2.39)

which gives an inductive definition of 𝑤𝑖 given 𝑤0 = 𝐴. We now prove that the corresponding series is
analytic in a small neighborhood of the origin. We inductively assume that

|𝑤𝑖 | + |𝑔̄𝑖 | + |𝑣𝑖 | ≤ ℭ𝑖𝑀
𝑖−1 for all 2 ≤ 𝑖 ≤ 𝑛,

where we recall ℭ𝑖 denotes the Catalan numbers. We trivially get for 𝑖 = 0, 1 that |𝑤𝑖 | + |𝑔̄𝑖 | + |𝑣𝑖 | � 1.
Then from (2.39), we have

|𝑤𝑛+1 | ≤
1

𝛼(𝑛 + 1 + 212 |𝑛)

(
|𝑔̄𝑛 | +

𝑛−2∑
𝑖=1

(𝑖 + 1) |𝑣𝑛−𝑖 | |𝑤𝑖+1 | + |𝑣𝑛 | |𝑤1 | + 𝑛|𝑣1 | |𝑤𝑛 |
)

� ℭ𝑛𝑀
𝑛−1 + 𝑀𝑛−1

𝑛−2∑
𝑖=1

ℭ𝑛−𝑖ℭ𝑖+1

� 𝑀𝑛−1 (ℭ𝑛+1 + ℭ𝑛+2) � 𝑀𝑛−1
ℭ𝑛+1. (2.40)

Here, we used that ℭ𝑛+1 =
∑𝑛

𝑖=0 ℭ𝑖ℭ𝑛−𝑖 and ℭ𝑖+1 � ℭ𝑖 � ℭ𝑖+1. We can then use this bound together
with the inductive hypothesis to bound 𝑔̄𝑛+1 and 𝑣𝑛+1. For 𝑔̄𝑛+1, we have

|𝑔̄𝑛+1 | � |𝑤𝑛+1 | +
(

𝑛∑
𝑖=2

|𝑤𝑖𝑤𝑛−𝑖+2 | + |𝑤1 | |𝑤𝑛+1 |
)
� 𝑀𝑛−1

ℭ𝑛+1.

Finally, (2.40) implies |𝑣𝑛+1 | � 𝑀𝑛−1ℭ𝑛+1, closing the induction. Since ℭ𝑖 ≤ 4𝑖 , then we obtain that the
power series that the series W (𝜁) = ∑∞𝑖=0 𝑤𝑖𝜁

𝑖 is analytic in a small neighborhood (−𝛿, 𝛿) of the origin.
Under the change of variables 𝑊 (log 𝜁) = 1

𝜁
W (𝜁) (and analogously with Z), we have that (2.36)

reads like ODE (1.10). Thus, we set (𝑊 (log 𝛿
2 ), 𝑍 (log 𝛿

2 )) = 2
𝛿
(W ( 𝛿2 ),−W (− 𝛿

2 )) and solve (1.10). As
each coefficient 𝑤𝑖 is continuous with r, we have that W , for a fixed 𝜁 ∈ (−𝛿/2, 𝛿2), is continuous with
respect to r. This is done in exactly the same way as we did for (𝑊 (𝑟 ) (𝜉), 𝑍 (𝑟 ) (𝜉)) in Proposition 2.3.
Thus, the continuations W and Z are also continuous with respect to r because of the stability of the
ODE with respect to r.

Finally, we need to prove that the solution (𝑊, 𝑍) reaches 𝑃𝑠 . If we consider the field
(𝑁𝑊 𝐷𝑍 , 𝑁𝑍𝐷𝑊 ) (which reverses time because 𝐷𝑍 < 0), our solution corresponds to a trajectory
arriving at 𝑃0. Let H be sufficiently large, 𝑃 (𝐻 ) be the point 𝑃𝑠 + (𝐻,−𝐻) and 𝑃̌ (𝐻 ) be the point in the
same vertical as 𝑃 (𝐻 ) and lying in 𝐷𝑍 = 0. We call T (𝐻 ) the triangle formed by 𝑃𝑠 , 𝑃 (𝐻 ) and 𝑃̌ (𝐻 ) ,
which is drawn in Figure 3. We have that

𝑊 (log 𝜁) + 𝑍 (log 𝜁) = 2𝑤1 +𝑂 (𝜁) =
−4(𝑟 − 1)
3(𝛾 − 1) +𝑂 (𝛿).

https://doi.org/10.1017/fmp.2024.12 Published online by Cambridge University Press



Forum of Mathematics, Pi 21

2.0 2.5 3.0 3.5

–4.0

–3.5

–3.0

–2.5

Figure 3. Field (𝑁𝑊 𝐷𝑍 , 𝑁𝑍𝐷𝑊 ) in (𝑊, 𝑍) coordinates for 𝛾 = 5
3 and 𝑟 = 11

10 . The shaded area

corresponds to the triangle T (1) .

Let us argue that for 𝜁 > 0 sufficiently small and H sufficiently large (depending on 𝜁), we will have
that (𝑊 (log 𝜁), 𝑍 (log 𝜁)) lies in T (𝐻 ) . We just need to show that −4(𝑟−1)

3(𝛾−1) is bigger than 𝑊0 + 𝑍0 (which

is the value of 𝑊 + 𝑍 along the line 𝑃𝑠𝑃 (𝐻 ) ). We have that

−4(𝑟 − 1)
3(𝛾 − 1) − (𝑊0 + 𝑍0) =

1

6(𝛾 − 1) (−7 + 9𝛾 + 𝑟 − 3𝛾𝑟 − 3R1) ,

so we just need to show the right parenthesis is positive. Now,

(−7 + 9𝛾 + 𝑟 − 3𝛾𝑟)2 − 9R2
1 = 16(𝑟 − 1) (2 + (−5 + 3𝛾)𝑟) > 16(𝑟 − 1) (𝛾 − 1) (6𝛾 − 5)

𝛾
> 0,

where in the last inequality, we used 𝑟 < 2 − 1
𝛾

from Lemma A.6. Therefore, it suffices to show

−7 + 9𝛾 + 𝑟 − 3𝛾𝑟 > 0. Using again that 𝑟 < 2 − 1
𝛾

, we have that

−7 + 9𝛾 + 𝑟 − 3𝛾𝑟 >
(𝛾 − 1) (1 + 3𝛾)

𝛾
> 0.

We conclude that (𝑊 (log 𝜁), 𝑍 (log 𝜁)) lies in T (𝐻 ) .
We now show that the solution cannot come from the boundary of T (𝐻 ) except from point 𝑃𝑠 .

It suffices checking that the normal component of the field (𝑁𝑍𝐷𝑊 , 𝑁𝑊 𝐷𝑍 ) at each side of T (𝐻 )

points outwards (except at the extremum 𝑃𝑠). For the vertical segment 𝑃𝑠𝑃 (𝐻 ) , this is guaranteed by

Lemma A.21, and for the side 𝑃𝑠 𝑃̌ (𝐻 ) , this is guaranteed by Lemma A.22. For the side 𝑃 (𝐻 ) 𝑃̌ (𝐻 ) ,
this follows from the fact that 𝑁𝑊 𝐷𝑍 > 0 (Lemma A.16). Using Proposition 1.6, the fact that T (𝐻 ) is
bounded and that there are no equilibrium points in T (𝐻 ) the trajectory has to come from 𝑃𝑠 . The fact
that there are no equilibrium points on T (𝐻 ) follows from T (𝐻 ) ⊂ Ω and Lemma A.17 except for 𝑃o
in the case 𝛾 = 7/5, r sufficiently close to 𝑟∗ and the equilibrium point 𝑃o. In that case, note that as
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𝛾 = 7/5, 𝑃𝑠 is the point with highest Z of T (𝐻 ) , and by Lemma A.17, 𝑃o has larger Z, so we deduce
𝑃o ∉ T (𝐻 ) . �

From now on, we will always choose A such that the solution reaches 𝑃𝑠 at 𝜉 = 0 (that is, 𝜁 = 1).
We will let (𝑊𝑜

𝑟 , 𝑍
𝑜
𝑟 ) to be that solution in (𝑊, 𝑍) variables. Therefore, in (𝑊, 𝑍) variables, we get the

Taylor expansion

𝑊𝑜
𝑟 (𝜉) = 𝐴𝑒−𝜉 +

∞∑
𝑗=0

𝑊𝑜
𝑟 , 𝑗

𝑒 𝑗 𝜉

𝑗!
, 𝑍𝑜

𝑟 (𝜉) = −𝐴𝑒−𝜉 +
∞∑
𝑗=0

𝑍𝑜
𝑟 , 𝑗

𝑒 𝑗 𝜉

𝑗!
(2.41)

for some 𝑊𝑜
𝑟 , 𝑗 = (−1) 𝑗𝑍𝑜

𝑟 , 𝑗 . Moreover, the series (without the 𝑒−𝜉 term) converges uniformly for
𝜉 < 𝑀 < 0 for some M sufficiently negative.

Remark 2.6. Note from the proof that the solution (𝑊𝑜
𝑟 , 𝑍

𝑜
𝑟 ) will stay in the region Ω for 𝜉 < 0. That

is because the curve (𝑊𝑜
𝑟 (𝜉), 𝑍𝑜

𝑟 (𝜉)) for 𝜉 ∈ [−𝑀 ′, 0] will stay in some T (𝑀 ) for sufficiently large M

(as seen in the proof), and therefore, as T (𝑀 ) ⊂ Ω, we get that (𝑊𝑜
𝑟 , 𝑍

𝑜
𝑟 ) stays in Ω for all 𝜉 < 0.

Note also that 𝑊𝑜
𝑟 (𝜉) is decreasing for all 𝜉 ∈ (−∞, 0]. This follows from the fact that 𝐷𝑊 > 0 in Ω

and 𝑁𝑊 < 0 in T (𝑀 ) for every M from Lemma A.16.

3. Left of 𝑷𝒔

This section is dedicated to showing properties of the solution left of 𝑃𝑠 in the phase portrait, which in
the self-similar radial variable 𝜉 corresponds to the region 𝜉 > 0, or equivalently, the region outside the
backwards acoustic cone of the singularity. In particular, the main goal of this section is to prove the
following proposition.

Proposition 3.1. Suppose either 𝑛 = 3 with 𝛾 ∈ (1, +∞) or that 𝑛 ∈ N is odd and sufficiently large

with 𝛾 = 7/5. Let 𝑟 ∈ (𝑟𝑛, 𝑟𝑛+1). The smooth solution 𝑊 (𝑟 ) (𝜉), 𝑍 (𝑟 ) (𝜉) defined in Proposition 2.3 can

be continued up to 𝜉 = +∞, and it satisfies lim𝜉→+∞(𝑊 (𝑟 ) (𝜉), 𝑍 (𝑟 ) (𝜉)) = (0, 0) = 𝑃∞. Moreover, the

solution stays in the region where 𝐷𝑊 > 0, 𝐷𝑍 > 0 for all 𝜉 > 0.

We will prove Proposition 3.1 using a double barrier argument. We will consider a barrier for the
near-left region (𝑏nl(𝑠)) and another one for the far-left region (𝑏fl (𝑡)). The field will point upwards
along the barrier 𝑏fl (𝑡). The smooth solution starts below it, and so the barrier will be insufficient to
bound the behavior of the smooth solution. The barrier 𝑏nl(𝑠) will have the field pointing upwards, start
above the smooth solution and will be valid over an interval sufficiently long to intersect 𝑏fl (𝑡). Then,
concatenating 𝑏nl(𝑠) (up to its intersection) with 𝑏fl (𝑡), one obtains a barrier bounding the trajectory of
the smooth solution.

Let us define the far-left barrier as 𝑏fl (𝑡) = (𝑏fl
𝑊
(𝑡), 𝑏fl

𝑍
(𝑡)), where

𝑏fl
𝑊 (𝑡) = 𝑊0 + 𝐵1𝑊1𝑡 +

1

2
𝐵2𝑡

2 and 𝑏fl
𝑍 (𝑡) = 𝑍0 + 𝐵1𝑍1𝑡 +

1

2
𝐵3𝑡

2, (3.1)

where 𝐵1, 𝐵2 and 𝐵3 will be chosen to enforce that (𝑏fl
𝑊
(1), 𝑏fl

𝑍
(1)) = 𝑃o and a first-order cancellation

at this point. The point 𝑃o is defined as the only solution to 𝑁𝑊 (𝑊, 𝑍) = 𝑁𝑍 (𝑊, 𝑍) = 0 in the region
{𝑊 > 𝑍} (there are two solutions in the symmetry axis 𝑊 = 𝑍 and another two solutions outside the
axis, one in each halfplane). 𝑃o is given explicitly by

𝑃o = (𝑋0, 𝑌0) =
����

2
(√

3 − 1
)
𝑟

3𝛾 − 1
,−

2
(
1 +
√

3
)
𝑟

3𝛾 − 1

����
. (3.2)
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Moreover, if we do a first-order expansion around 𝑃o, we observe that one eigenvector of the matrix
((∇𝑁𝑊 )/𝐷𝑊 , (∇𝑁𝑍 )/𝐷𝑍 ) is given by (𝑋1, 𝑌1) with

Θ = −
√

2
(
53 − 3𝛾

(
45𝛾3 − 110𝛾 + 88

) )
𝑟 +
(
27𝛾2 − 30𝛾 + 7

)2 + (3𝛾(𝛾(3𝛾(𝛾 + 20) − 94) + 28) + 25)𝑟2

+ 3
√

3𝛾2 (𝑟 − 5) + 2
√

3𝛾(𝑟 + 7) −
√

3(𝑟 + 3),

𝑋1 = −2
(
3𝛾 + 4

√
3 − 9
) (

3𝛾2
(
𝑟2 − 3
)
− 6𝛾(𝑟 − 2)𝑟 + 6𝛾 − 𝑟 (𝑟 + 4) − 1

)
,

𝑌1 = Θ

(
3
(√

3 − 1
)
𝛾𝑟 −
(√

3 − 3
)
(3𝛾 − 1) −

(
3 +
√

3
)
𝑟
)
.

In order to achieve the desired cancellations, we then choose

𝐵1 = 2
(𝑌0 − 𝑍0)𝑋1 − (𝑋0 −𝑊0)𝑌1

𝑋1𝑍1 −𝑊1𝑌1
,

𝐵2 = 2 (𝑋0 −𝑊0 − 𝐵1𝑊1) ,
𝐵3 = 2 (𝑌0 − 𝑍0 − 𝐵1𝑍1) .

(3.3)

It is clear that the definitions of 𝐵2 and 𝐵3 ensure that 𝑏fl
𝑊
(1) = 𝑋0 and 𝑏fl

𝑍
(1) = 𝑌0, respectively. 𝐵1 is

defined so that (𝑋1, 𝑌1) is proportional to 𝑏fl ′(0). In particular, we will require

0 = (𝑋1, 𝑌1) ∧
𝑑

𝑑𝑡
𝑏fl |𝑡=1

= (𝑋1, 𝑌1) ∧ (𝐵1𝑊1 + 𝐵2, 𝐵1𝑍1 + 𝐵3)
= (𝑋1, 𝑌1) ∧ (𝐵1(−𝑊1,−𝑍1) + 2(𝑋0 −𝑊0, 𝑌0 − 𝑍0)) .

Solving for 𝐵1, one obtains the first equation of (3.3).
In order to check the validity of the barrier, we need to show the positivity of the seventh-degree

polynomial

𝑃fl (𝑡) = 𝑏fl ′
𝑍 (𝑡)𝑁𝑊 (𝑏fl (𝑡))𝐷𝑍 (𝑏fl (𝑡)) − 𝑏fl ′

𝑊 (𝑡)𝑁𝑍 (𝑏fl (𝑡))𝐷𝑊 (𝑏fl (𝑡)). (3.4)

Note that the vector (𝑏fl ′
𝑍
(𝑡),−𝑏fl ′

𝑊
(𝑡)) is normal to the curve 𝑏fl(𝑡) and points in the upwards direction.

Proposition 3.2. Let 𝛾 ∈ (1, +∞) and 𝑟 ∈ (𝑟3, 𝑟4). We have that 𝑃fl(𝑡) > 0 for every 𝑡 ∈ (0, 1).
Moreover, we have that 𝐷𝑊 (𝑏fl (𝑡)) > 0 and 𝐷𝑍 (𝑏fl(𝑡)) > 0 for any 𝑡 ∈ (0, 1].
Proof. The statement 𝑃fl(𝑡) > 0 for every 𝑡 ∈ (0, 1) is proven via a computer-assisted proof. The
code can be found in the supplementary material, and we refer to Appendix B for details about the
implementation.

With respect to 𝐷𝑍 (𝑏fl (𝑡)) > 0, note that this is a second-degree polynomial vanishing at 𝑡 = 0. For
𝑡 > 0 small enough, 𝐷𝑍 (𝑏fl (𝑡)) > 0 since the slope of 𝑏fl (𝑡) coincides with the slope of the smooth
solution (and 𝐷𝑍,1 > 0 by Lemma A.11). Now, as 𝐷𝑍 (𝑃o) > 0 (Lemma A.26), the second-degree
polynomial 𝐷𝑍 (𝑏fl (𝑡)) cannot be non-positive at any 0 < 𝑡0 < 1 because otherwise 𝐷𝑍 (𝑏fl (𝑡)) would
have three roots by continuity (one at 𝑡 = 0, and two in (0, 1)).

Lastly, 𝐷𝑊 (𝑏fl (𝑡)) is also a second-degree polynomial which is positive at 𝑡 = 0 and 𝑡 = 1. It would
need to have two roots in [0, 1] in order to be negative for some 𝑡 ∈ [0, 1]. That is impossible since
its derivative at 0 is positive: 𝑏fl (𝑡) agrees up to first order with the smooth solution and 𝐷𝑊 ,1 > 0 by
Lemma A.26. �

For the case 𝛾 = 7/5 and 𝑟 ∈ (𝑟𝑛, 𝑟𝑛+1) for n odd large enough, we instead consider the barrier

𝑏fl
7/5(𝑡) =

(
𝑊0 +𝑊1𝑡 +

𝑊2

2
𝑡2 −
(
𝑊0 +𝑊1 +

𝑊2

2

)
𝑡3, 𝑍0 + 𝑍1𝑡 +

𝑍2

2
𝑡2 −
(
𝑍0 + 𝑍1 +

𝑍2

2

)
𝑡3
)
. (3.5)
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It is clear that the barrier matches up to second order at zero and that 𝑏fl
7/5 (1) = 𝑃∞ = (0, 0). In the very

same way as before, we define the polynomial

𝑃fl
7/5(𝑡) = 𝑏fl ′

7/5,𝑍 (𝑡)𝑁𝑊 (𝑏fl
7/5(𝑡))𝐷𝑍 (𝑏fl

7/5(𝑡)) − 𝑏fl ′
7/5,𝑊 (𝑡)𝑁𝑍 (𝑏fl

7/5(𝑡))𝐷𝑊 (𝑏fl
7/5 (𝑡)). (3.6)

We have the same type of result.

Proposition 3.3. Let 𝛾 = 7/5, 𝑛 ∈ N large enough and 𝑟 ∈ (𝑟𝑛, 𝑟𝑛+1). We have that 𝑃fl
7/5(𝑡) > 0 for

every 𝑡 ∈ (0, 1). Moreover, we also have that 𝐷𝑊 (𝑏fl
7/5 (𝑡)) > 0 for 𝑡 ∈ (0, 1) and 𝐷𝑍 (𝑏fl

7/5 (𝑡)) > 0 for

𝑡 ∈ (0, 1) \ [𝑡in7/5, 𝑡out
7/5], for some 𝑡in7/5, 𝑡

out
7/5 such that 𝐷𝑍 (𝑏fl

7/5(𝑡in7/5)) = 𝐷𝑍 (𝑏fl
7/5 (𝑡out

7/5)) = 0.

Moreover, the points 𝑃in
7/5 = 𝑏fl

7/5(𝑡in7/5) and 𝑃out
7/5 = 𝑏fl

7/5 (𝑡out
7/5) are located to the left of 𝑃̄𝑠 .

Proof. We have that 𝐷𝑊 (𝑏fl
7/5(𝑡)) is a third-degree polynomial. Calculating this polynomial at

𝑟 = 𝑟∗(7/5), we obtain

𝐷𝑊 (𝑏fl
7/5 (𝑡))
���
𝑟=𝑟∗

=
1

396

(
−52
(
3
√

5 − 10
)
𝑡3 +
(
57
√

5 − 91
)
𝑡2 − 33

(
3
√

5 − 5
)
𝑡 + 198

(√
5 − 1
))

.

As all the coefficients are positive, and we obtain that the coefficients of 𝐷𝑊 (𝑏fl
7/5(𝑡)) are still positive

for r sufficiently close to 𝑟∗(7/5), so that 𝐷𝑊 (𝑏fl
7/5(𝑡)) > 0 for 𝑡 ∈ (0, 1).

With respect to 𝑃fl
7/5 (𝑡), we observe that this polynomial is a multiple of 𝑡3 since the first three

coefficients of 𝑏fl
7/5(𝑡) agree with those of the smooth solution passing through 𝑃𝑠 . We also have that

𝑃fl
7/5 (1) = 0 because 𝑁𝑊 (𝑃∞) = 𝑁𝑍 (𝑃∞) = 0 and 𝐷𝑊 (𝑃∞) = 𝐷𝑍 (𝑃∞) = 1. Moreover, we have that

𝑃fl ′
7/5 (1) = 𝑏fl ′

7/5,𝑍 (1)𝐷𝑍 (𝑃∞)∇𝑁𝑊 (𝑃∞) · 𝑏fl ′
7/5(1) − 𝑏fl ′

7/5,𝑊 (1)𝐷𝑊 (𝑃∞)∇𝑁𝑍 (𝑃∞) · 𝑏fl ′
7/5(1)

= 𝑏fl ′
7/5,𝑍 (1) (−𝑟, 0) · 𝑏fl ′

7/5(1) − 𝑏fl ′
7/5,𝑊 (1) (0,−𝑟) · 𝑏fl ′

7/5 (1) = 0.

Therefore, we see that 𝑃fl
7/5 (𝑡) = (1 − 𝑡)2𝑡3𝑄fl

7/5(𝑡) for some sixth-degree polynomial 𝑄fl
7/5 (𝑡). We just

need to show that 𝑄fl
7/5(𝑡) > 0 for 𝑡 ∈ (0, 1). Calculating 𝑄fl

7/5 (𝑡) at 𝑟 = 𝑟∗, we obtain

𝑄fl
7/5 (𝑡)
���
𝑟=𝑟∗

= 375
(
17845372

√
5 − 22507109

)
𝑡6 + 25

(
242253290

√
5 − 88777981

)
𝑡5

+ 10
(
1945028708

√
5 − 2421950855

)
𝑡4 + 660

(
12759056

√
5 − 8257439

)
𝑡3

+ 7260
(
1604200

√
5 − 2790277

)
𝑡2 − 21780

(
137
√

5 − 38799
)
𝑡 + 313632

(
6133

√
5 − 7995

)
.

As all the coefficients are positive, they will be positive for r sufficiently close to 𝑟∗, and therefore, for r

sufficiently close to 𝑟∗, we have that 𝑄fl
7/5 (𝑡) > 0 for 𝑡 ∈ (0, 1).

With respect to 𝐷𝑍 , we have that 𝐷𝑍 (𝑏fl
7/5(𝑡)) is a multiple of t (as it vanishes at zero), and moreover,

1

𝑡
𝐷𝑍 (𝑏fl

7/5(𝑡)) = 𝐷𝑍,1 +
𝐷𝑍,2

2
𝑡 + 1

6
𝐷fl

𝑍,3𝑡
2 (3.7)

for some 𝐷fl
𝑍,3. We have that 𝐷𝑍,1 > 0 from Lemma A.11, so the polynomial is initially positive.

However, at 𝑟 = 𝑟∗, we have that 𝐷𝑍,1 = 0, 𝐷𝑍,2
2 =

19−9
√

5
264 < 0 and

𝐷fl
𝑍,3

6 =
245+9

√
5

264 > 0. Therefore,
it is clear that for r sufficiently close to 𝑟∗, we have two real roots of the second-degree polynomial
(3.7), which we define to be 𝑡in7/5 and 𝑡out

7/5. Moreover, as 𝐷fl
𝑍,3 > 0, the sign of (3.7) is positive except for

𝑡 ∈ [𝑡in7/5, 𝑡out
7/5].
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Lastly, we just need to show that 𝑏fl
7/5(𝑡in7/5) is located to the left of 𝑃̄𝑠; that is, we need to check

𝑏fl
7/5,𝑊
����
−𝐷𝑍,2 −

√
𝐷2

𝑍,2 − 8𝐷𝑍,1𝐷
fl
𝑍,3/3

2𝐷fl
𝑍,3/3

����
< s𝑊0. (3.8)

This is checked in Lemma A.15. �

We define the near-left barrier to be

𝑏nl
𝑛,𝑊 (𝑠) =

𝑛∑
𝑖=0

1

𝑖!
𝑊𝑖𝑠

𝑖 ,

𝑏nl
𝑛,𝑍 (𝑠) =

𝑛∑
𝑖=0

1

𝑖!
𝑍𝑖𝑠

𝑖

(3.9)

and define 𝑏nl
𝑛 (𝑠) = (𝑏nl

𝑛,𝑊
(𝑠), 𝑏nl

𝑛,𝑍
(𝑠)). We have the following:

Lemma 3.4. Let 𝑛 = 3 with any 𝛾 ∈ (1, +∞) or either 𝑛 ∈ N odd and sufficiently large with 𝛾 = 7/5. Let

𝑟 ∈ (𝑟𝑛, 𝑟𝑛+1). We have that (𝑊 (𝑟 ) (𝜉), 𝑍 (𝑟 ) (𝜉)) is initially above 𝑏nl
𝑛 (𝑠) for s and 𝜉 sufficiently small.

That is, for the same value of W, Z is higher for the smooth solution.

Proof. Both curves (𝑊 (𝑟 ) , 𝑍 (𝑟 ) ) (𝜉) and 𝑏nl
𝑛 (𝑠) agree in their Taylor expansions around 𝑃𝑠 up to order

n. If the (𝑛 + 1)-th coefficient is given by a term (𝑊𝑛+1, 𝑍𝑛+1) 𝑡𝑛+1
(𝑛+1)! , this will have a normal component

over the tangent line of size −(𝑊1, 𝑍1) ∧ (𝑊𝑛+1, 𝑍𝑛+1) 𝑡𝑛+1
(𝑛+1)! (where the sign is positive for a deviation

above the tangent line at 𝑃𝑠 and negative for a deviation below the tangent line at 𝑃𝑠).
Therefore, we just need to check

−(𝑊1, 𝑍1) ∧ (𝑊𝑛+1, 𝑍𝑛+1) > 0⇔ 𝑊1𝑍𝑛+1 − 𝑍1𝑊𝑛+1 < 0.

This is done in Lemma A.26 for the case of 𝑛 = 3. For the case of 𝛾 = 7/5 and n odd sufficiently
large, this will follow from Section 5, concretely from Corollary 5.9. �

We now consider the (4𝑛 − 1)-th degree polynomial

𝑃nl
𝑛 (𝑠) = 𝑏nl ′

𝑛,𝑍 (𝑠)𝑁𝑊 (𝑏nl
𝑛 (𝑠))𝐷𝑍 (𝑏nl

𝑛 (𝑠)) − 𝑏nl ′
𝑛,𝑊 (𝑠)𝑁𝑍 (𝑏nl

𝑛 (𝑠))𝐷𝑊 (𝑏nl
𝑛 (𝑠)), (3.10)

whose sign determines the direction of the normal component of the barrier along 𝑏nl
𝑛 (𝑠). In particular,

we want 𝑃nl
𝑛 (𝑡) to be positive, as this corresponds to the field pointing upwards.

Proposition 3.5. Let 𝛾 > 1, 𝑛 = 3 and 𝑟 ∈ (𝑟3, 𝑟4). There exist 𝑠★ and 𝑡★ depending on r such that

𝑏fl
𝑛 (𝑡★) = 𝑏nl

𝑛 (𝑠★). Moreover, 𝑃nl
𝑛 (𝑠) > 0, 𝐷𝑍 (𝑏nl

𝑛 (𝑠)) > 0 and 𝐷𝑊 (𝑏nl
𝑛 (𝑠)) > 0 for every 𝑠 ∈ (0, 𝑠★].

Proof. We first formulate the barrier 𝑏fl (𝑡) in implicit form using the resultant

𝐵fl(𝑊, 𝑍) =

��������

𝐵2
2 𝐵1𝑊1 𝑊0 −𝑊 0
0 𝐵2

2 𝐵1𝑊1 𝑊0 −𝑊
𝐵3
2 𝐵1𝑍1 𝑍0 − 𝑍 0
0 𝐵3

2 𝐵1𝑍1 𝑍0 − 𝑍

��������
, (3.11)

so that the equation 𝑏fl(𝑡★) = 𝑏nl(𝑠★) can be reformulated as 𝐵fl(𝑏nl
𝑛 (𝑡★)) = 0. Let us fix 𝑠− = 35/100.

We will divide the proof in five steps:

1. For every 𝛾 > 1, the polynomial 𝐵fl(𝑏nl
3 (𝑠)) is negative for 𝑠 > 0 sufficiently small for all 𝑟 ∈ (𝑟3, 𝑟4).

2. For every 𝛾 > 1, the polynomial 𝐵fl (𝑏nl
3 (𝑠−(𝑘 − 3)) is positive for all 𝑟 ∈ (𝑟3, 𝑟4).
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Figure 4. Region T for the case 𝛾 = 7/5 and r sufficiently close to 𝑟∗.

3. For every 𝛾 > 1, we have 𝑃nl
3 (𝑠) > 0 for all 𝑠 ∈ (0, 𝑠−(𝑘 − 3)) and 𝑟 ∈ (𝑟3, 𝑟4).

4. For every 𝛾 > 1, we have 𝐷𝑊 (𝑏nl
3 (𝑠)) > 0 for all 𝑠 ∈ (0, 𝑠−(𝑘 − 3)) and 𝑟 ∈ (𝑟3, 𝑟4).

5. For every 𝛾 > 1, we have 𝐷𝑍 (𝑏nl
3 (𝑠)) > 0 for all 𝑠 ∈ (0, 𝑠−(𝑘 − 3)) and 𝑟 ∈ (𝑟3, 𝑟4).

From items 1 and 2, by continuity, there exists a value 𝑠★ ∈ (0, 𝑠−(𝑟 − 𝑟3)] such that 𝐵fl (𝑏nl
3 (𝑠★)) = 0,

and therefore, there exists 𝑡★ such that 𝑏fl (𝑡★) = 𝑏nl
3 (𝑠★). Then, items 3, 4 and 5 give us the desired result.

Finally, we prove each of those steps with a computer-assisted proof. The code can be found in the
supplementary material. We refer to Appendix B for details about the implementation. �

Lastly, we require an analogous Proposition for the case where 𝛾 = 7/5 and k sufficiently large.

Proposition 3.6. Let 𝛾 = 7/5, and n odd sufficiently large. There exist 𝑠7/5,int and 𝑡7/5,int such that

𝑏fl
7/5,𝑛 (𝑡7/5,int) = 𝑏nl

𝑛 (𝑠7/5,int). Moreover, 𝑃nl
𝑛 (𝑠) > 0 and 𝐷𝑊 (𝑏nl

𝑛 (𝑠)) > 0 for every 𝑠 ∈ (0, 𝑠7/5,int].
Lastly, either 𝐷𝑍 (𝑏nl

𝑛 (𝑠)) > 0 for 𝑠 ∈ (0, 𝑠7/5,int], or there exists some 𝑠′7/5,int < 𝑠7/5,int such that

𝐷𝑍 (𝑏nl
𝑛 (𝑠′7/5,int)) = 0 and the point 𝑏nl

𝑛 (𝑠′7/5,int) is located to the left of 𝑃̄𝑠 .

The proof will require an asymptotic analysis of the Taylor series done in Section 5, and it can be
found at the end of that section.

Proof of Proposition 3.1. For 𝛾 = 7/5 and n sufficiently large, we can consider the closed region T of
the plane which has a corner at 𝑃𝑠 and is enclosed by 𝑏nl

7/5,𝑛 (𝑡), 𝑏fl
7/5(𝑡), 𝐷𝑍 = 0, the diagonal 𝑊 = 𝑍

and the vertical line 𝑊 = 𝑊0 (starting at (𝑊0,𝑊0), ending at 𝑃𝑠). The intersection between 𝑏nl
7/5,𝑛 (𝑡)

and 𝑏fl
7/5(𝑡) is proven in Proposition 3.6. There are two intersection points between 𝑏fl

7/5(𝑡) and 𝐷𝑍 = 0
as indicated in Proposition 3.3. Note that Proposition 3.3 gives us two cases. In the first case, we go
from 𝑃𝑠 to 𝑃∞ by following 𝑏nl

7/5,𝑛 (𝑠) for 0 ≤ 𝑠 ≤ 𝑠7/5,int, then 𝑏
𝑓 𝑙

7/5 up to 𝑃in
7/5, then 𝐷𝑍 = 0 up to 𝑃out

7/5
and finally 𝑏fl

7/5(𝑡) up to 𝑃∞. In the second case, the path is the same except that we connect directly

𝑏nl
3 with 𝐷𝑍 = 0 at 𝑏nl

3 (𝑠′7/5,int). We should notice that in any case, the region of 𝐷𝑍 = 0 which forms

part of T is always located to the left of 𝑃̄𝑠 (by Proposition 3.6 or Proposition 3.3). For general 𝛾 and
𝑟 ∈ (𝑟3, 𝑟4), the endpoint of 𝑏fl(𝑡) at 𝑡 = 1 is 𝑃o, so we consider the same region with the addition of
the barrier 𝑏extra(𝑡) = (𝑋0 − 𝑡, 𝑌0 + 𝑡) for 𝑡 ∈ [0, 1

2 (𝑋0 −𝑌0)]. That is, we take T to be enclosed by 𝑏nl
3 (𝑡),

𝑏fl (𝑡), 𝑏extra(𝑡), 𝑊 + 𝑍 = 0 and 𝑊 = 𝑊0. The intersection between 𝑏nl
3 (𝑡) and 𝑏fl (𝑡) is guaranteed by

Proposition 3.5. We show a sketch of region T in Figure 4 and Figure 5.
We will now show that the region T does not intersect the line 𝐷𝑊 = 0. We first show that the line

𝐷𝑊 = 0 does not intersect 𝑏nl(𝑡) and 𝑏fl(𝑡). For the case 𝑟 ∈ (𝑟3, 𝑟4), this follows as a consequence of
Proposition 3.5 and Proposition 3.2, and for the case 𝛾 = 7/5, n odd sufficiently large, this is follows
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Figure 5. Region T for the case 𝛾 > 1 and 𝑟 ∈ (𝑟3, 𝑟4).

from Proposition 3.3 and Proposition 3.6. In the case 𝑟 ∈ (𝑟3, 𝑟4), the fact that the line 𝐷𝑊 = 0 does
not intersect 𝑏extra(𝑡) follows from Lemma A.19. Moreover, as 𝐷𝑊 is increasing with Z along 𝑊 = 𝑊0

and is also increasing with t along (𝑡, 𝑡), we conclude that 𝐷𝑊 > 0 in all 𝜕T . As 𝐷𝑊 = 0 is a straight
line and T is connected, we obtain that 𝐷𝑊 > 0 in all T . The same reasoning allows us to say that 𝜕T
only intersects 𝐷𝑍 = 0 at 𝑃𝑠 and (in the case where 𝛾 = 7

5 and r sufficiently close to 𝑟∗) the points in
the segment between 𝑃in and 𝑃out defined in Proposition 3.3.

The smooth solution 𝑊 (𝑟 ) (𝜉), 𝑍 (𝑟 ) (𝜉) is in T for small enough 𝜉 due to Lemma 3.4 and the fact that
𝑊1 < 0 (Lemmas A.26 and A.7). It cannot exit T through 𝑏nl(𝑡), 𝑏fl(𝑡) or 𝑏extra(𝑡) due to Proposition 3.5
and Proposition 3.6 (for 𝑏nl(𝑡)), Proposition 3.2 and Proposition 3.3 (for 𝑏fl (𝑡)) and Lemma A.19 (for
𝑏extra(𝑡), 𝑟 ∈ (𝑟3, 𝑟4)). In the case of 𝛾 = 7

5 and r close enough to 𝑟∗, it cannot exit through 𝐷𝑍 = 0
because that region is always located to the left of 𝑃̄𝑠 , and the field points inwards there (Lemma A.22).
It cannot exit through the line 𝑊 = 𝑍 because that line is an invariant of the field (𝑁𝑊 /𝐷𝑊 , 𝑁𝑍/𝐷𝑍

is proportional to (1, 1) in that diagonal). Also, it cannot exit through 𝑊 = 𝑊0 since 𝑁𝑊 /𝐷𝑊 < 0
(𝐷𝑊 > 0 from last paragraph and 𝑁𝑊 < 0 from Lemma A.20).

Therefore, as T is bounded, Proposition 1.6 yields that either (𝑊 (𝑟 ) , 𝑍 (𝑟 ) ) converges to some point
of T with 𝐷𝑊 = 0 or 𝐷𝑍 = 0 or it converges to some equilibrium point inside T as 𝜉 → +∞. There
are no points with 𝐷𝑊 = 0 due to the second paragraph. The solution cannot converge to the points
of 𝐷𝑍 = 0 in the segment [𝑃in

7/5, 𝑃
out
7/5] because the field points inwards to T in that segment (due to

Proposition 3.3 and Lemma A.22). Now, we show that the situation where the solution converges to 𝑃𝑠

is also not possible. As 𝑃𝑠 is the point with minimum Z in 𝐵𝜀 (𝑃𝑠) ∩ T for 𝜀 small enough,3 we would
need to have points in T arbitrarily close to 𝑃𝑠 with 𝑁𝑍

𝐷𝑍
> 0. In order to show that this does not happen,

we just need to check that 𝐷𝑍 > 0 and 𝑁𝑍 > 0 in (T \{𝑃𝑠})∩𝐵𝜀 (𝑃𝑠) for 𝜀 small enough. As the corner
of 𝜕T at 𝑃𝑠 has less than 𝜋 radians (because 𝑊1 < 0), we just need to check ∇𝐷𝑍 (𝑃𝑠) · (𝑊1, 𝑍1) > 0,
∇𝐷𝑍 (𝑃𝑠) · (0, 1), ∇𝑁𝑍 (𝑃𝑠) · (𝑊1, 𝑍1) > 0 and ∇𝑁𝑍 (𝑃𝑠) · (0, 1) > 0. Clearly, 𝜕𝑍𝐷𝑍 = (𝛾 + 1)/4 > 0
and 𝐷𝑍,1, 𝑁𝑍,1, 𝜕𝑍𝑁𝑍 (𝑃𝑠) > 0 due to Lemmas A.11, A.26 and A.7.

Thus, we conclude that 𝑊 (𝑟 ) , 𝑍 (𝑟 ) converge to some equilibrium point of T – that is, some point
with 𝑁𝑊 = 𝑁𝑍 = 0. There are four solutions to that system, which are (0, 0), (−𝑟,−𝑟), 𝑃o,−𝑃o. The
point −𝑃o clearly lies in the half-plane 𝑍 > 𝑊 , so it is not in T . The point (−𝑟,−𝑟) is also never in T .

3This is a consequence of T ∩ 𝐵𝜀 (𝑃𝑠) lying the the sector to the left of 𝑃𝑠 bounded by 𝑊 = 𝑊0 and 𝐷𝑍 = 0, for sufficiently
small 𝜀. The fact that T ∩ 𝐵𝜀 (𝑃𝑠) lies on 𝐷𝑍 ≥ 0 follows from the previous considerations, as we showed that T is inside
𝐷𝑍 ≥ 0. The fact that T ∩ 𝐵𝜀 (𝑃𝑠) lies in 𝑊 ≤ 𝑊0 for 𝜀 small enough follows from noting that 𝑃𝑠 is the corner of 𝜕T formed
between 𝑊 = 𝑊0 and 𝑏nl (𝑡) and 𝑏nl ′

𝑊
(0) = 𝑊1 < 0 by Lemmas A.26 and A.7.

https://doi.org/10.1017/fmp.2024.12 Published online by Cambridge University Press



28 T. Buckmaster, G. Cao-Labora and J. Gómez-Serrano

For the case 𝛾 = 7/5, n sufficiently large, this is trivial and for the 𝑟 ∈ (𝑟3, 𝑟4) case, this is because
𝑏extra(𝑡) intersects 𝑊 = 𝑍 at some point above (−𝑟,−𝑟) (Lemma A.26).

Finally, we show that the solution does not converge to 𝑃o. For the case 𝛾 = 7/5 with n sufficiently
large, this point is discarded arguing that 𝑃o is not in T . We can parametrize 𝑏fl

7/5(𝑡) by W because

𝑏fl
7/5 (𝑡) is decreasing by Lemma A.24, so all the points (𝑏fl

7/5,𝑊 (𝑡), 𝑍) with 𝑍 < 𝑏fl
7/5,𝑍 (𝑡) are outside

T . That is the case of 𝑃o due to Lemma A.24. Now we show that the solution does not converge to 𝑃o
for the general 𝛾 case with 𝑟 ∈ (𝑟3, 𝑟4). Note that 𝑃o is a saddle point of the field (𝑁𝑊 𝐷𝑍 , 𝑁𝑍𝐷𝑊 )
due to Lemma A.17. Therefore, there is only one direction along for trajectories converging to 𝑃o, and
will be given by the eigenvector of negative eigenvalue, 𝑣−. We will see that there are not points in T

approaching 𝑃o in direction 𝑣− (or −𝑣−), and that will conclude the proof.
Let us fix the angles −𝜋 ≤ 𝜃− < 𝜃+ < 𝜃−+𝜋 < 𝜋, so that 𝜃−, 𝜃−+𝜋 indicate the angles of 𝑣−,−𝑣− and

𝜃+, 𝜃+ + 𝜋 indicate the angles of 𝑣+,−𝑣+. Locally around 𝑃o, the angular component of the field around
a saddle point points counterclockwise in the region Θ� = (𝜃−, 𝜃+) ∪ (𝜃− + 𝜋, 𝜃+ + 𝜋), while it points
clockwise in the region Θ� = (𝜃+, 𝜃− + 𝜋) ∪ (𝜃− + 𝜋, 𝜃+ + 2𝜋). Let 𝜃fl, 𝜃extra ∈ [−𝜋, 𝜋) be the angles at
which those barriers arrive to 𝑃o. Note 𝜃extra = 3𝜋/4 and note also 𝜃fl < 3𝜋/4 by Lemma A.25. As the
field points inwards to T on the barriers 𝑏fl and 𝑏extra, we get that 𝜃fl ∈ Θ� and 𝜃extra ∈ Θ�. Therefore,
the set (𝜃fl, 𝜃extra) ∩ {𝜃+ − 𝜋, 𝜃−, 𝜃+, 𝜃− + 𝜋, 𝜃+ + 𝜋} has an odd number of elements. If there are three
elements, we get 𝜃extra − 𝜃fl > 𝜋, which contradicts Lemma A.25, so there is only one element. If that
element is 𝜃− or 𝜃− + 𝜋, we would get that 𝜃fl ∈ Θ� and 𝜃extra ∈ Θ�, which is also a contradiction.
Thus, 𝜃−, 𝜃− + 𝜋 ∉ (𝜃fl, 𝜃extra). �

4. Right of 𝑷𝒔

This section is dedicated to showing properties of the solution right of 𝑃𝑠 in the phase portrait, which
in the self-similar radial variable 𝜉 corresponds to the region 𝜉 < 0, or equivalently, the region within
acoustic cone of the singularity. In particular, the main goal of this section is to prove the following
proposition.

Proposition 4.1. Let us consider the smooth solution of Proposition 2.3 for 𝜉 < 0. Let either 𝑛 = 3 for

𝛾 > 1 or 𝑛 ∈ N odd, and sufficiently large for 𝛾 = 7/5. Then, there exist 𝑟𝑢 ∈ (𝑟𝑛, 𝑟𝑛+1) such that the

smooth solution (𝑊 (𝑟𝑢) (𝜉), 𝑍 (𝑟𝑢) (𝜉)) lies in Ω
(𝑟𝑢)
1 and 𝑟𝑑 ∈ (𝑟𝑛, 𝑟𝑛+1) such that the smooth solution lies

in Ω
(𝑟𝑑)
2 (where here, Ω

(𝑟 )
1 and Ω

(𝑟 )
2 are defined in Remark 1.7).

The strategy for the proof of this proposition will be similar to the proof of Proposition 3.1. We will
consider a near-right barrier that matches up to the n-th (or (𝑛 + 1)-th) coefficients with the smooth
solution, and we will also consider a far-right barrier that intersects the near-right barrier within the
interval of its validity. This approach is similar to the one employed on the left, since in both cases,
we need to use a local barrier that matches up to n-th order with the smooth solution in order to
capture the singular behavior of 𝑍𝑛. As in Section 3, we also concatenate this barrier with a global
barrier (the far-right barrier) that matches better the behavior of the solution far from 𝑃𝑠 . The main
difference with respect to Section 3 is that here, we will work asymptotically as 𝑟 → 𝑟+𝑛 or 𝑟 → 𝑟−

𝑛+1.
We consider the near-right barrier

𝑏nr
𝑛,𝑊 (𝑡) =

𝑛∑
𝑖=0

1

𝑖!
𝑊𝑖 (−𝑡)𝑖 ,

𝑏nr
𝑛,𝑍 (𝑡) =

𝑛∑
𝑖=0

1

𝑖!
𝑍𝑖 (−𝑡)𝑖 +

𝛽𝑛

(𝑛 + 1)!𝑍𝑛 (−𝑡)
𝑛+1,

where 𝛽𝑛 is sufficiently large. We will always assume that 𝑟 − 𝑟𝑛 (or 𝑟𝑛+1 − 𝑟) is sufficiently small
depending on 𝛽𝑛 (or 𝛽𝑛+1). We will use the standard big-O notation whenever the implicit constant does
not depend on 𝛽𝑛 and whenever we use 𝑂𝛽𝑛 , the implicit constant is allowed to depend on 𝛽𝑛.
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We also define the curve 𝑏nr
𝑛 (𝑡) = (𝑏nr

𝑛,𝑊
(𝑡), 𝑏nr

𝑛,𝑍
(𝑡)) and consider the (4𝑛+3)-th degree polynomial

𝑃nr
𝑛 (𝑡) = 𝑏nr ′

𝑛,𝑍 (𝑡)𝑁𝑊 (𝑏nr
𝑛 (𝑡))𝐷𝑍 (𝑏nr

𝑛 (𝑡)) − 𝑏nr ′
𝑛,𝑊 (𝑡)𝑁𝑍 (𝑏nr

𝑛 (𝑡))𝐷𝑊 (𝑏nr
𝑛 (𝑡)). (4.1)

As usual, the sign of 𝑃nr
𝑛 (𝑡) indicates the direction of the normal component of the field in this barrier.

We have the following result for this sign.

Proposition 4.2. Let either 𝑛 ∈ {3, 4} for 𝛾 > 1 or 𝑛 ∈ N sufficiently large for 𝛾 = 7/5. There exist

constants 𝜀, c such that

• For n even and 𝑟 ∈ (𝑟𝑛 − 𝜀, 𝑟𝑛), we have 𝑃nr
𝑛 (𝑡) < 0 for all 𝑡 ∈ (0, 𝑐(𝑛 − 𝑘)1/𝑛).

• For n odd, 𝛽𝑛 sufficiently large and 𝑟 ∈ (𝑟𝑛, 𝑟𝑛 + 𝜀), we have 𝑃nr
𝑛 (𝑡) > 0 for all 𝑡 ∈ (0, 𝑐(𝑘 −

𝑛)1/(𝑛−2) 𝛽𝑛).
Proof. First, note that 𝑃nr

𝑛 (𝑡) is a multiple of 𝑡𝑛+1 since 𝑏nr
𝑛 (𝑡) matches the smooth solution up to

n-th order. By Corollary 2.4, the only terms in 𝑏nr
𝑛 (𝑡) which are not 𝑂 (1) in a neighborhood of 𝑟𝑛

are 1
𝑛!𝑍𝑛 (−𝑡)𝑛 and 1

(𝑛+1)!𝑍𝑛𝛽𝑛 (−𝑡)𝑛+1, which are 𝑂𝛽𝑛

(
1

𝑘−𝑛

)
. Summing the terms, the asymptotics for

𝑃nr
𝑛 (𝑡) are given by

𝑃nr
𝑛 (𝑡) = 𝐶1𝑍𝑛𝑡

𝑛+1 + 𝐶2𝑍
2
𝑛𝑡

2𝑛−1

+𝑂𝛽𝑛 (𝑡𝑛+1) +𝑂𝛽𝑛

(
𝑡𝑛+2

𝑘 − 𝑛

)
+𝑂𝛽𝑛

(
𝑡2𝑛

(𝑘 − 𝑛)2
)
+𝑂𝛽𝑛

(
𝑡3𝑛−1

(𝑘 − 𝑛)3
)
+𝑂𝛽𝑛

(
𝑡4𝑛−1

(𝑘 − 𝑛)4
)
,

(4.2)

for small t and |𝑘 − 𝑛|. In order to calculate 𝐶1, we take 𝑛 + 1 derivatives in 𝑃nr
𝑛 (𝑡) and look for the terms

with a factor 𝑍𝑛 (as the rest of terms will be 𝑂 (1), thus contributing to 𝑂 (𝑡𝑛+1) in (4.2)). Note that 𝑃nl
𝑛 (𝑡)

already involves one derivative, so we will have terms with 𝑛 + 2 derivatives in total. At 𝑡 = 0, we have

(−1)𝑛+2𝜕𝑛+1𝑡 𝑃nr
𝑛 = (𝑛 + 1)𝛽𝑛𝑍𝑛 (−𝜕𝑡 )𝐷𝑍 (𝑏nr

𝑛 )𝑁𝑊 (𝑏nr
𝑛 ) + 𝑍1 (−𝜕𝑡 )𝑛+1𝐷𝑍 (𝑏nr

𝑛 )𝑁𝑊 (𝑏nr
𝑛 )

−𝑊1 (−𝜕𝑡 )𝑛+1𝑁𝑍 (𝑏nr
𝑛 )𝐷𝑊 (𝑏nr

𝑛 ) +𝑂 (|𝑍𝑛 |).

Collecting the terms involving 𝑍𝑛𝛽𝑛, we define

𝐶3 = −(𝑛 + 1)𝐷𝑍,1𝑁𝑊 (𝑃𝑠) − 𝑍1𝜕𝑍𝐷𝑍 (𝑃𝑠)𝑁𝑊 (𝑃𝑠) +𝑊1𝜕𝑍𝑁𝑍 (𝑃𝑠)𝐷𝑊 (𝑃𝑠)
= 𝑁𝑊 (𝑃𝑠)

(
−(𝑛 + 1)𝐷𝑍,1 − 𝑍1𝜕𝑍𝐷𝑍 (𝑃𝑠) + 𝜕𝑍𝑁𝑍 (𝑃𝑠)

)
,

(4.3)

so that we obtain

(−𝜕𝑡 )𝑛+1𝑃nr
𝑛 (0) = 𝐶3𝑍𝑛𝛽𝑛 +𝑂 (|𝑍𝑛 |).

As |𝑟𝑛 − 𝑟 | ≤ 𝜀 and we are taking 𝜀 small, we may evaluate the sign of 𝐶3 by looking at its sign at
𝑟 = 𝑟𝑛, which by continuity will remain the same sign in a neighborhood of 𝑘 = 𝑛. Let us recall from

Lemma 2.1 that 𝑘 =
𝐷̌𝑍,1
𝐷𝑍,1

, where 𝐷̌𝑍,1 = ∇𝐷𝑍 (𝑃𝑠) · (𝑊1, 𝑍̌1) and 𝑍̌1 was defined in (2.1). Thus, using

(4.3) at 𝑘 = 𝑛 =
𝐷̌𝑍,1
𝐷𝑍,1

yields

𝐶3

𝑁𝑊 ,0
= −𝐷̌𝑍,1 − 𝐷𝑍,1 − 𝑍1𝜕𝑍𝐷𝑍 (𝑃𝑠) + 𝜕𝑍𝑁𝑍 (𝑃𝑠)

= −𝐷𝑍,1 − 𝜕𝑊 𝐷𝑍 (𝑃𝑠)𝑊1 − 𝜕𝑍𝐷𝑍 (𝑃𝑠)
(
𝑍̌1 + 𝑍1

)
+ 𝜕𝑍𝑁𝑍 (𝑃𝑠). (4.4)

Note 𝑍1, 𝑍̌1 are the two solutions of the second-degree equation

𝜕𝑍𝐷𝑍 𝑧
2
1 + (𝜕𝑊 𝐷𝑍 (𝑃𝑠)𝑊1 − 𝜕𝑊 𝑁𝑍 (𝑃𝑠)) 𝑧1 − 𝜕𝑊 𝑁𝑍 (𝑃𝑠)𝑊1 = 0,
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and hence,

𝑍1 + 𝑍̌1 = −𝜕𝑊 𝐷𝑍 (𝑃𝑠)𝑊1 − 𝜕𝑊 𝑁𝑍 (𝑃𝑠)
𝜕𝑍𝐷𝑍 (𝑃𝑠)

.

Substituting this expression into (4.4) and canceling terms, we deduce

𝐶3 = −𝑁𝑊 ,0𝐷𝑍,1.

Using Lemmas A.26 and A.11, we conclude that 𝐶3 > 0 for 𝑘 = 𝑛, and thus, it is positive for r in a
sufficiently small neighborhood of 𝑟𝑛.

We have that

𝐶1 =
1

(𝑛 + 1)!𝑍𝑛
(−𝜕𝑡 )𝑛+1𝑃nr

𝑛 (0) ≥
(−1)𝑛+1
(𝑛 + 1)! (𝛽𝑛𝐶3 +𝑂 (1)) .

Therefore, choosing 𝛽𝑛 sufficiently large, r close enough to 𝑟𝑛 and using that 𝐶3 > 0,

sign(𝐶1) = (−1)𝑛+1, |𝐶1 | >
𝛽𝑛 |𝐶3 |

2(𝑛 + 1)! . (4.5)

We calculate the term 𝐶2 in (4.2). Taking 2𝑛 − 1 derivatives in 𝑃nr
𝑛 (𝑡) and looking for terms with 𝑍2

𝑛,
we obtain

(−1)2𝑛𝜕2𝑛−1
𝑡 𝑃nr

𝑛 (𝑡) =
(
2𝑛 − 1

𝑛

)
𝑍𝑛𝜕

𝑛
𝑡 𝐷𝑍 (𝑏nr

𝑛 )𝑁𝑊 (𝑃𝑠) +𝑂𝛽𝑛 (𝑍𝑛) .

Therefore,

𝐶2 =
1

(2𝑛 − 1)!

(
2𝑛 − 1

𝑛

)
𝜕𝑍𝐷𝑍 (𝑃𝑠)𝑁𝑊 (𝑃𝑠) =

1 + 𝛼

2

1

𝑛!(𝑛 − 1)!𝑁𝑊 (𝑃𝑠) < 0, (4.6)

where the sign is due to Lemma A.26.
Now that we have analyzed 𝐶1 and 𝐶2 in (4.5) and (4.6); let us go back to (4.2) and consider the

cases of n odd and even separately.
Odd n case. We have that

𝐶1 >
𝛽𝑛𝐶3

2(𝑛 + 1)! > 0 and 𝐶2 < 0

by (4.5) and (4.6). Moreover, we have that for odd n and r sufficiently close to 𝑟𝑛 from above, 𝑍𝑛 > 0
(Corollary 5.8 and Lemma A.31); moreover, assuming in addition that 𝛽𝑛 is sufficiently large, and
𝑡𝑛−2 ≤ 𝑐𝑛−2 (𝑘 − 𝑛)𝛽𝑛, the equation (4.2) yields

𝑃nr
𝑛 (𝑡) >

1

2
𝐶1𝑍𝑛𝑡

𝑛+1 + 𝐶2𝑍
2
𝑛𝑡

2𝑛−1 > 𝑡𝑛+1𝑍𝑛𝛽𝑛

(
𝐶3

4(𝑛 + 1)! − 𝑐𝑛−2 |𝐶2 |𝑍𝑛 (𝑘 − 𝑛)
)
.

Hence, since 𝑍𝑛 (𝑘 − 𝑛) = 𝑂 (1), and we may choose c sufficiently small, we obtain that 𝑃nr
𝑛 (𝑡) > 0.

Even n case. For this case, we obtain that for 𝛽𝑛 sufficiently large,

𝐶1 < − 𝛽𝑛𝐶3

2(𝑛 + 1)! < 0 and 𝐶2 < 0

by (4.5) and (4.6). Moreover, for n even and r close to 𝑟𝑛 from below, we have that 𝑍𝑛 > 0 (Lemma A.31
and Corollary 5.8). Therefore, taking 𝛽𝑛 sufficiently large, r close enough from below to 𝑟𝑛 and
𝑡 ≤ 𝑐(𝑛 − 𝑘)1/𝑛, (4.2) yields
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𝑃nr
𝑛 (𝑡) <

1

2
𝐶2𝑍

2
𝑛𝑡

2𝑛−1 +𝑂𝛽𝑛

(
𝑡2𝑛

(𝑛 − 𝑘)2 +
𝑡3𝑛−1

(𝑛 − 𝑘)3 +
𝑡4𝑛−1

(𝑛 − 𝑘)4
)

= 𝑍2
𝑛𝑡

2𝑛−1

(
𝐶2

2
+𝑂𝛽𝑛

(
𝑐(𝑛 − 𝑘)1/𝑛 + 𝑐𝑛 + 𝑐2𝑛

))
,

which is negative as long as c is chosen small enough since 𝐶2 < 0. �

Lemma 4.3. Let 𝑛 = 3 with 𝛾 > 1 or 𝑛 ∈ N odd and sufficiently large for 𝛾 = 7/5. There exists 𝜀 > 0
sufficiently small such that the following holds. For every 𝑟 ∈ (𝑟𝑛+1 − 𝜀, 𝑟𝑛), we have a value 𝑡𝐷 > 0
with 𝐷𝑍 (𝑏nr

𝑛+1 (𝑡)) < 0 for 𝑡 ∈ (0, 𝑡𝐷) and 𝐷𝑍 (𝑏nr
𝑛+1 (𝑡𝐷)) = 0. Moreover, we have 𝑡𝐷 � (𝑛 + 1 − 𝑘)1/𝑛

as 𝑟 → 𝑟−
𝑛+1.

Proof. We have that 𝐷𝑍 (𝑏nr
𝑛+1 (𝑡)) is a (𝑛 + 2)-th degree polynomial, which is multiple of t since

𝐷𝑍 (𝑏nr
𝑛+1 (0)) = 𝐷𝑍 (𝑃𝑠) = 0.

Moreover, we have that at 𝑡 = 0,{
𝜕𝑖𝑡𝐷𝑍 (𝑏nr

𝑛+1(𝑡)) = (−1)𝑖∇𝐷𝑍 (𝑃𝑠) (𝑊𝑛+1, 𝑍𝑛+1), for 1 ≤ 𝑖 ≤ 𝑛 + 1,

𝜕𝑛+2𝑡 𝐷𝑍 (𝑏nr
𝑛+1 (𝑡)) = (−1)∇𝐷𝑍 (𝑃𝑠) (0, 𝑍𝑛+1𝛽𝑛+1).

(4.7)

Corollary 2.4 tells us that all the coefficients of 𝐷𝑍 (𝑏nr
𝑛+1 (𝑡)) are 𝑂 (1) for r in a small neighborhood of

𝑟𝑛+1, except for the (𝑛 + 1)-th and (𝑛 + 2)-th coefficients, which are 𝑂𝛽𝑛+1

(
1

𝑛+1−𝑘

)
. We can thus write

𝐷𝑍 (𝑏nr
𝑛+1(𝑡)) = −𝐷𝑍,1𝑡 +

𝜕𝑍𝐷𝑍 (𝑃𝑠)𝑍𝑛+1𝑡𝑛+1
(𝑛 + 1)! +𝑂 (𝑡2) +𝑂

(
𝑡𝑛+2𝛽𝑛+1
𝑛 + 1 − 𝑘

)
. (4.8)

We have that −𝐷𝑍,1 < 0 as a consequence of Lemma A.11 and Lemma A.7 and

𝜕𝑍𝐷𝑍 (𝑃𝑠)𝑍𝑛+1 =
1 + 𝛼

2
𝑍𝑛+1 > 0

by Corollary 5.8 and Lemma A.31. Therefore, the polynomial 𝐷𝑍 (𝑏nr
𝑛+1 (𝑡)) is initially negative.

Taking 𝑡 = 𝐶 (𝑛 + 1 − 𝑘)1/𝑛 and using Corollary 2.4, we can choose C sufficiently large so that

|𝐷𝑍,1𝑡 | ≤ 1
3

��� 𝜕𝑍𝐷𝑍 (𝑃𝑠)𝑍𝑛+1𝑡𝑛+1(𝑛+1)!

��� for 𝑟 ∈ (𝑟𝑛+1 − 𝜀, 𝑟𝑛+1). This constant C is allowed to depend on n. We

can also choose 𝜀 sufficiently small so that the error 𝑂 (𝑡2) +𝑂 (𝑡𝑛+2𝛽𝑛+1/(𝑛 + 1− 𝑘)) in (4.8) is smaller

than 1
3

��� 𝜕𝑍𝐷𝑍 (𝑃𝑠)𝑍𝑛+1𝑡𝑛+1(𝑛+1)!

���. With those choices, using (4.8) yields

𝐷𝑍 (𝑏nr
𝑛+1 (𝑡)) ≥

𝜕𝑍𝐷𝑍 (𝑃𝑠)𝑍𝑛+1𝑡𝑛+1
(𝑛 + 1)! − 2

3

����𝜕𝑍𝐷𝑍 (𝑃𝑠)𝑍𝑛+1𝑡𝑛+1
(𝑛 + 1)!

���� > 0

because 𝑍𝑛+1 > 0. The proof of 𝑍𝑛+1 > 0 is in Lemma A.31 for 𝑛 = 3 and will be done in Corollary 5.8
for the case 𝛾 = 7/5.

As 𝐷𝑍 (𝑏nr
𝑛+1 (𝑡)) is initially negative and is positive at 𝑡 = 𝐶 (𝑛 + 1 − 𝑘)1/𝑛, by continuity there exists

a first time 𝑡𝐷 ∈ (0, 𝐶 (𝑛 + 1 − 𝑘)1/𝑛) at which 𝐷𝑍 (𝑏nr
𝑛+1(𝑡𝐷)) = 0 and 𝐷𝑍 (𝑏nr

𝑛+1 (𝑡)) is negative up
to 𝑡𝐷 . �

Lemma 4.4. Let either 𝛾 ∈ (1, +∞) with 𝑛 = 3 or 𝛾 = 7/5 with n a sufficiently large odd number.

There exist 𝛽𝑛+1, 𝜀 > 0 such that for every 𝑟 ∈ (𝑟𝑛+1 − 𝜀, 𝑟𝑛+1), the smooth solution (𝑊 (𝑟 ) (𝜉), 𝑍 (𝑟 ) (𝜉))
is above the near-right barrier 𝑏nr

𝑛+1(𝑡) for 𝜉 < 0 small enough in absolute value.
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Proof. First note that by definition, the Taylor expansion of 𝑏nr
𝑛+1(−𝑡) agrees with the smooth solution

up to order 𝑛 + 1 at 𝑃𝑠 . In particular, we have

𝑏nr
𝑛+1(𝑡) − (𝑊 (𝑟 ) (−𝑡), 𝑍 (𝑟 ) (−𝑡)) = 𝑡𝑛+2

(𝑛+2)! ((0,−𝛽𝑛+1𝑍𝑛+1) − (−𝑊𝑛+2,−𝑍𝑛+2)) +𝑂𝛽𝑛+1 (𝑡𝑛+3).

Both 𝑏nr
𝑛+1 (𝑡) and (𝑊 (𝑟 ) (−𝑡), 𝑍 (𝑟 ) (−𝑡)) start with slope (−𝑊1,−𝑍1). Then, in order for 𝑏nr

𝑛+1 (𝑡) to begin
below the smooth solution, it suffices to check the geometric condition

(−𝑊1,−𝑍1) ∧ ((0,−𝛽𝑛+1𝑍𝑛+1) − (−𝑊𝑛+2,−𝑍𝑛+2)) < 0,

or equivalently,

𝛽𝑛+1𝑍𝑛+1𝑊1 < 𝑊1𝑍𝑛+2 −𝑊𝑛+2𝑍1.

Note that both sides are of order 1
|𝑘−𝑛−1 | by Corollary 2.4 and 𝑛 ≥ 3. The case 𝑛 = 3 follows from

the fact that 𝑍4 > 0 (Lemma A.31) and 𝑊1 < 0 (Lemma A.26), taking 𝛽4 sufficiently large. The case
𝛾 = 7/5 with n odd and sufficiently large would follow as long as we have 𝑍𝑛+1 > 0, since 𝑊1 < 0 is
guaranteed by Lemma A.7. The proof that 𝑍𝑛+1 > 0 will be delayed to Section 5 – specifically, this will
be a consequence of Corollary 5.8). �

We define a far-right barrier by

𝐵fr (𝑊, 𝑍) = (𝑊 −𝑊0 − 𝐹2𝑍 + 𝐹2𝑍0) (𝑊 + 𝑍 − 𝐹0) − 𝐹1 (𝑊 + 𝑍 −𝑊0 − 𝑍0). (4.9)

We define the coefficient 𝐹0 =
−4(𝑟−1)
3(𝛾−1) = 2𝑤1, where 𝑤1 is given in Proposition 2.5, and we set 𝐹2 = 1/2.

The coefficient 𝐹1 will be fixed later (given by (4.10)).
It is clear that 𝐵fr (𝑊0, 𝑍0) = 0, and thus, the curve passes through 𝑃𝑠 . As the second-degree summand

has a factor 𝑊 + 𝑍 − 𝐹0, it is clear that 𝐵fr (𝑊, 𝑍) = 0 has an asymptotic line parallel to the direction of
𝑃0. The value of 𝐹0 is the asymptotic value of 𝑊 + 𝑍 for the trajectory matching at 𝑃0 (this corresponds
to matching another order at 𝑃0). The value of 𝐹1 is chosen so that the slope of 𝐵fr (𝑊, 𝑍) = 0 at 𝑃𝑠

matches that of the smooth solution; that is, ∇𝐵fr (𝑃𝑠) (𝑊1, 𝑍1) = 0. Therefore,

(𝑊0 + 𝑍0 − 𝐹0 − 𝐹1,−𝐹2 (𝑊0 + 𝑍0 − 𝐹0) − 𝐹1) · (𝑊1, 𝑍1) = 0,

which yields

𝐹1 = (𝑊0 + 𝑍0 − 𝐹0)
𝑊1 − 𝐹2𝑍1

𝑊1 + 𝑍1
= 𝑠fr
∞
𝐹2𝑍1 −𝑊1

𝑊1 + 𝑍1
. (4.10)

In order to parametrize the curve 𝐵fr = 0, we solve the system

(
𝑏fr
𝑊 (𝑠) −𝑊0

)
+
(
𝑏fr
𝑍 (𝑠) − 𝑍0

)
= 𝑠,

𝐵fr (𝑏fr
𝑊 (𝑠), 𝑏fr

𝑍 (𝑠)) =
(
(𝑏fr

𝑊 (𝑠) −𝑊0) − 𝐹2 (𝑏fr
𝑍 (𝑠) − 𝑍0)

)
(𝑠 +𝑊0 + 𝑍0 − 𝐹0) − 𝐹1𝑠 = 0

for s ranging from 0 to 𝑠fr
∞ = 𝐹0 −𝑊0 − 𝑍0. Solving the system, we obtain

⎧⎪⎪⎨
⎪⎪⎩
𝑏fr
𝑊
(𝑠) = 𝑊0 + 1

𝐹2+1

(
𝐹2𝑠 + 𝐹1𝑠

𝑠+𝑊0+𝑍0−𝐹0

)
= 𝑊0 + 1

𝐹2+1

(
𝐹2𝑠 + 𝐹1𝑠

𝑠−𝑠fr
∞

)
,

𝑏fr
𝑍
(𝑠) = 𝑍0 + 1

𝐹2+1

(
𝑠 − 𝐹1𝑠

𝑠+𝑊0+𝑍0−𝐹0

)
= 𝑍0 + 1

𝐹2+1

(
𝑠 − 𝐹1𝑠

𝑠−𝑠fr
∞

)
,

(4.11)
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and we define 𝑏fr (𝑠) = (𝑏fr
𝑊
(𝑠), 𝑏fr

𝑍
(𝑠)) which goes from 𝑃𝑠 at time 𝑠 = 0 to 𝑃0 at 𝑠 = 𝑠fr

∞. We also
define the barrier condition as

𝑃fr (𝑠) = 𝑏fr ′
𝑍 (𝑡)𝐷𝑍 (𝑏fr (𝑡))𝑁𝑊 (𝑏fr (𝑡)) − 𝑏fr ′

𝑊 (𝑡)𝐷𝑊 (𝑏fr (𝑡))𝑁𝑍 (𝑏fr (𝑡)), (4.12)

which is a rational function with powers of (𝑠 − 𝑠fr
∞) in the denominator.

Let us remark that the value of 𝐹2 = 1/2 is chosen ad-hoc so that 𝑃fr (𝑠) is positive. In contrast, 𝐹0

and 𝐹1 are carefully chosen to get cancellations of 𝐵fr at 𝑃𝑠 or 𝑃0. In particular, 𝐹2 does not enforce any
cancellation, and any slight modification of it would still yield a valid barrier.

Proposition 4.5. Let either 𝑛 = 3 with 𝛾 > 1 or 𝑛 ∈ N odd and sufficiently large with 𝛾 = 7/5. For r

close enough from above to 𝑟𝑛, we have that 𝑃fr (𝑠) > 0 for all 𝑠 ∈ (0, 𝑠fr
∞).

Proof. By continuity of 𝑃fr with respect to r, we just need to prove this for 𝑟 = 𝑟3 in the case of 𝑛 = 3
and for r close enough to 𝑟∗(7/5) for 𝛾 = 7/5. We prove the statement via a computer-assisted proof.
The code can be found in the supplementary material, and we refer to Appendix B for details about the
implementation. �

Lemma 4.6. Let 𝑛 = 3 with 𝛾 > 1 or 𝑛 ∈ N odd sufficiently large with 𝛾 = 7/5. There exists 𝜀 > 0
such that for every 𝑟 ∈ (𝑟𝑛, 𝑟𝑛 + 𝜀), there exists a value 𝑡𝐹 with 𝐵fr (𝑏nr

𝑛 (𝑡𝐹 )) = 0 and 𝐵fr (𝑏nr
𝑛 (𝑡)) < 0

for 𝑡 ∈ (0, 𝑡𝐹 ). Moreover, we have that 𝑡𝐹 �𝑛 (𝑘 − 𝑛)1/(𝑛−2) .

Proof. We consider the (2𝑛 + 2)-th degree polynomial 𝐵fr (𝑏nr
𝑛 (𝑡)). We have that

𝐵fr (𝑏nr
𝑛 (0)) = 𝐵fr (𝑃𝑠) = 0 and ∇𝐵fr (𝑃𝑠) (𝑊1, 𝑍1) = 0 due to our choice of 𝐹1. Therefore, the terms in

the polynomial have 𝑡2 as a common factor. Taking into account Corollary 2.4, all the coefficients in
𝑏nr
𝑛 (𝑡) are 𝑂 (1) around 𝑟 ≈ 𝑟𝑛 except the n-th and (𝑛 + 1)-th coefficients of 𝑏nr

𝑍
(𝑡). We get

𝐵fr (𝑏nr
𝑛 (𝑡)) =

𝑎nr
2

2
𝑡2 + 𝑎nr

𝑛

𝑛!(𝑘 − 𝑛) 𝑡
𝑛 +𝑂 (𝑡3) +𝑂𝛽𝑛

(
𝑡𝑛+1

𝑘 − 𝑛

)
+𝑂
(

𝑡2𝑛

(𝑘 − 𝑛)2
)
+𝑂𝛽𝑛

(
𝑡2𝑛+1

(𝑘 − 𝑛)2
)

=
𝑎nr

2

2
𝑡2(1 + 𝑜(1)) + 𝑎nr

𝑛

𝑛!(𝑘 − 𝑛) 𝑡
𝑛 (1 + 𝑜(1)) ,

(4.13)

where in the last equality we are assuming 𝑡 ≤ 𝐶 (𝑘 − 𝑛)1/(𝑛−2) for some sufficiently large C and using
that 𝑘 − 𝑛 is sufficiently small depending on 𝛽𝑛.

We proceed to calculate 𝑎nr
2 and 𝑎nr

𝑛 . We have that

𝐵fr (𝑊, 𝑍) = ∇𝐵fr (𝑃𝑠) (𝑊 −𝑊0, 𝑍 − 𝑍0)� + (𝑊 −𝑊0, 𝑍 − 𝑍0)
𝐻𝐵fr

2
(𝑊 −𝑊0, 𝑍 − 𝑍0)�

= (−𝑠fr
∞ − 𝐹1, 𝐹2𝑠

fr
∞ − 𝐹1) (𝑊 −𝑊0, 𝑍 − 𝑍0)�

+ (𝑊 −𝑊0, 𝑍 − 𝑍0)
(

1 (1 − 𝐹2)/2
(1 − 𝐹2)/2 −𝐹2

)
(𝑊 −𝑊0, 𝑍 − 𝑍0)�.

Therefore, using 𝐹2 = 1/2, we obtain that

𝑎nr
2

2
=

1

2

(
−𝑠fr
∞𝑊2 − 𝐹1𝑊2 + 𝑠fr

∞𝑍2/2 − 𝐹1𝑍2

)
+𝑊2

1 +𝑊1𝑍1/2 − 𝑍2
1/2

=
𝑠fr
∞
2

(
−𝑊2 + 𝑍2/2 − (𝑊2 + 𝑍2)

𝑍1/2 −𝑊1

𝑊1 + 𝑍1

)
+𝑊2

1 +𝑊1𝑍1/2 − 𝑍2
1/2,

and

𝑎nr
𝑛

𝑘 − 𝑛
=

(
𝑠fr
∞/2 − 𝐹1

)
𝑍𝑛 (−1)𝑛 = −𝑠fr

∞

(
1

2
− 𝑍1/2 −𝑊1

𝑊1 + 𝑍1

)
𝑍𝑛,
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where we have used 𝐹1 = 𝑠fr
∞

𝑍1/2−𝑊1
𝑊1+𝑍1

. First, note that 𝑠fr
∞ > 0 due to Lemma A.13. Second, we have that

𝑍1/2−𝑊1
𝑊1+𝑍1

≤ −1 for 𝑟 = 𝑟3 with 𝛾 > 1 and 𝑟 = 𝑟∗(7/5) for 𝛾 = 7/5 due to Lemma A.29. These two facts
allow us to conclude

𝑎nr
𝑛

𝑘 − 𝑛
≤ −3

2
𝑠fr
∞𝑍𝑛 < 0, (4.14)

where 𝑍𝑛 > 0 (Corollary 5.8 for 𝛾 = 7/5, n sufficiently large and Lemma A.31 for 𝑟 ∈ (𝑟3, 𝑟4)).
However, we have that Lemma A.30 guarantees 𝑎nr

2 > 0.
Going back to (4.13), we have that 𝐵fr (𝑏nr

𝑛 (𝑡)) is initially positive for sufficiently small 𝑡 > 0. Define

𝑡𝐺 =

���� 𝑛!𝑎nr
2

2𝑠fr
∞𝑍𝑛

���� 1/(𝑛−2) . (4.15)

Using (4.13) and (4.14), we have that

𝐵fr (𝑏nr
𝑛 (𝑡𝐺)) =

𝑎nr
2

2
𝑡2(1 + 𝑜(1)) + 𝑎nr

𝑛

𝑛!(𝑘 − 𝑛) 𝑡
2 ·
���� 𝑛!𝑎nr

2

2𝑠fr
∞𝑍𝑛

���� (1 + 𝑜(1))

=
𝑎nr

2

2
𝑡2
(
1 −
���� 𝑎nr

𝑛

(𝑘 − 𝑛)𝑠fr
∞𝑍𝑛

���� (1 + 𝑜(1)) + 𝑜(1)
)

≤ −
𝑎nr

2

4
𝑡2(1 + 𝑜(1)).

By continuity, there exists some 𝑡𝐹 ∈ (0, 𝑡𝐺) such that 𝐵fr (𝑏nr
𝑛 (𝑡𝐹 )) = 0. Moreover, as 𝐵fr (𝑏nr (𝑡)) is

a polynomial, we can take 𝑡𝐹 to be the first such zero, so that 𝐵fr (𝑏nr
𝑛 (𝑡)) > 0 for 0 < 𝑡 < 𝑡𝐹 . Lastly,

by (4.15), we conclude that 𝑡𝐹 ≤ 𝑡𝐺 �𝑛 (𝑘 − 𝑛)1/(𝑛−2) . �

Lemma 4.7. Let either 𝛾 > 1 with 𝑛 = 3 or 𝛾 = 7/5 with 𝑛 ∈ N odd, large enough. There exists

𝜀, 𝛿, 𝛽𝑛,0 > 0 such that for every 𝑟 ∈ (𝑟𝑛, 𝑟𝑛 + 𝜀), 𝛽𝑛 > 𝛽𝑛,0 and 𝜉 ∈ (0, 𝛿), the smooth solution

(𝑊 (𝑟 ) (𝜉), 𝑍 (𝑟 ) (𝜉)) is below the near-right barrier 𝑏nr
𝑛 (𝑡).

Proof. We have to compare the first Taylor coefficients on the barrier which differ from those of the
smooth solution (with 𝜉 replaced with −𝜉) – that is, the 𝑛 + 1-th. As 𝑛 + 1 is even, they are given by
(𝑊𝑛+1, 𝑍𝑛+1) for the smooth solution and (0, 𝛽𝑛𝑍𝑛) for 𝑏nr (𝑡). Therefore, 𝑏nr

𝑛 (𝑡) is above the smooth
one close to 𝑃𝑠 if

(−𝑊1,−𝑍1) ∧ (0, 𝛽𝑛𝑍𝑛) > (−𝑊1,−𝑍1) ∧ (𝑊𝑛+1, 𝑍𝑛+1),

or equivalently,

𝛽𝑛𝑍𝑛𝑊1 < 𝑊1𝑍𝑛+1 −𝑊𝑛+1𝑍1.

The case 𝑛 = 3 follows from the fact that 𝑊1 < 0 (Lemma A.26) and 𝑍3 > 0 (Lemma A.31) provided
that we take 𝛽𝑛 sufficiently large. For the case 𝛾 = 7/5, n large enough, Lemma A.7 guarantees 𝑊1 < 0,
so we just need 𝑍𝑛 > 0 in order to conclude the statement. The proof that 𝑍𝑛 > 0 will be delayed to
Section 5: specifically, this will follow from Corollary 5.8. �

Proof of Proposition 4.1. Let us start with the existence of 𝑟𝑢 . From Proposition 4.2 and Lemmas 4.3 and
4.4, we have an 𝜀 > 0 small enough and a 𝛽𝑛+1 sufficiently large such that for every 𝑟 ∈ (𝑟𝑛+1 − 𝜀, 𝑟𝑛+1),
the following holds:

1. The smooth solution (𝑊 (𝑟 ) (𝜉), 𝑍 (𝑟 ) (𝜉)) is above the barrier 𝑏nr
𝑛+1(𝑡) for 0 > 𝜉 > −𝜖 , for some 𝜖 > 0

sufficiently small.
2. There is a constant 𝐶1 such that 𝑃nr

𝑛+1 (𝑡) < 0 for every 𝑡 ∈ (0, 𝐶1 (𝑛 + 1 − 𝑘)1/𝑛).
3. There exists 𝑡𝐷 > 0 such that 𝐷𝑍 (𝑏nr

𝑛+1 (𝑡𝐷)) = 0, 𝐷𝑍 (𝑏nr
𝑛+1 (𝑡)) < 0 for 𝑡 ≤ 𝑡𝐷; with 𝑡𝐷 ≤

𝐶2 (𝑛 + 1 − 𝑘)1/(𝑛−1) .
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Therefore, taking r close enough to 𝑟𝑛+1 from below, we can ensure that 𝑃nr
𝑛+1 (𝑡) < 0 up to the intersection

of 𝑏nr
𝑛+1 (𝑡) with 𝐷𝑍 = 0. Consider the region delimited by 𝑏nr

𝑛+1 (𝑡) and 𝐷𝑍 = 0 inside Ω. The region
is bounded, and the solution cannot exit that region. Moreover, the solution cannot converge to an
equilibrium point by Lemma A.17 (and Lemma A.18 for the case of 𝑃o, 𝛾 = 7/5, r sufficiently close
to 𝑟∗). Therefore, by Proposition 1.6, the solution must end in the right halfline of 𝐷𝑍 = 0 starting at
𝑃𝑠 , thus lying in Ω

(𝑟𝑢)
1 . This concludes the first part of Proposition 4.1.

From Proposition 4.2, Lemma 4.6 and Lemma 4.7, we choose 𝛽𝑛 sufficiently large and 𝜀 > 0
sufficiently small, depending on 𝛽𝑛 (in particular, we assume 𝛽𝑛 � (𝑘 − 𝑛)−1/(2𝑛) ). Then the following
holds:

1. The smooth solution (𝑊 (𝑟 ) (𝜉), 𝑍 (𝑟 ) (𝜉)) stays initially below the barrier 𝑏nr
𝑛 (𝑡) for −𝜖 < 𝜉 < 0 for

some 𝜖 > 0 sufficiently small.
2. There is a constant 𝐶1 such that 𝑃nr

𝑛 (𝑡) > 0 for every 𝑡 ∈ (0, 𝛽𝑛𝐶1 (𝑘 − 𝑛)1/(𝑛−2) .
3. There exists a 0 < 𝑡𝐹 ≤ 𝐶2 (𝑘 − 𝑛)1/(𝑛−2) such that 𝐵fr (𝑏nr

𝑛 (𝑡𝐹 )) = 0 and 𝐵fr (𝑏nr
𝑛 (𝑡)) < 0 for

0 < 𝑡 < 𝑡𝐹 .

We conclude that 𝑃nr
𝑛 (𝑡) > 0 up to 𝑡𝐹 , for r close enough to 𝑟𝑛 from above.

We define the barrier 𝑏nr
𝑛 ∗ 𝐵fr to be 𝑏nr

𝑛 (𝑡) up to 𝑡𝐹 and then 𝐵fr = 0 (with some parametrization
starting at 𝑡𝐹 ) up to 𝑃0. Using Proposition 4.5 and the fact that 𝑃nr

𝑛 (𝑡) > 0 up to 𝑡𝐹 , we know that the
component of the field (𝑁𝑊 𝐷𝑍 , 𝑁𝑍𝐷𝑊 ) points downwards. Let us consider Ω𝑑 , the part of Ω below
𝑏nr
𝑛 ∗ 𝐵fr.

The smooth solution (𝑊 (𝑟 ) (𝜉), 𝑍 (𝑟 ) (𝜉)) is in Ω𝑑 for −𝜉 > 0 sufficiently small by point 1 above and
cannot exit through 𝑏nr

𝑛 ∗ 𝐵fr since the normal component points downwards. In particular, it cannot

hit the halfline of 𝐷𝑍 = 0 to the right of 𝑃𝑠 , so by Remark 1.7, it cannot lie in Ω
(𝑟𝑑)
1 . In other words

Ω𝑑 ⊂ Ω̄
(𝑟𝑑)
2 . AsΩ𝑑 is open, it cannot have points of 𝜕Ω(𝑟𝑑)2 . Therefore,Ω𝑑 ⊂ Ω

(𝑟𝑑)
2 , and we are done. �

5. Complete Section 3 for the case 𝒓 → 𝒓∗

In this section, we fix 𝛾 = 7/5. Our objective here is to complete the analysis we did in Section 3 for the
case of 𝛾 = 7/5 and 𝑛 sufficiently large. We will prove Proposition 3.6, and in Corollary 5.9, we will
also conclude the proof of Lemma 3.4 for this case of 𝛾 = 7/5 and k sufficiently large.

In order to do so, first we need to control the growth of the Taylor coefficients of the solution. In
particular, we need to obtain the sign of 𝑍𝑛 (with a lower bound of its magnitude) in order to guarantee
that the behavior of the smooth solution when 𝑟 ≈ 𝑟+𝑛 or 𝑟 ≈ 𝑟−

𝑛+1 is the expected one.

Let us define 𝐶∗ = lim𝑟→𝑟∗
𝐷𝑍,2

2𝑘𝐷𝑍,1
. With this definition, we will have that for 1 � 𝑖 ≤ 𝑛, the

coefficient 𝑍𝑖 is approximately equal to 𝐶∗
𝑖2𝑘
𝑖−𝑘 𝑍𝑖−1. This idea is formalized in the following lemma. Let

us define also the quantity 𝐶̄∗ = 0.95𝐶∗.

Lemma 5.1. For k sufficiently large and 𝑖 ≤ 𝑘 we have that����𝑊𝑖+1
𝑍𝑖

���� ≤ 4, (5.1)����𝐶̄∗ (𝑖 + 1)2𝑘
𝑖 + 1 − 𝑘

���� ≤
����𝑍𝑖+1𝑍𝑖

���� ≤
����500𝐶̄∗

(𝑖 + 1)𝑘
𝑖 + 1 − 𝑘

���� for 𝑖 < 160, (5.2)����𝐶̄∗ (𝑖 + 1)2𝑘
𝑖 + 1 − 𝑘

���� ≤
����𝑍𝑖+1𝑍𝑖

���� ≤
����3𝐶̄∗ (𝑖 + 1)2𝑘

𝑖 + 1 − 𝑘

���� for 𝑖 ≥ 160, (5.3)����𝑍𝑖+1 − 𝐶̄∗
(𝑖 + 1)2𝑘
𝑖 + 1 − 𝑘

𝑍𝑖

���� ≤ 0.05|𝑍𝑖+1 | for 𝑖 > 10000. (5.4)

Note that the inequality (5.4) is strictly stronger than (5.3).
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Inequality (5.2) and inequality (5.3) for 𝑖 ≤ 10000 are proven via a computer-assisted argument
(see Lemma A.28). Moreover, (5.1) for 𝑖 ≤ 10000 is also proven via a computer-assisted proof (see
Lemma A.27). In both cases, strict inequalities at 𝑟 = 𝑟∗(7/5) are shown, and then one obtains the result
by invoking continuity.

The proof of Lemma 5.1 will follow by induction. In Lemma 5.6, we show that given that the
estimates in Lemma 5.1 hold for all 𝑖 < 𝑚 for 10000 ≤ 𝑚 ≤ 𝑘 , then (5.1) holds for 𝑖 = 𝑚. In Lemma 5.7
we show that given that the estimates in Lemma 5.1 hold for all 𝑖 < 𝑚 and (5.1) holds for 𝑖 ≤ 𝑚, where
10000 ≤ 𝑚 ≤ 𝑘 , then (5.4) holds for 𝑖 = 𝑚.

The proof of (5.4) will be strongly based on the log-convexity of the Taylor terms. We will have that
|𝑍𝑎 | · |𝑍𝑖−𝑎 | � |𝑍𝑏 | · |𝑍𝑖−𝑏 | when 𝑎 ≤ 𝑏 ≤ 𝑖 − 𝑏 ≤ 𝑖 − 𝑎. This will allow us to justify that all the terms
in the Taylor recursion are dominated by the most extreme ones (those terms 𝑍𝑎𝑍𝑖−𝑎 on which either
𝑎 ∈ {0, 1} or 𝑎 ∈ {𝑖 − 1, 𝑖}). Note that this log-convexity does not hold when 𝑖 > 𝑘 since, for example,
taking k approximately equal to n, and n even, we have that |𝑍3𝑛/2 | · |𝑍𝑛/2 | = 𝑂 (|𝑘−𝑛|−1) as 𝑘 → 𝑛, while
|𝑍𝑛 |2 = 𝑂 (|𝑘 − 𝑛|−2) as 𝑘 → 𝑛. Therefore, for k sufficiently close to n, we have |𝑍𝑛 |2 � |𝑍3𝑛/2 | · |𝑍𝑛/2 |.
However, since 𝑍𝑛 is the first coefficient that blows up as 𝑘 → 𝑛, it will be enough to have a lower bound
on that coefficient to control the Taylor series, since the next ones will go with higher powers of 𝜉.

Remark 5.2. From Lemma A.7, we have that that

𝐶∗ = lim
𝑟→𝑟∗

𝐷𝑍,2

2𝑘𝐷𝑍,1
= 1/726(−29 + 12

√
5) = −0.0029851 . . . ,

so that 𝐶̄∗ = 0.95𝐶̄∗ is negative and 0.00283 < |𝐶̄∗ | < 0.00284.

Corollary 5.3. Assume (5.2)–(5.4) hold for all 𝑖 ≤ 𝑚. If k is sufficiently large, then for all 𝑖 ≤ 𝑚, we have����𝑊𝑖

𝑍𝑖

���� ≤ 2. (5.5)

Proof. The inequality is shown for 𝑖 ≤ 160 in Lemma A.27.
Recall that the inequality (5.4) is stronger than (5.3). Then, (5.1), (5.3) and (5.4) imply����𝑊𝑖

𝑍𝑖

���� ≤ 4

����𝑍𝑖−1

𝑍𝑖

���� ≤ 4|𝐶̄∗ |
���� 𝑖 − 𝑘

𝑖2𝑘

���� ≤ 8|𝐶̄∗ |.

Then, we conclude by using Remark 5.2. �

Whenever we use the sign � in this section, the implicit constant will not depend on n. We also use
the descending Pochhammer notation 𝑎 (𝑏) = 𝑎(𝑎 − 1) (𝑎 − 2) . . . (𝑎 − 𝑏 + 1) for any real a and positive
integer b. For simplicity, assume that

∑𝑏
𝑗=𝑎 is the sum starting at �𝑎� and ending at 
𝑏� whenever 𝑎, 𝑏

are not integers.

5.1. Convexity lemmas from our assumptions

Lemma 5.4. Assume (5.2)–(5.4) hold for all 𝑖 ≤ 𝑚. Let 𝑗 ≥ 2 and 𝑚 < 𝑘 . Assume also 𝑗 ≤ (𝑚 + 1)/2,

and 𝑚 > 10000. Then we have the following:

• For 𝑗 < 160, we have

(
𝑚 + 1

𝑗

)
|𝑍 𝑗𝑍𝑚+1− 𝑗 | ≤

(
𝑚 + 1

1

)
|𝑍1𝑍𝑚 |

(
600

𝑚

) 𝑗−1

,

(
𝑚 + 2

𝑗

)
|𝑍 𝑗𝑍𝑚+2− 𝑗 | ≤

(
𝑚 + 2

2

)
|𝑍2𝑍𝑚 |

(
600

𝑚

) 𝑗−2

.

(5.6)
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• For 160 ≤ 𝑗 ≤ 𝑚/10, we have that

(
𝑚 + 1

𝑗

)
|𝑍 𝑗𝑍𝑚+1− 𝑗 | ≤

(
𝑚 + 1

1

)
|𝑍1𝑍𝑚 |

1

𝑚9
(1/3) 𝑗 ,(

𝑚 + 2

𝑗

)
|𝑍 𝑗𝑍𝑚+2− 𝑗 | ≤

(
𝑚 + 2

2

)
|𝑍2𝑍𝑚 |

1

𝑚9
(1/3) 𝑗 .

(5.7)

• For 𝑗 ≥ 𝑚/10, we have that

(
𝑚 + 1

𝑗

)
|𝑍 𝑗𝑍𝑚+1− 𝑗 | ≤

(
𝑚 + 1

1

)
|𝑍1𝑍𝑚 | (3/4) 𝑗/11,(

𝑚 + 2

𝑗

)
|𝑍 𝑗𝑍𝑚+2− 𝑗 | ≤

(
𝑚 + 2

2

)
|𝑍2𝑍𝑚 | (3/4) 𝑗/11.

(5.8)

We note that the first inequality of (5.6) is also trivially true for 𝑗 = 1.

Before we prove this lemma, let us prove an elementary bound on binomial coefficients. We first
recall the classical bound

√
2𝜋𝑛
(𝑛
𝑒

)𝑛
≤ 𝑛! ≤

√
2𝜋𝑛
(𝑛
𝑒

)𝑛
𝑒

1
12𝑛 . (5.9)

From this bound, we obtain the following bound on binomial coefficients.

Lemma 5.5. The following holds for any 𝑛 ≥ 1.

• If 1 ≤ 𝑗 ≤ 𝑛/2, it holds that
(𝑛
𝑗

)−1 ≤ 3
√
𝑗

4 𝑗 .

• If 𝑗 ≤ 𝑛/10, it holds that
(𝑛
𝑗

)−1 ≤ 𝑗!
(9𝑛/10) 𝑗 .

Proof. For the first one, use Stirling’s bound and note that 𝑗 𝑗 (𝑛− 𝑗)𝑛− 𝑗
𝑛𝑛

= 𝑓 (𝛼)𝑛 where 𝛼 = 𝑗/𝑛 and
𝑓 (𝛼) = 𝛼𝛼 (1 − 𝛼)1−𝛼. Checking the bound 𝑓 (𝛼) ≤ 4−𝛼 for any 𝛼 ∈ [0, 1/2] concludes the proof. The
second claim is clear from the definition of binomial number. �

Proof of Lemma 5.4. For the sake of brevity, let us just prove the first bound on each item (the proof for
the second is exactly the same changing the indices accordingly). Let us start with (5.8). We bound

��𝑍 𝑗

�� ≤ |𝑍1 |
159∏
𝑖=1

����500𝐶̄∗
(𝑖 + 1)𝑘
𝑖 + 1 − 𝑘

����
𝑗−1∏

𝑖=160

����3𝐶̄∗ (𝑖 + 1)2𝑘
𝑖 + 1 − 𝑘

���� ≤ |𝑍1 |
(500/3)159

160!

( 𝑗!)2
��3𝐶̄∗𝑘 �� 𝑗−1

(𝑘 − 2)( 𝑗−1)
, (5.10)

and similarly,

��𝑍𝑚+1− 𝑗 �� ≤ |𝑍𝑚 |
��(𝑚 − 𝑘)( 𝑗−1)

�� ((𝑚 + 1 − 𝑗)!)2��𝐶̄∗𝑘 �� 𝑗−1 (𝑚!)2
. (5.11)

Substituting in these bounds and using the bound
| (𝑚−𝑘)( 𝑗−1) |
(𝑘−2)( 𝑗−1)

≤ 1, along with Lemma 5.5, we obtain

(
𝑚 + 1

𝑗

)
|𝑍 𝑗𝑍𝑚+1− 𝑗 | ≤

(
𝑚 + 1

𝑗

)
|𝑍1 | |𝑍𝑚 |

3 𝑗−160 · 500159 (𝑚 + 1)2
160!

(
𝑚 + 1

𝑗

)−2

≤
(
𝑚 + 1

1

)
|𝑍1 | |𝑍𝑚 | (𝑚 + 1) 3

𝑗−159 · 500159

160!

√
𝑗

4 𝑗
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≤
(
𝑚 + 1

1

)
|𝑍1 | |𝑍𝑚 | (3/4) 𝑗/11

(
(3/4)𝑚/11√𝑚(𝑚 + 1) (500/3)159

160!

)

≤
(
𝑚 + 1

1

)
|𝑍1 | |𝑍𝑚 | (3/4) 𝑗/11,

where we used 𝑗 ≤ 𝑚/10 in the third inequality, and in the last inequality, we used that the last factor is
bounded by 1 for 𝑚 ≥ 10000. To obtain this last observation, we note

𝑑

𝑑𝑚

(
(3/4)𝑚/11√𝑚(𝑚 + 1)

)
≤ 0 for 𝑚 ≥

33 +
√

1089 + 4
(
log
(

4
3

)
− 11
)

log
(

4
3

)
− 4 log(2) + log(9)

log
(

256
81

) .

In particular, the inequality holds for 𝑚 ≥ 100. Thus, the desired inequality holds as a consequence of

1000100 · (3/4)10000/11 (500/3)159

160!
≤ 1.

Let us now show (5.7). We apply (5.10), (5.11), Lemma 5.5 using 160 ≤ 𝑗 ≤ 𝑚/10,

(
𝑚 + 1

𝑗

)
|𝑍 𝑗𝑍𝑚+1− 𝑗 | ≤

(
𝑚 + 1

1

)
|𝑍1 | |𝑍𝑚 | (𝑚 + 1) 3

𝑗−160 · 500159

160!

𝑗!

(9(𝑚 + 1)/10) 𝑗

≤
(
𝑚 + 1

1

)
|𝑍1 | |𝑍𝑚 |

1

3 𝑗𝑚9

10 𝑗 · 𝑗!
𝑚 𝑗−9

500159

3160 · 160!

≤
(
𝑚 + 1

1

)
|𝑍1 | |𝑍𝑚 |

1

3 𝑗𝑚9

√
2𝜋 𝑗𝑚9

(
10 𝑗

𝑒𝑚

) 𝑗 500159𝑒
1

12 𝑗

3160 · 160!

≤
(
𝑚 + 1

1

)
|𝑍1 | |𝑍𝑚 |

1

3 𝑗𝑚9
𝑚10

(
10 𝑗

𝑒𝑚

) 𝑗 2 · 500159

3160 · 160!
,

where we used (5.9). Observe that 𝑑
𝑑 𝑗

(
10 𝑗
𝑒𝑚

) 𝑗
≤ 0 for 𝑗 ≤ 𝑚

10 . Then (5.7) follows once we note that for

160 ≤ 𝑗 ≤ 𝑚
10 and 𝑚 ≥ 10000, we have

𝑚10

(
10 𝑗

𝑒𝑚

) 𝑗 2 · 500159

3160 · 160!
≤ 𝑚−150 2 · 500159 · 1600160

(3𝑒)160 · 160!
≤ 1.

Finally, let us show (5.6) for 𝑗 < 160. Then by (5.2), we have

��𝑍 𝑗

�� ≤ |𝑍1 |
𝑗−1∏
𝑖=1

����500𝐶̄∗
(𝑖 + 1)𝑘
𝑖 + 1 − 𝑘

���� ≤ |𝑍1 |
𝑗!
��500𝐶̄∗𝑘

�� 𝑗−1

(𝑘 − 2)( 𝑗−1)
, (5.12)

and (5.11) holds. Thus,

(
𝑚 + 1

1

)
|𝑍 𝑗𝑍𝑚+1− 𝑗 | ≤

(
𝑚 + 1

𝑗

)
|𝑍1 | |𝑍𝑚 |

(𝑚 − 𝑗 + 1)!500 𝑗−1

𝑚!

≤
(
𝑚 + 1

𝑗

)
|𝑍1 | |𝑍𝑚 |

101

100

(𝑚 − 𝑗 + 1)𝑚− 𝑗+ 3
2 (500𝑒) 𝑗−1

𝑚𝑚+ 1
2

≤
(
𝑚 + 1

1

)
|𝑍1 | |𝑍𝑚 |

(
600

𝑚

) 𝑗−1 101

100

(
𝑚 − 𝑗 + 1

𝑚

)𝑚− 𝑗+1 (5𝑒
6

) 𝑗−1

.
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Then to conclude, we observe that

𝑑

𝑑𝑗

((
𝑚 − 𝑗 + 1

𝑚

)𝑚− 𝑗+1 (5𝑒
6

) 𝑗−1
)
≤ 0,

which is negative so long as 𝑗 ≤ 6+𝑚
6 , which is clearly satisfied. Then, substituting 𝑗 = 2, we obtain

(5.6) as a consequence of

101

100

(
𝑚 − 𝑗 + 1

𝑚

)𝑚− 𝑗+1 (5𝑒
6

) 𝑗−1

≤ 101

100

(
𝑚 − 1

𝑚

)𝑚−1 (5𝑒
6

)
≤ 1

for 𝑚 ≥ 10000. �

5.2. Closing the induction for 𝑾𝒊

Let us recall the following bounds from Lemma A.8. If 𝑟 ∈ (𝑟𝑛, 𝑟𝑛+1), for n sufficiently large, then for
any 𝑖, 𝑗 ∈ {𝑊, 𝑍},

𝐷𝑊 ,0 ≤ 2|𝑍0 |, |𝑍1 | ≤ 3/10, |𝑊1 | ≤ 1/2,
|𝜕𝑖𝑁◦(𝑃𝑠) | ≤ 2, |𝜕𝑖𝐷◦ | ≤ 3/5, |𝜕𝑖𝜕 𝑗𝑁◦ (𝑃𝑠) | ≤ 7/5. (5.13)

Lemma 5.6. Assuming the estimates in Lemma 5.1 hold for all 𝑖 < 𝑚 where we take 10000 ≤ 𝑚 ≤ 𝑘 ,

then (5.1) holds for 𝑖 = 𝑚.

Proof. Let us rewrite equation (2.18) as

𝐷𝑊 ,0𝑊𝑚+1 = (𝜕𝑍𝑁𝑊 (𝑃𝑠) −𝑊1𝜕𝑍𝐷𝑊 )𝑍𝑚 + (𝑁𝑊 ,𝑚 − 𝜕𝑍𝑁𝑊 (𝑃𝑠)𝑍𝑚)

−𝑊1𝜕𝑊 𝐷𝑍 (𝑃𝑠)𝑊𝑚 −
𝑚−1∑
𝑗=1

(
𝑚

𝑗

)
𝐷𝑊 ,𝑚− 𝑗𝑊 𝑗+1 = I + II + III + IV.

(5.14)

Taking the limit 𝑟 → 𝑟∗ yields

lim
𝑟→𝑟∗

(𝜕𝑍𝑁𝑊 (𝑃𝑠) −𝑊1𝜕𝑍𝐷𝑊 ) =
2

5 + 3
√

5
,

(see Lemma A.7). Thus, if we take k sufficiently large, we obtain

|I| ≤
(

2

5 + 3
√

5
+ 𝑜(1)
)
|𝑍𝑚 | ≤

2

5
|𝑍𝑚 | . (5.15)

Now consider II. Applying (5.1)–(5.4), (5.5), Lemma 5.4 and (5.13),

|II| =

������𝜕𝑊 𝑁𝑊 (𝑃𝑠)𝑊𝑚 +
1

2

𝑚−1∑
𝑗=1

(
𝑚

𝑗

)
(𝑊 𝑗 , 𝑍 𝑗 )�𝐻𝑁𝑊 · (𝑊𝑚− 𝑗 , 𝑍𝑚− 𝑗 )

������
≤ 2|𝑊𝑚 | + 5

𝑚/2∑
𝑗=1

(
𝑚

𝑗

)
|𝑍 𝑗 | |𝐻𝑁𝑊 | |𝑍𝑚− 𝑗 |

≤ 8|𝑍𝑚−1 | + 14
𝑚/2∑
𝑗=1

(
𝑚

𝑗

)
|𝑍 𝑗 | |𝑍𝑚− 𝑗 |
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≤ 8|𝑍𝑚 | + 14

(
𝑚

1

)
|𝑍1𝑍𝑚−1 | ���

160∑
𝑗=1

(
600

𝑚

) 𝑗−1

+ 1

𝑚9

𝑚/10∑
𝑗=161

(1/3) 𝑗 +
𝑚/2∑

𝑗=𝑚/10

(3/4) 𝑗/11���
≤ 8|𝑍𝑚 | +

21

5
𝑚 |𝑍𝑚−1 |

(
10

9
+ 1

1000
+ 1

1000

)

≤ 5𝑚 |𝑍𝑚−1 | ≤
5 |𝑘 − 𝑚 |
|𝐶̄∗ |𝑚𝑘

|𝑍𝑚 | ≤
1700

𝑚
|𝑍𝑚 |, (5.16)

where in the last inequality we used Remark 5.2. Here, we used the estimate

|𝐻𝑁𝑊 | ∞ ≤ max
𝑖=1,2

∑
𝑗=1,2

��(𝐻𝑁𝑊 )𝑖 𝑗
�� ≤ 14

5
.

To estimate III, we first note that by (5.1)–(5.4),

|𝑊𝑚 | ≤ 4|𝑍𝑚−1 | ≤
4 |𝑘 − 𝑚 |
|𝐶̄∗ |𝑚2𝑘

|𝑍𝑚 | ≤
1500

𝑚2
|𝑍𝑚 |,

using again Remark 5.2. Therefore, using (5.13), we obtain

|III| ≤ 1

2
· 3

5
· 1500

𝑚2
|𝑍𝑚 | =

450

𝑚2
|𝑍𝑚 |. (5.17)

Lastly, let us consider IV. We remark that 𝐷𝑊 ,𝑖 =
3𝑊𝑖+2𝑍𝑖

5 for 𝑖 ≥ 1. Then applying (5.1)–(5.4),
(5.5), Lemma 5.4 and (5.13),

|IV| ≤ 1

5

𝑚−1∑
𝑗=1

(
𝑚

𝑗

)
|3𝑊𝑚− 𝑗 + 2𝑍𝑚− 𝑗 | |𝑊 𝑗+1 |

≤ 32

5

𝑚−1∑
𝑗=1

(
𝑚

𝑗

)
|𝑍𝑚− 𝑗 | |𝑍 𝑗 |

≤ 13
𝑚/2∑
𝑗=1

(
𝑚

𝑗

)
|𝑍 𝑗 | |𝑍𝑚− 𝑗 |

≤ 13𝑚 |𝑍1 | |𝑍𝑚−1 | ���
160∑
𝑗=1

(
600

𝑚

) 𝑗−1

+ 1

𝑚9

𝑚/10∑
𝑗=160

(1/3) 𝑗 +
𝑚/2∑

𝑗=𝑚/10

(3/4) 𝑗/11���
≤ 14𝑚 |𝑍1 | |𝑍𝑚−1 | ≤

5

𝑚 |𝐶̄∗ |
|𝑍𝑚 | ≤

2000

𝑚
|𝑍𝑚 |, (5.18)

where we used Remark 5.2 in the last inequality.
Then combining (5.15)–(5.18), we obtain

��𝐷𝑊 ,0𝑊𝑚+1
�� ≤ (2

5
+ 1700

𝑚
+ 450

𝑚2
+ 2000

𝑚

)
|𝑍𝑚 | ≤ |𝑍𝑚 | .

Noting

lim
𝑟→𝑟∗

𝐷𝑊 ,0 =
2

1 +
√

5
,

from Lemma A.7, then for k sufficiently large, we obtain our claim. �
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5.3. Closing the induction for 𝒁𝒊

Lemma 5.7. Assuming the estimates in Lemma 5.1 hold for all 𝑖 < 𝑚 where we take 10000 ≤ 𝑚 ≤ 𝑘 ,

and (5.1) holds for 𝑖 = 𝑚, then (5.4) holds for 𝑖 = 𝑚.

Proof. Let us recall (2.19)

𝑍𝑚+1𝐷𝑍,1 (𝑚 + 1 − 𝑘) = −
(
𝑚 + 1

𝑚 − 1

)
𝐷𝑍,2𝑍𝑚 −

𝑚−2∑
𝑗=1

(
𝑚 + 1

𝑗

)
𝐷𝑍,𝑚+1− 𝑗𝑍 𝑗+1

+
(
𝑁𝑍,𝑚+1 − (𝜕𝑍𝑁𝑍 (𝑃𝑠))𝑍𝑚+1

)
− 𝑍1𝑊𝑚+1𝜕𝑊 𝐷𝑍 (𝑃𝑠)

= −𝑚
2
(1 + 𝑚)𝐷𝑍,2𝑍𝑚 + I + II + III.

Applying (5.5), Lemma 5.4 and (5.13),

|I| ≤ 1

5

𝑚−2∑
𝑗=1

(
𝑚 + 1

𝑗

)
(3
��𝑊𝑚+1− 𝑗

�� + 2
��𝑍𝑚+1− 𝑗 ��) ��𝑍 𝑗+1

��

≤ 8

5

𝑚−2∑
𝑗=1

(
𝑚 + 1

𝑗

) ��𝑍𝑚+1− 𝑗 �� ��𝑍 𝑗+1
��

≤ 16

5

(𝑚+1)/2∑
𝑗=1

(
𝑚 + 1

𝑗

) ��𝑍𝑚+1− 𝑗 �� ��𝑍 𝑗+1
��

=
16

5

(𝑚+2)/2∑
𝑗=2

𝑗

𝑚 + 2

(
𝑚 + 2

𝑗

) ��𝑍𝑚+2− 𝑗 �� ��𝑍 𝑗

��

≤ 16

5
(𝑚 + 1) |𝑍1𝑍𝑚 | ���

160∑
𝑗=2

𝑗

(
600

𝑚

) 𝑗−1

+ 1

𝑚9

𝑚/10∑
𝑗=161

𝑗 (1/3) 𝑗 +
(𝑚−2)/2∑
𝑗=𝑚/10

𝑗 (3/4) 𝑗/11���
≤ 𝑚

10
|𝑍𝑚 |. (5.19)

Applying (5.1), (5.5), Lemma 5.4 and (5.13),

|II| = |𝜕𝑊 𝑁𝑍 (𝑃𝑠)𝑊𝑚+1 | +
𝑚/2∑
𝑗=1

(
𝑚 + 1

𝑗

) ��(𝑊 𝑗 , 𝑍 𝑗 )�𝐻𝑁𝑍 · (𝑊𝑚+1− 𝑗 , 𝑍𝑚+1− 𝑗 )
��

≤ 2|𝑊𝑚+1 | + (𝑚 + 1)
��(𝑊1, 𝑍1)�𝐻𝑁𝑍 · (𝑊𝑚, 𝑍𝑚)

�� + 𝑚/2∑
𝑗=2

(
𝑚 + 1

𝑗

) ��(𝑊 𝑗 , 𝑍 𝑗 )�𝐻𝑁𝑍 · (𝑊𝑚+1− 𝑗 , 𝑍𝑚+1− 𝑗 )
��

≤ 8|𝑍𝑚 | + (𝑚 + 1)
��(𝑊1, 𝑍1)�𝐻𝑁𝑍 · (𝑊𝑚, 𝑍𝑚)

�� + 5
𝑚/2∑
𝑗=2

(
𝑚 + 1

𝑗

)
|𝑍 𝑗 | |𝑍𝑚+1− 𝑗 |

≤ 8|𝑍𝑚 | + (𝑚 + 1)
��(𝑊1, 𝑍1)�𝐻𝑁𝑍 · (𝑊𝑚, 𝑍𝑚)

��
+ 5(𝑚 + 1) |𝑍1𝑍𝑚 | ���

160∑
𝑗=2

(
600

𝑚

) 𝑗−1

+ 1

𝑚9

𝑚/10∑
𝑗=161

(1/3) 𝑗 +
(𝑚+1)/2∑
𝑗=𝑚/10

(3/4) 𝑗/11���
≤ (𝑚 + 1)

��(𝑊1, 𝑍1)�𝐻𝑁𝑍 · (𝑊𝑚, 𝑍𝑚)
�� + 𝑚

10
|𝑍𝑚 |. (5.20)
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Note

𝐻𝑁𝑍 (𝑃𝑠) =
(
𝛾−1

2
𝛾−3

4
𝛾−3

4 −𝛾

)
=

1

5

(
1 −2
−2 −7

)
,

and lim𝑟→𝑟∗ (𝑊1, 𝑍1) = (5 − 3
√

5)
(

1
4 ,− 1

6

)
from Lemma A.7. Hence,

lim
𝑟→𝑟∗

(𝑊1, 𝑍1)�𝐻𝑁𝑍 · (𝑊𝑚, 𝑍𝑚) = −
1

60

(
3
√

5 − 5
)
(7𝑊𝑚 + 8𝑍𝑚).

Thus, for k sufficiently large, we have

��(𝑊1, 𝑍1)�𝐻𝑁𝑍 · (𝑊𝑚, 𝑍𝑚)
�� ≤ 1

5
(|𝑊𝑚 | + |𝑍𝑚 |) ≤

3

5
|𝑍𝑚 | .

Combining this estimate with (5.20), we obtain

|II| ≤ 𝑚 |𝑍𝑚 |.

Finally, applying (5.1), (5.13) to III yields

|III| = | − 𝑍1𝑊𝑚+1𝜕𝑊 𝐷𝑍 | ≤
3

10
· 4|𝑍𝑚 | ·

3

5
≤ |𝑍𝑚 |. (5.21)

Hence, combining (5.19)–(5.21), we obtain

���𝑍𝑚+1𝐷𝑍,1 (𝑚 + 1 − 𝑘) + 𝑚

2
(1 + 𝑚)𝐷𝑍,2𝑍𝑚

��� ≤ |I| + |II| + |III| ≤
(

1

10
+ 1 + 1

𝑚

)
𝑚 |𝑍𝑚 | ≤

3

2
𝑚 |𝑍𝑚 |.

Thus, ����𝑍𝑚+1 (𝑚 + 1 − 𝑘) 2𝐷𝑍,1

(𝑚 + 1)𝑚𝐷𝑍,2
+ 𝑍𝑚

���� ≤ 3

(𝑚 + 1) |𝐷𝑍,2 |
|𝑍𝑚 |.

Using

lim
𝑟→𝑟∗

𝐷𝑍,2 =
1

132
(19 − 9

√
5),

from Lemma A.7, we obtain����𝑍𝑚+1(𝑚 + 1 − 𝑘) 2𝐷𝑍,1

(𝑚 + 1)𝑚𝐷𝑍,2
+ 𝑍𝑚

���� ≤ 2

50
|𝑍𝑚 |,

from which we obtain (5.4). �

5.4. Further corollaries of Lemma 5.1

Corollary 5.8. Let 𝛾 = 7/5, n odd sufficiently large and 𝑟 ∈ (𝑟𝑛, 𝑟𝑛+1). We have that 𝑍𝑛 > 0 and

𝑍𝑛+1 < 0. Moreover, we have

𝑘𝑛

𝑘 − 𝑛
|𝐶̄∗ |𝑛 �

𝑍𝑛

𝑛!
�

𝑛𝑘𝑛

𝑘 − 𝑛
|𝐶̄∗ |𝑛
(
1.05

0.95

)𝑛
. (5.22)

In particular,
(
|𝑍𝑛 |
𝑛! (𝑘 − 𝑛)

)1/𝑛
≈ 𝑛.
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Proof. By Lemma A.28, we have

��𝑍10000 + 6 · 1046770
�� ≤ 1046770,

which by a liberal choice of implicit constant may be rewritten as

|𝐶̄∗ |10000 10000!𝑘10000

| (10000 − 𝑘)(10000) |
�
−𝑍10000

10000!
� |𝐶̄∗ |10000 𝑛!𝑘10000

| (10000 − 𝑘)(10000) |

(
1.05

0.95

)10000

.

Then, applying (5.4) successively yields

|𝐶̄∗ |𝑛
𝑛!𝑘𝑛

| (𝑛 − 𝑘)(𝑛) |
�

𝑍𝑛

𝑛!
� |𝐶̄∗ |𝑛

𝑛!𝑘𝑛

| (𝑛 − 𝑘)(𝑛) |

(
1.05

0.95

)𝑛
.

We notice that (𝑘 − 𝑛) (𝑛− 1)! ≤ |(𝑛− 𝑘)(𝑛) | ≤ (𝑘 − 𝑛)𝑛!, which follows by canceling the factor (𝑘 − 𝑛)
and bounding 1 ≤ (𝑘 − 𝑛 + 1) ≤ 2, 2 ≤ (𝑘 − 𝑛 + 2) ≤ 3, . . . . Thus, we obtain (5.22).

Finally, we note the statement 𝑍𝑛+1 < 0 follows as a consequence of (5.4) and (5.22). �

Note that this Corollary concludes the proof of Lemmas 4.4 and 4.7.

Corollary 5.9. We have that for 𝛾 = 7/5 and n odd and sufficiently large (𝑟 ∈ (𝑟𝑛, 𝑟𝑛+1)),

𝑍𝑛+1 −
𝑍1𝑊𝑛+1
𝑊1

< 0.

Proof. From Lemma 5.1, we have that |𝑊𝑛+1 | � |𝑍𝑛 | � 𝑛+1−𝑘
(𝑛+1)2𝑘 |𝑍𝑛+1 | �

|𝑍𝑛+1 |
𝑛2 . Using Corollary 5.8,

we have 𝑍𝑛+1 < 0. �

Let us note that this Corollary ends the proof of Lemma 3.4 for the case of 𝛾 = 7/5 and sufficiently
large odd n. We will now show how Lemma 5.1 implies log-convexity of 𝑍𝑖

𝑖! .
From Lemma 5.1, we can compare the size of |𝑍𝑖 | with |𝑍𝑖+1 |. The following Lemma just applies

Lemma 5.1 for all 𝑖 = 𝑎, 𝑎 + 1, . . . 𝑛 − 1 and concatenates those bounds in order to obtain a direct
comparison between |𝑍𝑎 | and |𝑍𝑛 |.

Lemma 5.10. For k sufficiently large, we have that for any 𝑎 ≤ 𝑛 = 
𝑘�,

|𝑍𝑎 |
𝑎!
�

(
𝑍𝑛

𝑛!

)𝑎/𝑛 (
𝑛

𝑎

)−1 (1.05

0.95

) 𝑎 (𝑛−𝑎)
𝑛

(𝑘 − 𝑛)𝑎/𝑛−
𝑎/𝑛� .

Proof. Let us start supposing 𝑎 < 𝑛, so that 𝑎/𝑛 − 
𝑎/𝑛� = 𝑎/𝑛. Writing 𝑍𝑎
𝑎! =
∏𝑎

𝑗=1
1
𝑗

𝑍 𝑗
𝑍 𝑗−1

and
𝑍𝑛
𝑛! =
∏𝑛

𝑗=1
1
𝑗

𝑍 𝑗
𝑍 𝑗−1

, the statement is equivalent to

���
𝑎∏
𝑗=1

|𝑍 𝑗 |
|𝑍 𝑗−1 | 𝑗 𝑘

���
1−𝑎/𝑛

�
���

𝑛∏
𝑗=𝑎+1

|𝑍 𝑗 |
|𝑍 𝑗−1 | 𝑗 𝑘

���
𝑎/𝑛 (

𝑛

𝑎

)−1 (1.05

0.95

) 𝑎 (𝑛−𝑎)
𝑛

(𝑘 − 𝑛)𝑎/𝑛.

Using Lemma 5.1, the left-hand-side is �
∏𝑎

𝑗=1
𝑗

𝑘− 𝑗 𝐶̄∗
(

1.05
0.95

)𝑎
and the parenthesis in the right-hand-side

is �
∏𝑛

𝑗=𝑎+1
𝑗

𝑘− 𝑗 𝐶̄∗. Thus, it just suffices to show
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���
𝑎∏
𝑗=1

𝑗

𝑘 − 𝑗
𝐶̄∗
���

1−𝑎/𝑛 (
1.05

0.95

)𝑎 (1−𝑎/𝑛)
�
���

𝑛∏
𝑗=𝑎+1

𝑗𝐶̄∗
𝑘 − 𝑗

���
𝑎/𝑛 (

𝑛

𝑎

)−1 (1.05

0.95

) 𝑎 (𝑛−𝑎)
𝑛

(𝑘 − 𝑛)𝑎/𝑛

⇔ ���
𝑎∏
𝑗=1

𝑗

𝑘 − 𝑗

���
1−𝑎/𝑛

�
���

𝑛∏
𝑗=𝑎+1

𝑗

𝑘 − 𝑗

���
𝑎
𝑛 (

𝑛

𝑎

)−1

(𝑘 − 𝑛)𝑎/𝑛

⇐
(

𝑎!

𝑛!/(𝑛 − 𝑎)!

)1−𝑎/𝑛
�

(
𝑛!/𝑎!

(𝑛 − 𝑎)!(𝑘 − 𝑛)

) 𝑎
𝑛
(
𝑛

𝑎

)−1

(𝑘 − 𝑛)𝑎/𝑛.

As the last inequality is in fact an equality, we are done with the case 𝑎 < 𝑛. For the case 𝑎 = 𝑛, all the
implications work the same except the last one, as we should erase the factor (𝑘 − 𝑛) (this is because∏𝑛

𝑗=𝑎+1 (𝑘 − 𝑗) has no factors for 𝑎 = 𝑛, so we cannot extract a factor (𝑘 − 𝑛)). Thus, erasing the factors
(𝑘 − 𝑛) (and their powers) in all the equations, the proof works the same for 𝑎 = 𝑛. As 𝑎/𝑛 − 
𝑎/𝑛� = 0
for 𝑎 = 𝑛, the statement is also correct in that case. �

5.5. Estimates on P - Validity of the near-left barrier

Let us recall 𝑏nl
𝑛,𝑊
(𝑠) = ∑𝑛𝑖=0

𝑊𝑖

𝑖! 𝑠
𝑖 , 𝑏nl

𝑛,𝑍
(𝑠) = ∑𝑛𝑖=0

𝑍𝑖
𝑖! 𝑠

𝑖 and

𝑃nl
𝑛 (𝑠) = 𝑏nl ′

𝑛,𝑍 (𝑠)𝑁𝑊 (𝑏nl
𝑛 (𝑠))𝐷𝑍 (𝑏nl

𝑛 (𝑠)) − 𝑏nl ′
𝑛,𝑊 (𝑠)𝑁𝑍 (𝑏nl

𝑛 (𝑠))𝐷𝑊 (𝑏nl
𝑛 (𝑠)).

In order to obtain the sign of 𝑃nl
𝑛 (𝑠), we prove the following lemma:

Proposition 5.11. For any s with 0 ≤ 𝑠𝑛−2 ≤ 3
|𝐷∗
𝑍,2 |

2𝜕𝑍𝐷𝑍
𝑛!
𝑍𝑛

, we have

𝑃nl
𝑛 (𝑠) = 𝑛

𝑍𝑛

𝑛!

𝑁𝑊 ,0𝐷𝑍,2

2
𝑠𝑛+1
(
1 +𝑂
(
1

𝑛

))
+ 𝑛

(
𝑍𝑛

𝑛!

)2
𝜕𝑍𝐷𝑍𝑁𝑊 ,0𝑠

2𝑛−1

(
1 +𝑂
(
1

𝑛

))
. (5.23)

Moreover, letting

𝑠7/5,val =

(
99

100

|𝐷𝑍,2 |
2𝜕𝑍𝐷𝑍

𝑛!

𝑍𝑛

) 1
𝑛−2

, (5.24)

we have that 𝑃nl
𝑛 (𝑠) > 0 for 𝑠 ∈ (0, 𝑠7/5,val).

Before we prove Proposition 5.11, we need a few auxiliary lemmas.
In what follows, it will be useful to introduce the following notation: Let us define the discrepancy ℓ

of a number a as

ℓ(𝑎) = min{𝑎, 𝑛 − 𝑎} and ℓ(𝑎, 𝑏, 𝑐, 𝑑) = ℓ(𝑎) + ℓ(𝑏) + ℓ(𝑐) + ℓ(𝑑).

We also define [
𝑛

𝑎

]
=

(
𝑛

𝑎

) (
0.95

1.05

) (𝑎 (𝑛−𝑎))/𝑛
.

The brackets behave asymptotically like the binomial coefficients in the sense that they are symmetric.

We have
[
𝑛
𝑎

]−1
� 1

𝑛𝑎
if a is fixed, and we also have

[
𝑛
𝑎

]−1
� 1

𝑛10 3−ℓ (𝑎) for any 1 ≤ 𝑎 ≤ 𝑛 with ℓ(𝑎) ≥ 10.

The strategy toward Proposition 5.11 is to develop a Taylor series for 𝑃nl
𝑛 (𝑠) and bound all the

terms except the dominant ones. In Lemma 5.12, we will bound the i-th coefficient for 𝑖 ≤ 𝑛, and in
Lemma 5.13, we will extract the main contributions of the (𝑛 + 1)-th and (2𝑛 − 1)-th terms. Those
correspond to the main terms in (5.23). Lastly, in the proof of Proposition 5.11, we will deal with all
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the i-th Taylor coefficients, for 𝑖 ≥ 𝑛 + 2, 𝑖 ≠ 2𝑛 − 1. In all those proofs, we will develop the expressions
in terms of |𝑍𝑖 | (or |𝑊𝑖 | � |𝑍𝑖−1 |), and we will observe that the term arising from |𝑍𝑎 | |𝑍𝑏 | |𝑍𝑐 | |𝑍𝑑 |
is proportional to

[
𝑛
𝑎

]−1 [𝑛
𝑏

]−1 [𝑛
𝑐

]−1 [𝑛
𝑑

]−1
. Since that is smaller than 𝑛−ℓ (𝑎,𝑏,𝑐,𝑑) , we will be able to

show that the terms with small discrepancy dominate, and they will correspond exactly to the main
contributions from the (𝑛 + 1)-th and (2𝑛 − 1)-th terms of the Taylor series.

Lemma 5.12. Let n be an odd number sufficiently large and 𝑖 ≤ 𝑛. We have that

𝜕𝑖−1
𝑠 𝑃nl

𝑛 (0)
(𝑖 − 1)! � 𝑖

( |𝑍𝑛 |
𝑛!

) 𝑖/𝑛 (𝑘 − 𝑛)𝑖/𝑛−
𝑖/𝑛�
𝑛min{7,ℓ (𝑖) } .

Proof. Let us recall (3.10):

𝑃nl
𝑛 (𝑠) = 𝑏nl ′

𝑛,𝑍 (𝑠)𝑁𝑊 (𝑏nl
𝑛 (𝑠))𝐷𝑍 (𝑏nl

𝑛 (𝑠)) − 𝑏nl ′
𝑛,𝑊 (𝑠)𝑁𝑍 (𝑏nl

𝑛 (𝑠))𝐷𝑊 (𝑏nl
𝑛 (𝑠)).

We have that |𝐷◦,𝑖 | � |𝜕𝑖𝑠𝑏nl
𝑛,𝑍
(𝑠) | and |𝜕𝑖𝑠 (𝑁𝑍 (𝑏nl

𝑛 (𝑠))) | � |𝜕𝑖𝑠 (𝑏nl
𝑛,𝑍
(𝑠)2) | + |𝜕𝑖𝑠𝑏nl

𝑍
(𝑠) | � |𝜕𝑖𝑠 (𝑏nl

𝑍
(𝑠)2) |.

Using Lemma 5.10,

𝜕𝑖−1
𝑠 𝑃nl

𝑛 (0) � |𝜕𝑖−1
𝑠 (𝑏nl ′

𝑛,𝑍 (𝑠)𝑏nl
𝑛,𝑍 (𝑠)3) (0) | =

∑
J𝑖

(𝑖 − 1)!
(𝑎 − 1)!𝑏!𝑐!𝑑!

|𝑍𝑎 | |𝑍𝑏 | |𝑍𝑐 | |𝑍𝑑 |

�
∑
J𝑖

𝑖!

𝑎!𝑏!𝑐!𝑑!
|𝑍𝑎 | |𝑍𝑏 | |𝑍𝑐 | |𝑍𝑑 |

� 𝑖!

( |𝑍𝑛 |
𝑛!

) 𝑖/𝑛
(𝑘 − 𝑛)𝑖/𝑛−
𝑖/𝑛�

∑
J𝑖

[
𝑛

𝑎

]−1 [
𝑛

𝑏

]−1 [
𝑛

𝑐

]−1 [
𝑛

𝑑

]−1

, (5.25)

where

J𝑖 =
{
(𝑎, 𝑏, 𝑐, 𝑑) ∈ Z4 : 0 ≤ 𝑎, 𝑏, 𝑐, 𝑑 ≤ 𝑛 and 𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝑖

}
.

In the last inequality, we also used that the function 𝑥−
𝑥� is subadditive. Let us decomposeJ𝑖 = J ′𝑖 �J ′′𝑖
with J ′𝑖 ,J

′′
𝑖 given by

J ′𝑖 = J𝑖 ∩
{
(𝑎, 𝑏, 𝑐, 𝑑) ∈ Z4 : ℓ(𝑎, 𝑏, 𝑐, 𝑑) ≥ 10

}
,

J ′′𝑖 = J𝑖 ∩
{
(𝑎, 𝑏, 𝑐, 𝑑) ∈ Z4 : ℓ(𝑎, 𝑏, 𝑐, 𝑑) < 10

}
.

As |J ′𝑖 | � 𝑛3, we have that

∑
J ′
𝑖

[
𝑛

𝑎

]−1 [
𝑛

𝑏

]−1 [
𝑛

𝑐

]−1 [
𝑛

𝑑

]−1

� |J ′𝑖 |
1

𝑛10
�

1

𝑛7
. (5.26)

However, |J ′′𝑖 | � 1, so we deduce

∑
J ′′
𝑖

[
𝑛

𝑎

]−1 [
𝑛

𝑏

]−1 [
𝑛

𝑐

]−1 [
𝑛

𝑑

]−1

� |J ′′𝑖 |max
J ′′
𝑖

1

𝑛ℓ (𝑎,𝑏,𝑐,𝑑)
�

1

𝑛ℓ (𝑖)
, (5.27)

where we are using superadditivity of the discrepancy: ℓ(𝑎) + ℓ(𝑏) + ℓ(𝑐) + ℓ(𝑑) ≥ ℓ(𝑖).
Plugging in (5.26) and (5.27) into (5.25), we conclude the proof. �

Now, recall that 𝜕𝑖−1
𝑠 𝑃nl

𝑛 (0) = 0 for any 𝑖 ≤ 𝑛+ 1. The previous lemma will guarantee that 𝜕𝑖−1
𝑠 𝑃nl

𝑛 (0)
are not dominant for 𝑖 ≠ 𝑛 + 2, 2𝑛. Let us thus analyze the precise order of the (𝑛 + 2)-th and (2𝑛)-th
derivatives of P.
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Lemma 5.13. We have that for odd n, sufficiently large,

𝜕𝑛+1𝑠 𝑃nl
𝑛 (0)

(𝑛 + 1)! = 𝑛
𝑍𝑛

𝑛!

𝑁𝑊 ,0𝐷𝑍,2

2

(
1 +𝑂
(
1

𝑛

))
, (5.28)

𝜕2𝑛−1
𝑠 𝑃nl

𝑛 (0)
(2𝑛 − 1)! = 𝑛

(
𝑍𝑛

𝑛!

)2
𝑁𝑊 ,0𝜕𝑍𝐷𝑍

(
1 +𝑂
(
1

𝑛

))
. (5.29)

Proof. The strategy is similar to the one in Lemma 5.12. The main difference is that in Lemma 5.12,
we bounded every term, while here, we will identify the dominant terms (which will be the ones with
the least discrepancy) and bound the rest.

Let us start showing (5.28). Let us define

B =

(
𝑛 + 1

2

)
𝑍𝑛𝑁𝑊 ,0𝐷𝑍,2 + (𝑛 + 1)𝑛𝑍𝑛𝑁𝑊 ,1𝐷𝑍,1 + (𝑛 + 1)𝑍1𝑁𝑊 ,𝑛𝐷𝑍,1

+ (𝑛 + 1)𝑍2𝑁𝑊 ,0𝐷𝑍,𝑛 + (𝑛 + 1)𝑍1𝑁𝑊 ,1𝑍𝑛 −
(
𝑛 + 1

2

)
𝑊𝑛𝑁𝑍,2𝐷𝑊 ,0 − (𝑛 + 1)𝑛𝑊𝑛𝑁𝑍,1𝐷𝑊 ,1

− (𝑛 + 1)𝑊1𝑁𝑍,𝑛𝐷𝑊 ,1 − (𝑛 + 1)𝑊2𝑁𝑍,𝑛𝐷𝑊 ,0 − (𝑛 + 1)𝑊1𝑁𝑍,1𝐷𝑊 ,𝑛

−𝑊1𝑁𝑍,𝑛+1𝐷𝑊 ,0, (5.30)

which corresponds to all the monomials of 𝜕𝑛+1𝑠 𝑃nl
𝑛 (0) where there are factors with n derivatives. In

particular, following the same reasoning as in (5.25), we have that

��𝜕𝑛+1𝑠 𝑃nl
𝑛 (0) − B

�� � (𝑛 + 2)!
( |𝑍𝑛 |

𝑛!

)1+2/𝑛
(𝑘 − 𝑛)2/𝑛

∑
J̃

[
𝑛

𝑎

]−1 [
𝑛

𝑏

]−1 [
𝑛

𝑐

]−1 [
𝑛

𝑑

]−1

, (5.31)

where

J̃ =
{
(𝑎, 𝑏, 𝑐, 𝑑) ∈ Z4 : 0 ≤ 𝑎, 𝑏, 𝑐, 𝑑 ≤ 𝑛, 𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝑛 + 2 and ℓ(𝑎) + ℓ(𝑏) + ℓ(𝑐) + ℓ(𝑑) ≥ 4

}
.

Note that for any tuple (𝑎, 𝑏, 𝑐, 𝑑) with 𝑎+ 𝑏+ 𝑐+ 𝑑 = 𝑛+2, we have that ℓ(𝑎, 𝑏, 𝑐, 𝑑) ≥ ℓ(𝑛+2) = 2 and
that the discrepancy is even. As B from equation (5.30) contains precisely the monomials of discrepancy
2 of 𝜕𝑛+1𝑠 𝑃nl

𝑛 (0), every addend in the right-hand side of (5.31) has discrepancy greater or equal than 4.
Now, using the same reasoning as in the proof of Lemma 5.12 (decomposing J̃ according to the

discrepancy being smaller or greater than 10), we have that

∑
J̃

[
𝑛

𝑎

]−1 [
𝑛

𝑏

]−1 [
𝑛

𝑐

]−1 [
𝑛

𝑑

]−1

�
1

𝑛4
. (5.32)

However, from (5.30), we see that

B =

(
𝑛 + 1

2

)
𝑍𝑛𝑁𝑊 ,0𝐷𝑍,2 +𝑂

(
𝑛2 |𝑍𝑛 |𝐷𝑍,1

)
+𝑂 (𝑛|𝑍𝑛 |) +𝑂

(
𝑛2 |𝑊𝑛 |

)

=

(
𝑛 + 1

2

)
𝑍𝑛𝑁𝑊 ,0𝐷𝑍,2 +𝑂 (𝑛|𝑍𝑛 |), (5.33)

since |𝐷𝑍,1 | � 1
𝑘
� 1

𝑛
(Lemma A.7) and |𝑊𝑛 | � |𝑍𝑛−1 | � 𝑛|𝑍𝑛 | (Lemma 5.1).
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From equations (5.31)–(5.33), we conclude that

𝜕𝑛+1𝑠 𝑃nl
𝑛 (0)

(𝑛 + 1)! =
1

(𝑛 + 1)!

(
𝑛 + 1

2

)
𝑍𝑛𝑁𝑊 ,0𝐷𝑍,2 +𝑂

(
𝑛|𝑍𝑛 |
(𝑛 + 1)!

)
+𝑂
(

1

𝑛3

( |𝑍𝑛 |
𝑛!

)1+2/𝑛
(𝑘 − 𝑛)2/𝑛

)

= 𝑛
𝑁𝑊 ,0𝐷𝑍,2

2

𝑍𝑛

𝑛!
+𝑂
( |𝑍𝑛 |

𝑛!

)
+𝑂
(
|𝑍𝑛 |
𝑛!
· 1

𝑛3

( |𝑍𝑛 | (𝑛 − 𝑘)
𝑛!

)2/𝑛)

= 𝑛
𝑍𝑛

𝑛!

𝑁𝑊 ,0𝐷𝑍,2

2

(
1 +𝑂
(
1

𝑛

))
,

where we have used Corollary 5.8 in the last equality and the fact that |𝑁𝑊 ,0𝐷𝑍,2 | � 1 (Lemma A.7).
Now, let us show (5.29). Let us define

sB =

(
2𝑛 − 1

𝑛 − 1

) (
𝑍𝑛𝑁𝑊 ,0𝐷𝑍,𝑛 −𝑊𝑛𝑁𝑍,𝑛𝐷𝑊 ,0 −𝑊𝑛𝑁𝑍,0𝐷𝑊 ,𝑛

)
, (5.34)

which corresponds to all the monomials of 𝜕𝑛+1𝑠 𝑃nl
𝑛 (0) where there are two factors with n derivatives.

In particular, following the same reasoning as in (5.25), we have that

��𝜕2𝑛−1
𝑠 𝑃nl

𝑛 (0) − B
�� � (2𝑛)! ( |𝑍𝑛 |

𝑛!

)2∑
sJ

[
𝑛

𝑎

]−1 [
𝑛

𝑏

]−1 [
𝑛

𝑐

]−1 [
𝑛

𝑑

]−1

, (5.35)

where

sJ =
{
(𝑎, 𝑏, 𝑐, 𝑑) ∈ Z4 : 0 ≤ 𝑎, 𝑏, 𝑐, 𝑑 ≤ 𝑛, 𝑎 + 𝑏 + 𝑐 + 𝑑 = 2𝑛 and ℓ(𝑎) + ℓ(𝑏) + ℓ(𝑐) + ℓ(𝑑) ≥ 2

}
.

Note that for any tuple (𝑎, 𝑏, 𝑐, 𝑑) with 𝑎 + 𝑏 + 𝑐 + 𝑑 = 2𝑛, we have that the discrepancy is even. As sB

from equation (5.34) contains precisely the monomials of discrepancy 0 of 𝜕𝑛+1𝑠 𝑃nl
𝑛 (0), every addend

in the right-hand side of (5.35) has discrepancy greater or equal than 2.
Now, using the same reasoning as in the proof of Lemma 5.12, we have that

∑
sJ

[
𝑛

𝑎

]−1 [
𝑛

𝑏

]−1 [
𝑛

𝑐

]−1 [
𝑛

𝑑

]−1

�
1

𝑛2
. (5.36)

However, from (5.34) and using |𝑊𝑛 | � |𝑍𝑛−1 | � 1
𝑛3 |𝑍𝑛 | (Lemma 5.1), we have that

sB =

(
2𝑛 − 1

𝑛 − 1

)
𝑁𝑊 ,0𝜕𝑍𝐷𝑍 𝑍

2
𝑛 +𝑂
((

2𝑛 − 1

𝑛 − 1

)
|𝑍𝑛 |2

1

𝑛3

)

= (2𝑛 − 1)! · 𝑛𝑁𝑊 ,0𝜕𝑍𝐷𝑍

(
𝑍𝑛

𝑛!

)2
+𝑂
(
(2𝑛 − 1)!

(
𝑍𝑛

𝑛!

)2 1

𝑛2

)
. (5.37)

Finally, using (5.35)–(5.37), we conclude that

𝜕𝑛+1𝑠 𝑃nl
𝑛 (0)

(𝑛 + 1)! = 𝑛𝑁𝑊 ,0𝜕𝑍𝐷𝑍

(
𝑍𝑛

𝑛!

)2
+𝑂
((

𝑍𝑛

𝑛!

)2 1

𝑛2

)
+𝑂
(( |𝑍𝑛 |

𝑛!

)2 1

𝑛

)

= 𝑛

(
𝑍𝑛

𝑛!

)2
𝑁𝑊 ,0𝜕𝑍𝐷𝑍

(
1 +𝑂
(
1

𝑛

))
.

In the second equality, we used |𝑁𝑊 ,0𝜕𝑍𝐷𝑍 | = 1+𝛾
4 |𝑁𝑊 ,0 | � 1 from Lemma A.7. �
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Proof of Proposition 5.11. Let us start showing equation (5.23). First of all, let us notice that the

assumption 𝑠𝑛−2 ≤ 3| 𝐷∗
𝑍,2𝑛!

2𝜕𝑍𝐷𝑍𝑍𝑛
| yields

𝑠 �

(
𝑛!

|𝑍𝑛 |

)1/(𝑛−2)
�

1

𝑛

as a consequence of Corollary 5.8. Applying Lemma 5.12, we obtain

𝜕𝑖−1
𝑠 𝑃nl

𝑛 (0)
(𝑖 − 1)! 𝑠𝑖−1

�
𝑛

𝑠

1

𝑛min{7,ℓ (𝑖) }

( |𝑍𝑛 |𝑠
𝑛!

) 𝑖/𝑛
� 𝑛𝑠

|𝑍𝑛 |𝑠𝑛
𝑛!

1

𝑠2𝑛min{7,ℓ (𝑖) }

(
𝑠2
) 𝑖/𝑛−1

= 𝑛𝑠
|𝑍𝑛 |𝑠𝑛
𝑛!

𝑠2𝑖/𝑛−4

𝑛min{7,ℓ (𝑖) } ,

where we have used |𝑍𝑛 |𝑠𝑛
𝑛! � 𝑠2 from our hypothesis on s. Let us consider the case 𝑖 ≥ 2𝑛 + 1. Then,

since 𝑠 � 1/𝑛 and as 2𝑖/𝑛 − 4 > 0, we have

𝑠2𝑖/𝑛−4

𝑛min{7,ℓ (𝑖) } �
1

𝑛2𝑖/𝑛−4𝑛min{7,ℓ (𝑖) } .

This can be further bounded, up to a constant multiple by 1
𝑛2 for all 𝑖 > 2𝑛 + 1 and 𝑖 ≠ 3𝑛. For the cases

𝑖 = 2𝑛 + 1, 3𝑛, this quantity can be bounded by a constant multiple of 1
𝑛
. Thus,

4𝑛∑
𝑖=2𝑛+1

𝜕𝑖−1
𝑠 𝑃nl

𝑛 (0)
(𝑖 − 1)! 𝑠𝑖−1

= 𝑂

(
𝑛𝑠
|𝑍𝑛 |𝑠𝑛
𝑛!

· 1

𝑛

)
.

Now, for the case 𝑛 + 3 ≤ 𝑖 ≤ 2𝑛 − 1, we have 𝑖/𝑛 − 
𝑖/𝑛� = 𝑖/𝑛 − 1, and we argue with Lemma 5.12 as
follows:

𝜕𝑖−1
𝑠 𝑃nl

𝑛 (0)
(𝑖 − 1)! 𝑠𝑖−1

�
1

𝑛min{7,ℓ (𝑖) }
𝑛

𝑠

( |𝑍𝑛 |𝑠𝑛
𝑛!

) 𝑖/𝑛
(𝑘 − 𝑛)𝑖/𝑛−1

≤ 𝑛𝑠

( |𝑍𝑛 |𝑠𝑛
𝑛!

)
𝑠𝑖−𝑛−2

( |𝑍𝑛 | (𝑘 − 𝑛)
𝑛!

) (𝑖−𝑛)/𝑛 1

𝑛min{7,ℓ (𝑖) } .

(5.38)

Labeling I = 𝑠𝑖−𝑛−2
(
|𝑍𝑛 | (𝑘−𝑛)

𝑛!

) (𝑖−𝑛)/𝑛
, we have by Corollary 5.8

I (𝑛−2)/(𝑖−𝑛−2)
=
|𝑍𝑛 |𝑠𝑛−2

𝑛!

( |𝑍𝑛 | (𝑘 − 𝑛)
𝑛!

) −2𝑖+4𝑛
𝑖𝑛−𝑛2−2𝑛

(𝑘 − 𝑛)

�

(
𝑛𝑘𝑛 |𝐶̄∗ |𝑛

(
1.05

0.95

)𝑛) −2𝑖+4𝑛
𝑖𝑛−𝑛2−2𝑛

�

(
𝑛1/𝑛 (𝑛 + 1) 1.05|𝐶̄∗ |

0.95

) 𝑛(−2𝑖+4𝑛)
𝑖𝑛−𝑛2−2𝑛

,

where we used the hypothesis 𝑠𝑛−2 � 𝑛!
|𝑍𝑛 | in the second line. Now, raising the inequality to the 𝑖−𝑛−2

𝑛−2 -th

power, we obtain I � 𝑛(4𝑛−2𝑖)/(𝑛−2) . Going back to (5.38), we have that

𝜕𝑖−1
𝑠 𝑃nl

𝑛 (0)
(𝑖 − 1)! 𝑠𝑖−1

� 𝑛𝑠

( |𝑍𝑛 |𝑠𝑛
𝑛!

)
𝑛(4𝑛−2𝑖)/(𝑛−2)

𝑛min{7,ℓ (𝑖) } .
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Note

𝑛(4𝑛−2𝑖)/(𝑛−2)

𝑛min{7,ℓ (𝑖) } �

{
1
𝑛

for 𝑖 = 𝑛 + 3, 2𝑛 − 1
1
𝑛2 for 𝑛 + 4 ≤ 𝑖 ≤ 2𝑛 − 2

.

Therefore, we obtain

2𝑛−1∑
𝑖=𝑛+3

𝜕𝑖−1
𝑠 𝑃nl

𝑛 (0)
(𝑖 − 1)! 𝑠𝑖−1

= 𝑂

(
𝑛𝑠
|𝑍𝑛 |𝑠𝑛
𝑛!

· 1

𝑛

)
,

which concludes the proof of equation (5.23).
Now, from equation (5.23), we have that

𝑃nl
𝑛 (𝑠) =

𝑍𝑛

𝑛!
𝑛𝑠𝑛+1𝑁𝑊 ,0

(
𝐷𝑍,2

2

(
1 +𝑂
(
1

𝑛

))
+ 𝑍𝑛

𝑛!
𝜕𝑍𝐷𝑍 𝑠

𝑛−2

(
1 +𝑂
(
1

𝑛

)))
, (5.39)

up to 𝑠𝑛−2 =
3 |𝐷𝑍,2 |
2𝜕𝑍𝐷𝑍

𝑛!
𝑍𝑛

. In particular, taking 𝑠7/5,val such that 𝑠𝑛−2
7/5,val =

99
100

|𝐷𝑍,2 |
2𝜕𝑍𝐷𝑍

𝑛!
𝑍𝑛

, the approximation
(5.39) is valid, and moreover,

����𝐷𝑍,2

2

���� ≥ 100

99

����𝑍𝑛𝑛!
𝜕𝑍𝐷𝑍 𝑠

𝑛−2

����
for 𝑠 ≤ 𝑠7/5,val. Therefore, for n sufficiently large, the sign of 𝑃nl

𝑛 (𝑠) for every 0 ≤ 𝑠 ≤ 𝑠7/5,val is given
by the sign of 𝑍𝑛𝑁𝑊 ,0𝐷𝑍,2. Using Lemma A.7, and the fact that 𝑍𝑛 > 0 from Corollary 5.8, we have
that 𝑃nl

𝑛 (𝑠) > 0 up to 𝑠7/5,val. �

5.6. Intersection with the far-left barrier and proof of Proposition 3.6

Let us recall that for 𝛾 = 7/5 and n sufficiently large, we take the far-left barrier to be

𝑏fl
7/5(𝑡) =

(
𝑊0 +𝑊1𝑡 +

1

2
𝑊2𝑡

2 −
(
𝑊0 +𝑊1 +

𝑊2

2

)
𝑡3, 𝑍0 + 𝑍1𝑡 +

1

2
𝑍2𝑡

2 −
(
𝑍0 + 𝑍1 +

𝑍2

2

)
𝑡3
)
.

We formulate the barrier in implicit form looking at

𝐵fl
7/5(𝑊, 𝑍) = Res𝑡

(
−
(
𝑊0 +𝑊1 +

1

2
𝑊2

)
𝑡3 + 1

2
𝑊2𝑡

2 +𝑊1𝑡 +𝑊0 −𝑊,

−
(
𝑍0 + 𝑍1 +

1

2
𝑍2

)
𝑡3 + 1

2
𝑍2𝑡

2 + 𝑍1𝑡 + 𝑍0 − 𝑍
)

=

������������������

−
(
𝑊0 +𝑊1 + 𝑊2

2

)
𝑊2
2 𝑊1 𝑊0 −𝑊 0 0

0 −
(
𝑊0 +𝑊1 + 𝑊2

2

)
𝑊2
2 𝑊1 𝑊0 −𝑊 0

0 0 −
(
𝑊0 +𝑊1 + 𝑊2

2

)
𝑊2
2 𝑊1 𝑊0 −𝑊

−
(
𝑍0 + 𝑍1 + 𝑍2

2

)
𝑍2
2 𝑍1 𝑍0 − 𝑍 0 0

0 −
(
𝑍0 + 𝑍1 + 𝑍2

2

)
𝑍2
2 𝑍1 𝑍0 − 𝑍 0

0 0 −
(
𝑍0 + 𝑍1 + 𝑍2

2

)
𝑍2
2 𝑍1 𝑍0 − 𝑍

������������������

,
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which is positive if (𝑊, 𝑍) is above the the barrier and negative if it is below. Thus, we study the function
𝑓 (𝑠) = 𝐵fl(𝑏nl

𝑛 (𝑠)). Let us define

𝑎3 =
1

6
𝜕3
𝑠

���
𝑠=0

𝑓 (𝑠), and 𝑎𝑛 =
𝑍𝑛

𝑛!
𝜕𝑍𝐵

fl
7/5 (𝑊0, 𝑍0). (5.40)

Lemma 5.14. Let n be an odd number sufficiently large, 𝛾 = 7
5 and 𝑟 ∈ (𝑟𝑛, 𝑟𝑛+1). We have that 𝑎3 < 0

and 𝑎𝑛 > 0.

Proof. The statement 𝑎𝑛 > 0 follows from 𝜕𝑍𝐵
fl
7/5(𝑊0, 𝑍0) > 0 (Lemma A.7) and 𝑍𝑛 > 0

(Corollary 5.8). The proof of 𝑎3 < 0 is computer-assisted and can be found in the supplementary
material, and we refer to Appendix B for the implementation. �

Lemma 5.15. For any given constant 𝐶 > 0, and 0 ≤ 𝑠𝑛−3 ≤ 𝐶 𝑛!
𝑍𝑛

,

𝑓 (𝑠) = 𝑎3𝑠
3 + 𝑎𝑛𝑠

𝑛 +𝑂
( |𝑎3 |𝑠3 + |𝑎𝑛 |𝑠𝑛

𝑛

)
, (5.41)

where the implicit constant in the big-O notation is permitted to depend on C.

Proof. This will follow in a very similar way as Lemma 5.13, using Lemma 5.10 to bound intermediate
terms, so we omit most of the details. First of all, let us note that 𝑠 � 1/𝑛 from Corollary 5.8.

Now, we note that 𝑓 (𝑠) is a 3𝑛-th degree polynomial multiple of 𝑠3 because both 𝐵fl and 𝑏nl agree
up to second order. Therefore,

𝑓 (𝑠) = 𝑎3𝑠
3 + 𝑎𝑛𝑠

𝑛 +
3𝑛∑

𝑖=4,𝑖≠𝑛

1

𝑖!
(𝜕𝑖𝑠 𝑓 ) (0) +

(
1

𝑛!
| (𝜕𝑛𝑠 𝑓 ) (0) | − 𝑎𝑛

)
𝑠𝑛. (5.42)

As 𝐵fl
7/5(𝑊, 𝑍) is a third-degree polynomial, similarly to Lemma 5.13, we have that the i-th coefficient

is bounded as

1

𝑖!
| (𝜕𝑖𝑠 𝑓 ) (0) |𝑠𝑖 � 𝑠𝑖

∑
𝑎+𝑏+𝑐=𝑖,

0≤𝑎,𝑏,𝑐≤𝑛

|𝑍𝑎 | |𝑍𝑏 | |𝑍𝑐 |
𝑎!𝑏!𝑐!

�

(
𝑍𝑛𝑠

𝑛

𝑛!

) 𝑖/𝑛 ∑
𝑎+𝑏+𝑐=𝑖,

0≤𝑎,𝑏,𝑐≤𝑛

([
𝑛

𝑎

]−1 [
𝑛

𝑏

]−1 [
𝑛

𝑐

]−1

(𝑘 − 𝑛)𝑖/𝑛−1𝑎=𝑛−1𝑏=𝑛−1𝑐=𝑛
)
, (5.43)

and

(
1

𝑛!
| (𝜕𝑛𝑠 𝑓 )(0) | − 𝑎𝑛

)
𝑠𝑛 � 𝑠𝑛

�����
∑

𝑎+𝑏+𝑐=𝑛,
0≤𝑎,𝑏,𝑐<𝑛

|𝑍𝑎 | |𝑍𝑏 | |𝑍𝑐 |
𝑎!𝑏!𝑐!

+ |𝑊𝑛 |
𝑛!

�����
� 𝑠𝑛
�����
∑

𝑎+𝑏+𝑐=𝑛,
0≤𝑎,𝑏,𝑐<𝑛

|𝑍𝑎 | |𝑍𝑏 | |𝑍𝑐 |
𝑎!𝑏!𝑐!

+ |𝑍𝑛−1 |
𝑛!

�����
�

(
𝑍𝑛𝑠

𝑛

𝑛!

) �����
∑

𝑎+𝑏+𝑐=𝑛,
0≤𝑎,𝑏,𝑐<𝑛

([
𝑛

𝑎

]−1 [
𝑛

𝑏

]−1 [
𝑛

𝑐

]−1

(𝑘 − 𝑛)
)
+ 𝑘 − 𝑛

𝑛3

�����
. (5.44)

From (5.44), we directly see that the last term of (5.42) satisfies the stated bound in (5.41). Thus, we
just need to bound the sum in (5.42).

From (5.43), we see that the term with 𝑖 = 𝑛+1 also satisfies the bound in (5.41), since
��� 𝑍𝑛𝑠𝑛𝑛!

��� = 𝑂 (1/𝑛)
and 𝑍𝑛𝑠

𝑛/𝑛! ≤ 1. The terms with 𝑛 + 2 ≤ 𝑖 ≤ 2𝑛 − 2 added all together also satisfy the bound, as
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the parenthesis is 𝑂 (1/𝑛2) (so that the sum of all those terms is 𝑂 ( 1
𝑛
|𝑎𝑛 |𝑠𝑛)). For the terms with

2𝑛 − 1 ≤ 𝑖 ≤ 3𝑛, note that

(
𝑍𝑛𝑠

𝑛

𝑛!

) 𝑖/𝑛
� (|𝑎𝑛 |𝑠𝑛)

(
𝑍𝑛𝑠

𝑛

𝑛!

) 𝑖/𝑛−1

� (|𝑎𝑛 |𝑠𝑛) 𝑠3(𝑛−2)/𝑛,

so they are all 𝑂 (1/𝑛2) |𝑎𝑛 |𝑠𝑛 and their sum also satisfies the stated bound in (5.41).

Lastly, we need to show that the contribution of terms with 4 ≤ 𝑖 ≤ 𝑛−1 in (5.42) is 𝑂
(
|𝑎3 |𝑠3+|𝑎𝑛 |𝑠𝑛

𝑛

)
.

We have

𝑛−1∑
𝑖=4

|𝑎𝑖 |𝑠𝑖
𝑖!
� 𝑠3

𝑛−1∑
𝑖=4

𝑠𝑖−3

(
𝑍𝑛 (𝑘 − 𝑛)

𝑛!

) 𝑖/𝑛 ∑
𝑎+𝑏+𝑐=𝑖,

0≤𝑎,𝑏,𝑐≤𝑛

[
𝑛

𝑎

]−1 [
𝑛

𝑏

]−1 [
𝑛

𝑐

]−1

� 𝑠3
𝑛−1∑
𝑖=4

(
𝑠𝑛−3 |𝑍𝑛 |

𝑛!
(𝑘 − 𝑛)

) (𝑖−3)/(𝑛−3) (
𝑍𝑛 (𝑛 − 𝑘)

𝑛!

) (3𝑛−3𝑖)/(𝑛(𝑛−3)) ∑
𝑎+𝑏+𝑐=𝑖,

0≤𝑎,𝑏,𝑐≤𝑛

[
𝑛

𝑎

]−1 [
𝑛

𝑏

]−1 [
𝑛

𝑐

]−1

� 𝑠3
𝑛−1∑
𝑖=4

𝑛
3𝑛
𝑛2/2

∑
𝑎+𝑏+𝑐=𝑖,

0≤𝑎,𝑏,𝑐≤𝑛

[
𝑛

𝑎

]−1 [
𝑛

𝑏

]−1 [
𝑛

𝑐

]−1

� 𝑠3
𝑛−1∑
𝑖=4

∑
𝑎+𝑏+𝑐=𝑖,

0≤𝑎,𝑏,𝑐≤𝑛

[
𝑛

𝑎

]−1 [
𝑛

𝑏

]−1 [
𝑛

𝑐

]−1

, (5.45)

where we have used Corollary 5.8 for bounding 𝑍𝑛 (𝑛−𝑘)
𝑛! and our hypothesis for bounding 𝑍𝑛𝑠

𝑛−3

𝑛! � 1.
Lastly, one can check that the sum in (5.45) is 𝑂 (1/𝑛), and this concludes our statement because
|𝑎3 | � 1. �

Proof of Proposition 3.6. Combining Lemma 5.14 and Lemma 5.15, we have that 𝑓 (𝑠) < 0 for s small
enough and 𝑓 (𝑠) > 0 for

𝑠 =

(
2|𝑎3 |

|𝑍𝑛𝜕𝑍𝐵fl
7/5(𝑊0, 𝑍0) |/𝑛!

)1/(𝑛−3)

.

In particular, there exists a value of 𝑠7/5,𝑖𝑛𝑡 with 𝑠𝑛−3
7/5,𝑖𝑛𝑡 �

𝑛!
𝑍𝑛

such that 𝐵fl
7/5 (𝑏nl

7/5(𝑠7/5,𝑖𝑛𝑡 )) = 0; that
is, the far-left and near-left barriers intersect.

As we know that the near-left barrier is valid up to

𝑠7/5,val =

(
99

100

|𝐷𝑍,2 |
2𝜕𝑍𝐷𝑍

𝑛!

𝑍𝑛

)1/(𝑛−2)
,

for n sufficiently large, it is clear that 𝑠7/5,val > 𝑠7/5,int.
From Proposition 5.11, we have that 𝑃nl

𝑛 (𝑠) > 0 up to 𝑠7/5,val > 𝑠7/5,int, and that 𝑏nl
𝑛 (𝑠) intersects

𝑏fl
7/5 (𝑡) at 𝑠7/5,int. Let us check that 𝐷𝑍 (𝑏nl

𝑛 (𝑠)) > 0 and 𝐷𝑊 (𝑏nl
𝑛 (𝑠)) > 0 for 𝑠 ∈ (0, 𝑠int

7/5). Now, notice
that

𝐷𝑊 (𝑏nl
𝑛 (𝑠)) = 𝐷𝑊 ,0 +

𝑛∑
𝑖=1

𝑠𝑖

𝑖!
∇𝐷𝑊 (𝑃𝑠) · (𝑊𝑖 , 𝑍𝑖) = 𝐷𝑊 ,0 +

𝜕𝑍𝐷𝑊 𝑍𝑛

𝑛!
𝑠𝑛 +𝑂

(
1 + |𝑍𝑛 |𝑠𝑛/𝑛!

𝑛

)

for 𝑠𝑛−1 � 𝑛!
𝑍𝑛

, using the same reasoning as the one used in Proposition 5.11 or Lemma 5.15. Noting

that 𝜕𝑍𝐷𝑊 = 2
5 (as 𝛾 = 7

5 ) and 𝐷𝑊 ,0 > 0 (Lemma A.10), we get the result for 𝐷𝑊 (𝑏nl
𝑛 (𝑠)).
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In order to treat the case of 𝐷𝑍 (𝑏nl
𝑛 (𝑠)), note that 𝐷𝑍,1 > 0, so 𝐷𝑍 (𝑏nl

𝑛 (𝑠)) is initially positive.
However, if 𝑏nl

𝑛 (𝑠) crosses 𝐷𝑍 = 0 between 𝑃𝑠 and 𝑃̄𝑠 before 𝑠int
7/5, by Lemma A.22, we would have that

the field (𝑁𝑊 𝐷𝑍 , 𝑁𝑍𝐷𝑊 ) points upwards at that point contradicting 𝑃nl
𝑛 (𝑠) > 0, from Proposition 3.6.

If 𝑏nl
𝑛 (𝑠) crosses 𝐷𝑍 = 0 to the left of 𝑃̄𝑠 , at some other time 𝑠 < 𝑠int

7/5, we fall under the second case
considered in Proposition 3.6. �

6. Proof of Theorems 1.1 and 1.2

We finally give the proof of Theorem 1.1 and Theorem 1.2. By Proposition 3.1, we have that in either
the case 𝛾 ∈ (1, +∞) and 𝑟 ∈ (𝑟3, 𝑟4) or the case 𝛾 = 7

5 and 𝑟 ∈ (𝑟𝑛, 𝑟𝑛+1) for n odd and sufficiently
large, the smooth solution (𝑊 (𝑟 ) , 𝑍 (𝑟 ) ), given in Proposition 2.3, connects 𝑃𝑠 to 𝑃∞. It remains to apply
a shooting argument, in conjunction with Proposition 4.1, to show that the smooth solution connects 𝑃0

to 𝑃𝑠 .
Let us fix 𝑛 ∈ N odd and 𝑟 ∈ (𝑟𝑛, 𝑟𝑛+1). Due to Proposition 4.1, we know that there exist 𝑟𝑑 , 𝑟𝑢 ∈

(𝑟𝑛, 𝑟𝑛+1) such that (𝑊 (𝑟 ) , 𝑍 (𝑟 ) ) lies in Ω
(𝑟 )
2 and Ω

(𝑟 )
1 , respectively. Set 𝛿 > 0 sufficiently small such

that for all 𝑟 ∈ [𝑟𝑑 , 𝑟𝑢], the Taylor series (2.15) for (𝑊 (𝑟 ) , 𝑍 (𝑟 ) ) converges for all 𝜉 ∈ [−𝛿, 0]. By
Lemma A.26 and Lemma A.7, 𝑊1 < 0. Thus, by continuity and compactness, we may take 𝛿 smaller if
need be to guarantee that

𝑑

𝑑𝜉
𝑊 (𝑟 ) (𝜉) < 0

for all 𝜉 ∈ [−𝛿, 0]. In particular, the curve (𝑊 (𝑟 ) , 𝑍 (𝑟 ) ) for 𝜉 ∈ [−𝛿, 0] is a graph with respect to its W

coordinate.
Let (𝑊𝑜

𝑟 (𝜉), 𝑍𝑜
𝑟 (𝜉)) be the curve defined in (2.41). By Remark 2.6, 𝑊𝑜

𝑟 (𝜉) is increasing with |𝜉 | for
𝜉 ∈ (−∞, 0]. Thus, the curve (𝑊𝑜

𝑟 (𝜉), 𝑍𝑜
𝑟 (𝜉)) is also a graph with respect to its W coordinate.

Fix (𝑊∗, 𝑍∗) = (𝑊 (𝑟 ) (−𝛿), 𝑍 (𝑟 ) (−𝛿)), and define 𝑍𝑜
∗ to be such that (𝑊∗, 𝑍𝑜

∗ ) is a point on the curve
(𝑊𝑜

𝑟 (𝜉), 𝑍𝑜
𝑟 (𝜉)). We then define 𝑒 : [𝑟𝑑 , 𝑟𝑢] ↦→ R by

𝑒(𝑟) = 𝑍∗ − 𝑍𝑜
∗ .

By definition, e is a continuous function in r. Moreover, as a consequence of Proposition 4.1 we have
𝑒(𝑟𝑑) < 0 and 𝑒(𝑟𝑢) > 0. Hence, by continuity, there exists a 𝑟 (𝑛) ∈ (𝑟𝑑 , 𝑟𝑢) such that 𝑒(𝑟) = 0.
Therefore, by the uniqueness in Proposition 1.6, for 𝑟 = 𝑟 (𝑛) , we have (𝑊 (𝑟 ) , 𝑍 (𝑟 ) ) = (𝑊𝑜

𝑟 (𝜉), 𝑍𝑜
𝑟 (𝜉)).

Thus, we conclude that the smooth curve corresponding to 𝑟 = 𝑟 (𝑛) connects 𝑃0 to 𝑃∞ through the point
𝑃𝑠 , concluding the proofs of Theorem 1.1 and Theorem 1.2.

7. Linear Stability of the Profile

In this section, we will study the linearized operator of the Euler equations around the self-similar
profiles we have found. The stability for the Euler equation will follow in general, while in the Navier-
Stokes case, we need to restrict the parameter r to a regime where the self-similar profile dominates the
dissipation. The strategy will be to cut off the equation and study the linearized operator in a compact
region |𝜁 | < 2. Following the strategy of [67], we show that the linearized operator is maximal and
accretive in the appropriate spaces. Maximality corresponds to the existence of solutions of the ODE
determined by this operator, while accretivity corresponds to the fact that the operator has damping.
Both properties give us, via a functional analysis argument, that the compactified linearized operator
generates a contraction semigroup modulo finitely many instabilities. That is the main result of this
section. The nonlinear stability and the treatment of the equation outside our compact region |𝜁 | < 2
will be delayed to Section 8.
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Remark 7.1. Let us note that from the proof that for 𝑟 = 𝑟 (𝑛) , 𝑊 (𝑟 ) (𝜁) is increasing in 𝜉 ∈ (−∞, 0], so
in particular, 𝑊 (𝑟 ) (𝜉) > 0 for all 𝜉 ∈ (−∞, 0]. Moreover, we have that 𝐷𝑍 (𝑊 (𝑟 ) , 𝑍 (𝑟 ) ) < 0 for 𝜉 < 0,
and for the 𝛾 = 7

5 case, this implies that 𝑍 (𝑟 ) (𝜉) < 0 for 𝜉 < 0. Thus, in the 𝛾 = 7
5 , we have that

(𝑊 (𝑟 ) (𝜉), 𝑍 (𝑟 ) (𝜉)) lies in the region 𝑊 > 0, 𝑍 < 0 for 𝜉 ∈ (−∞, 0].

7.1. Linearization and localization

Let ( s𝑊, s𝑍) represent an exact self-similar solution to the Euler equations solving (1.12). We now
consider a solution (W ,Z) to the time-dependent Navier-Stokes equation (1.19) and the difference

(𝑊, 𝑍) = (W − s𝑊,Z − s𝑍).

Then, (𝑊, 𝑍) satisfy the equations

(𝜕𝑠 + 𝑟 − 1 + 𝛼

𝜁
s𝑊 + 1 + 𝛼

2
𝜕𝜁 s𝑊)𝑊 + (𝜁 + 1

2
( s𝑊 + s𝑍 + 𝛼( s𝑊 − s𝑍)))𝜕𝜁𝑊 +

(
1 − 𝛼

2
𝜕𝜁 s𝑊 − 𝛼s𝑍

𝜁

)
𝑍

=
𝑟1+ 1

𝛼 21/𝛼−1

𝛼1/𝛼𝜁2 ((W − Z)) 1
𝛼

𝑒 (2−𝑟+
1
𝛼
(1−𝑟 ))𝑠

(
𝜕𝜁 (𝜁2𝜕𝜁 (W + Z)) − 2(W + Z)

)

− 1

2
(𝑊 + 𝑍 + 𝛼(𝑊 − 𝑍))𝜕𝜁𝑊 −

𝛼

2𝜁
(𝑊2 − 𝑍2),

(𝜕𝑠 + 𝑟 − 1 + 𝛼

𝜁
s𝑍 + 1 + 𝛼

2
𝜕𝜁 s𝑍)𝑍 + (𝜁 + 1

2
( s𝑊 + s𝑍 − 𝛼( s𝑊 − s𝑍)))𝜕𝜁 𝑍 +

(
1 − 𝛼

2
𝜕𝜁 s𝑍 − 𝛼 s𝑊

𝜁

)
𝑊

=
𝑟1+ 1

𝛼 21/𝛼−1

𝛼1/𝛼𝜁2 ((W − Z)) 1
𝛼

𝑒 (2−𝑟+
1
𝛼
(1−𝑟 ))𝑠

(
𝜕𝜁 (𝜁2𝜕𝜁 (W + Z)) − 2(W + Z)

)

− 1

2
(𝑊 + 𝑍 − 𝛼(𝑊 − 𝑍))𝜕𝜁 𝑍 +

𝛼

2𝜁
(𝑊2 − 𝑍2). (7.1)

Defining

DĎ𝑊 = 𝑟 − 1 + 𝛼

𝜁
s𝑊 + 1 + 𝛼

2
𝜕𝜁 s𝑊, D s𝑍 = 𝑟 − 1 + 𝛼

𝜁
s𝑍 + 1 + 𝛼

2
𝜕𝜁 s𝑍,

VĎ𝑊 = 𝜁 + 1

2
( s𝑊 + s𝑍 + 𝛼( s𝑊 − s𝑍)), V s𝑍 = 𝜁 + 1

2
( s𝑊 + s𝑍 − 𝛼( s𝑊 − s𝑍)),

HĎ𝑊 =
1 − 𝛼

2
𝜕𝜁 s𝑊 − 𝛼s𝑍

𝜁
, H s𝑍 =

1 − 𝛼

2
𝜕𝜁 s𝑍 − 𝛼 s𝑊

𝜁
,

Fn𝑙,𝑊 = −1

2
(𝑊 + 𝑍 + 𝛼(𝑊 − 𝑍))𝜕𝜁𝑊 −

𝛼

2𝜁
(𝑊2 − 𝑍2),

Fn𝑙,𝑍 = −1

2
(𝑊 + 𝑍 − 𝛼(𝑊 − 𝑍))𝜕𝜁 𝑍 +

𝛼

2𝜁
(𝑊2 − 𝑍2),

Fdis =
𝑟1+ 1

𝛼 21/𝛼−1

𝛼1/𝛼𝜁2 ((W − Z)) 1
𝛼

𝑒 (2−𝑟+
1
𝛼
(1−𝑟 ))𝑠

(
𝜕𝜁 (𝜁2𝜕𝜁 (W + Z)) − 2(W + Z)

)
,

(7.2)

then (7.1) becomes

(𝜕𝑠 +DĎ𝑊 )𝑊 + VĎ𝑊 𝜕𝜁𝑊 +HĎ𝑊 𝑍 = Fdis + Fnl,𝑊 =: F𝑊 ,

(𝜕𝑠 +D s𝑍 )𝑍 + V s𝑍 𝜕𝜁 𝑍 +H s𝑍𝑊 = Fdis + Fnl,𝑍 =: F𝑍

(7.3)
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where Fdis, Fnl,𝑊 , Fnl,𝑍 are, respectively, the dissipative forcing, the nonlinear forcing term in the

equation for 𝑊 and the the nonlinear forcing term in the equation for 𝑍 . Since we look for solutions
(W ,Z) which are smooth when transformed into Cartesian coordinates, we may extend the solutions
to 𝜁 ∈ R by imposing the restriction

Z (𝜁) = −W (−𝜁) or equivalently 𝑍 (𝜁) = −𝑊 (−𝜁).

Then, (7.1) becomes

(𝜕𝑠 +DĎ𝑊 (𝜁))𝑊 (𝜁) + VĎ𝑊 (𝜁)𝜕𝜁𝑊 (𝜁) −HĎ𝑊 (𝜁)𝑊 (−𝜁) = Fdis(𝜁) + Fnl,𝑊 (𝜁). (7.4)

We also let U = W+Z
2 and S = W−Z

2 be the self-similar velocity and sound speed, respectively, which
satisfy the equations

(𝜕𝑠 + 𝑟 − 1)U + (𝜁 + U )𝜕𝜁U + 𝛼S𝜕𝜁 𝑆 = Fdis,

(𝜕𝑠 + 𝑟 − 1)S + (𝜁 + U )𝜕𝜁S +
𝛼S

𝜁2
𝜕𝜁 (𝜁2U ) = 0.

(7.5)

We let s𝑈 =
Ď𝑊 + s𝑍

2 and s𝑆 =
Ď𝑊− s𝑍

2 denote the self-similar velocity and sound speed of the exact self-similar
Euler profile. Taking the difference

(𝑈, 𝑆) = (U − s𝑆,U − s𝑆)

leads to the equation

(𝜕𝑠 + 𝑟 − 1)𝑈 + (𝜁 + s𝑈)𝜕𝜁𝑈 + 𝛼s𝑆𝜕𝜁 𝑆 +𝑈𝜕𝜁 s𝑈 + 𝛼𝑆𝜕𝜁 s𝑆 = Fdis +
Fnl,𝑊 + Fnl,𝑍

2
,

(𝜕𝑠 + 𝑟 − 1)𝑆 + (𝜁 + s𝑈)𝜕𝜁 𝑆 +
𝛼s𝑆

𝜁2
𝜕𝜁 (𝜁2𝑈) +𝑈𝜕𝜁 s𝑆 + 𝛼𝑆

𝜁2
𝜕𝜁 (𝜁2 s𝑈) =

Fnl,𝑊 − Fnl,𝑍

2
.

(7.6)

In order to simply our analysis, we will now introduce cut-offs and additional damping to (7.3) and
(7.6) which will have the effect of localizing our analysis around a neighborhood of the acoustic light-
cone of the singularity. Let 𝜒1 be a cut-off function which is 1 for |𝜁 | ≤ 6

5 and it is supported on |𝜁 | ≤ 7
5 .

Define also 𝜒2 to be a cut-off function such that 𝜒2 (𝜁) = 1 for |𝜁 | ≤ 8
5 and it is supported on |𝜁 | ≤ 9

5 .
For a large constant 𝐽 > 0, define

D𝑡 ,Ď𝑊 = 𝐽 (1 − 𝜒1) + 𝜒2DĎ𝑊 , D𝑡 , s𝑍 = 𝐽 (1 − 𝜒1) + 𝜒2D s𝑍 ,

V𝑡 ,Ď𝑊 = 𝜒2VĎ𝑊 , V𝑡 , s𝑍 = 𝜒2V s𝑍 , H𝑡 ,Ď𝑊 = 𝜒2HĎ𝑊 , H𝑡 , s𝑍 = 𝜒2H s𝑍 , F𝑡 ,𝑊̃ = 𝜒2F𝑊̃ F𝑡 ,𝑍̃ = 𝜒2F𝑍̃ .

We then consider the truncated equations

(𝜕𝑠 +D𝑡 ,Ď𝑊 )𝑊𝑡 + V𝑡 ,Ď𝑊 𝜕𝜁𝑊𝑡 +H𝑡 ,Ď𝑊 𝑍𝑡 = F𝑡 ,𝑊̃ ,

(𝜕𝑠 +D𝑡 , s𝑍 )𝑍𝑡 + V𝑡 , s𝑍 𝜕𝜁 𝑍𝑡 +H𝑡 , s𝑍𝑊𝑡 = F𝑡 ,𝑊̃ .
(7.7)

Note that the truncated equations are not themselves closed since (𝑊, 𝑍) appear in the forcing terms.
Adding the equations (7.3) closes (7.7). The truncated analogue of (𝑈, 𝑆), given by (𝑈𝑡 , 𝑆𝑡 ) = 1

2 (𝑊𝑡 +
𝑍𝑡 ,𝑊𝑡 − 𝑍𝑡 ), satisfy the equations

(𝜕𝑠 + 𝐽 (1 − 𝜒1) + 𝜒2 (𝑟 − 1))𝑈𝑡 + 𝜒2

(
(𝜁 + s𝑈)𝜕𝜁𝑈 + 𝛼s𝑆𝜕𝜁 𝑆

)
+ 𝜒2

(
𝑈𝜕𝜁 s𝑈 + 𝛼𝑆𝜕𝜁 s𝑆

)
=

F
𝑡,𝑊
+F

𝑡,𝑍

2 ,

(𝜕𝑠 + 𝐽 (1 − 𝜒1) + 𝜒2 (𝑟 − 1))𝑆𝑡 + 𝜒2

(
(𝜁 + s𝑈)𝜕𝜁 𝑆𝑡 + 𝛼s𝑆

𝜁 2 𝜕𝜁 (𝜁2𝑈)
)
+ 𝜒2

(
𝑈𝜕𝜁 s𝑆 + 𝛼𝑆

𝜁 2 𝜕𝜁 (𝜁2 s𝑈)
)
=

F
𝑡,𝑊
−F

𝑡,𝑍

2 .

(7.8)
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To further distinguish the original equation, we will adopt the notation

𝑈𝑒 = 𝑈, 𝑆𝑒 = 𝑆, 𝑊𝑒 = 𝑊, 𝑍𝑒 = 𝑍, D𝑒,Ď𝑊 = DĎ𝑊 , D𝑒, s𝑍 = D s𝑍 ,

V𝑒,Ď𝑊 = VĎ𝑊 , V𝑒, s𝑍 = V s𝑍 , H𝑒,Ď𝑊 = HĎ𝑊 , H𝑒, s𝑍 = H s𝑍 , F𝑒,𝑊̃ = F𝑊̃ , F𝑒,𝑍̃ = F𝑍̃ ,

where here, the subscript ‘e’ stands for extended. Then by an abuse of notation, we free up the notation𝑈,
𝑆, 𝑊 , 𝑍 , DĎ𝑊 , D s𝑍 , VĎ𝑊 , V s𝑍 , HĎ𝑊 , H s𝑍 , F𝑊̃ , F𝑍̃ to refer to either the corresponding notation with the ‘t’
or ‘e’ subscript. For the remainder of the section, we will restrict our attention to the truncated equation,
and so we will drop the ‘t’ subscript. In particular, we will consider the linear operator L = (L𝑊 ,L𝑍 )
associated with (7.7) where

−L𝑊 (𝑊, 𝑍) = DĎ𝑊𝑊 + VĎ𝑊 𝜕𝜁𝑊 +HĎ𝑊 𝑍 and − L𝑍 (𝑊, 𝑍) = D s𝑍 𝑍 + V s𝑍 𝜕𝜁 𝑍 +H s𝑍𝑊,

or in (𝑈, 𝑆) variables, L = (L𝑈 ,L𝑆) where

−L𝑈 (𝑈, 𝑆) = (𝐽 (1− 𝜒1) + 𝜒2(𝑟 −1))𝑈 + 𝜒2
(
(𝜁 + s𝑈)𝜕𝜁𝑈 + 𝛼s𝑆𝜕𝜁 𝑆

)
+ 𝜒2
(
𝑈𝜕𝜁 s𝑈 + 𝛼𝑆𝜕𝜁 s𝑆

)
,

−L𝑆 (𝑈, 𝑆) = (𝐽 (1 − 𝜒1) + 𝜒2(𝑟 − 1))𝑆 + 𝜒2

(
(𝜁 + s𝑈)𝜕𝜁 𝑆 + 𝛼s𝑆

𝜁 2 𝜕𝜁 (𝜁2𝑈)
)
+ 𝜒2

(
𝑈𝜕𝜁 s𝑆+ 𝛼𝑆

𝜁 2 𝜕𝜁 (𝜁2 s𝑈)
)
.

(7.9)

The parameter J will be chosen sufficiently large in order that the operator L is well behaved in the
region [ 6

5 , 2].
Using the definition of L = (L𝑈 ,L𝑆) in (7.9), we may rewrite (7.7) as

𝜕𝑠 (𝑈, 𝑆) = L(𝑈, 𝑆) + F𝑡 ,nl + F𝑡 ,dis, (7.10)

where

F𝑡 ,nl = (F𝑡 ,𝑈 ,F
𝑡 ,𝑆
) =
(
𝜒2

Fnl,𝑊 + Fnl,𝑍

2
, 𝜒2

Fnl,𝑊 − Fnl,𝑍

2

)
and F𝑡 ,dis = (𝜒2Fdis, 0).

Dissipativity of the operator

Remark 7.2. For some m (which will be chosen to be sufficiently large), we consider the space X to be
the subspace of tuples (𝑈, 𝑆), where U is a radially symmetric vector field and S a radially symmetric
smooth function, and where 𝑈, 𝑆 ∈ 𝐻2𝑚

0 (𝐵(0, 2)). We equip X with the usual 𝐻2𝑚 norm

‖(𝑈, 𝑆)‖2
𝐻 2𝑚 =

∫
𝐵 (0,2)

(
|Δ𝑚𝑈 | 2 + (Δ𝑚𝑆)2 + |𝑈 |2 + 𝑆2

)
.

Similarly, we let �𝐻2𝑚 denote the corresponding homogeneous norm.
Moreover, we will sometimes consider the function 𝑊 (𝜁) = 𝑆(|𝜁 |) + sign(𝜁)𝑈 (|𝜁 |) defined for

𝜁 ∈ [−2, 2]. We will say that𝑊 ∈ 𝑋 if the corresponding pair (𝑈, 𝑆) (which can be uniquely determined
from W) is in X. By abuse of notation, we define the 𝐻2𝑚 norm on W as ‖𝑊 ‖𝐻 2𝑚 = ‖(𝑈, 𝑆)‖𝐻 2𝑚 in
that case.

We then define the domain of our linear operator L = (L𝑈 ,L𝑆) to be the space

D(L) = {(𝑈, 𝑆) ∈ 𝑋 | (L𝑈𝑈,L𝑆𝑆) ∈ 𝑋}.

Lemma 7.3. For any N, there exists a finite codimension subspace of X where for any 0 ≤ 𝑖 ≤ 2𝑚, the

following holds:

‖𝑈‖𝐻 𝑖 ≤ 1

𝑁2𝑚−𝑖 ‖Δ
𝑚𝑈‖𝐿2 , ‖𝑆‖𝐻 𝑖 ≤ 1

𝑁2𝑚−𝑖 ‖𝑆‖𝐿2 .

We let 𝑌𝑁 denote that subspace.
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Proof. First of all, note that by interpolation, it suffices to show the claim for 𝑖 = 0. Now, for a pair
(𝑈, 𝑆), we consider the torus T3 = [−𝜋, 𝜋]3 and extend 𝑈𝑖 (𝑦), 𝑆(𝑦) to be zero for 𝑦 ∈ T3 \ 𝐵(0, 2).
Consider the Fourier series of 𝑈𝑖 , 𝑆 as functions over T3.

Now, we let the space𝑌𝑁 to be the finite codimension subspace of X defined by the finite set of linear
equations

𝑈̂𝑖 (𝑘) = 0, 𝑆(𝑘) = 0, ∀𝑘 ∈ Z3, |𝑘 | < 𝑁

for 𝑖 = 1, 2, 3. Then, for such 𝑈𝑖 , we have that

‖𝑈𝑖 ‖2𝐻 2𝑚 ≥
∑
𝑘∈Z3

|𝑘 |2𝑚
��𝑈̂𝑖 (𝑘)
�� 2 ≥ 𝑁2𝑚

∑
𝑘∈Z3

��𝑈̂𝑖 (𝑘)
�� 2 = 𝑁2𝑚‖𝑈𝑖 ‖𝐿2 .

The same reasoning applies to S, and we conclude our result. �

Lemma 7.4. There exists sufficiently large N depending on J, which is chosen sufficiently large depending

on m such that if 𝑃𝑁 is the orthogonal projection 𝑃𝑁 : 𝑋 → 𝑌𝑁 , then 𝑃𝑁 ◦ L is dissipative on 𝑌𝑁 ,

satisfying the bound

 〈𝑃𝑁 ◦ L(𝑈, 𝑆), (𝑈, 𝑆)〉𝐻 2𝑚 ≤ − ‖(𝑈, 𝑆)‖2
𝐻 2𝑚

for all (𝑈, 𝑆) ∈ 𝑌𝑁 .

Proof. We will use the notation 𝑂𝑚 to indicate cases where the constant may depend on m, while we
use O as usual our usual big-O notation (the constant is universal).

First note that since 𝑃𝑁 ◦L is a real operator, mapping real valued function to real valued functions,
it suffices to prove the bound

〈𝑃𝑁 ◦ L(𝑈, 𝑆), (𝑈, 𝑆)〉𝐻 2𝑚 ≤ − ‖(𝑈, 𝑆)‖𝐻 2𝑚

for (𝑈, 𝑆) real valued.
Let us study the inner product 〈L(𝑈, 𝑆), (𝑈, 𝑆)〉 �𝐻 2𝑚 , and we will treat the projection at the end. Let

us recall that

−L𝑈 (𝑈, 𝑆) = 𝐽 (1 − 𝜒1)𝑈 + 𝜒2
(
(𝑟 − 1))𝑈 +𝑈𝜕𝜁 s𝑈 + 𝛼𝑆𝜕𝜁 s𝑆

)
+
(
𝜒2(𝜁 + s𝑈)𝜕𝜁𝑈 + 𝛼𝜒2

s𝑆𝜕𝜁 𝑆
)

= 𝐽 (1 − 𝜒1)𝑈 + 𝜒2K𝑈 + V𝑈 ,

−L𝑆 (𝑈, 𝑆) = 𝐽 (1 − 𝜒1)𝑆 + 𝜒2
(
(𝑟 − 1)𝑆 +𝑈𝜕𝜁 s𝑆 + 𝛼𝑆div( s𝑈)

)
+
(
𝜒2(𝜁 + s𝑈)𝜕𝜁 𝑆 + 𝛼𝜒2

s𝑆div(𝑈)
)

= 𝐽 (1 − 𝜒1)𝑆 + 𝜒2K𝑆 + V𝑆 .

Now, we proceed to study the terms in

−〈L(𝑈, 𝑆), (𝑈, 𝑆)〉 �𝐻 2𝑚 =

∫
𝐵 (0,2)

Δ
𝑚 (𝐽 (1 − 𝜒1)𝑈 + 𝜒2K𝑈 + V𝑈 ) · Δ𝑚𝑈

+
∫
𝐵 (0,2)

Δ
𝑚 (𝐽 (1 − 𝜒1)𝑆 + 𝜒2K𝑆 + V𝑆) Δ𝑚𝑆.

(7.11)

First of all, let us note that

𝐽

∫
𝐵 (0,2)

Δ
𝑚 ((1 − 𝜒1)𝑈) · Δ𝑚𝑈 = 𝐽

∫
𝐵 (0,2)

(1 − 𝜒1) |Δ𝑚𝑈 |2 +𝑂𝑚 (𝐽‖𝑈‖𝐻 2𝑚 (‖𝑈‖𝐻 2𝑚−1 + ‖𝑆‖𝐻 2𝑚−1 )) ,

𝐽

∫
𝐵 (0,2)

Δ
𝑚 ((1 − 𝜒1)𝑆) · Δ𝑚𝑆 = 𝐽

∫
𝐵 (0,2)

(1 − 𝜒1) |Δ𝑚𝑆 |2 +𝑂𝑚 (𝐽‖𝑆‖𝐻 2𝑚 (‖𝑈‖𝐻 2𝑚−1 + ‖𝑆‖𝐻 2𝑚−1 )) .
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Choosing N sufficiently large, dependent on J, which in turn is chosen sufficiently large, dependent on m,
we can ensure as a consequence of Lemma 7.3 that the error is 𝑂 (‖(𝑈, 𝑆)‖2

𝐻 2𝑚). Therefore, we get that

𝐽

∫
𝐵 (0,2)

Δ
𝑚 ((1 − 𝜒1)𝑈) · Δ𝑚𝑈 = 𝐽

∫
𝐵 (0,2)

(1 − 𝜒1) |Δ𝑚𝑈 |2 +𝑂
(
‖(𝑈, 𝑆)‖2�𝐻 2𝑚

)
,

𝐽

∫
𝐵 (0,2)

Δ
𝑚 ((1 − 𝜒1)𝑆) · Δ𝑚𝑆 = 𝐽

∫
𝐵 (0,2)

(1 − 𝜒1) |Δ𝑚𝑆 |2 +𝑂
(
‖(𝑈, 𝑆)‖2�𝐻 2𝑚

)
.

(7.12)

For the terms Δ𝑚(𝜒2K) in (7.11), we note the following: The terms where all the derivatives fall
on U or S are bounded in 𝐿2 as 𝑂 (‖(𝑈, 𝑆)‖ �𝐻 2𝑚), where the implicit constant is independent of m.
The rest of the terms have at most 2𝑚 − 1 derivatives on U or S, so are simply bounded in 𝐿2 as
𝑂𝑚(‖𝑈‖𝐻 2𝑚−1 + ‖𝑆‖𝐻 2𝑚−1 ). Putting this altogether yields∫

𝐵 (0,2)
(Δ𝑚 (𝜒2K𝑈 ) · Δ𝑚𝑈 + Δ𝑚 (𝜒2K𝑆)Δ𝑚𝑆) = 𝑂𝑚

(
(‖𝑈‖𝐻 2𝑚−1 + ‖𝑆‖𝐻 2𝑚−1 ) ‖(𝑈, 𝑆)‖ �𝐻 2𝑚

)
+𝑂
(
‖(𝑈, 𝑆)‖2�𝐻 2𝑚

)
= 𝑂
(
‖(𝑈, 𝑆)‖2�𝐻 2𝑚

)
. (7.13)

The last equality is due to the fact that we take N large enough in terms of m and apply Lemma 7.3.
Lastly, let us treat the terms coming from V𝑈 and V𝑆 in (7.11). From Lemma A.4,∫

𝐵 (0,2)
Δ
𝑚V𝑈 · Δ𝑚𝑈 =

∫
𝐵 (0,2)

𝜒2(𝑦 + s𝑈) · ∇Δ𝑚𝑈 · Δ𝑚𝑈 + 2𝑚

∫
𝐵 (0,2)

∇
(
𝜒2(𝑦 + s𝑈)

)
(Δ𝑚𝑈)2

+ 𝛼

∫
𝐵 (0,2)

𝜒2
s𝑆∇Δ𝑚𝑆 · Δ𝑚𝑈 + 2𝑚𝛼

∫
𝐵 (0,2)

Δ
𝑚𝑆∇
(
𝜒2

s𝑆
)
Δ
𝑚𝑈

+𝑂𝑚 (‖𝑈‖𝐻 2𝑚 (‖𝑈‖𝐻 2𝑚−1 + ‖𝑆‖𝐻 2𝑚−1 )) ,∫
𝐵 (0,2)

Δ
𝑚V𝑆 · Δ𝑚𝑆 =

∫
𝐵 (0,2)

𝜒2(𝑦 + s𝑈) · ∇Δ𝑚𝑆Δ𝑚𝑆 + 2𝑚

∫
𝐵 (0,2)

𝜕𝜁
(
𝜒2(𝜁 + s𝑈)

)
(Δ𝑚𝑆)2

+ 𝛼

∫
𝐵 (0,2)

𝜒2
s𝑆div(Δ𝑚𝑈)Δ𝑚𝑆 + 2𝑚𝛼

∫
𝐵 (0,2)

∇(𝜒2
s𝑆)Δ𝑚𝑈Δ

𝑚𝑆

+𝑂𝑚 (‖𝑆‖𝐻 2𝑚 (‖𝑈‖𝐻 2𝑚−1 + ‖𝑆‖𝐻 2𝑚−1 )) . (7.14)

If we take N sufficiently large in terms of m and use Lemma 7.3, these errors are 𝑂 (‖(𝑈, 𝑆)‖2�𝐻 2𝑚).
Therefore, we see from (7.14) that∫

𝐵 (0,2)
Δ
𝑚V𝑈 · Δ𝑚𝑈 = 2𝑚

∫
𝐵 (0,2)

∇
(
𝜒2(𝑦 + s𝑈)

)
|Δ𝑚𝑈 |2 + I1 + I2 + 2𝑚I3 +𝑂

(
‖(𝑈, 𝑆)‖2�𝐻 2𝑚

)
,∫

𝐵 (0,2)
Δ
𝑚V𝑆Δ

𝑚𝑆 = 2𝑚

∫
𝐵 (0,2)

∇
(
𝜒2(𝑦 + s𝑈)

)
(Δ𝑚𝑆)2 + I4 + I5 + 2𝑚I3 +𝑂

(
‖(𝑈, 𝑆)‖2�𝐻 2𝑚

)
,

(7.15)

where we have defined

I1 =

∫
𝐵 (0,2)

𝜒2(𝑦 + s𝑈) · ∇Δ𝑚𝑈 · Δ𝑚𝑈, I2 = 𝛼

∫
𝐵 (0,2)

𝜒2
s𝑆∇Δ𝑚𝑆 · Δ𝑚𝑈,

I3 = 𝛼

∫
𝐵 (0,2)

Δ
𝑚𝑆∇(𝜒2

s𝑆) · Δ𝑚𝑈, I4 =

∫
𝐵 (0,2)

𝜒2(𝑦 + s𝑈) · ∇Δ𝑚𝑆Δ𝑚𝑆,

I5 = 𝛼

∫
𝐵 (0,2)

𝜒2
s𝑆Δ𝑚𝑆div(Δ𝑚𝑈). (7.16)
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Integrating by parts, we see that

I1 + I4 = −1

2

∫
𝐵 (0,2)

div(𝜒2 (𝑦 + s𝑈))
(
|Δ𝑚𝑈 |2 + (Δ𝑚𝑆)2

)
= 𝑂
(
‖(𝑈, 𝑆)‖2�𝐻 2𝑚

)
. (7.17)

Integration by parts also shows that

I2 + I5 = −𝛼
∫
𝐵 (0,2)

∇(𝜒2
s𝑆) · Δ𝑚𝑈Δ

𝑚𝑆 = 𝑂
(
‖(𝑈, 𝑆)‖2�𝐻 2𝑚

)
. (7.18)

Finally, we also have

4𝑚I3 ≥ −2𝑚𝛼

∫
𝐵 (0,2)

(
|Δ𝑚𝑈 |2 + (Δ𝑚𝑆)2

)
|𝜕𝜁 (𝜒2

s𝑆) |. (7.19)

Plugging (7.17)–(7.19) into (7.15), we obtain

∫
𝐵 (0,2)

(Δ𝑚V𝑈 · Δ𝑚𝑈 + Δ𝑚V𝑆Δ
𝑚𝑆) ≥ 2𝑚

∫
𝐵 (0,2)

(
∇(𝜒2 (𝑦 + s𝑈)) − 𝛼 |𝜕𝜁 (𝜒2

s𝑆) |
) (
|Δ𝑚𝑈 |2 + (Δ𝑚𝑆)2

)

+𝑂
(
‖(𝑈, 𝑆)‖2�𝐻 2𝑚

)
. (7.20)

Plugging (7.12), (7.13) and (7.20) in (7.11), we obtain that

−〈L(𝑈, 𝑆), (𝑈, 𝑆)〉 �𝐻 2𝑚 ≥
∫
𝐵 (0,2)

(
𝐽 (1 − 𝜒1) + 2𝑚

(
∇(𝜒2(𝑦 + s𝑈)) − 𝛼 |𝜕𝜁 (𝜒2

s𝑆) |
) ) (
|Δ𝑚𝑈 |2 + (Δ𝑚𝑆)2

)
− 𝐶‖(𝑈, 𝑆)‖ ,�𝐻 2𝑚 (7.21)

for some absolute constant C. Now, we claim that we can choose 𝐽 � 𝑚 such that

(
𝐽 (1 − 𝜒1) + 2𝑚

(
∇(𝜒2(𝑦 + s𝑈)) − 𝛼 |𝜕𝜁 (𝜒2

s𝑆) |
) )
≥ 𝐶 + 2. (7.22)

In order to show (7.22), let us divide 𝐵(0, 2) in two regions. We define 𝑅1 as the region where 𝜒2 = 1
and define 𝑅2 as the region of 𝐵(0, 2) where 𝜒2 < 1. In particular, we have that 𝜒1 = 0 on 𝑅2.

Region 𝑅1. In this region, as 𝜒2 = 1 and 𝜒1 ≤ 1, it suffices to show

2𝑚
(
∇((𝑦 + s𝑈)) − 𝛼 |𝜕𝜁 (s𝑆) |

)
≥ 𝐶 + 2.

As we can choose m sufficiently large, we just need to show that

1 + 𝜕𝜁 s𝑈 − 𝛼 |𝜕𝜁 s𝑆 | ≥ 𝜀

for some 𝜀 > 0 and every 𝜁 ∈ [0, 7/5]. This is implied by Lemma A.36 taking 𝜀 = 𝜂damp.
Region 𝑅2. In this region, as 𝜒1 = 0, it suffices to satisfy

𝐽 > −2𝑚
(
∇(𝜒2(𝑦 + s𝑈)) − 𝛼 |𝜕𝜁 (𝜒2

s𝑆) |
)
+ 𝐶 + 2.

It is trivial that we can satisfy this inequality because the right-hand side is a bounded function for
𝜁 ∈ [0, 2], and we can take J sufficiently large, depending on m.
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Therefore, we conclude that (7.22) holds, and inserting this in (7.21), we conclude

〈L(𝑈, 𝑆), (𝑈, 𝑆)〉 �𝐻 2𝑚 ≤ −2‖(𝑈, 𝑆)‖2�𝐻 2𝑚 . (7.23)

Assuming N is sufficiently large, applying Lemma 7.3, the bound (7.23) yields

〈L(𝑈, 𝑆), (𝑈, 𝑆)〉𝐻 2𝑚 ≤ −‖(𝑈, 𝑆)‖2
𝐻 2𝑚 .

Note that (1−𝑃𝑁 ) ◦L(𝑈, 𝑆) has image in a finite dimension space which is the orthogonal complement
to the space 𝑌𝑁 where (𝑈, 𝑆) lie. Therefore, 〈(1 − 𝑃𝑁 ) ◦ L(𝑈, 𝑆), (𝑈, 𝑆)〉𝐻 2𝑚 = 0, and we conclude

〈𝑃𝑁 ◦ L(𝑈, 𝑆), (𝑈, 𝑆)〉𝐻 2𝑚 ≤ −‖(𝑈, 𝑆)‖2
𝐻 2𝑚 ;

that is, that our operator 𝑃𝑁 ◦ L is dissipative on 𝑌𝑁 . �

Maximality

Before we prove our main maximality result, let us prove the following auxiliary lemma that will help
us deal with the point 𝜁 = 9

5 where both VĎ𝑊 and V s𝑍 vanish.

Lemma 7.5. For 𝜆 > 0 and 𝑎 < 2, consider the following ODE:

(𝜆 +D)𝑢 + V𝑢′ = 𝑓 , 𝑢(𝑎) = 𝑢0, (7.24)

on the region [𝑎, 2], for smooth D, V and f. For some 𝑎 < 𝑏 < 2, let us further assume that V (𝑥) = 0 for

𝑥 ∈ [𝑏, 2] and V (𝑥) > 0 for 𝑥 ∈ [𝑎, 𝑏). Then, assuming 𝜆 > 0 is sufficiently large, (7.24) has a unique

smooth solution. Moreover, (𝑢, 𝑓 ) may be taken to be vector valued, in which case 𝑢0 is a vector, and D

is taken to be matrix valued and V remains scalar valued.

Proof. For concreteness, let us assume 𝑎 = 0 and 𝑏 = 1. We also assume u to be scalar valued since the
vector valued case will follow from an identical proof.

By standard ODE theory, there exists a unique smooth u to (7.24) on the region [0, 1). Moreover,
assuming 𝜆 > 0 is sufficiently large, on the region [1, 2], (7.24) has the unique smooth solution 𝑢 =

𝑓

𝜆+D .
Thus, it suffices to verify that the resulting solution u is smooth at 𝑥 = 1. In particular, we need to show

lim
𝑥→1−

𝑢 (𝑛) exists for all 𝑛.

By the Leibniz rule,

V𝑢 (𝑛+1) = −(𝜆 +D + 𝑛V ′)𝑢 (𝑛) −
𝑛∑
𝑘=2

(
𝑛

𝑘

)
𝑢 (𝑛−𝑘+1)V (𝑘) −

𝑛∑
𝑘=1

(
𝑛

𝑘

)
𝑢 (𝑛−𝑘)D (𝑘) + 𝑓 (𝑛)

︸��������������������������������������������������������������︷︷��������������������������������������������������������������︸
F𝑛

.

By Grönwall’s inequality, for 0 < 𝑥0 < 𝑥 < 1, 𝑥0 sufficiently close to 1, we have

���𝑢 (𝑛) (𝑥)��� ≤ 𝑒
−
∫ 𝑥
𝑥0

𝜆
V
���
���𝑢 (𝑛) (𝑥0)

��� + ∫ 𝑥

𝑥0

𝑒

∫ 𝑥′
𝑥0

𝜆
V

V (𝑥 ′)
(
|F𝑛 (𝑥 ′) | +

���𝑢 (𝑛) (𝑥 ′)��� (|D(𝑥 ′) | + 𝑛 |V ′(𝑥 ′) |)
)
𝑑𝑥 ′
���

≤ 𝑒
−
∫ 𝑥
𝑥0

𝜆
V

(���𝑢 (𝑛) (𝑥0)
��� + ∫ 𝑥

𝑥0

1

𝜆

(
𝑑

𝑑𝑥 ′
𝑒

∫ 𝑥′
𝑥0

𝜆
V

) (
|F𝑛 (𝑥 ′) | + 𝐶

���𝑢 (𝑛) (𝑥 ′)���) 𝑑𝑥 ′
)

≤ 𝑒
−
∫ 𝑥
𝑥0

𝜆
V

���𝑢 (𝑛) (𝑥0)
��� + 1

𝜆

(
‖F𝑛‖𝐿∞ [𝑥0 ,𝑥 ] + 𝐶

---𝑢 (𝑛)---
𝐿∞ [𝑥0 ,𝑥 ]

)
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for some constant C independent of n, where we used that 𝑛 ‖V ′‖𝐿∞ [𝑥0 ,1] can be made arbitrarily small

by assuming 𝑥0 to be sufficiently close to 1. Assuming 𝐶
𝜆
≤ 1

2 , we obtain

---𝑢 (𝑛)---
𝐿∞ [𝑥0 ,𝑥 ]

�

���𝑢 (𝑛) (𝑥0)
��� + ‖F𝑛‖𝐿∞ [𝑥0 ,𝑥 ] .

By induction on n (and an appropriate choice of 𝑥0 for each n), we conclude that u is smooth at 𝑥 = 1. �

Lemma 7.6. Consider 𝐽, 𝑚, 𝑁 chosen as in Lemma 7.4. For sufficiently large 𝜆 > 0, we have that for

every 𝐹 = (𝐹𝑈 , 𝐹𝑆) ∈ 𝑋 , then there exists (𝑈, 𝑆) ∈ D(L) such that

(−L𝑈 + 𝜆)𝑈 = 𝐹𝑈 and (−L𝑆 + 𝜆)𝑆 = 𝐹𝑆 . (7.25)

Proof. Let us rewrite the equation (7.25) in terms of

𝑊 (𝜁) =
{
𝑈 (𝜁) + 𝑆(𝜁) for 𝜁 ≥ 0

−𝑈 (−𝜁) + 𝑆(−𝜁) for 𝜁 ≤ 0
,

which leads to the equation

(𝜆 +DĎ𝑊 )𝑊 + VĎ𝑊 𝜕𝜁𝑊 +HĎ𝑊 𝑍 = 𝐹𝑊 . (7.26)

where

𝑍 (𝜁) = −𝑊 (−𝜁) and 𝐹𝑊 (𝜁) =
{
𝐹𝑈 (𝜁) + 𝐹𝑆 (𝜁) for 𝜁 ≥ 0

−𝐹𝑈 (−𝜁) + 𝐹𝑆 (−𝜁) for 𝜁 ≤ 0
.

We consider first the problem (7.26) for the case 𝐹𝑊 = 𝜒F , where F is analytic and 𝜒 is a cut-off
function that is 1 on [− 3

2 ,
3
2 ] and has compact support in [−2, 2]. Clearly, such 𝐹𝑊 are dense in X. Let

us rewrite (7.26) as

VĎ𝑊 𝜕𝜁𝑊 = 𝐹𝑊 − (𝜆 +DĎ𝑊 )𝑊 −HĎ𝑊 𝑍︸������������������������������︷︷������������������������������︸
G𝑊

. (7.27)

For the analysis around 𝑃𝑠 , it will also be useful to write a separate equation for 𝑍:

(𝜆 +D s𝑍 )𝑍 + V s𝑍 𝜕𝜁 𝑍 +H s𝑍𝑊 = 𝐹𝑍 .

and

V s𝑍 𝜕𝜁 𝑍 = 𝐹𝑍 − (𝜆 +D s𝑍 )𝑍 −H s𝑍𝑊︸���������������������������︷︷���������������������������︸
G𝑍 (𝑊 ,𝑍 )

. (7.28)

Consider the formal power series expansions of (𝑊, 𝑍) at 𝜁 = 1 (i.e., 𝑊 =
∑

𝑖≥0 𝑤𝑖 (𝜁 − 1)𝑖 and
𝑍 =
∑

𝑖≥0 𝑧𝑖 (𝜁 − 1)𝑖). Writing in addition V s𝑍 =
∑

𝑖≥0 𝑣 s𝑍,𝑖 (𝜁 − 1)𝑖 and G𝑍 (𝑊, 𝑍) = ∑𝑖≥0 𝑔𝑍,𝑖 (𝜁 − 1)𝑖 ,
then substituting these expansions into (7.27) and (7.28) yields

(𝑛 + 1)𝑣Ď𝑊 ,0𝑤𝑛+1 = 𝑔𝑊 ,𝑛 −
𝑛−1∑
𝑖=0

(𝑖 + 1)𝑣Ď𝑊 ,𝑛−𝑖𝑤𝑖+1, (7.29)

(𝑛 + 1)𝑣 s𝑍,1𝑧𝑛+1 = 𝑔𝑍,𝑛+1 −
𝑛−1∑
𝑖=0

(𝑖 + 1)𝑣 s𝑍,𝑛+1−𝑖𝑧𝑖+1. (7.30)
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Let us rewrite 𝑔𝑍,𝑛+1 as

𝑔𝑍,𝑛+1 = 𝑔̌𝑍,𝑛+1 − (𝜆 +D s𝑍 (1))𝑧𝑛+1.

Then, (7.30) can be rewritten as

(𝜆 +D s𝑍 (1) + (𝑛 + 1)𝑣 s𝑍,1)𝑧𝑛+1 = 𝑔̌𝑍,𝑛+1 −
𝑛−1∑
𝑖=0

(𝑖 + 1)𝑣 s𝑍,𝑛+1−𝑖𝑧𝑖+1. (7.31)

Thus, assuming 𝜆 is sufficiently large and using 𝑣 s𝑍,1 = 𝐷𝑍,1 > 0 (Lemma (A.11)), one may solve the
recurrence relations (7.29) and (7.30) uniquely by setting 𝑤0 = 𝐴, and 𝑧0 is determined from (7.28).
Furthermore, from the analyticity of ( s𝑊, s𝑍) at 𝜁 = 1 (which is a consequence of Proposition Proposition
2.3) and F, we obtain that the series converges absolutely to obtain a solution (𝑊, 𝑍) in a neighborhood
of 𝜁 = 1. The solution can be extended to a 𝐶∞ solution on 𝜁 ∈ (0, 9

5 ) by standard ODE arguments,

using that the only zero of V𝑍̄ (𝜁) or V𝑊̄ (𝜁) with 𝜁 ∈ (0, 9
5 ) is V𝑍̄ (1) = 0. This just follows from the

observation that V𝑍̄ = 𝜁𝐷𝐸
𝑍

and V𝑊̄ = 𝜁𝐷𝐸
𝑊

(where we use the superindex E to indicate we refer to the
Euler scaling and self-similar profiles from Sections 2–6). Applying Lemma 7.5, we can further extend
the solution to a 𝐶∞ solution on 𝜁 ∈ (0, 2]. Note in order to apply Lemma 7.5, we let (𝑎, 𝑏) = ( 6

5 ,
9
5 )

and 𝑢 = (𝑊,
V s𝑍

VĎ𝑊
𝑉).

We will apply a shooting argument in order to choose A such that W is smooth at 𝜁 = 0. First we
show that there exists 𝐴∗ such that if (𝑊𝐴∗ , 𝑍𝐴∗) and (𝑊−𝐴∗ , 𝑍−𝐴∗) correspond to the smooth solutions
to (7.27) and (7.28) for 𝜁 ∈ (0, 1] satisfying 𝑊 (1) = 𝐴∗ and 𝑊 (1) = −𝐴∗, respectively, then we have

𝑊𝐴∗ + 𝑍𝐴∗ ≥ 1, 𝑊−𝐴∗ + 𝑍−𝐴∗ ≤ −1 (7.32)

for all 𝜁 ∈ (0, 1].
Note that by (7.28), we have that

𝑍𝐴∗ (1) =
1

𝜆 +D s𝑍 (1)
(−H s𝑍 (1)𝐴∗ + 𝐹𝑍 (1)) . (7.33)

Note for 𝛾 = 7
5 , we have

lim
𝑟→𝑟∗

H s𝑍 (1) =
1

30

(
5 − 3

√
5
)
< 0.

Hence, for k sufficiently large, by continuity, 𝐻 s𝑍 (1) < 0. Thus, choosing 𝜆 � D s𝑍 (1) and 𝐴∗ � F𝑍 (1)
−H s𝑍 (1) ,

from (7.33), we obtain 𝑍𝐴∗ (1) ≥ 𝐴∗
𝐶𝜆

for C some depending on D s𝑍 (1).
We claim that 𝑊𝐴∗ ≥ 𝐴∗

2 and 𝑍𝐴∗ ≥ 𝐴∗
𝐶′𝜆 for all 𝜁 ∈ (0, 1] and some large constant 𝐶 ′ > 𝐶. Suppose

the statement is false. Then there must exist a largest 𝜁 ′ ∈ (0, 1) such that either

1. 𝑊𝐴∗ (𝜁 ′) = 𝐴∗
2 and 𝑊 ′

𝐴∗ (𝜁 ′) ≥ 0.

2. 𝑍𝐴∗ (𝜁 ′) = 𝐴∗
𝜆𝐶′ and 𝑍 ′

𝐴∗ (𝜁 ′) ≥ 0.

Consider the first the case. If 𝑊𝐴∗ (𝜁 ′) = 𝐴∗
2 , then

𝑊 ′
𝐴∗ (𝜁 ′) =

1

VĎ𝑊

(
𝐹𝑊 − 𝜆𝑊𝐴∗ −DĎ𝑊𝑊𝐴∗ −HĎ𝑊 𝑍𝐴∗

) ����
𝜁=𝜁 ′

≤ 1

VĎ𝑊 (𝜁 ′)

(
−𝜆𝑊𝐴∗ (𝜁 ′)

2
− 𝛼( s𝑊 (𝜁 ′)𝑊𝐴∗ (𝜁 ′) − s𝑍 (𝜁 ′)𝑍𝐴∗ (𝜁 ′))

𝜁 ′
− 1 − 𝛼

2
𝜕𝜁 s𝑊 (𝜁 ′)𝑍𝐴∗ (𝜁 ′)

)

≤ −𝜆𝐴∗
4VĎ𝑊 (𝜁 ′)

+
(
𝛼s𝑍 (𝜁 ′)

𝜁 ′
− 1 − 𝛼

2
𝜕𝜁 s𝑊 (𝜁 ′)

)
𝑍𝐴∗ (𝜁 ′)
VĎ𝑊 (𝜁 ′)

. (7.34)
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In the second line, we absorbed many terms by −𝜆𝑊𝐴∗
2 . In the third line, we used that 𝑊𝐴∗ (𝜁 ′) = 𝐴∗

2 ,
VĎ𝑊 is positive and s𝑊 is positive by Remark 7.1. Thus, we arrive at a contradiction, using that

𝛼s𝑍

𝜁
− 1 − 𝛼

2
𝜕𝜁 s𝑊 < 0 (7.35)

from Lemma A.37 and 𝑍𝐴∗ ≥ 𝐴∗
𝐶′𝜆 > 0.

Now consider the second case, 𝑍𝐴∗ (𝜁 ′) =
𝐴∗
𝐶′𝜆 . Thus, we get

𝑍 ′𝐴∗ (𝜁 ′) =
1

|V s𝑍 |
(−𝐹𝑍 + 𝜆𝑍𝐴∗ +D s𝑍 𝑍𝐴∗ +H s𝑍𝑊𝐴∗)

����
𝜁=𝜁 ′

≤ 1

|V s𝑍 |

(
‖𝐹𝑍 ‖∞ + (𝜆 + 𝐶 ′′)𝑍𝐴∗ +

1 − 𝛼

2
𝜕𝜁 s𝑍𝑊𝐴∗ −

𝛼( s𝑊𝑊𝐴∗ − s𝑍𝑍𝐴∗)
𝜁

) ����
𝜁=𝜁 ′

≤ 1

|V s𝑍 |

(
‖𝐹𝑍 ‖∞ + 𝐴∗

(
1

𝐶 ′
+ 𝐶 ′′

𝐶 ′𝜆

)
− 1

100
𝑊𝐴∗

) ����
𝜁=𝜁 ′

≤ 1

|V s𝑍 (𝜁 ′) |

(
𝐶 ′′′ + 𝐴∗

𝐶 ′
+ 𝐴∗𝐶 ′′

𝐶 ′𝜆
− 𝐴∗

200

)
. (7.36)

In the first inequality, we have used that V s𝑍 (𝜁 ′) < 0. In the second one, we have bounded most of the
terms from D s𝑍 𝐴𝐴∗ simply by 𝐶 ′′𝑍𝐴∗ , being 𝐶 ′′ a constant sufficiently large. In the third one, we used
our value for 𝑍𝐴∗ =

𝐴∗
𝐶′𝜆 and the fact that s𝑍 is negative for 𝜁 ∈ (0, 1] (Remark 7.1), and we also used

(
1 − 𝛼

2
𝜕𝜁 s𝑍 − 𝛼 s𝑊

𝜁

)
<
−1

100
(7.37)

from Lemma A.38. Choosing 𝐶 ′ = 400 and 𝐴∗, 𝜆 to be sufficiently large, we get a contradiction from
(7.36).

The second inequality of (7.32) follows analogously, enlarging 𝐴∗ if needed.
As a consequence of (7.32), for any 0 < 𝛿 < 1, there exists a map F𝛿 : [−1, 1] → [−𝐴∗, 𝐴∗] such

that if (𝑊, 𝑍) is the smooth solution on (0, 2] corresponding to 𝑊 (1) = F𝛿 (𝑧), then

𝑊 (𝛿) + 𝑍 (𝛿) = 𝑧.

We now want to show such solutions (𝑊, 𝑍) can be bounded on the region [𝛿, 2], independent of the
choice of 𝛿 and 𝑧 ∈ [−1, 1]. We introduce a parameter M (that will be taken sufficiently large), and we
note that on the region

[
1

𝑀𝜆
, 2
]
, we have the bound

|𝑊 | + |𝑍 | ≤ 𝐶1

for some constant 𝐶1, depending on 𝜆 and M, independent of z and 𝛿.
Since 𝜆 may be chosen sufficiently large, dependent on 𝐹𝑊 , 𝐹𝑍 , we can rewrite (7.27) and (7.28) as

VĎ𝑊 𝜕𝜁𝑊 = −𝛼
𝜁

s𝑊𝑊 + 𝛼

𝜁
s𝑍𝑍 +𝑂

(
𝜆
√
𝑊2 + 𝑍2

)
,

V s𝑍 𝜕𝜁 𝑍 = −𝛼
𝜁

s𝑍𝑍 + 𝛼

𝜁
s𝑊𝑊 +𝑂

(
𝜆
√
𝑊2 + 𝑍2

)
.

(7.38)

Setting 𝑈 = 𝑊 +𝑍
2 , 𝑆 = 𝑊−𝑍

2 , and using

− s𝑊𝑊 + s𝑍𝑍 = −( s𝑈 + s𝑆) (𝑈 + 𝑆) + ( s𝑈 − s𝑆) (𝑈 − 𝑆) = −2 s𝑈𝑆 − 2s𝑆𝑈,
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we obtain

𝜕𝜁𝑈 =

(
1

2VĎ𝑊

− 1

2V s𝑍

)
𝛼

𝜁

(
−2 s𝑈𝑆 − 2s𝑆𝑈

)
+𝑂
(
𝜆
√
𝑈2 + 𝑆2

)

=
𝛼

VĎ𝑊 (0)
−2s𝑆(0)𝑈

𝜁
+𝑂
(
𝜆
√
𝑈2 + 𝑆2

)
,

𝜕𝜁 𝑆 =

(
1

2VĎ𝑊

+ 1

2V s𝑍

)
𝛼

𝜁

(
−2 s𝑈𝑆 − 2s𝑆𝑈

)
+𝑂
(
𝜆
√
𝑈2 + 𝑆2

)

= 𝑂
(
𝜆
√
𝑈2 + 𝑆2

)
.

(7.39)

We used that VĎ𝑊 (0) = −V s𝑍 (0) and that
s𝑈
𝜁

is uniformly bounded close to 𝜁 = 0.

Defining 𝐶2 =
2 s𝑆 (0)𝛼
VĎ𝑊 (0) , From (7.39), we obtain

����𝜕𝜁𝑈 + 𝐶2𝑈

𝜁

���� ≤ 𝐶3𝜆
√
𝑈2 + 𝑆2 and

��𝜕𝜁 𝑆�� ≤ 𝐶3𝜆
√
𝑈2 + 𝑆2 (7.40)

for some new constant 𝐶3 > 0. Let us define

𝐴 =

����𝐶2𝑈 (𝜁)
𝜁

���� , 𝐵 = 𝐶3𝜆
√
𝑈2 + 𝑆2 and 𝐺 = 𝑈2 + 𝑆2. (7.41)

Let us work under the hypothesis that 𝐴 > 10𝐵 for some 𝜁 . Without loss of generality, let us also assume
that 𝑈 (𝜁) > 0. Then,

−𝜕𝜁 𝐴 = −𝜕𝜁
𝐶2𝑈 (𝜁)

𝜁
≥ 𝐶2𝑈

𝜁2
− 𝐶2 (−𝐶2𝑈/𝜁)

𝜁
−

�������
𝐶2

(
𝐶3𝜆
√
𝑈2 + 𝑆2

)
𝜁

������� =
1 + 𝐶2

𝜁
𝐴 − 𝐶2

𝜁
𝐵 ≥ 𝑀𝜆𝐴,

−𝜕𝜁 𝐵 = −𝐵𝐺 ′

2𝐺
≤ 𝐵

𝜁 𝐴2/𝐶2

𝐵2/(𝐶2
3𝜆

2)
+ 2𝐶3𝜆𝐵 ≤ 𝜁

𝜆2𝐶2
3

10𝐶2
𝐴 + 2𝐶3𝜆𝐵 =

𝜆𝐶2
3

10𝑀𝐶2
𝐴 + 2𝐶3𝜆𝐵 ≤ 𝐶4𝜆𝐴,

where 𝐶4 is independent of 𝑀, 𝜆. Then, taking M to be sufficiently large so that 𝑀 > 10𝐶4, we see that
the hypothesis 𝐴 > 10𝐵 for some 𝜁 ′, implies that the same hypothesis holds for all smaller 𝜁 ∈ [𝛿, 𝜁 ′].
Taking 𝜁 ′ to be the largest 𝜁 ∈ [𝛿, 1

𝑀𝜆
] such that 𝐴 ≥ 10𝐵 (or 𝜁 ′ = 𝛿 if there is no such 𝜁 exists), we

obtain the following:

• In the region (𝛿, 𝜁 ′), we have 𝐴 ≥ 10𝐵, and moreover, 𝑈 (𝜁) has constant sign in this interval.

• In the region
(
𝜁 ′, 1

𝑀𝜆

)
, we have 𝐴 < 10𝐵.

Let us first treat the region 𝜁 ′ < 𝜁 < 1
𝑀𝜆

. As 𝐴 < 10𝐵, we obtain that |𝑈 ′ | ≤ 11𝐶3𝜆
√
𝑈2 + 𝑆2. Thus,

|𝐺 ′(𝜁) | ≤ 24𝐶3𝜆𝐺.

Integrating, we get that for all 𝜁 ∈
(
𝜁 ′, 1

𝜆𝑀

)
,

𝐺 (𝜁) ≤ 𝐺

(
1

𝜆𝑀

)
𝑒

24𝐶3
𝑀 ≤ 𝐶𝑀,𝜆, (7.42)

where 𝐶𝑀,𝜆 is sufficiently large depending on M and 𝜆 (independent of 𝑧, 𝛿).
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In the region 𝛿 < 𝜁 < 𝜁 ′, using 𝐴 > 10𝐵 in equation (7.40), we see that 𝑈 ′ has the same sign as
−𝐶2𝑈
𝜁

, so 𝑈2 is decreasing in 𝛿 < 𝜁 < 𝜁 ′. Therefore, for 𝜁 ∈ [𝛿, 𝜁 ′], we have

|𝑈 (𝜁) | ≤ |𝑈 (𝛿) | ≤ 2|𝑧 | ≤ 2. (7.43)

Using (7.43) in (7.40), we obtain that

|𝑆′ | ≤ 2𝐶3𝜆 + 𝐶3𝜆 |𝑆 |.

Using the initial condition |𝑆(𝜁 ′) | ≤ 𝐶𝜆,𝑀 implied by (7.42), we deduce that for 𝜁 ∈ [𝛿, 𝜁 ′],

|𝑆(𝜁) | ≤ 𝐶̄𝜆,𝑀 , (7.44)

for some 𝐶̄𝑀,𝜆 sufficiently large, independent of z and 𝛿. Finally, recalling 𝑊 = 𝑈 + 𝑆, 𝑍 = 𝑈 − 𝑆,

(7.42)–(7.44) give us a bound on |𝑊 | and |𝑍 | independent of 𝛿, 𝑧 for all 𝜁 ∈
(
𝛿, 1

𝑀𝜆

)
.

To summarize, there exists a mapF𝛿 : [−1, 1] → [−𝐴∗, 𝐴∗] such that if (𝑊, 𝑍) is the smooth solution
on (0, 2] corresponding to 𝑊 (1) = F𝛿 (𝑧), then 𝑊 (𝛿) + 𝑍 (𝛿) = 𝑧 and we have a bound on |𝑊 | and |𝑍 |
independent of 𝛿, 𝑧 for all 𝜁 ∈

(
𝛿, 1

𝑀𝜆

)
. Now we wish to show that there exists a continuous solution

map G, mapping any 𝑤0 to an analytic solution (𝑊, 𝑍) to equation (7.26) on the region 𝜁 ∈ (− 1
2 ,

1
2 )

such that 𝑊 (0) = 𝑤0. With these two maps, F and G, we will be able use a fixed point argument to
construct a smooth solution to (7.26) on 𝜁 ∈ [−2, 2].

We will now repeat an expansion argument in line with the expansion in the proof of Proposition 2.5.
Writing 𝑊 =

∑
𝑖≥0 𝑤𝑖𝜁

𝑖 , VĎ𝑊 =
∑

𝑖≥0 𝑣𝑖𝜁
𝑖 , G𝑊 =

∑
𝑖≥0 𝑔𝑖𝜁

𝑖 and s𝑊 =
∑

𝑖≥0 𝑤̄𝑖𝜁
𝑖 , then substituting these

formal expansions into (7.27), we obtain

(𝑛 + 1)𝑣Ď𝑊 ,0𝑤𝑛+1 = 𝑔𝑛 −
𝑛−1∑
𝑖=0

(𝑖 + 1)𝑣Ď𝑊 ,𝑛−𝑖𝑤𝑖+1.

Let us rewrite 𝑔𝑛 as

𝑔𝑛 = 𝑔̌𝑛 − 212 |𝑛𝛼s𝑤0𝑤𝑛+1,

then, using 𝑣Ď𝑊 ,0 = 𝛼s𝑤0 we have

𝛼s𝑤0
(
𝑛 + 1 + 212 |𝑛

)
𝑤𝑛+1 = 𝑔̌𝑛 −

𝑛−1∑
𝑖=0

(𝑖 + 1)𝑣Ď𝑊 ,𝑛−𝑖𝑤𝑖+1. (7.45)

Since s𝑤0 ≠ 0, then (7.45) can be used to define 𝑤𝑖 given 𝑤0. Since (𝑊̄, 𝑍̄ , 𝐹𝑊 ) are analytic, it is easy
to see that the formal series converges producing an analytic solution in a small neighborhood of 𝜁 = 0.

Let us denote the solution map 𝑤0 ↦→ 𝑊 restricted to 𝑤0 ∈ [−2𝐶, 2𝐶] by G. Then by continuity, there
exists some 𝛿′ > 0 such that the solutions in the range of G are all analytic on the region 𝜁 ∈ [−𝛿′, 𝛿′].

Now, we consider the map 𝑤0 ↦→ G (𝑤0) (𝛿) for some 0 < 𝛿 < 𝛿′ sufficiently small. We can take 𝛿

sufficiently small so that:

• In the range of G, we have |𝑊 + 𝑍 | = |𝑊 (𝜁) −𝑊 (−𝜁) | ≤ 1 for all 𝜁 ∈ (−𝛿, 𝛿).
• The map 𝑤0 ↦→ G (𝑤0) (𝛿) has a range that covers [−𝐶,𝐶] (recall 𝑤0 ∈ [−2𝐶, 2𝐶]).
• The map 𝑤0 ↦→ G (𝑤0) (𝛿) is injective.

The first two items follow from 𝑊 (𝜁) = 𝑤0 + 𝑂 (𝛿) when 𝜁 ∈ (−𝛿, 𝛿), so let us argue the third one.
Considering 𝑤0, 𝑤

′
0 ∈ [−2𝐶, 2𝐶], we use (7.45) to define 𝑤𝑖 , 𝑤

′
𝑖 via the Taylor recurrence. We have

G (𝑤0) (𝛿) − G (𝑤′0) (𝛿) = 𝑤0 − 𝑤′0 +
∑
𝑖≥1

(𝑤𝑖 − 𝑤′𝑖)𝜁 𝑖 . (7.46)
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Now, from (7.45), and using the formula for 𝑔̄𝑛 from (2.38), we have

𝛼s𝑤0
(
𝑛 + 1 + 212 |𝑛

)
(𝑤𝑛+1 − 𝑤′𝑛+1) = (1 − 𝑟) (𝑤𝑛 − 𝑤′𝑛) − 12 |𝑖𝛼

𝑛∑
𝑗=1

(𝑤 𝑗𝑤𝑛+1− 𝑗 − 𝑤′𝑗𝑤
′
𝑛+1− 𝑗 )

−
𝑛−1∑
𝑖=0

(𝑖 + 1)𝑣Ď𝑊 ,𝑛−𝑖 (𝑤𝑖+1 − 𝑤′𝑖+1).

Letting 𝑑𝑖 = 𝑤𝑖 − 𝑤′𝑖 , we see that

𝑛|𝑑𝑛+1 | � 𝑛

𝑛∑
𝑖=0

|𝑑𝑖 | +
𝑛∑
𝑗=1

|𝑑 𝑗 | · |𝑤𝑛+1− 𝑗 |.

Choosing 𝛿 sufficiently small, we can assume |𝑤𝑖 | � 1/(3𝛿)𝑖 , and in that case, the equation above allows
to close an induction argument for the bound |𝑑𝑖 | ≤ 𝐶 |𝑑0 |/(2𝛿)𝑖 , for some constant C independent of
𝛿, 𝑤0, 𝑤

′
0 and 𝛿 sufficiently small. Therefore, |𝑤𝑖 −𝑤′𝑖 | � |𝑤0−𝑤′0 |/(2𝛿)𝑖 , and from (7.46), we conclude

the injectivity.
Now, since 𝑤0 ↦→ G (𝑤0) (𝛿) is injective and covers [−𝐶,𝐶], we define H : [−𝐶,𝐶] → [−2𝐶, 2𝐶]

to be its inverse map restricted to [−𝐶,𝐶]. Therefore, H takes the value of a smooth solution W at
𝜁 = 𝛿 and outputs the value that W has at 𝜁 = 0. Now, we consider the following map 𝑧 ↦→ 𝑧′,
where 𝑧′ is defined as follows. First, we construct (𝑊, 𝑍) = F𝛿 (𝑧), which we recall that is the smooth
solution on (0, 2] with 𝑊 (𝛿) + 𝑍 (𝛿) = 𝑧. Then, we apply H(𝑊 (𝛿)) to obtain the value of 𝑤0 that
generates a smooth solution around 𝜁 = 0 with that corresponding value of 𝑊 (𝛿). Finally, we let
𝑊̌ = G (H(𝑊 (𝛿)) be the smooth solution generated by that 𝑤0, and define 𝑧′ = 𝑊̌ (𝛿) − 𝑊̌ (−𝛿) to be
its corresponding value of 𝑊̌ + 𝑍̌ at 𝜁 = 𝛿. Since 𝑧 ↦→ 𝑧′ maps the interval [−1, 1] to [−1, 1] and it is
continuous, Brouwer’s fixed point theorem ensures the existence of a fixed point z. For such z, we have
that 𝑊 (𝛿) + 𝑍 (𝛿) = 𝑧 = 𝑧′ = 𝑊̌ (𝛿) − 𝑊̌ (−𝛿). Note that by construction of the map 𝑧 ↦→ 𝑧′, we always
have 𝑊 (𝛿) = 𝑊̌ (𝛿), since the definition of 𝑊̌ (𝛿) = G (H(𝑊 (𝛿)) is the solution constructed via a Taylor
series at zero that passes through (𝛿,𝑊 (𝛿)). Therefore, we have that (𝑊 (𝛿), 𝑍 (𝛿)) = (𝑊̌ (𝛿),−𝑊̌ (−𝛿)),
and by standard uniqueness of ODE solutions, we conclude they are the same solution. Since 𝑊̌ (𝜁) is
smooth for 𝜁 ∈ (−𝛿, 𝛿) and (𝑊 (𝜁), 𝑍 (𝜁)) for 𝜁 ∈ (0, 2], we see that 𝑊̌ (𝜁) is smooth for 𝜁 ∈ [−2, 2].

Let ℵ be the space of functions that can be written as 𝐹 = 𝜒(F𝑈 ,F𝑆), for (F𝑈 ,F𝑆) analytic and 𝜒

a smooth cut-off function, 1 on [0, 3
2 ] and compactly supported on [0, 2).4 Then for every 𝐹 ∈ ℵ, we

have shown there exists (𝑈, 𝑆) ∈ D(L) satisfying (7.25). Now given a 𝐹 ∈ 𝑋 and a sequence 𝐹𝑗 ∈ ℵ
converging to F in X, it remains to show that the corresponding sequence (𝑈 𝑗 , 𝑆 𝑗 ) ∈ D(L) solving
(7.25) converges in D(L).

Observe that

〈𝐹𝑖 − 𝐹𝑗 , (𝑈𝑖 −𝑈 𝑗 , 𝑆𝑖 − 𝑆 𝑗 )〉𝐻 2𝑚 = 〈−L(𝑈𝑖 −𝑈 𝑗 , 𝑆𝑖 − 𝑆 𝑗 ), (𝑈𝑖 −𝑈 𝑗 , 𝑆𝑖 − 𝑆 𝑗 )〉𝐻 2𝑚

+ 𝜆
--(𝑈𝑖 −𝑈 𝑗 , 𝑆𝑖 − 𝑆 𝑗 )

--2
𝐻 2𝑚

�
--𝑃𝑁L(𝑈𝑖 −𝑈 𝑗 , 𝑆𝑖 − 𝑆 𝑗 )

--2
𝐻 2𝑚 +
--(𝐼 − 𝑃𝑁 )L(𝑈𝑖 −𝑈 𝑗 , 𝑆𝑖 − 𝑆 𝑗 )

--2
𝐻 2𝑚

+ 𝜆
--(𝑈𝑖 −𝑈 𝑗 , 𝑆𝑖 − 𝑆 𝑗 )

--2
𝐻 2𝑚

� 𝜆
--(𝑈𝑖 −𝑈 𝑗 , 𝑆𝑖 − 𝑆 𝑗 )

--2
𝐻 2𝑚 ,

where we used Lemma 7.4, that L is bounded on the finite dimensional orthogonal complement of 𝑌𝑁
and that we are free to take 𝜆 arbitrarily large. By Cauchy–Schwarz, we conclude--(𝑈𝑖 −𝑈 𝑗 , 𝑆𝑖 − 𝑆 𝑗 )

--
𝐻 2𝑚 �

--𝐹𝑖 − 𝐹𝑗

--
𝐻 2𝑚 .

Thus, since 𝐹𝑗 forms a Cauchy sequence, so is (𝑈 𝑗 , 𝑆 𝑗 ), which concludes the proof. �

4It is important to note that we are not fixing 𝜒; each element of ℵ may be defined in terms of a different 𝜒.
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Corollary 7.7. For all 𝛿𝑔 > 0 sufficiently small, we can write our linearized operator L as

L = 𝐴0 − 𝛿𝑔 + 𝐾

for some 𝐴0 maximally dissipative on X, and K is some compact operator on X.

Proof. First of all, recall that 𝑃𝑁 : 𝑋 → 𝑌𝑁 is the projection onto the finite dimensional subspace 𝑌𝑁 .
From Lemma 7.4 we have that

〈L(𝑈, 𝑆), (𝑈, 𝑆)〉𝐻 2𝑚 ≤ −‖(𝑈, 𝑆)‖2
𝐻 2𝑚

for every (𝑈, 𝑆) ∈ 𝑌𝑁 , so in particular, 𝑃𝑁L + 𝛿𝑔 is dissipative on 𝑌𝑁 .
Lemma 7.6 implies that 𝑃𝑁L + 𝛿𝑔 − 𝜆 : 𝑋 → 𝑋 is surjective for sufficiently large 𝜆. Since

𝑌𝑁 has finite codimension cod𝑋 (𝑌𝑁 ), the surjectivity of L + 𝛿𝑔 − 𝜆 on X implies that there exists
some finite codimension space 𝑌𝑁 ⊂ 𝑌𝑁 (of finite codimension cod𝑋 (𝑌𝑁 ) ≤ 2cod𝑋 (𝑌𝑁 )) such that
𝑃𝑁L + 𝛿𝑔 − 𝜆 : 𝑌𝑁 → 𝑌𝑁 is surjective on 𝑌𝑁 . Here, 𝑃𝑁 denotes the orthogonal projection to 𝑌𝑁 .

Thus, we get that 𝑃𝑁L + 𝛿𝑔 is a maximally dissipative operator on the finite codimension space 𝑌𝑁 .
Let 𝐴0 be a maximally dissipative operator on X that agrees with L + 𝛿𝑔 on 𝑌𝑁 . For instance, one may
define 𝐴0 to be −Id on 𝑌⊥

𝑁
, and this clearly makes 𝐴0 : 𝑋 → 𝑋 maximally dissipative. In particular,

we have the equality 𝑃𝑁L = 𝐴0 − 𝛿𝑔 over the finite codimension space 𝑌𝑁 . Letting 𝐾1 = (1 − 𝑃𝑁 )L,
which is compact because it has finite dimensional rank, we get L = 𝐴0 − 𝛿𝑔 + 𝐾1 over 𝑌𝑁 .

Then, let 𝐾2 be an operator which is zero over 𝑌𝑁 , and it is defined as L − 𝐴0 + 𝛿𝑔 − 𝐾1 on 𝑌⊥
𝑁

.
Again, 𝐾2 is compact, as it has finite dimensional rank. Moreover, we get that the equality

L = 𝐴0 − 𝛿𝑔 + 𝐾1 + 𝐾2

holds both over 𝑌𝑁 and over 𝑌⊥
𝑁

. Therefore, it holds over all X, and letting 𝐾 = 𝐾1 + 𝐾2, we conclude
that L = 𝐴0 − 𝛿𝑔 + 𝐾 for some 𝐴0 maximally dissipative, 𝛿𝑔 > 0 and K compact. �

7.2. Abstract results on maximally dissipative operators

We first recall some basic properties of maximally dissipative operators (see [64, 79]).

Lemma 7.8 (Properties of maximally dissipative operators). Let 𝐴0 be a maximally dissipative operator

on a Hilbert space H. Then, we have that

• 𝐴0 is closed.

• 𝜎(𝐴0) ⊂ {𝜆 ∈ C :  (𝜆) ≤ 0}.
• For every 𝜆 ∈ C with  𝜆 > 0, we have that (−𝐴0 + 𝜆) : 𝐷 (𝐴0) → 𝐻 is a bijection and moreover

‖(−𝐴0 + 𝜆)−1‖𝐿 (𝐻→𝐷 (𝐴0)) ≤  (𝜆)−1.

• 𝐴∗0 is also maximally dissipative.

• (Lumer-Phillips theorem): 𝐴0 generates a strongly continuous semigroup on H.

Definition 7.9. We define the growth bound of a semigroup T on H as

𝑤0 (𝑇) = inf
{
𝑤 ∈ R, ∃𝑀𝑤 such that ∀𝑡 ≥ 0, ‖𝑇 (𝑡)‖ ≤ 𝑀𝑤𝑒𝑤𝑡

}
.

We also define

𝑤ess (𝑇) = inf
{
𝑤 ∈ R, ∃𝑀𝑤 such that ∀𝑡 ≥ 0, ‖𝑇 (𝑡)‖ess ≤ 𝑀𝑤𝑒𝑤𝑡

}
,

where the essential seminorm is defined as

‖𝑇 (𝑡)‖ess = inf
𝐾 compact

‖𝑇 (𝑡) − 𝐾 ‖.
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Lemma 7.10 (Growth bound [32]). Let us suppose that A generates the continuous semigroup T. Let

𝜎(𝐴) be the spectrum of A and let us consider 𝑠(𝐴) = sup𝜆∈𝜎 (𝐴)  (𝜆). Then

𝑤0 (𝑇) = max {𝑤ess (𝑇), 𝑠(𝐴)} .

Moreover, for any, 𝑤 > 𝑤ess (𝑇) have that 𝜎(𝐴) ∩ {𝜆 ∈ C :  (𝜆) > 𝑤} is a finite set of eigenvalues

with finite algebraic multiplicity.

Lemma 7.11. Let 𝐴0 be a maximally dissipative operator and consider 𝐴 = 𝐴0 − 𝛿𝑔 + 𝐾 where 𝛿𝑔 > 0
and K compact. Then we have

1. The set Λ = 𝜎(𝐴) ∩ {𝜆 ∈ C :  (𝜆) > −𝛿𝑔/2} is finite and formed only by eigenvalues of A.

Moreover, each 𝜆 ∈ Λ has finite algebraic multiplicity. That is, if we let 𝜇𝜆 to be the first natural such

that ker(𝐴 − 𝜆Id)𝜇𝜆 = ker(𝐴 − 𝜆Id)𝜇𝜆+1, we have that the vector space

𝑉 =

⊕
𝜆∈Λ

ker(𝐴 − 𝜆Id)𝜇𝜆 (7.47)

is finite dimensional.

2. Consider 𝐴∗ = 𝐴∗0 − 𝛿𝑔 + 𝐾∗ and let Λ∗ = 𝜎(𝐴∗) ∩ {𝜆 ∈ C :  (𝜆) > −𝛿𝑔/2}. As before, we define

𝑉∗ =
⊕
𝜆∈Λ∗

ker(𝐴∗ − 𝜆Id)𝜇∗𝜆 . (7.48)

We have that both V and 𝑉∗⊥ are invariant under A. We also have that Λ∗ = Λ and 𝜇𝜆 = 𝜇∗
𝜆
.

Moreover, we have the decomposition 𝐻 = 𝑉 ⊕ 𝑉∗⊥.

3. The linear transformation 𝐴|𝑉 : 𝑉 → 𝑉 obtained by restricting A to the finite dimensional space V

has all its eigenvalues with real part larger than −𝛿𝑔/2. In particular, there is some basis such that

we can express

𝐴|𝑉 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐽1

𝐽2

. . .

𝐽ℓ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, where 𝐽𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜆𝑖 𝛿𝑔/10

𝜆𝑖
. . .

. . . 𝛿𝑔/10
𝜆𝑖

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where 𝜆𝑖 are the eigenvalues of 𝐴|𝑉 . In that basis, we have that

𝑤𝑇 · 𝐴|𝑉 · 𝑤 ≥
−6𝛿𝑔

10
‖𝑤‖2, ∀𝑤 ∈ R𝑁 . (7.49)

Moreover, letting 𝑇 (𝑡) be the semigroup generated by A, for any 𝑣 ∈ 𝑉∗⊥, we have

‖𝑇 (𝑡)𝑣‖𝐻 � 𝑒−𝛿𝑔𝑡/2‖𝑣‖𝐻 . (7.50)

Lemma 7.11 is very similar to Lemma 3.3 in [67]. We, however, provide a proof for completeness.

Proof. Item 1. Lemma 7.8 tells us that 𝐴0 generates a contraction semigroup 𝑇0 (𝑡). Therefore, we have
that 𝐴0 − 𝛿𝑔 generates a contraction semigroup 𝑇1 (𝑡) = 𝑒−𝛿𝑔𝑡𝑇0 (𝑡), such that 𝑤0 (𝑇1), 𝑤ess (𝑇1) ≤ −𝛿𝑔.

Thus, as K is compact, 𝐴0 − 𝛿𝑔 − 𝐾 generates a continuous semigroup 𝑇 (𝑡) as well, and as 𝑤ess is
invariant under compact perturbations, we have that 𝑤ess (𝑇) ≤ −𝛿𝑔. In particular, applying Lemma 7.10
for 𝑤 = −1

2 𝛿𝑔, we see that Λ consists of finitely many eigenvalues with finite algebraic multiplicity.
The fact that the spaces ker(𝐴 − 𝜆𝑖Id)𝜇𝜆 are linearly independent for a finite set of different 𝜆𝑖 is

well-known in linear algebra.
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Item 2. It is clear that ker(𝐴 − 𝜆Id)𝜇𝜆 is invariant under A: if 𝑣 ∈ ker(𝐴 − 𝜆Id)𝜇𝜆 , we just have

0 = (𝐴 − 𝜆Id)𝜇𝜆+1𝑣 = (𝐴 − 𝜆Id)𝜇𝜆 (𝐴𝑣) − 𝜆(𝐴 − 𝜆Id)𝜇𝜆𝑣 = (𝐴 − 𝜆Id)𝜇𝜆 (𝐴𝑣).

As a consequence, V remains invariant under A.
Applying the argument from Item 1 to 𝐴∗, we find thatΛ∗ is finite, and consequently,𝑉∗ is finite dimen-

sional. In addition, as above, we find that 𝑉∗ is invariant under 𝐴∗. Therefore, for any 𝑣 ∈ 𝑉∗⊥, 𝑤 ∈ 𝑉∗

〈𝐴𝑣, 𝑤〉 = 〈𝑣, 𝐴∗𝑤〉 = 0,

since 𝐴∗𝑤 ∈ 𝑉∗. Thus, 𝐴𝑣 ∈ 𝑉∗⊥, and we have shown that 𝑉∗⊥ is invariant under A.
Now suppose 𝜆 ∈ Λ∗ \ Λ. As  (𝜆) > −𝛿𝑔/2 and 𝜆 ∉ Λ; hence, the resolvent (𝐴 − 𝜆Id)−1 is a

bounded operator. Therefore, (𝐴∗ − 𝜆Id)𝑢 = 𝑣 is equivalent to

〈𝑤, 𝑢〉 = 〈(𝐴 − 𝜆Id)−1𝑤, 𝑣〉, ∀𝑤 ∈ 𝐻.

By the Riesz representation theorem, we have a unique such 𝑢 ∈ 𝐻, and moreover, the map 𝑣 ↦→ 𝑢 is
bounded. This shows that Λ∗ ⊂ Λ; however, since 𝐴∗ ∗ = 𝐴, an analogous argument for 𝐴∗ shows that
Λ ⊂ Λ∗, and hence, Λ∗ = Λ.

Before showing that the multiplicities are equal, let us show that 𝐻 = 𝑉 ⊕ 𝑉∗⊥. Let us note that V is
the image of H under the projector

𝑃(𝐴) = 1

2𝜋𝑖

∫
Γ

(𝜆Id − 𝐴)−1 𝑑𝜆.

for some curve Γ enclosing Λ. However, as Λ = Λ∗, we get that 𝑃(𝐴∗) = 𝑃(𝐴)∗. Therefore, using
Im(𝑃(𝐴∗))⊥ = ker(𝑃(𝐴)) and the decomposition 𝐻 = ker(𝑃(𝐴)) ⊕ Im(𝑃(𝐴)) (since 𝑃(𝐴) is a
projector) yields the desired decomposition 𝐻 = 𝑉∗⊥ ⊕ 𝑉 .

Lastly, let us show that 𝜇𝜆 = 𝜇∗
𝜆
. Without loss of generality, assume 𝜇𝜆 > 𝜇∗

𝜆
. Then we have that

〈
(𝐴 − 𝜆Id)𝜇

∗
𝜆𝑣, 𝑤
〉
=

〈
𝑣, (𝐴∗ − 𝜆Id)𝜇

∗
𝜆𝑤
〉
= 0 ∀𝑣 ∈ ker(𝐴 − 𝜆Id)𝜇𝜆 , 𝑤 ∈ ker(𝐴 − 𝜆Id)𝜇

∗
𝜆 .

However, as 𝜇𝜆 > 𝜇∗
𝜆
, there exists some 𝑣 ∈ 𝑉 such that the term 𝑣′ = (𝐴 − 𝜆Id)𝜇

∗
𝜆 𝑣 ≠ 0. It is clear

that 𝑣′ ∈ 𝑉 , since V is an invariant subspace of A. Therefore, we have that 𝑣′ ∈ 𝑉 , 𝑣′ ∈ 𝑉∗⊥ and 𝑣 ≠ 0.
However, this is impossible due to the decomposition 𝐻 = 𝑉 ⊕ 𝑉∗⊥.

Item 3. If 𝜆 is an eigenvalue of 𝐴|𝑉 , we have that there exists 𝑣 ∈ 𝑉 with 𝐴𝑣 = 𝜆𝑣. As 𝑣 ∈ 𝑉 , we
have that 𝜆 ∈ Λ, and therefore, (𝜆) > −𝛿𝑔/2.

Now, we express 𝐴|𝑉 in its Jordan normal form and obtain some blocks 𝐽𝑖 with 𝜆𝑖 on the diagonal
and 1 on the superdiagonal of each block. Consider 𝐷𝑖 to be the diagonal matrix with elements
1, 𝛿𝑔/10, (𝛿𝑔/10)2, . . . on its diagonal. Then, we have that 𝐷−1

𝑖 𝐽𝑖𝐷𝑖 = 𝐽𝑖 , so we can obtain the desired
form by applying the change of basis dictated by 𝐷𝑖 to the Jordan normal form.

In order to show (7.49), we show that 𝐴|𝑉 + 6𝛿𝑔
10 𝐼 is semipositive definite. It suffices to show that each

of its blocks 𝐽𝑖 + 6𝛿𝑔
10 𝐼 is semipositive definite. Suppose that the block is of size k. Then, as 𝜆 ≥ − 𝛿𝑔

2 ,
we have

𝑤𝑇 · (𝐽𝑖 +
6𝛿𝑔
10

𝐼) · 𝑤 ≥
𝑘∑
𝑗=1

𝛿𝑔

10
𝑤2
𝑖 −

𝛿𝑔

10

𝑘−1∑
𝑗=1

|𝑤 𝑗 | |𝑤 𝑗+1 | ≥
𝛿𝑔

20

𝑘−1∑
𝑗=1

(𝑤2
𝑗 + 𝑤2

𝑗+1 − 2|𝑤 𝑗 | |𝑤 𝑗+1 |) ≥ 0.

As 𝑉∗⊥ is invariant under A, we can consider 𝑇sta (𝑡) = 𝑇 |𝑉 ∗⊥ (𝑡), the restriction to the semigroup to
that space, which is clearly generated by 𝐴𝑠 = 𝐴|𝑉 ∗⊥ .
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On the one hand, we have that

𝑤ess (𝑇sta) = 𝑤ess (𝑇) ≤ −𝛿𝑔, (7.51)

since those contraction semigroups differ by a compact operator.
On the other hand, if 𝜎(𝐴𝑠) had any element 𝜆 with (𝜆) > −𝛿𝑔/2, we can apply the same reasoning

as in 1 to say that 𝜆 has to be an eigenvalue. Thus, we would have an eigenvector 𝑣 ∈ 𝑉∗⊥ with 𝐴𝑣 = 𝜆𝑣

and (𝜆) > −𝛿𝑔/2. This is a contradiction since ker(𝐴 − 𝜆Id) ⊂ 𝑉 for those 𝜆. Thus, we get that

𝜎(𝐴𝑠) ⊂ {𝜆 ∈ C :  (𝜆) ≤ −𝛿𝑔/2}. (7.52)

Combining (7.51) and (7.52) via Lemma 7.10, we get that 𝑤0 (𝑇sta) ≤ −𝛿𝑔/2, and we conclude the
proof. �

7.3. Smoothness of eigenfunctions

Let us remark that due to Corollary 7.7, we have that our operator L can be written as 𝐴0 − 𝛿𝑔 + 𝐾

for some K compact, 𝛿𝑔 > 0 and 𝐴0 maximally dissipative. Therefore, we are under the hypothesis of
Lemma 7.11 on the space X. From now on, let us denote

𝑃sta (𝑈, 𝑆) = 𝑃 |𝑉 (𝑈, 𝑆) and 𝑃uns(𝑈, 𝑆) = 𝑃 |𝑉 ∗⊥ (𝑈, 𝑆).

Lemma 7.12. Let (𝑈𝑡 , 𝑆𝑡 ) be radially symmetric. Let 𝜒0 be a cut-off function supported on [0, 6
5 ] which

takes value 1 in [0, 1]. Then, there exists an absolute constant C independent of 𝑚, 𝐽, 𝑁 such that∫
𝜒0(𝜁)L𝑈 (𝑈𝑡 , 𝑆𝑡 ) ·𝑈𝑡 +

∫
𝜒0(𝜁)L𝑆 (𝑈𝑡 , 𝑆𝑡 )𝑆𝑡 ≤ 𝐶

∫
𝜒0(𝜁)
(
|𝑈𝑡 |2 + 𝑆2

𝑡

)
.

Proof. Let us denote

I =

∫
𝜒0(𝜁)L𝑈 (𝑈𝑡 , 𝑆𝑡 ) ·𝑈𝑡 +

∫
𝜒0(𝜁)L𝑆 (𝑈𝑡 , 𝑆𝑡 )𝑆𝑡 .

Let us note that on the support of 𝜒0, we have that 𝜒1 = 𝜒2 = 1. Therefore, in this region, we have the
equalities

L𝑈 (𝑈𝑡 , 𝑆𝑡 ) =
(
𝑟 − 1 + 𝜕𝜁

(
s𝑈 · 𝑦

𝜁

))
𝑈𝑡 + 𝛼𝑆𝑡∇s𝑆 + (𝑦 + s𝑈)∇𝑈𝑡 + 𝛼s𝑆∇𝑆𝑡 ,

L𝑆 (𝑈𝑡 , 𝑆𝑡 ) = (𝑟 − 1 + 𝛼div( s𝑈))𝑆𝑡 + 𝜕𝜁 s𝑆𝑈𝑡 + (𝑦 + s𝑈) · ∇𝑆𝑡 + 𝛼s𝑆div(𝑈𝑡 ).

Taking C big enough such that 𝑟 − 1 + ‖s𝑆‖ �𝐻 1 + ‖ s𝑈‖ �𝐻 1 ≤ 𝐶
4 , we have

I ≤ 𝐶

2

∫
𝜒0 (𝜁)
(
|𝑈𝑡 |2 + 𝑆2

𝑡

)
+
∫

𝜒0(𝜁) (𝑦 + s𝑈) · ∇𝑈𝑡 ·𝑈𝑡 + 𝛼

∫
𝜒0(𝜁)s𝑆∇𝑆𝑡 ·𝑈𝑡

+
∫

𝜒0(𝜁) (𝑦 + s𝑈) · ∇𝑆𝑡𝑆𝑡 + 𝛼

∫
𝜒0(𝜁)s𝑆div(𝑈𝑡 )𝑆𝑡 .

Therefore, we get

I ≤ 𝐶

2

∫
𝜒0(𝜁)
(
|𝑈𝑡 |2 + 𝑆2

𝑡

)
+ 1

2

∫
𝜒0(𝜁) (𝑦 + s𝑈) · ∇

(
|𝑈𝑡 |2 + 𝑆2

𝑡

)
+ 𝛼

∫
𝜒0(𝜁)s𝑆div

(
𝑆𝑡 ·𝑈𝑡

)

≤
(
𝐶

2
+
----div(𝜒0 (𝑦 + s𝑈))

2

----
𝐿∞
+
--𝛼div(𝜒0

s𝑆)
--
𝐿∞

) ∫
𝜒0(𝜁) (𝑦 + s𝑈) · ∇

(
|𝑈𝑡 |2 + 𝑆2

𝑡

)
. �
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Corollary 7.13. If 𝜆 is an eigenvalue of our operator L, we necessarily have that (𝜆) ≤ 𝐶.

Proof. Let 𝜈 = (𝜈𝑈 , 𝜈𝑆) be an eigenfunction of L. As these may be complex, let us write 𝜈𝑈 = 𝜈𝑟
𝑈
+ 𝑖𝜈𝑖

𝑈

and 𝜈𝑆 = 𝜈𝑟
𝑆
+𝑖𝜈𝑖

𝑆
for their decompositions into real and imaginary parts. Let us also denote 𝜈𝑟 = (𝜈𝑟

𝑈
, 𝜈𝑟

𝑆
)

and 𝜈𝑖 = (𝜈𝑖
𝑈
, 𝜈𝑖

𝑆
). As the operator L sends real functions into real functions, we have that

∫
𝜒0 
(
𝜈𝑈 · L𝑈 𝜈 + 𝜈𝑆L𝑆𝜈𝑆

)
=

∫
𝜒0
(
𝜈𝑟𝑈 · L𝑈 𝜈𝑟𝑈 + 𝜈𝑟𝑆L𝑆𝜈

𝑟
𝑆

)
+
∫

𝜒0
(
𝜈𝑖𝑈 · L𝑈 𝜈𝑖𝑈 + 𝜈𝑖𝑆L𝑆𝜈

𝑖
𝑆

)
≤ 𝐶

∫
𝜒0

(
|𝜈𝑟𝑈 |2 + (𝜈𝑟𝑆)2 + |𝜈𝑖𝑈 |2 + (𝜈𝑖𝑆)2

)
,

where in the last inequality, we used Lemma 7.12 for the pairs (𝜈𝑟
𝑈
, 𝜈𝑟

𝑆
) and (𝜈𝑖

𝑈
, 𝜈𝑖

𝑆
). Using that 𝜈 is an

eigenfunction of eigenvalue 𝜆 in the left-hand side of the previous equation, we obtain that

 (𝜆)
∫

𝜒0

(
|𝜈𝑈 |2 + |𝜈𝑆 |2

)
≤ 𝐶

∫
𝜒0

(
|𝜈𝑈 |2 + |𝜈𝑆 |2

)
.

This concludes our claim. �

Lemma 7.14. If 𝛿𝑔 > 0 is chosen sufficiently small and {𝜈𝑖,𝑈 , 𝜈𝑖,𝑆}𝑖=1,...,𝑁 are the eigenfunctions

corresponding to the eigenvalues Λ defined in Lemma 7.11 applied to the operator 𝐴0 defined in

Corollary 7.7, then {𝜈𝑖,𝑈 , 𝜈𝑖,𝑆}𝑖=1,...,𝑁 are smooth.

Proof. Fixing 𝛿𝑔 > 0 sufficiently small, let {𝜈𝑖,𝑈 , 𝜈𝑖,𝑆}𝑖=1,...,𝑁 be the eigenfunctions corresponding
to the eigenvalues Λ defined in Lemma 7.11 applied to the operator 𝐴0 defined in Corollary 7.7. By
Sobolev embedding, the eigenfunctions are 𝐶2𝑚−1.

Fix i, let 𝜆 + 𝛿𝑔 be the eigenvalue associated with (𝜈𝑖,𝑈 , 𝜈𝑖,𝑆) and define (𝑊, 𝑍) = (𝜈𝑖,𝑈 + 𝜈𝑖,𝑆 ,

𝜈𝑖,𝑈 − 𝜈𝑖,𝑆). Then

(𝜆 +DĎ𝑊 )𝑊 + VĎ𝑊 𝜕𝜁𝑊 +HĎ𝑊 𝑍 = 0

(𝜆 +D s𝑍 )𝑍 + V s𝑍 𝜕𝜁 𝑍 +H s𝑍𝑊 = 0.

We extend (𝑊, 𝑍) in the usual way by requiring 𝑍 (𝜁) = −𝑊 (−𝜁). By simple ODE analysis, we obtain
that (𝑊, 𝑍) are smooth away from 𝜁 = 0, 1. At 𝜁 = 0, 1, and we compare (𝑊, 𝑍) to the power series.
At 𝜁 = 1, we may use (7.31) in order to construct a power series expansion around 𝜁 = 1. In order to

construct the series, we are using that 𝜆 > − 𝛿𝑔
2 , and hence. the prefactor

(𝜆 +D s𝑍 (1) + (𝑛 + 1)𝑣 s𝑍,1)

in (7.31) is positive assuming that 𝑛 ≥ 2𝑚 − 1 and m is chosen sufficiently large, dependent on
𝛿𝑔 – here, we are also using the lower bound Lemma A.11 on 𝑣 s𝑍,1. Let (𝑊̌, 𝑍̌) denote the solution
obtained via power series expansion in a small neighborhood [1 − 𝛿, 1 + 𝛿] of 𝜁 = 1 such that 𝑊 (1) =
𝑊̌ (1). We necessarily have that all derivatives of (𝑊, 𝑍) and (𝑊̌, 𝑍̌) agree up to order 2𝑚 − 1 at 𝜁 = 1.
Let (𝑊, 𝑍) = (𝑊 − 𝑊̌, 𝑍 − 𝑊̌). Then for 𝜁 ∈ [1 − 𝛿, 1 + 𝛿], we have (𝑊, 𝑍) = 𝑂 ((𝜁 − 1)2𝑚−1).

Suppose for 𝜁 ∈ [1 − 𝛿, 1 + 𝛿], C is chosen larger enough such that

��DĎ𝑊

�� + ��HĎ𝑊

�� + |D s𝑍 | + |H s𝑍 | ≤ 𝐶 and
1��VĎ𝑊

�� + 1

|V s𝑍 |
≤ 𝐶

𝜁 − 1
.

Then, by Grönwall, we have for 1 + 𝛿 < 𝜁 < 1 + 𝛿,

��𝑊̌ �� + ��𝑍̌ �� � 1

𝛿𝐶 (𝐶+|𝜆 |)
(��𝑊̌ (1 + 𝛿)

�� + ��𝑍̌ (1 + 𝛿)
��) � 𝛿2𝑚−1−𝐶 (𝐶+|𝜆 |) .
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By an energy estimate, we can bound 𝜆 independent of m. Then since m can be chosen sufficiently large,
we can take 𝛿 to zero to conclude that (𝑊̌, 𝑍̌) ≡ 0 in the region 𝜁 ∈ [1, 1 + 𝛿]. An analogous argument
holds in the region 𝜁 ∈ [1− 𝛿, 1]. In particular, we have shown that (𝑊, 𝑍) is smooth in a neighborhood
of 𝜁 = 1. A similar Grönwall argument using (7.45) to construct the local analytic solution can be used
to prove (𝑊, 𝑍) are smooth in a neighborhood of 𝜁 = 0. �

Corollary 7.15. There exists a finite dimensional orthonormal basis of smooth functions

{𝜓𝑖,𝑈 , 𝜓𝑖,𝑆}𝑖=1,...,𝑁 for the space V defined in Lemma 7.11 for the operator 𝐴0 defined in Corollary 7.7.

Proof. Let {𝜈𝑖,𝑈 , 𝜈𝑖,𝑆}𝑖=1,...,𝑀 be the sequence of smooth eigenvectors defined in Lemma 7.14. For
each 𝑖 = 1, . . . , 𝑀 , define

(𝜓̃𝑖,𝑈 , 𝜓̃𝑖,𝑆) =  (𝜈̃𝑖,𝑈 , 𝜈̃𝑖,𝑆) and (𝜓̃𝑖+𝑀,𝑈 , 𝜓̃𝑖+𝑀,𝑆) = *(𝜈̃𝑖,𝑈 , 𝜈̃𝑖,𝑆).

Each (𝜓̃𝑖,𝑈 , 𝜓̃𝑖,𝑆) is smooth by definition and span V. The sequence of functions {𝜓𝑖,𝑈 , 𝜓𝑖,𝑆}𝑖=1,...,𝑁

can then be constructed via a standard Gram-Schmidt argument. �

Remark 7.16. Let us note that, moreover, with our definition ofL, the functions𝜓𝑖,𝑈 , 𝜓𝑖,𝑆 are compactly
supported in 𝜁 ≤ 9

5 , which is the support of 𝜒2. As the functions 𝜓𝑖,𝑈 and 𝜓𝑖,𝑆 are linear combinations

of 𝜓̃𝑖,𝑈 and 𝜓̃𝑖,𝑆 , respectively, it suffices to check that 𝜓̃𝑖,𝑈 and 𝜓̃𝑖,𝑆 are supported on 𝜁 ≤ 9
5 .

Indeed, note on the one hand that L(𝜓̃𝑖) = 𝜆𝑖 (𝜓̃𝑖,𝑈 , 𝜓̃𝑖,𝑆) with (𝜆𝑖) > −𝛿𝑔/2. On the other hand,
from (7.9), we get that

L(𝜓𝑖,𝑈 , 𝜓𝑖,𝑆) = −𝐽 (𝜓𝑖,𝑈 , 𝜓𝑖,𝑆), (7.53)

outside the support of 𝜒2.

As J is taken to be sufficiently large, −𝐽 � 1 � −𝛿𝑔
2 < 𝜆𝑖 . Equation (7.53) contradicts that 𝜆𝑖 is the

eigenvalue of 𝜓̃𝑖 unless both 𝜓̃𝑖,𝑈 and 𝜓̃𝑖,𝑆 vanish identically outside the support of 𝜒2. Thus, 𝜓𝑖,𝑈 , 𝜓𝑖,𝑆

are compactly supported on 𝜁 ≤ 9
5 .

8. Nonlinear stability

For brevity, we will use the notation ‖·‖𝑋 in place of ‖·‖𝐻 2𝑚 (𝐵 (0,2)) (this is consistent with the definition
of the space X given in Remark 7.2).

Our aim is to show that there exists a finite codimensional manifold of initial data that lead to
asymptotically self-similar implosion. To make this more precise, suppose we are given initial data
(U ′0,S ′0) such that the difference (𝑈 ′0, 𝑆′0) = (U ′0,S ′0) − ( ,𝑈, ,𝑆) satisfies the following assumptions:

‖𝑈 ′0‖𝐿∞ , ‖𝑆′0‖𝐿∞ ≤ 𝛿1, ‖𝜒2𝑈
′
0,𝑖 ‖𝑋 , ‖𝜒2𝑆

′
0‖𝑋 ≤ 𝛿0 and S ′0 (𝜁) ≥

1

2
𝛿1 for every 𝜁 ∈ R+, (8.1)

where here, 𝛿0 and 𝛿1 are constants satisfying the relation

𝛿
3/2
0 � 𝛿1 � 𝛿0 � 1,

and 𝜒2 is the cut-off function defined in Section 7.
We will moreover assume a high-order weighted energy estimate on (𝑈 ′0, 𝑆′0). For some 𝜁0 and 𝜂𝑤

yet to be determined, we let 𝜙 be a smooth function that is 1 on the region [−𝜁0, 𝜁0] and behaves like
𝜁2(1−𝜂𝑤 ) for 𝜁 ≥ 𝜁0. We then assume (𝑈 ′0, 𝑆′0) satisfies the bound

4𝜋

∫ ∞

0

(
(Δ𝐾U ′0)2 + (Δ𝐾S ′0)2

)
𝜙2𝐾 (𝜁)𝜁2 𝑑𝜁 ≤ 𝐸̄2 (8.2)

for K satisfying 𝛿0 � 1/𝐾 � 𝜂𝑤 .
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For the convenience of the reader, we collect the following chain of inequalities:

1

𝑠0
� 𝛿

3/2
0 � 𝛿1 � 𝛿𝑔𝛿0 � 𝛿0 �

1

𝐸̄
� 1

𝐾
� 1

𝑚
� 𝜂𝑤 � 𝛿𝑔 � 𝛿dis = 𝑂 (1),

where we recall 𝛿𝑔 is defined at the beginning of Section 7.3 and 𝛿dis is defined in (1.20).
With the assumptions (8.1) and (8.2), we will show there exists {𝑎𝑖}𝑁𝑖=1 satisfying |𝑎 | ≤ 𝛿1, such that

the initial data

(U ′0,S ′0) =
(
,𝑈 +𝑈 ′0 +

𝑁∑
𝑖=1

𝑎𝑖𝜓𝑖,𝑈 , ,𝑆 + 𝑆′0 +
𝑁∑
𝑖=1

𝑎𝑖𝜓𝑖,𝑆

)
(8.3)

leads to a global solution (U ,S) to (7.5), and moreover, if one sets (𝑈, 𝑆) = (U ,S) − ( ,𝑈, ,𝑆), then

lim
𝑠→∞

𝑈 (𝜁, 𝑠) = 0

for any 𝜁 . The key ingredient to proving this statement is the linear stability of truncated problem
considered in Section 7. To make this link precise, given (U0,S0), define its truncation (U0,𝑡 ,S0,𝑡 ) as

(U0,𝑡 ,S0,𝑡 ) = 𝜒2(U0,S0). (8.4)

We then let (U𝑡 ,S𝑡 ) be the solution to truncated equation (7.7) corresponding to such initial data. Let
us recall that all the cut-offs introduced in the truncated equation are constantly equal to 1 for |𝜁 | ≤ 6

5 .
We thus have the following.

Lemma 8.1. The solution to the truncated equation and the solution to the original equation agree on

[0, 6
5 ].

Proof. Subtracting the two solutions written in terms of their (𝑈, 𝑆) variables, we obtain that their
difference (𝑈, 𝑆) satisfies

(𝜕𝑠 + 𝑟 − 1)𝑈 + (𝜁 + ,𝑈)𝜕𝜁𝑈 + 𝛼 ,𝑆𝜕𝜁 𝑆 +𝑈𝜕𝜁 ,𝑈 + 𝛼𝑆𝜕𝜁 ,𝑆 = 0,

(𝜕𝑠 + 𝑟 − 1)𝑆 + (𝜁 + ,𝑈)𝜕𝜁 𝑆 + 𝛼 ,𝑆div(𝑈) +𝑈𝜕𝜁 ,𝑆 + 𝛼𝑆div( ,𝑈) = 0

on a ball 𝐵(0, 6/5) and with zero initial conditions on that ball. Applying energy estimates, we see that

𝜕𝑠

2

∫
𝐵 (0,6/5)

(
|𝑈 |2 + 𝑆2

)
≤ −
∫
𝐵 (0,6/5)

(𝜁 + ,𝑈)
𝜕𝜁

2

(
|𝑈 |2 + 𝑆2

)
−
∫
𝐵 (0,6/5)

𝛼 ,𝑆div(𝑆𝑈) + 𝐶1

∫
𝐵 (0,6/5)

(
𝑈2 + 𝑆2

)

≤ −
∫
𝜕𝐵 (0,6/5)

(
𝜁 + ,𝑈

2
(|𝑈 |2 + 𝑆2) + 𝛼 ,𝑆𝑆𝑈

)
+ 𝐶2

∫
𝐵 (0,6/5)

(
𝑈2 + 𝑆2

)

≤
∫
𝜕𝐵 (0,6/5)

−𝜁 − ,𝑈 + 𝛼 ,𝑆
2

(|𝑈 |2 + 𝑆2) + 𝐶3

∫
𝐵 (0,6/5)

(
𝑈2 + 𝑆2

)

≤ 𝐶3

∫
𝐵 (0,6/5)

(
|𝑈 |2 + 𝑆2

)
,

where 𝐶1, 𝐶2, 𝐶3 are some absolute constants, and we have used Lemma A.33 in the last inequality. In

particular, as U and S are zero at time 𝑠0 in 𝐵
(
0, 6

5

)
, we conclude that they are zero for all times, and

both solutions agree for all times and 𝜁 ∈
[
0, 6

5

]
. �

Given a solution (U𝑡 ,S𝑡 ) to (7.7), we will consider ‖𝑃uns (U𝑡 ,S𝑡 )‖𝑋 . Our first result is to show that as
long as the unstable modes are controlled, we can control the extended solution (U ,S) in a high-order
weighted Sobolev norm. In particular, we will bound
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𝐸2𝐾 (𝑠)2 =

∫
R3

(
(Δ𝐾U (𝜁, 𝑠))2 + (Δ𝐾S (𝜁, 𝑠))2

)
𝜙2𝐾 (𝜁)𝑑𝜁 . (8.5)

Specifically, in Section 8.1, we will prove the following:

Proposition 8.2. Let us take 𝛿
3/2
0 � 𝛿1 � 𝛿0. Let us assume that our initial data satisfies

‖(𝑈0,𝑡 , 𝑆0,𝑡 )‖𝑋 ≤
𝛿0

2
, ‖𝑈0‖𝐿∞ , ‖𝑆0‖𝐿∞ ≤ 𝛿1, 𝐸2𝐾 (𝑠0) ≤

𝐸̄

2
, 𝑆0 + ,𝑆 ≥

𝛿1

2
(8.6)

and that letting U0 = ,𝑈 +𝑈0, S = ,𝑆 + 𝑆0, its derivatives satisfy the decay estimates

|∇U0 | + |∇S0 | �
1

〈𝜁〉 and |∇2U0 | + |∇2S0 | �
1

〈𝜁〉2 . (8.7)

Moreover, let us assume that our solution is defined for 𝑠 ∈ [𝑠0, 𝑠1] and for every 𝑠 ∈ [𝑠0, 𝑠1], we have

‖𝑃uns(𝑈𝑡 , 𝑆𝑡 ) (𝑠)‖𝑋 ≤ 𝛿1. (8.8)

Then, we have the bounds

𝐸2𝐾 < 𝐸̄ and ‖𝑈‖𝐿∞ , ‖𝑆‖𝐿∞ < 𝛿0 (8.9)

for all 𝑠 ∈ [𝑠0, 𝑠1].

By local existence and a standard continuation argument, Proposition 8.2 implies that the solution
(U ,S) is well defined and satisfies the bound (8.9) so long as the unstable modes satisfy the bound
‖𝑃uns (𝑈𝑡 , 𝑆𝑡 )‖𝑋 ≤ 𝛿1.

In Section 8.2, we will prove, via a standard topological argument, the existence of a choice of {𝑎𝑖}
leading to a global bounded converging asymptotically to ( ,𝑈, ,𝑆).

Proposition 8.3. Let us consider (𝑈 ′0, 𝑆′0) smooth and satisfying the initial conditions

‖(𝑈 ′0,𝑡 , 𝑆0,𝑡 ) ′‖𝑋 ≤
𝛿0

4
, 𝐸2𝐾 (U ′0,S ′0; 𝑠0) ≤

𝐸̄

4
, ‖𝑈 ′0‖𝐿∞ , ‖𝑆′0‖𝐿∞ ≤

9𝛿1

10
,

,𝑆 + 𝑆′0 ≥
𝛿1

2
, |∇S ′0 | + |∇U ′0 | �

1

〈𝜁〉 |∇2U ′0 | + |∇2S ′0 | �
1

〈𝜁〉2 ,
(8.10)

and moreover such that 𝑃uns(𝑈 ′0,𝑡 , 𝑆′0,𝑡 ) = 0, for 𝑈 ′0,𝑡 = 𝜒2𝑈
′
0 and 𝑆′0,𝑡 = 𝜒2𝑆

′
0 Then, we have that

there exist specific values of 𝑎𝑖 such that we have the following: Let (U0,S0) be defined by (8.3) and

(U0,𝑡 ,S0,𝑡 ) defined by (8.4). Let also 𝑈0 = U0 − ,𝑈, 𝑆0 = S0 − ,𝑆, 𝑈0,𝑡 = U0,𝑡 − 𝜒2 ,𝑈, 𝑆0,𝑡 = S0,𝑡 − 𝜒2 ,𝑆.

Then, the equations (7.6) and (7.8) can be solved globally for all 𝑠 ≥ 𝑠0, and moreover, we obtain

smooth solutions that satisfy the estimates

‖(𝑈𝑡 , 𝑆𝑡 )‖𝑋 � 𝛿1𝑒
− 7

10 𝛿𝑔 (𝑠−𝑠0) , (8.11)

and

‖𝑈𝑒‖𝐿∞ + ‖𝑆𝑒‖𝐿∞ � 𝛿1𝑒
− 7

10 𝛿𝑔 (𝑠−𝑠0) . (8.12)

where we recall 𝑈𝑒 and 𝑆𝑒 refer to the whole perturbation (without any cut-off) solving the extended

equation (7.6).

Given the inequalities in (8.10), we may safely assume that the equations 8.6–8.7 will be satisfied for
U0,S0.
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Now, let us see how to conclude Theorem 1.3 from Proposition 8.3. The proofs of Proposition 8.2
and Proposition 8.3 will be delayed for now and will constitute the bulk of this section.

Let us specify the initial data (𝑈 ′0, 𝑆′0). We consider 𝜁𝑢 > 3 such that ,𝑈 ≤ 3
4𝛿1 for 𝜁 > 𝜁𝑢 and let

𝔅𝑈 = {𝜁 : 𝜁 > 𝜁𝑢} and 𝔅𝑆 =

{
𝜁 : ,𝑆(𝜁) ≤ 3

4
𝛿1

}
.

We let 𝜒3 : R≥0 → R be a smooth cut-off function supported on [0, 1] and equal to 1 on [0, 1/2], and
we let 𝜆 > 1 be a parameter to be fixed. We define the initial data 𝑈 ′0, 𝑆

′
0 as follows:

𝑈 ′0 (𝜁) = − ,𝑈 (𝜁)𝜒3 (𝜆 · d(𝜁,𝔅𝑈 )) , and 𝑆′0 (𝜁) =
(
3

4
𝛿1 − ,𝑆(𝜁)

)
𝜒3 (𝜆 · d(𝜁,𝔅𝑆)) ,

where d is the distance function. That is, we fix 𝑈 ′0 and 𝑆′0 to be − ,𝑈 and 3
4𝛿1 − ,𝑆 in the regions 𝔅𝑈 and

𝔅𝑆 respectively. Outside that region, our definition gives a smooth extension of 𝑈 ′0, 𝑆
′
0 that guarantees

that they are supported in a 1
𝜆
-neighborhood of 𝔅𝑈 and 𝔅𝑆 , respectively.

Let us note that U ′0 is zero for 𝜁 large enough and S ′0 is 3
4𝛿1 for 𝜁 large enough. This clearly follows

from the fact that ,𝑈 and ,𝑆 decay (Lemma A.39), so for 𝜁 sufficiently large, we will have 𝜁 ∈ 𝔅𝑈 and
𝜁 ∈ 𝔅𝑆 . Let us also note that 𝔅𝑈 ,𝔅𝑆 ⊂ (3,∞) because 𝜁𝑢 > 3 and Lemma A.32. Therefore, as 𝑈 ′0, 𝑆

′
0

are supported in 1
𝜆
-neighborhoods of 𝔅𝑈 and 𝔅𝑆 (and 𝜆 > 1), we have that 𝑈 ′0, 𝑆

′
0 are zero for 𝜁 ≤ 2.

Now, all the estimates from (8.10) are trivial. We have 𝑈 ′0,𝑡 = 𝑆′0,𝑡 = 0 because 𝑈 ′0, 𝑆
′
0 are zero

for 𝜁 ≤ 2. As U ′0,S
′
0 are constant for 𝜁 large enough, we have that the integral defining 𝐸2𝐾 (U ′0,S ′0)2

converges, so it is less than 𝐸̄2

16 provided we take 𝐸̄ sufficiently large. We clearly have

|𝑈 ′0 |, |𝑆′0 | ≤
3

4
𝛿1 and ,𝑆 + 𝑆′0 ≥

3

4
𝛿1,

for 𝜁 ∈ 𝔅𝑈 and𝔅𝑆 , respectively. Therefore, taking 𝜆 to be large enough, the third and fourth inequalities
from (8.10) are satisfied because 𝑈 ′0 and 𝑆′ are supported on 1

𝜆
neighborhoods of 𝔅𝑈 , 𝔅𝑆 . The two last

inequalities of (8.10) follow directly from the fact that U ′0,S
′
0 are constant for sufficiently large 𝜁 .

Now, we apply Proposition 8.3 to (𝑈 ′0, 𝑆′0). Note that as 𝜓𝑖,𝑈 , 𝜓𝑖,𝑆 are supported in 𝜁 < 2
(Remark 7.16), we have that

U0 (𝜁) = 0 and S0 (𝜁) =
3

4
𝛿1 for 𝜁 large enough. (8.13)

Moreover, Proposition 8.3 gives us a global solution (𝑈, 𝑆) to (7.6), which taking U = 𝑈 + ,𝑈 and
S = 𝑈 + ,𝑈 yields a solution (U ,S) to (7.5). Undoing the self-similar change of variables by taking

𝑢(𝑅, 𝑡) = 1

𝑟
𝑒𝑠 (𝑟−1)U (𝜁, 𝑠), 𝜎(𝑅, 𝑡) = 1

𝑟
· 𝑒𝑠 (𝑟−1)S (𝜁, 𝑠), (8.14)

where

𝑅 = 𝜁𝑒−𝑠 , 𝑒−𝑠𝑟 = 𝑇 − 𝑡 = 𝑒−𝑠0𝑟 − 𝑡,

we obtain that 𝑢(𝑅, 𝑡), 𝜎(𝑅, 𝑡) for 𝑡 ∈ [0, 𝑇) satisfy equation (1.18). We may recover 𝜌 from taking

𝜌 = (𝛼𝜎) 1
𝛼 , and then (𝑢, 𝜌) satisfies (1.3). It is clear from (8.13) and the changes performed that

𝑢(𝑅, 0) will be zero for R large enough and 𝜌(𝑅, 0) will be constant for R large enough (let us denote
that constant by 𝜌𝑐). Then, the items 1 and 2 of Theorem 1.3 are satisfied.
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Moreover, we see from Proposition 8.3 and (8.14) that

lim
𝑡→𝑇

𝑟 (𝑇 − 𝑡)1−1/𝑟𝜎(0, 𝑡) = ,𝑆(0),

so we see that 𝜎(0, 𝑡) tends to +∞ since ,𝑆(0) > 0 as a consequence of Lemma A.32. This implies the
𝜌 limit stated in item 3 of Theorem 1.3.

In addition, we know from Proposition 8.3 that U (1, 𝑠) → ,𝑈 (1) and S (𝜁, 𝑠) → ,𝑆(𝜁) as 𝑠 → ∞,
which implies item 4 of Theorem 1.3.

Finally, we show the u limit stated in item 3 of Theorem 1.3. First note that

𝑈̄ (1) = 𝑊0 + 𝑍0

2
=

𝐷𝑊 ,0 + 𝐷𝑍,0

2
− 1 =

𝐷𝑊 ,0

2
− 1.

Then, assuming r is sufficiently close to 𝑟∗, we obtain from Lemma A.7 that 𝑈̄ (1) ≠ 0. Since
U (𝜁, 𝑠) → ,𝑈 (𝜁), we obtain the u limit stated in item 3 of Theorem 1.3.

Remark 8.4. Observe that our construction of (𝑈 ′0, 𝑆′0) allows for small perturbations in all the norms
considered (the norms appearing in (8.10)). The functions (U0,S0) can be defined as before in (8.3) up
to small perturbations in the coefficients 𝑎𝑖 . In particular, the conclusion of Proposition 8.3 holds for a
finite codimension manifold of radial initial data.

8.1. Proof of Proposition 8.2

We will prove Proposition 8.2 via a bootstrap argument. Thus, we will assume equations 8.6–8.9 hold
for 𝑠 ∈ [𝑠0, 𝑠1] and show an improvement on (8.9) – specifically,

‖𝑈 (·, 𝑠)‖𝐿∞ , ‖𝑆(·, 𝑠)‖𝐿∞ ≤
1

2
𝛿0, (8.15)

𝐸2𝐾 (𝑠) ≤
1

2
𝐸̄ (8.16)

for all 𝑠 ∈ [𝑠0, 𝑠1]. Showing the improved bounds (8.15) and (8.16) would clearly conclude the proof of
Proposition 8.2 because 𝐸2𝐾 (𝑠), ‖𝑈 (·, 𝑠)‖𝐿∞ and ‖𝑆(·, 𝑠)‖𝐿∞ are continuous with respect to s.

From now on, and for the rest of this subsection, we will always assume that (8.6)–(8.9) hold and
that 𝑠 ∈ [𝑠0, 𝑠1]. In order to show equations (8.15) and (8.16), we divide the proof in three steps. First,
we will derive a series of consequences of the assumptions (8.6)–(8.9). Secondly, we will show (8.15),
and thirdly, we will show (8.16). This subsection is organized in three different parts according to those
three steps.

Before doing any of those steps, let us introduce some definitions. Due to Lemma A.39, and recalling
that 𝛿3/2

0 � 𝛿1 � 𝛿0 � 1, we know that there exists a value of 𝜁0 such that

,𝑆(𝜁) ≥ 2𝛿0 for all 𝜁 ≤ 𝜁0 and |∇ ,𝑆(𝜁) |, |∇ ,𝑈 (𝜁) | ≤ 𝛿1

2
for all 𝜁 ≥ 𝜁0. (8.17)

In particular, from ‖𝑆‖𝐿∞ ≤ 𝛿0 in (8.9), we have that

S (𝜁) ≥ 𝛿0 for all 𝜁 ≤ 𝜁0 (8.18)

Let us also define the weight 𝜙(𝜁) that we will use for the energy. We fix

𝜙(𝜁) =
⎧⎪⎪⎨
⎪⎪⎩

1 for 𝜁 ≤ 𝜁0,
𝜁 2(1−𝜂𝑤 )

2𝜁 2(1−𝜂𝑤 )
0

for 𝜁 ≥ 4𝜁0
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and choose 𝜙(𝜁) in the region 𝜁0 ≤ 𝜁 ≤ 4𝜁0 so that it is smooth and

|∇𝜙|𝜁
𝜙

≤ 2(1 − 𝜂𝑤 ) and 𝜙(𝜁) ≥ 1 (8.19)

hold globally.

8.1.1. Consequences of the bootstrap

Let us stress once again that for all the results in this subsection, we are implicitly assuming that
(8.6)–(8.9) hold and that 𝑠 ∈ [𝑠0, 𝑠1].
Lemma 8.5. We have the following inequalities for the 2𝐾 − 1 derivatives:

𝜙 (2𝐾−1)/2 |∇2𝐾−1U | + 𝜙 (2𝐾−1)/2 |∇2𝐾−1S | � 𝐸̄

𝜁1/2𝜙1/2 . (8.20)

Moreover, for 0 ≤ 𝑗 ≤ 2𝐾 − 2 and 𝜁 > 𝜁0, we have

𝜙 𝑗/2 |∇ 𝑗U | + 𝜙 𝑗/2 |∇ 𝑗S | � 𝛿
(2𝐾−1− 𝑗)/(2𝐾−1)
0

(
𝐸̄

𝜁1/2𝜙1/2

) 𝑗/(2𝐾−1)
. (8.21)

Finally, for 0 ≤ 𝑗 ≤ 2𝐾 − 2, we also have the global inequality

‖𝜙 𝑗/2∇ 𝑗S ‖𝐿∞ + ‖𝜙 𝑗/2∇ 𝑗𝑆‖𝐿∞ + ‖𝜙 𝑗/2∇ 𝑗U ‖𝐿∞ + ‖𝜙 𝑗/2∇ 𝑗𝑈‖𝐿∞ �
(
𝜁

1/2
0 𝐸̄
) 𝑗

2𝐾−2
. (8.22)

Proof. We have the following bound on any 2𝐾 − 1-th derivative of S:

|𝜕2𝐾−1S (𝜁) | ≤
∫ ∞

𝜁1

��𝜕2𝐾S
�� 𝑑𝑧

≤
(∫ ∞

𝜁

��𝜕2𝐾S
��2 𝑧2𝜙(𝑧)2𝐾 𝑑𝑧

)1/2 (∫ ∞

𝜁

1

𝑧2𝜙(𝑧)2𝐾 𝑑𝑧

)1/2

� 𝐸̄

(∫ ∞

𝜁

1

𝑧2𝜙(𝑧)2𝐾 𝑑𝑧

)1/2
� 𝐸̄

(
1

𝜁𝜙(𝜁)2𝐾
)1/2
� 𝐸̄𝜙−𝐾 𝜁−

1
2 . (8.23)

This yields the estimate on ∇2𝐾−1S implied by (8.20).
Now, for the region 𝜁 > 𝜁0, we have that | ,𝑆(𝜁) | � 𝛿0, and by (8.9), we also have that

|𝑆(𝜁) | ≤ 𝛿0. Therefore, |S (𝜁) | � 𝛿0. Using interpolation (Lemma A.1) between |S (𝜁) | � 𝛿0 and

𝜙𝐾 |∇2𝐾−1S | 𝜁
1/2

𝐸̄
� 1 in the region [𝜁0, +∞), we conclude the estimate on ∇ 𝑗S implied by (8.21).

Integrating (8.23), we obtain

��𝜕2𝐾−2S (𝜁)
�� � 𝐸̄

𝜁
1/2
0

𝜙(𝜁0)𝐾
= 𝐸̄ 𝜁

1/2
0 , (8.24)

which shows (8.22) for S and 𝑗 = 2𝐾 − 2. Standard 𝐿∞ interpolation (Gagliardo-Nirenberg) yields

‖𝜙 𝑗/2∇ 𝑗S ‖𝐿∞ (𝐵 (0,𝜁0)) �
(
𝜁

1/2
0 𝐸̄
) 𝑗

2𝐾−2
, (8.25)

using that in 𝐵(0, 𝜁0), we have that 𝜙 = 1. For the region 𝜁 > 𝜁0, note that weighted interpolation
(Lemma A.1) between ‖S ‖𝐿∞ � 1 and (8.24) yields

‖𝜙 𝑗/2∇ 𝑗S ‖𝐿∞ (𝐵 (0,𝜁0)𝑐) �
(
𝜁

1/2
0 𝐸̄
) 𝑗

2𝐾−2
,

which together with (8.25) shows (8.22) for S .
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In order to obtain the bound for 𝑆, recall that S = 𝑆 + ,𝑆, and then note that ‖𝜙 𝑗/2∇ 𝑗 ,𝑆‖𝐿∞ � 1 due to
Lemma A.39. Therefore, we conclude the desired bound also for 𝑆. The bounds for U and 𝑈 are proven
in the same way as we did with S , 𝑆. �

Lemma 8.6. We have that

S ≥ 𝛿1

4

〈
𝜁

𝜁0

〉−(𝑟−1)
.

Proof. The statement clearly holds for 𝜁 < 𝜁0 from (8.18). Thus, let us work on the region O = [𝜁0,∞).
Let us recall that S solves

(𝜕𝑠 + 𝑟 − 1)S + 𝑦 · ∇S + U · ∇S + 𝛼Sdiv(U ) = 0. (8.26)

By (8.21), we have that

‖U ‖𝐿∞ (O) + ‖S ‖𝐿∞ (O) � 𝛿0,

‖𝜙1/2∇U ‖𝐿∞ (O) + ‖𝜙1/2∇S ‖𝐿∞ (O) � 𝛿
(2𝐾−2)/(2𝐾−1)
0 𝐸̄1/(2𝐾−1)

� 𝛿
9/10
0 𝐸̄1/10 � 𝛿

4/5
0 .

(8.27)

Let us also define 𝜔 ,𝜁 , ,𝑠 (𝑠) =
( ,𝜁𝑒 (𝑠−,𝑠) )𝑟−1

S ( ,𝜁𝑒𝑠−,𝑠 , 𝑠). Then, using (8.27) in (8.26), we obtain that

��𝜕𝑠𝜔 ,𝜁 , ,𝑠 (𝑠)�� � 𝛿
9/5
0 𝜙
( ,𝜁𝑒𝑠−,𝑠 )−1/2 ( ,𝜁𝑒 (𝑠−,𝑠) )𝑟−1

� 𝛿
9/5
0 𝜙
( ,𝜁𝑒𝑠−,𝑠 ) −1

2 + 𝑟−1
2−2𝜂𝑤 𝜁𝑟−1

0 . (8.28)

Now, note that −1
2 + 𝑟−1

2 < − 1
10 because 𝑟 < 𝑟∗(𝛾) < 3 −

√
3; hence,

𝜙
( ,𝜁𝑒𝑠−,𝑠 ) −1

2 + 𝑟−1
2−2𝜂𝑤 �

( ,𝜁𝑒𝑠−,𝑠
𝜁0

)− 2
10 (1−𝜂𝑤 )

≤ 𝑒
−1
10 (𝑠−𝑠) ,

where we used that 𝜂𝑤 is sufficiently small and assumed ,𝜁 ≥ 𝜁0. Thus, we obtain

1

𝜁𝑟−1
0

��𝜕𝑠𝜔 ,𝜁 , ,𝑠 (𝑠)�� � 𝛿
9/5
0 𝑒

−1
10 (𝑠−𝑠) (8.29)

for any 𝑠 ≥ ,𝑠 with ,𝑠, 𝑠 ∈ [𝑠0, 𝑠1] and any ,𝜁 ≥ 𝜁0.
Integrating (8.29), we obtain

1

𝜁𝑟−1
0

��𝜔 ,𝜁 , ,𝑠 (𝑠) − ,𝜁𝑟−1S ( ,𝜁, ,𝑠)
�� � 𝛿

9/5
0 � 𝛿1𝛿

1/5
0 . (8.30)

Now, for any 𝜁 ∈ O and 𝑠 ∈ [𝑠0, 𝑠1], there exists ,𝜁 ≥ 𝜁0, ,𝑠 ∈ [𝑠0, 𝑠1] such that ( ,𝜁, ,𝑠) ∈ {𝜁0} × [𝑠0, 𝑠1] ∪
[𝜁0,∞) × {𝑠0} and ,𝜁𝑒𝑠−,𝑠 = 𝜁 . Fixing such conditions for ,𝜁, ,𝑠, we have

S ( ,𝜁, ,𝑠) ≥ 𝛿1

2
. (8.31)

This is due to (8.18) for ,𝜁 = 𝜁0 and due to (8.6) for ,𝑠 = 𝑠0. From (8.30)–(8.31), we conclude

𝜔 ,𝜁 , ,𝑠 (𝑠)
𝜁𝑟−1

0

≥ 1

2

,𝜁𝑟−1

𝜁𝑟−1
0

𝛿1 − 𝛿
1/5
0 𝛿1 ≥

1

4

,𝜁𝑟−1

𝜁𝑟−1
0

𝛿1 ≥
1

4
𝛿1.
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Recalling that 𝜁 = ,𝜁𝑒𝑠−,𝑠 , we get that

𝜁𝑟−1

𝜁𝑟−1
0

S (𝜁, 𝑠) ≥ 1

4
𝛿1

for 𝜁 ≥ 𝜁0, and this completes the proof. �

Lemma 8.7. Assume 𝜁 > 𝜁0. Then, we have that

|∇S (𝜁) | �𝛿1

1

𝜁𝑟
(8.32)

where here, we use the notation �𝛿1 to imply that the implicit constant in the inequality may depend

on 𝛿1.

Proof. From (7.5), we have that

(𝜕𝑠 + 𝑟) ∇S + 𝜁∇𝜕𝜁S + ∇ (U · ∇S) + 𝛼∇ (div(U )S) = 0.

Now, let us define 𝜔 ,𝜁 , ,𝑠 (𝑠) = ,𝜁𝑟 𝑒 (𝑠−,𝑠)𝑟∇S ( ,𝜁𝑒𝑠−,𝑠, 𝑠). With this definition and using (8.22), we have that

��𝜕𝑠𝜔 ,𝜁 , ,𝑠 (𝑠)�� �𝛿1

(
1

𝜙
( ,𝜁𝑒𝑠−,𝑠 )

( ,𝜁𝑒𝑠−,𝑠 )𝑟 ) �𝛿1

( ,𝜁𝑒𝑠−,𝑠 )−2+2𝜂𝑤+𝑟
. (8.33)

Now, we assume that either ,𝜁 = 𝜁0 or ,𝑠 = 𝑠0. Therefore,

𝜔 ,𝜁 , ,𝑠 ( ,𝑠) = ,𝜁𝑟S ( ,𝜁, ,𝑠) � 1. (8.34)

Using both (8.33) and (8.34), we obtain that

𝜔 ,𝜁 , ,𝑠 (𝑠) �𝛿1 1 +
∫ ∞

,𝑠
𝑒 (−2+2𝜂𝑤+𝑟 ) (𝑠−,𝑠) � 1,

and this shows our estimate for any (𝜁, 𝑠) = ( ,𝜁𝑒𝑠−,𝑠 , 𝑠) such that 𝑠 ≥ ,𝑠 and either ,𝜁 = 𝜁0 or ,𝑠 = 𝑠0. As
any (𝜁, 𝑠) with 𝜁 ≥ 𝜁0, 𝑠 ≥ 𝑠0 can be written in that way, this finishes our proof. �

Lemma 8.8. We have that

𝜙 𝑗/2
����∇ 𝑗

(
1

S1/𝛼

)���� �𝛿1 〈𝜁〉 (𝑟−1)/𝛼
(
〈𝜁〉𝑟−1/2𝜙−1

) 𝑗/(2𝐾−2)
(8.35)

for any 0 ≤ 𝑗 ≤ 2𝐾 − 1.

Proof. First, let us note that����∇ 𝑗

(
1

S1/𝛼

)���� � 𝑗

1

S1/𝛼

∑
𝑗1+...+ 𝑗ℓ= 𝑗

|∇ 𝑗1S |
S

· . . . · |∇
𝑗1S |
S

. (8.36)

Equation (8.35) follows clearly for the case 𝜁 ≤ 𝜁0 by uniform bounds on 𝜙 in this region and the

inequality 1
S1/𝛼+ 𝑗 ≤ 𝛿

− 𝑗−1/𝛼
1 �𝛿1 1 implied by equation (8.18). Therefore, let us assume from now that

𝜁 ≥ 𝜁0.
Now, we want to analyze each factor in (8.36) for 𝜁 ≥ 𝜁0. We first claim that for any 1 ≤ 𝑗 ≤ 2𝐾 − 1,

we have

���𝜙(𝜁) 𝑗/2∇ 𝑗S (𝜁)
��� 𝜁𝑟−1
(
𝜁1/2−𝑟
) 𝑗−1

2𝐾−2
𝜙(𝜁)

𝑗

2𝐾−2 �𝛿1 1. (8.37)
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In order to see this, we apply interpolation (as in Lemma A.1) between (8.20) and (8.32), obtaining

1 �𝛿1

�����∇ 𝑗S𝜁

(
1− 𝑗−1

2𝐾−2

)
𝑟
(
𝜙(𝜁)𝐾 𝜁1/2

) 𝑗−1
2𝐾−2

����� =
�����∇ 𝑗S𝜁𝑟𝜙(𝜁) 𝑗/2𝜙(𝜁)

𝑗−𝐾
2𝐾−2

(
𝜁1/2−𝑟
) 𝑗−1

2𝐾−2

����� .
Now, as 1

𝐾
� 𝜂𝑤 � 1, observe that 𝜁𝜙(𝜁)− 𝐾

2𝐾−2 �𝛿1 𝜁1−(1−𝜂𝑤 ) (1+ 1
𝐾−1 ) � 1. This concludes (8.37).

Now using (8.37) and the lower bound from Lemma 8.6, we get that

����∇ 𝑗S

S

���� �𝛿1

1

S
𝜙(𝜁)− 𝑗/2𝜁−(𝑟−1)

(
𝜁𝑟−1/2
)− 𝑗−1

2𝐾−2
𝜙(𝜁)−

𝑗

2𝐾−2

≤ 𝜙(𝜁)− 𝑗/2
(
𝜁𝑟−1/2
)− 𝑗−1

2𝐾−2
𝜙(𝜁)−

𝑗

2𝐾−2 .

Plugging this into (8.36), we have that����∇ 𝑗

(
1

S1/𝛼

)���� �𝛿1

1

S1/𝛼 𝜙(𝜁)− 𝑗/2
(
𝜁𝑟−1/2𝜙(𝜁)−1

) 𝑗/(2𝐾−2)
.

Using again Lemma 8.6 to bound 1
S1/𝛼 , we obtain the desired result. �

Lemma 8.9. There exist values 𝐶1, 𝐶 independent of all the other parameters such that

|∇S | + |∇U | ≤ 𝐶

𝜁
, (8.38)

and

|∇2S | + |∇2U | ≤ 𝐶

𝜁2
(8.39)

for every 𝜁 > 𝐶1.

Proof. From (7.5), letting 𝑊 = U + S and 𝑍 = U − S , we have

(𝜕𝑠 + 𝑟 − 1)𝑊 + (𝜁 + U + 𝛼S)𝜕𝜁𝑊 = Fdis −
2𝛼S

𝜁
U ,

(𝜕𝑠 + 𝑟 − 1)𝑍 + (𝜁 + U − 𝛼S)𝜕𝜁 𝑍 = Fdis +
2𝛼S

𝜁
U .

(8.40)

Denote 𝐸𝑊 = (U + 𝛼S) and 𝐸𝑍 = (U − 𝛼S). Taking one derivative in (8.40), we obtain

(𝜕𝑠 + 𝑟)𝜕𝜁𝑊 + (𝜁 + 𝐸𝑊 )𝜕2
𝜁𝑊 = 𝜕𝜁Fdis − 2𝛼𝜕𝜁

(
SU

𝜁

)
− 𝜕𝜁 𝐸𝑊 𝜕𝜁𝑊,

(𝜕𝑠 + 𝑟)𝜕𝜁 𝑍 + (𝜁 + 𝐸𝑍 )𝜕2
𝜁 𝑍 = 𝜕𝜁Fdis + 2𝛼𝜕𝜁

(
SU

𝜁

)
− 𝜕𝜁 𝐸𝑍 𝜕𝜁 𝑍,

(8.41)

and taking two derivatives in (8.40)

(𝜕𝑠 + 𝑟 + 1)𝜕2
𝜁𝑊 + (𝜁 + 𝐸𝑊 )𝜕3

𝜁𝑊 = 𝜕2
𝜁Fdis − 2𝛼𝜕2

𝜁

(
SU

𝜁

)
− 2𝜕𝜁 𝐸𝑊 𝜕2

𝜁𝑊 − 𝜕2
𝜁 𝐸𝑊 𝜕𝜁𝑊,

(𝜕𝑠 + 𝑟 + 1)𝜕2
𝜁 𝑍 + (𝜁 + 𝐸𝑍 )𝜕3

𝜁 𝑍 = 𝜕2
𝜁Fdis + 2𝛼𝜕2

𝜁

(
SU

𝜁

)
− 2𝜕𝜁 𝐸𝑍 𝜕

2
𝜁 𝑍 − 𝜕2

𝜁 𝐸𝑍 𝜕𝜁 𝑍.

(8.42)
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Now, we claim

��𝜕𝜁Fdis

�� ≤ 1

𝜁
, and

���𝜕2
𝜁Fdis

��� ≤ 1

𝜁2
. (8.43)

We have

��𝜕𝜁Fdis

�� � 𝑒−𝛿dis𝑠0

( |∇3U |
S1/𝛼 +

|∇2U | |∇S |
S1+1/𝛼

)
���𝜕2
𝜁Fdis

��� � 𝑒−𝛿dis𝑠0

( |∇4U |
S1/𝛼 +

|∇3U | |∇S |
S1+1/𝛼 + |∇

2U | |∇2S |
S1+1/𝛼 + |∇

2U | |∇S |2
S2+1/𝛼

)
.

(8.44)

Using (8.18) and (8.22) in (8.44), we see that for 𝜁 < 𝜁0,

��𝜕𝜁Fdis

�� � 𝑒−𝛿dis𝑠0
(𝜁1/2

0 𝐸̄) 3
2𝐾−2

𝛿
1+1/𝛼
0

� 𝑒−𝛿dis𝑠0/2 � 1

𝜁0
,

���𝜕2
𝜁Fdis

��� � 𝑒−𝛿dis𝑠0
(𝜁1/2

0 𝐸̄) 4
2𝐾−2

𝛿
2+1/𝛼
0

� 𝑒−𝛿dis𝑠0/2 � 1

𝜁2
0

,

so (8.43) holds for the region 𝜁 < 𝜁0. For the region 𝜁 > 𝜁0, from (8.21), we have

𝜙 𝑗/2 |∇ 𝑗U | + 𝜙 𝑗/2 |∇ 𝑗S | � 1

where we have used that 𝜁0 is sufficiently large, dependent on 𝐸̄ . Thus, from Lemma 8.6 and (8.44), we
see that

��𝜕𝜁Fdis

�� �𝛿1 𝑒−𝛿dis𝑠0
𝜙−3/2

𝜁−(𝑟−1) (1+1/𝛼) �𝛿1 𝑒−𝛿dis𝑠0 𝜁−3+4𝜂𝑤+(𝑟−1) (1+ 1
𝛼 ) ,

���𝜕2
𝜁Fdis

��� �𝛿1 𝑒−𝛿dis𝑠0
𝜙−2

𝜁−(𝑟−1) (2+1/𝛼) �𝛿1 𝑒−𝛿dis𝑠0 𝜁−4+4𝜂𝑤+(𝑟−1) (2+ 1
𝛼 ) .

Thus, using that (𝑟 − 1)
(
2 + 1

𝛼

)
< 2 (due to Lemma A.6), 𝜂𝑤 is sufficiently small and that 𝑒−𝛿dis𝑠0 is

sufficiently small depending on 𝛿𝑖 , we conclude (8.43) for 𝜁 > 𝜁0.
Using 𝐿∞-interpolation between |𝑈 |, |𝑆 | ≤ 𝛿0 and (8.22), we have that for 𝑖 ∈ {0, 1, 2},

|𝜕𝑖𝜁U | + |𝜕𝑖𝜁S | � |𝜕𝑖𝜁 ,𝑈 | + |𝜕𝑖𝜁 ,𝑆 | + |𝜕𝑖𝜁𝑈 | + |𝜕𝑖𝜁 𝑆 | � |𝜕𝑖𝜁 ,𝑈 | + |𝜕𝑖𝜁 ,𝑆 | + 𝛿
1/2
0 .

In particular, using Lemma A.39, this shows our statement for 𝐶1 < 𝜁 < 𝛿
−1/2
0 , so from now on, we will

take 𝐶 ′1 = 𝛿
−1/2
0 , and we can assume 𝜁 > 𝐶 ′1. In particular, we have

|𝜕𝑖𝜁U | + |𝜕𝑖𝜁S | + |𝜕𝑖𝜁 𝐸𝑊 | + |𝜕𝑖𝜁 𝐸𝑍 | ≤ 𝛿
1
2
0 + 𝛿

𝑟−1
2

0 � 1, ∀𝑖 ∈ {0, 1, 2}. (8.45)

Using the estimates

2𝛼

����𝜕𝜁
(
US

𝜁

)���� ≤ 2𝛼 |US | + 2𝛼 |𝜕𝜁US | + 2𝛼 |U𝜕𝜁S | ≤
1

𝜁
,
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(8.43) and (8.45), then from (8.41), we obtain

����
(
𝜕𝑠 + 𝑟 − 1 − 𝐸𝑊

𝜁

)
𝜁𝜕𝜁𝑊 + (𝜁 + 𝐸𝑊 )𝜕𝜁 (𝜁𝜕𝜁𝑊)

���� ≤ 2 + 𝑟 − 1

10
𝜁𝜕𝜁𝑊,����

(
𝜕𝑠 + 𝑟 − 1 − 𝐸𝑍

𝜁

)
𝜁𝜕𝜁 𝑍 + (𝜁 + 𝐸𝑍 )𝜕𝜁 (𝜁𝜕𝜁 𝑍)

���� ≤ 2 + 𝑟 − 1

10
𝜁𝜕𝜁 𝑍.

(8.46)

Now, let us define the trajectories

Υ
′
𝑊 (𝑠) = (𝜁 + 𝐸𝑊 ) = 𝜁 + U + 𝛼S , Υ

′
𝑍 (𝑠) = (𝜁 + 𝐸𝑍 ) = 𝜁 + U − 𝛼S (8.47)

starting at (𝜁, 𝑠) such that either ,𝜁 = 𝐶 ′1 or ,𝑠 = 𝑠0. Using (8.45) and noting that 𝛿0 is sufficiently small

depending on 𝜂𝑤 , we can assume that Υ𝑊 ,Υ𝑍 are increasing and have derivatives between 9
10 𝜁 and

11
10 𝜁 . Thus,

9

10
𝜁 ≤ Υ

′
𝑊 ,Υ′𝑍 ≤

11

10
𝜁 and ,𝜁𝑒9(𝑠−,𝑠)/10 ≤ Υ𝑊 ,Υ𝑍 ≤ ,𝜁𝑒11(𝑠−,𝑠)/10. (8.48)

Let us also define

Θ
(𝑊 )

= Υ𝑊 · 𝜕𝜁𝑊 ◦ Υ𝑊 and Θ
(𝑍 )

= Υ𝑍 · 𝜕𝜁 𝑍 ◦ Υ𝑍 . (8.49)

Using definitions (8.47) and (8.49) in (8.46), together with (8.45), we get

���𝜕𝑠Θ(◦) + (𝑟 − 1)Θ(◦)
��� ≤ 2 + 2

𝑟 − 1

10
|Θ(◦) | (8.50)

for ◦ ∈ {𝑊, 𝑍}.
Now, we claim that there exists some𝐶2, sufficiently large and independent of all the other parameters,

such that ���Θ(𝑊 ) ( ,𝑠)��� = �� ,𝜁𝜕𝜁𝑊 ( ,𝜁, ,𝑠)�� ≤ 𝐶2 and
���Θ(𝑍 ) ( ,𝑠)��� = �� ,𝜁𝜕𝜁 𝑍 ( ,𝜁, ,𝑠)�� ≤ 𝐶2. (8.51)

This is a consequence of

,𝜁
(
|∇U | ( ,𝜁, ,𝑠) + |∇S | ( ,𝜁 , ,𝑠)

)
� 1,

which is trivial for ,𝜁 = 𝐶1 and follows from (8.7) for ,𝑠 = 𝑠0.
Taking 𝐶3 = 𝐶2 + 3

𝑟−1 , we have that
��Θ(𝑊 ) �� , ��Θ(𝑆) �� ≤ 𝐶3. This is clearly true at 𝑠 = ,𝑠 due to (8.51),

and the inequality cannot break due to (8.50). Therefore, we get that

��𝜕𝜁𝑊 ◦ Υ𝑊

�� ≤ 𝐶3

Υ𝑊

and
��𝜕𝜁 𝑍 ◦ Υ𝑍

�� ≤ 𝐶3

Υ𝑍

,

which yields

��𝜕𝜁𝑊 �� ≤ 𝐶3

𝜁
and

��𝜕𝜁 𝑍 �� ≤ 𝐶3

𝜁
(8.52)

and completes the proof of (8.38).
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Now, we study (8.42). First of all, let us note that

|𝜕𝜁𝑊 |
���𝜕2
𝜁 𝐸𝑊

��� = |𝜕𝜁𝑊 |
����1 + 𝛼

2
𝜕2
𝜁𝑊 +

1 − 𝛼

2
𝜕2
𝜁 𝑍

���� ≤ 𝐶3

𝜁

(
|𝜕2
𝜁𝑊 | + |𝜕2

𝜁 𝑍 |
)
,

|𝜕𝜁 𝑍 |
���𝜕2
𝜁 𝐸𝑍

��� = |𝜕𝜁 𝑍 |
����1 − 𝛼

2
𝜕2
𝜁𝑊 +

1 + 𝛼

2
𝜕2
𝜁 𝑍

���� ≤ 𝐶3

𝜁

(
|𝜕2
𝜁𝑊 | + |𝜕2

𝜁 𝑍 |
)
,

(8.53)

and

����2𝛼𝜕2
𝜁

(
SU

𝜁

)���� ≤ 1

𝜁2
+ 4𝛼

𝜕𝜁S𝜕𝜁U

𝜁
+ 2𝛼

𝜁

(
|S𝜕2

𝜁U | + |U𝜕2
𝜁S |
)
≤

1 + 𝐶2
3

𝜁2
+ 1

10𝜁

(
|𝜕2
𝜁𝑊 | + |𝜕2

𝜁 𝑍 |
)
,

(8.54)

where we used (8.45) and (8.52). Let us also note from (8.52) that

|𝜕𝜁 𝐸𝑊 | ≤
𝐶3

𝜁
and |𝜕𝜁 𝐸𝑍 | ≤

𝐶3

𝜁
. (8.55)

Taking 𝐶3 larger if needed, and using (8.43), (8.45) and (8.53)–(8.55) in (8.42), we get that

����
(
𝜕𝑠 + 𝑟 − 1 − 2𝐸𝑊

𝜁

)
𝜁2𝜕2

𝜁𝑊 + (𝜁 + 𝐸𝑊 )𝜕𝜁
(
𝜁2𝜕2

𝜁𝑊
)���� ≤ 2 + 𝐶2

3 +
4𝐶3

𝜁

(
|𝜁2𝜕2

𝜁𝑊 | + |𝜁2𝜕2
𝜁 𝑍 |
)
,����

(
𝜕𝑠 + 𝑟 − 1 − 2𝐸𝑍

𝜁

)
𝜁2𝜕2

𝜁 𝑍 + (𝜁 + 𝐸𝑍 )𝜕𝜁
(
𝜁2𝜕2

𝜁 𝑍
)���� ≤ 2 + 𝐶2

3 +
4𝐶3

𝜁

(
|𝜁2𝜕2

𝜁𝑊 | + |𝜁2𝜕2
𝜁 𝑍 |
)
.

Defining

Ξ
(𝑊 )

= Υ
2
𝑊 · (𝑊 ◦ Υ𝑊 ) and Ξ

(𝑍 )
= Υ

2
𝑍 · (𝑍 ◦ Υ𝑍 ), (8.56)

using (8.45) and recalling that 𝜁,Υ𝑊 ,Υ𝑍 > 𝐶 ′1 = 𝛿
−1/2
0 is sufficiently large, we have

���𝜕𝑠Ξ(𝑊 ) + (𝑟 − 1) Ξ(𝑊 )
��� ≤ 2 + 𝐶2

3 +
𝑟 − 1

10Υ1/2
𝑊

(���Ξ(𝑊 ) ��� + Υ2
𝑊

Υ2
𝑍

���Ξ(𝑍 ) ◦ (Υ−1
𝑍 ◦ Υ𝑊 )

���
)

≤ 2 + 𝐶2
3 +

𝑟 − 1

10

(���Ξ(𝑊 ) ��� + ���Ξ(𝑍 ) ◦ (Υ−1
𝑍 ◦ Υ𝑊 )

���) ,
���𝜕𝑠Ξ(𝑍 ) + (𝑟 − 1) Ξ(𝑍 )

��� ≤ 2 + 𝐶2
3 +

𝑟 − 1

10Υ1/2
𝑍

(���Ξ(𝑍 ) ��� + Υ2
𝑍

Υ2
𝑊

���Ξ(𝑊 ) ◦ (Υ−1
𝑊 ◦ Υ𝑍 )

���
)

≤ 2 + 𝐶2
3 +

𝑟 − 1

10

(���Ξ(𝑍 ) ��� + ���Ξ(𝑊 ) ◦ (Υ−1
𝑊 ◦ Υ𝑍 )

���) ,

(8.57)

where in the second and fourth lines, we used (8.48). We can pick a constant 𝐶4 sufficiently large so that

���Ξ(𝑊 ) ( ,𝑠)��� = ��� ,𝜁2𝜕2
𝜁

(
,𝑈 ( ,𝜁, ,𝑠) +𝑈 ( ,𝜁, ,𝑠) + ,𝑆( ,𝜁, ,𝑠) + 𝑆( ,𝜁, ,𝑠)

)��� ≤ 𝐶4,���Ξ(𝑍 ) ( ,𝑠)��� = ��� ,𝜁2𝜕2
𝜁

(
,𝑈 ( ,𝜁, ,𝑠) +𝑈 ( ,𝜁, ,𝑠) − ,𝑆( ,𝜁, ,𝑠) − 𝑆( ,𝜁, ,𝑠)

)��� ≤ 𝐶4.
(8.58)

This is clear if ,𝜁 = 𝐶 ′1 (as 𝐶4 can depend on 𝐶1) and follows from equation (8.7) for ,𝑠 = 𝑠.
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Finally, taking 𝐶5 = 𝐶4 + 2
𝑟−1 (2 + 𝐶2

3 ), we conclude that Ξ(𝑊 ) ,Ξ(𝑍 ) ≤ 𝐶5. This follows from (8.58)
for 𝑠 = 𝑠, and the inequality cannot break for 𝑠 > 𝑠 due to equation (8.57). Therefore,

|𝜕2
𝜁𝑊 ◦ Υ𝑊 | ≤

𝐶5

Υ2
𝑊

and |𝜕2
𝜁 𝑍 ◦ Υ𝑍 | ≤

𝐶5

Υ2
𝑍

,

which yields

|𝜕2
𝜁𝑊 | ≤

𝐶5

𝜁2
and |𝜕2

𝜁 𝑍 | ≤
𝐶5

𝜁2
. (8.59)

Finally, as any Cartesian second derivative of a radial function is a linear combination of 𝜕2
𝜁
,
𝜕𝜁
𝜁

and 1
𝜁 2 ,

we conclude (8.39) from (8.45), (8.52) and (8.59). �

Corollary 8.10. There exists some absolute constant 𝐶̄ such that

‖∇2U ‖𝐿2 + ‖∇2S ‖𝐿2 ≤ 𝐶̄. (8.60)

Moreover,

‖∇ 𝑗U ‖𝐿2 + ‖∇ 𝑗S ‖𝐿2 �𝐾 𝐸̄
𝑗−2

2𝐾−2 . (8.61)

Proof. Let 𝐶,𝐶1 be the constants from the statement of Lemma 8.9. Let 𝐶2 = max{𝐶1, 1}. Using
Lemma 8.9, we have

‖∇2U ‖2
𝐿2 (𝐵 (0,𝐶2)𝑐) ≤ 𝐶2

∫
𝐵 (0,𝐶2)𝑐

𝑑𝜁

𝜁4
= 4𝜋𝐶2

∫ ∞

𝐶2

𝜁−2𝑑𝜁 = 4𝜋𝐶2 1

𝐶2
≤ 4𝜋𝐶2. (8.62)

On the ball 𝐵(0, 𝐶2), we have

‖∇2U ‖2
𝐿2 (𝐵 (0,𝐶2)) ≤ 𝐶3

2 ‖∇2U ‖2𝐿∞ ≤ 𝐶3
2

(
‖ ,𝑈‖𝑊 2,∞ + ‖∇2𝑈‖𝐿∞

)

≤ 𝐶3
2

(
‖ ,𝑈‖𝑊 2,∞ + ‖𝑈‖

2𝐾−4
2𝐾−2
𝐿∞ ‖∇2𝐾−2𝑈‖

2
2𝐾−2
𝐿∞

)

� 1 + 𝛿
2𝐾−4
2𝐾−2
0

(
𝐸̄ 𝜁

1/2
0

) 2
2𝐾−2
� 1, (8.63)

where in the third inequality, we used (8.9), (8.22) and Lemma A.39. Combining (8.62) and (8.63) and
taking 𝐶̄ sufficiently large, we obtain equation (8.60) for ∇2U . The result for ∇2S is obtained in an
analogous way.

Then, estimate (8.61) just follows from 𝐿2-interpolation. For U , we have

‖∇ 𝑗U ‖𝐿2 � ‖∇2U ‖
2𝐾− 𝑗
2𝐾−2

𝐿2 ‖∇2𝐾U ‖
𝑗−2

2𝐾−2

𝐿2 .

Then the required estimate on U follows by (8.60) and noting that

‖∇2𝐾U ‖𝐿2 � ‖Δ𝐾U ‖𝐿2 ≤ 𝐸̄ .

An analogous estimate holds for S . �

Lemma 8.11. We have that--F𝑒,dis

--
𝐿∞ ,
--F𝑡 ,dis

--
𝑋
≤ 𝛿1𝑒

−𝛿dis𝑠/2,
--F𝑒,nl

--
𝐿∞ ,
--F𝑡 ,nl

--
𝑋
� 𝛿1. (8.64)
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Proof. Writing the expression for Fdis from (7.2) in (𝑈, 𝑆) coordinates, we have that

|F𝑒,dis | �
����𝑒−𝛿dis𝑠

ΔU

S1/𝛼

���� � 𝑒−𝛿dis𝑠/2𝑒−𝛿dis𝑠0/2 |ΔU |
S1/𝛼 . (8.65)

Lemma 8.5 and Lemma 8.6 give us

|ΔU |
S1/𝛼 �𝛿1

𝜁 (𝑟−1)/𝛼

𝜙
�𝛿1 1, (8.66)

using the definition of 𝜙 and the inequality 𝑟∗−1
𝛼

< 2 from Lemma A.6. Combining (8.65) and (8.66),
and using that 𝑠0 is large enough (depending on 𝛿0, 𝛿1), we obtain the bound for F𝑒,dis.

Using the embedding 𝐿∞ (𝐵(0, 2)) → 𝐿2 (𝐵(0, 2)), we get

‖F𝑡 ,dis‖2𝑋 = ‖𝜒2F𝑒,dis‖2𝑋 = ‖𝜒2F𝑒,dis‖2𝐿2 + ‖Δ𝑚 (𝜒1F𝑒,dis)‖2𝐿2 �
--F𝑒,dis

--2
𝐿∞ + ‖Δ

𝑚F𝑡 ,dis‖2𝐿2 . (8.67)

Note for 𝜁 < 6
5 , we have that S (𝜁) > ,𝑆(𝜁) − 𝛿1 � 1, so 1

S
� 1. Therefore,

𝑒−𝛿dis𝑠

����Δ𝑚

(
ΔU

S1/𝛼

)���� �𝛿1 𝑒−𝛿dis𝑠

������
∑

𝑖+ 𝑗=2𝑚

|∇𝑖+2U |
����∇ 𝑗

(
1

S1/𝛼

)����
������

�𝛿1 𝑒−𝛿dis𝑠

������
∑

𝑖+ 𝑗=2𝑚

|∇𝑖+2U |
∑

𝑗1+...+ 𝑗ℓ= 𝑗
|∇ 𝑗1S | . . . |∇ 𝑗ℓS |

������
�𝛿1 𝑒−𝛿dis𝑠0/2𝑒−𝛿dis𝑠/2. (8.68)

From (8.68), noting that 𝑠0 is chosen sufficiently large in terms of 𝛿1, we get that

‖Δ𝑚F𝑡 ,dis‖2𝐿2 ≤ 𝑒−𝛿dis𝑠/2𝑒−𝛿dis𝑠0/4
∫
𝐵 (0,2)

1 � 𝛿1𝑒
−𝛿dis𝑠/2. (8.69)

Plugging (8.69) and the first bound of the statement into (8.67), we obtain the second bound of the
statement.

Now, let us show the estimate for ‖F𝑒,nl‖𝐿∞ . Writing Fnl from (7.2) in (𝑈, 𝑆) coordinates, we have
that

F𝑒,nl =

(
Fnl,𝑈 ,Fnl,𝑆

)
=

(
−𝑈𝜕𝜁𝑈 − 𝛼𝑆𝜕𝜁 𝑆,−𝑈𝜕𝜁 𝑆 − 𝛼𝑆div(𝑈)

)
. (8.70)

We know from (8.9) that ‖𝑈‖𝐿∞ , ‖𝑆‖𝐿∞ ≤ 𝛿0 and from Lemma 8.5 that ‖∇2𝐾−2𝑈‖𝐿∞ , ‖∇2𝐾−2𝑆‖𝐿∞ � 𝐸̄ .
Using 𝐿∞-interpolation between both bounds, we obtain

‖𝑈‖𝑊 ℓ,∞ + ‖𝑆‖𝑊 ℓ,∞ � 𝛿
2𝐾−2−ℓ

2𝐾−2
0 𝐸̄

ℓ
2𝐾−2 (8.71)

for 0 ≤ ℓ ≤ 2𝐾 − 2. Applying (8.71) to (8.70), we obtain

‖Fnl,𝑈 ‖𝐿∞ + ‖Fnl,𝑆 ‖𝐿∞ � 𝛿2
0

(
𝐸̄

𝛿0

)1/(2𝐾−2)
� 𝛿1, (8.72)

where the last inequality is due to the fact that 𝛿3/2
0 � 𝛿1.
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For the last inequality of (8.64), using that 𝐻2𝑚 is an algebra, from (8.71). we get that

‖Δ𝑚 (𝜒2Fnl,𝑈 )‖𝐿2 + ‖Δ𝑚 (𝜒2Fnl,𝑆)‖𝐿2 � ‖Fnl,𝑈 ‖𝑋 + ‖Fnl,𝑆 ‖𝑋

�𝑚

(
‖𝑈‖𝑊 2𝑚,∞ + ‖𝑆‖𝑊 2𝑚,∞

) (
‖𝑈‖𝑊 2𝑚+1,∞ + ‖𝑆‖𝑊 2𝑚+1,∞

)
� 𝛿

(2𝐾−2−2𝑚)/(2𝐾−2)
0 𝐸̄2𝑚/(2𝐾−2)𝛿 (2𝐾−3−2𝑚)/(2𝐾−2)

0 𝐸̄ (2𝑚+1)/(2𝐾−2)

= 𝛿2
0

(
𝐸̄

𝛿0

) (4𝑚+1)/(2𝐾−2)
� 𝛿1, (8.73)

where in the last inequality, we used 𝑚 � 𝐾 , 𝛿3/2
0 � 𝛿1 and 𝐸̄ � 1

𝛿0
.

Equation (8.72) and the embedding 𝐿∞ (𝐵(0, 2)) → 𝐿2 (𝐵(0, 2)) yield

‖𝜒2Fnl,𝑈 ‖𝐿2 + ‖𝜒2Fnl,𝑆 ‖𝐿2 � 𝛿
9/5
0 𝐸̄1/5 � 𝛿1, (8.74)

where we used 𝛿
3/2
0 � 𝛿1 and 𝛿0 � 1

𝐸̄
. Combining (8.73) with (8.74), we conclude our bound for

F𝑡 ,nl. �

8.1.2. Proof of the bootstrap estimate (8.15)

Our strategy will be the following. First, we will show that we have 𝐿∞ estimates in a compact region
𝜁 < 6

5 . As the extended and truncated solutions agree on that region (Lemma 8.1), we can do that for
the truncated equation, for which we have very precise information about its linearized operator (due to
Section 7). Then, we will propagate those 𝐿∞ estimates for the extended equation to the region 𝜁 > 6

5
using trajectory estimates.

Lemma 8.12. Under the bootstrap assumptions (8.9), we get the stronger bound

‖𝑈‖𝐿∞ (𝐵 (0,6/5)) + ‖𝑆‖𝐿∞ (𝐵 (0,6/5)) � 𝛿1/𝛿𝑔 . (8.75)

Proof. By Lemma 8.1, the truncated solution and the extended solution agree on 𝐵
(
0, 6

5

)
. Then,

‖𝑈𝑒‖𝐿∞ (𝐵 (0,6/5)) = ‖𝑈𝑡 ‖𝐿∞ (𝐵 (0,6/5)) � ‖𝑈𝑡 ‖𝐻 2𝑚 (𝐵 (0,6/5)) � ‖𝑈𝑡 ‖ �𝐻 2𝑚 (𝐵 (0,6/5)) ≤
∫
𝐵 (0,2)

(
Δ
𝑚𝑈𝑡

)2
,

(8.76)

where we used that the 𝐻2𝑚(𝐵(0, 2)) norm is equivalent to the �𝐻2𝑚(𝐵(0, 2)) norm since 𝑈𝑡 vanishes
at the boundary. An analogous calculation shows the same bound for 𝑆𝑒. Now, we claim

‖(𝑈𝑡 , 𝑆𝑡 )‖𝑋 ≤
(
2 + 4

𝛿𝑔

)
𝛿1. (8.77)

It is clear that (8.75) follows directly from (8.76) and (8.77), so it remains to show (8.77).
Clearly, (8.77) is true at 𝑠 = 𝑠0 by our assumptions on the initial conditions (8.6). Let us recall that

by (8.8), the unstable part 𝑃uns (𝑈, 𝑆) = (1 − 𝑃sta) (𝑈, 𝑆) will have X norm at most 𝛿1, so in order to
show (8.77), we just need to ensure that ‖𝑃sta (𝑢̃, 𝜎̃)‖𝑋 ≤ 𝛿1 (1 + 4/𝛿𝑔).

Let us recall that the truncated problem (7.7) reads

𝜕𝑠 (𝑈𝑡 , 𝑆𝑡 ) + L(𝑈𝑡 , 𝑆𝑡 ) = F𝑡 ,dis + F𝑡 ,nl,

where the forcings F𝑡 ,dis,F𝑡 ,nl are calculated via solving the extended equation.
Projecting the previous equation and using that L is invariant on 𝑉∗⊥, we get

𝜕𝑠𝑃sta (𝑈𝑡 , 𝑆𝑡 ) + L𝑃sta (𝑈𝑡 , 𝑆𝑡 ) = 𝑃staF𝑡 ,dis + 𝑃staF𝑡 ,nl. (8.78)
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By Duhamel, the solution to the linear equation (8.78) is given by

𝑃sta (𝑈𝑡 (𝑠), 𝑆𝑡 (𝑆)) = 𝑇 (𝑠)𝑃sta(𝑈𝑡 ,0, 𝑆𝑡 ,0) +
∫ 𝑠

𝑠0

𝑇 (𝑠 − 𝑠) (𝑃staF𝑡 ,dis (𝑠) + 𝑃staF𝑡 ,nl(𝑠))𝑑𝑠,

where we recall that 𝑇 (𝑠) is the contraction semigroup generated by L. Recall also that
‖(𝑈𝑡 ,0, 𝑆𝑡 ,0)‖𝑋 ≤ 𝛿1 due to the hypothesis of Proposition 8.2 and that the semigroup has an expo-
nential decay in the stable space from (7.50). Using those two observations together with Lemma 8.11,
we estimate ---𝑃sta (𝑈𝑡 (𝑠), 𝑆𝑡 (𝑠))

---
𝑋
≤ 𝛿1 +

∫ 𝑠

𝑠0

2𝛿1𝑒
−( 𝑠̃−𝑠0) 𝛿𝑔/2𝑑𝑠̃ ≤

(
1 + 4

𝛿𝑔

)
𝛿1,

and we are done. �

Now as 𝛿1/𝛿𝑔 � 𝛿0, it is clear that we get (8.15) in the region 𝜁 < 6
5 . The objective is to extend

the estimate from Lemma 8.12 to the whole space. We will chose some parameter 𝜁1 and divide the
argument in two different regions, the region 6/5 ≤ 𝜁 ≤ 𝜁1 and the region 𝜁 > 𝜁1. The strategy is
similar for both regions, since it will be based on trajectory estimates. The fundamental difference is that
in the region 6/5 ≤ 𝜁 ≤ 𝜁1, the profiles are not small, and we will not be able to extract decay for the
perturbation along the trajectories. However, one can bound the amount of time the trajectory stays in
this region by a constant, and therefore, the profiles will only grow by a constant factor between 𝜁 = 6/5
and 𝜁 = 𝜁1. In contrast, the profiles will be small for 𝜁 > 𝜁1, and one can show that the damping part of
the linearized operator dominates in this regime. This will give exponential decay for the perturbations
in the region 𝜁 ≥ 𝜁1.

Let us recall the equation for 𝑊 , which reads

(𝜕𝑠 + 𝑟 − 1 + 𝛼

𝜁
,𝑊 + 1 + 𝛼

2
𝜕𝜁 ,𝑊)𝑊 +

(
𝜁 + 1 + 𝛼

2
,𝑊 + 1 − 𝛼

2
,𝑍
)
𝜕𝜁𝑊 +

(
1 − 𝛼

2
𝜕𝜁 ,𝑊 −

𝛼 ,𝑍
𝜁

)
𝑍

= Fdis + Fnl,𝑊 .

(8.79)

Let us define

𝐽 (𝜁) = 𝛼

𝜁
| ,𝑊 | + 1 + 𝛼

2
|𝜕𝜁 ,𝑊 | +

𝛼

𝜁
| ,𝑍 | + 1 + 𝛼

2
|𝜕𝜁 ,𝑍 |. (8.80)

Let us define the trajectories ,Υ(𝜁★,𝑠★)
𝑊

and ,Υ(𝜁★,𝑠★)
𝑍

solving the following ODEs:

𝜕𝑠 ,Υ(𝜁★,𝑠★)𝑊
(𝑠) =
(
,Υ(𝜁★,𝑠★)
𝑊

(𝑠) + 1 + 𝛼

2
,𝑊 ( ,Υ(𝜁★,𝑠★)

𝑊
(𝑠)) + 1 − 𝛼

2
,𝑍 ( ,Υ(𝜁★,𝑠★)

𝑊
(𝑠))
)
, (8.81)

𝜕𝑠 ,Υ(𝜁★,𝑠★)𝑍
(𝑠) =
(
,Υ(𝜁★,𝑠★)
𝑍

(𝑠) + 1 − 𝛼

2
,𝑊 ( ,Υ(𝜁★,𝑠★)

𝑍
(𝑠)) + 1 + 𝛼

2
,𝑍 ( ,Υ(𝜁★,𝑠★)

𝑍
(𝑠))
)
, (8.82)

and starting at the point ,Υ(𝜁★,𝑠★)
𝑊

(𝑠★) = ,Υ(𝜁★,𝑠★)
𝑍

(𝑠★) = 𝜁★. To ease the notation, we usually omit
superindex (𝜁★, 𝑠★).

Using (8.80)–(8.82), from (8.79), we obtain���(𝜕𝑠 + 𝑟 − 1)𝑊 ( ,Υ𝑊 (𝑠))
��� ≤ 2𝛿1 + 𝐽 ( ,Υ𝑊 (𝑠))

(
|𝑊 ( ,Υ𝑊 (𝑠)) | + |𝑍 ( ,Υ𝑊 (𝑠)) |

)
, (8.83)

where we have also used Lemma 8.11 to bound the forcings. In an analogous way, we obtain���(𝜕𝑠 + 𝑟 − 1)𝑍 ( ,Υ𝑍 (𝑠))
��� ≤ 2𝛿1 + 𝐽 ( ,Υ𝑍 (𝑠))

(
|𝑊 ( ,Υ𝑍 (𝑠)) | + |𝑍 ( ,Υ𝑍 (𝑠)) |

)
. (8.84)
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Let us also note that there exists some large enough constant 𝐶1 such that for any (𝜁★, 𝑠★) such that
either 𝜁★ = 6

5 or 𝑠★ = 𝑠0, we have

|𝑊 (𝜁★, 𝑠★) |, |𝑍 (𝜁★, 𝑠★) | ≤ 𝐶1
𝛿1

𝛿𝑔
. (8.85)

This follows from (8.6) for 𝑠★ = 𝑠0 and from Lemma 8.12 for 𝜁★ = 6
5 . We will always assume that our

trajectories start at a point (𝜁★, 𝑠★) that is either in
[

6
5 ,∞
)
× {𝑠0} or in

{
6
5

}
× [𝑠0, 𝑠1], so the above

condition will always be satisfied.

Observe also that for 𝜁 > 6
5 , the right-hand sides of (8.81) and (8.82) are larger than

,Υ𝑊
𝐶0

and
,Υ𝑍
𝐶0

,

respectively, for some absolute constant 𝐶0, due to Lemma A.33. Therefore, as 𝜁★ ≥ 6
5 , we obtain that

𝜕𝑠 ,Υ◦(𝑠) ≥
,Υ◦(𝑠)
𝐶0

, ,Υ(𝜁★,𝑠★)◦ (𝑠) ≥ ,𝜁★𝑒 (𝑠−𝑠★)/𝐶0 , (8.86)

where ◦ ∈ {𝑊, 𝑍}, and in the second inequality, we are integrating the first inequality one from 𝑠★ to s.

Now, we estimate 𝑊, 𝑍 in the region (𝜁, 𝑠) ∈
[

6
5 ,∞
)
× [𝑠0, 𝑠1]. As the profiles decay (Lemma A.39),

there exists some 𝜁1 such that 𝐽 (𝜁) < 𝑟−1
4 for 𝜁 > 𝜁1. We treat different the cases where 6

5 < 𝜁 < 𝜁1 and
𝜁 > 𝜁1.

Case 6
5 < 𝜁 < 𝜁1. Let us fix a large enough constant 𝐶2 so that 𝐽 (𝜁) + (𝑟 − 1) < 𝐶2 for 𝜁 ∈

[
6
5 , 𝜁1
]
.

Then, from (8.83)–(8.84), we have���𝜕𝑠𝑊 ( ,Υ𝑊 (𝑠), 𝑠)
��� ≤ 2𝛿1 + 𝐶2

(���𝑊 ( ,Υ𝑊 (𝑠), 𝑠)
��� + ���𝑍 ( ,Υ𝑊 (𝑠), 𝑠)

���) ,���𝜕𝑠𝑍 ( ,Υ𝑍 (𝑠), 𝑠)
��� ≤ 2𝛿1 + 𝐶2

(���𝑊 ( ,Υ𝑍 (𝑠), 𝑠)
��� + ���𝑍 ( ,Υ𝑍 (𝑠), 𝑠)

���) . (8.87)

Now, we claim that

|𝑊 (𝜁, 𝑠) |, |𝑍 (𝜁, 𝑠) | < 𝐶1𝛿1

𝛿𝑔
𝑒𝐶3𝜁 (8.88)

for some constant 𝐶3 sufficiently large. It is clear that this holds whenever 𝜁 = 6
5 or ,𝑠 = 𝑠0 due to (8.85).

Let us show (8.88) by contradiction. Let 𝑠𝑏 the first time at which (8.88) fails. Assume that it fails at
𝜁 = 𝜁𝑏 and, without loss of generality, assume that

𝑊 (𝜁𝑏 , 𝑠𝑏) =
𝐶1𝛿1

𝛿𝑔
𝑒𝐶3𝜁𝑏 and |𝑍 (𝜁𝑏 , 𝑠𝑏) | ≤

𝐶1𝛿1

𝛿𝑔
𝑒𝐶3𝜁𝑏 (8.89)

because the case where 𝑊 (𝜁𝑏 , 𝑠𝑏) is negative or the case where the bound fails for 𝑍 are analogous.
As (𝜁𝑏 , 𝑠𝑏) ∈

[
6
5 , 𝜁1
]
× [𝑠0, 𝑠1], and the field of the ODE of ,Υ𝑊 is positive (see (8.86)), there is a

unique starting point (𝜁★, 𝑠★) ∈
[

6
5 , 𝜁1
]
× {𝑠0} ∪

{
6
5

}
× [𝑠0, 𝑠1] such that the trajectory

(
,Υ(𝜁★,𝑠★)
𝑊

(𝑠), 𝑠
)

passes through (𝜁𝑏 , 𝑠𝑏). That is, Υ(𝜁★,𝑠★) (𝑠𝑏) = 𝜁𝑏 . Let us fix that pair (𝜁★, 𝑠★).
As equation (8.88) ceases to hold along (Υ𝑊 (𝑠), 𝑠) at time 𝑠𝑏 , the derivative of the left-hand side is

greater than the derivative of the right-hand side, yielding

𝜕𝑠𝑊 ( ,Υ𝑊 (𝑠𝑏), 𝑠𝑏) ≥
𝐶1𝛿1

𝛿𝑔
𝑒𝐶3 ,Υ𝑊 (𝑠𝑏)𝐶3𝜕𝑠 ,Υ𝑊 (𝑠𝑏)

≥ 𝐶1𝐶3𝛿1

𝛿𝑔
𝑒𝐶3 ,Υ𝑊 (𝑠𝑏)

,Υ𝑊 (𝑠𝑏)
𝐶0

=
𝐶1𝐶3𝛿1

𝛿𝑔
𝑒𝐶3𝜁𝑏

𝜁𝑏

𝐶0
, (8.90)

where in the second inequality, we used (8.85).
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However, plugging (8.89) into (8.87) at time 𝑠𝑏 , we get

𝜕𝑠𝑊 ( ,Υ𝑊 (𝑠), 𝑠)
���
𝑠=𝑠𝑏

≤ 2𝛿1 + 𝐶2
2𝐶1𝛿1

𝛿𝑔
𝑒𝐶3𝜁𝑏 ≤ 4𝐶2𝐶1

𝛿1

𝛿𝑔
𝑒𝐶3𝜁𝑏 , (8.91)

where in the last inequality, we used 𝛿𝑔 ≤ 1 and 𝐶1, 𝐶2 > 1 (they are constants large enough; we can
enlarge them if needed).

Comparing (8.90) with (8.91), we get a contradiction as long as 𝐶3
𝜁𝑏
𝐶0

> 4𝐶2, which can be easily

enforced by taking 𝐶3 =
4𝐶0𝐶2

6/5 because 𝜁𝑏 > 6
5 . Therefore, we conclude that (8.88) holds, which gives

a uniform bound

|𝑊 (𝜁, 𝑠) |, |𝑍 (𝜁, 𝑠) | ≤ 𝐶1𝛿1

𝛿𝑔
𝑒𝐶3𝜁1 ≤ 𝐶4

𝛿𝑔
𝛿1 (8.92)

for the region 6
5 ≤ 𝜁 ≤ 𝜁1 and some large constant 𝐶4. As 𝐶4

𝛿𝑔
𝛿1 � 𝛿0, note that we now have (8.15) in

the region 𝜁 ≤ 𝜁1. Finally, let us treat the region 𝜁 > 𝜁1.
Case 𝜁 > 𝜁1. First of all, note that the previous case yields that

|𝑊 (𝜁1, 𝑠) |, |𝑍 (𝜁1, 𝑠) | ≤ 𝐶4
𝛿1

𝛿𝑔
(8.93)

for all 𝑠 ∈ [𝑠0, 𝑠1]. Let us recall that 𝜁1 was defined so that |𝐽 (𝜁) | ≤ 𝑟−1
4 in this region 𝜁 > 𝜁1. Therefore,

from (8.83) and (8.84), we have

���(𝜕𝑠 + 𝑟 − 1)𝑊 ( ,Υ𝑊 (𝑠), 𝑠)
��� ≤ 2𝛿1 +

𝑟 − 1

4

(
‖𝑊 (·, 𝑠)‖𝐿∞ [𝜁1 ,∞) + ‖𝑍 (·, 𝑠)‖𝐿∞ [𝜁1 ,∞)

)
,���(𝜕𝑠 + 𝑟 − 1)𝑍 ( ,Υ𝑍 (𝑠), 𝑠)

��� ≤ 2𝛿1 +
𝑟 − 1

4

(
‖𝑊 (·, 𝑠)‖𝐿∞ [𝜁1 ,∞) + ‖𝑍 (·, 𝑠)‖𝐿∞ [𝜁1 ,∞)

)
.

(8.94)

We claim that

|𝑊 (𝜁, 𝑠) |, |𝑍 (𝜁, 𝑠 | < 2𝐶4
𝛿1

𝛿𝑔
(8.95)

for all 𝜁 ≥ 𝜁1 and 𝑠 ∈ [𝑠0, 𝑠1]. This clearly holds at 𝜁 = 𝜁1 or 𝑠 = 𝑠0 due to (8.6) and (8.93). Let 𝑠𝑏
be the first time at which equation (8.95) breaks down, and suppose that happens at 𝜁𝑏 . Without loss
of generality, assume that 𝑊 (𝜁𝑏 , 𝑠𝑏) = 2𝐶4

𝛿1
𝛿𝑔

. Let us consider the trajectory passing through (𝜁𝑏 , 𝑠𝑏).
Then, from (8.94), we have

0 ≤ 𝜕𝑠𝑊 ( ,Υ𝑊 (𝑠), 𝑠)
���
𝑠=𝑠𝑏

≤ −(𝑟 − 1)
(
2𝐶4

𝛿1

𝛿𝑔

)
+ 2𝛿1 +

(𝑟 − 1)
4

(
‖𝑊 (·, 𝑠)‖𝐿∞ [𝜁1 ,∞) + ‖𝑍 (·, 𝑠)‖𝐿∞ [𝜁1 ,∞)

)

≤ −(𝑟 − 1)
(
2𝐶4

𝛿1

𝛿𝑔

)
+ 2𝛿1 + (𝑟 − 1)

(
𝐶4

𝛿1

𝛿𝑔

)

≤ −𝑟 − 1

2
𝐶4

𝛿1

𝛿𝑔
.

In the third inequality, we used that (8.95) is still true at 𝑠 = 𝑠𝑏 with a non-strict inequality by continuity.
Thus, we get a contradiction, and this shows that such (𝜁𝑏 , 𝑠𝑏) cannot exist, so (8.95) holds for any
𝜁 ≥ 𝜁1 and 𝑠 ≥ 𝑠0.

Combining equation (8.95) with Lemma 8.12 and equation (8.92), and using that 𝛿1
𝛿𝑔
� 𝛿0, we

conclude equation (8.15).
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8.1.3. Proof of bootstrap estimate (8.16)

As in the previous subsections, we work under the assumptions (8.6)–(8.9). In this subsection, we will
show the improved bound (8.16), concluding the proof of Proposition 8.2. We will do so via high-order
weighted energy estimates, which we will do directly on our extended equation.

We divide the proof in three steps. First, we will show that the dominant terms on a high derivative
of a quadratic term are those where all (or all except one) derivatives fall on the same factor. The second
step will be to treat the dominant terms in the energy calculation, using integration by parts in a similar
way as one would do for the classical energy estimates. In our third and final step, we treat the term
coming from the dissipation, which one cannot expect to bound (since it has more derivatives than our
energy). Thus, the strategy is to extract the correct sign for this term.

We take K Laplacians in (7.5). Note that Δ𝐾 (𝑦𝐹) = 𝑦Δ𝐾𝐹 + 2𝐾divΔ𝐾−1𝐹 for any vector field F.
Thus,

Δ
𝐾 (𝑦∇S) = 𝑦 · Δ𝐾∇S + 2𝐾divΔ𝐾−1∇S = 𝑦 · ∇Δ𝐾S + 2𝐾Δ

𝐾S ,

Δ
𝐾 (𝑦∇U𝑖) = 𝑦 · Δ𝐾∇U𝑖 + 2𝐾divΔ𝐾−1∇U𝑖 = 𝑦 · ∇Δ𝐾U𝑖 + 2𝐾Δ

𝐾U𝑖 .
(8.96)

We have also used that Δ∇ 𝑓 = ∇Δ 𝑓 and that Δ 𝑓 = div∇ 𝑓 . Taking K Laplacians in (7.5) and using
(8.96), we obtain

(𝜕𝑠 + 𝑟 − 1 + 2𝐾)Δ𝐾U𝑖 + 𝑦 · ∇Δ𝐾U𝑖 + Δ𝐾 (U · ∇U𝑖) + 𝛼Δ𝐾 (S𝜕𝑖S) =
𝑟1+ 1

𝛼

𝛼1/𝛼 𝑒−𝛿dis𝑠Δ
𝐾 ΔU𝑖

S1/𝛼 ,

(𝜕𝑠 + 𝑟 − 1 + 2𝐾)Δ𝐾S + 𝑦 · ∇Δ𝐾S + 𝛼Δ𝐾 (SdivU ) + Δ𝐾 (U · ∇S) = 0.

(8.97)

Now, we multiply each equation by 𝜙2𝐾Δ𝐾U𝑖 or 𝜙2𝐾Δ𝐾S , respectively, in order to do energy
estimates. First of all, we claim that as a consequence of Lemma A.5,---(Δ𝐾 (U · ∇U𝑖) − U∇Δ𝐾U𝑖 − 2𝐾𝜕𝜁UΔ

𝐾U𝑖

)
𝜙𝐾
---
𝐿2

= 𝑂
(
𝐸̄
)
,---(Δ𝐾 (S∇S) − S∇Δ𝐾S − 2𝐾∇SΔ𝐾S

)
𝜙𝐾
---
𝐿2

= 𝑂
(
𝐸̄
)
,---(Δ𝐾 (U · ∇S) − U · ∇Δ𝐾S − 2𝐾𝜕𝜁U · Δ𝐾S

)
𝜙𝐾
---
𝐿2

= 𝑂
(
𝐸̄
)
,---(Δ𝐾 (Sdiv(U )) − Sdiv(Δ𝐾U ) − 2𝐾∇S · Δ𝐾U

)
𝜙𝐾
---
𝐿2

= 𝑂
(
𝐸̄
)
.

(8.98)

However, to apply Lemma A.5, we need to verify its hypotheses.

Verifying the Hypotheses of Lemma A.5. We start checking Hypothesis (A.25). Let 2 ≤ 𝑗 ≤ 2𝐾 − 1,
𝛽 =

𝑗−2
2𝐾−3 , 𝑝 = 2

𝛽
. We have that

∫
R3

(
|∇ 𝑗U | + |∇ 𝑗S |

)2 (|∇2𝐾+1− 𝑗U | + |∇2𝐾+1− 𝑗S |
)2

≤
(∫
R3

(
|∇ 𝑗U | + |∇ 𝑗S |

)2𝑝)1/𝑝 (∫
R3

(
|∇2𝐾+1− 𝑗U | + |∇2𝐾+1− 𝑗S |

)2𝑝/(𝑝−1) )1−1/𝑝

≤
(
‖∇2U ‖𝐿∞ + ‖∇2S ‖𝐿∞

)2𝛽 (
‖∇2𝐾−1U ‖𝐿2 + ‖∇2𝐾−1S ‖𝐿2

)2(1−𝛽)
·
(
‖∇2U ‖𝐿∞ + ‖∇2S ‖𝐿∞

)2(1−𝛽) (
‖∇2𝐾−1U ‖𝐿2 + ‖∇2𝐾−1S ‖𝐿2

)2𝛽
≤
(
‖∇2𝐾−1U ‖𝐿2 + ‖∇2𝐾−1S ‖𝐿2

)2 (
‖∇2U ‖𝐿∞ + ‖∇2S ‖𝐿∞

)2
,

� 𝐸̄
2𝐾−3
2𝐾−2 (8.99)
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where in the first inequality, we use Hölder and in the second one, we use endpoint Gagliardo-Nirenberg
for each integral. In the last inequality, we are also using (8.61) and |∇2U | + |∇2S | � 1, which follows
from |∇2𝑈 | + |∇2𝑆 | � 1 which itself follows from interpolating |𝑈 |, |𝑆 | ≤ 𝛿0 (equation (8.9)) with (8.22).

Now let B2 = R3 \ 𝐵(0, 𝜁0). Now, we let 𝛽′ = 𝑗−1
2𝐾−1 and 𝑞 = 2

𝛽′ . We have that

∫
B2

(
|∇ 𝑗U | + |∇ 𝑗S |

)2 (|∇2𝐾+1− 𝑗U | + |∇2𝐾+1− 𝑗S |
)2

𝜙2𝐾

≤
(∫

B2

(
|∇ 𝑗U | + |∇ 𝑗S |

)2𝑞
𝜙2𝐾𝛽′𝑞

)1/𝑞 (∫
B2

(
|∇2𝐾+1− 𝑗U | + |∇2𝐾+1− 𝑗S |

)2𝑞/(𝑞−1)
𝜙2𝑞𝐾 (1−𝛽′)/(𝑞−1)

)1−1/𝑞

�

[ (
‖∇U ‖𝐿∞ (B2) | + ‖∇S ‖𝐿∞ (B2)

)2𝛽′ (‖𝜙2𝐾∇2𝐾U ‖𝐿2 + ‖∇2𝐾S ‖𝐿2

)2(1−𝛽′)
+
(
‖∇U ‖𝐿∞ (B2) + ‖∇S ‖𝐿∞ (B2)

)2]

·
[ (
‖∇U ‖𝐿∞ (B2) + ‖∇S ‖𝐿∞ (B2)

)2(1−𝛽′) (‖∇2𝐾U𝜙2𝐾 ‖𝐿2 + ‖∇2𝐾S𝜙2𝐾 ‖𝐿2

)2𝛽′

+
(
‖∇U ‖𝐿∞ (B2) + ‖∇S ‖𝐿∞ (B2)

)2]
�

[
𝛿

2𝛽′

0 𝐸̄1−𝛽′ + 𝛿0

]
·
[
𝛿

2(1−𝛽′)
0 𝐸̄𝛽′ + 𝛿0

]
� 𝛿0𝐸̄ . (8.100)

In the first inequality, we used Hölder. In the second inequality, we used Gagliardo-Nirenberg
(Lemma A.2). In the third inequality, we used that ‖∇2𝐾U ‖𝐿2 � ‖Δ𝐾U ‖𝐿2 (and the same for S), and

‖∇U ‖𝐿∞ (B2) + ‖∇S ‖𝐿∞ (B2) ≤ ‖∇𝑈‖𝐿∞ (B2) + ‖∇𝑆‖𝐿∞ (B2) + ‖ ,𝑈‖𝐿∞ (B2) + ‖ ,𝑆‖𝐿∞ (B2) � 𝛿0.

Combining (8.99) with (8.100), we see that Hypothesis (A.25) is satisfied.
Now, let us check Hypothesis (A.26). The first part trivially holds due to our bootstrap hypothesis

(8.9). For the second part, note that Corollary 8.10 yields

‖∇2𝐾−1U ‖𝐿2 ≤ 𝐸̄
1

𝐸̄1/(2𝐾−3) , (8.101)

so we just need to treat the region 𝜁 > 𝜁0. Let B2 = R3 \ 𝐵(0, 𝜁0). Using Lemma A.3, we have that

‖𝜙𝐾−1/2𝜁−2/(2𝐾 )∇2𝐾−1U ‖𝐿2 (B1) ≤ ‖𝜙
𝐾∇2𝐾U ‖

2𝐾−1
2𝐾

𝐿2 (B1)
‖𝜁−2U , ‖

1
2𝐾

𝐿2 (B1)
� 𝐸̄1−1/(2𝐾 ) , (8.102)

where we have used that ‖U ‖𝐿∞ , ‖𝜁−2‖𝐿2 (B1) � 1. Now, note that 𝜙1/4𝜁 1/𝐾

〈𝜁 〉1/2 ≤ 1 because 𝜙1/2 ≤ 𝜁1−𝜂𝑤

and 1
𝐾
� 𝜂𝑤 . Therefore, multiplying the weight in (8.102) by 𝜙1/4𝜁 1/𝐾

〈𝜁 〉1/2 , we obtain

----𝜙𝐾∇2𝐾−1U
1

𝜙1/4〈𝜁〉1/2

----
𝐿2 (B1)

� 𝐸̄1−1/(2𝐾 ) . (8.103)

Combining (8.101) with (8.103), we conclude Hypothesis (A.26) holds forU . The case ofS is completely
analogous.

Finally, let us check Hypothesis (A.27). The second part follows directly from (8.38) in Lemma 8.9.
For the first part, note that
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‖U ‖𝑊 3,∞ ≤ ‖ ,𝑈‖𝑊 3,∞ + ‖𝑈‖𝑊 3,∞

� 1 +𝑂𝐾 (1)‖𝑈‖ (2𝐾−5)/(2𝐾−2)
𝐿∞

(
‖𝑈‖3/(2𝐾−2)

𝐿∞ + ‖∇2𝐾−2𝑈‖3/(2𝐾−2)
𝐿∞

)
� 1 + 𝛿

1/2
0

(
𝐸̄ 𝜁

1/2
0

)3/(2𝐾−2)
� 1,

where we have used Lemma A.39, 𝐿∞-interpolation, ‖𝑈‖𝐿∞ ≤ 𝛿0 (from (8.9)) and equation (8.22).
The proof is analogous for S , and this concludes checking all the hypotheses of Lemma A.5.

Main energy calculation. Let us go back to (8.97). Let J denote the dissipative term

J =

∫
𝑟1+ 1

𝛼

𝛼
1
𝛼

𝑒−𝛿dis𝑠Δ
𝐾 ΔU

S1/𝛼Δ
𝐾U𝜙2𝐾 .

Then, using (8.98), we obtain that

𝜕𝑠

2

(
𝐸2

2𝐾

)
= −(2𝐾 + 𝑟 − 1)𝐸2

2𝐾 +
1

2

∫
div(𝑦𝜙2𝐾 )

(
(Δ𝐾U𝑖)2 + (Δ𝐾S)2

)

−
3∑
𝑖=1

∫
U · ∇Δ𝐾U𝑖Δ

𝐾U𝑖𝜙
2𝐾 − 2𝐾

∫
𝜕𝜁U (Δ𝐾U )2𝜙2𝐾

− 𝛼

∫
S∇Δ𝐾S · Δ𝐾U𝜙2𝐾 − 2𝐾𝛼

∫
Δ
𝐾S∇S · Δ𝐾U𝜙2𝐾

−
∫

U · ∇Δ𝐾SΔ𝐾S𝜙2𝐾 − 2𝐾

∫
𝜕𝜁U (Δ𝐾S)2𝜙2𝐾

− 𝛼

∫
Sdiv(Δ𝐾U )Δ𝐾S𝜙2𝐾 − 2𝐾𝛼

∫
∇S · Δ𝐾UΔ𝐾S𝜙2𝐾 + J +𝑂 (𝐸̄2)

= −2𝐾𝐸2
2𝐾 +

1

2

∫
div
(
𝑦𝜙2𝐾 + U𝜙2𝐾

) (
(Δ𝐾U )2 + (Δ𝐾S)2

)

− 2𝐾

∫
𝜕𝜁U
(
(Δ𝐾U )2 + (Δ𝐾S)2

)
𝜙2𝐾

− 𝛼

∫
Sdiv(Δ𝐾S · Δ𝐾U )𝜙2𝐾 − 4𝐾𝛼

∫
Δ
𝐾S∇S · Δ𝐾U𝜙2𝐾 + J +𝑂 (𝐸̄2)

≤ −2𝐾

∫
(1 + 𝜕𝜁U − 𝛼 |∇S |)

(
(Δ𝐾U )2 + (Δ𝐾S)2

)
𝜙2𝐾

+ 1

2

∫
(𝜁 + |U | + 𝛼S) |∇(𝜙2𝐾 ) |

(
(Δ𝐾U )2 + (Δ𝐾S)2

)
+ J +𝑂 (𝐸̄2)

= −2𝐾

∫ (
1 + 𝜕𝜁U − 𝛼 |∇S | − |∇𝜙 |

2𝜙
(𝜁 + |U | + 𝛼𝑆)

) (
(Δ𝐾U )2 + (Δ𝐾S)2

)
𝜙2𝐾 + J +𝑂 (𝐸̄2),

(8.104)

where we have used (8.9). Now, we claim that

(
1 + 𝜕𝜁U − 𝛼 |∇S | − |∇𝜙|

2𝜙
(𝜁 + |U | + 𝛼𝑆)

)
≥ 𝜂 (8.105)

for some positive constant 𝜂. In the region 𝜁 < 𝜁0, we have that ∇𝜙 = 0 and 1 + 𝜕𝜁 ,𝑈 − 𝛼 |∇ ,𝑆 | ≥
𝜂damp > 0 due to Lemma A.36. Therefore, taking 𝛿0 small enough and using that |𝜕𝜁𝑈 |, |∇𝑆 | �
𝛿
(2𝐾−1)/(2𝐾−2)
0 𝐸̄1/(2𝐾−2) (equation (8.71)), we conclude that (8.105) holds for 𝜂 ≤ 1

2𝜂damp and 𝜁 < 𝜁0.
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In the region 𝜁 > 𝜁0, equation (8.105) reduces to show

1 − |∇𝜙|𝜁
2𝜙

> 𝜂

since the remaining terms are 𝑂 (𝛿 (2𝐾−1)/(2𝐾−2)
0 𝐸̄1/(2𝐾−2) ) by (8.71).

Using that |∇𝜙|𝜁 ≤ 2(1−𝜂𝑤 )𝜙, we conclude that taking 𝛿0 small enough (8.105) holds for 𝜂 < 1
2𝜂𝑤 .

Putting everything together, we have that (8.105) holds globally for 𝜂 = 1
2 min{𝜂damp, 𝜂𝑤 }, and

plugging this in (8.104), we conclude

𝜕𝑠

2

(
𝐸2

2𝐾

)
≤ −𝐾𝜂𝐸2

2𝐾 +𝑂 (𝐸̄2) + J . (8.106)

Sign on the dissipative term. We proceed by estimating J by subtracting off the highest-order term.
Letting

G2
=

3∑
𝑖=1

∫ (∇Δ𝐾U𝑖)2
S1/𝛼 𝜙2𝐾 ,

integrating by parts, and using Cauchy-Schwarz, we have that

���� 𝛼1/𝛼

𝑟1+1/𝛼 𝑒𝛿dis𝑠J + G2

���� ≤ G

2𝐾∑
𝑖=2

(
2𝐾 − 1

𝑖 − 2

) (∫
S1/𝛼

𝜙
|𝜕𝑖U |2𝜙𝑖

(
𝜕2𝐾+1−𝑖

(
1

S1/𝛼

))2
𝜙2𝐾+1−𝑖

)1/2

≤ G

(
(2𝐾 − 1)

(∫
|𝜕2𝐾U |2𝜙2𝐾

)1/2 ----S1/𝛼
����∇
(

1

S1/𝛼

)����
----

1/2

𝐿∞

+
2𝐾−1∑
𝑖=2

(
2𝐾 − 1

𝑖 − 2

) (∫
B1

S1/𝛼

𝜙
|𝜕𝑖U |2𝜙𝑖

(
𝜕2𝐾+1−𝑖

(
1

S1/𝛼

))2
𝜙2𝐾+1−𝑖

)1/2

+
2𝐾−1∑
𝑖=2

(
2𝐾 − 1

𝑖 − 2

) (∫
B2

S1/𝛼

𝜙
|𝜕𝑖U |2𝜙𝑖

(
𝜕2𝐾+1−𝑖

(
1

S1/𝛼

))2
𝜙2𝐾+1−𝑖

)1/2 )

= G (Q1 +Q2 +Q3), (8.107)

where we have divided the integrals in the regions B1 = 𝐵(0, 𝜁0) and B2 = R3 \ B1. Using Lemma 8.8,
we have that

Q1 �𝐾,𝐸̄, 𝛿0 ,𝜁0
𝐾𝐸̄1/2

---S1/𝛼〈𝜁〉2(𝑟−1)/𝛼𝜙(𝜁)−1
---1/2
𝐿∞
�𝐾,𝐸̄, 𝛿0 ,𝜁0

1, (8.108)

where in the last equality, we have used Lemma A.6 and S 〈𝜁〉 (𝑟−1) � 1 by Lemma 8.6.
In order to bound Q2, we use again Lemma 8.8 and note that 𝜙(𝜁) �𝜁0 ,𝐾 1 in B1. We obtain

Q2 �𝐾,𝐸̄, 𝛿0 ,𝜁0

2𝐾−1∑
𝑖=2

(∫
B1

S1/𝛼 |𝜕𝑖U |2〈𝜁〉2 𝑟−1
𝛼

)1/2

�𝐾,𝐸̄, 𝛿0 ,𝜁0

(∫
B1

1

𝜁1/2

)1/2
�𝐾,𝐸̄ , 𝛿0 ,𝜁0

1, (8.109)

where in the second inequality, we also used (8.20) (for 𝑖 = 2𝐾 − 1) and (8.21) (for 𝑖 ≤ 2𝐾 − 2).
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Lastly, let us bound Q3. Note that in B2, we have (8.20), which yields

|∇𝑖U |𝜙𝑖/2 � 𝐸̄

(
1

𝜁1/2𝜙1/2

) 𝑖
2𝐾−1

.

Plugging this into Q3 and using Lemma 8.8, we obtain

Q3 �𝐾,𝐸̄, 𝛿0

2𝐾∑
𝑖=2

(∫
S1/𝛼

𝜙

(
1

𝜁𝜙(𝜁)

) 𝑖
2𝐾−1

〈𝜁〉
2(𝑟−1)
𝛼

(
〈𝜁〉2𝑟−1𝜙−2

) 2𝐾+1−𝑖
2𝐾−2

)1/2
.

Noting that 1 �𝛿0 ,𝜁0 〈𝜁〉2𝑟𝜙(𝜁)−1, and using Lemma 8.6, we get

Q3 �𝐾,𝐸̄, 𝛿0 ,𝜁0

2𝐾∑
𝑖=2

(∫ 〈𝜁〉−(𝑟−1)/𝛼

𝜙
〈𝜁〉

2(𝑟−1)
𝛼 〈𝜁〉2𝑟−1𝜙−2

)1/2

=

2𝐾∑
𝑖=2

(∫
1

𝜙3
〈𝜁〉 (𝑟−1) (2+1/𝛼) 〈𝜁〉

)1/2

�𝐾,𝐸̄, 𝛿0 ,𝜁0

(∫ 〈𝜁〉3
𝜙3(𝜁)

)1/2
�𝐾,𝐸̄, 𝛿0 ,𝜁0

1, (8.110)

where in the third line, we used Lemma A.6.
Using (8.108)–(8.110) in (8.107), we conclude that���� 𝛼1/𝛼

𝑟1+1/𝛼 𝑒𝛿dis𝑠J + G2

���� �𝛿0 ,𝐾 ,𝐸̄ ,𝜁0
G .

Thus, as 𝑠0 is sufficiently large in terms of 𝐾, 𝐸̄, 𝛿0, 𝜁0, we get

𝛼1/𝛼

𝑟1+1/𝛼 𝑒𝛿dis𝑠J + G2 ≤ 1

2
G𝑒𝑠0 𝛿dis/4 ≤ G2

2
+ 𝑒𝛿dis𝑠0/2

2
,

and in particular,

J ≤ 2𝑟1+1/𝛼

𝛼1/𝛼 𝑒−𝛿dis𝑠0/2. (8.111)

Plugging (8.111) into (8.106), we deduce

𝜕𝑠

2
(𝐸2

2𝐾 ) ≤ −𝐾𝜂𝐸2
2𝐾 + 𝐶𝐸̄2 ≤ 𝐶

(
−5𝐸2

2𝐾 + 𝐸̄2
)

(8.112)

for some universal constant 𝐶. In the second inequality, we are using that K can be taken large enough

in terms of 𝐶, 𝜂 – in particular, such that 𝐾 > 5𝐶
𝜂

.

Finally, as 𝐸2𝐾 (𝑠0) ≤ 𝐸̄/2, it is clear that 𝐸2𝐾 (𝑠) can never go above 𝐸̄/2, as it would contradict
(8.112). Therefore, 𝐸2𝐾 (𝑠) ≤ 𝐸̄/2, and we conclude (8.16). This finishes the proof of Proposition 8.2.

8.2. Topological argument for the initial unstable coefficients

In this subsection, we prove Proposition 8.3. In particular, we will always assume (8.6) and (8.7).
Whenever we have (8.8), we may apply Proposition 8.2 and thus deduce (8.9). In such cases, we are in
the hypotheses of the previous subsection, so we may use any result of that subsection.
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For this subsection, we will assume that all the variables make reference to the truncated equation,
and we will use the subscript ’e’ whenever we want to make reference to the extended equation.

Let us define

𝜅𝑖 (𝑠) =
〈
(𝑈𝑡 (·, 𝑠), 𝑆𝑡 (·, 𝑠)), (𝜓𝑖,𝑈 , 𝜓𝑖,𝑆)

〉
, 𝜅(𝑠) =

𝑁∑
𝑖=1

(𝜓𝑖,𝑈 , 𝜓𝑖,𝑆)𝜅𝑖 (𝑠).

Note that as (𝜓𝑖,𝑈 , 𝜓𝑖,𝑆) form an orthonormal base of V (by Corollary 7.15), the norm
√∑

𝑖 𝜅
2
𝑖

is just

the norm inherited from X, which we denote by |𝜅 |𝑋 . We will also work with another norm on 𝜅. We
define the metric B to be the canonical metric associated to the basis of item 3 in Lemma 7.11 (where
we take 𝐴 = L due to Corollary 7.7). In particular, equation (7.49) yields

〈L𝜅(𝑠), 𝜅(𝑠)〉𝐵 ≥
−6𝛿𝑔

10
|𝜅(𝑠) |2𝐵 . (8.113)

As any two norms are equivalent on a finite dimensional vector space, we have that | · |𝑋 and | · |𝐵 are
equivalent norms. Moreover, both depend only on the space X and 𝛿𝑔, so we have that |𝑤 |𝑋 �𝑚 |𝑤 |𝐵 �𝑚
|𝑤(𝑠) |𝑋 .

It will be useful to consider the following exponentially contracting regions for the unstable modes:

R(𝑠) = {𝑤 ∈ R𝑁 | |𝑤 |𝑋 ≤ 𝛿1𝑒
− 7

10 𝛿𝑔 (𝑠−𝑠0) } ,

R̃(𝑠) = {𝑤 ∈ R𝑁 | |𝑤 |𝐵 ≤ 𝛿
11
10
1 𝑒−

7
10 𝛿𝑔 (𝑠−𝑠0) },

(8.114)

where we clearly have R̃(𝑠) � R(𝑠) as |𝑤 |𝑋 �𝑚 |𝑤 |𝐵.

Lemma 8.13. Provided that 𝜅(𝑠) ∈ R(𝑠) for 𝑠 ∈ [𝑠0, 𝑠1] and assuming our initial data hypothesis

‖(𝑢̃0, 𝜎̃0)‖𝑋 ≤ 𝛿1, (8.115)

we have that

‖(𝑢̃, 𝜎̃) (·, 𝑠)‖𝑋 < 3𝛿1𝑒
− 1

2 𝛿𝑔 (𝑠−𝑠0) , (8.116)

‖Fnl(·, 𝑠)‖𝑋 < 𝛿
3/2
1 𝑒−

9
10 𝛿𝑔 (𝑠−𝑠0) . (8.117)

Proof. First of all, note that 𝜅(𝑠) ∈ R(𝑠) implies (8.8), so we have (8.9), and we are in the hypothesis
of the previous subsection.

We claim that

‖𝑃sta (𝑢̃, 𝜎̃) (·, 𝑠)‖𝑋 < 2𝛿1𝑒
− 1

2 𝛿𝑔 (𝑠−𝑠0) . (8.118)

It is clear that (8.118) implies (8.116), since ‖𝑃uns (𝑢̃, 𝜎̃)‖𝑋 = |𝜅(𝑠) |, which is smaller than 𝛿1𝑒
− 7

10 𝛿𝑔 (𝑠−𝑠0)

by hypothesis. Therefore, it suffices to show (8.117) or (8.118). Assume by contradiction that either
(8.117) or (8.118) are violated at some first time 𝑠′ ≤ 𝑠1.

Case 1: (8.118) breaks at 𝑠 = 𝑠′. Let 𝑠 ∈ [𝑠0, 𝑠
′]. By (8.64), 𝛿1 � 𝛿𝑔 � 𝛿dis, continuity on (8.117)

and that 𝑠0 is chosen sufficiently large dependent on 𝛿1, we have

‖Fdis(·, 𝑠)‖𝑋 ≤ 𝛿1𝑒
−𝛿dis𝑠/2 ≤ 𝛿

3/2
1 𝑒−

9
10 𝛿𝑔 (𝑠−𝑠0) ,

‖Fnl(·, 𝑠)‖𝑋 ≤ 𝛿
3/2
1 𝑒−

9
10 𝛿𝑔 (𝑠−𝑠0) .

(8.119)

However, as the stable space 𝑉∗⊥ is invariant under L (by Lemma 7.11), we get the commutation
relation 𝑃staL = L𝑃sta. Therefore, taking the projection 𝑃sta on (7.10), we get

𝜕𝑠𝑃sta (𝑢̃, 𝜎̃) = L𝑃sta (𝑢̃, 𝜎̃) + 𝑃staFnl + 𝑃staFdis.
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By Duhamel, we get

𝑃sta (𝑢̃(·, 𝑠), 𝜎̃(·, 𝑠)) = 𝑇 (𝑠 − 𝑠0)𝑃sta (𝑢̃0, 𝜎̃0) +
∫ 𝑠

𝑠0

𝑇 (𝑠 − ,𝑠)𝑃staFnl (·, ,𝑠)𝑑 ,𝑠 +
∫ 𝑠

𝑠0

𝑇 (𝑠 − ,𝑠)𝑃staFdis (·, ,𝑠)𝑑 ,𝑠.

Now, using the bound on 𝑇 (𝑠) over 𝑉sta (equation (7.50)), we get

‖𝑃sta (𝑢̃(·, 𝑠), 𝜎̃(·, 𝑠))‖𝑋 ≤ 𝑒−
1
2 𝛿𝑔 (𝑠−𝑠0) ‖(𝑢̃0, 𝜎̃0)‖𝑋 +

∫ 𝑠

𝑠0

𝑒−
1
2 𝛿𝑔 (𝑠−,𝑠) (‖Fnl (·, ,𝑠)‖𝑋 + ‖Fdis(·, ,𝑠)‖𝑋 ) 𝑑 ,𝑠

≤ 𝑒−
1
2 𝛿𝑔 (𝑠−𝑠0)𝛿1 + 2𝛿3/2

1

∫ 𝑠

𝑠0

𝑒−𝛿𝑔 ( 1
2 (𝑠−,𝑠)+ 9

10 ( ,𝑠−𝑠0))𝑑 ,𝑠

≤ 𝑒−
1
2 𝛿𝑔 (𝑠−𝑠0)𝛿1 + 2𝛿3/2

1 𝑒−
1
2 𝛿𝑔 (𝑠−𝑠0)

∫ ∞

𝑠0

𝑒−
4
10 𝛿𝑔 ( ,𝑠−𝑠0)/2𝑑 ,𝑠

≤
(
1 +

5𝛿1/2
1

𝛿𝑔

)
𝛿1𝑒

− 1
2 𝛿𝑔 (𝑠−𝑠0) ≤ 3

2
𝛿1𝑒

− 1
2 𝛿𝑔 (𝑠−𝑠0) .

In the second inequality, we used (8.119) and (8.115). Clearly, this last inequality at 𝑠 = 𝑠′ implies
(8.118), so that we arrive to contradiction, because we supposed (8.118) broke at time 𝑠 = 𝑠′.

Case 2: (8.117) breaks at 𝑠 = 𝑠′. By assumption, we have

‖Fnl(·, 𝑠′)‖𝑋 = 𝛿
3/2
1 𝑒

9
10 𝛿𝑔 (𝑠′−𝑠) . (8.120)

By continuity on (8.118), we also have

‖𝑃sta (𝑢̃, 𝜎̃) (·, 𝑠′)‖𝑋 ≤ 𝛿1𝑒
− 1

2 𝛿𝑔 (𝑠′−𝑠0) ,

so using that |𝜅(𝑠′) | ≤ 𝛿1𝑒
− 7

10 𝛿𝑔 (𝑠′−𝑠0) by hypothesis, we get

‖(𝑢̃, 𝜎̃) (·, 𝑠′)‖𝑋 ≤ 2𝛿1𝑒
− 1

2 𝛿𝑔 (𝑠′−𝑠0) . (8.121)

Interpolating between (8.22) and (8.121), we get that

(‖𝑢̃‖𝑊 2𝑚+1,∞ + ‖𝜎̃‖𝑊 2𝑚+1,∞ )2 �
(
𝛿1𝑒

− 1
2 𝛿𝑔 (𝑠′−𝑠0)

)2(1− 2𝑚+1
2𝐾−2 )

𝐸̄2 2𝑚+1
2𝐾−2 � 𝛿

9/5
1 𝑒−

9
10 𝛿𝑔 (𝑠′−𝑠0) , (8.122)

where we used 𝑚 � 𝐾 and 𝛿1 � 1
𝐸̄

in the last inequality.
From (8.70), we obtain that

‖Fnl‖𝑊 2𝑚,∞ � (‖𝑢̃‖𝑊 2𝑚+1,∞ + ‖𝜎̃‖𝑊 2𝑚+1,∞ )2 � 𝛿
9
5
1 𝑒
− 9

10 𝛿𝑔 (𝑠′−𝑠0) . (8.123)

This clearly contradicts (8.120). �

As the unstable space V is invariant under L (by Lemma 7.11, with 𝐴 = L from Corollary 7.7), we
get the commutation relation 𝑃unsL = L𝑃uns. Therefore, taking the projection 𝑃uns on (7.10), we get
that 𝜅 satisfies the ODE {

𝜅′(𝑠) = L|𝑉 𝜅(𝑠) + 𝑃unsFdis + 𝑃unsFnl,

𝜅𝑖 (𝑠0) = 𝑎𝑖
(8.124)

for some initial values 𝑎𝑖 .
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For the solution corresponding to the initial data given in (8.3), for |𝑎 | ≤ 𝛿1, we define the stopping
time

𝑠𝑎 = inf
𝑠>𝑠0
{𝑠 : 𝜅(𝑠) ∉ R}.

Lemma 8.14 (Outgoing property). Let us suppose |𝑎𝑖 | ≤ 𝛿0 and that 𝜅 ∈ R̃ at times 𝑠 ∈ [𝑠0, 𝑠1] and

that at time 𝑠1 ≥ 𝑠0, we have

|𝜅(𝑠1) |𝐵 = 𝛿
11
10
1 𝑒−

7
10 𝛿𝑔 (𝑠1−𝑠0) . (8.125)

That is, 𝜅(𝑠1) ∈ 𝜕 (R̃(𝑠1)). Then, we have that 𝜅(𝑠) ∉ R̃(𝑠) for s close enough to 𝑠1 from above. That

is, 𝜅(𝑠) exits R̃(𝑠) at 𝑠 = 𝑠1.

Proof. Given that 𝜅(𝑠1) ∈ 𝜕 (R̃(𝑠1)), we have that 𝜅(𝑠) will be exiting R̃(𝑠) at time 𝑠 = 𝑠1 if and only if

〈𝜅′(𝑠1), 𝜅(𝑠1)〉𝐵 > − 7

10
𝛿𝑔 |𝜅(𝑠1) |2𝐵, (8.126)

which using (8.124) can be written as

(〈L|𝑉 𝜅(𝑠1), 𝜅(𝑠1)〉𝐵 + 〈𝑃unsFdis, 𝜅(𝑠1)〉𝐵 + 〈𝑃unsFnl, 𝜅(𝑠1)〉𝐵) > −
7

10
𝛿𝑔 |𝜅(𝑠1) |2𝐵 . (8.127)

On the one hand, we have from equation (8.113) that

〈L|𝑉 𝜅(𝑠1), 𝜅(𝑠1)〉𝐵 ≥
−6𝛿𝑔

10
|𝜅 |2𝐵 . (8.128)

On the other hand, we have that

〈𝑃unsFdis, 𝜅(𝑠1)〉 + 〈𝑃unsFnl (·, 𝑠1), 𝜅(𝑠1)〉 ≤ ‖𝑃unsFdis (·, 𝑠1)‖𝐵 |𝜅(𝑠1) |𝐵 + ‖𝑃unsFnl‖𝐵 |𝜅(𝑠1) |𝐵

�𝑚 (‖𝑃unsFdis (·, 𝑠1)‖𝑋 + ‖𝑃unsFnl (·, 𝑠1)‖𝑋 )
|𝜅(𝑠1) |2𝐵

𝛿
11
10
1 𝑒−

7
10 𝛿𝑔 (𝑠1−𝑠0)

≤ (‖Fdis (·, 𝑠1)‖𝑋 + ‖Fnl (·, 𝑠1)‖𝑋 )
|𝜅(𝑠1) |2𝐵

𝛿
11
10
1 𝑒−

7
10 𝛿𝑔 (𝑠1−𝑠0)

≤ 𝛿
3
2
1 𝑒
− 9

10 𝛿𝑔 (𝑠1−𝑠0) |𝜅(𝑠1) |2𝐵
𝛿

11
10
1 𝑒−

7
10 𝛿𝑔 (𝑠1−𝑠0)

= 𝛿
4
10
1 𝑒−

2
10 𝛿𝑔 (𝑠1−𝑠0) |𝜅(𝑠1) |2𝐵, (8.129)

where we used equation (8.125) in the second line and Lemma 8.11 in the fourth one.
Combining equations (8.128) and (8.129), and choosing 𝛿1 sufficiently small dependent on 𝛿𝑔, we

conclude equation (8.127). �

Proposition 8.15. There exists specific initial conditions 𝑎𝑖 such that |𝑎 |𝑋 ≤ 𝛿1 and the 𝜅(𝑠) defined by

the ODE (8.124) satisfies that 𝜅(𝑠) ∈ R for all 𝑠 ≥ 𝑠0.

Moreover, for such initial conditions 𝑎𝑖 = 𝜅𝑖 (𝑠0), we have that

‖(𝑢̃, 𝜎̃)‖𝑋 � 𝛿1𝑒
− 7

10 𝛿𝑔 (𝑠−𝑠0) .

Proof. We argue by contradiction, so let us suppose that for any such initial conditions 𝑎𝑖 , there exists
a time of exit 𝑠𝑎 such that 𝜅𝑖 exits R̃ after 𝑠 = 𝑠𝑎 and let us define 𝑏𝑖 (𝑎) = 𝜅𝑖 (𝑠𝑎). Due to Lemma 8.14,
we can equivalently define (𝑏𝑖 , 𝑠𝑎) letting

𝑠𝑎 = inf
𝑠
{𝑠 : 𝜅(𝑠) ∉ R̃(𝑠)} and 𝑏𝑖 = 𝜅𝑖 (𝑠𝑎).
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First, let us argue that the mapping 𝑎 → 𝑠𝑎 is continuous (in the domain where 𝑠𝑎 ≠ +∞). Let 𝑎, 𝑎̄ ∈
R̃(𝑠0) so that 𝑠𝑎, 𝑠𝑎̄ are finite, and let 𝜅(𝑠) and 𝜅(𝑠) be the unstable modes corresponding to the solutions
with initial conditions dictated by a and 𝑎̄. By local existence of solutions [29], we can extend 𝜅(𝑠) up
to some time 𝑠𝑎 + 𝜀 for some 𝜀 sufficiently small. Also, by Lemma 8.14 (and again taking 𝜀 sufficiently
small), we can ensure that 𝜅(𝑠𝑎 + 𝜀) ∉ R̃(𝑠𝑎 + 𝜀). Let 𝜀′ = 1

2d𝐵 (𝜅(𝑠𝑎 + 𝜀), R̃(𝑠𝑎 + 𝜀)). By stability
[29], there exists 𝛿 sufficiently small such that |𝑎 − 𝑎̄ |𝐵 ≤ 𝛿 guarantees |𝜅(𝑠𝑎 + 𝜀) − 𝜅(𝑠𝑎 + 𝜀) |𝐵 ≤ 1

2𝜀
′.

In that case, 𝜅(𝑠𝑎 + 𝜀) ∉ R̃(𝑠𝑎 + 𝜀), and we deduce 𝑠𝑎̄ < 𝑠𝑎 + 𝜀. In a symmetric way, we can find 𝛿 such
that if |𝑎 − 𝑎̄ |𝐵 ≤ 𝛿, then 𝑠𝑎 < 𝑠𝑎̄ + 𝜀. Thus, we conclude that 𝑎 → 𝑠𝑎 is continuous. As a consequence,
𝑏𝑖 = 𝜅𝑖 (𝑠𝑎) is also continuous with respect to a, as it is the composition of continuous functions.

Now, we define the mapping 𝐻 : 𝐵𝐵 (1) → 𝜕𝐵𝐵 (1) as follows. For each 𝜗 ∈ 𝑉 with |𝜗 |𝐵 ≤ 1,

consider 𝑎 = 𝛿
11
10
1 𝜗 and evolve (8.124) with 𝜅(𝑠0) = 𝑎. As we are supposing every initial data exits R̃(𝑠)

at some s, we have a time 𝑠𝑎 and the corresponding values 𝑏𝑖 (𝑎) such that |𝑏(𝑎) |𝐵 = 𝛿
11
10
1 𝑒−𝛿𝑔 (𝑠𝑎−𝑠0) . We

now consider 𝐻 (𝜗) to be 𝑏 (𝑎)
|𝑏 (𝑎) |𝐵 , which is trivially on the boundary of 𝐵𝐵 (1). As 𝑏(𝑎) is continuous,

we also get that H is continuous. Moreover, note that H is just the identity on the boundary of the ball,

as |𝑎 |𝐵 = 𝛿
11
10
1 implies 𝑠𝑎 = 𝑠0 and 𝑏(𝑎) = 𝑎 due to Lemma 8.14.

Therefore, we have constructed a mapping H from the the unit ball on V to its boundary which is
continuous and is the identity restricted to its boundary. The map −𝐻 would therefore have no fixed
point, contradicting Brouwer’s fixed point theorem. Therefore, there must exist at least a N-tuple of
values for 𝑎𝑖 such that 𝜅(𝑠) ∈ R̃(𝑠) for all 𝑠 ≥ 𝑠0.

Now, with that value for 𝑎𝑖 , we conclude the unstable projections of 𝑢̃, 𝜎̃ in X are always bounded by

𝛿1𝑒
− 7

10 𝛿𝑔 (𝑠−𝑠0) . Therefore, for such 𝑎𝑖 , we have (8.8), so we can apply Proposition 8.2 and obtain (8.9),
which gives us the desired bounds. �

From Proposition 8.15, we conclude the bound 8.11 on Proposition 8.3. Moreover, by Proposition 8.2,
we see that 𝐸2𝐾 , ‖𝑈‖𝐿∞ and ‖𝑆‖𝐿∞ remain bounded uniformly in time. Thus, the local-wellposedness
results [29] imply that the solution to (7.6) can be continued for all times. As (7.8) is a linear equation,
and the forcing remains bounded due to Lemma 8.11, it can also be continued for all times.

Thus, the only thing that remains to show from Proposition 8.3 is equation (8.12). Let us show it. In
the region 𝜁 ≤ 6

5 , Lemma 8.1 gives us that 𝑈𝑡 = 𝑈𝑒 and 𝑆𝑡 = 𝑆𝑒, so

‖𝑈𝑒‖𝐿∞ [0,6/5] + ‖𝑆𝑒‖𝐿∞ [0,6/5] ≤ ‖𝑈𝑡 ‖𝐿∞ + ‖𝑆𝑡 ‖𝐿∞ � ‖(𝑈𝑡 , 𝑆𝑡 )‖𝑋 .

Therefore, for 𝜁 ≤ 6
5 , we obtain equation (8.12) from (8.11).

Now let us show equation (8.12) for 𝜁 > 6
5 . From now on, we will only refer to the extended equation,

so we drop the subindex ‘e’. The approach will be similar to the one we followed for closing the 𝐿∞

estimates. Let us change to 𝑊, 𝑍 variables and recall the definitions of 𝐽 (𝜁), ,Υ𝑊 , ,Υ𝑍 from (8.80)–

(8.82). Whenever we want to indicate the initial condition of Υ◦(𝑠), we will use the notation Υ
(𝜁★,𝑠★)
◦ (𝑠),

which is the only trajectory such that Υ◦(𝑠★) = 𝜁★. Let us also recall that there exists some 𝜁1 such that
|𝐽 (𝜁) | ≤ 𝑟−1

4 for 𝜁 > 𝜁1.

For the region 6
5 ≤ 𝜁 ≤ 𝜁1, we argue by contradiction. Let us note that in this region, equation (8.87)

holds for a sufficiently large 𝐶2. Let 𝐶1, 𝐶3 be sufficiently large constants. We claim

|𝑊 (𝜁, 𝑠) |, |𝑍 (𝜁, 𝑠) | < 𝐶1𝛿1𝑒
− 7

10 𝛿𝑔 (𝑠−𝑠0)𝑒𝐶3𝜁 (8.130)

in the region 6
5 ≤ 𝜁 ≤ 𝜁1. Note that if 𝐶1 is taken sufficiently large, this is satisfied at 𝑠 = 𝑠0 because of

our initial conditions hypothesis and at 𝜁 = 6
5 , because we already have (8.12) in the region 𝜁 ≤ 6

5 . In
order to show it for other 𝜁 and s, we argue by contradiction and suppose that (8.130) holds until time

𝑠𝑏 > 𝑠0, and is broken at some point 𝜁𝑏 ∈
(

6
5 , 𝜁1
]
. Without loss of generality, we have that

𝑊 (𝜁𝑏 , 𝑠𝑏) = 𝐶1𝛿1𝑒
𝐶3𝜁𝑏 𝑒−

7
10 𝛿𝑔 (𝑠𝑏−𝑠0) and |𝑍 (𝜁𝑏 , 𝑠𝑏) | ≤ 𝐶1𝛿1𝑒

𝐶3𝜁𝑏 𝑒−
7
10 𝛿𝑔 (𝑠𝑏−𝑠0) (8.131)
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because the cases where (8.130) breaks with 𝑊 being negative or where it breaks for 𝑍 are analogous.

Let (𝜁★, 𝑠★) such that either 𝜁★ = 6
5 or 𝑠★ = 𝑠0 and ,Υ(𝜁★,𝑠★)

𝑊
(𝑠𝑏) = 𝜁𝑏 . As 𝑠𝑏 is the first time at which

equation (8.130) breaks, we have that

𝜕𝑠

(
𝑊 ( ,Υ(𝜁★,𝑠★)

𝑊
, 𝑠)
) ���

𝑠=𝑠𝑏
≥ 𝜕𝑠

(
𝐶1𝛿1𝑒

− 7
10 𝛿𝑔 (𝑠−𝑠0)𝑒𝐶3 ,Υ(𝜁★,𝑠★)𝑊

) ���
𝑠=𝑠𝑏

≥ 𝐶1𝛿1𝑒
− 7

10 𝛿𝑔 (𝑠𝑏−𝑠0)𝑒𝐶3 ,Υ(𝜁★,𝑠★)𝑊
(𝑠𝑏)
(

7

10
𝛿𝑔 + 𝐶3

,Υ(𝜁★,𝑠★)
𝑊

(𝑠𝑏)
𝐶0

)
,

≥ 𝐶1𝛿1𝑒
− 7

10 𝛿𝑔 (𝑠𝑏−𝑠0)𝑒𝐶3 ,Υ(𝜁★,𝑠★)𝑊
(𝑠𝑏) · 𝐶3

𝐶0
· 6

5
, (8.132)

where in the second inequality, we used equation (8.86) and in the third one ,Υ(𝜁★,𝑠★)
𝑊

≥ 6
5 (by (8.86)).

However, combining (8.87) with (8.131), we see that

���𝜕𝑠 |𝑠=𝑠𝑏𝑊 ( ,Υ(𝜁★,𝑠★)𝑊
(𝑠), 𝑠)
)��� ≤ (𝐶1 + 2)𝛿1𝑒

7
10 𝛿𝑔 (𝑠𝑏−𝑠0)𝑒𝐶3 ,Υ(𝜁★,𝑠★)𝑊

(𝑠𝑏) . (8.133)

Now, comparing (8.132) and (8.133), and taking 𝐶3 sufficiently large with respect to 𝐶1, we arrive
to contradiction. Therefore, we conclude (8.130) for some constants 𝐶1, 𝐶3. As 𝐶3, 𝜁1 are constants,
𝑒𝐶3𝜁1 � 1, so this shows (8.12) in the region 6

5 ≤ 𝜁 ≤ 𝜁1.
Finally, we need to show (8.12) in the region 𝜁 > 𝜁1. We will do it by bootstrap. Let 𝐶4 be a

sufficiently large constant and let us assume that

‖𝑊 ‖𝐿∞ [𝜁1 ,∞) + ‖𝑍 ‖𝐿∞ [𝜁1 ,∞) ≤ 2𝐶4𝛿1𝑒
− 7

10 𝛿𝑔 (𝑠−𝑠0) . (8.134)

We will show the reinforced estimate

‖𝑊 ‖𝐿∞ [𝜁1 ,∞) + ‖𝑍 ‖𝐿∞ [𝜁1 ,∞) ≤ 𝐶4𝛿1𝑒
− 7

10 𝛿𝑔 (𝑠−𝑠0) , (8.135)

which implies that (8.134) cannot be broken. From equations (8.79)–(8.80), we get that

����(𝜕𝑠 + 𝑟 − 1)𝑊 +
(
𝜁 + 1 + 𝛼

2
,𝑊 + 1 − 𝛼

2
,𝑍
)
𝜕𝜁𝑊

���� ≤ 𝐽 (𝜁)
(
|𝑊 | + |𝑍 |

)
+ Fdis + Fnl,𝑊 . (8.136)

Using equation (8.134) in (8.136), and recalling that 𝐽 (𝜁) ≤ 𝑟−1
4 in the region 𝜁 > 𝜁1, we obtain that

����(𝜕𝑠 + 𝑟 − 1)𝑊 +
(
𝜁 + 1 + 𝛼

2
,𝑊 + 1 − 𝛼

2
,𝑍
)
𝜕𝜁𝑊

���� ≤ 𝑟 − 1

2
𝛿1𝐶4𝑒

− 7
10 𝛿𝑔 (𝑠−𝑠0) + Fdis + Fnl,𝑊 . (8.137)

We recall from (8.64) that

|Fdis | � 𝛿1𝑒
−𝛿dis𝑠/2 ≤ 𝛿2

1𝑒
−𝛿dis (𝑠−𝑠0)/2. (8.138)

In addition, as 𝜁 ≥ 𝜁1, we have from (7.2) that

|Fnl,𝑊 | �
(
|𝑊 | + |𝑍 |

) (
|𝑊 | + |𝜕𝜁𝑊 |

)
≤ 𝛿1𝑒

− 7
10 𝛿𝑔 (𝑠−𝑠0) ·

(
|𝑊 | + |𝜕𝜁𝑊 |

)
, (8.139)

https://doi.org/10.1017/fmp.2024.12 Published online by Cambridge University Press



Forum of Mathematics, Pi 99

where we bounded the first factor by (8.134). Now from (8.20), we get that |𝜕2𝐾−1
𝜁

𝑊 | � 𝐸̄ , and from

(8.134), we get that |𝑊 | ≤ 𝛿1. Applying 𝐿∞ interpolation between those two bounds, we get

|𝜕𝜁𝑊 | � 𝛿
2𝐾−2
2𝐾−1
1 𝐸̄

1
2𝐾−1 � 𝛿

1/2
1 .

Plugging this into (8.139), we obtain that

|Fnl,𝑊 | � 𝛿
3/2
1 𝑒−

7
10 𝛿𝑔 (𝑠−𝑠0) . (8.140)

Using equations (8.138) and (8.140) in (8.137), we obtain that����(𝜕𝑠 + 𝑟 − 1)𝑊 +
(
𝜁 + 1 + 𝛼

2
,𝑊 + 1 − 𝛼

2
,𝑍
)
𝜕𝜁𝑊

���� ≤ 𝑟 − 1

2
𝛿1𝐶4𝑒

− 7
10 𝛿𝑔 (𝑠−𝑠0) + 𝛿

3/2
1 𝑒−

7
10 𝛿𝑔 (𝑠−𝑠0) .

Recalling the definition of ,Υ𝑊 from (8.81), we can rewrite this equation as

���(𝜕𝑠 + 𝑟 − 1)𝑊 ( ,Υ𝑊 (𝑠), 𝑠)
��� ≤
(
𝑟 − 1

2
+

𝛿
1/2
1

𝐶4

)
𝐶4𝛿1𝑒

− 7
10 𝛿𝑔 (𝑠−𝑠0) ≤ 3(𝑟 − 1)

5
𝐶4𝛿1𝑒

− 7
10 𝛿𝑔 (𝑠−𝑠0) . (8.141)

Now, we conclude (8.135) by contradiction. Equation (8.135) clearly holds for 𝑠 = 𝑠0, and also holds
for 𝜁 = 𝜁1 because we know (8.12) in the region 6

5 ≤ 𝜁 ≤ 𝜁1. Moreover, if (8.135) breaks for some
trajectory at 𝑠𝑏 , without loss of generality, we would have

𝜕𝑠𝑊 ( ,Υ𝑊 (𝑠))
���
𝑠=𝑠𝑏

≥ 𝜕𝑠

(
𝐶4𝛿1𝑒

− 7
10 𝛿𝑔 (𝑠−𝑠0)

) ���
𝑠=𝑠𝑏

≥ −𝑟 − 1

4
𝛿1𝐶4𝑒

− 7
10 𝛿𝑔 (𝑠𝑏−𝑠0) .

However, (8.141) implies

𝜕𝑠𝑊 ( ,Υ𝑊 (𝑠))
���
𝑠=𝑠𝑏

≤ −(𝑟 − 1)𝐶4𝛿1𝑒
− 7

10 𝛿𝑔 (𝑠𝑏−𝑠0) + 3(𝑟 − 1)
5

𝐶4𝛿1𝑒
− 7

10 𝛿𝑔 (𝑠−𝑠0) = −2(𝑟 − 1)
5

𝐶4𝛿1𝑒
− 7

10 𝛿𝑔 (𝑠−𝑠0) ,

so we obtain the desired contradiction. The cases where (8.135) breaks with 𝑊 being negative, or where
it breaks for 𝑍 , are handled completely analogously.

Therefore, we have shown (8.135) under the assumption of (8.134), which allows us to conclude
(8.135) by bootstrap. This proves (8.12) for 𝜁 ≥ 𝜁1, so it finalizes the proof of Proposition 8.3.

A. Auxiliary Lemmas

A.1. Proof of Proposition 1.6.

Proof of Proposition 1.6. Let us start by proving that there are no non-degenerate closed curves C (not

crossing the nullsets of the denominators) such that the field
(
𝑁𝑊
𝐷𝑊

,
𝑁𝑍
𝐷𝑍

)
is tangent with constant direction

to the curve at each point of C. If there was such a curve, it would also be tangent to the polynomial
field 𝐹̃ = (𝑁𝑊 𝐷𝑍 , 𝑁𝑍𝐷𝑊 ).

By Poincaré-Hopf theorem, there has to be some equilibrium point P in the interior of C. Moreover,
as C does not cross 𝐷𝑊 = 0 or 𝐷𝑍 = 0, any equilibrium point inside C has to be a solution of
𝑁𝑊 = 𝑁𝑍 = 0. Thus, C has to be in the region 𝑊 > 𝑍 , by Lemma A.17, the only such point is 𝑃o and it
is a saddle point for all 𝛾 > 1, 𝑟 <

3𝛾−1

2+
√

3(𝛾−1) . By Poincaré-Hopf theorem, a closed orbit cannot contain

just a saddle equilibrium point, so we conclude there is no such curve C for all 𝛾 > 1, 𝑟 <
3𝛾−1

2+
√

3(𝛾−1) .

Note that by Lemma A.23, this covers the case 𝛾 > 1, 𝑟 ∈ (𝑟3, 𝑟4).
Now, let us show that such curve C does not exist also in the case 𝛾 = 7/5 and r close enough to 𝑟∗.

By the same reasoning as above, C has to encircle the point 𝑃o (which is no longer a saddle point).
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By Lemma A.17, we have that 𝑃o lies in the region 𝐷𝑊 > 0, 𝐷𝑍 < 0, and as C does not intersect
𝐷𝑊 = 0 or 𝐷𝑍 = 0, we have that C is also contained in the region Ω (that is, the region where
𝐷𝑊 > 0, 𝐷𝑍 < 0). Now, we let 𝑃′

o
be the intersection of the branch of 𝑁𝑊 = 0 passing through 𝑃o

with the nullset 𝐷𝑍 = 0. We also let 𝑃′′
o

be the point in the same horizontal of 𝑃o which lies over
𝐷𝑍 = 0. We define the region T to be the triangular region enclosed by 𝑁𝑊 = 0, the horizontal segment
from 𝑃o to 𝑃′′

o
and 𝐷𝑍 = 0. We call those parts of 𝜕T by 𝑆1, 𝑆2, 𝑆3, respectively. As T is a region

from 𝑃o to 𝐷𝑍 = 0, and our curve C encloses 𝑃o and stays in 𝐷𝑍 < 0, it necessarily has to pass
through T and has to cross either 𝑆1 or 𝑆2 in the outwards direction. We get our final contradiction by
Lemma A.14, which asserts that the field (𝑁𝑊 𝐷𝑍 , 𝑁𝑍𝐷𝑊 ) points inwards to T both in 𝑆1 and 𝑆2 for
𝛾 = 7/5 and r sufficiently close to 𝑟∗.

By our previous reasoning, the orbits of our system are the orbits of the modified field
(𝑁𝑊 𝐷𝑍 , 𝑁𝑍𝐷𝑊 ), as long as the orbit does not intersect the nullset of 𝐷𝑊 or 𝐷𝑍 . By Picard-Lindelöf’s
theorem, those trajectories exist locally. Moreover, by Poincaré-Bedixson (and the previous fact that
there are no periodic orbits), every bounded semitrajectory converges to an equilibrium point.

However, those trajectories may intersect 𝐷𝑊 = 0 or 𝐷𝑍 = 0, which give singularities for the
change of variables between the fields (𝑁𝑊 /𝐷𝑊 , 𝑁𝑍/𝐷𝑍 ) and (𝑁𝑊 𝐷𝑍 , 𝑁𝑍𝐷𝑊 ). Therefore, we add
the possibility that the trajectory of the original system intersects those nullsets. We have thus seen
that the trajectories (from left or right) either are unbounded, or converge to an equilibrium point, or
converge to a point of the nullsets 𝐷𝑊 = 0, 𝐷𝑍 = 0.

In the case of reaching an equilibrium, as all equilibria are hyperbolic, Hartman-Grobman ensures
that the rate of convergence is exponentially fast, reaching the equilibrium in infinite time. �

A.2. Interpolation Lemmas

Lemma A.1. Let 𝑎 ≥ 1 and consider O = [𝑎,∞). Let 𝛽1 ∈ (0, 1). Then, for any 0 ≤ 𝑖 ≤ 𝑛, 𝛽2 ∈ R, we

have the interpolation inequality

--𝑥𝑖𝛽1+𝛽2𝜕𝑖𝑥 𝑓 (𝑥)
--
𝐿∞ (O) �𝑛

--𝑥𝛽2 𝑓 (𝑥)
--1−𝑖/𝑛
𝐿∞ (O)
--𝑥𝑛𝛽1+𝛽2𝜕𝑛𝑥 𝑓 (𝑥)

--𝑖/𝑛
𝐿∞ (O) +

--𝑥𝛽2 𝑓 (𝑥)
--
𝐿∞ (O) . (A.1)

Proof. First, let us define

Φ(𝑥) =
∫ 𝑥

0
𝑦𝛼1 𝑑𝑦 =

1

𝛼1 + 1
𝑥𝛼1+1,

and 𝑔(𝑥) = 𝑥𝛼2 𝑓 (Φ(𝑥)) for some 𝛼1 > 0, 𝛼2 to be fixed later. Using Faa di Bruno for the m-th derivative
of the composition and identifying the only term where m derivatives fall on f, we have

���𝜕𝑚𝑥 𝑔(𝑥) − 𝑥𝛼1𝑚+𝛼2 𝑓 (𝑚) (Φ(𝑥))
��� �𝑚 𝑚−1∑

𝑖=0

𝑓 (𝑖) (Φ(𝑥))𝑥𝛼1𝑖+𝛼2−(𝑚−𝑖) , (A.2)

where i corresponds to the quantity of derivatives falling on f.
Let 𝑂 = [Φ−1(𝑎), +∞) ⊂ [1, +∞). By the Kolmogorov-Landau inequality on the halfline, we have

‖𝜕𝑚𝑥 𝑔(𝑥)‖
𝐿∞ (𝑂) �𝑛 ‖𝑔(𝑥)‖

1−𝑚/𝑛
𝐿∞ (𝑂)

‖𝜕𝑛𝑥 𝑔(𝑥)‖
𝑚/𝑛
𝐿∞ (𝑂)

. (A.3)

Using (A.2) and (A.3), we obtain

---𝑥𝛼1𝑚+𝛼2 𝑓 (𝑚) (Φ(𝑥))
---
𝐿∞ (𝑂)

�𝑛

𝑚−1∑
𝑗=0

--- 𝑓 ( 𝑗) (Φ(𝑥))𝑥𝛼1 𝑗+𝛼2−(𝑚− 𝑗)
---
𝐿∞ (𝑂)

+ ‖𝑔(𝑥)‖1−𝑚/𝑛
𝐿∞ (𝑂)

‖𝜕𝑛𝑥 𝑔(𝑥)‖
𝑚/𝑛
𝐿∞ (𝑂)

.

(A.4)
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Applying (A.4) i times, we conclude that for any 0 ≤ 𝑖 ≤ 𝑛,---𝑥𝛼1𝑖+𝛼2 𝑓 (𝑖) (Φ(𝑥))
---
𝐿∞ (𝑂)

�𝑛 ‖𝑔(𝑥)‖𝐿∞ (𝑂) + ‖𝑔(𝑥)‖
1−𝑖/𝑛
𝐿∞ (𝑂)

‖𝜕𝑛𝑥 𝑔(𝑥)‖
𝑖/𝑛
𝐿∞ (𝑂)

. (A.5)

However, taking 𝑚 = 𝑛 in (A.2) and using (A.5), we see that

---𝜕𝑛𝑥 𝑔(𝑥) − 𝑥𝛼1𝑛+𝛼2 𝑓 (𝑛) (Φ(𝑥))
---
𝐿∞ (O)

�𝑛 ‖𝑔(𝑥)‖𝐿∞ (𝑂) +
𝑛−1∑
𝑗=0

‖𝑔(𝑥)‖1− 𝑗/𝑛
𝐿∞ (𝑂)

‖𝜕𝑛𝑥 𝑔(𝑥)‖
𝑗/𝑛
𝐿∞ (𝑂)

�𝑛 ‖𝑔(𝑥)‖𝐿∞ (𝑂) + ‖𝑔(𝑥)‖
1/𝑛
𝐿∞ (𝑂)

‖𝜕𝑛𝑥 𝑔(𝑥)‖
(𝑛−1)/𝑛
𝐿∞ (𝑂)

,

so there exists some constant 𝐶𝑛 such that

‖𝜕𝑛𝑥 𝑔(𝑥)‖𝐿∞ (𝑂) ≤ ‖𝑥
𝛼1𝑛+𝛼2 𝑓 (𝑛) (Φ(𝑥))‖

𝐿∞ (𝑂) + 𝐶𝑛‖𝑔(𝑥)‖𝐿∞ (𝑂) + 𝐶𝑛‖𝑔(𝑥)‖1/𝑛
𝐿∞ (𝑂)

‖𝜕𝑛𝑥 𝑔(𝑥)‖
(𝑛−1)/𝑛
𝐿∞ (𝑂)

≤ ‖𝑥𝛼1𝑛+𝛼2 𝑓 (𝑛) (Φ(𝑥))‖
𝐿∞ (𝑂) + 𝐶𝑛‖𝑔(𝑥)‖𝐿∞ (𝑂)

+ 𝐶𝑛

‖𝑔(𝑥)‖
𝐿∞ (𝑂)𝐶

𝑛

𝑛
+ 𝐶𝑛

𝐶𝑛/(𝑛−1)

‖𝜕𝑛𝑥 𝑔(𝑥)‖𝐿∞ (𝑂)
𝑛/(𝑛 − 1)

≤ ‖𝑥𝛼1𝑛+𝛼2 𝑓 (𝑛) (Φ(𝑥))‖
𝐿∞ (𝑂) +

1

2
‖𝜕𝑛𝑥 𝑔(𝑥)‖𝐿∞ (𝑂) +𝑂𝑛

(
‖𝑔(𝑥)‖

𝐿∞ (𝑂)

)
,

where the second inequality holds for any 𝐶 > 0 due to Young’s inequality, and for the third inequality,
we chose 𝐶 = 2𝐶𝑛. Therefore, we get

‖𝜕𝑛𝑥 𝑔(𝑥)‖𝐿∞ (𝑂) �𝑛 ‖𝑔(𝑥)‖𝐿∞ (𝑂) + ‖𝑥
𝛼1𝑛+𝛼2 𝑓 (𝑛) (Φ(𝑥))‖

𝐿∞ (𝑂) . (A.6)

Now, plugging in (A.6) into (A.5), we obtain---𝑥𝛼1𝑖+𝛼2 𝑓 (𝑖) (Φ(𝑥))
---
𝐿∞ (𝑂)

�𝑛 ‖𝑔(𝑥)‖𝐿∞ (𝑂) + ‖𝑔(𝑥)‖
1−𝑖/𝑛
𝐿∞ (𝑂)

‖𝑥𝛼1𝑛+𝛼2 𝑓 (𝑛) (Φ(𝑥))‖𝑖/𝑛
𝐿∞ (𝑂)

= ‖𝑥𝛼2 𝑓 (Φ(𝑥))‖
𝐿∞ (𝑂) + ‖𝑥

𝛼2 𝑓 (Φ(𝑥))‖1−𝑖/𝑛
𝐿∞ (𝑂)

‖𝑥𝛼1𝑛+𝛼2 𝑓 (𝑛) (Φ(𝑥))‖𝑖/𝑛
𝐿∞ (𝑂)

.

(A.7)

Letting 𝑧 = Φ(𝑥) = 1
𝛼1+1𝑥

𝛼1+1 and writing (A.7) in terms of z, we obtain

----𝑧 𝛼1𝑖+𝛼2
𝛼1+1 𝑓 (𝑖) (𝑧)

----
𝐿∞ (O)

�𝑛

---𝑧 𝛼2
𝛼1+1 𝑓 (𝑧)

---
𝐿∞ (O)

(𝛼1 + 1)
𝛼1
𝛼1+1

𝑖
+
---𝑧 𝛼2

𝛼1+1 𝑓 (𝑧)
---1−𝑖/𝑛
𝐿∞ (O)

---𝑧 𝛼1𝑛+𝛼2
𝛼1+1 𝑓 (𝑛) (𝑧)

---𝑖/𝑛
𝐿∞ (O)

.

Taking 𝛼1 > 0 such that 𝛽1 =
𝛼1
𝛼1+1 and taking 𝛼2 = (1 + 𝛼1)𝛽2, we obtain the desired inequality. It is

clear that this imposes 𝛽1 ∈ (0, 1). �

Lemma A.2. Let 𝑎 ≥ 1 and consider O = R3 \ 𝐵(0, 𝑎). Let 𝜅 ∈ (0, 1 − 2/𝑛). We have that for any

0 ≤ 𝑖 ≤ 𝑛,

(∫
O

|𝑥 |2𝜅𝑛
(
|∇𝑖 𝑓 | (𝑥)

) 𝑝)1/𝑝
�𝑛

(∫
O

|𝑥 |2𝜅𝑛 (|∇𝑛 𝑓 | (𝑥))2
)𝛽/2

‖ 𝑓 (𝑥)‖1−𝛽
𝐿∞ (O) + ‖ 𝑓 (𝑥)‖𝐿∞ (O) , (A.8)

where 𝛽 = 𝑖/𝑛 and 1
𝑝
=

𝛽

2 .
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Proof. First, due to Gagliardo-Nirenberg inequality for bounded domains, we have that there exist
absolute constants 𝐶1, 𝐶2 such that we have--∇𝑖 𝑓 --𝑝

𝐿𝑝 (𝐴) ≤ 𝐶1 ‖∇𝑛 𝑓 ‖2𝐿2 (𝐴) ‖ 𝑓 ‖
𝑝−2
𝐿∞ (𝐴) + 𝐶2‖ 𝑓 ‖ 𝑝𝐿∞ (𝐴) , (A.9)

where A is the annulus where 1 ≤ |𝑥 | ≤ 4. Now, for any 𝜆, let 𝜆𝐴 be the annulus 𝜆 ≤ |𝑥 | ≤ 2𝜆. We can
write (A.9) in terms of 𝑓𝜆 (𝑥) = 𝑓 (𝜆𝑥) which is a function defined on 𝜆𝐴. We obtain

𝜆𝑖 𝑝𝜆−3
--∇𝑖 𝑓𝜆--𝑝𝐿𝑝 (𝜆𝐴) ≤ 𝐶1𝜆

2𝑛𝜆−3 ‖∇𝑛 𝑓𝜆‖2𝐿2 (𝜆𝐴) ‖ 𝑓 ‖
𝑝−2
𝐿∞ (𝜆𝐴) + 𝐶2‖ 𝑓𝜆‖ 𝑝𝐿∞ (𝜆𝐴) . (A.10)

Noting that 𝑖𝑝 = 𝑛𝛽𝑝 = 2𝑛, we have that

𝜆2𝜅𝑛
--∇𝑖 𝑓𝜆--𝑝𝐿𝑝 (𝜆𝐴) ≤ 𝐶1𝜆

2𝜅𝑛 ‖∇𝑛 𝑓𝜆‖2𝐿2 (𝜆𝐴) ‖ 𝑓 ‖
𝑝−2
𝐿∞ (𝜆𝐴) + 𝐶2𝜆

3−2𝑛(1−𝜅) ‖ 𝑓𝜆‖ 𝑝𝐿∞ (𝜆𝐴)
≤ 𝐶1𝜆

2𝜅𝑛 ‖∇𝑛 𝑓𝜆‖2𝐿2 (𝜆𝐴) ‖ 𝑓 ‖
𝑝−2
𝐿∞ (𝜆𝐴) + 𝐶2𝜆

−1‖ 𝑓𝜆‖ 𝑝𝐿∞ (𝜆𝐴) , (A.11)

where in the second inequality, we used 1− 𝜅 ≥ 2/𝑛. Now, note that any function g defined over 𝜆𝐴 has
a corresponding f defined over A such that 𝑔 = 𝑓𝜆. Therefore, (A.11) holds for all g over 𝜆𝐴.

Finally, we combine all those estimates at different scales. Set 𝜆 𝑗 = 𝑎2 𝑗− 1
2 . Let us consider functions

𝑔 𝑗 such that 𝑔 𝑗 = 𝑔 for 𝑎2 𝑗 ≤ |𝑥 | ≤ 𝑎2 𝑗+1 and 𝑔 𝑗 is supported on some 𝜆 𝑗𝐴, and moreover, we have that

‖∇ 𝑗𝑔 𝑗 ‖𝐿2 (𝜆 𝑗 𝐴) ≤ 𝐶3‖∇ 𝑗𝑔 𝑗 ‖𝐿2 (𝐵 𝑗 ) and ‖𝑔 𝑗 ‖𝐿∞ (𝜆 𝑗 𝐴) ≤ 𝐶3‖𝑔 𝑗 ‖𝐿∞ (𝐵 𝑗 )

for 𝐵 𝑗 = {𝑥 : 𝑎2 𝑗 ≤ |𝑥 | ≤ 𝑎2 𝑗+1} ⊂ 𝜆 𝑗𝐴 and some constant 𝐶3 > 0. Using (A.11) for 𝑔 𝑗 , we have that

∫
O

|𝑥 |2𝜅𝑛
(
|∇𝑖𝑔 | (𝑥)

) 𝑝 ≤ ∞∑
𝑗=0

(4𝜆 𝑗 )2𝜅𝑛
--∇𝑖𝑔 𝑗

--𝑝
𝐿𝑝 (𝜆 𝑗 𝐴)

≤ 𝐶1

∑
𝑗≥0

𝜆2𝜅𝑛
𝑗

--∇𝑛𝑔 𝑗

--2
𝐿2 (𝜆 𝑗 𝐴) ‖𝑔 𝑗 ‖ 𝑝−2

𝐿∞ (𝜆 𝑗 𝐴) + 𝐶2

∑
𝑗≥0

𝜆−1‖𝑔 𝑗 ‖𝐿∞ (𝜆 𝑗 𝐴)

≤ 16𝑛𝐶1𝐶
𝑝

3 ‖𝑔‖
𝑝−2
𝐿∞ (O)

∑
𝑗≥0

𝜆2𝜅𝑛
𝑗

--∇𝑛𝑔 𝑗

--2
𝐿2 (𝐵 𝑗 ) + 16𝑛𝐶2𝐶

𝑝

3 ‖𝑔‖
𝑝

𝐿∞ (O)

∑
𝑗≥0

𝜆−1
𝑗

= 16𝑛𝐶1𝐶
𝑝

3 ‖𝑔‖
𝑝−2
𝐿∞ (O)

∑
𝑗≥0

𝜆2𝜅𝑛
𝑗

--∇𝑛𝑔 𝑗

--2
𝐿2 (𝐵 𝑗 ) + 16𝑛𝐶2𝐶

𝑝

3 ‖𝑔‖
𝑝

𝐿∞ (O)
2

𝑎
.

As 𝑎 ≥ 1, we have that 2
𝑎
≤ 2, and this concludes our proof. Note that 𝐶1, 𝐶2, 𝐶3, 𝑝 are independent of

𝜅, 𝑛, 𝑎. �

Lemma A.3. Let 𝑎 ≥ 1 and consider O = R3 \ 𝐵(0, 𝑎). Let 𝜅 ∈ (0, 1 − 2/𝑛) and 𝜅′ ∈ R. We have that

for any 0 ≤ 𝑖 ≤ 𝑛,

‖|𝑥 |𝜅𝑖+𝜅′∇𝑖 𝑓 ‖𝐿2 (O) �𝑛,𝜅,𝜅′
---|𝑥 | 𝜅′ 𝑓 (𝑥)---1−𝛽

𝐿2 (O)

---|𝑥 | 𝑛𝜅+𝜅′∇𝑛𝑥 𝑓 (𝑥)---𝛽
𝐿2 (O)

+
---|𝑥 | 𝜅′ 𝑓 (𝑥)---

𝐿2 (O)
, (A.12)

where 𝛽 = 𝑖/𝑛.

Proof. We will follow an analogous strategy to the proof of Lemma A.3. The principal difference is
that in place of (A.9), we use the following Gagliardo-Nirenberg inequality:

--∇𝑖 𝑓 --2
𝐿2 (𝐴) ≤ 𝐶1 ‖∇𝑛 𝑓 ‖2𝛽𝐿2 (𝐴) ‖ 𝑓 ‖

2(1−𝛽)
𝐿2 (𝐴) + 𝐶2‖ 𝑓 ‖2𝐿2 (𝐴) , (A.13)

where A is the annulus where 1 ≤ |𝑥 | ≤ 4 and 𝐶1, 𝐶2 are some absolute constants. Given (A.13), one
argues in a completely analogous manner as for Lemma A.3. �
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Lemma A.4. Let 𝑓 , 𝑔 be radially symmetric scalar funcitons over R3 and 𝐹, 𝐺 to be radially symmetric

vector fields over R3. Let us assume that 𝑓 , 𝐹𝑖 ∈ 𝑊2𝑚,∞ and 𝑔, 𝐺𝑖 ∈ 𝐻2𝑚. We have the following

inequalities: --Δ𝑚(𝐹∇𝐺𝑖) − 𝐹∇Δ𝑚𝐺𝑖 − 2𝑚𝜕𝜁 𝐹Δ
𝑚𝐺𝑖

--
𝐿2 �𝑚 ‖𝐹‖𝑊 2𝑚,∞ ‖𝐺‖𝐻 2𝑚−1 , (A.14)

‖Δ𝑚( 𝑓∇𝑔) − 𝑓∇Δ𝑚𝑔 − 2𝑚∇ 𝑓Δ𝑚𝑔‖𝐿2 �𝑚 ‖ 𝑓 ‖𝑊 2𝑚,∞ ‖𝑔‖𝐻 2𝑚−1 , (A.15)--Δ𝑚(𝐹∇𝑔) − 𝐹∇Δ𝑚𝑔 − 2𝑚𝜕𝜁 𝐹Δ
𝑚𝑔
--
𝐿2 �𝑚 ‖𝐹‖𝑊 2𝑚,∞ ‖𝑔‖𝐻 2𝑚−1 , (A.16)

‖Δ𝑚( 𝑓 div(𝐺)) − 𝑓 div(Δ𝑚𝐺) − 2𝑚∇ 𝑓Δ𝑚𝐺‖𝐿2 �𝑚 ‖ 𝑓 ‖𝑊 2𝑚,∞ ‖𝐺‖𝐻 2𝑚−1 . (A.17)

Proof. Equation (A.15) and equation (A.17) are clear by examination because we are subtracting
exactly the terms where m or 𝑚 + 1 derivatives fall on g or G. For equation (A.17), note also that
div(Δ𝑚𝐺) = Δ𝑚div(𝐺) because Δ𝐺 = ∇div(𝐺) for radial G.

Let us consider the equation (A.16) by expanding Δ𝑚 (𝐹∇𝑔). We clearly have

Δ
𝑚(𝐹∇𝑔) =

(∑
𝑖

𝜕2
𝑖

)𝑚∑
𝑗

𝐹𝑗𝜕 𝑗𝑔 =

∑
𝑗

(
𝐹𝑗𝜕 𝑗

(∑
𝑖

𝜕2
𝑖

)𝑚
𝑔

)

+
∑
𝑗

���
2𝑚
∑
𝑘

𝜕𝑘𝐹𝑗𝜕𝑘𝜕 𝑗

(∑
𝑖

𝜕2
𝑖

)𝑚−1

𝑔
���
+𝑂 (‖𝐹‖𝑊 2𝑚,∞ ‖𝑔‖𝐻 2𝑚−1 )

= 𝐹∇Δ𝑚𝑔 + 2𝑚
∑
𝑘, 𝑗

𝜕𝑘𝐹𝑗𝜕𝑘𝜕 𝑗Δ
𝑚−1𝑔 +𝑂𝑚 (‖𝐹‖𝑊 2𝑚,∞ ‖𝑔‖𝐻 2𝑚−1 ) . (A.18)

Now, we claim that for a radially symmetric field F,

𝜕𝑎𝐹𝑏 =
𝑦𝑎𝑦𝑏

𝜁2

(
𝜕𝜁 𝐹 −

𝐹

𝜁

)
+ 𝛿𝑎,𝑏𝐹

𝜁
, (A.19)

which follows just from writing 𝐹𝑏 = 𝐹
𝑥𝑏
𝜁

, where F is the radial component of F, and expanding

𝜕𝑎

(
𝐹

𝑥𝑏
𝜁

)
. Using (A.19), we see that

∑
𝑘, 𝑗

𝜕𝑘𝐹𝑗𝜕𝑘𝜕 𝑗Δ
𝑚−1𝑔 =

(
𝜕𝜁 𝐹 −

𝐹

𝜁

)∑
𝑘, 𝑗

𝑦𝑘 𝑦 𝑗

𝜁2
𝜕𝑘𝜕 𝑗Δ

𝑚−1𝑔 + 𝐹

𝜁
Δ
𝑚𝑔

=

(
𝜕𝜁 𝐹 −

𝐹

𝜁

)
𝜕2
𝜁Δ

𝑚−1𝑔 + 𝐹

𝜁
Δ
𝑚𝑔

=

(
𝜕𝜁 𝐹 −

𝐹

𝜁

) (
Δ
𝑚𝑔 − 2

𝜁
𝜕𝜁Δ

𝑚−1𝑔

)
+ 𝐹

𝜁
Δ
𝑚

= 𝜕𝜁 𝐹Δ
𝑚𝑔 +

𝜕𝜁 𝐹 − 𝐹/𝜁
𝜁

𝜕𝜁Δ
𝑚−1𝑔. (A.20)

In the second equality, we have used that
∑

𝑘, 𝑗
𝑦𝑘 𝑦 𝑗

𝜁 2 𝜕𝑘𝜕 𝑗 = 𝜕2
𝜁
, which follows from the fact that

[
𝜕𝜁 ,

𝑦𝑘
𝜁

]
and

𝜕2
𝜁 = 𝜕𝜁

∑
𝑗

𝑦 𝑗

𝜁
𝜕 𝑗 =
∑
𝑗

𝑦 𝑗

𝜁
𝜕𝜁 𝜕 𝑗 =

∑
𝑗 ,𝑘

𝑦 𝑗 𝑦𝑘

𝜁2
𝜕 𝑗 ,𝑘 . (A.21)

Substituting (A.20) in (A.18), we have

Δ
𝑚(𝐹∇𝑔) = 𝐹∇Δ𝑚𝑔 + 2𝑚

(
𝜕𝜁 𝐹Δ

𝑚𝑔 +
𝜕𝜁 𝐹 − 𝐹/𝜁

𝜁
𝜕𝜁Δ

𝑚−1𝑔

)
+𝑂𝑚 (‖𝐹‖𝑊 2𝑚,∞ ‖𝑔‖𝐻 2𝑚−1 ) . (A.22)
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Finally, note that
--- 𝜕𝜁 𝐹−𝐹/𝜁𝜁

---
∞
� ‖𝐹‖𝑊 2𝑚,∞ because of the radial symmetry of F. This completes the

proof of (A.16).
Finally, let us show (A.14). Analyzing Δ𝑚(𝐹∇𝐺𝑖), we have that

Δ
𝑚(𝐹∇𝐺𝑖) = 𝐹 · ∇Δ𝑚𝐺𝑖 + 2𝑚

∑
𝑗 ,𝑘

𝜕 𝑗𝐹𝑘𝜕 𝑗𝜕𝑘Δ
𝑚−1𝐺𝑖 +𝑂 (‖𝐹‖𝑊 2𝑚,∞ ‖𝐺‖𝐻 2𝑚−1 )

= 𝐹 · ∇Δ𝑚𝐺𝑖 + 2𝑚

(
𝜕𝜁 𝐹 −

𝐹

𝜁

)
𝜕2
𝜁

(
𝑦𝑖

𝜁
Δ
𝑚−1𝐺

)

+ 2𝑚
𝐹

𝜁
Δ
𝑚𝐺𝑖 +𝑂 (‖𝐹‖𝑊 2𝑚,∞ ‖𝐺‖𝐻 2𝑚−1 )

= 𝐹 · ∇Δ𝑚𝐺𝑖 + 2𝑚

(
𝜕𝜁 𝐹 −

𝐹

𝜁

)
𝑦𝑖

𝜁

(
Δ
𝑚𝐺 −

2𝜁𝜕𝜁 − 2

𝜁2
Δ
𝑚−1𝐺

)

+ 2𝑚
𝐹

𝜁
Δ
𝑚𝐺𝑖 +𝑂 (‖𝐹‖𝑊 2𝑚,∞ ‖𝐺‖𝐻 2𝑚−1 )

= 𝐹 · ∇Δ𝑚𝐺𝑖 + 2𝑚𝜕𝜁 𝐹Δ
𝑚𝐺𝑖 − 2𝑚

𝜕𝜁 𝐹 − 𝐹
𝜁

𝜁

𝑦𝑖

𝜁

2𝜁𝜕𝜁 − 2

𝜁
Δ
𝑚−1𝐺

+𝑂 (‖𝐹‖𝑊 2𝑚,∞ ‖𝐺‖𝐻 2𝑚−1 ) . (A.23)

Noting as before that
𝜕𝜁 𝐹−𝐹/𝜁

𝜁
is bounded in 𝐿∞ because of the symmetry and noting that

2𝜁𝜕𝜁 − 2

𝜁
Δ
𝑚−1𝐺 =

(
3𝜕𝜁 − div

)
Δ
𝑚−1𝐺, (A.24)

we conclude (A.14). �

Lemma A.5. Let us assume that U is a radially symmetric vector field and S is a radially symmetric

scalar field. Let us denote the radial variable by 𝜁 . Let 𝜙 be some radially symmetric weight with 𝜙 ≥ 1,

𝜙 = 1 on 𝐵(0, 1) and 𝜙(𝜁)1/2 ≤ 𝜁 for 𝜁 > 1.

Moreover, we assume that for any 0 ≤ 𝑖 ≤ 2𝐾 , we have

∫
R3

(
|∇𝑖U | + |∇𝑖S |

)2 (|∇2𝐾+1−𝑖U | + |∇2𝐾+1−𝑖S |
)2

𝜙2𝐾 ≤ 𝜀𝐸̄2 (A.25)

for some 𝜀 � 2−4𝐾 . Let us also assume

‖Δ𝐾U𝜙𝐾 ‖2
𝐿2 , ‖Δ𝐾S𝜙𝐾 ‖2

𝐿2 ≤ 𝐸̄2, ‖∇2𝐾−1U𝜙𝐾
1

𝜙1/4〈𝜁〉1/2
‖2
𝐿2 , ‖∇2𝐾−1S𝜙𝐾

1

𝜙1/4〈𝜁〉1/2
‖2
𝐿2 ≤ 𝜀𝐸̄2,

(A.26)

and

‖U ‖𝑊 3,∞ , ‖S ‖𝑊 3,∞ � 1 ‖∇U𝜙1/2‖𝐿∞ , ‖∇S𝜙1/2‖𝐿∞ � 1. (A.27)

Then, we have ---(Δ𝐾 (U · ∇U𝑖) − U∇Δ𝐾U𝑖 − 2𝐾𝜕𝜁UΔ
𝐾U𝑖

)
𝜙𝐾
---
𝐿2

= 𝑂
(
𝐸̄
)
, (A.28)---(Δ𝐾 (S∇S) − S∇Δ𝐾S − 2𝐾∇SΔ𝐾S

)
𝜙𝐾
---
𝐿2

= 𝑂
(
𝐸̄
)
, (A.29)
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---(Δ𝐾 (U · ∇S) − U · ∇Δ𝐾S − 2𝐾𝜕𝜁U · Δ𝐾S

)
𝜙𝐾
---
𝐿2

= 𝑂
(
𝐸̄
)
, (A.30)---(Δ𝐾 (Sdiv(U )) − Sdiv(Δ𝐾U ) − 2𝐾∇S · Δ𝐾U

)
𝜙𝐾
---
𝐿2

= 𝑂
(
𝐸̄
)
. (A.31)

Proof. Equations (A.29) and (A.31) just follow from distributing the derivatives in Δ𝐾 (S∇S) or
Δ𝐾 (Sdiv(𝑈)), respectively. For example, equation (A.29) follows from

𝜙𝐾
��Δ𝐾 (S∇S) − S∇Δ𝐾S − 2𝐾∇SΔ𝐾S

�� ≤ 2𝐾−2∑
𝑖=0

(
2𝐾

𝑖

)
|∇2𝐾−𝑖S | |∇𝑖+1S |𝜙𝐾 ,

so that --Δ𝐾 (S∇S) − S∇Δ𝐾S − 2𝐾∇SΔ𝐾S
--
𝐿2 ≤ ‖S ‖𝐿∞ ‖∇2𝐾S𝜙𝐾 ‖𝐿2 + 22𝐾 𝜀

1
2 𝐸̄ = 𝑂

(
𝐸̄
)
.

Equation (A.31) is shown in a completely analogous way.
Let us now show (A.30). Reasoning in the exact same way as we did to obtain (A.22), we have that����Δ𝐾 (U∇S) − U∇Δ𝐾S − 2𝐾

(
𝜕𝜁UΔ

𝐾S +
𝜕𝜁U − U/𝜁

𝜁
𝜕𝜁Δ

𝐾−1S

)����
≤ |∇2𝐾U | |∇S | + 22𝐾

2𝐾−2∑
𝑖=1

|∇2𝐾−𝑖U | |∇𝑖+1S |.

Using (A.25) and (A.26), we obtain that---(Δ𝐾 (U · ∇S) − U · ∇Δ𝐾S − 2𝐾𝜕𝜁U · Δ𝐾S

)
𝜙𝐾
---
𝐿2

≤ 2𝐾

----𝜕𝜁U − U/𝜁
𝜁

〈𝜁〉1/2𝜙1/4
----
𝐿∞

---- 𝜙𝐾

𝜁1/2𝜙1/4∇
2𝐾−1S

----
𝐿2

+ 22𝐾 𝜀1/2𝐸̄

� 𝐸̄ + 2𝐾𝜀1/2𝐸̄

----𝜕𝜁U − U/𝜁
𝜁

〈𝜁〉1/2𝜙1/4
----
𝐿∞

� 𝐸̄

(
1 +
-----
𝜕𝜁U − U

𝜁

𝜁
〈𝜁〉1/2𝜙1/4

-----
𝐿∞

)
. (A.32)

Consider the regions B1 = 𝐵(0, 1) and B2 = R3 \ B1. We have that----𝜕𝜁U − U/𝜁
𝜁

〈𝜁〉1/2𝜙1/4
----
𝐿∞
≤
----𝜕𝜁U − U/𝜁

𝜁

----
𝐿∞ (B2)

+
--𝜕𝜁U--𝐿∞ (B2) + ‖U ‖𝐿∞ (B1)

≤ ‖U ‖𝑊 3,∞ +
--𝜕𝜁U--𝐿∞ (B2) + ‖U ‖𝐿∞ (B2)

� 1, (A.33)

where in the first inequality, we used 𝜙(𝜁)1/4 ≤ 𝜁1/2, and in the last inequality, we used (A.27). Plugging
(A.33) into (A.32), we conclude (A.30).

Lastly, let us show (A.28). In the same way as we obtained (A.23), we have that�����Δ𝐾 (U · ∇U𝑖) − U · ∇Δ𝐾U𝑖 − 2𝐾𝜕𝜁UΔ
𝐾U𝑖 + 2𝐾

𝜕𝜁U − U

𝜁

𝜁

𝑦𝑖

𝜁

2𝜁𝜕𝜁 − 2

𝜁
Δ
𝑚−1U

�����
≤ |∇2𝐾U | |∇U | + 22𝐾

2𝐾−2∑
𝑖=1

|∇2𝐾−𝑖U | |∇𝑖+1U𝑖 |.
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Using (A.24), (A.25) and (A.26), we get that---(Δ𝐾 (U · ∇U𝑖) − U · ∇Δ𝐾U𝑖 − 2𝐾𝜕𝜁UΔ
𝐾U𝑖

)
𝜙𝐾
---
𝐿2

≤ 2𝐾

-----
𝜕𝜁U − U

𝜁

𝜁
〈𝜁〉1/2𝜙1/4

-----
𝐿∞

---- 𝜙𝐾

〈𝜁〉1/2𝜙1/4 (3𝜕𝜁 − div)Δ𝐾−1U

----
𝐿2

+ 𝐸̄ + 22𝐾 𝜀1/2𝐸̄

≤ 2𝐾𝜀1/2𝐸̄

-----
𝜕𝜁U − U

𝜁

𝜁
〈𝜁〉1/2𝜙1/4

-----
𝐿∞

+ 2𝐸̄ .

Finally, using (A.33), we conclude (A.28). �

Explicit computations

Lemma A.6. For every 𝛾 > 1, we have that 𝑟∗(𝛾) < 2 − 1
𝛾

. Equivalently,

2 > (𝑟∗(𝛾) − 1)
(
2 + 1

𝛼

)
.

We also have 𝑟∗(𝛾) < 𝛾.

Proof. For 𝛾 ≤ 5
3 , we have that

2 − 1

𝛾
− 𝑟∗(𝛾) =

(
2
√

2 −
√
𝛾 − 1
) √

𝛾 − 1(√
2
√

1
𝛾−1 + 1

)2
𝛾

,

which is positive, as 𝛾 − 1 < 2
√

2. However, for 𝛾 > 5
3 ,

2 − 1

𝛾
− 𝑟∗(𝛾) =

(𝛾 − 1)
((

2
√

3 − 3
)
𝛾 −
√

3 + 2
)

(√
3(𝛾 − 1) + 2

)
𝛾

> 0.

This concludes the proof of 𝑟∗(𝛾) < 2 − 1
𝛾

. As a consequence, we get

𝑟∗(𝛾) − 𝛾 < −𝛾 + 2 − 1

𝛾
=
−(𝛾 − 1)2

𝛾
< 0,

so we also get 𝛾 > 𝑟∗(𝛾). Finally, note that

2 > (𝑟∗(𝛾) − 1)
(
2 + 1

𝛼

)
⇔ 1 > (𝑟∗(𝛾) − 1) 𝛾

𝛾 − 1
⇔ 𝛾

𝛾 − 1
> 𝑟∗(𝛾) − 1⇔ 2 − 1

𝛾
< 𝑟∗(𝛾). �

Lemma A.7. For 𝛾 = 7/5, we have that

lim
𝑟→𝑟∗

𝐷𝑍,2 =
19 − 9

√
5

132
< 0, lim

𝑟→𝑟∗
𝑊1 =

5 − 3
√

5

4
< 0,

lim
𝑟→𝑟∗

𝐷𝑊 ,0 =

√
5 − 1

2
> 0, lim

𝑟→𝑟∗
𝑍1 =

3
√

5 − 5

6
> 0,

lim
𝑟→𝑟∗

𝑁𝑊 ,0 = −5

2
+
√

5 < 0 lim
𝑟→𝑟∗

𝜕𝑍𝑁𝑍 (𝑃𝑠) =
3(−5 + 7

√
5)

20
> 0,
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lim
𝑟→𝑟∗

𝐷𝑍,1𝑘 =
3
√

5 − 1

4
> 0, lim

𝑟→𝑟∗
𝑘𝑁𝑍,1 =

25 − 9
√

5

12
> 0,

lim
𝑟→𝑟∗

(𝜕𝑍𝑁𝑊 (𝑃𝑠) −𝑊1𝜕𝑍𝐷𝑊 ) =
1 −
√

5

2
< 0, lim

𝑟→𝑟∗

𝐷𝑍,2

2𝑘𝐷𝑍,1
=
−29 + 12

√
5

726
< 0,

lim
𝑟→𝑟∗

𝜕𝑍𝐵
fl
7/5(𝑊0, 𝑍0) = 625

−58951 + 26559
√

5

1254528
> 0, lim

𝑟→𝑟∗
𝑍0 = −

√
5 < 0.

Proof. We compute the limits using their formulas and obtain the results above. �

Lemma A.8. For 𝛾 = 7/5 and n sufficiently large with 𝑟 ∈ (𝑟𝑛, 𝑟𝑛+1), we have

𝐷𝑊 ,0 ≤ 2|𝑍0 |, |𝑍1 | ≤ 3/10, |𝑊1 | ≤ 1/2,
|𝜕𝑖𝑁◦ (𝑃𝑠) | ≤ 2, |𝜕𝑖𝐷◦ | ≤ 3/5, |𝜕𝑖𝜕 𝑗𝑁◦ (𝑃𝑠) | ≤ 7/5,

for any 𝑖, 𝑗 ∈ {𝑊, 𝑍}.
Proof. The first three items follow from the limits of 𝐷𝑊 ,0, 𝑍0, 𝑍1 and 𝑊1 as 𝑟 → 𝑟∗ in Lemma A.7.
For |𝜕𝑖𝑁◦(𝑃𝑠) | ≤ 2, note that

lim
𝑟→𝑟∗

∇𝑁𝑊 (𝑃𝑠) =
(
7

4
− 29

4
√

5
, 1 − 4√

5

)
, lim

𝑟→𝑟∗
∇𝑁𝑍 (𝑃𝑠) =

(
1

10

(
7
√

5 − 5
)
,

3

20

(
7
√

5 − 5
))

,

and all the components on those limits are smaller than 2 in absolute value. Lastly, for the last two items,
let us write the expressions of 𝐷◦, 𝑁◦ for 𝛾 = 7/5, which are

𝐷𝑊 (𝑊, 𝑍) = 1 + 3

5
𝑊 + 2

5
𝑍, 𝑁𝑊 (𝑊, 𝑍) = −𝑟𝑊 − 7𝑊2

10
− 2𝑊𝑍

5
+ 𝑍2

10
,

𝐷𝑍 (𝑊, 𝑍) = 1 + 2

5
𝑊 + 3

5
𝑍, 𝑁𝑍 (𝑊, 𝑍) = −𝑟𝑍 − 7𝑍2

10
− 2𝑊𝑍

5
+ 𝑊2

10
.

It is clear that any first derivative of 𝐷◦ is at most 3/5 in absolute value and any second derivative of
𝑁◦ is at most 7/5 in absolute value. �

Lemma A.9. Let 𝛾 ∈ (1, +∞). We have that 𝐷𝑍,1 = 0 for 𝑟 = 𝑟∗(𝛾).
Proof. We separate in two cases: 1 < 𝛾 ≤ 5

3 and 𝛾 > 5
3 . For each case, we compute the limit

lim
𝑟→𝑟∗

𝐷𝑍,1 = lim
𝑟→𝑟∗

(
1 + 3 − 𝛾

4
𝑊1 +

1 + 𝛾

4
𝑍1

)
= 0

using equation (2.6). �

Lemma A.10. Let us recall 𝐷𝑊 ,0 = 𝐷𝑊 (𝑊0, 𝑍0). For every 𝛾 ∈ (1, +∞) and 𝑟 ∈ (1, 𝑟∗(𝛾)), we have

𝐷𝑊 ,0 > 0.

Proof. We have that

𝐷𝑊 ,0 = 𝐷𝑊 (𝑊0, 𝑍0) =
𝛾 + (𝛾 − 3)𝑟 + 1 +R1

2(𝛾 − 1) >
𝛾 + (𝛾 − 3)𝑟 + 1

2(𝛾 − 1) .

Now, if 𝛾 ≥ 3, this is clearly positive. If 𝛾 < 3, we see that 1 + 𝛾 − (3− 𝛾)𝑟 decreases with r. Therefore,
it suffices to check that 1 + 𝛾 − (3 − 𝛾)𝑟∗(𝛾) > 0 to conclude that 𝐷𝑊 ,0 > 0. For 1 < 𝛾 < 5

3 , we obtain

1 + 𝛾 − (3 − 𝛾)𝑟∗(𝛾) = 4(𝛾 − 1)
√

2√
𝛾−1
+ 1

> 0.
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For 𝛾 ≥ 5
3 , we obtain

1 + 𝛾 − (3 − 𝛾)𝑟∗(𝛾) = 𝛾 − 1

(
√

3(𝛾 − 1) + 2)

((
3 +
√

3
)
𝛾 +
√

3 − 5
)
,

where both the numerator and denominator on the fraction are clearly positive since 𝛾 ≥ 5
3 . The last

factor is also positive since 5−
√

3
3+
√

3
< 5

3 . �

Lemma A.11. Let us recall 𝐷𝑍,1 = ∇𝐷𝑍 (𝑃𝑠) (𝑊1, 𝑍1). For every 𝛾 ∈ (1, +∞) and 𝑟 ∈ [1, 𝑟∗(𝛾)), we

have 𝐷𝑍,1 > 0.

Proof. First of all, 𝐷𝑍,1 = − 3−5𝛾+(1+𝛾)𝑟+R2 (𝛾−1)
4(𝛾−1) , so it suffices to show that the numerator is negative.

Using Lemma A.6, we have that

3 − 5𝛾 + (1 + 𝛾)𝑟 ≤ 3 − 5𝛾 + (1 + 𝛾)
(
2 − 1

𝛾

)
=
−(𝛾 − 1) (3𝛾 − 1)

𝛾
< 0. (A.34)

Therefore, the proof would follow if we show that

0 < (3 + 𝑟 − 5𝛾 + 𝑟𝛾)2 − (𝛾 − 1)2R2
2 = (3𝛾 − 1)R2

1 + (3𝛾 − 5) (1 − 3𝛾 + (𝛾 + 1)𝑟)R1. (A.35)

Now, using Lemma A.6 again, we have

1 − 3𝛾 + (𝛾 + 1)𝑟 < 1 − 3𝛾 + (𝛾 + 1)
(
2 − 1

𝛾

)
=
−(𝛾 − 1)2

𝛾
< 0.

Therefore, if 𝛾 ≤ 5
3 , both summands in (A.35) are positive, and we are done. Thus, we just need to show

that (A.35) is positive for 𝛾 > 5
3 . It suffices to show that

𝐴 = (3𝛾 − 1)2R2
1 − (3𝛾 − 5)2(1 + 𝑟 − 3𝛾 + 𝑟𝛾)2 > 0. (A.36)

For 𝛾 ≥ 5
3 , we have that

𝑑𝐴

𝑑𝑟
= −32(𝛾 − 1) (6𝛾 − 2 + (𝛾 − 1) (3𝛾 + 1)𝑟) < 0, and 𝐴

���
𝑟=𝑟∗

= 0,

so we conclude that the inequality in (A.36) for all 𝑟 ∈ (1, 𝑟∗(𝛾)). �

Lemma A.12. Let us recall 𝐷̌𝑍,1 = ∇𝐷𝑍 (𝑃𝑠) (𝑊1, 𝑍̌1). For every 𝛾 ∈ (1, +∞) and 𝑟 ∈ [1, 𝑟∗(𝛾)], we

have 𝐷̌𝑍,1 > 0.

Proof. We have that 𝐷̌𝑍,1 = − 3+𝑟−5𝛾+𝑟𝛾−(𝛾−1)R2
4(𝛾−1) , so we just need to show that the numerator is negative.

This follows from −5𝛾 + 3 + 𝑟 + 𝑟𝛾 < 0, which was justified in (A.34). �

Lemma A.13. Let us recall 𝑠fr
∞ = 𝐹0 −𝑊0 − 𝑍0 =

−4(𝑟−1)
3(𝛾−1) −𝑊0 − 𝑍0. Let either 𝛾 > 1 and 𝑟 = 𝑟3 or

𝛾 = 7/5 and 𝑟 = 𝑟∗(7/5). We have that 𝑠fr
∞ > 0.

Proof. We have that

6(𝛾 − 1)𝑠fr
∞ = 9𝛾 − 3𝛾𝑟 + 𝑟 − 3R1 − 7. (A.37)

Lemma A.23 yields

9𝛾 − 7 + (1 − 3𝛾)𝑟 > 9𝛾 − 7 + (1 − 3𝛾)
(
2 − 1

𝛾

)
= 3𝛾 − 2 − 1

𝛾
> 0,
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so (A.37) is positive because

(9𝛾 − 3𝛾𝑟 + 𝑟 − 7)2 − 9R2
1 = 16(𝑟 − 1) (2 − 5𝑟 + 3𝛾𝑟) > 0,

where in the last inequality, we used (A.42). �

Properties of the phase portrait

Lemma A.14. Let 𝛾 = 7/5 and r sufficiently close to 𝑟∗. Let us recall that the region T is the triangular

region enclosed by 𝑁𝑊 = 0, the horizontal segment from 𝑃o to 𝑃′′
o

and 𝐷𝑍 = 0. We call those parts of

𝜕T by 𝑆1, 𝑆2, 𝑆3, respectively. Then, the field (𝑁𝑊 𝐷𝑍 , 𝑁𝑍𝐷𝑊 ) points inwards to T both in 𝑆1 and 𝑆2.

Proof. The field over 𝑁𝑊 = 0 can be simply written as (0, 𝑁𝑍𝐷𝑊 ). The branch of 𝑁𝑊 = 0 passing
through 𝑃o can be parametrized as

𝑍 = 2𝑊 −
√

10𝑟𝑊 + 11𝑊2, 𝑊 > 0, (A.38)

in the region 𝑊 ≥ 𝑍 . Its derivative satisfies

𝑍 ′ =
2
√
𝑊 (10𝑟 + 11𝑊) − 5𝑟 − 11𝑊√

𝑊 (10𝑟 + 11𝑊)

≤ 7𝑊 + 7
√
𝑟𝑊 − 5𝑟 − 11𝑊√

𝑊 (10𝑟 + 11𝑊)
≤ 8
√
𝑟𝑊 − 4𝑟 − 4𝑊√
𝑊 (10𝑟 + 11𝑊)

=
−4(
√
𝑊 − √𝑟)2√

𝑊 (10𝑟 + 11𝑊)
< 0,

where we used that
√

11 < 7/2 in the first inequality. Therefore, as Z decreases with W, the field
(0, 𝑁𝑍𝐷𝑊 ) will point inwards to T on 𝑆1 if 𝑁𝑍𝐷𝑊 > 0. We have that 𝐷𝑊 > 0 as T is in Ω. With
respect to 𝑁𝑍 , note that it intersects our branch of 𝑁𝑊 at two points: (0, 0) and 𝑃o (the other two
intersections of 𝑁𝑊 = 0 and 𝑁𝑍 = 0 from Lemma A.17 correspond to the other branch). Therefore,
the sign of 𝑁𝑍 at 𝑆1 is the opposite one to the one after 𝑃o. Taking asymptotics of 𝑁𝑍 over the branch
(A.38), we see

𝑁𝑍 (𝑊, 2𝑊 −
√

10𝑟𝑊 + 11𝑊2) = 8

5

(
2𝑊3/2√10𝑟 + 11𝑊 − 7𝑊2

)
+ 𝑟
(√

𝑊
√

10𝑟 + 11𝑊 − 9𝑊
)

=
8

5
(−7 + 2

√
11)𝑊2 +𝑂

(
𝑊3/2
)
,

and as 2
√

11 < 7, we get that 𝑁𝑍 is negative between 𝑃o and infinity over the branch (A.38), so it is
positive over 𝑆1.

Now let us evaluate the field over 𝑆2. As 𝑆2 is horizontal, the field (𝑁𝑊 𝐷𝑍 , 𝑁𝑍𝐷𝑊 ) will point
inwards if 𝑁𝑍𝐷𝑊 > 0. Similarly as before, 𝐷𝑊 > 0 because T lies on Ω. With respect to 𝑁𝑍 , we have
that

𝑁𝑍 (𝑃o + (𝑡, 0)) =
1

40
𝑡
(
5
(
1 + 3

√
3
)
𝑟 + 4𝑡
)
,

which is positive for 𝑡 > 0, so we also get 𝑁𝑍 > 0. �

Lemma A.15. For 𝛾 = 7
5 , and r close enough to 𝑟∗(7/5), we have that

𝑏fl
7/5,𝑊
����
−𝐷𝑍,2 −

√
𝐷2

𝑍,2 − 8𝐷𝑍,1𝐷
fl
𝑍,3/3

2𝐷fl
𝑍,3/3

����
< s𝑊0. (A.39)
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Proof. As 𝛾 = 7
5 is fixed, Proposition 2.2 together with equations (2.1), (2.2), (2.6) give formulas for

all the coefficients, depending on r and its radicals R1,R2 (given in equations (2.3), (2.7)). As 𝑏fl only
depends on those coefficients, we get expressions for 𝐷𝑍,1, 𝐷𝑍,2, 𝐷

fl
𝑍,3, depending on them.

Using that for 𝛾 = 7/5, we have

𝑟 =
7

4
− 1

8

√
5
√

5R2
1 + 4, (A.40)

R2 =
1

4

√
R1

(
−24
√

5
√

5R2
1 + 4 − 95R1 + 80

)
− 12

√
5
√

5R2
1 + 4 + 184,

we can express both sides of equation (A.39) just in terms of R1. Taylor expanding R1, we obtain

𝑏fl
7/5,𝑊
����
−𝐷𝑍,2 −

√
𝐷2

𝑍,2 − 8𝐷𝑍,1𝐷
fl
𝑍,3/3

2𝐷fl
𝑍,3/3

����
=

(
3
√

5

2
− 5

2

)
− 15R1

4

−
15
(
2001480 + 886943

√
5
)
R2

1

1936
+𝑂
(
R3

1

)

s𝑊0 =
1

2

(
3
√

5 − 5
)
− 15R1

4
+

15
√

5R2
1

16
+𝑂
(
R3

1

)
,

so we conclude that (A.39) holds if R1 is sufficiently small. However, for 𝛾 = 7
5 , we have that

𝑟∗ = 1
4 (7 −

√
5). From (A.40), we see that R1 → 0 as 𝑟 → 𝑟∗, so we are done. �

Lemma A.16. Let us recall that T (𝑀 ) is the triangle with vertices 𝑃𝑠 , 𝑃𝑠 + (𝑀,−𝑀) and 𝑃𝑠 + (𝑀, ℎ),
where h is such that this third point falls on the line 𝐷𝑍 = 0. We have that 𝑁𝑊 < 0 on T (𝑀 ) for any

𝑀 > 0.

Proof. A generic point of T (𝑀 ) can be written as 𝑃 = 𝑃𝑠 + 𝑡 (1, 𝑠), where s is between −1 and − 1−𝛼
1+𝛼 .

Thus,

𝑁𝑊 (𝑃) = 𝑁𝑊 (𝑃𝑠) + 𝑡∇𝑁𝑊 (𝑃𝑠) · (1, 𝑠) + 𝑡2(1, 𝑠)𝐻𝑁𝑊

2
(1, 𝑠)

= 𝑁𝑊 ,0 +
1

4
𝑡
(
(−4𝑟 − 4𝛾𝑊0 + 𝛾𝑍0 − 3𝑍0) + 𝑠(𝛾𝑊0 − 3𝑊0 + 2𝛾𝑍0 − 2𝑍0)

)
+ 1

4
𝑡2
(
(𝛾 − 1)𝑠2 + (𝛾 − 3)𝑠 − 2𝛾

)

= 𝑁𝑊 ,0 +
𝑡

4
𝐴 + 𝑡2

4
𝐵.

We have that 𝑁𝑊 ,0 < 0 due to Lemmas A.26 and A.7. We will conclude the proof by showing that
𝐴 < 0 and 𝐵 < 0 for 𝑠 ∈

[
−1,− 1−𝛼

1+𝛼
]
.

Let us start showing 𝐵 < 0. As B is a second-degree polynomial in s with positive second derivative,
it will be negative for 𝑠 ∈

[
−1,− 1−𝛼

1+𝛼
]

as long as it is negative in both extrema. We have that

𝐵 |𝑠=−1 = 2 − 2𝛾 < 0, and 𝐵 |𝑠=− 1−𝛼
1+𝛼

= −16(𝛾 − 1)𝛾
(1 + 𝛾)2 < 0,

and this concludes 𝐵 < 0.
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Now, we show 𝐴 < 0. As A is an affine function of s, in order to show that it is negative for
𝑠 ∈
[
−1,− 1−𝛼

1+𝛼
]
, it suffices to show it at both extrema. We have that

(𝛾2 − 1)𝐴
���
𝑠=− 1−𝛼

1+𝛼
= −8R1𝛾 + 4

(
3𝛾2 − 10𝛾 + 3 +

(
−3𝛾2 + 6𝛾 + 1

)
𝑟
)

︸�������������������������������������������︷︷�������������������������������������������︸
𝐶

,

so it suffices to show𝐶 < 0. As C is an affine function of r, it suffices to check its sign at 𝑟 = 1 and 𝑟 = 𝑟∗:

𝐶

���
𝑟=1

= 4 − 4𝛾 < 0,

𝐶

���
𝑟=𝑟∗

= −
(√

3 − 1
)
(𝛾 − 1) (3𝛾 − 1) < 0, for 𝛾 >

5

3
,

𝐶

���
𝑟=𝑟∗

=

−2(𝛾 − 1)
(
3𝛾 − 1 + 4

√
2
√

1
𝛾−1

)
(
1 +
√

2
𝛾−1

)2 < 0 for 1 < 𝛾 ≤ 5

3
.

Finally, we need to show that 𝐴|𝑠=−1 is also negative. We have that

𝐴

���
𝑠=−1

= −3(𝛾 + 1)R1 + 9𝛾2 − 22𝛾 + 1 +
(
−3𝛾2 − 2𝛾 + 17

)
𝑟︸������������������������������������������︷︷������������������������������������������︸

𝐷

. (A.41)

We again split into two cases, 1 < 𝛾 < 3 and 𝛾 ≥ 3.
For the case 1 < 𝛾 < 3, we will show 𝐷 < 0, which trivially gives 𝐴|𝑠=−1 < 0 from (A.41). As D is

an affine function of r, it suffices to show that it is negative at 𝑟 = 1 and at 𝑟 = 1 + 2(
1+
√

2
𝛾−1

)2 ≥ 𝑟∗. We

have that

𝐷

���
𝑟=1

= 6(𝛾 − 3) (𝛾 − 1) < 0, and 𝐷

���
𝑟=1+ 2(

1+
√

2
𝛾−1

)2
= 3(𝛾 − 3)𝛾

√
2

𝛾 − 1
− 4 < 0.

For the case 𝛾 ≥ 3, we will show that 9(𝛾 + 1)2R2
1 > 𝐷2. This clearly implies that 𝐴|𝑠=−1 < 0 from

(A.41). We have that

9(𝛾 + 1)2R2
1 − 𝐷2

16(𝛾 − 1) = 27𝛾2 − 10𝛾 − 5 +
(
−6𝛾2 − 28𝛾 + 10

)
𝑟 +
(
−3𝛾2 + 2𝛾 + 13

)
𝑟2.

For 𝛾 > 3, both the terms in r and 𝑟2 in the previous equation are negative; thus, the expression is
decreasing. In particular, we can lower bound it by its value at 𝑟 = 𝑟∗; that is,

9(𝛾 + 1)2R2
1 − 𝐷2

16(𝛾 − 1) ≥ 27𝛾2 − 10𝛾 − 5 +
(
−6𝛾2 − 28𝛾 + 10

)
𝑟∗ +
(
−3𝛾2 + 2𝛾 + 13

)
(𝑟∗)2

=

6(𝛾 − 1)2
(
3
(
3 −
√

3
)
𝛾2 − 2

(
7 −
√

3
)
𝛾 + 5

√
3 − 7
)

(√
3(𝛾 − 1) + 2

)2 .

Noting that the second-degree polynomial
(
3
(
3 −
√

3
)
𝛾2 − 2

(
7 −
√

3
)
𝛾 + 5

√
3 − 7
)

is positive for

𝛾 > 3, we are done. �
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Lemma A.17. There are three points in our phase portrait 𝑊 − 𝑍 ≥ 0 at which 𝑁𝑊 = 𝑁𝑍 = 0, which

are (0, 0), (−𝑟,−𝑟), 𝑃o.

• For 𝛾 > 1 and 𝑟 ∈ (𝑟3, 𝑟4), no equilibrium point is in the region Ω. Moreover, the point 𝑃o is a

saddle point of the field (𝑁𝑊 𝐷𝑍 , 𝑁𝑍𝐷𝑊 ).
• For 𝛾 = 7/5 and r sufficiently close to 𝑟∗, only the point 𝑃o is in Ω, and it lies in the region 𝑍 > 𝑍0.

Proof. From Bézout’s theorem, there are at most four solutions to 𝑁𝑊 = 𝑁𝑍 = 0. By direct substitution
in the expressions of 𝑁𝑊 , 𝑁𝑍 , it is clear that (0, 0), (−𝑟,−𝑟),

𝑃o =

(
2(
√

3 − 1)𝑟
3𝛾 − 1

,−2(1 +
√

3)𝑟
3𝛾 − 1

)
and

(
−2(1 +

√
3)𝑟

3𝛾 − 1
,
2(
√

3 − 1)𝑟
3𝛾 − 1

)
,

are those four solutions. It is also clear that the last one lies in 𝑊 − 𝑍 < 0. Now, recall Ω is the region
of 𝑊 − 𝑍 ≥ 0, where 𝐷𝑊 > 0 and 𝐷𝑍 < 0. Note that 𝐷𝑍 (0, 0) = 1, 𝐷𝑊 (−𝑟,−𝑟) = 1 − 𝑟 < 0, so the
only equilibrium point that can possibly lie on Ω is 𝑃o.

For the case 𝑟 ∈ (𝑟3, 𝑟4), a direct calculation gives us

(3𝛾 − 1)𝐷𝑍 (𝑃o) = 3𝛾 − 1 −
(√

3(𝛾 − 1) + 2
)
𝑟 > 3𝛾 − 1 −

(√
3(𝛾 − 1) + 2

)
𝑟4(𝛾).

From Lemma A.23, we have 𝑟4 <
3𝛾−1

2+
√

3(𝛾−1) . Therefore, in the case 𝑟 ∈ (𝑟3, 𝑟4), we get that

(3𝛾 − 1)𝐷𝑍 (𝑃o) > 3𝛾 − 1 −
(√

3(𝛾 − 1) + 2
) 3𝛾 − 1

2 +
√

3(𝛾 − 1)
= 0.

For 𝛾 = 7/5 and 𝑟 = 𝑟∗(𝛾), we get

𝐷𝑍 (𝑃o) =
−3 − 7

√
3 + 5

√
5 +
√

15

32
< 0, and 𝐷𝑊 (𝑃o) =

−3 + 7
√

3 + 5
√

5 −
√

15

32
> 0.

Recall that 𝑌0 is the Z coordinate of 𝑃o. At 𝛾 = 7/5 and 𝑟 = 𝑟∗, we have

𝑌0 = −
5
(
1 +
√

3
) (

4 +
√

5
)

4
(
1 +
√

5
)2 > −

√
5 = 𝑍0.

Lastly, we need to show that for the case 𝛾 > 1, 𝑟 ∈ (𝑟3, 𝑟4), we have that 𝑃o is a saddle point of
(𝑁𝑊 𝐷𝑍 , 𝑁𝑍𝐷𝑊 ). We calculate the Jacobian at 𝑃o, and its eigenvalues are given by

𝜆± =
𝑟

2(1 − 3𝛾)2
(
(−9𝛾2 + 18𝛾 − 5) + (15𝛾2 − 18𝛾 − 1)𝑟 ±

√
𝐵
)
=

𝑟

2(1 − 3𝛾)2
(
𝐴 ±
√
𝐵
)
,

𝐵 =

(
27𝛾2 − 30𝛾 + 7

)2
+ (3𝛾(𝛾(3𝛾(𝛾 + 20) − 94) + 28) + 25)𝑟2 +

(
106 − 6𝛾

(
45𝛾3 − 110𝛾 + 88

))
𝑟.

Let 𝑟 ′ = 3𝛾−1√
3(𝛾−1)+2 . We will show that 𝐵 > 0, 𝐴 > 0 and 𝐴2 − 𝐵 > 0 for all 𝑟 ∈ (1, 𝑟 ′). This directly

gives that 𝜆+ > 0, 𝜆− < 0 for 𝑟 ∈ (1, 𝑟 ′). Assume 𝑟 ′ > 𝑟4 by Lemma A.23, and we would be done.
We start with 𝐴 > 0. As A is affine with respect to r, it suffices to check that A is positive for 𝑟 = 1

and for 𝑟 = 𝑟 ′. This follows from

𝐴

���
𝑟=1

= 6(𝛾2 − 1) > 0, 𝐴

���
𝑟=𝑟 ′

=
((6 + 2

√
3)𝛾 + (9 − 5

√
3) (𝛾 − 1)) (3𝛾 − 1) (𝛾 − 1)

2 + (𝛾 − 1)
√

3
> 0.
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Now, we show 𝐵 > 0. As an auxiliary step, we will show that 𝑑
𝑑𝑟

𝐵 < 0. As 𝑑
𝑑𝑟

𝐵 is an affine function
of r, it suffices to show that for 𝑟 = 1 and 𝑟 = 𝑟 ′, we have

𝑑

𝑑𝑟

���
𝑟=1

𝐵 = −12(𝛾 − 1) (𝛾 + 1) (21𝛾2 − 30𝛾 + 13) < 0,

𝑑

𝑑𝑟

���
𝑟=𝑟 ′

𝐵 = −
2(𝛾 − 1) (3𝛾 − 1)

(
9
(
5
√

3 − 1
)
𝛾3 +
(
15
√

3 − 99
)
𝛾2 +
(
213 − 105

√
3
)
𝛾 + 53

√
3 − 81
)

√
3(𝛾 − 1) + 2

< 0.

Therefore, 𝐵 ≥ 𝐵 |𝑟=𝑟 ′ , so it suffices to show that 𝐵 |𝑟=𝑟 ′ > 0. We have that

𝐵

���
𝑟=𝑟 ′

=

6(3𝛾 − 1)2(𝛾 − 1)2
(
(19
√

3 − 18)𝛾2 + (60 − 34
√

3)𝛾(𝛾 − 1) + 26 − 15
√

3
)

(√
3𝛾 −

√
3 + 2
)2 > 0.

Finally, let us show that 𝐴2 − 𝐵 > 0. We have that

𝐴2 − 𝐵

24(𝛾 − 1) (3𝛾 − 1) = 9𝛾2 − 6𝛾 + 1 + (4 − 12𝛾)𝑟 +
(
−3𝛾2 + 6𝛾 + 1

)
𝑟2

︸����������������������������������������������������������︷︷����������������������������������������������������������︸
𝐶

.

Now note that C is a second order polynomial of r and

𝐶

���
𝑟=1

= 6(𝛾2 − 1) > 0, 𝐶

���
𝑟=𝑟 ′

= 0 and
𝑑

𝑑𝑟

���
𝑟=𝑟 ′

𝐶 = −2
√

3(𝛾 − 1) (3𝛾 − 1) < 0.

In particular, for any 𝜀 sufficiently small, C is positive at 𝑟 = 𝑟 ′ − 𝜀. As C is a polynomial of r, positive
at 𝑟 = 1 and 𝑟 = 𝑟 ′ − 𝜀, it has an even quantity of roots (counted with multiplicity) in the interval
(1, 𝑟 ′ − 𝜀). Therefore, as C is a second-degree polynomial of r and it has a root at 𝑟 = 𝑟 ′, there are no
roots in the interval [1, 𝑟 ′ − 𝜀). As we can take 𝜀 sufficiently small, we conclude that C is positive for
all 𝑟 ∈ [1, 𝑟 ′). �

Lemma A.18. Let 𝛾 = 7/5 and r sufficiently close to 𝑟∗(7/5). Let 𝑃′ = (𝑊0 − 𝑇DW, 𝑍0) for 𝑇DW =

5
3

(√
4𝑟2 − 14𝑟 + 11 − 2𝑟 + 3

)
. We have that 𝐷𝑊 (𝑃′) = 0 and that along the horizontal segment [𝑃′, 𝑃𝑠],

the field (𝑁𝑊 𝐷𝑊 , 𝑁𝑍𝐷𝑊 ) points downwards.

Proof. Using the formulas for 𝑊0, 𝑍0 in (2.1), we get that 𝐷𝑊 (𝑃′) = 0. Then, we need to show that the
sign of the third-degree polynomial 𝑁𝑍 (𝑊0 − 𝑡, 𝑍0)𝐷𝑊 (𝑊0 − 𝑡, 𝑍0) is negative for 𝑡 ∈ (0, 𝑇DW). We
clearly have that 𝑁𝑍 (𝑊0 − 𝑡, 𝑍0)𝐷𝑊 (𝑊0 − 𝑡, 𝑍0) vanishes at 0 (because 𝑁𝑍 (𝑃𝑠) = 0) and 𝑇DW (because
𝐷𝑊 (𝑃′) = 0). At 𝑟 = 𝑟∗, we have

𝑁𝑍 (𝑊0 − 𝑡, 𝑍0)𝐷𝑍 (𝑊0 − 𝑡, 𝑍0)
𝑡 (𝑇DW − 𝑡) =

−3

50
(7
√

5 − 5 − 𝑡) < 0,

so the first-degree polynomial above is negative also for r sufficiently close to 𝑟∗. �

Lemma A.19. Let us recall that for 𝛾 ∈ (1, +∞) and 𝑟 ∈ (𝑟3, 𝑟4), we define

𝑏extra(𝑡) = (𝑋0 − 𝑡, 𝑌0 + 𝑡),

where 𝑋0, 𝑌0 are defined in (3.2). Let us also define 𝑡extra
𝑓

= 1
2 (𝑋0 −𝑌0). We have that 𝐷𝑊 (𝑏extra(𝑡)) > 0

and 𝐷𝑍 (𝑏extra(𝑡)) > 0 for all 𝑡 ∈ (0, 𝑡extra
𝑓
]. Moreover, if we let

𝑃extra(𝑡) = (1, 1) ·
(
𝑁𝑊 (𝑏extra(𝑡))𝐷𝑍 (𝑏extra(𝑡), 𝑁𝑍 (𝑏extra(𝑡))𝐷𝑊 (𝑏extra(𝑡)

)
,

we have that 𝑃extra(𝑡) > 0 for all 𝑡 ∈ (0, 𝑡extra
𝑓
).
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Proof. By direct calculation, we get that

𝑡extra
𝑓 =

2
√

3𝑟

3𝛾 − 1
,

(6𝛾 − 2)𝐷𝑊 (𝑏extra(𝑡)) = 2(3𝛾 − 1) + 2
(√

3𝛾 −
√

3 − 2
)
𝑟 − (𝛾 − 1) (3𝛾 − 1)𝑡,

(6𝛾 − 2)𝐷𝑍 (𝑏extra(𝑡)) = 2(3𝛾 − 1) − 2
(√

3𝛾 −
√

3 + 2
)
𝑟 + (𝛾 − 1) (3𝛾 − 1)𝑡,

(3𝛾 − 1)2
𝑡 (𝛾 − 1) 𝑃extra(𝑡) = −4

√
3𝑟 (−3𝛾 + 2𝑟 + 1) + (3𝛾 − 1) (2𝑟 + 1 − 3𝛾)𝑡.

The second expression is clearly decreasing, and the third one increasing. With respect to the fourth
one, note that −3𝛾 + 2𝑟 + 1 ≤ −𝛾 + 1 < 0 due to Lemma A.6, so it is also decreasing. Thus, we just need
to show the following quantities are positive:

(6𝛾 − 2)𝐷𝑊 (𝑏extra(𝑡extra
𝑓 )) = −2 − 4𝑟 + 6𝛾 > 0,

(6𝛾 − 2)𝐷𝑍 (𝑏extra(0)) = −2 + 6𝛾 + 2𝑟 (−2 +
√

3 −
√

3𝛾),
(3𝛾 − 1)2
𝑡 (𝛾 − 1) 𝑃extra(𝑡extra

𝑓 ) = −2
√

3𝑟 (1 + 2𝑟 − 3𝛾) > 0.

The first and the third expressions are trivially positive (recall 𝑟∗ < 𝛾 from Lemma A.6). The second
expression is clearly decreasing with r, and it vanishes at 𝑟 =

3𝛾−1

2+
√

3(𝛾−1) . Therefore, we just need to show

that 𝑟4 <
3𝛾−1

2+
√

3(𝛾−1) . This is shown in Lemma A.23. �

Lemma A.20. Let S be the vertical segment between (𝑊0, 𝑍0) and (𝑊0,𝑊0). Let either (𝛾, 𝑟) = (7/5, 𝑟∗)
or (𝛾, 𝑟) ∈ (1, +∞) × (𝑟3, 𝑟4). We have that 𝑁𝑊 (𝑃) < 0 for any 𝑃 ∈ 𝑆.

Proof. The second-degree polynomial 𝑁𝑊 (𝑊0, 𝑦) (in y) has second derivative 𝛾−1
2 > 0. As we want to

show that the polynomial is negative for 𝑦 ∈ [𝑍0,𝑊0], it suffices to show it at the endpoints. Clearly,
𝑁𝑊 (𝑊0, 𝑍0) = 𝑁𝑊 ,0 < 0 in our range of (𝛾, 𝑟) because of Lemmas A.26 and A.7. Observe that

16(𝛾 − 1)4𝑁𝑊 (𝑊0,𝑊0) = 𝐴 · 𝐵

=

(
3(𝛾 − 3)

(
𝛾 − 1

3

)
+ (−5𝛾2 + 10𝛾 − 1)𝑟 − (1 + 𝛾)R1

)

·
(
−3(𝛾 − 3)

(
𝛾 − 1

3

)
+ (𝛾 − 3) (𝛾 + 1)𝑟 + (𝛾 + 1)R1

)
.

In the case 𝛾 = 7/5, 𝑟 = 𝑟∗(7/5), we obtain 𝐴 · 𝐵 = 64
625 (−45 + 17

√
5) < 0. From now on, let us assume

𝑟 ∈ (𝑟3, 𝑟4).
We first show 𝐵 > 0. If 𝛾 ∈ (1, 3), as (𝛾−3) (𝛾+1)𝑟 decreases with r, and 𝑟 < 𝑟4 <

3𝛾−1

2+
√

3(𝛾−1) , we get

𝐵 >

(
3(𝛾 − 3)

(
𝛾 − 1

3

)
+ (−5𝛾2 + 10𝛾 − 1) 3𝛾 − 1

2 +
√

3(𝛾 − 1)

)

=

−
(√

3 − 1
)
(𝛾 − 3) (𝛾 − 1) (3𝛾 − 1)

(2 +
√

3(𝛾 − 1))
> 0.

Now, let us assume that 𝛾 ≥ 3. We get that

R1
𝑑𝐵

𝑑𝑟
= (𝛾 + 1)

(
−3(𝛾 − 2)𝛾 + (𝛾 − 3)2𝑟 − 7 + (𝛾 − 3)R1

)
.
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We claim 𝑑𝐵
𝑑𝑟

< 0. As | −3(𝛾−2)𝛾 | > (𝛾−3)2𝑟 (because 𝛾, 𝛾−2 > 𝛾−3 and 3 > 𝑟), the claim 𝑑𝐵
𝑑𝑟

< 0
follows from

(
−3(𝛾 − 2)𝛾 + (𝛾 − 3)2𝑟 − 7

)2
− (𝛾 − 3)2R2

1 = 32(𝛾 − 1)3 > 0.

Therefore, to prove 𝐵 > 0, we just need to show 𝐵 > 0 at 𝑟 = 𝑟∗. We have that

𝐵 |𝑟=𝑟∗ =
8
(√

3 − 1
)
(𝛾 − 1)2

√
3𝛾 −

√
3 + 2

> 0.

Now, let us prove 𝐴 < 0. If we have −5𝛾2 + 10𝛾 − 1 ≤ 0,

𝐴 =

(
3(𝛾 − 3)

(
𝛾 − 1

3

)
+ (−5𝛾2 + 10𝛾 − 1)𝑟 − (1 + 𝛾)R1

)

≤
(
3(𝛾 − 3)

(
𝛾 − 1

3

)
+ (−5𝛾2 + 10𝛾 − 1)

)
= 2 − 2𝛾2 < 0.

Thus, we just need to consider the case where −5𝛾2 + 10𝛾 − 1 > 0, which is 𝛾 < 1 + 2√
5
. From now on,

let us assume 𝛾 < 1 + 2√
5
. In that case, we have that 𝑟 < 2(√

2
√

1
𝛾−1+1
)2 + 1. Therefore, we have that

𝐴 ≤ 3(𝛾 − 3)
(
𝛾 − 1

3

)
+ (−5𝛾2 + 10𝛾 − 1)

�����
2(√

2
√

1
𝛾−1 + 1

)2 + 1
�����

≤ −
4
√
𝛾 − 1
((

3
√
𝛾 − 1 +

√
2
)
𝛾 −
√
𝛾 − 1 +

√
2
)

(√
2
√

1
𝛾−1 + 1

)2 .

Noting
√

2 >
√
𝛾 − 1, we see that all the terms in parenthesis in the last expression are positive, so we

conclude 𝐴 < 0, and we are done. �

Lemma A.21. Let 𝛾 > 1. Consider the 𝑆1 the diagonal halfline of slope −1 from 𝑃𝑠 – that is, the halfline

given by (𝑊0 + 𝑡, 𝑍0 − 𝑡) for 𝑡 > 0. We have that

(𝑁𝑊 𝐷𝑍 , 𝑁𝑍𝐷𝑊 ) · (−1,−1) > 0 on 𝑆1.

Proof. We have that

2

𝑡
(𝑁𝑊 𝐷𝑍 + 𝑁𝑍𝐷𝑊 )

���
(𝑊0+𝑡 ,𝑍0−𝑡)

= 𝑡
(
2(𝛾 − 1)𝑟 + 4(𝛾 + 2) + 6𝑊0 + 3

(
𝛾2 + 1
)
𝑍0

)
+ 4𝑟 (𝑊0 + 4𝑍0 + 2) + 4

(
𝑊0 (3𝑍0 + 2) + 3𝛾𝑍2

0 + (3𝛾 + 2)𝑍0 + 4
)

= 𝐴𝑡 + 𝐵.

We will just prove that A and B are both negative, which yields the desired statement.
For B, we have that

2(𝛾 − 1)
𝑟 − 1

𝐵 = −9𝛾2 + 22𝛾 − 17 + (𝛾 − 3) (3𝛾 − 5)𝑟 + (3𝛾 − 5)R1.
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As −9𝛾2 + 22𝛾 − 17 is negative for all real 𝛾, 𝐵 < 0 just follows if we show the following quantity is
positive:(

−9𝛾2 + 22𝛾 − 17
)
− ((𝛾 − 3) (3𝛾 − 5)𝑟 + (3𝛾 − 5)R1)2 = 32(𝛾 − 1)2((3𝛾 − 5)𝑟 + 2).

Thus, we just need to show (3𝛾−5)𝑟 +2 > 0. This is trivial for 𝛾 ≥ 5
3 , and for 𝛾 < 5

3 , Lemma A.6 yields

(3𝛾 − 5)𝑟 + 2 > (3𝛾 − 5)
(
2 − 1

𝛾

)
+ 2 =

(6𝛾 − 5) (𝛾 − 1)
𝛾

> 0. (A.42)

Now, let us show that 𝐴 < 0. We have that

4

𝛾 − 1
𝐴 = −9𝛾 + (3𝛾 − 1)𝑟 + 7 + 3R1. (A.43)

By Lemma A.6, we have

−9𝛾 + (3𝛾 − 1)𝑟 + 7 ≤ −9𝛾 + (3𝛾 − 1)
(
2 − 1

𝛾

)
+ 7 = 2 + 1

𝛾
− 3𝛾 < 0.

Therefore, in order to show (A.43), it suffices to note

(−9𝛾 + (3𝛾 − 1)𝑟 + 7)2 − (3R1)2 = 16(𝑟 − 1) ((3𝛾 − 5)𝑟 + 2) > 0,

where (3𝛾 − 5)𝑟 + 2 > 0 was already shown in (A.42). �

Lemma A.22. Let H be the halfline of 𝐷𝑍 = 0 which is to the right of 𝑃𝑠 . We have that ∇𝐷𝑍 ·
(𝑁𝑊 𝐷𝑍 , 𝑁𝑍𝐷𝑊 ) ≥ 0 on H. Moreover, ∇𝐷𝑍 · (𝑁𝑊 𝐷𝑍 , 𝑁𝑍𝐷𝑊 ) is negative between 𝑃̄𝑠 and 𝑃𝑠 , and

positive again to the left of 𝑃̄𝑠 .

Proof. The intersection of 𝐷𝑊 = 0 and 𝐷𝑍 = 0 is (−1,−1), which on the diagonal 𝑊 = 𝑍; thus, it is
the leftmost point of 𝐷𝑍 in our region of interest 𝑊 > 𝑍 . On H, we have

∇𝐷𝑍 · (𝑁𝑊 𝐷𝑍 , 𝑁𝑍𝐷𝑊 ) = 𝑁𝑍𝐷𝑊 𝜕𝑍𝐷𝑍 =
𝛾 + 1

4
𝐷𝑊 𝑁𝑍 .

Therefore, we just need to analyze the sign 𝑁𝑍 > 0. The system 𝑁𝑍 = 𝐷𝑍 = 0 has two solutions (by
Bézout), which are 𝑃𝑠 and 𝑃̄𝑠 . From their formulas (2.1) and (2.2), we see that 𝑃𝑠 is the rightmost.
Thus, 𝑁𝑍 will have constant sign on H, so we just need to check the sign on 𝑁𝑍 at infinity along the

direction of H, given by ∇𝐷⊥
𝑍
=

(
1+𝛼

2 ,− 1−𝛼
2

)
. We get

lim
𝑡→∞

1

𝑡2
𝑁𝑍

(
1 + 𝛾

4
𝑡,−3 − 𝛾

4
𝑡

)
=

1

8

(
𝛾2 − 2𝛾 + 1

)
=

1

8
(𝛾 − 1)2 > 0. �

Computer-assisted Lemmas

Lemma A.23. We have that 𝑟4 <
3𝛾−1

2+
√

3(𝛾−1) for all 𝛾 > 1.

Proof. If 𝛾 ≥ 5
3 , the proof follows trivially because 𝑟∗(𝛾) = 3𝛾−1

2+
√

3(𝛾−1) . If 1 < 𝛾 < 5
3 , the proof is

computer-assisted, and we refer to Appendix B for details about the implementation. �

Lemma A.24. Let 𝑟 = 𝑟∗ and 𝛾 = 7/5. Let us recall (3.5)

𝑏fl
7/5(𝑡) =

(
𝑊0 +𝑊1𝑡 +

𝑊2

2
𝑡2 −
(
𝑊0 +𝑊1 +

𝑊2

2

)
𝑡3, 𝑍0 + 𝑍1𝑡 +

𝑍2

2
𝑡2 −
(
𝑍0 + 𝑍1 +

𝑍2

2

)
𝑡3
)
,
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and (3.2)

𝑃o = (𝑋0, 𝑌0) =
����

2
(√

3 − 1
)
𝑟

3𝛾 − 1
,−

2
(
1 +
√

3
)
𝑟

3𝛾 − 1

����
.

There exists some 𝑡𝑊 ∈ (0, 1) such that 𝑏fl
7/5,𝑊 (𝑡𝑊 ) = 𝑋0 and 𝑏fl

7/5,𝑍 (𝑡𝑊 ) > 𝑌0. That is, 𝑃o is below

𝑏fl
7/5 (𝑡). Moreover, we have that 𝑏fl

7/5,𝑊 (𝑡) is decreasing for 𝑡 ∈ (0, 𝑡𝑊 ).

Proof. The first part of the proof is computer-assisted, and we refer to Appendix B for details about the
implementation. In order to show that 𝑏fl

7/5,𝑊 (𝑡) is decreasing, we calculate the polynomial at 𝛾 = 7/5,
𝑟 = 𝑟∗. We obtain

𝑏fl
7/5,𝑊 (𝑡) = −

1

12

(
3
√

5 − 5
)
(𝑡 (15𝑡 − 4) + 3),

which is globally negative. �

Lemma A.25. Let 𝛾 > 1 and 𝑟 ∈ (𝑟3, 𝑟4). Let 𝜃extra =
3
4𝜋 and 𝜃fl ∈ [−𝜋, 𝜋) be the angle

𝜃fl = − arctan

(
𝑏fl ′
𝑍
(1)

𝑏fl ′
𝑊
(1)

)
,

that is, the angle formed by 𝑏fl (𝑡) for 𝑡 ∈ [0, 1] when arriving at 𝑃o at 𝑡 = 1.

Then, we have that 𝜃fl < 𝜃extra and 𝜃fl > 𝜃extra − 𝜋.

Proof. We need to show that − 𝜋
4 ≤ 𝜃fl ≤ 3𝜋

4 , or equivalently, that the vector −𝑏fl ′(1) has angle between
− 𝜋

4 and 3𝜋
4 . That is equivalent to −𝑏fl ′(1) · (1, 1) > 0. We show that 𝑏fl ′

𝑊
(1) + 𝑏fl ′

𝑍
(1) < 0 with a

computer-assisted proof. Details about the implementation can be found in Appendix B. �

Lemma A.26. Let 𝛾 ∈ (1, +∞) and 𝑟 ∈ (𝑟3, 𝑟4). We have that

𝐷𝑊 ,1 > 0, 𝑁𝑊 ,0 < 0, 𝑁𝑍,1 > 0, 𝑊1 < 0,

𝑍4 −
𝑊4𝑍1

𝑊1
> 0, 𝜕𝑍𝑁𝑍 (𝑃𝑠) > 0, 𝐷𝑍 (𝑃o) > 0,

𝑋0 + 𝑌0

2
> −𝑟.

Proof. The first five inequalities are done with a computer-assisted proof. We refer to Appendix B for
details about the implementation. Let us start with 𝜕𝑍𝑁𝑍 (𝑃𝑠). We have that

16(𝛾 − 1)2𝜕𝑍𝑁𝑍 (𝑃𝑠) = 9𝛾3 − 5𝛾2 − 5𝛾 −
(
3(𝛾 − 1)𝛾2 + 𝛾 + 7

)
𝑟 + 9 + (−3𝛾 + 1)(𝛾 − 3)R1 = 𝐴 + 𝐵R1.

We have that

𝑑

𝑑𝑟
𝐴 = −(𝛾 + 1) (3𝛾2 − 7𝛾 + 6) < 0

because the polynomial 3𝛾2 − 7𝛾 + 6 does not have real roots. For 1 < 𝛾 ≤ 5
3 , we get that

𝐴 ≥ 𝐴

���
𝑟=𝑟∗

=

4(𝛾 + 1)
(
2
√

2𝛾
√
𝛾 − 1 +

(√
2
√
𝛾 − 1 + 4

)
(𝛾 − 1)

)
( √

2√
𝛾−1
+ 1

)2 > 0,

https://doi.org/10.1017/fmp.2024.12 Published online by Cambridge University Press



118 T. Buckmaster, G. Cao-Labora and J. Gómez-Serrano

and for 𝛾 ≥ 5
3 ,

𝐴 ≥ 𝐴

���
𝑟=𝑟∗

=

9
(√

3 − 1
)
𝛾2 +
(
30 − 14

√
3
)
𝛾 + 9

√
3 − 25

√
3(𝛾 − 1) + 2

≥
9
(√

3 − 1
)
+
(
30 − 14

√
3
)
+ 9
√

3 − 25
√

3(𝛾 − 1) + 2
=

4(
√

3 − 1)√
3(𝛾 − 1) + 2

> 0.

Therefore, we get that 𝐴 > 0 globally. If 𝛾 ≤ 3, we get that 𝐵 = (−3𝛾 + 1) (𝛾 − 3) ≥ 0, so we are done.
From now on, let us assume 𝛾 > 3. We will show that 𝐴2 − 𝐵2R2

1 > 0, which will conclude the proof
of the sign of 𝜕𝑍𝑁𝑍 (𝑃𝑠). We have

𝐴2 − 𝐵2R2
1 = 32(𝛾 − 1)2

(
2𝛾(𝛾(9𝛾 − 14) + 9) + (𝛾(𝛾(3𝛾 − 11) + 17) − 1)𝑟2 − 4𝛾(3(𝛾 − 2)𝛾 + 7)𝑟

)
= 32(𝛾 − 1)2𝐶,

so we need to show 𝐶 > 0. We have

𝑑2

𝑑𝑟2
𝐶 = −2 + 34𝛾 − 22𝛾2 + 6𝛾3

= 6𝛾(𝛾 − 2)2 + 2𝛾2 + 10𝛾 − 2 > 0,

so

𝑑

𝑑𝑟
𝐶 ≤ 𝑑

𝑑𝑟

���
𝑟=𝑟∗

𝐶 =
−2(𝛾 − 1)

2 +
√

3(𝛾 − 1)

(
3
(
2
√

3 − 3
)
𝛾3 +
(
39 − 12

√
3
)
𝛾2 +
(
14
√

3 − 47
)
𝛾 + 1
)

≤ −2(𝛾 − 1)
2 +
√

3(𝛾 − 1)

(
3
(
2
√

3 − 3
)
𝛾 · 9 +

(
39 − 12

√
3
)
𝛾 · 3 +

(
14
√

3 − 47
)
𝛾 + 1
)

≤ −2(𝛾 − 1)
2 +
√

3(𝛾 − 1)

(
1 + (32

√
3 − 11)𝛾

)
< 0.

Finally, we have

(2 +
√

3(𝛾 − 1))2
−(𝛾 − 1) 𝐶 ≤ (2 +

√
3(𝛾 − 1))2

−(𝛾 − 1) 𝐶

���
𝑟=𝑟∗

=

(
9
(
4
√

3 − 9
)
𝛾4 +
(
300 − 156

√
3
)
𝛾3 +
(
220
√

3 − 438
)
𝛾2 +
(
204 − 100

√
3
)
𝛾 − 1
)

≤
(
9
(
4
√

3 − 9
)
𝛾3 · 3 +

(
300 − 156

√
3
)
𝛾3 +
(
220
√

3 − 438
)
𝛾 · 3 +

(
204 − 100

√
3
)
𝛾 − 1
)

=

(
57 − 48

√
3
)
𝛾3 + 10

(
56
√

3 − 111
)
𝛾 − 1 < 0.

Now, we show 𝐷𝑍 (𝑃o) > 0. We get that

(3𝛾 − 1)𝐷𝑍 (𝑃o) = 3𝛾 − 1 − 𝑟
(
2 +
√

3(𝛾 − 1)
)
.

Now, this quantity vanishes at 𝑟 =
3𝛾−1

2+
√

3(𝛾−1) , and by Lemma A.23, 𝑟4 <
3𝛾−1

2+
√

3(𝛾−1) .

Lastly, from (3.2),

𝑋0 + 𝑌0

2
− 𝑟 =

2𝑟

1 − 3𝛾
+ 𝑟 =

3𝑟 (𝛾 − 1)
3𝛾 − 1

> 0.
�
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Lemma A.27. For 𝛾 = 7/5 and 𝑟 = 𝑟∗(7/5), we have that |𝑊𝑖/𝑍𝑖 | < 2 for all 0 ≤ 𝑖 ≤ 160.

Proof. We prove the statement via a computer-assisted proof. The code can be found in the supplemen-
tary material, and we refer to Appendix B for details about the implementation. �

Lemma A.28. Let 𝛾 = 7/5 and 𝑟 = 𝑟∗(7/5). For any 𝑖 ≤ 160, we have

��𝐶̄∗(𝑖 + 1)2
�� <
����𝑍𝑖+1𝑍𝑖

���� <
����𝐶̄∗ (𝑖 + 1)2 500

𝑖 + 1

���� .
For 160 ≤ 𝑖 ≤ 10000, we have the further refinement

��𝐶̄∗ (𝑖 + 1)2
�� <
����𝑍𝑖+1𝑍𝑖

���� < ��3𝐶̄∗ (𝑖 + 1)2
�� .

Moreover, ��𝑍10000 + 6 · 1046770
�� ≤ 1046770. (A.44)

Proof. We prove the statement via a computer-assisted proof. The code can be found in the supplemen-
tary material, and we refer to Appendix B for details about the implementation. �

Lemma A.29. Let either 𝛾 > 1 and 𝑟 = 𝑟3 or 𝛾 = 7/5 and 𝑟 = 𝑟∗(7/5). We have that
𝑍1/2−𝑊1
𝑊1+𝑍1

≤ −1.

Proof. The proof for 𝑟 = 𝑟3 is computer-assisted. The code can be found in the supplementary material,
and details about the implementation can be found in Appendix B. For the case 𝛾 = 7/5, 𝑟 = 𝑟∗(7/5),
we have that

𝑍1/2 −𝑊1

𝑊1 + 𝑍1
= −4 < −1. �

Lemma A.30. Let us recall

𝑎nr
2 =

𝑠fr
∞
2

(
−𝑊2 + 𝑍2/2 − (𝑊2 + 𝑍2)

𝑍1/2 −𝑊1

𝑊1 + 𝑍1

)
+𝑊2

1 +𝑊1𝑍1/2 − 𝑍2
1/2.

Let either 𝛾 > 1 and 𝑟 = 𝑟3 or 𝛾 = 7/5 and 𝑟 = 𝑟∗(7/5). We have that 𝑎nr
2 > 0.

Proof. The proof is computer-assisted. The code can be found in the supplementary material, and details
about the implementation can be found in Appendix B. �

Lemma A.31. Let 𝛾 > 1. We have that 𝑍3 > 0 for r close enough to 𝑟3 from above and 𝑍4 > 0 for r

close enough to 𝑟4 from below. In other words, we have that

𝑍3 (3 − 𝑘) < 0 for 𝑟 = 𝑟3,

𝑍4 (4 − 𝑘) > 0 for 𝑟 = 𝑟4.

Proof. The proof is computer-assisted, and we refer to Appendix B for details about the
implementation. �

Additional properties of the profiles

Let us recall that s𝑊 (𝜁) = 𝜁𝑊𝐸 (𝜉) and s𝑍 (𝜉) = 𝜁𝑍𝐸 (𝜉), where 𝜉 = log 𝜁 and (𝑊𝐸 , 𝑍𝐸 ) is a solution to
the ODE (1.10). We use the notation 𝐷𝐸

𝑊
to denote the function

𝐷𝐸
𝑊 (𝜉) = 𝐷𝑊 (𝑊𝐸 (𝜉), 𝑍𝐸 (𝜉)).

We define 𝐷𝐸
𝑍

, 𝑁𝐸
𝑊

and 𝑁𝐸
𝑍

in an analogous fashion.
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Lemma A.32. We have that s𝑆 > 0.

Our profile for Euler is in the region 𝑊𝐸 − 𝑍𝐸 > 0 and cannot cross 𝑊𝐸 = 𝑍𝐸 because it is an
invariant manifold of the ODE (1.10). Therefore, s𝑆 =

Ď𝑊− s𝑍
2 > 0.

Lemma A.33. We have that 𝜁 + s𝑈 − 𝛼s𝑆 is uniformly bounded and strictly positive for 𝜁 > 1. Moreover,

𝜁 + s𝑈 − 𝛼s𝑆 > 𝜁𝜀 for all 𝜁 > 6
5 and some 𝜀 > 0 sufficiently small. We also have that 𝜁 + s𝑈 + 𝛼s𝑆 > 𝜁𝜀

for all 𝜁 > 6
5 and some 𝜀′ > 0.

Proof. Passing to 𝑊𝐸 , 𝑍𝐸 , 𝜉 coordinates, the stated inequality reads

𝑒 𝜉
(
1 +𝑊𝐸 (𝜉) 1 − 𝛼

2
+ 𝑍𝐸 (𝜉) 1 + 𝛼

2

)
= 𝑒 𝜉𝐷𝐸

𝑍 (𝜉) < 0

for 𝜉 > 0. Now, let us recall that our profile (𝑊 (𝜉), 𝑍 (𝜉)) is given by Proposition 3.1 for 𝜉 > 0. In
particular, 𝐷𝐸

𝑍
> 0.

With respect to the second claim, just note that the solution converges to 𝑃∞ = (0, 0) (with
𝐷𝑍 (𝑃∞) = 1), so in particular, we will have that 𝐷𝐸

𝑍
(𝜉) > 𝜀 for 𝜉 > 𝐶, where C is a sufficiently

large constant. Then, as [log(6/5), 𝐶] is a compact interval where 𝐷𝐸
𝑍

> 0, we can find an 𝜀 > 0
sufficiently small that bounds 𝐷𝑍 from below. Therefore, as 𝑒 𝜉 = 𝜁 , we conclude that 𝑒 𝜉𝐷𝐸

𝑍
(𝜉) > 𝜀𝜁 .

With respect to the third claim, just note that 𝜁 + s𝑈 +𝛼s𝑆 corresponds to 𝜉𝐷𝐸
𝑊
(log 𝜁). By Proposition

3.1, we have that 𝐷𝐸
𝑊

> 0 for 𝜉 > log(6/5), and using the same argument as in the paragraph above for
𝐷𝐸

𝑍
, we conclude that 𝑒 𝜉𝐷𝐸

𝑊
(𝜉) > 𝜁𝜀′ for every 𝜉 > log(6/5) and some 𝜀′ > 0 sufficiently small. �

Lemma A.34. For 𝛾 = 7/5, r sufficiently close to 𝑟∗ and 𝜁 < 1, we have that 𝜕𝜁 s𝑆 > 0.

Proof. Writing this in (𝑊, 𝑍) variables, we need to show that 𝑊𝐸 − 𝑍𝐸 + 𝑁𝐸
𝑊

𝐷𝐸
𝑊

− 𝑁𝐸
𝑍

𝐷𝐸
𝑍

> 0. As for 𝜁 < 1

(that is, 𝜉 < 0), we have 𝐷𝑊 > 0, 𝐷𝑍 < 0, and we can reduce to show negativity of

𝐷𝐸
𝑊 𝐷𝐸

𝑍 (𝑊𝐸 − 𝑍𝐸 ) + 𝑁𝐸
𝑊 𝐷𝐸

𝑍 − 𝑁𝐸
𝑍 𝐷𝐸

𝑊

=
−1

10
(𝑊 − 𝑍)

(
−
√

4𝑟2 − 14𝑟 + 11 + 2𝑟 +𝑊 + 𝑍 − 1
) (√

4𝑟2 − 14𝑟 + 11 + 2𝑟 +𝑊 + 𝑍 − 1
)
.

As𝑊 > 𝑍 , it suffices to show that for 𝜉 > 0, the 𝑍𝐸 stays above 𝑍Δ (𝑊) =
√

4𝑟2 − 14𝑟 + 11−2𝑟 −𝑊 +1.
𝑍Δ (𝑊) is a diagonal line of slope −1 passing through 𝑃𝑠 , and from the proof of Proposition 2.5 (see
also Lemma A.21), we have that our solution stays above. �

Lemma A.35. For 𝛾 = 7/5, r sufficiently close to 𝑟∗ and 𝜁 > 1, we have that

𝑀 := −1 − 𝛼

1 + 𝛼
𝐷𝐸

𝑍 + 𝐷𝐸
𝑊 +
(
1 + 𝛼

2
− (1 − 𝛼)2

2(1 + 𝛼)

)
𝑁𝐸
𝑊

𝐷𝐸
𝑊

> 0. (A.45)

Proof. Given that the solution is in the region 𝐷𝑊 > 0, it suffices to show positivity for

30𝐷𝐸
𝑊 𝑀 = −𝑊 (10𝑟 +𝑊 − 16) + 𝑍 (𝑍 + 4) + 10. (A.46)

Let us recall from the proof of Proposition 3.6 that (𝑊𝐸 , 𝑍𝐸 ) is contained in the triangle T delimited
by the lines 𝑊 = 𝑊0, 𝑊 = 𝑍 and 𝐷𝑍 = 0. As both T and (A.46) depend continuously on r, we reduce
to show that every point of T satisfies (A.46) for 𝑟 = 𝑟∗(7/5). Thus, let us fix 𝑟 = 𝑟∗ from now on.

Solving (A.46) in W, we see that the previous quantity is positive if 𝑊(−) (𝑍) ≤ 𝑊 ≤ 𝑊(+) (𝑍), where
𝑊(𝑖) (𝑍) are given by

𝑊(±) (𝑍) =
1

4

(
+5
√

5 − 3 ±
√

16𝑍2 + 64𝑍 − 30
√

5 + 294

)
,
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and the radical is positive for all Z. Now, the triangle T is contained in −1 ≤ 𝑊 ≤ 𝑊0 because the
rightmost side of T is 𝑊 = 𝑊0 and the leftmost point is (−1,−1) (the intersection of 𝐷𝑍 = 0 and
𝑊 = 𝑍). Thus, it suffices to show that 𝑊(−) (𝑍) < −1 and 𝑊0 < 𝑊(+) (𝑍).

We have that

4(−1 −𝑊(−) (𝑍)) = −5
√

5 − 1 +
√

16𝑍 (𝑍 + 4) − 30
√

5 + 294,

4(𝑊(+) (𝑍) −𝑊0) = 7 −
√

5 +
√

16𝑍 (𝑍 + 4) − 30
√

5 + 294,

where we recall that the radical is positive for all Z. The second expression is clearly positive, and the
first one is also positive because

16𝑍 (𝑍 + 4) − 30
√

5 + 294 −
(
−5
√

5 − 1
)2

= 8(13 − 5
√

5 + (𝑍 + 2)2) > 0. �

Lemma A.36. For 𝛾 = 7/5 and r sufficiently close to 𝑟∗, there exists a value 𝜂damp > 0 such that

1 + 𝜕𝜁 s𝑈 − 𝛼 |𝜕𝜁 s𝑆 | > 𝜂damp globally.

Proof. First, observe

1 + 𝜕𝜁 s𝑈 − 𝛼𝜕𝜁 s𝑆 = 𝜕𝜁

(
𝜁 + 𝜁

𝑊𝐸 + 𝑍𝐸

2
− 𝛼𝜁

𝑊𝐸 − 𝑍𝐸

2

)
= 𝜕𝜁 (𝜁𝐷𝐸

𝑍 )

= 𝐷𝐸
𝑍 + 𝜁𝜕𝜁𝐷

𝐸
𝑍 = 𝐷𝐸

𝑍 +
1 − 𝛼

2

𝑁𝐸
𝑊

𝐷𝐸
𝑊

+ 1 + 𝛼

2

𝑁𝐸
𝑍

𝐷𝐸
𝑍

, (A.47)

and similarly,

1 + 𝜕𝜁 s𝑈 + 𝛼𝜕𝜁 s𝑆 = 𝐷𝐸
𝑊 + 𝜁𝜕𝜁𝐷

𝐸
𝑊 = 𝐷𝐸

𝑊 +
1 + 𝛼

2

𝑁𝐸
𝑊

𝐷𝐸
𝑊

+ 1 − 𝛼

2

𝑁𝐸
𝑍

𝐷𝐸
𝑍

. (A.48)

Let us first reduce to show that (A.47) is greater than 𝜂damp. In the region 𝜁 ≤ 1, Lemma A.34 yields
that 𝜕𝜁 s𝑆 > 0, so it is clear that 1 + 𝜕𝜁 s𝑈 − 𝛼 |𝜕𝜁 s𝑆 | is given by (A.47). With respect to the region 𝜁 > 1,
note that (A.48) = 1−𝛼

1+𝛼 (A.47) + (A.45). Therefore, as (A.45) is positive by Lemma A.35, is also suffices
to show that (A.47) is lower bounded by some 𝜂damp > 0. In order to show this, we divide in two cases:
𝜉 ≤ 0 and 𝜉 > 0.

Case 𝜉 < 0. We start showing (A.47) is greater than 𝜂damp > 0 for 𝜁 ≤ 1 (that is, 𝜉 ≤ 0). As we will
show that this is strictly positive at 𝜉 = 0 and as 𝜉 → −∞, by compactness (say, reparametrizing the
domain), we can reduce to showing that (A.47) is positive.

Let us start noting that the statement is true at 𝜉 = 0 because 𝐷𝑍,1 > 0 due to Lemma A.7. Now, we
show it for 𝜉 < 0. As 𝐷𝑊 > 0, 𝐷𝑍 < 0 in this region, we need to show negativity for

𝐴 = 50𝐷𝑊 𝐷𝑍 (𝐴.47) = 𝑍2 (−(12𝑟 +𝑊 − 23)) − 30𝑟 (𝑊 + 1)𝑍
+𝑊 (−4𝑟 (2𝑊 + 5) +𝑊 (𝑊 + 21) + 70) + 56𝑊𝑍 + 80𝑍 + 50. (A.49)

Solving in Z, we get that we need to show Z is below

𝑓 (𝑊) =
√
𝑔(𝑊) + 30𝑟𝑊 + 30𝑟 − 56𝑊 − 80

2(−12𝑟 −𝑊 + 23) , where

𝑔(𝑊) = (−30𝑟𝑊 − 30𝑟 + 56𝑊 + 80)2 − 4(−12𝑟 −𝑊 + 23)
(
−8𝑟𝑊2 − 20𝑟𝑊 +𝑊3 + 21𝑊2 + 70𝑊 + 50

)
.

For 𝑊 > 𝑊0 and r close to 𝑟∗, we have 𝑔(𝑊) > 0. Note that our solution can also be parametrized
as some 𝑍∗(𝑊) because it is decreasing in W (by Remark 2.6). We know that 𝑍∗ (𝑊) < 𝑓 (𝑊) for W
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close enough (from above) to 𝑊0 because we already checked the sign for 𝜉 = 0. Moreover, we have
𝑓 (𝑊) = −𝑊 + (6−5𝑟) +𝑂 (1/𝑊), while 𝑍∗(𝑊) = −𝑊 − 4(𝑟−1)

3(𝛾−1) +𝑂 (1/𝑊) from the proof of Proposition

2.5. Thus, as 6 − 5𝑟∗ >
−4(𝑟∗−1)

6/5 , we also have that 𝑍∗(𝑊) < 𝑓 (𝑊) for W sufficiently large. Thus, by
continuity, if 𝑍∗(𝑊) crosses 𝑓 (𝑊) at some 𝑊 ∈ (𝑊0, +∞), it has to do so in both directions. We show
that this is impossible by checking that the field (𝑁𝑊 𝐷𝑍 , 𝑁𝑍𝐷𝑊 ) points always to the same side of the
curve (𝑊, 𝑓 (𝑊)). Indeed, defining

𝑃 𝑓 (𝑊) = 𝑓 ′(𝑊)𝑁𝑊 (𝑊, 𝑓 (𝑊))𝐷𝑍 (𝑊, 𝑓 (𝑊)) − 𝑁𝑍 (𝑊, 𝑓 (𝑊))𝐷𝑊 (𝑊, 𝑓 (𝑊)),

we have that 𝑃 𝑓 (𝑊) < 0 for r sufficiently close to 𝑟∗. Clearly, we have that 𝑃 𝑓 (𝑊0) = 0 because
𝑁𝑍 (𝑃𝑠) = 𝐷𝑍 (𝑃𝑠) = 0. Moreover, we have that

𝜕

𝜕𝑟

���
𝑟=𝑟∗
(𝑃′𝑓 (𝑊0)) =

2

363

(
17
√

5 − 31
)
> 0,

so we get that 𝑃′
𝑓
(𝑊0) is negative for r close enough (from below) to 𝑟∗. Therefore, it suffices to check

𝑃 𝑓 (𝑊 )
(𝑊−𝑊0)3

���
𝑟=𝑟∗

> 0. Let us fix 𝑟 = 𝑟∗ for the rest of this case. We have that

𝑃 𝑓 (𝑊) =
𝑃 𝑓 ,1 (𝑊) + 𝑃 𝑓 ,2(𝑊)

√
𝑔(𝑊)

100(2 + 3
√

5 −𝑊)5
√
𝑔(𝑊)

𝑃 𝑓 ,1 (𝑊) = 880
√

5𝑊9 + 872𝑊9 + 467
√

5𝑊8 − 5115𝑊8 − 15117
√

5𝑊7 − 74695𝑊7 − 447170
√

5𝑊6

− 864890𝑊6 − 3634655
√

5𝑊5 − 4535775𝑊5 − 14090850
√

5𝑊4 − 19856150𝑊4

− 47811625
√

5𝑊3 − 23786875𝑊3 − 72742000
√

5𝑊2 − 32280000𝑊2 − 104707875
√

5𝑊

+ 80830625𝑊 − 59254375
√

5 + 84001875

𝑃 𝑓 ,2 (𝑊) = −435
√

5𝑊7 − 439𝑊7 + 664
√

5𝑊6 + 2140𝑊6 + 21074
√

5𝑊5 + 41470𝑊5 + 167470
√

5𝑊4

+ 329040𝑊4 + 887560
√

5𝑊3 + 853650𝑊3 + 1794425
√

5𝑊2 + 2377375𝑊2 + 3598525
√

5𝑊

− 570125𝑊 + 2233125
√

5 − 1711375.

We obtain that

𝑄 𝑓 (𝑊) = 𝑃 𝑓 (𝑊)
(
𝑃 𝑓 ,1 (𝑊) − 𝑃 𝑓 ,2 (𝑊)

√
𝑔(𝑊)
) √

𝑃 𝑓 ,0 (𝑊) =
𝑃 𝑓 ,1 (𝑊)2 − 𝑃 𝑓 ,2(𝑊)2𝑃 𝑓 ,0(𝑊)

100(2 + 3
√

5 −𝑊)5

= 𝑃 𝑓 ,4 (𝑊) (𝑊 +
√

5)2(𝑊 + 1) (𝑊 −𝑊0)3,

where

𝑃 𝑓 ,4 (𝑊) = 70
(
11 +

√
5
)
𝑊7 +
(
−1520 − 1340

√
5
)
𝑊6 +
(
−45150 − 5730

√
5
)
𝑊5

+
(
−176050 − 45630

√
5
)
𝑊4 +
(
−259900 − 123200

√
5
)
𝑊3

+
(
216300

√
5 − 795000

)
𝑊2 +
(
991250

√
5 − 2159250

)
𝑊 + 624750

√
5 − 1336250.

𝑃 𝑓 ,4 (𝑊) only has a single root for 𝑊 > 𝑊0. Let us call x to that root. We have that 𝑃 𝑓 ,4 (𝑊) < 0
for 𝑊 ∈ [𝑊0, 𝑥) and 𝑃 𝑓 ,4(𝑊) > 0 for 𝑊 ∈ (𝑥,∞). Therefore, 𝑄 𝑓 (𝑊) is also negative for 𝑊 ∈
(𝑊0, 𝑥) and positive for 𝑊 ∈ (𝑥,∞). Letting 𝑃 𝑓 ,5 (𝑊) = 𝑃 𝑓 ,1 (𝑊) − 𝑃 𝑓 ,2 (𝑊)

√
𝑔(𝑊), we have that
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𝑃 𝑓 (𝑊)𝑃 𝑓 ,5 (𝑊) = 𝑄 𝑓 (𝑊). Moreover, we have that

𝑃 𝑓 ,5 (10) = −625

(
3087362507 + 371529853

√
5 +
√

9412199900256492638 + 2656241362034147990
√

5

)
< 0,

𝑃 𝑓 ,5 (15) = 20000

(
−336818691 + 1184891137

√
5 +
√

6
(
557 − 33

√
5
) (

19411872
√

5 − 461659
))

> 0,

so the only root of 𝑄 𝑓 (𝑊) for 𝑊 > 𝑊0 (which is simple) is a zero of 𝑃 𝑓 ,5 (𝑊). In particular, 𝑃 𝑓 (𝑊)
does not vanish for 𝑊 > 𝑊0.

Case 𝜉 > 0. First of all, as (𝑊𝐸 , 𝑍𝐸 ) goes from 𝑃𝑠 to 𝑃∞ = (0, 0), it can be parametrized by some
compact domain; therefore, we just need to show (A.47) is positive for 𝜉 > 0, and we will automatically
get a positive lower bound by compactness. As in this region we have 𝐷𝐸

𝑊
, 𝐷𝐸

𝑍
> 0, this corresponds to

showing that (A.49) is positive. Solving (A.49) as in the previous case, this is true as long as𝑊 > 𝑓 (𝑊).
Let us recall that for 𝜉 > 0, the solution (𝑊𝐸 , 𝑍𝐸 ) is inside a triangle T formed by the lines

𝐷𝑍 = 0, 𝑊 = 𝑍 and 𝑊 = 𝑊0; in particular, 𝑊𝐸 is between −1 and 𝑊0 (left and right extrema of the
triangle) for 𝜉 > 0. There are three simple roots of 𝐷𝑍 (𝑊, 𝑓 (𝑊)), given by −1, 𝑊̄0 and 𝑊0. Using that
𝐷𝑍 (𝑊, 𝑓 (𝑊)) < 0 for 𝑊 > 𝑊0 from the previous case, we conclude that 𝐷𝑍 (𝑊, 𝑓 (𝑊)) is positive for
𝑊 ∈ (𝑊̄0,𝑊0) and negative for 𝑊 ∈ (−1, 𝑊̄0). As 𝐷𝐸

𝑍
> 0, this automatically yields that (𝑊𝐸 , 𝑍𝐸 ) lies

in the region 𝑊 > 𝑓 (𝑊) for 𝑊 ∈ (−1, 𝑊̄0) (for a given fixed W, the points with 𝐷𝑍 > 0 lie above those
with 𝐷𝑍 < 0). Thus, we just need to deal with the region 𝑊 ∈ (𝑊̄0,𝑊0).

From our proof of Proposition 3.6, we have that (𝑊𝐸 , 𝑍𝐸 ) lies in the region T ⊂ 𝑇 , which has
lower boundary 𝑏nl

7/5(𝑡) or 𝑏fl
7/5(𝑡) for 𝑊 ∈ (𝑊̄0,𝑊0). Thus, it suffices to show that the sign of (A.49) is

positive at 𝑏nl
7/5(𝑡) and 𝑏fl

7/5(𝑡).
Let us start with 𝑏fl

7/5(𝑡). We define the quantity

𝑆fl
7/5 (𝑡) = 𝐷𝑊 (𝑏fl

7/5 (𝑡))𝐷𝑍 (𝑏fl
7/5 (𝑡))

2 + 1 − 𝛼

2
𝑁𝑊 (𝑏fl

7/5 (𝑡))𝐷𝑍 (𝑏fl
7/5 (𝑡)) +

1 + 𝛼

2
𝑁𝑍 (𝑏fl

7/5 (𝑡))𝐷𝑊 (𝑏fl
7/5 (𝑡)).

It is clear that this is a polynomial in t, multiple of t because 𝑏fl
7/5(0) = 𝑃𝑠 and 𝐷𝑍 (𝑃𝑠) = 𝑁𝑍 (𝑃𝑠) = 0.

We have that

lim
𝑟→(𝑟∗)−

𝑆fl
7/5 (0)
𝑟∗ − 𝑟

=
1

605

(
205 − 89

√
5
)
> 0,

so we can reduce to show
𝑆fl

7/5 (𝑡)
𝑡3

���
𝑟=𝑟∗

> 0. For the rest of the treatment of 𝑏fl (𝑡), let us assume 𝑟 = 𝑟∗.

We have that

𝑆fl
7/5(𝑡)
𝑡3

���
𝑟=𝑟∗

=
1

15552
(
14661

√
5 − 32783

) (454726725
√

5𝑡6 − 1016799875𝑡6 − 479229660
√

5𝑡5

+ 1071590100𝑡5 + 899397288
√

5𝑡4 − 2011113480𝑡4 − 1391938278
√

5𝑡3 + 3112468598𝑡3

+ 833713587
√

5𝑡2 − 1864240269𝑡2 − 834718230
√

5𝑡

+ 1866486726𝑡 + 746056440
√

5 − 1668233016
)
,

and this polynomial is positive for all 𝑡 ∈ R.
Lastly, we need to show that (A.49) is positive at 𝑏nl

7/5(𝑠) for 𝑠 ≤ 𝑠7/5,int defined in the proof of

Proposition 3.6. Let us recall 𝑠𝑛−3
7/5,int �

𝑛!
𝑍𝑛

also from the proof of Proposition 3.6. We define
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𝑆nl
7/5 (𝑠) = 𝐷𝑊 (𝑏nl

7/5 (𝑠))𝐷𝑍 (𝑏nl
7/5 (𝑠))

2 + 1 − 𝛼

2
𝑁𝑊 (𝑏nl

7/5 (𝑠))𝐷𝑍 (𝑏nl
7/5 (𝑠)) +

1 + 𝛼

2
𝑁𝑍 (𝑏nl

7/5 (𝑠))𝐷𝑊 (𝑏nl
7/5 (𝑠)),

which is a 3𝑛-th degree polynomial. Following the same proof as in Lemma 5.12, we get that for
2 ≤ 𝑖 ≤ 3𝑛,

𝜕𝑖𝑆nl
7/5(𝑠)
𝑖!

�

( |𝑍𝑛 |
𝑛!

) 𝑖/𝑛 (𝑘 − 𝑛)𝑖/𝑛−
𝑖/𝑛�
𝑛min{7,ℓ (𝑖) } .

Thus, we get

𝑆nl
7/5 (𝑠) − 𝑆nl ′

7/5 (0)𝑠 �
𝑛−1∑
𝑖=2

( |𝑍𝑛 | (𝑘 − 𝑛)
𝑛!

𝑠𝑛
) 𝑖/𝑛 1

𝑛min{7,ℓ (𝑖) } +
3𝑛∑
𝑖=𝑛

( |𝑍𝑛 |
𝑛!

𝑠𝑛
) 𝑖/𝑛 1

𝑛min{7,ℓ (𝑖) } .

Now let 𝑠0 =

(
𝑛!
|𝑍𝑛 |

)1/(𝑛−2)
. By Corollary 5.8, we have that 𝑠0 �

1
𝑛
. Assuming 𝑠 ≤ 𝑠0, we have

𝑆nl
7/5 (𝑠) − 𝑆nl ′

7/5(0)𝑠 � 𝑠2
3𝑛∑
𝑖=2

1

𝑛min{7,ℓ (𝑖) } � 𝑠2. (A.50)

Moreover,

𝑆nl ′
7/5(0) =

1 − 𝛼

2
𝑁𝑊 ,0𝐷𝑍,1 +

1 + 𝛼

2
𝐷𝑊 ,0𝑁𝑍,1 =

1−𝛼
2 𝑊1 + 1+𝛼

2 𝑍1

𝐷𝑊 ,0𝐷𝑍,1
=

1

𝐷𝑊 ,0
> 0, (A.51)

where the last inequality is due to Lemma A.7. We conclude from (A.50)–(A.51) and from the fact that
𝑠0 �

1
𝑛

that for 0 ≤ 𝑠 ≤ 𝑠0,

𝑆nl
7/5 (𝑠) =

𝑠

𝐷𝑊 ,0

(
1 +𝑂
(
1

𝑛

))
,

and in particular, it is positive. As we have that 𝑠𝑛−3
7/5,int �

𝑛!
𝑍𝑛

= 𝑠𝑛−2
0 , we get that 𝑠7/5,int < 𝑠0 for n

sufficiently large (r sufficiently close to 𝑟∗), so we are done. �

Lemma A.37. We have that for all 𝜁 ∈ (0, 1),

𝛼s𝑍

𝜁
− 1 − 𝛼

2
𝜕𝜁 s𝑊 <

−1

100
.

Proof. Note that on the variables used for the Euler profile, this is just saying that our profile is in the
region

𝐴 = 𝛼𝑍𝐸 − 1 − 𝛼

2

(
𝑊𝐸 +

𝑁𝐸
𝑊

𝐷𝐸
𝑊

)
+ 1

100
< 0

for 𝜉 < 0. From our proof of Theorem 1.2, we know that (𝑊𝐸 (𝜉), 𝑍𝐸 (𝜉)) ∈ Ω for 𝜉 < 0, and we recall
that Ω is defined to be the region where 𝐷𝑊 > 0, 𝐷𝑍 < 0. In particular, it suffices to show that

500𝐴𝐷𝑊 = 𝑊 (200𝑟 + 60𝑍 − 197) + 20𝑊2 + 2𝑍 (10𝑍 + 51) + 5 (A.52)

is negative in Ω. As 500𝐴𝐷𝑊 is continuous with respect to r and Ω is independent of r, we may just
show this at 𝑟 = 𝑟+, and the result will hold true in a neighborhood of 𝑟+ by continuity.
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We get that 500𝐴𝐷𝑊 is negative for 𝑍 ∈ (𝑍 (1) (𝑊), 𝑍 (2) (𝑊)), where 𝑍 (𝑖) (𝑊) are the two branches
of the hyperbola implicitly defined by (A.52) and they are given at 𝑟 = 𝑟+ by

𝑍 (1) (𝑊) =
1

20

(
−30𝑊 − 51 −

√
500𝑊2 + 1000

√
5𝑊 + 2501

)
,

𝑍 (2) (𝑊) =
1

20

(
−30𝑊 − 51 +

√
500𝑊2 + 1000

√
5𝑊 + 2501

)
,

where the second-degree polynomials inside the square root are positive for all 𝑊 ∈ R. However, Ω
is given by −5−3𝑊

2 < 𝑍 < −5−2𝑊
3 for 𝑊 > −1, so we just need to show 𝑍 (1) (𝑊) < −5−3𝑊

2 and
−5−2𝑊

3 < 𝑍 (2) (𝑊) for all 𝑊 > −1.

Let us start with 𝑍 (1) (𝑊) < −5−3𝑊
2 . We have that

20

(−5 − 3𝑊

2
− 𝑍 (1) (𝑊)

)
= 1 +
√

500𝑊2 + 1000
√

5𝑊 + 2501 > 0. (A.53)

With respect to −5−2𝑊
3 < 𝑍 (2) (𝑊), we have

60

(
𝑍 (2) (𝑊) +

5 + 2𝑊

3

)
= −53 − 50𝑊 + 3

√
500(𝑊 +

√
5)2 + 1. (A.54)

To show that (A.54) is positive, it suffices to show that the term with the square root dominates. That is
the case as

4500(𝑊 +
√

5)2 + 9 − (50𝑊 + 53)2 = 100
(
20𝑊2 +

(
90
√

5 − 53
)
𝑊 + 197

)
> 0,

where we used 𝑊 ≥ −1 to conclude the last inequality. �

Lemma A.38. We have that for every 𝜁 ∈ (0, 1),

𝛼 s𝑊

𝜁
− 1 − 𝛼

2
𝜕𝜁 s𝑍 >

1

100
.

Proof. This is equivalent to show positivity for

𝐵 = 𝛼𝑊𝐸 − 1 − 𝛼

2

(
𝑍𝐸 +

𝑁𝐸
𝑍

𝐷𝐸
𝑍

)
− 1

100
,

when 𝜉 < 0. From our proof of Theorem 1.2, we know that (𝑊𝐸 (𝜉), 𝑍𝐸 (𝜉)) ∈ Ω for 𝜉 < 0. In particular,
𝐷𝑍 < 0, so it suffices to show negativity for

500𝐵𝐷𝑍 = 𝑍 (200𝑟 − 203) + 20𝑍2 + 20𝑊2 + 60𝑊𝑍 + 98𝑊 − 5. (A.55)

Solving the polynomial in (A.55) in Z, one finds that (A.55) is negative for 𝑍 ∈ (𝑍 (−) , 𝑍 (+) ), where

𝑍 (±) (𝑊) =
1

40

(
±
√

40000𝑟2 + 24000𝑟𝑊 − 81200𝑟 + 2000𝑊2 − 32200𝑊 + 41609 − 200𝑟 − 60𝑊 + 203
)
.

(A.56)

Let us recall from Remark 2.6 that our solution is decreasing in W, so we can parametrize it as 𝑍∗(𝑊).
Thus, we have to show 𝑍 (−) (𝑊) < 𝑍∗(𝑊) < 𝑍 (+) (𝑊) for 𝑊 > 𝑊0.

Let us start with 𝑍∗(𝑊) < 𝑍 (+) (𝑊). As we know that the solution is in Ω (where 𝐷𝑍 < 0) for 𝜉 < 0,
it suffices to show that 𝑍 (+) (𝑊) > −5−2𝑊

3 , as 𝑍 = −5−2𝑊
3 is the line at which 𝐷𝑍 = 0. By continuity, we
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may take 𝑟 = 𝑟∗, and note

120

(
𝑍 (+) (𝑊) +

5 + 2𝑊

3

)
= −100𝑊 + 150

√
5 − 241 + 3

√
200𝑊
(
10𝑊 − 30

√
5 + 49
)
− 14700

√
5 + 34509.

(A.57)

The second-degree polynomial inside the square root is always positive, and moreover, it dominates the
expression, since

9
(
200𝑊
(
10𝑊 − 30

√
5 + 49
)
− 14700

√
5 + 34509

)
−
(
−100𝑊 + 150

√
5 − 241

)2
= 8000

(
𝑊 + 1

2

(
5 − 3

√
5
))2

> 0,

so (A.57) is positive.
Now, let us show 𝑍∗ (𝑊) > 𝑍 (−) (𝑊). First of all, note from Proposition 2.5 that 𝑍∗(𝑊) = −𝑊 +𝑂 (1).

While doing series in (A.56), we get that 𝑍 (−) (𝑊) = −3−
√

5
2 𝑊 +𝑂 (1), so the inequality is clearly true for

W sufficiently large. For W sufficiently close (from above) to 𝑊0, we also have that (A.55) is negative
because it is zero for 𝑊 = 𝑊0 (as 𝐷𝑍 = 0) and

(−203 + 200𝑟) (−𝑍1) + 40𝑍0 (−𝑍1) + 40𝑊0 (−𝑊1) + 60𝑊0 (−𝑍1) + 60𝑍0 (−𝑊1) + 98(−𝑊1)

=
√
𝑟∗ − 𝑟

(−1

33

√
42979610

√
5 − 92240400 + 𝑜(1)

)
,

as 𝑟 → 𝑟∗ and
√

42979610
√

5 − 92240400 > 0.
Therefore, as 𝑍∗ (𝑊) is above 𝑍 (−) (𝑊) for W sufficiently large and for W sufficiently close to 𝑊0,

we just need to discard the case that 𝑍∗(𝑊) crosses 𝑍 (−) (𝑊) in both directions at some intermediate
points. This is impossible because the field (𝑁𝑊 𝐷𝑍 , 𝑁𝑍𝐷𝑊 ) points always to the left of (𝑊, 𝑍 (−) (𝑊))
for 𝑊 ∈ (𝑊0, +∞). Concretely, if we define

𝑃(−) (𝑊) = 𝑍 ′(−) (𝑊)𝑁𝑊 (𝑊, 𝑍 (−) (𝑊))𝐷𝑍 (𝑊, 𝑍 (−) (𝑊)) − 𝑁𝑍 (𝑊, 𝑍 (−) (𝑊))𝐷𝑊 (𝑊, 𝑍 (−) (𝑊)),

we will show that 𝑃(−) (𝑊) > 0 for all 𝑊 > 𝑊0. As we have 𝑃(−) (𝑊0) = 0 (because 𝑁𝑍 (𝑃𝑠) =

𝐷𝑍 (𝑃𝑠) = 0) and

lim
𝑟→(𝑟∗)−

𝑃′(−) (𝑊0)
√
𝑟∗ − 𝑟

=
1

9

√
425427

√
5 − 815045 > 0,

we can reduce to show that
𝑃(−) (𝑊 )
(𝑊−𝑊0)2

���
𝑟=𝑟∗

> 0. Defining

𝑃
(0)
(−) (𝑊) = 200𝑊

(
10𝑊 − 30

√
5 + 49
)
− 14700

√
5 + 34509,

𝑃
(1)
(−) (𝑊) = 28000000𝑊4 − 114000000

√
5𝑊3 + 205000000𝑊3 − 509000000

√
5𝑊2 + 1158252000𝑊2

− 464135000
√

5𝑊 + 1041517700𝑊 + 1596837600
√

5 − 3572154667

𝑃
(2)
(−) (𝑊) = 600000𝑊3 − 1600000

√
5𝑊2 + 2920000𝑊2 − 2862000

√
5𝑊 + 6371200𝑊

+ 6167650
√

5 − 13689861,
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we have that 𝑃 (0)(−) (𝑊) > 0 for all 𝑊 ∈ R. We also have that

𝑄 (−) (𝑊) = 𝑃(−) (𝑊)

√
𝑃
(0)
(−) (𝑊)

(
𝑃
(1)
(−) (𝑊) −

√
𝑃
(0)
(−) (𝑊)𝑃

(2)
(−) (𝑊)

)
(𝑊 −𝑊0)2

���
𝑟=𝑟∗

= 80000000𝑊6 +
(
780000000 − 240000000

√
5
)
𝑊5 +
(
3051240000 − 1554000000

√
5
)
𝑊4

+
(
2544792000 − 1196400000

√
5
)
𝑊3 +
(
5195893000

√
5 − 11358448560

)
𝑊2

+
(
193380463 − 85410820

√
5
)
𝑊 − 1096899300

√
5 + 2427799463,

and the polynomial 𝑄 (−) (𝑊) is positive for 𝑊 ≥ 𝑊0 at 𝑟 = 𝑟∗. Therefore, we have that
𝑃(−) (𝑊 )
(𝑊−𝑊0)2

���
𝑟=𝑟∗

does not change signs for 𝑊 ≥ 𝑊0. Its sign is positive because

𝑃(−) (2) =
15532539 − 5956350

√
5 + 1743962911−759810800

√
5√

6901− 8900
√

5
3

800000
> 0.

�

Lemma A.39. We have that our smooth self-similar profiles have the following asymptotics as 𝜁 →∞:

|𝜕𝑖𝜁 s𝑊 | + |𝜕𝑖𝜁 s𝑍 | = 𝑂
(
𝜁1−𝑟−𝑖
)
. (A.58)

Moreover, we have that for 𝛿 sufficiently small, there exists 𝜁0 > 0 such that

|∇s𝑆(𝜁) | + |∇ s𝑈 (𝜁) | ≤ 𝛿3/2 and s𝑆(𝜁 ′) ≥ 𝛿 (A.59)

for every 𝜁 ′ ≤ 𝜁0 ≤ 𝜁 .

Proof. To show s𝑊, s𝑍 = 𝑂 (𝜁1−𝑟 ) and 𝜕𝜁 s𝑊, 𝜕𝜁 s𝑍 = 𝑂 (𝜁−𝑟 ). Near (𝑊𝐸 , 𝑍𝐸 ) = 0, we have

𝜕𝜉𝑊 = −𝑟𝑊 +𝑂 (𝑊2 + 𝑍2) 𝜕𝜉 𝑍 = −𝑟𝑍 +𝑂 (𝑊2 + 𝑍2),

which implies 𝑊𝐸 , 𝑍𝐸 = 𝑂 (𝑒−𝑟 𝜉 ) = 𝑂 (𝜁−𝑟 ), which translates to s𝑊, s𝑍 = 𝑂 (𝜁1−𝑟 ).

𝜕𝜁 s𝑊𝑊 = 𝑊𝐸 + 𝜕𝜉𝑊 = 𝑂 (𝑒−𝑟 𝜉 ) = 𝑂 (𝜁−𝑟 ),

and we obtain an analogous bound for 𝜕𝜁 s𝑍 .
Assuming (A.58) holds inductively for 𝑖 = 0, . . . 𝑚, then by the Leibniz rule,

(𝑟 − 1 + 𝑚 +𝑂 (𝜁−𝑟 ))𝜕𝑚𝜁 s𝑊 + (𝜁 +𝑂 (𝜁1−𝑟 ))𝜕𝑚+1𝜁
s𝑊 = 𝑂 (𝜁1−𝑚−2𝑟 ),

(𝑟 − 1 + 𝑚 +𝑂 (𝜁−𝑟 ))𝜕𝑚𝜁 s𝑍 + (𝜁 +𝑂 (𝜁1−𝑟 ))𝜕𝑚+1𝜁
s𝑍 = 𝑂 (𝜁1−𝑚−2𝑟 ).

Thus, by Grönwall, we obtain (A.58) for 𝑖 = 𝑚 + 1. �

B. Implementation details of the computer-assisted part

In this appendix, we discuss the technical details about the implementation of the different rigorous
numerical computations that appear in the proofs throughout the paper. We performed the rigorous com-
putations using the Arb library [53] and specifically its C implementation. We attach the code as sup-
plementary material. See Table 2 for the specific programs/commands to run each Lemma/Proposition,

https://doi.org/10.1017/fmp.2024.12 Published online by Cambridge University Press



128 T. Buckmaster, G. Cao-Labora and J. Gómez-Serrano

Table 1. Performance of the code in the different Lemmas/Propositions and regions..

Lemma / Proposition 𝛾 K N Time (longest K, HH:MM:SS)

Lemma 2.1 𝛾 ≥ 5/3 N/A N/A ∼ 00:00:00
Proposition 3.2 𝛾 ≤ 3 [1,68] 100 23:33:55
Proposition 3.2 𝛾 ≤ 3 [681,1000] 1000 05:13:58
Proposition 3.2 𝛾 ≥ 3 [1,100] 100 00:46:33
Proposition 3.5 (Step 1) 𝛾 ≤ 3 [1,100] 100 ∼ 00:00:00
Proposition 3.5 (Step 2) 𝛾 ≤ 3 [1,100] 100 00:11:17
Proposition 3.5 (Step 3: 𝑃nl (𝑠− (𝑘 − 3))) 𝛾 ≤ 3 [1,100] 100 01:33:31
Proposition 3.5 (Step 3: 𝑑

𝑑𝑠
𝑃nl (𝑠)) 𝛾 ≤ 3 [1,100] 100 00:10:04

Proposition 3.5 (Step 4) 𝛾 ≤ 3 [1,10] 10 ∼ 00:00:00
Proposition 3.5 (Step 5) 𝛾 ≤ 3 [1,10] 10 ∼ 00:00:00
Proposition 3.5 (Step 1) 𝛾 ≥ 3 [1,100] 100 00:00:16
Proposition 3.5 (Step 2) 𝛾 ≥ 3 [1,100] 100 01:12:38
Proposition 3.5 (Step 3: 𝑃nl (𝑠− (𝑘 − 3))) 𝛾 ≥ 3 [1,100] 100 14:22:36
Proposition 3.5 (Step 3: 𝑑

𝑑𝑠
𝑃nl (𝑠)) 𝛾 ≥ 3 [1,100] 100 00:45:36

Proposition 3.5 (Step 4) 𝛾 ≥ 3 [1,10] 10 ∼ 00:00:00
Proposition 3.5 (Step 5) 𝛾 ≥ 3 [1,10] 10 ∼ 00:00:00
Proposition 4.5 𝛾 ≤ 3 N/A N/A 00:00:24
Proposition 4.5 𝛾 ≥ 3 N/A N/A 00:01:52
Lemma 5.14 7/5 N/A N/A ∼ 00:00:00
Lemma A.23 𝛾 ≤ 3 N/A N/A ∼ 00:00:00
Lemma A.24 7/5 N/A N/A ∼ 00:00:00
Lemma A.25 𝛾 ≤ 3 N/A N/A 00:08:22
Lemma A.25 𝛾 ≥ 3 N/A N/A 00:01:08
Lemma A.26 (fifth inequality) 𝛾 ≤ 3 [1,100] 100 ∼ 00:00:00
Lemma A.26 (fifth inequality) 𝛾 ≥ 3 [1,100] 100 00:00:15
Lemmas A.26 (top row) 𝛾 > 1 N/A N/A ∼ 00:00:00
Lemmas A.27, A.28 7/5 N/A N/A 13:36:38
Lemma A.29 𝛾 > 1 N/A N/A ∼ 00:00:00
Lemma A.30 𝛾 > 1 N/A N/A ∼ 00:00:00
Lemma A.31 𝛾 > 1 N/A N/A ∼ 00:00:00
Lemma B.1 (top enclosure) 𝛾 ≥ 3 N/A N/A 02:34:19
Lemma B.1 (bottom enclosure) 𝛾 ≥ 3 N/A N/A 02:37:38
Lemma B.2 (top enclosure) 𝛾 ≥ 3 N/A N/A 02:39:16
Lemma B.2 (bottom enclosure) 𝛾 ≥ 3 N/A N/A 02:37:59
Lemma B.3 (top enclosure) 𝛾 ≤ 3 N/A N/A 00:00:23
Lemma B.3 (bottom enclosure) 𝛾 ≤ 3 N/A N/A 00:00:24
Lemma B.4 (top enclosure) 𝛾 ≤ 3 N/A N/A 00:00:11
Lemma B.4 (bottom enclosure) 𝛾 ≤ 3 N/A N/A 00:00:12

with more details in the Supplementary Material. Since the code is long, as an extra step in guaranteeing
correctness, we further verified the C implementation of functions against a numerical implementa-
tion in Mathematica. We only attach here the C version since it is the only mathematically rigorous
implementation. We have also sacrificed efficiency by readability, and some parts of the code could be
optimized (e.g., the splitting between the regimes 𝛾 ∼ 1 and 𝛾 ∼ ∞ could be optimized function by
function, or the calculation of the more complicated barriers could also be optimized, as well as the
aspect ratio – see below for a precise definition). Instead, we decided to write a much more modular
design with many small functions performing simple tasks, at the price of sometimes duplicating code.

Other times, we found empirically that the gain in precision from a higher-order method vs a lower-

order method (for example, using 𝑓
(
𝑎+𝑏

2

)
+ 𝑏−𝑎

2 𝑓 ′([𝑎, 𝑏]) instead of 𝑓 ([𝑎, 𝑏]) as an enclosure of f )

was beaten by the computational cost of the former, and the net execution time was comparable for both
methods. In such a case, we decided to keep the lower-order method to gain in readability.

The implementation is split into several files dealing with the basic functions (such as 𝑊0, 𝑍0 for
example), more complicated functions needed for the barriers (e.g., 𝑃𝑛𝑙) and an additional general utility
file.

There are two versions of the basic and barriers’ files depending on whether 𝛾 ∈ [1, 3] or 𝛾 ∈ [3,∞),
and an extra file with additional functions for the case 𝛾 = 7

5 . The rationale behind the splitting is that
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Table 2. Executables and compilation commands for the different Lemmas..

Lemma / Proposition 𝛾 Compilation Command Executable

Lemma 2.1 𝛾 ≥ 5/3 make check_gamma_high_fast check_gamma_high_fast
Proposition 3.2 𝛾 ≤ 3 make check_gamma_low_slow check_gamma_low_Qfl
Proposition 3.2 𝛾 ≥ 3 make check_gamma_high_slow check_gamma_high_Qfl
Proposition 3.5 (Step 1) 𝛾 ≤ 3 make check_gamma_low_slow check_gamma_low_Bfl_zero
Proposition 3.5 (Step 2) 𝛾 ≤ 3 make check_gamma_low_slow check_gamma_low_Bfl_sminus
Proposition 3.5 (Step 3: 𝑃nl (𝑠− (𝑘 − 3))) 𝛾 ≤ 3 make check_gamma_low_slow check_gamma_low_Pnl_sminus
Proposition 3.5 (Step 3: 𝑑

𝑑𝑠
𝑃nl (𝑠)) 𝛾 ≤ 3 make check_gamma_low_slow check_gamma_low_dPnl

Proposition 3.5 (Step 4) 𝛾 ≤ 3 make check_gamma_low_slow check_gamma_low_DW_bnl
Proposition 3.5 (Step 5) 𝛾 ≤ 3 make check_gamma_low_slow check_gamma_low_DZ_bnl
Proposition 3.5 (Step 1) 𝛾 ≥ 3 make check_gamma_high_slow check_gamma_high_Bfl_zero
Proposition 3.5 (Step 2) 𝛾 ≥ 3 make check_gamma_high_slow check_gamma_high_Bfl_sminus
Proposition 3.5 (Step 3: 𝑃nl (𝑠− (𝑘 − 3))) 𝛾 ≥ 3 make check_gamma_high_slow check_gamma_high_Pnl_sminus
Proposition 3.5 (Step 3: 𝑑

𝑑𝑠
𝑃nl (𝑠)) 𝛾 ≥ 3 make check_gamma_high_slow check_gamma_high_dPnl

Proposition 3.5 (Step 4) 𝛾 ≥ 3 make check_gamma_high_slow check_gamma_high_DW_bnl
Proposition 3.5 (Step 5) 𝛾 ≥ 3 make check_gamma_high_slow check_gamma_high_DZ_bnl
Proposition 4.5 𝛾 ≥ 3 make check_gamma_high_slow check_gamma_high_Pfr
Proposition 4.5 𝛾 ≤ 3 make check_gamma_low_slow check_gamma_low_Pfr
Lemma 5.14 7/5 make check_75_fast check_75_fast
Lemma A.23 𝛾 ≤ 3 make check_gamma_low_fast check_gamma_low_fast
Lemma A.24 7/5 make check_75_fast check_75_fast
Lemma A.25 𝛾 ≤ 3 make check_gamma_low_fast check_gamma_low_fast
Lemma A.25 𝛾 ≥ 3 make check_gamma_high_fast check_gamma_high_fast
Lemma A.26 (fifth inequality) 𝛾 ≤ 3 make check_gamma_low_slow check_gamma_low_W4Z4
Lemma A.26 (fifth inequality) 𝛾 ≥ 3 make check_gamma_high_slow check_gamma_high_W4Z4
Lemmas A.26 (top row) 𝛾 ≤ 3 make check_gamma_low_fast check_gamma_low_fast
Lemmas A.26 (top row) 𝛾 ≥ 3 make check_gamma_high_fast check_gamma_high_fast
Lemmas A.27, A.28 7/5 make check_75_slow check_75_slow
Lemma A.29 𝛾 ≤ 3 make check_gamma_low_fast check_gamma_low_fast
Lemma A.29 𝛾 ≥ 3 make check_gamma_high_fast check_gamma_high_fast
Lemma A.30 𝛾 ≤ 3 make check_gamma_low_fast check_gamma_low_fast
Lemma A.30 𝛾 ≥ 3 make check_gamma_high_fast check_gamma_high_fast
Lemma A.31 𝛾 ≤ 3 make check_gamma_low_fast check_gamma_low_fast
Lemma A.31 𝛾 ≥ 3 make check_gamma_high_fast check_gamma_high_fast
Lemma B.1 (top enclosure) 𝛾 ≥ 3 make check_gamma_high_slow check_gamma_high_r3_top
Lemma B.1 (bottom enclosure) 𝛾 ≥ 3 make check_gamma_high_slow check_gamma_high_r3_bottom
Lemma B.2 (top enclosure) 𝛾 ≥ 3 make check_gamma_high_slow check_gamma_high_r4_top
Lemma B.2 (bottom enclosure) 𝛾 ≥ 3 make check_gamma_high_slow check_gamma_high_r4_bottom
Lemma B.3 (top enclosure) 𝛾 ≤ 3 make check_gamma_low_slow check_gamma_low_r3_top
Lemma B.3 (bottom enclosure) 𝛾 ≤ 3 make check_gamma_low_slow check_gamma_low_r3_bottom
Lemma B.4 (top enclosure) 𝛾 ≤ 3 make check_gamma_low_slow check_gamma_low_r4_top
Lemma B.4 (bottom enclosure) 𝛾 ≤ 3 make check_gamma_low_slow check_gamma_low_r4_bottom

different desingularizations of the functions are required for the respective cases. In the former case, we
will work with the variables 𝛾̃ = 𝛾−1, 𝑟 = 𝑟−1

𝛾−1 due to the singular behavior of the functions as 𝛾 → 1. In

the latter, we will work with the variables 𝛾inv = 1
𝛾
∈ [0, 1

3 ], and 𝛽, where 𝑟 = 13
10 − 𝛾inv

(
5
12

)
+ 3

20 𝛽. This

change of variables is used to map the region Ω = {𝛾inv ∈ [0, 1
3 ], 𝑟 ∈ (𝑟3 (𝛾), 𝑟4 (𝛾)} into a rectangular-

like region to avoid recalculating or bounding 𝑟3 (𝛾) and 𝑟4 (𝛾) every time, leading to smaller errors.
For performance reasons and because of Lemma A.31 or Proposition 4.5, we computed an enclosure of
𝑟3 (𝛾inv), 𝑟4 (𝛾inv) and 𝑟3(𝛾̃), 𝑟4(𝛾̃) via the following Lemmas:

Lemma B.1. Let 𝛾 ≥ 3. Then 𝛽3 ∈ 𝛽3, where

𝛽3 (𝛾inv) = (−0.12274496668801302𝛾8
inv + 0.42078810964241387𝛾7

inv − 0.623996430280739𝛾6
inv

+ 0.4105016227331515𝛾5
inv + 0.20672452719140819𝛾4

inv − 1.0572166089549326𝛾3
inv

+ 1.804198700610401𝛾2
inv − 0.35416295479734694𝛾inv + 0.09216512413383933) + 10−7 [−1, 1],
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and

𝑟3 =
13

10
− 𝛾inv

5

12
+ 3

20
𝛽3.

Lemma B.2. Let 𝛾 ≥ 3. Then 𝛽4 ∈ 𝛽4, where

𝛽4 (𝛾inv) = (−0.04469537027555534𝛾8
inv + 0.27333057184133175𝛾7

inv − 0.7172811883027264𝛾6
inv

+ 0.9255018926764634 ∗ 𝛾5
inv − 0.4952968302717332𝛾4

inv − 0.6817068021865448𝛾3
inv

+ 1.8794062687026156𝛾2
inv − 1.0362653478653305𝛾inv + 0.6762522531779247) + 10−7 [−1, 1],

and

𝑟4 =
13

10
− 𝛾inv

5

12
+ 3

20
𝛽4.

Lemma B.3. Let 1 < 𝛾 ≤ 3. Then 𝑟3 ∈ ¯̃𝑟3, where

¯̃𝑟3 (𝛾̃) = 0.12958483718253389 − 0.055797750679595685(𝛾̃ − 1) + 0.025268384121421402(𝛾̃ − 1)2

− 0.012079846976628505(𝛾̃ − 1)3 + 0.006116771307938418(𝛾̃ − 1)4

− 0.0032535214532335432(𝛾̃ − 1)5 + 0.0016116474810902726(𝛾̃ − 1)6

− 0.0008337203606963439(𝛾̃ − 1)7 + 0.001012190680858338(𝛾̃ − 1)8

− 0.0007409251358921898(𝛾̃ − 1)9 − 0.00036102326965520293(𝛾̃ − 1)10

+ 0.0003377160636686555(𝛾̃ − 1)11 + 0.0004026573999596568(𝛾̃ − 1)12

− 0.00028839031633197794(𝛾̃ − 1)13 + 10−6 [−1, 1] .

Lemma B.4. Let 1 < 𝛾 ≤ 3. Then 𝑟4 ∈ ¯̃𝑟4, where

¯̃𝑟4(𝛾̃) = 0.17138836639778826 − 0.07719915367902941(𝛾̃ − 1) + 0.037195168499089215(𝛾̃ − 1)2

− 0.01925242261821647(𝛾̃ − 1)3 + 0.010950870775304766(𝛾̃ − 1)4

− 0.0066817396642915305(𝛾̃ − 1)5 + 0.0023871873304486257(𝛾̃ − 1)6

− 0.0005906689017045608(𝛾̃ − 1)7 + 0.005507190023795072(𝛾̃ − 1)8

− 0.00526607727745243(𝛾̃ − 1)9 − 0.004296434160444562(𝛾̃ − 1)10

+ 0.0042797575355271456(𝛾̃ − 1)11 + 0.002982168551811326(𝛾̃ − 1)12

− 0.0025067232778351023(𝛾̃ − 1)13 + 10−6 [−2, 2] .

Any statement that has to be proved in Ω for 𝛾 ≥ 3 will be proved in the region Ω′ = {𝛾inv ∈
[0, 1

3 ], 𝛽 ∈ [𝛽3 (𝛾inv), 𝛽4 (𝛾inv)]}, or conversely, in Ω′ = {𝛾̃ ∈ [0, 2], 𝑟 ∈ [ ¯̃𝑟3 (𝛾̃), ¯̃𝑟4 (𝛾̃)]} in the case
𝛾 ≤ 3, which will imply the correctness of the statement in Ω thanks to the monotonicity of 𝑟 (𝛽) with
𝛽, 𝑟 (𝑟) with 𝑟 as well as the monotonicity of 𝑘 (𝑟) (cf. Lemma 2.1):

Throughout the code, we will also desingularize the different variables in such a way that there is a
finite limit whenever 𝛾 tends to the singular point (either 1 or ∞). For example, instead of calculating
𝑊0 or 𝑍0, we will calculate 𝑊0

𝛾inv
and 𝑍0

𝛾inv
, respectively, to be able to reach the corresponding limits as

𝛾inv → 0.
An important desingularization in the case 1 < 𝛾 ≤ 3 is the following. If one expands 𝑊𝑘 or 𝑍𝑘

in powers of 𝛾̃ = 𝛾 − 1, it is easy to obtain that 𝑊𝑘 =
𝑊 s
𝑘

𝛾̃
+𝑊ns

𝑘
, where 𝑊 s

𝑘
,𝑊ns

𝑘
are 𝑂 (1). However,

𝑊𝑘 + 𝑍𝑘 = 𝑂 (1) introduces an extra cancellation, and this appears at many levels. In contrast with the
case 𝛾 ≥ 3, a homogeneous desingularization is not possible anymore. To remedy this situation, we
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will perform two steps. The first one is to split the recurrence for 𝑊𝑘 and 𝑍𝑘 into 𝑊 s
𝑘
, 𝑍s

𝑘
,𝑊ns

𝑘
, 𝑍ns

𝑘
. In

particular, this yields

𝐷𝑊 ,𝑖 =
1

2
𝑊 s

𝑖 +
1 + 𝛼

2
𝑊ns

𝑖 +
1 − 𝛼

2
𝑍ns
𝑖 ,

𝐷𝑍,𝑖 =
1

2
𝑍s
𝑖 +

1 + 𝛼

2
𝑍ns
𝑖 +

1 − 𝛼

2
𝑊ns

𝑖 ,

and (for 𝑊ns
𝑛 )

𝐷𝑊 ,0𝑊
ns
𝑛 = −

𝑛−2∑
𝑗=0

(
𝑛 − 1

𝑗

)
𝐷𝑊𝑛+1− 𝑗𝑊

ns
𝑗+1 +

1

4

𝑛−1∑
𝑗=0

(
𝑛 − 1

𝑗

)
(𝑊ns

𝑗 − 𝑍ns
𝑗 )𝑊 s

𝑛−1− 𝑗 + 𝑁̃ns
𝑊 ,𝑛−1 + 𝑅𝑊 ,𝑛−1 +𝑊 s

𝑛

𝑟 − 1

𝛾 − 1
,

𝑁̃ns
𝑊 ,𝑛−1 = ∇𝑁ns

𝑊 · (𝑊ns
𝑛−1, 𝑍

ns
𝑛−1) +

1

2

𝑛−1∑
𝑗=1

(
𝑛

𝑗

)
(𝑊ns

𝑗 , 𝑍ns
𝑗 )𝐻𝑁𝑊 (𝑊ns

𝑛−1− 𝑗 , 𝑍
ns
𝑛−1− 𝑗 )�,

∇𝑁ns
𝑊 =

(
−𝑟 −𝑊ns

0 −
1

2
𝑍ns

0 −
5

4
𝑊 𝑠

0 − (𝛾 − 1)𝑊ns
0 +

𝛾 − 1

4
𝑍ns

0 ,−1

2
𝑊ns

0 −
1

4
𝑊 s

0 +
𝛾 − 1

4
𝑊ns

0 +
𝛾 − 1

2
𝑍ns

0

)
,

𝑅𝑊 ,𝑖 =

𝑖∑
𝑗=1

(
𝑖

𝑗

)
𝑊 𝑠

𝑗

(
−5

4
𝑊ns

𝑖− 𝑗 −
1

4
𝑍ns
𝑖− 𝑗

)
,

and (for 𝑍ns
𝑛 )

(𝑛 − 𝑘)𝐷𝑍,1𝑍
ns
𝑛 = −

𝑛−2∑
𝑗=1

(
𝑛

𝑗

)
𝐷𝑍𝑛− 𝑗𝑍

ns
𝑗+1 −

1

4

𝑛−1∑
𝑗=1

(
𝑛

𝑗

)
(𝑍ns

𝑛− 𝑗 −𝑊ns
𝑛− 𝑗 )𝑊 s

𝑗 +𝑊 s
𝑛

(
𝑟 − 1

𝛾 − 1
+ 1

4
(𝑊ns

0 − 𝑍ns
0 )
)
,

+ 1

2
𝑊 s

𝑛𝑍
ns
1 −

1 − 𝛼

2
𝑍ns

1 𝑊ns
𝑛 +

1

4
𝑊 s

0𝑊
ns
𝑛 +
(
−1

2
𝑍ns

0 +
1

4
𝑊 𝑠

0 +
𝛾 − 1

2
𝑊ns

0 +
𝛾 − 1

4
𝑍ns

0

)
𝑊ns

𝑛 ,

+ 𝑄̃ns
𝑍,𝑛 + 𝑅𝑍,𝑛

𝑄̃ns
𝑍,𝑛 =

1

2

𝑛−1∑
𝑗=1

(
𝑛

𝑗

)
(𝑊ns

𝑗 , 𝑍ns
𝑗 )𝐻𝑁𝑍 (𝑊ns

𝑛−1− 𝑗 , 𝑍
ns
𝑛−1− 𝑗 )�,

𝑅𝑍,𝑖 =

𝑖∑
𝑗=1

(
𝑖

𝑗

)
𝑍 𝑠
𝑗

(
−5

4
𝑍ns
𝑖− 𝑗 −

1

4
𝑊ns

𝑖− 𝑗

)
,

as well as 𝑍s
𝑘
= −𝑊 s

𝑘
= −𝑍s

𝑘−1 for all 𝑘 ≥ 1. Moreover, we will propagate estimates of the form
‘singular’ and ‘non-singular’ into some of the building blocks of the barriers. The second step is related
to this phenomenon and concerns the observation of the following cancellation (we write it for a generic
barrier though it applies everywhere):

𝑃𝛾̃ = (𝑏′𝑍 )ns(𝑁𝑊 𝛾̃)𝐷𝑍 − (𝑏′𝑊 )ns(𝑁𝑍 𝛾̃)𝐷𝑊 + (𝑏′𝑍 )s(𝑁𝑊 𝐷𝑍 + 𝑁𝑍𝐷𝑊 ),

where the barrier 𝑏 = (𝑏𝑊 , 𝑏𝑍 ) is split into the singular and non-singular parts 𝑏s = (𝑏s
𝑊
, 𝑏s

𝑍
), 𝑏ns =

(𝑏ns
𝑊
, 𝑏ns

𝑍
), respectively, and we have used the fact that (𝑏′

𝑍
)s = −(𝑏′

𝑊
)s and we exploit an extra

cancellation in 𝑁𝑊 𝐷𝑍 + 𝑁𝑍𝐷𝑊 writing it in terms of 𝑊 + 𝑍 and 𝑊 − 𝑍 .
The general philosophy is to run a branch and bound algorithm for all the open conditions that have

to be checked throughout the paper. We will first enclose the condition at a given box in parameter space
(which is at most 2 dimensional). For instance, in the 𝛾 ≥ 3 case, starting from a subset of Ω′, where
we picked either {𝛾inv ∈ 𝛾

𝐾,𝑁
inv = [ 𝐾−1

𝑁
1
3 ,

𝐾
𝑁

1
3 ], 𝛽 ∈ [𝛽3 (𝛾𝐾,𝑁

inv ), 𝛽4 (𝛾𝐾,𝑁
inv )], 𝐾, 𝑁 ∈ Z} (for the most

demanding calculations) or the full set {𝛾inv ∈ [0, 1
3 ], 𝛽 ∈ [0, 0.7]} for the least demanding ones. In the

case 𝛾 ≤ 3, the least demanding intervals are taken to be {(𝛾̃, 𝑟) ∈ [0, 1] × [0.125, 0.335]} ∪ {(𝛾̃, 𝑟) ∈
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[1, 2] × [0.085, 0.195]}. For the specific values of K and N used, please see Table 1. If the enclosure
gives a definite sign, we accept (or reject) it, depending on whether the sign is the desired one or not.
If the enclosure does not give a sign, we split the box in 2 across one of the dimensions and call this
procedure recursively. The program keeps dividing unless a certain tolerance (10−10) in the maximum
length in any dimension of the box is reached, in which case the program fails. In our case, this tolerance
was never met. In order to select which direction to split by, a reasonable criterion should be to keep
an aspect ratio proportional to the gradient of the function to be evaluated. Instead, due to the costly
evaluation or estimation of that gradient, we determined empirically that keeping an aspect ratio of
around 10 optimized the running time for 𝛾 ≥ 3 (in 𝛽, 𝛾inv variables) and an aspect ratio of 1

5 (in 𝑟, 𝛾̃

variables) in the case 𝛾 ≤ 3. For example, this meant that we split along the 𝛽 direction if the width in
the 𝛽 direction was bigger than 10 times the width in the 𝛾inv direction, otherwise along the 𝛾inv one.
For the cases where the problem is 1-dimensional, we treat is as a 2-dimensional one with width 0 in
one of the dimensions.

In Table 1, we presented the maximum times (per run) of the different parts of the code. In total, our
computations ran for at most about 5000 CPU hours, although a more realistic estimate is between 3000
and 4000 CPU hours. We have also included the logs from the cluster runs as supplementary material
to provide a more detailed estimate of the runtime.

We now move on to the specific details of the corresponding lemmas and propositions, in the order
in which they appear on the paper:

Details of Lemma 2.1: We start by using the formulation (2.14) writing

𝑘 (𝑟) = 𝐴(𝑟) − 𝐵R2

𝐴(𝑟) + 𝐵R2
, 𝐴(𝑟) = −5 + 3

𝛾
+ 𝑟 (1 + 1

𝛾
), 𝐵 = 1 − 1

𝛾
.

It is enough to check that

(−1 + 𝛾)𝛾2 (𝐴(𝑟)𝜕𝑟 (R2
2) − 2𝐴′(𝑟)R2

2) < 0. (B.1)

We can write condition (B.1) as 𝑇1 (𝑟, 𝛾) + 𝑇2 (𝑟, 𝛾)R1 < 0, where

𝑇1 (𝑟, 𝛾) = 4(𝛾 − 1) (3𝛾 − 1)
(
𝛾2𝑟 − 3𝛾2 − 14𝛾𝑟 + 14𝛾 + 17𝑟 − 15

)
,

𝑇2 (𝑟, 𝛾) = (𝛾 + 1)2(3𝛾 − 5) (𝑟 − 1).

We first show that 𝑇1 (𝑟, 𝛾) < 0. Clearly, we just need to show negativity for(
𝛾2𝑟 − 3𝛾2 − 14𝛾𝑟 + 14𝛾 + 17𝑟 − 15

)
. As this expression is affine in r and 𝑟∗(𝛾) < 2 − 1

𝛾
(by Lemma

A.6), it suffices to show negativity for the endpoints 𝑟 = 1 and 𝑟 = 2 − 1
𝛾

. We have that

(
𝛾2𝑟 − 3𝛾2 − 14𝛾𝑟 + 14𝛾 + 17𝑟 − 15

) ���
𝑟=1

= 2 − 2𝛾2 < 0,

(
𝛾2𝑟 − 3𝛾2 − 14𝛾𝑟 + 14𝛾 + 17𝑟 − 15

) ���
𝑟=2−1/𝛾

= − (17 + 𝛾) (𝛾 − 1)2
𝛾

< 0.

Therefore, 𝑇1 (𝑟, 𝛾) < 0. As we trivially have 𝑇2 (𝑟, 𝛾) < 0 for 𝛾 ≤ 5
3 , this concludes the case 𝛾 ≤ 5

3 . For

the case 𝛾 > 5
3 , it suffices to show that 1

𝛾8 (𝑇2
1 − 𝑇2

2 R
2
1) > 0. We check with a computer-assisted proof

that this is positive for 𝛾 ≥ 5/3 and 1 ≤ 𝑟 ≤ 2. As 𝑟∗ < 2 − 1
𝛾
< 2, this ends our proof.

Details of Proposition 3.2: Our choice of 𝑏fl(𝑡) ensures that 𝑃fl (𝑡) is a 7th-degree polynomial multiple
of 𝑡2(1 − 𝑡)2. Thus, it suffices to check the positivity of 𝑄fl (𝑡) = 𝑃fl (𝑡)/(𝑡2(1 − 𝑡)2), which is a 3𝑟𝑑-
degree polynomial. We validate the condition that 𝑄fl ′(𝑡) is increasing, either by validating 𝑄fl ′′′(1) =
𝑄fl ′′′(𝑡) < 0 and 𝑄fl ′′(1) > 0 (in the case 𝛾 ≥ 3) or by validating 𝑄fl ′′(0) > 0 and 𝑄fl ′′(1) > 0, which
is enough since 𝑄fl ′′(𝑡) is linear (in the case 𝛾 ≤ 3). Therefore, in both cases, 𝑄fl ′(𝑡) < 𝑄fl ′(1) and
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𝑄fl (𝑡) > 𝑄fl (1) −max{𝑄fl ′(1), 0}. We validate 𝑄fl (1) −max{𝑄fl ′(1), 0} > 0. In order to optimize the
code, we do not perform divisions by 1− 𝑡 or t and read the coefficients of 𝑄fl off the coefficients of 𝑃fl.

The case 𝛾 ≤ 3 presents an extra complication since 𝛾̃𝑄fl (𝛾̃, 𝑡) ∼ 𝛾̃𝐹1 (𝛾̃, 𝑡) + (𝑡 − 1)𝐹2 (𝑡) for some
smooth functions 𝐹1 and 𝐹2, and thus, it is impossible to determine the sign out of a uniform bound on
the evaluation of 𝑄fl𝛾̃ (which is what one can compute with the previously described desingularization)
due to its vanishing at 𝛾̃ = 0, 𝑡 = 1. Instead, we have to work harder and further extract the leading,

subleading and the rest of the terms out of expanding 𝑍𝑘 =
𝑍 s
𝑘

𝛾̃
+ 𝑍𝑐

𝑘
+ 𝛾̃𝑍desing,2

𝑘
, where 𝑍s

𝑘
, 𝑍𝑐

𝑘
, 𝑍

desing,2
𝑘

are 𝑂 (1), and analogously, 𝑊𝑘 and all the barriers. In order to extract a sign out of 𝑄fl (𝛾̃, 1), we will
extract a sign out of 𝐹1 (𝛾̃, 1).
Details of Proposition 3.5: Throughout this proposition, we renormalize in 𝛾 as explained above in
order to have meaningful limits of the relevant quantities as 𝛾inv → 0. We discuss in detail the case
𝛾 ≥ 3: the case 𝛾 ≤ 3 is done in an analogous way, considering the desingularization and splitting into
the singular and non-singular parts of the relevant quantities outlined above. For steps 1, 2, 4, 5, we
additionally consider the polynomials under the following change of variables: 𝑠 = 𝑠(𝑘 − 3) to make the
validation region constant. In steps 1 and 2, we use the following formula:

𝐵fl

𝛾4
inv [𝑠2(𝑘 − 3)2]

=
1

4

(
𝐵2

𝛾inv

)2 ( (𝑍0 − 𝑍)
𝛾inv [𝑠(𝑘 − 3)]

)2
+ 1

4

(
𝐵3

𝛾inv

)2 ( (𝑊0 −𝑊)
𝛾inv [𝑠(𝑘 − 3)]

)2

− 1

2

(
𝐵2

𝛾inv

) (
𝐵3

𝛾inv

) ( (𝑍0 − 𝑍)
𝛾inv [𝑠(𝑘 − 3)]

) ( (𝑊0 −𝑊)
𝛾inv [𝑠(𝑘 − 3)]

)

+ 1

2
𝐵2

1

(𝐵2𝑍1 − 𝐵3𝑊1)
𝛾2

inv

(𝑍1 (𝑊0 −𝑊) −𝑊1(𝑍0 − 𝑍))
𝛾2

inv [𝑠2(𝑘 − 3)2]
.

Note that there is an extra cancellation in the last parenthesis of the last term, yielding

𝑍1(𝑊0 −𝑊) −𝑊1 (𝑍0 − 𝑍)
𝛾2

inv𝑠
2(𝑘 − 3)2

=
1

2

(𝑍2𝑊1 −𝑊2𝑍1)
𝛾2

inv

+ 1

6
𝑠

(
𝑍

norm,1
3

𝑊1

𝛾inv
− 𝑊3𝑍1

𝛾2
inv

(𝑘 − 3)
)
,

𝑍
norm,1
3 = 𝑍3(𝑘 − 3).

Steps 4 and 5: Here, 𝑠 is split into the two cases [0, 0.175] and [0.175, 0.35], and we simply evaluate
at the whole interval in 𝑠. We further desingularize 𝐷𝑍 and prove the sign condition for 𝐷𝑍

𝑠 (𝑘−3) instead
to ensure strict inequality for 𝑠 ∼ 0.

Step 3: Throughout this part, we will compute 𝑃nl(𝑡 (𝑘 −3)). A natural desingularization (in t) would
be to consider 𝑠 = 𝑡 (𝑘 − 3) and desingularize as in the previous steps. This is problematic, however,
since, for example, 𝑊3𝑡

3(𝑘 − 3)3 and 𝑍3𝑡
3(𝑘 − 3)3 do not desingularize in the same way (in the latter

case, to desingularize, 𝑍3 should be paired with a factor of 𝑘 − 3). In fact, the natural desingularization

(in t and 𝑘 − 3) should be 𝑃nl (𝑡 (𝑘−3))
𝑡4 (𝑘−3)3 . In order to overcome this complication, we will divide every

summand in t by the highest possible power of 𝑘 − 3 in W or Z, keeping track of it, multiply out to
compose the power series of the products and finally multiply by powers of 𝑘 − 3 if needed. The reason
for doing it this way (as opposed to dividing by 𝑘 −3 whenever it is needed) is that 𝑘 −3 may potentially
be 0, so division by 𝑘 − 3 will not yield any meaningful results. In particular, our methods will return
the following vectors, from which we will construct the functions 𝑁, 𝐷 and b: (in parenthesis the terms
corresponding to the power series for the different degrees of t)

𝑊 = (𝑊0, 𝑊1,
1

2
𝑊2,

1

6
𝑊3 (𝑘 − 3)) , 𝑍 = (𝑍0, 𝑍1,

1

2
𝑍2,

1

6
𝑍

norm,1
3 ) ,

𝑏′𝑊 = (𝑊1, 𝑊2,
1

2
𝑊3 (𝑘 − 3) , 𝑏′𝑍 = (𝑍1, 𝑍2,

1

2
𝑍

norm,1
3 ) ,

𝑊 𝑍 = (𝑊0𝑍0, 𝑊1𝑍0 +𝑊0𝑍1, 𝑊1𝑍1 +
1

2
𝑊2𝑍0 +

1

2
𝑊0𝑍2,
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1

6
𝑊0𝑍

norm,1
3 + 1

6
𝑊3𝑍0 (𝑘 − 3) + 1

2
𝑊2𝑍1 (𝑘 − 3) + 1

2
𝑊1𝑍2 (𝑘 − 3) ,

1

6
𝑊1𝑍

norm,1
3 + 1

6
𝑊3𝑍1 (𝑘 − 3) + 1

4
𝑊2𝑍2 (𝑘 − 3) , 1

12
𝑊2𝑍

norm,1
3 + 1

12
𝑊3𝑍2 (𝑘 − 3) , 1

36
𝑍

norm,1
3 𝑊3 (𝑘 − 3))

𝑊 2
= (𝑊 2

0 , 2𝑊0𝑊1, 𝑊
2

1 +𝑊0𝑊2, 𝑊1𝑊2 (𝑘 − 3) + 1

3
𝑊0𝑊3 (𝑘 − 3) , 1

4
𝑊 2

2 (𝑘 − 3) + 1

3
𝑊1𝑊3 (𝑘 − 3) ,

1

6
𝑊2𝑊3 (𝑘 − 3) , 1

36
𝑊 2

3 (𝑘 − 3)2) ,

𝑍 2
= (𝑍 2

0 , 2𝑍0𝑍1, 𝑍
2
1 + 𝑍0𝑍2, 𝑍1𝑍2 (𝑘 − 3) + 1

3
𝑍0𝑍

norm,1
3 ,

1

4
𝑍 2

2 (𝑘 − 3) + 1

3
𝑍1𝑍

norm,1
3 ,

1

6
𝑍2𝑍

norm,1
3 ,

1

36
(𝑍 norm,1

3 )2) ,

and the powers of 𝑘 − 3 we have divided by (as functions of the powers of t) are given by:

𝑏
′
𝑍 , 𝑏

′
𝑊 = (0, 1, 1); 𝐷𝑍 , 𝐷𝑊 = (0, 1, 2, 2); 𝑁𝑍 , 𝑁𝑊 = (0, 1, 2, 2, 3, 4, 4).

In the end, we validate 𝑃nl(𝑠−) > 0 and 𝑃nl,′([0, 𝑠−]) < 0.

Details of Proposition 4.5: In principle, it is clear that 𝑃fr (𝑠) (𝑠 − 𝑠fr
∞)5 is a polynomial in s, as we

have up to five times the denominator (𝑠 − 𝑠fr
∞) in (4.12). However, the two cancellations at 𝑃0 (because

𝑏fr (0) = 𝑃𝑠 and the choice of 𝐹1) give us that 𝑃fr (𝑠) (𝑠 − 𝑠fr
∞)5 is multiple of 𝑠2.

However, we have that 𝐵fr (𝑊, 𝑍) is bounded if (𝑊, 𝑍) is the solution starting at 𝑃0 (instead of
growing quadratically with |𝑊 | + |𝑍 |). This is because 𝑊 + 𝑍 −𝑊0 − 𝑍0 is bounded over this solution
and 𝑊 + 𝑍 − 𝐹0 �

1
|𝑊 |+ |𝑍 | over this solution (due to the choice of 𝐹0). Those two cancellations imply

that 𝑃fr (𝑠) (𝑠 − 𝑠fr
∞)5 is in fact a multiple of (𝑠 − 𝑠fr

∞)2. Therefore, it suffices to check that the sign of the
polynomial 𝑄fr (𝑠) = 𝑃fr (𝑠) (𝑠 − 𝑠∞)3/𝑠2 is positive.

In order to reduce the dimension of the problem, we use Lemma B.1 (so that we will evaluate at
𝛽 = 𝛽3 for 𝛾 ≥ 3 and 𝑟 = ¯̃𝑟3 for 𝛾 ≤ 3) and hence deal with a 1-dimensional problem. In the former
case, we also renormalize s via 𝑠 = 𝑠

𝛾inv
to ensure convergence to a finite value as 𝛾inv → 0 (this includes

the right scaling with respect to 𝛾inv in 𝑠fr
∞ as well). In the latter, we apply the desingularization scheme

described above without desingularizing s.
In order to bound 𝑄fr (𝑠) = 𝑎0 + 𝑎1𝑠 + 𝑎2𝑠

2 + 𝑎3𝑠
3 + 𝑎4𝑠

4 or 𝑄fr (𝑠) = 𝑎0 + 𝑎1𝑠 + 𝑎2𝑠
2 + 𝑎3𝑠

3 + 𝑎4𝑠
4,

we validate the conditions 𝑎2 < 0 and

⎧⎪⎪⎨
⎪⎪⎩
𝑎0 −

𝑎2
1

4𝑎2
+ |𝑎3 |
(
𝑠fr
∞

𝛾inv

)3
+ |𝑎4 |
(
𝑠fr
∞

𝛾inv

)4
< 0 for 𝛾 ≥ 5

3 ,

𝑎0 −
𝑎2

1
4𝑎2
+ |𝑎3 |
(
𝑠fr
∞
)3 + |𝑎4 |

(
𝑠fr
∞
)4

< 0 for 𝛾 ≤ 5
3 ,

where we are bounding the first 3 terms of the polynomial by its maximum, given that they correspond
to a negative parabola.

The case 𝛾 = 7
5 , 𝑟 = 𝑟∗ is done directly using the framework of 𝛾 ≥ 3 since the desingularization is

simpler.

Details of Lemma 5.14: Instead of computing the 6× 6 determinant directly, we write it in block form,

apply the formula det

(
𝐴 𝐵

𝐶 𝐷

)
= det(𝐴)det(𝐷 − 𝐶𝐴−1𝐵) and compute the determinants on the right-

hand side. The above formula holds so long as A is invertible (which we ensure along the calculation).
The computations of the determinants on the right-hand side of the equation are comparatively more
efficient since A is triangular and the expression for 𝐴−1 is simple.

Details of Lemma A.23: The condition is equivalent to 3−
√

3
2+
√

3𝛾̃
− 𝑟4 > 0, which is what we actually

validate.

Details of Lemma A.24: In order to prove the first part, we will take the full interval 𝑇𝑊 =

(0.6019, 0.6021) and prove that on the one hand, 𝑏fl
7/5,𝑍 (𝑇𝑊 ) > 𝑌0, and on the other, 𝑏fl

7/5,𝑊 (0.6019) <
𝑋0, 𝑏

fl
7/5,𝑊 (0.6021) > 𝑋0.
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Details of Lemma A.25: We apply the same renormalization/desingularization as in Proposition 3.2.

Details of Lemma A.26 (fifth inequality): The inequality is problematic due to 𝑊4, 𝑍4 blowing up at
𝑟3 and 𝑍4 blowing up at 𝑟4 as well. Instead, in the case 𝛾 ≥ 3, we implemented a method that returned
𝑊

norm,2
4 = 1

𝛾inv
𝑊4 (𝑘 − 3) and 𝑍

𝑛𝑜𝑟𝑚,2
4 = 1

𝛾inv
𝑍4 (𝑘 − 3) (𝑘 − 4) adapting equations 2.18–2.19 accordingly

and proved instead

𝑍
norm,2
4 − (𝑘 − 4)𝑊norm,2

4

𝑍1

𝑊1
> 0.

In the case 𝛾 ≤ 3, we split 𝑊𝑘 =
𝑊 s
𝑘

𝛾̃
+𝑊ns

𝑘
, 𝑍𝑘 =

𝑍 s
𝑘

𝛾̃
+ 𝑍ns

𝑘
and, respectively, 𝑊norm,2,∗

4 = 𝑊∗4 (𝑘 − 3),
𝑍

norm,2,∗
4 = 𝑍∗4 (𝑘 − 3) (𝑘 − 4) for ∗ = {𝑠, 𝑛𝑠}. Using that 𝑍s

𝑘
= −𝑊 s

𝑘
for all k, it is enough to validate the

conditions

(𝑍norm,2,ns
4 𝑊ns

1 −𝑊
norm,2,ns
4 𝑍ns

1 (𝑘 − 4)) < 0,

−(𝑍norm,2,ns
4 + (𝑘 − 4)𝑊norm,2,ns

4 + (𝑘 − 3) (𝑘 − 4) (𝑊ns
1 + 𝑍ns

1 ) > 0.

Details of Lemmas A.26 (top row inequalities): In the case 𝛾 ≥ 3, we desingularize by computing
𝑁𝑊,0

𝛾inv
and 𝑁𝑍,1

𝛾inv
in order for them to have finite limits as 𝛾inv → 0. Similarly, in the case 𝛾 ≤ 3, we

desingularize by computing 𝑁𝑊 ,0𝛾̃ and 𝑁𝑍,1𝛾̃ in order for them to have finite limits as 𝛾̃ → 0.

Details of Lemmas A.27, A.28: The implementation is straightforward; however, due to the large
numbers that appear throughout the process (𝑍10000 ∼ 1046770), ultra-high precision is required to avoid
overestimation and to be able to extract the signs out of the relevant quantities. We used 2000 bits to
accomplish this.

Details of Lemmas A.29, A.30: In the case 𝛾 ≥ 3, we renormalize 𝑠fr
∞ by considering 𝑠fr

∞
𝛾inv

and proceed
as in previous Lemmas. In the case 𝛾 ≤ 3, we do not renormalize with respect to 𝛾. We also remark that
in the case 𝛾 = 7

5 , it is enough to validate the condition 𝑊1 + 𝑍1 < 0 thanks to Lemma A.27.

Details of Lemma A.31: The inequality is also problematic due to 𝑍3 blowing up at 𝑟3 and 𝑍4 blowing
up at 𝑟4. We generalized the implementation of 𝑍𝑛𝑜𝑟𝑚,1

𝑛 in 3.5 to return 𝑍
𝑛𝑜𝑟𝑚,1
𝑛 = 1

𝛾inv
𝑍𝑛 (𝑘 − 𝑛) for any

given n in the case 𝛾 ≥ 3 and to return 𝑍
𝑛𝑜𝑟𝑚,1,∗
𝑛 = 𝑍∗𝑛 (𝑘 − 𝑛), ∗ = {𝑠, 𝑛𝑠} in the case 𝛾 ≤ 3. In the latter

case, since 𝑍 𝑠
𝑛 is uniformly bounded (in 𝛾̃) at 𝑟 = 𝑟𝑛, it is enough to check the conditions 𝑍

𝑛𝑜𝑟𝑚,1,𝑛𝑠
3 < 0

and 𝑍
𝑛𝑜𝑟𝑚,1,𝑛𝑠
4 > 0 at 𝑟3 and 𝑟4, respectively.

Details of Lemmas B.1, B.2, B.3, B.4: Straightforward since the quantities are not singular.
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