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Abstract Yerba mate (YM, llex paraguariensis) is an economically important crop marketed for
the elaboration of mate, the third-most widely consumed caffeine-containing infusion worldwide.
Here, we report the first genome assembly of this species, which has a total length of 1.06 Gb and
contains 53,390 protein-coding genes. Comparative analyses revealed that the large YM genome
size is partly due to a whole-genome duplication (Ip-a) during the early evolutionary history of
llex, in addition to the hexaploidization event (y) shared by core eudicots. Characterization of the
genome allowed us to clone the genes encoding methyltransferase enzymes that catalyse multiple
reactions required for caffeine production. To our surprise, this species has converged upon a
different biochemical pathway compared to that of coffee and tea. In order to gain insight into
the structural basis for the convergent enzyme activities, we obtained a crystal structure for the
terminal enzyme in the pathway that forms caffeine. The structure reveals that convergent solutions
have evolved for substrate positioning because different amino acid residues facilitate a different
substrate orientation such that efficient methylation occurs in the independently evolved enzymes
in YM and coffee. While our results show phylogenomic constraint limits the genes coopted for
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convergence of caffeine biosynthesis, the X-ray diffraction data suggest structural constraints are
minimal for the convergent evolution of individual reactions.

Editor's evaluation

This very important study combines genomics, biochemistry, structural biology and ancestral
sequence reconstruction to address the basis of caffeine biosynthesis in Yerba mate, a species that
is phylogenetically unrelated to other plants, namely coffee and tea, in which this pathway has
been studied before. The manuscript reports the first draft genome sequence for yerba mate and
provides convincing evidence for the identity and characteristics of enzymes for caffeine biosyn-
thesis. The authors are able to propose structural constraints for the convergent evolution of
individual reactions. The work will be of interest to plant and evolutionary biologists and anyone
studying natural product biosynthesis.

Introduction

In the genomic era, hundreds of plant species have had their nucleotide sequences determined
to provide unprecedented insight into the genetic basis of many traits. One of the few species of
economic importance for which no genomic data exist is llex paraguariensis var. paraguariensis A.
St. Hilaire (Aquifoliaceae), colloquially known as yerba mate (YM), which is a caffeinated diploid tree-
species (2n = 2x = 40) endemic to the subtropical rainforests of South America (Niklas, 1987). The
dried leaves and twigs of this dioecious evergreen are used to prepare a traditional infusion named
mate, or chimarrado, widely consumed around the world. Approximately 300,000 ha are cultivated
with this tree crop, with Argentina responsible for 80% of worldwide production (Heck and de Mejia,
2007). The mate infusion has been shown to have numerous beneficial effects in humans including as
an antioxidant (Sanchez Boado et al., 2015; Gugliucci, 1996; Vieira et al., 2010), antidiabetic (Kang
et al., 2012; Rios et al., 2015), as well as central nervous system stimulant (Santos et al., 2015),
among others. Several bioactive compounds have been identified in YM that might be responsible for
its effects, including terpenes, flavonoids, phenolics, and methylxanthines (Heck and de Mejia, 2007).
Although its stimulant properties are best known and mostly related to caffeine content, little is known
about the genetic and biochemical mechanisms of how YM synthesizes this, or any, of its important
metabolites. Despite the recent release of three other Ilex genome sequences (Kong et al., 2022;
Xu et al., 2022; Yao et al., 2022), none of the species produce caffeine, making the genetic basis for
convergent evolution of this trait in YM unclear.

Convergent evolution has occurred throughout the tree of life and is particularly rampant in plants
(Sackton and Clark, 2019) where examples of repeated origins of morphological (Thorogood et al.,
2018), anatomical (Wan et al., 2018), physiological (Yang et al., 2017), and biochemical (Pichersky
and Lewinsohn, 2011) traits have been documented. Caffeine (CF) is a xanthine alkaloid that has
independently evolved no less than six times across angiosperms and has implications for pollination,
insect defence, and allelopathy (Anaya et al., 2006; Stevenson et al., 2017). There are multiple
biosynthetic routes to caffeine possible within the xanthine alkaloid network (Figure 1). Within the
Rosid genera Theobroma, Paullinia, and Citrus, sequential methylation of xanthine (X), 1- and/or
3-methylxanthine (1X, 3X) and, finally, either theophylline (TP) or theobromine (TB) leads to caffeine
(Huang et al., 2016). In contrast, the Asterids, Coffea and Camellia, appear to sequentially methylate
xanthosine (XR), 7-methylxanthine (7X), and theobromine (TB) to yield caffeine (Ashihara et al., 1996;
Suzuki and Takahashi, 1976; Figure 1). Regardless of which pathway is utilized, species differ in
terms of which SABATH enzyme family members were convergently recruited to synthesize caffeine:
xanthine methyltransferase (XMT) is used by Citrus and Coffea while the paralogous caffeine synthase
(CS) is used by Camellia, Theobroma, and Paullinia (Huang et al., 2016; Kato et al., 1996, Uefuji
et al., 2003; Figure 1). Convergence appears to also extend to the mutational level, since different
amino acid replacements to homologous regions of CS and XMT enzymes appear to govern the evolu-
tion of substrate preference switches (O’Donnell et al., 2021). However, it remains unclear whether
mutations lead to convergent three-dimensional protein structures to confer convergent substrate
interactions and catalysis by the enzymes. Because XMT- and CS-type enzymes have been conver-
gently recruited in both Rosids and Asterids to catalyse the same or different pathways, it suggests
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Figure 1. Biosynthetic routes to caffeine within the xanthine alkaloid network. CF, caffeine; PX, paraxanthine; TB, theobromine; TP, theophylline;
1X, 1-methylxanthine; 3X, 3-methylxanthine; 7X, 7-methylxanthine; XR, xanthosine; X, xanthine. Nitrogen atoms are coloured to match the arrows
corresponding to the enzymes that methylate them. Adapted with permission from O’Donnell et al., 2021.

considerable evolutionary lability underlying caffeine production in plants (Huang et al., 2016). As
a result, it is difficult to predict what sets of genes, biochemical reactions, and structural properties
might lead to the evolution of caffeine biosynthesis in YM, or any plant, a priori.

Although some transcriptomic resources have been generated for YM (Acevedo et al., 2019;
Debat et al., 2014, Fay et al., 2018), a complete genome sequence has the potential to advance our
understanding of the metabolic potential of this important crop and facilitate improvement. Here, we
describe the first draft genome of YM and report on its composition, organization, and evolution. The
genomic sequence enabled us to uncover the genetic, biochemical, mutational, and structural bases
for convergent evolution of caffeine in YM. Our comparative analyses of caffeine-producing enzymes
across angiosperms reveal how convergence may be the result of constrained evolutionary genomic
potential but relatively unconstrained structural potential.

Results and discussion

YM genome sequencing, assembly, and annotation

The YM genome was sequenced combining lllumina and PacBio sequencing technologies. With Illu-
mina sequencing, we generated ~263.2 Gb of short reads from various DNA fragment sizes (350 bp,
550 bp, 3 kbp, 8 kbp, and 12 kbp), while with PacBio sequencing, we generated ~77.5 Gb of long
reads. These reads represent ~158.5- and ~49.3-fold base-pair coverage of the genome, respec-
tively (Table 1). The total assembly length was ~1.06 Gb and consisted of 10,611 scaffolds (>1 kb)
with an N50 length of ~510.8 kb (Table 2). To assess the completeness of the genome, we aligned
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Table 1. Statistics of the genome sequencing data of yerba mate.

Library Number of reads Read length Total length Coverage
Pair-end 350 bp #1 360,653,408 101 36.4 Gbp 21.8x
Pair-end 350 bp #2 368,746,464 101 37.2 Gbp 22.3x
Pair-end 550 bp 356,261,246 101 36 Gbp 21.5x%
Mate-pair 3 kbp #1 415,398,586 101 30.3 Gbp 18.2x
Mate-pair 3 kbp #2 410,588,934 101 30 Gbp 17.9x
Mate-pair 3 kbp #3 343,059,350 101 25 Gbp 15x
Mate-pair 8 kbp 393,202,256 101 34.6 Gbp 20.7x
Mate-pair 12 kbp 415,478,776 101 33.7 Gbp 20.1x
PacBio long reads 19,514,627 50 bp to 61 kbp 77.5 Gbp 49.3x
Total 341 Gbp 207.8x

the available YM transcriptome reads (Acevedo et al., 2019, Debat et al., 2014, Fay et al., 2018)
and the YM genomic short reads generated in this study with the assembly: 99.3% of the former and
99.5% of the latter were mapped. The GC content of the genome assembly was 36.33% (Table 2),
similar to that of other eudicots (33.70-38.20 GC%) (Singh et al., 2016) and almost identical to that of
llex polyneura (36.08 GC%) (Yao et al., 2022), llex asprella (36.25 GC%) (Kong et al., 2022), and llex
latifolia (36.44 GC%) (Xu et al., 2022), the only three llex species with sequenced genomes. About
64.63% of the genome assembly was composed of repetitive sequences, of which ~36.22% were
retrotransposons, ~1.80% were DNA transposons, ~0.74% were simple repeats, and ~0.15% were
low complexity regions. Long terminal-repeat retrotransposons of the Gypsy and Copia families were
the most abundant transposable elements, as observed in many sequenced plant genomes (Galindo-
Gonzélez et al., 2017), followed by long interspersed nuclear elements (LINEs) and hobo-Activator
transposons, among others (Table 3).

A total of 53,390 protein-coding genes were predicted in the genome, with a mean coding
sequence length of 3062 bp and 4.23 exons per gene. Of these, 41,483 (~77.63%) could be annotated

Table 2. Statistics of the genome assembly of yerba mate.

Metric Value

# scaffolds (>1000 bp) 10,611

# scaffolds (=5000 bp) 9343

# scaffolds (10,000 bp) 8951

# scaffolds (25,000 bp) 5944

# scaffolds (=50,000 bp) 2595

Total length (50,000 bp) 887,124,725
# scaffolds 10,611
Largest scaffold 7,402,063
Total length 1,064,802,823
GC (%) 36.33

N50 510,878
N75 132,523

L50 506

L75 1461

# N's per 100 kbp 1976.99
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Table 3. Classification and distribution of repetitive DNA elements in yerba mate.

Number Length occupied (bp) Percentage of the genome (%)
Class | retrotransposons 421,599 385,714,532 36.22
SINEs 840 154,298 0.01
Penelope 0 0 0.00
LINEs 35,433 17,109,207 1.61
CRE/SLACS 0 0 0.00
L2/CR1/Rex 575 135,549 0.01
R1/LOA/Jockey 443 76,937 0.01
R2/R4/NeSL 0 0 0.00
RTE/Bov-B 8599 2,126,765 0.20
L1/CIN4 25,816 14,769,956 1.39
LTR retrotransposons 385,326 368,451,027 34.60
BEL/Pao 709 266,632 0.03
Ty1/Copia 98,237 67,631,136 6.35
Gypsy/DIRS1 216,472 274,526,515 25.78
Retroviral 0 0 0.00
Class Il DNA transposons 45,427 19,116,209 1.80
hobo-Activator 21,335 6,378,850 0.60
Te1-1S630-Pogo 0 0 0.00
En-Spm 0 0 0.00
MuDR-IS905 0 0 0.00
PiggyBac 0 0 0.00
Tourist/Harbinger 5870 2,846,548 0.27
Others 0 0 0.00
Unclassified 990,080 269,430,122 25.30
Total interspersed repeats 674,260 863 63.32
Small RNA 4362 718,762 0.07
Satellites 0 0 0.00
Simple repeats 185,507 7,911,080 0.74
Low complexity 31,856 1,606,255 0.15

with GO terms, EC numbers or Pfam domains. In addition, we identified 4530 non-coding RNA genes,
including 2670 small nucleolar RNAs, 815 transfer RNAs, 471 ribosomal RNAs, 348 small nuclear
RNAs, and 226 micro RNAs (Appendix 1, Appendix 1—tables 1-3). To further assess the complete-
ness of the assembly, we aligned the scaffolds with the KOG (Tatusov et al., 2003) and DEG (Luo
et al., 2014) databases, determining that 98% of the core gene families from the KOG database and
97.5% of the Arabidopsis thaliana DEG subset were present. Then, we performed a Benchmarking
Universal Single-Copy Orthologs (BUSCO) (Manni et al., 2021) assessment using the eudicot ODB10
database. Among 2326 conserved single-copy genes, ~96.20% were retrieved, of which ~78.80%
were complete and single copies, ~17.40% were complete and in duplicates, ~3.10% were frag-
mented, and only ~0.70% were missing. These results suggest that the coding region of the assembly
is nearly complete. The number of estimated genes for YM is higher than the ca. 39,000 reported from
the genome sequences of other llex species (Kong et al., 2022, Xu et al., 2022; Yao et al., 2022).
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This could be at least partly due to the larger genome size of YM as estimated from flow cytometry
relative to the other species (Gottlieb and Poggio, 2015).

Evolutionary analysis of YM genome provides evidence of whole-
genome duplication in an early llex ancestor

Most plant lineages have experienced ancient polyploidization events followed by massive dupli-
cate gene losses and genome rearrangements, which may have contributed to the evolution of
developmental and metabolic complexity (Landis et al., 2018; Sankoff and Zheng, 2018). Recent
transcriptome-based analyses (One Thousand Plant Transcriptomes Initiative, 2019; Zhang et al.,
2020b) reported an ancient polyploidization event in the llex lineage around 60 Ma (Cretaceous—
Paleogene boundary), based on phylogenomic and synonymous substitution rate (K,) evidence.
Evolutionary analyses of . polyneura (Yao et al., 2022) and |. latifolia (Xu et al., 2022) genomes
also provided evidence of a shared llex-specific whole-genome duplication (WGD). As YM is the first
American holly to have its genome sequenced, we performed synteny-based analyses of its genome
to deepen our understanding of Aquifoliales evolution (Figure 2, Figure 2—figure supplement 1).
The K, distribution of YM paralogues (Figure 2B) revealed a significant peak with a median K; value
of ~0.37, not shared with the rest of the eudicot genomes analysed (Figure 2B, Figure 2—figure
supplement 1). This confirms the lineage-specific polyploidization event (Ip-a) previously reported
in llex (One Thousand Plant Transcriptomes Initiative, 2019; Xu et al., 2022; Yao et al., 2022,
Zhang et al., 2020b), in addition to the shared ancestral WGT-y which is indicated by a median K|
value of ~1.4 (Figure 2B). A WGD in the common ancestor of llex species is further supported by 2:1
syntenic depth ratios between the YM genome and the coffee and grape genomes, which did not
experience additional duplication events after the ancestral WGT-y (Figure 2C). In order to deter-
mine the age of Ip-a, we used two different phylogenies (Figure 2A). The plastid genome phylogeny
supports the monophyly of Aquifoliales as the first diverging clade of campanulids (Magallén et al.,
2015); the alternative nuclear genome phylogeny supports llex in Aquifoliales | as an early branching
lineage of lamiids (Zhang et al., 2020b). With the former phylogeny, we estimated the age of the
WGD event between 48.75 and 69.63 Ma while, with the latter, divergence was estimated at 49.43
and 70.62 Ma (Figure 2A). Both estimates are consistent with that of Zhang et al., 2020a and validate
the age of Ip-a near the origin of llex, which is estimated between 43 and 89 Ma (Yao et al., 2021).

Convergent evolution of caffeine biosynthesis in YM

In order to determine the genes and biochemical pathway responsible for caffeine biosynthesis in YM,
we used bioinformatic analyses to identify SABATH enzyme family members in the genome (Huang
et al., 2016; Kato et al., 1996; Uefuji et al., 2003). There appear to be 28 full-length SABATH genes
in YM that encode members of the functionally diverse clades of the family, including SAMT (Ross
etal., 1999) and JMT (Seo et al., 2001), among others (Figure 3A). Our phylogenetic analysis showed
that although the YM genome does not appear to encode XMT-type caffeine-producing enzymes
like Coffea and Citrus, it does contain three recently and tandemly duplicated genes that encode
CS-type enzymes, IpCS1, IpCS2, and [pCS3 (Figure 3A, C, Appendix 2). The duplicated IpCS1-3 are
86-91% identical at the amino acid level and are expressed at highest levels in caffeine-accumulating
tissue (Figure 3B). |pCS1-3 also appear to be of recent origin, since non-caffeine accumulating llex
species only have a single gene or gene fragment in the syntenic region (Figure 3C). In Camellia,
Theobroma, and Paullinia, recent duplications of the CS-type enzymes responsible for the successive
steps of xanthine alkaloid methylation have also independently occurred (Figure 3A; Huang et al.,
2016; O’Donnell et al., 2021). Two other YM genes encode IpCS4 and 5, but these are not syntenic
with IpCS1-3 and are not highly expressed in any tissues studied (Figure 3B); therefore, we did not
characterize them further.

To investigate the biochemical activities of the enzymes encoded by the three CS-type genes,
we cloned them into bacterial expression vectors and determined heterologous protein functions.
One enzyme, IpCS1, appears to primarily methylate X to catalyse the formation of 3X (Figure 4).
A second enzyme, IpCS2, shows activity only with 3X to produce TB, while a third enzyme, IpCS3,
exhibits a preference to methylate TB to form CF (Figure 4). Thus, collectively, these three enzymes
appear capable of catalysing a complete pathway from xanthine to caffeine. The apparent Ky, for the
preferred substrates of all three enzymes ranges from 85 to 197 pM, and the k../Ky estimates are
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Figure 2. Yerba mate genome duplication history. (A) Evolutionary scenario of the eudicot genomes of Lactuca sativa, Daucus carota, llex
paraguariensis, Coffea canephora, and Vitis vinifera, from their ancestor pre-y. The plastid genome phylogeny is represented with solid black lines, while
the multiple nuclear genome phylogeny is represented with green dashed lines. Paleopolyploidizations are shown with coloured dots (duplications)

and stars (triplications). Divergence time estimates for the lineages, as well as age estimates for the L. sativa and D. carota paleopolyploidizations

Figure 2 continued on next page

Vignale, Hernandez Garcia et al. eLife 2025;13:e104759. DOI: https://doi.org/10.7554/eLife.104759

7 of 41


https://doi.org/10.7554/eLife.104759

ELlfe Research article Biochemistry and Chemical Biology | Genetics and Genomics

Figure 2 continued

were obtained from the literature (lorizzo et al., 2016; Magallén et al., 2015; Reyes-Chin-Wo et al., 2017; Zhang et al., 2020b). Ma, million years
ago. (B) K; distributions with Gaussian mixture model and SiZer analyses of I. paraguariensis (blue), L. sativa (green), D. carota (yellow), C. canephora
(red), and V. vinifera (purple) paralogues. SiZer maps below histograms identify significant peaks at corresponding K; values. Blue represents significant
increases in slope, red indicates significant decreases, purple represents no significant slope change, and grey indicates not enough data for the test.
(C) Comparative genomic synteny analyses of . paraguariensis with C. canephora and V. vinifera.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. K, distributions with Gaussian mixture model and SiZer analyses of I. paraguariensis and L. sativa (green), D. carota (yellow), C.
canephora (red), and V. vinifera (purple) orthologues.

comparable to those determined for other caffeine biosynthetic enzymes (O’Donnell et al., 2021,
Table 4, Figure 4—figure supplement 1). Further evidence for this biosynthetic pathway has been
reported by "C xanthine tracer studies in young leaf segments of I. paraguariensis that showed radio-
activity in 3X and TB in addition to CF (Yin et al., 2015). A pathway from X—3X—-TB—CF has also been
reported for Theobroma and Paullinia using CS-type SABATH enzymes (Huang et al., 2016). Like
Huang et al., 2016, this represents another departure from the long-assumed pathway to caffeine
biosynthesis (XR—7X—-TB—CF) as reported in coffee and tea (Figure 1). This instance in llex is partic-
ularly notable since YM is an Asterid, like coffee and tea. The fact that llex, Theobroma, and Paullinia
convergently recruited CS genes that independently duplicated and evolved to encode enzymes with
similar substrate preferences to catalyse a common pathway to caffeine, in spite of their divergence
more than 100 Ma (Yang et al., 2020), is remarkable and suggests a high degree of genetic constraint
governing the repeated origin of this trait.

While the substrate preferences shown in Figure 4 suggest pathway flux from X—3X-TB—CF,
IpCS1 also shows secondary activity with 7X to produce TB and IpCS3 can catalyse the formation of
CF from paraxanthine (PX) (Figure 4A). Thus, flux through other branches of the xanthine alkaloid
biosynthetic network (Figure 1) cannot be excluded. However, it is not clear how 7X or PX would be
produced in planta since none of the three enzymes studied here is capable of their formation; there-
fore, these secondary activities may not be physiologically relevant. In addition, it has been proposed
that TP may also be a precursor to caffeine biosynthesis in I. paraguariensis based on radioisotopic
feeding studies (Yin et al., 2015), although its levels in plant tissues are 30-160 times lower than TB
(Negrin et al., 2019). Our in vitro enzyme assays provide no experimental evidence for that biosyn-
thetic route; however, it is possible that additional MT enzymes from the SABATH (or other) gene
family not characterized in this study may perform such reactions. Alternatively, if the exogenously
supplied TP was first catabolized to 3X in YM tissues, then the caffeine detected previously (Yin et al.,
2015) could have been synthesized via the route described above for I[pCS2 + IpCS3 (Figure 4).

The caffeine biosynthetic pathway in YM evolved from ancestral
networks with different inferred flux

Caffeine is produced within only one small lineage of llex that diverged and experienced CS gene
duplication (Figure 3) within the last 11 million years (Negrin et al., 2019; Yao et al., 2021) which
indicates that the pathway has only recently evolved. The nature by which novel multistep biochem-
ical pathways evolve is a central question in biology (Noda-Garcia et al., 2018). To investigate the
caffeine pathway origin in YM, we used Ancestral Sequence Reconstruction (Dean and Thornton,
2007, Thornton, 2004) to study AnclpCS1 and AnclpCS2, the ancestors of the three modern-day
enzymes implicated in caffeine biosynthesis in YM (Figure 5, Figure 5—figure supplements 1-4). The
ancestral enzyme, AnclpCS1, which gave rise to all three modern-day YM enzymes, exhibits highest
relative activity with X, 3X, and 7X (Figure 5A). Methylation of 7X by AnclpCS1 occurred at the N3
position resulting in TB synthesis, whereas xanthine methylation occurred at either the N1 or N3
position to form 1X and 3X, respectively (Figure 5B, Figure 5—figure supplement 5A). AnclpCS1
was capable of methylation of 3X at N1 to produce TP, while methylation at the N7 position led to
TB formation (Figure 5B, Figure 5—figure supplement 5A). These data demonstrate that, although
AnclpCS1 could not produce caffeine, it could methylate xanthine alkaloids at 3 different positions of
the planar heterocyclic ring structures and this combination of activities would have allowed for the
ancestor of YM to produce a cocktail of 1X, 3X, TP, and TB by flux through multiple branches of the
xanthine alkaloid biosynthetic network with a single enzyme (Figure 5B).
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Figure 3. The yerba mate (YM) genome encodes three recently duplicated CS-type SABATH proteins that are expressed in caffeine-producing tissues.
(A) SABATH gene tree estimate (LnL = —34,265.473) shows the placement of full-length YM proteins (marked by blue-green dots) within clades that have
published functions. GAMT, gibberellin MT; IAMT, indole-3-acetic acid MT, LAMT/FAMT, loganic/farnesoic acid MT, BAMT/BSMT, benzoic/salicylic acid
MT; XMT, xanthine alkaloid MT used for caffeine biosynthesis in Coffea and Citrus; SAMT, salicylic acid MT, JMT, jasmonic acid MT; CS, caffeine synthase
in Theobroma, Camellia, and Paullinia. Accession numbers for all sequences are provided in Figure 3—source data 1. (B) Gene expression analysis of
IpCS1-5 in root (n = 3) and mature leaves (n = 2) as indicated by the relative abundance of YM transcriptome reads mapped to the IpCS1-5 transcripts.

Figure 3 continued on next page
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Figure 3 continued

RPKM, reads per kilobase per million mapped reads. Error bars indicate standard deviation from the mean. Housekeeping gene: G3PD, glyceraldehyde-

3-phosphate dehydrogenase. (C) Synteny-based analysis of the CS genomic region for I. paraguariensis, I. polyneura, and |. latifolia.
The online version of this article includes the following source data for figure 3:

Source data 1. Accession numbers of SABATH sequences used for phylogenetic analysis in Figure 3.
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Figure 4. SABATH enzymes have evolved to catalyse the biosynthesis of caffeine in yerba mate. (A) Relative enzyme activitiy of IpCS1 (n = 4), [pCS2

(n=3), and IpCS3 (n = 3) SABATH enzymes with eight xanthine alkaloid substrates. (B) High-performance liquid chromatography (HPLC) traces

showing products formed by three encoded caffeine synthase (CS)-type enzymes. Absorbance at 254 nm is shown. (C) Proposed biosynthetic pathway

for caffeine in yerba mate. X, xanthine; XR, xanthosine; 1X, 1-methylxanthine; 3X, 3-methylxanthine; 7X, 7-methylxanthine; TP, theophylline; TB,
theobromine; PX, paraxanthine. Coloured atoms and arrows indicate atoms that act as methyl acceptors for a given reaction.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Michaelis—-Menten curves used to estimate kinetic parameters for (A) IpCS1, (B) [pCS2, and (C) I[pCS3 (n = 2).
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Table 4. Apparent enzyme kinetic parameter estimates for yerba mate caffeine biosynthetic enzymes with selected substrates.

Enzyme (substrate) K (pM) k... (1/s) ke Ky (s M)
IpCS1 (X) 85.05 0.0009 10.11
IpCS2 (3X) 197.08 0.0031 15.77
IpCS3 (TB) 151.19 0.0029 19.36

After gene duplication of AnclpCS1, one daughter enzyme ultimately gave rise to IpCS1, which
exhibits preference to methylate xanthine to produce 3X (Figure 5A). The other daughter enzyme,
AnclpCS2, appears to have maintained highest activity with X, 3X, and 7X like AnclpCS1 (Figure 5A).
However, unlike its ancestor, AnclpCS1, AnclpCS2 evolved high relative activity with 7X to produce
not just TB, but also PX by methylation at the N1 position (Figure 5A, Figure 5—figure supplement
5B). AnclpCS2 retained the ancestral activity of AnclpCS1 with xanthine to produce 1X, but also
evolved the ability to methylate X at the N7 position (Figure 5B, Figure 5—figure supplement 5B).
This enzyme also retained ancestral activity with 3X to produce only TB by N7 methylation but lost the
ability to methylate 3X at the N1 position to form TP. These activities of AnclpCS2 would have allowed
for ancestral flux to produce 1X, 7X, TB, and PX but not caffeine. Because a YM ancestor could
have possessed both AnclpCS2 and a descendant of AnclpCS1, AnclpCS1’ (Figure 5B), additional
pathway flux is possible. If AnclpCS1’ retained activities of its ancestor, AnclpCS1, then the ancestral
llex species could have also produced 3X and TP making for an even more diverse array of xanthine
alkaloids in its tissues (Figure 5B). It has been shown that the xanthine alkaloids, 1X, 3X, and TP, can
bind to modern-day rat adenosine receptors (Daly et al., 1983). Therefore, if these molecules were
to accumulate in ancestral Ilex tissues, they could have conferred a selective advantage which would
likely result in retention of the ancient genes. Ultimately, once gene duplication led to the genera-
tion of the three modern-day CS-type enzymes in YM, pathway flux could be channelled away from
intermediates like 1X and TP such that the modern-day pathway to caffeine evolved (Figure 5B). Not
only did the modern-day CS enzymes of YM evolve to catalyse a pathway from X>3X>TB>CF from
ancestral biosynthetic networks of different products, Theobroma and Paullinia also independently
evolved enzymes with similar properties (Huang et al., 2016). And, they did so from ancestral path-
ways that, like YM, had alternative ancestral fluxes (O’Donnell et al., 2021). While it could be due to
chance alone that all three lineages converged to catalyse a similar pathway from differing ancestral
networks, it is also possible that it was advantageous to specialize for flux to TB via X and 3X because
either it is more enzymatically favourable or these intermediates have greater adaptive value than
other structural isomers.

Protein crystal structure of IpCS3 reveals convergent structural basis
for methylation of theobromine to form caffeine

We successfully crystallized and determined the 2.7 A resolution structure of IpCS3 (PDB ID: 8UZD),
that converts TB into CF. This enzyme crystallizes as a holo-homodimer, bound to both of its reac-
tion products: S-adenosyl-homocysteine (SAH) and caffeine (Figure 6A, Table 5). As is typical for
the SABATH family of methyltransferases, IpCS3 exhibits a Rossman-like fold composed of seven
B-strands surrounded by five a-helices which bind the methyl-donor S-adenosyl-L-methionine (SAM),
as well as an a-helical cap which binds the methyl-acceptor theobromine (McCarthy and McCarthy,
2007; Petronikolou et al., 2018; Zhao et al., 2008; Zubieta et al., 2003). This structural information
of the enzyme bound to both of its products, SAH and caffeine, facilitates an in-depth comparison
of the active site structures of the caffeine-producing CS-type enzyme found in llex to the XMT-type
enzyme in Coffea canephora (McCarthy and McCarthy, 2007) (CcDXMT) to determine the extent
to which convergence of physicochemical properties of the active site has allowed for indepen-
dent specialization for theobromine methylation by the paralogous SABATH enzymes. Although the
IpCS3 structure was obtained in complex with its product, caffeine (Figure 6—figure supplement
1), it can be assumed that the binding mode is conserved for its precursor, theobromine. Indeed,
our computational modelling of theobromine in the active site of [pCS3 predicts it to be oriented as
we have discerned from the diffraction data (Figure 6—figure supplement 2). Thus, in the following
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Figure 5. Ancestral sequence resurrection reveals ancestral xanthine alkaloid pathway flux. (A) Simplified evolutionary history of three yerba mate (YM)
xanthine alkaloid-methylating enzymes and their two ancestors, AnclpCS1 and AnclPCS2. Average site-specific posterior probabilities (PP) for each
ancestral enzyme estimate are provided. Numbers below each branch of the phylogeny represents the number of amino acid replacements between
each enzyme shown. These two ancestral relative activity charts (n = 4) show the averaged activities of two allelic variants of each enzyme. Relative
substrate preference is also shown for the AnclPCS2 mutant enzyme (n = 3) in which five amino acid positions, A22G, R23C, T25S, H221N, and Y265C,
that are inferred to have been replaced during the evolution of IpCS3, were changed. (B) Inferred pathway flux is shown for the antecedent pathways
that could have been catalysed by the ancestral or modern-day combinations of enzymes that would have existed at three time points in the history of
the enzyme lineage. Arrows linking metabolites are coloured according to the activities detected from each enzyme shown in panel A. Dotted arrows
are shown for AnclpCS1’ because it is unknown what characteristics it would possess; it is assumed that it would have at least catalysed the formation

Figure 5 continued on next page
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of 3X from X since both its ancestor and descendant enzyme do so. X, xanthine; XR, xanthosine; 1X, 1-methylxanthine; 3X, 3-methylxanthine; 7X,
7-methylxanthine; TP, theophylline; TB, theobromine; PX, paraxanthine.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. SABATH enzyme family phylogenetic tree used for obtaining ancestral sequence estimates for the clade including IpCS1-3 of
Agquifoliales (log-likelihood = —46,631.672).

Figure supplement 2. Caffeine synthase enzyme family phylogenetic tree used for obtaining alternative ancestral sequence estimates for AnclpCS1

and 2 (log-likelihood = —7032.8928).

Figure supplement 3. Alignment of the two estimated amino acid sequences for AnclpCS1 that were biochemically characterized in Figure 5.

Figure supplement 4. Alignment of the two estimated amino acid sequences for AnclpCS2 that were biochemically characterized in Figure 5.

Figure supplement 5. High-performance liquid chromatography (HPLC) traces for xanthine alkaloid products formed by ancestral llex caffeine synthase

(CS) enzymes.

comparisons, the atomic numbering for the theobromine precursor will be used to facilitate compar-
ison to the CcDXMT structure.

In both CcDXMT and IpCS3, there are several conserved residues, shared by nearly all SABATH
enzymes (Figure 6—figure supplements 3 and 4), that form the active site pocket and appear to
play important roles in binding many different substrates (Petronikolou et al., 2018; Zubieta et al.,
2003). His160 and Trp161 in CcDXMT are in the same relative positions as His155 and Trp156 in
IpCS3 (Figure 6B, C). These residues are ca. 3 A from TB and participate in H-bonding but to different
atoms of the substrate. In CcDXMT, the NE2 of His160 and NE1 of Trp161 form hydrogen bonds to
carbonyl O2 of TB when positioned for N1 methylation; yet, in the structure of IpCS3 these corre-
sponding side chain groups form hydrogen bonds to O6 of TB. Despite these two residues being
conserved for H-bonding, the substrates are rotated 180° along an axis going through N1 and C4.
Thus, the conserved His and Trp residues interact with opposing carbonyls in TB/CF but still position
the substrate for N1 methylation (Figure 6B, C).

On the other hand, there are residues that differ between the two enzymes but appear to provide
for important substrate interactions. Specifically, in the structure of CcDXMT, the hydroxyl group of
Ser237 allows specific hydrogen bonding with N9 to position TB for N1 methylation (Figure 6C). In
IpCS3, His236 is found at the homologous position in the structure. Nevertheless, its involvement in
H-bonding with N9 is uncertain as the distance between nitrogen atoms is ca. 4 A. Tyr368 of CcDXMT
is found to participate in TI-TT interactions with the ring structure of TB Lanzarotti et al., 2020; yet in
IpCS3, Asn353 is found in the homologous position and the amine forms a hydrogen bond with N9
due to its proximity within 3.2 A, which is additionally stabilized by Asn221 and His236 (Figure 6B). The
caffeine-producing CS-type enzymes found in Camellia sinensis (CsTCS1) and Paullinia cupana (PcCS),
may share the same interaction pattern observed with Asn353 in [pCS3 because the homologous Thr
in CsTCS1 or GIn in PcCS could potentially form a hydrogen bond with N9 (Figure 6B, Figure 6—
figure supplements 3 and 4). Because the residues in these positions of IpCS3 and CcDXMT differ
yet contribute to TB binding, these independent replacements represent convergent structural solu-
tions for N1 methylation of the substrate.

In order to experimentally test for the functional importance of the active site residues identified
in the crystal structure of IpCS3 for the evolution of TB methylation preference, we performed site-
directed mutagenesis. We chose to mutate five amino acid positions that appear to be important
for governing xanthine alkaloid methylation in IpCS3 and other CS-type enzymes (Jin et al., 2016;
O’Donnell et al., 2021; Wang et al., 2023, Yoneyama et al., 2006); these included A22G, R23C,
T25S, H221N, and Y265C (Figure 6—figure supplements 3 and 4). When we mutated all five amino
acid residues simultaneously in AnclpCS2, we found that activity with TB increased dramatically rela-
tive to 3X and all other xanthine alkaloid substrates (Figure 5A). Thus, these five sites appear to be
crucial for the evolution of TB methylation in the history of the YM lineage and further indicate that
convergence of caffeine biosynthesis in different species is a result of amino acid replacements at
these sites. The homologous sites to H221N and Y265C in Theacrine synthase from Camellia assamica
were also shown by mutagenesis to be important for the evolution of trimethyluric acid methylation
(Zhang et al., 2020a) thereby providing further support for the functional significance of these posi-
tions for xanthine alkaloid binding.
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Figure 6. Crystal structure of [pCS3 in complex with caffeine (CF) and S-adenosyl-homocysteine (SAH) and comparison with the active site of Coffea
canephora DXMT. (A) Overview of the crystal structure of IpCS3 (PDB ID: 8UZD) depicting the active site of the enzyme in complex with CF and SAH.
(B) Relevant residues in IpCS3 for ligand recognition. (C) Relevant residues in CcDXMT (PDB ID: 2EFJ) for ligand recognition. Protein residues are
displayed as lines with carbon atoms coloured in bluewhite while small molecules — CF, theobromine (TB), and SAH — are drawn as sticks. Colour code
for the rest of the atoms: nitrogen (blue), oxygen (red), and sulphur (yellow). Hydrogen bond interactions are indicated as black dotted lines.

The online version of this article includes the following figure supplement(s) for figure 6:
Figure supplement 1. Crystal structure of I[pCS3 displaying a difference Fourier map (Fo — Fc) contoured to 2.0 o (blue) showing bound SAH and CF.
Figure supplement 2. Theobromine and caffeine are oriented the same way in the active site of I[pCS3.

Figure 6 continued on next page
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Figure supplement 3. Comparative amino acid alignment of xanthine methyltransferase (XMT) and caffeine synthase (CS) sequences (1-209 of [pCS1)
shows convergent changes predicted to participate in substrate binding and promote methylation preference switches.

Figure supplement 4. Comparative amino acid alignment of xanthine methyltransferase (XMT) and caffeine synthase (CS) sequences (210-365 of
IpCS1) shows convergent changes predicted to participate in substrate binding and promote methylation preference switches.

Computational modelling of IpCS1 and IpCS2 active sites

predict convergent substrate-binding residues for xanthine and
3-methylxanthine methylation

Previous studies used site-directed mutagenesis of two sequence regions in CS-type caffeine biosyn-
thetic enzymes from Theobroma (TcCS1/2) and Paullinia (PcCS1/2) to uncover the mutational basis
for the convergent evolution of substrate preference switches towards their preferred substrates, X
and 3X (O'Donnell et al., 2021). In order to determine whether the same regions were convergently
mutated in IpCS1 and IpCS2, and provide binding interactions with X and 3X, respectively, AlphaFold2
(Mirdita et al., 2022) models and subsequent docking studies were performed (Figure 7, Figure 7—
figure supplement 1). Modelling of substrate binding in the predicted active sites of IpCS1 and IpCS2
(Figure 7A and B) shows that the preferred substrates have optimal binding orientations that would
result in methylation to form the products that were experimentally detected in our assays shown in
Figure 4. From our docking simulations, IpCS1 residues W156, N221, and Y265 are positioned for
hydrogen bonding with the carbonyl moieties of xanthine to position N3 for methyl transfer from SAM
(Figure 7A). Although Theobroma and Paullinia CS1 enzymes, as well as Citrus XMT1, specialized for
xanthine methylation also possess W156 and Y265 in the homologous positions (Figure é6—figure
supplements 3 and 4), these residues are highly conserved among nearly all angiosperm SABATH
enzymes. On the other hand, the homologous position to N221 which is important for IpCS1 did not
change concomitantly with the evolution of X preference in either Theobroma or Paullinia (Figure 6—
figure supplements 3 and 4); instead, when Theobroma and Paullinia 'region llI" was mutated, activity
with X improved (O’Donnell et al., 2021). Because I[pCS1 was not mutated in the homologous region
Ill, there appear to be convergent solutions allowing for efficient positioning of X for 3X biosynthesis
among these enzymes. In the case of IpCS2, two hydrogen bond donors, S24 and T25, appear to
contribute to the positioning of 3X in the active site (Figure 7B). This homologous region was experi-
mentally mutated in Theobroma and Paullinia CS2 enzymes and improved specialization for 3X meth-
ylation in both, although the actual substitutions are different in each case (O’Donnell et al., 2021).
Thus, this may represent an additional instance where convergent mutations of the same region lead
to specialization for 3X methylation. If crystal structures could be generated for all of these caffeine-
producing enzymes in the future, even more detailed insights about active site architecture could be
gleaned and would further enhance our understanding of these convergent activities.

Comparative phylogenomic analyses of caffeine biosynthetic genes
reveal historical constraints to convergent gene co-option

Many nearly ubiquitous specialized metabolites involved in defence, development and floral scent
are produced by SABATH enzyme family members that appear to be conserved across diverse angio-
sperm lineages, such as SAMT that methylates salicylic acid (Dubs et al., 2022) and IAMT that meth-
ylates indole-3-acetic acid (Zhao et al., 2008). However, caffeine is sporadically distributed among
disparate angiosperm lineages and seems to have only recently evolved by convergence in a few
distantly related orders (Huang et al., 2016). Our comparative evolutionary genomic analysis of the
CS and XMT syntenic regions across angiosperm (Figure 8) indicates that predicting which SABATH
locus a given lineage might co-opt for caffeine biosynthesis is more dependent upon the idiosyncratic
history of gene loss than phylogenetic relatedness. For example, in the case of the CS syntenic region
used for caffeine biosynthesis in YM and Theobroma, Coffea lacks a CS orthologue and none can be
detected from its genome (Figure 8—figure supplement 1A). Thus, only XMT was historically avail-
able for recruitment in Coffea. Conversely, YM appears to have lost any vestiges of XMT orthologues
known to be responsible for caffeine biosynthesis in Coffea and Citrus (Figure 8—figure supplement
1B-D). This lack of genomic potential may be seen as an evolutionary constraint to gene recruitment
for caffeine biosynthesis in Coffea and YM.
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Table 5. Data collection and refinement statistics
of IpCS3 structure bound to S-adenosyl-
homocysteine (SAH) and caffeine.

IpCS3 in complex with SAH and caffeine

PDB 8UZD

Data collection

Wavelength (A) 0.9786
Resolution (A) 272
Resolution range® 37.00-2.72
(2.82-2.72)
Space group P4a,2,2

Cell dimensions

a b cd) 82.67,82.67, 226.09
a, B,y () 90.00, 90.00, 90.00
Total reflections 43,818

Unique reflections 21,910
Multiplicity® 2.0(2.0)
Completeness (%) 99.89 (100.00)
<l/cl>* 25.79 (2.87)
Rinerge™™ (%) 0.0223 (0.2168)
Rieas (%)™ 0.0315 (0.3066)
CCy* 0.999 (0.878)
Refinement

Resolution (A) 2.72

No. reflections 21,909

Ruor 7/ Reee?® 0.194/0.248
No. atoms

Protein 5,216

CFF + SAH 80

Water 48

B-factors

Protein 63.38

CFF + SAH 84.48

Water 48.19

Bond lengths (A) 0.004

Bond angles (°) 1.112

**Numbers in parentheses refer to the highest
resolution shell.

R erge = 2|l = <I>|/ X1, where [, = the intensity of the
ith reflection and </> = mean intensity.

Ry = Z|F, — FJ/ Z|F.|, where F, and F_ are the
observed and calculated structure factors, respectively.
4R .. was calculated as for R, but on a test set
comprising 5% of the data excluded from refinement.

A broader phylogenetic perspective on the
XMT and CS syntenic regions provides further
insight into genomic canalization and allows for
predictions about the underlying genetic basis for
caffeine biosynthesis in as-of-yet characterized
lineages. As shown in Figure 8, several angio-
sperm lineages have neither XMT nor CS and this
may explain why caffeine has apparently never
evolved in the large and diverse orders Brassi-
cales, Asterales, Solanales and Lamiales even
though it has been shown to be advantageous in
transgenic plants (Kim et al., 2011; Kim et al.,
2006). In the case of Cola, a caffeine-producing
genus from Africa (Niemenak et al., 2008),
it is predicted to have co-opted CS genes for
xanthine alkaloid methylation because the order
Malvales to which it belongs appears to have lost
XMT orthologues prior to its origin (Figure 8).
Tests of this hypothesis await genomic sequences
and functional studies of Cola enzymes. However,
even with a functional XMT or CS enzyme, gene
duplication and protein functional diversification
appears to be required to assemble a complete
pathway to caffeine as shown here for YM. None-
theless, because molecular clock analyses indi-
cate that the caffeine-producing Coffea, Camellia,
Citrus, Paullinia, and llex lineages each originated
within only the last 10-20 million years (Buerki
et al., 2011; Hamon et al., 2017; Pfeil and
Crisp, 2008; Yao et al., 2021; Zan et al., 2023),
it suggests that the evolution of novel specialized
metabolic pathways like that of caffeine can be
relatively rapid.

Materials and methods

Plant materials

|. paraguariensis A. St.-Hil. var. paraguariensis, cv
CA 8/74 (INTA-EEA Cerro Azul, Misiones, Argen-
tina) and cv SI-49 (Establecimiento Las Marias
S.A.C.LLFA., Corrientes, Argentina) were used in
this study. High productivity, increased tolerance
to drought, and ease of propagation with stem
cuttings characterize these genotypes (Acevedo
et al., 2019, Avico et al., 2023; Tarragé et al.,
2012).

DNA extraction and sequencing

Two DNA extraction and sequencing approaches
were combined to improve the accuracy of
genome assembly. First, young leaves of cv CA
8/74, preserved in silica-gel, were used to isolate
total genomic DNA with the DNeasy Plant Mini Kit
(QIAGEN), following the manufacturer’s instruc-
tions. Paired-end libraries (with insert sizes of 350
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Figure 7. Docking models of xanthine alkaloids in IpCS1 and IpCS2 active sites. (A) [pCS1-X complex. (B) [pCS2-3X complex. Protein residues are
displayed as lines with carbon atoms coloured in bluewhite while small molecules — xanthine (X), 3-methylxanthine (3X), caffeine (CF), paraxanthine
(PX), S-adenosyl-L-methionine (SAM), and S-adenosyl-homocysteine (SAH) — are drawn as sticks. Colour code for the rest of the atoms: nitrogen (blue),
oxygen (red), and sulphur (yellow). Hydrogen bond interactions are indicated as black dotted lines.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. AlphaFold2-ColabFold Model Quality assessment of I[pCS1, [pCS2, and [pCS3 models.

and 550 bp) and mate-pair libraries (with insert sizes of 3, 8, and 12 kbp) were constructed using the
lllumina TruSeq DNA Sample Preparation Kit and lllumina Nextera Mate Pair Library Preparation Kit
following the kit's instructions, respectively. The obtained libraries were sequenced on an lllumina
HiSeq 1500 platform, generating ~263.2 Gb of raw data. Second, young leaves of cv SI-49, preserved
in silica-gel, were used to purify high molecular weight DNA with the Quick-DNA HMW MagBead Kit
(Zymo Research), according to the manufacturer’s instructions. Long reads libraries were prepared
using Sequel Binding Kit 1.0 (Pacific Biosciences), following the manufacturer’s instructions. The
obtained libraries were subsequently sequenced on PacBio Sequel | (Pacific Biosciences) using Sequel
Sequencing Kit 1.0 (Pacific Biosciences) and SMRT Cell 1M (Pacific Biosciences), generating ~77.5 Gb
of additional raw data.

Genome assembly and quality assessment

We opted for a pipeline that could take advantage of both short and long sequencing technologies.
For the short reads, we applied Trimmomatic v.0.39 (Bolger et al., 2014) to remove adaptor contami-
nations and filter low-quality reads (reads with mean quality scores <25, reads where the quality of the
bases at the head or tail was <10 and reads with a length <30 bp). The resulting clean reads were then
corrected using Quake v.0.3 (Kelley et al., 2010). Contig assembly and scaffolding was done using the
assembler SOAPdenovo v.2 (Luo et al., 2012) (55-mer size), with the mate-pair reads being used to
link contigs into scaffolds. After the assembly, DeconSeq v.0.4.3 (Schmieder and Edwards, 2011) was
used to detect and remove sequence contaminants. Contigs and scaffolds clearly belonging to the
chloroplast and mitochondria genomes were also discarded. YM transcriptome sequences (Acevedo
et al., 2019, Debat et al., 2014; Fay et al., 2018) and public databases KOG (Tatusov et al., 2003)
and DEG (Luo et al., 2014) were used to validate the genome assembly. Canu v.2.2 (Koren et al.,
2017) was used to perform the self-correction and assembly of the long reads, using the default
parameters and stopOnLowCoverage = 20. For both short and long assemblies, we separated the
assembly haplotypes (haplotigs) using PurgeHaplotigs (Roach et al., 2018) with the recommended
parameter values. Then, we merged both SOAPdenovo v.2 and Canu v.2.2 curated assemblies using
Quickmerge v.03 (Chakraborty et al., 2016), where only contigs with minimum overlap of 5000 bp
(-ml 5000) were merged and only the contigs greater than 1000 bp (- 1000) were retained. The
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Figure 8. Only CS genes were available for co-option and utilization for xanthine alkaloid biosynthesis in yerba mate whereas coffee only had xanthine
methyltransferase (XMT) genes. Both CS- and XMT-type caffeine biosynthetic enzymes were present in the ancestor of core eudicots but numerous
apparent losses of one or the other or both has occurred during lineage diversification. Gene loss is represented by vertical bar on relevant branches of

the cladogram.

Figure 8 continued on next page
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Figure 8 continued
The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Only CS genes are available for co-option and utilization for xanthine alkaloid biosynthesis in yerba mate.

resulting scaffolds and contigs were refined further with the gap-filling module in SOAPdenovo v.2
(GapCloser) and SSPACE v.2.1.1 (Boetzer et al., 2011).

Gene prediction and annotation

First, we masked the genome assembly with RepeatMasker (http://repeatmasker.org/). Then, we
predicted the protein- and non-coding genes using Funannotate v.1.8.13 (Palmer and Stajich,
2019) previously training it with the available I. paraguariensis RNA-Seq experiments (NCBI projects
PRJNA315513, PRINA375923, and PRINA251985). Then, Infernal v.1.1.4 (Nawrocki and Eddy, 2013)
was employed to improve the prediction of small RNAs and microRNAs, while tRNAScan-SE v.2.0
(Chan and Lowe, 2019) was used to improve the prediction of transfer RNAs. Ribosomal RNAs were
predicted using RNAmmer v.1.2 (Lagesen et al., 2007). The TAPIR web server (Bonnet et al., 2010)
(http://bioinformatics.psb.ugent.be/webtools/tapir) and the TargetFinder software v.1.7 (Fahlgren
and Carrington, 2010) were used to identify miRNA targets. InterProScan v.5.55-88.0 (Jones et al.,
2014) and eggNOG-mapper v.2.1.7 (Huerta-Cepas et al., 2019) were employed for the functional
assignment of the predicted genes.

Repeat content estimation

The repeat content was estimated employing Dfam TE Tools v.1.5 (https://github.com/Dfam-consor-
tium/TETools copy archived at Rosen and Gray, 2024). First, we used RepeatModeler v.2.0.3 (Flynn
et al., 2020) to build a database with llex repeat families. Then, we merged that database with Dfam
v3.6 (Hubley et al., 2016) and GIRI Repbase ver 20181026 (Jurka et al., 2005). Finally, we ran Repeat-
Masker on the assembly using the merged database to look for repeat sequences.

Genome duplication analysis

Rates of synonymous substitution (K,) between paralogous genes and orthologous genes in Lactuca
sativa, Daucus carota, |. paraguariensis, C. canephora, and Vitis vinifera were determined using
CoGe's tool SynMap (https://genomevolution.org/). Gaussian mixture models were fitted to the
resulting K; distributions with the mclust R package v.5.0 (Scrucca et al., 2016), and significant peaks
were identified using the SiZer R package v.0.1-7 (Chaudhuri and Marron, 2000). To estimate the
age of the lineage-specific polyploidization event (Ip-a) in llex, we considered two different phylog-
enies (a multiple nuclear genome phylogeny and a plastid genome phylogeny). With the median
K, value of YM-grape orthologues (~0.89) and the divergence date of the two species (125.64 Ma
for the multiple nuclear genome phylogeny and 123.7 Ma for the plastid genome phylogeny), we
calculated the number of substitution per synonymous site per year (r) for YM (divergence date = K/
(2 x ). Conforming to the multiple nuclear genome phylogeny, the YM r value is 3.54E-9; while for
the plastid genome phylogeny, the YM r value is 3.59E-9. These r values and the SiZer K, range of
YM paralogues (~0.35-0.5) were then applied to estimate the age of Ip-a. Finally, to determine the
syntenic depth ratio between I. paraguariensis and C. canephora and V. vinifera, we employed CoGe's
tool SynFind (https://genomevolution.org/), using a distance cutoff of 10 genes and requiring at least
5 gene pairs per synteny block.

Gene expression quantitation

First, YM transcriptome reads (PRINA315513) were mapped to IpCS1-5 transcripts, obtained from
the de novo transcriptome assembly and annotation, using BWA (Li and Durbin, 2009). Then, with the
number of mapped reads, the abundance of each transcript was calculated, normalized by transcript
length and transcriptome size (quantification in RPKM, reads per kilobase per million mapped reads).
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Cloning, mutagenesis, heterologous expression, and purification of
enzymes

Two different approaches were used to clone IpCS genes: RT-PCR from leaf tissue and custom gene
synthesis. For RT-PCR of IpCS2, cDNA was obtained from 1 pg of RNA from fresh YM leaves using stan-
dard procedures and cycling conditions with the following two primers: [pCS2F 5~ATGGACGTGAAG
GAAGCAC-3" and IpCS2R 5-CTATCCCATGGTCCTGCTAAG-3". Following amplification, cDNA was
cloned using the pTrcHis TOPO TA Expression Kit (Invitrogen, Carlsbad, CA). Ligation of cDNA into
the pTrcHis vector and subsequent transformation into Top10 E. coli cells was carried out according
to the manufacturer’s protocol. The transformation mixture was incubated overnight at 37°C on LB
plates containing 50 ug/ml ampicillin. Colonies were screened by PCR to obtain full-length inserts that
were subsequently verified for insert orientation by DNA sequencing. For [pCS1 and 3 and AnclpCS1
and 2, gene sequences were synthesized by GenScript with codons optimized for expression in E.
coli. Synthesized genes were subcloned from the pUC57 cloning vector into the pET-15b (Novagen)
expression vector using 1.5 ug of DNA and Ndel and BamHlI in 30 pl reactions. Linear fragments corre-
sponding to the expected sizes were gel purified using the QIAEX Il Gel Extraction Kit (QIAGEN Corp)
according to the manufacturer’s instructions. Purified DNA fragments were ligated into pET-15b using
T4 DNA ligase from New England Biolabs. Ligation products were transformed into Top10 E. coli cells
using 2 pl of the ligation reaction. Site-directed mutagenesis of AnclpCS2 was carried out using the
Agilent QuikChange Lightning Kit (Agilent Technologies Inc, Santa Clara, CA) following the manufac-
turer’s protocol. Minipreps of positive transformants were obtained using a QlAprep Spin Miniprep
Kit (QIAGEN Corp) and 10 ng of each plasmid was used to transform BL21 E. coli cells using standard
plating and incubation methods.

Induction of Hiss-protein was achieved in 50 ml cell cultures of BL21 (DE3) with IpCS1 and 3 and
AnclpCS1 and 2 in pET-15b or Top10 with IpCS2 in pTrcHis with the addition of 1 mM IPTG at 23°C
for 6 hr. Purification of the His,-tagged protein was achieved by TALON spin columns (Takara Bio)
following the manufacturer’s instructions. Bradford assays were used to determine purified protein
concentration, and recombinant protein purity was evaluated on sodium dodecyl sulphate—polyacryl-
amide gel electrophoresis gels.

Enzyme assays

All enzymes were tested for activity with the eight xanthine alkaloid substrates shown in Figure 1.
Radiochemical assays were performed at 24°C for 60 min in 50 pl reactions that included 50 mM Tris—
HCI buffer, 0.01 pCi (0.5 pl) *C-labelled SAM, 10-20 pl purified protein, and 1 mM methyl acceptor
substrate dissolved in 0.5 M NaOH. Negative controls were composed of the same reagents, except
that the methyl acceptor substrate was omitted and 1 pl of 0.5 M NaOH was added instead. Methyl-
ated products were extracted in 200 pl ethyl acetate and quantified using a liquid scintillation counter.
The highest enzyme activity reached with a specific substrate was set to 1.0 and relative activities
with remaining substrates were calculated. Each assay was run at least three times so that mean, plus
standard deviation, could be calculated.

High-performance liquid chromatography

Product identity of enzyme assays was determined using high-performance liquid chromatography
(HPLC) on 500 pl scaled-up reactions utilizing all the same reagents as described above except that
non-radioactive SAM was used as the methyl donor and reactions were allowed to progress for 4 hr.
Whole reactions were filtered through Vivaspin columns (Sartorius) to remove all protein prior to
injection in the HPLC. Mixtures were separated by HPLC using a two-solvent system with a 250 mm x
4.6 mm Kinetex 5 uM EVO C18 column (Phenomenex). Solvent A was 99.9% water with 0.1% trifluoro-
acetic acid and Solvent B was 80% acetonitrile, 19.9% water and 0.1% TFA and a 0-20% gradient was
generated over 16 min with a flow rate of 1.0 ml/min. Product identity was determined by comparing
retention times and absorbance at 254 and 272 nm of authentic standards. Reactions were compared
to negative controls in which no methyl acceptor substrates were added.

Phylogenetic analyses
In order to accurately determine the orthology of YM SABATH sequences encoded in the genome,
we compared them to all previously functionally characterized gene family members in other species.
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We also included CS and XMT orthologues from the orders of caffeine-producing species (Malvales,
Ericales, Gentianales, Sapindales) available in public databases (GenBank, OneKP) as shown in
Figure 3. Accession numbers for all sequences are provided in . Alignment of amino acid sequences
was achieved using MAFFT v.7.0 (Katoh and Standley, 2013) and employing the auto search strategy
to maximize accuracy and speed. A phylogenetic estimate was obtained using FastTree v.2 (Price
et al., 2010) assuming the Jones-Taylor-Thorton model of amino acid substitution with a CAT approx-
imation using 20 rate categories. Reliability of individual nodes was estimated from local support
values using the Shimodaira—Hasegawa test as implemented in FastTree.

Ancestral sequence resurrection

In order to obtain accurate ancestral CS protein estimates, we assembled two datasets to assess vari-
ation in terms of sampling. The first dataset included 154 sequences including all CS-type enzymes
we could retrieve from GenBank and China National Gene Bank as well as representatives of all
other functionally characterized clades of SABATH enzymes (Figure 5—figure supplement 1). In this
dataset, the only Ilex sequences available were IpCS1-3. This dataset resulted in highly confident
estimates for AnclpCS1 and AnclpCS2 (average site-specific posterior probabilities >0.99 in both
cases). Subsequently, once additional llex genomes became available, we estimated a second set
of ancestral sequences using 29 CS-type enzymes from asterids to assess uncertainty in our initial
estimates (Figure 5—figure supplement 2). In this subsequent analysis, highly confident estimates
for AnclpCS1 and AnclpCS2 were obtained with average site-specific posterior probabilities >0.99
in both cases (see Figure 5). MAFFT v.7.0 (Katoh and Standley, 2013) was used to align the protein
sequences in both datasets using the auto search strategy to maximize accuracy and speed; subse-
quently, IQTree (Trifinopoulos et al., 2016) was used to obtain trees describing the relationships
amongst the aligned sequences for both datasets. For the first set of ancestral sequence estimates,
the Jones, Taylor, and Thorton matrix model for amino acid substitution and the Free rate model
for among-site rate heterogeneity (Yang, 1995) was determined to be the best fit. For the second
dataset, the Q matrix as estimated for plants (Ran et al., 2018) with a gamma model for rate hetero-
geneity was the preferred model. IQTree estimates ancestral sequences using the empirical Bayesian
approach (Trifinopoulos et al., 2016). In order to determine ancestral protein lengths in regions with
alignment gaps, we coded each gap for the number of amino acids possessed and used parsimony to
determine ancestral residue numbers as in our previous studies (Huang et al., 2016). The estimated
sequences were synthesized by Genscript Corp and had codons chosen for optimal protein expres-
sion in Escherichia coli and were cloned into pET15b for expression and purification using the His,
tag. Details of expression were the same as described above for the modern-day enzymes. Although
the two separate ancestral sequence estimates are highly similar to one another (>95% identity in
both cases), the two AnclpCS1 proteins differ at 10 positions and those for AnclpCS2 differ at seven
positions (Figure 5—figure supplements 3 and 4).

Crystallization, data collection, phasing, and refinement of IpCS3

Initial crystallization screening was performed using the IpCS3 methyltransferase at a concentration
of 30 mg/ml incubated with 2 mM TB and 2 mM SAM. Sitting-drop for crystallization screening was
set up by equal volume of precipitant and protein solution (0.25:0.25 pl) using a Crystal Gryphon
robot (Art Robbins Instruments) and a reservoir volume of 45 pl. Trays were incubated at 9°C. Initial
hits were further optimized using the hanging-drop method at 9°C, with 150 pl reservoir solution
and 1:1 ratio of precipitant to protein and ligand solution in a 2-pl drop. Attempts to crystallize with
SAH or uncleavable SAM analogs and TB to attain a pre methylation structure were unsuccessful
given the poor diffraction of these crystals. Therefore, the latter was composed of 33 mg/ml IpCS3
protein concentration, 4 mM TB and 2 mM SAM, and the crystallization condition was optimized to
25% PEG 3350, 0.2 M NH,SO,, 0.1 M Bis-Tris methane pH 5.5. Square crystals grew over 10 days, but
initial X-ray crystallography data revealed a poor electron density for SAH and an electron density
in the active site for CF, the product, rather than for TB. Consequently, crystals were grown in the
aforementioned condition and subsequently soaked for 4 hr at 9°C in the precipitant solution supple-
mented with 10 mM SAH and 10 mM TB. The idea was to supply an excess of the expended methyl
source and additional TB to convert any existing SAM as we did not have access to caffeine as a
reagent. Crystals were transiently soaked in the precipitant solution supplemented with 20% ethylene
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glycol immediately prior to vitrification by direct immersion into liquid nitrogen. Diffraction data were
collected at the Advanced Photon Source (APS) at Argonne National Laboratory Sector-21 via the Life
Sciences-Collaborative Access Team (LS-CAT) at beamline 21-ID-G. Diffraction data were indexed,
integrated, and scaled using the autoPROC software package (Vonrhein et al., 2011). The struc-
ture was solved by molecular replacement using Phaser-MR included in the Phenix software package
(Adams et al., 2010), using PDB ID 6LYH structure as the replacement model. The model was subject
to rounds of manual building followed by refinement using REFMACS5 (Murshudov et al., 2011), and
was manually built in COOT v.0.9.8.3 (Emsley et al., 2010). Crystallographic statistics are listed in
Table 5.

Structure prediction and molecular docking

Protein structures of IpCS enzymes were predicted using the ColabFold implementation of Alpha-
Fold2 (Mirdita et al., 2022) with no template. Diagnostic plots depicting the MSA coverage, align-
ment error and LDDT are shown in the supplementary information (Figure 7—figure supplement 1).
Structures of xanthine alkaloid ligands (X, 3X, and TB) were downloaded from the ChEMBL database
Mendez et al., 2019, protonation states were checked by Chemicalize (Swain, 2012) and optimized
using the VMD Molefacture plugin (Humphrey et al., 1996). The receptor structures were prepared
following the standard AutoDock protocol (Morris et al., 2009) using the prepare_receptor4.py script
from AutoDock Tools. All non-polar hydrogens were merged, and Gasteiger charges and atom types
were added. The ligand PDBQT was prepared using the prepare_ligand4.py script. The grid size and
position were chosen to contain the whole ligand-binding site (including all protein atoms closer
than 5 A from all ligands). For each system, 10 different docking runs were performed. Docking was
performed using AutoDock Vina v.1.2.0 (Eberhardt et al., 2021). The docking results were further
analysed by visual inspection. Images of the molecules were prepared using the PyMOL molecular
graphics system (Schrodinger, 2015).

Synteny comparisons and phylogenetic distribution of CS and XMT

The presence or absence of CS and XMT genes was determined for orders of plants for which at least
one genomic sequence exists, as shown in Figure 8. For those species which do not yet have an avail-
able assembly, we used BLAST (Altschul et al., 1990) analyses of GenBank (nr and TSA databases),
Phytozome (Goodstein et al., 2012) as well as the OneKP dataset (One Thousand Plant Transcrip-
tomes Initiative, 2019) in China National GeneBank. BLAST combined with subsequent phylogenetic
analyses were also used to verify presence/absence of CS- or XMT-type sequences in cases where the
syntenic regions did not appear to encode one or the other gene. Comparisons of the CS and XMT
syntenic regions were performed using CoGe's tool GEvo (https://genomevolution.org/).
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The Illlumina and PacBio raw sequence data, assembly and annotation were deposited in the Euro-
pean Nucleotide Archive (ENA) under BioProject No. PRJIEB65927. An assembly obtained only with
the Illumina data was also deposited in ENA under BioProject No. PRJIEB36685. The plasmids used
to produce proteins are freely available upon request. The atomic coordinates and structure factors
have been deposited in the Protein Data Bank, Research Collaboratory for Structural Bioinformatics,
Rutgers University, New Brunswick, NJ (http://www.rscb.org) with the accession code 8UZD for the
IpCS3 structure bound to caffeine and SAH.

The following datasets were generated:

Author(s) Year Dataset title Dataset URL Database and Identifier
Vignale FA 2024 llex paraguariensis var. https://www.ebi.ac.  ENA, PRJEB65927
paraguariensis genome uk/ena/browser/view/
(Illumina and PacBio) PRJEB65927
Vignale FA 2024 llex paraguariensis var. https://www.ebi.ac.  ENA, PRJEB36685

paraguariensis genome uk/ena/browser/view/
(Hlumina) PRJEB36685

The structure of
[pCS3, a theobromine
methyltransferase from
Yerba Mate

Hernandez Garcia A 2024 https://www.rcsb.org/ RCSB Protein Data Bank,

structure/8UZD 8UZD

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Fay JV 2016 llex paraguariensis https://www.ebi.ac.  ENA, PRINA315513
multiple library de novo uk/ena/browser/view/
transcriptome assembly PRINA315513

Debat HJ 2014 Yerba mate (llex https://www.ncbi. NCBI Sequence Read
paraguariensis St. Hil.) nlm.nih.gov/sra/ Archive, SRP043293
NGS DN Transcriptome SRP043293
assembly

Acevedo RM 2019 RNA-Seq of llex https://www.ncbi.nlm. NCBI Sequence Read
paraguariensis: roots and  nih.gov/sra/?term= Archive, SRP110129
mature leaves SRP110129
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Appendix 1

Non-coding RNAs in yerba mate

1.1 Transfer RNAs

Analysis of transfer RNA (tRNA) family members revealed the presence of 815 tRNA genes including
726 standard tRNAs, 76 pseudo tRNAs, 11 tRNAs with undetermined isotypes, and 2 possible
suppressor tRNAs (Appendix 1—table 1). No selenocysteine tRNA was found in the yerba mate
genome, which is consistent with the results of other tRNA analyses carried out in higher plants
(Santesmasses et al., 2017). According to evolutionary analyses, selenoproteins and selenocysteine
insertion sequence (SECIS) elements present in protozoans and animals evolved early, and were
independently lost in higher plants and fungi through evolution (Novoselov et al., 2002). With
regard to the nonsense suppressor tRNAs, only ochre and opal nonsense suppressor tRNA genes
were found in the yerba mate genome, which suppress the phenotypes of ochre and opal mutations,
respectively.

The length of the standard tRNA sequences ranged from 61 to 236 nucleotides, encoding 53
different anti-codons/isoacceptors in total, with tRNA®*" having the highest abundance of genes and
tRNA™ having the lowest (Appendix 1—table 1). In our study, we also found that yerba mate tRNAs
contain introns in 13 of the 55 tRNAM®t, 9 of the 17 tRNA™, 1 of the 65 tRNA®", and 1 of the 22
tRNA"= genes, providing additional demonstration that tRNAY* and tRNA™ are not the only intron
containing tRNAs in the plant kingdom as it was previously believed (Michaud et al., 2011). The
length of these introns varied from 6 to 163 nucleotides and all of them were found at the canonical
position, one nucleotide 3'to the anti-codon loop.

1.2 Ribosomal RNAs

Analysis of ribosomal RNA (rRNA) family members showed the presence of 425 5S rRNA, 23 18S
rRNA, and 23 25S rRNA genes. The large variability in the copy number of the rRNA genes has been
observed and studied in plants for decades (Rogers and Bendich, 1987). It is believed that a high
copy number of these genes is important to ensure increased demand of proteosynthesis during
plant development, but also to stabilize the cell nucleus (Garcia et al., 2012). With regard to its
genomic organization, the 18S and 25S rRNA genes were clustered together, while the 5S rRNA
genes were tandemly located elsewhere in the genome (S-type arrangement). However, some 5S
rRNA genes were linked with the 18S and 25S rRNA genes as well (L-type arrangement). Given this
observation, we should incorporate the yerba mate genome to the list of eukaryotic genomes with
an L-arrangement of ribosomal DNA.

1.3 Small RNAs

Analysis of small RNA family members revealed the presence of 348 small nuclear RNA (snRNA)
genes including 65 U1 snRNA, 46 U2 snRNA, 29 U4 snRNA, 33 U5 snRNA, and 146 U6 snRNA
genes corresponding to the major spliceosome complex, and 19 Ubatac snRNA, 7 U11 snRNA, and
1 U12 snRNA genes corresponding to the minor spliccosome complex. Furthermore, it showed
the presence of 2670 small nucleolar RNA (snoRNA) genes, of which 2631 (~98.54%) were box
C/D snoRNA genes and 39 (~1.46%) were box H/ACA snoRNA genes. Both groups of snoRNAs
are involved in the cleavage of precursor ribosomal RNA (pre-rRNA) and determine site-specific
modification in pre-rRNAs and snRNAs, though the box C/D snoRNAs are usually associated with
2"-O-ribose methylation, while the box H/ACA snoRNAs are normally associated with 2-~O-ribose
pseudouridylation (Brown et al., 2003; Hari and Parthasarathy, 2019). The greater abundance
of the box C/D snoRNAs in the yerba mate genome could be explained, first, by the fact that
plants have higher numbers of 2-O-ribose methylated nucleotides than archaea, yeast, and other
higher eukaryotes, and second, by the fact that computer algorithms still find difficult to predict
the relatively short conserved sequences of box H/ACA snoRNAs (Brown et al., 2003). It was
remarkable the high copy number (2377) of snoRNA R71 in the yerba mate genome, which is
a member of the Box C/D family. This snoRNA, which is thought to function as a 2-O-ribose
methylation guide for 18S rRNA, has been identified in multiple copies in most eudicot genomes
(Kiss-Laszlé et al., 1996).
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1.4 Micro RNAs

Analysis of micro RNA (miRNA) family members revealed the presence of 226 miRNA genes belonging
to 30 families. The most abundant miRNAs usually involved in growth and development were miR156,
miR166, and miR159, while the most abundant miRNAs normally involved in stress responses were
miR169_2, miR167_1, miR399, and miR395 (Appendix 1—table 2). Nevertheless, the functions
of miRNAs slightly differ among plants. Therefore, to better understand the regulatory effect of
miRNAs in yerba mate, we used the TAPIR web server (Bonnet et al., 2010) and the TargetFinder
softwareto identify yerba mate miRNA targets (Appendix 1—table 3). The results obtained allowed
us to infer the role of 14 of the 30 miRNA families found in the yerba mate genome. Apparently,
miR159, miR164, miR169_2, and miR169_5 regulate a variety of processes related to development
and stress responses. On the one hand, both miR159 and miR164 regulate the expression of myb-
like transcription factors, involved in auxin homeostasis, lateral root and leaf development, leaf
senescence, response to abscisic acid, response to the absence of light and response to salt stress.
miR164 also regulates the synthesis of vitamin B5 involved in embryo development. On the other
hand, both miR169_2 and miR169_5 regulate the expression of a galactinol synthase involved in the
response to cold stress, heat stress, oxidative stress, salt stress and water deprivation; a kinesin-like
protein involved in pollen development and a mitogen-activated protein kinase involved in directing
cellular responses to mitogens, osmotic stress, heat shock, and proinflammatory cytokines. miR167_1
is probably involved only in plant growth and development as it regulates the expression of an auxin
response factor (arf). And last, miR171_1 and miR390 are likely involved only in stress responses.
miR171_1 regulates the expression of an RNA-binding family protein and an endoglucanase involved
in host defence, whereas miR390 regulates the expression of a rotamase FKBP 1 involved in the
response to heat stress, osmotic stress, and wounding. It is important to mention that the functions
of all the predicted targets were gathered from the Arabidopsis Information Resource (TAIR) (Rhee
et al., 2003), and therefore the functional involvement of these miRNAs in yerba mate must be
experimentally validated.

Appendix 1—table 1. Detail of yerba mate tRNA and anti-codon nucleotide sequences.

tRNA genes Anti-codon counts Total No. of tRNAs
POLAR

Asparagine (Asn) GTT (36) ATT (0) 36
Cysteine (Cys) GCA (22) ACA (0) 22
Glutamine (Gln) TTG (13) CTG (10) 23
Glycine (Gly) GCC (32) TCC(11) CCC(8) ACC (0) 51
Serine (Ser) GCT (20) TGA (20) AGA (15) CGA (5) GGA (5) ACT (0) 65
Threonine (Thr) TGT (11) AGT (16) GGT (¢) CGT (2) 35
Tyrosine (Tyr) GTA (17) ATA (0) 17
NON-POLAR

Alanine (Ala) AGC (12) CGC (4) TGC (11) GGC (0) 27
Isoleucine (lle) AAT (14) TAT (6) GAT (2) 22
Leucine (Leu) CAA (23) AAG (10) CAG (4) TAG (8) TAA (6) GAG (0) 51
Methionine (Met) CAT (55) 55
Phenylalanine (Phe) GAA (30) AAA (2) 32
Proline (Pro) AGG (10) TGG (28) CGG (4) GGG (0) 42
Tryptophan (Trp) CCA (31) 31
Valine (Val) AAC (11) GAC (10) CAC (9) TAC (7) 37
POSITIVELY CHARGED

Arginine (Arg) ACG (15) TCT (14) CCT (7) CCG (6) TCG (6) GCG (3) 51
Histidine (His) GTG (25) ATG (2 27
Lysine (Lys) CTT (10) TTT(17) 27

Appendix T—table 1 Continued on next page
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Appendix T—table 1 Continued

tRNA genes Anti-codon counts Total No. of tRNAs
NEGATIVELY CHARGED

Aspartic acid (Asp)  GTC (39) ATC (1) 40
Glutamic acid (Glu)  CTC (14) TTC (21) 35
Selenocysteine

tRNAs TCA(0) 0
Possible suppressor

tRNAs CTA(0) TTA (1) TCA (1) 2
tRNAs with

undetermined

isotypes "
Predicted

pseudogenes 76

Appendix 1—table 2. miRNA families predicted in the yerba mate genome.

miRNA Functional involvement in other eudicot plants

Seed growth and development Chi et al., 2011; Song et al., 2011

Fruit development (Pantaleo et al., 2010)

miR156 Drought/cold stress (Curaba et al., 2012; Zhu and Luo, 2013)

Growth and development (Varkonyi-Gasic et al., 2010)

Phase change from vegetative to reproductive growth (Han et al., 2014)

Lipid and protein accumulation (Zhao et al., 2010)

miR159 Drought stress (Barrera-Figueroa et al., 2011)

Growth and development (Gu et al., 2013; Wang et al., 2011)

Fibrous root and storage root development (Sun et al., 2015)

miR160 Drought stress (Nadarajah and Kumar, 2019)

miR162_2 Storage root initiation and development (Sun et al., 2015)

Lateral root and leaf development (Deng et al., 2015)

Fibrous root and storage root development (Sun et al., 2015)

Seed development (Song et al., 2011)

miR164 Drought stress (Ferreira et al., 2012)

Seed development (Song et al., 2011)

Fibrous root and storage root development (Sun et al., 2015)

Drought stress (Barrera-Figueroa et al., 2011)

miR166 Disease resistance (Guo et al., 2011)

Growth and development (Varkonyi-Gasic et al., 2010)

miR167_1 Drought/cold stress (Barrera-Figueroa et al., 2011; Jeong et al., 2011)

Development (Gu et al., 2013)

miR168 Resistance to fire blight (Kaja et al., 2015)
miR169_2; Drought/cold/salt stress (Carnavale Bottino et al., 2013; Koc et al., 2015; Sheng et al.,
miR169_5 2015; Shui et al., 2013)
Development (Chaves et al., 2015; Zhang et al., 2011)
miR171_1;
miR171_2 Lipid and protein accumulation (Zhao et al., 2010)

Appendix T—table 2 Continued on next page
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miRNA Functional involvéﬁ\oe?ﬁqﬁ( JEHQ?béﬁé)ig&”g&%‘ig
Development (Sun et al., 2012)

Starch biosynthesis (Chen et al., 2015)

miR172 Drought/cold stress (Koc et al., 2015)

Drought stress (Shui et al., 2013)

miR3%90 Leaf morphology (Karlova et al., 2013)
miR3%94 Drought/salt stress (Song et al., 2013)
miR395 Low sulfate response (Katiyar et al., 2012)

Seed development (Gao et al., 2015)
Starch biosynthesis (Chen et al., 2015)

miR396 Drought/salt stress (Shui et al., 2013; Xie et al., 2014)

miR397 Drought/cold stress (Koc et al., 2015)

Fibrous root and storage root development (Sun et al., 2015)

miR398 Salt stress (Carnavale Bottino et al., 2013)

Phosphate homeostasis (Katiyar et al., 2012; Pant et al., 2008)

miR399 Shoot to root transport (Pant et al., 2008)
miR403 Drought stress (Shui et al., 2013)
miR405 Transposon derived (Xie et al., 2005)

Tolerance to Boron deficiency (Lu et al., 2015)

Cold stress (Zhang et al., 2014)

miR408 Response to wounding and topping (Tang et al., 2012)

Metabolism (Din et al., 2014)

miR473 Stress response (Patanun et al., 2013)
miR474 Drought stress (Kantar et al., 2011)
miR475 Metabolism (Din et al., 2014)

miR477 Starch biosynthesis (Xie et al., 2011)
miR530 Disease resistance (Zhao et al., 2015)
miR1023 Disease resistance (Jiao and Peng, 2018)
miR1446 Stress response (Lu et al., 2008)
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Reagent type
(species) or
resource Designation Source or reference Identifiers Additional information
Gene (llex Xanthine methyltransferase gene of llex
paraguariensis) pCS1 GenBank CAK9135737 paraguariensis
Gene (llex 3-Methylxanthine methyltransferase gene of
paraguariensis) [pCS2 GenBank CAK9135740 llex paraguariensis
Gene (llex Theobromine methyltransferase gene of
paraguariensis) [pCS3 GenBank CAK9135742 llex paraguariensis
Strain, strain
background
(Escherichia coli) BL21(DE3) Novagen 69450-M Chemically competent cells

llex paraguariensis
Biological sample A. St.-Hil. var. INTA-EEA Cerro Azul, Misiones,
(llex paraguariensis) — paraguariensis Argentina cv CA 8/74 Used to extract genomic DNA

llex paraguariensis
Biological sample A. St.-Hil. var. Establecimiento Las Marias S.A.C.I.LFA.,
(llex paraguariensis) — paraguariensis Corrientes, Argentina cv SI-49 Used to extract genomic DNA
Recombinant DNA  pUC57-1pCS1
reagent (plasmid) GenScript Used to clone IpCS1 gene
Recombinant DNA  pTrcHis-IpCS2
reagent (plasmid) This paper Used to clone IpCS2 gene
Recombinant DNA  pUC57-IpCS3
reagent (plasmid) GenScript Used to clone IpCS3 gene
Recombinant DNA  pUC57-AnclpCS1
reagent (plasmid) GenScript Used to clone AnclpCS1 gene
Recombinant DNA  pUC57-AnclpCS2
reagent (plasmid) GenScript Used to clone AnclpCS2 gene
Sequence-based pET-15b- IpCS1
reagent (plasmid) This paper Used to express IpCS1 in E. coli BL21(DE3)
Sequence-based pET-15b- IpCS2
reagent (plasmid) This paper Used to express IpCS2 in E. coli BL21(DE3)
Sequence-based pET-15b- IpCS3
reagent (plasmid) This paper Used to express [pCS3 in E. coli BL21(DE3)
Sequence-based PET-15b- AnclpCS1 Used to express AnclpCS1 in E. coli
reagent (plasmid) This paper BL21(DE3)
Sequence-based pET-15b- AnclpCS2 Used to express AnclpCS2 in E. coli
reagent (plasmid) This paper BL21(DE3)
Sequence-based
reagent lpCS2F This paper PCR primers 5-ATGGACGTGAAGGAAGCAC-3'
Sequence-based
reagent IpCS2R This paper PCR primers 5-CTATCCCATGGTCCTGCTAAG-3'
Peptide, recombinant
protein lpCS1 This paper Purified from E. coli BL21(DE3) cells
Peptide, recombinant
protein [pCS2 This paper Purified from E. coli BL21(DE3) cells
Peptide, recombinant
protein IpCS3 This paper Purified from E. coli BL21(DE3) cells
Peptide, recombinant
protein AnclpCS1 This paper Purified from E. coli BL21(DE3) cells
Peptide, recombinant
protein AnclpCS2 This paper Purified from E. coli BL21(DE3) cells
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Reagent type

(species) or

resource Designation Source or reference Identifiers Additional information

Commercial assay DNeasy Plant Mini Used to extract genomic DNA from llex

or kit Kit QIAGEN Cat. #: 69104 paraguariensis

Commercial assay Quick-DNA HMW Used to extract genomic DNA from llex

or kit MagBead Kit Zymo Research Cat. #: D6060 paraguariensis
lllumina TruSeq DNA

Commercial assay Sample Preparation Cat. #: FC-

or kit Kit lllumina 121-2003 Used to construct paired-end libraries
lllumina Nextera

Commercial assay Mate Pair Library Cat. #: FC-

or kit Preparation Kit lllumina 132-1001 Used to construct mate-pair libraries

Commercial assay
or kit

Sequel Binding Kit
1.0

Pacific Biosciences

Used for preparing DNA templates for

Cat. #: 101-365-900 sequencing on the PacBio Sequel System

Commercial assay
or kit

Sequel Sequencing
Kit 1.0

Pacific Biosciences

Used to perform sequencing reactions on

Cat. #: 101-309-500 the PacBio Sequel System

Commercial assay
or kit

SMRT Cell 1M

Pacific Biosciences

Consumable microchip used in the PacBio
Sequel System for Single Molecule, Real-

Cat. #: 100-171-800 Time (SMRT) sequencing

Commercial assay

pTrcHis TOPO TA

or kit Expression Kit Invitrogen Cat. #: K4410-01  Used to clone [pCS2 gene

Used to clone IpCS1, IpCS3, AnclpCS1, and
Commercial assay QIAEX Il Gel AnclpCS2 genes into pET-15b expression
or kit Extraction Kit QIAGEN Cat. #: 20021 vector

Commercial assay

Agilent QuikChange Agilent Technologies Inc, Santa Clara,

Used for site-directed mutagenesis of

or kit Lightning Kit CA Cat. #: 210518 AnclpCS2
Commercial assay QlAprep Spin Used for the rapid purification of high-
or kit Miniprep Kit QIAGEN Cat. #: 27104 quality plasmid DNA
Commercial assay Used for the purification of histidine-tagged
or kit TALON spin columns Takara Bio Cat. #: 89068 proteins
Chemical compound, Used to test relative substrate preference of
drug Xanthine Sigma-Aldrich Cat. #: X0626 lpCS1-3 and AnclpCS1-2
Chemical compound, Used to test relative substrate preference of
drug Xanthosine Sigma-Aldrich Cat. #: X0750 lpCS1-3 and AnclpCS1-2
Chemical compound, Used to test relative substrate preference of
drug 1-Methylxanthine Sigma-Aldrich Cat. #: 69720 lpCS1-3 and AnclpCS1-2
Chemical compound, Used to test relative substrate preference of
drug 3-Methylxanthine Sigma-Aldrich Cat. #: 222526 IpCS1-3 and AnclpCS1-2
chemical compound, Used to test relative substrate preference of
drug 7-Methylxanthine Sigma-Aldrich Cat. #: 69723 lpCS1-3 and AnclpCS1-2
Chemical compound, Used to test relative substrate preference of
drug Theobromine Sigma-Aldrich Cat. #: T4500 lpCS1-3 and AnclpCS1-2
Chemical compound, Used to test relative substrate preference of
drug Paraxanthine Sigma-Aldrich Cat. #: D5385 l[pCS1-3 and AnclpCS1-2
Chemical compound, Used to test relative substrate preference of
drug Theophylline Sigma-Aldrich Cat. #: T1633 lpCS1-3 and AnclpCS1-2

Used to remove adaptor contaminations
Software, algorithm ~ Trimmomatic DOI: 10.1093/bioinformatics/btu170 v.0.39 and filter low-quality reads
Software, algorithm ~ Quake DOI: 10.1186/gb-2010-11-11-r116 v.0.3 Used to correct clean reads
Software, algorithm ~ SOAPdenovo DOI: 10.1186/2047-217X-1-18 v.2 Used to assemble and scaffold contigs
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Reagent type
(species) or
resource Designation Source or reference Identifiers Additional information
Used to detect and remove sequence
Software, algorithm ~ DeconSeq DOI: 10.1371/journal.pone.0017288 v.0.4.3 contaminants
Used for self-correction and assembly of
Software, algorithm ~ Canu DOI: 10.1101/gr.215087.116 v.2.2 long reads
Software, algorithm  PurgeHaplotigs DOI: 10.1186/s12859-018-2441-2 Used to separate assembly haplotypes
Used to merge SOAPdenovo and Canu
Software, algorithm  Quickmerge DOI: 10.1101/029306 v.03 curated assemblies
Software, algorithm ~ SSPACE DOI: 10.1093/bioinformatics/btq683 v.2.1.1 Used to refine scaffolds and contigs
Software, algorithm ~ RepeatMasker http://repeatmasker.org/ Used to mask the genome assembly
Used to predict the protein- and non-
Software, algorithm ~ Funannotate DOI: 10.5281/zenodo.2604804 v.1.8.13 coding genes
Used to improve the prediction of small
Software, algorithm  Infernal DOI: 10.1093/bioinformatics/btt509 v.1.1.4 RNAs and microRNAs
Used to improve the prediction of transfer
Software, algorithm ~ tRNAScan-SE DOI: 10.1007/978-1-4939-9173-0_1 v.2.0 RNAs
http://bioinformatics.psb.ugent.be/
software, algorithm ~ TAPIR webtools/tapir Used to identify miRNA targets
Software, algorithm  TargetFinder DOI: 10.1007/978-1-60327-005-2_4 v.1.7 Used to identify miRNA targets
Used to assign function of the predicted
Software, algorithm  InterProScan DOI: 10.1093/bioinformatics/btu031 v.5.55-88.0 genes
Used to assign function to the predicted
Software, algorithm ~ eggNOG-mapper DOI: 10.1093/nar/gky1085 v.2.1.7 genes
https://github.com/Dfam-consortium/
Software, algorithm ~ Dfam TE Tools TETools v.1.5 Used to estimate the repeat content
Used to estimate rates of synonymous
substitution (Ks) between paralogous and
Software, algorithm  CoGe's tool SynMap  https://genomevolution.org/ orthologous genes
Used to determine the syntenic depth ratio
between |. paraguariensis, C. canephora,
Software, algorithm ~ CoGe's tool SynFind  https://genomevolution.org/ and V. vinifera
Used to compare CS and XMT syntenic
Software, algorithm  CoGe's tool GEvo https://genomevolution.org/ regions
Software, algorithm ~ MAFFT DOI: 10.1093/molbev/mst010 v.7.0 Used to align amino acid sequences
Used to perform phylogenetic analysis of
Software, algorithm  FastTree DOI: 10.1371/journal.pone.0009490 v.2 SABATH sequences
Software, algorithm  |QTree DOI: 10.1093/nar/gkw256 Used to estimate ancestral sequences
Software, algorithm  Phenix DOI: 10.1107/50907444909052925 Used to solve the crystal structure of [pCS3
software, algorithm ~ REFMACS5 DOI: 10.1107/50907444911001314 Used to refine the crystal structure of [pCS3
Software, algorithm ~ COOT DOI: 10.1107/S0907444910007493 v.0.9.8.3 Used to refine the crystal structure of IpCS3
llex paraguariensis
transcriptome Used to assess the completeness of llex
Other sequence data ENA PRINA315513 paraguariensis genome
llex paraguariensis
transcriptome Used to assess the completeness of llex
Other sequence data NCBI SRP043293 paraguariensis genome
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Reagent type
(species) or
resource Designation Source or reference Identifiers Additional information

llex paraguariensis

transcriptome Used to determine the expression of
Other sequence data NCBI SRP110129 IpCS1-5 genes

Used to remove proteins after enzymatic

Other Vivaspin columns Sartorius Cat. #: VS0101 reaction

Kinetex 5 uM EVO Cat. #: 00F-4467-  Used for high-performance liquid
Other C18 column Phenomenex AN chromatography

Crystal Gryphon
Other robot Art Robbins Instruments Cat. #:100-1010  Used for automating crystallization
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