

AAS-PROVIDED PDF • OPEN ACCESS

Discovery of Jupiter Family Comet 2011 UG₁₀₄ Through AI Enhanced Citizen Science

To cite this article: Jarod A. DeSpain *et al* 2024 *Res. Notes AAS* **8** 140

Manuscript version: AAS-Provided PDF

This AAS-Provided PDF is © 2024 The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence
<https://creativecommons.org/licenses/by/4.0>

Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required.

View the [article online](#) for updates and enhancements.

DRAFT VERSION MAY 17, 2024
 Typeset using L^AT_EX default style in AASTeX631

Discovery of Jupiter Family Comet 2011 UG₁₀₄ Through AI-Enhanced Citizen Science

JAROD A. DESPAIN ,¹ COLIN ORION CHANDLER ,^{2,3,1,4} NIMA SEDAGHAT ,^{2,4} WILLIAM J. OLDRROYD ,¹
 CHADWICK A. TRUJILLO ,¹ WILLIAM A. BURRIS ,¹ HENRY H. HSIEH ,^{5,6} JAY K. KUENY ,^{7,8,9}
 KENNEDY A. FARRELL ,¹ MARK JESUS MENDOZA MAGBANUA ,¹⁰ SCOTT S. SHEPPARD ,¹¹
 MICHELE T. MAZZUCATO ,^{12,13,14} MILTON K. D. BOSCH ,¹² TIFFANY SHAW-DIAZ,¹² VIRGILIO GONANO,¹²
 AL LAMPERTI,^{12,15} JOSÉ A. DA SILVA CAMPOS,^{12,16} BRIAN L. GOODWIN,¹² IVAN A. TERENTEV ,¹² AND
 CHARLES J. A. DUKES¹²

¹Dept. of Astronomy & Planetary Science, Northern Arizona University, PO Box 6010, Flagstaff, AZ 86011, USA

²Dept. of Astronomy & the DiRAC Institute, University of Washington, 3910 15th Ave NE, Seattle, WA 98195, USA

³LSST Interdisciplinary Network for Collaboration and Computing, 933 N. Cherry Avenue, Tucson AZ 85721

⁴Raw Data Speaks Initiative

⁵Planetary Science Institute, 1700 East Fort Lowell Rd., Suite 106, Tucson, AZ 85719, USA

⁶Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan

⁷National Science Foundation Graduate Research Fellow

⁸University of Arizona Dept. of Astronomy and Steward Observatory, 933 North Cherry Avenue Rm. N204, Tucson, AZ 85721, USA

⁹Wyant College of Optical Sciences, University of Arizona, 1630 E. University Blvd., Tucson, AZ 85721, USA

¹⁰Dept. of Laboratory Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 94143, USA

¹¹Dept. of Terrestrial Magnetism, Carnegie Institution for Science, 5241 Broad Branch Road. NW, Washington, DC 20015, USA

¹²Active Asteroids Citizen Scientist

¹³Royal Astronomical Society, Burlington House, Piccadilly, London, W1J 0BQ, UK

¹⁴Physical Sciences Group, Siena Academy of Sciences, Piazzetta Silvio Gigli 2, 53100 Siena, Italy

¹⁵Delaware Valley Amateur Astronomers, 112 Pebble Beach Drive, Royersford, PA, 19468 USA

¹⁶Astronomical Society of Southern Africa, PO Box 9 Observatory 7935, Cape Town, South Africa

ABSTRACT

We report the discovery of cometary activity from minor planet 2011 UG₁₀₄, which we classify as a Jupiter Family Comet (JFC). This discovery was aided by our Artificial Intelligence (AI) classification system: TailNet. JFC's, short-period comets with eccentric Jupiter-crossing orbits, originate from the Kuiper belt and thus give us unique insight into the composition and distribution of volatiles in the outer solar system, past and present. Our AI assistant TailNet first classified 2011 UG₁₀₄ as active, which was affirmed by Citizen Scientists on our NASA Partner Program *Active Asteroids*. Through further archival image searches our science team found evidence of activity on 2011 UG₁₀₄ on three separate observations from 2021 February to 2021 April ($81.8^\circ < f < 95.0^\circ$).

Keywords: Asteroids (72), Comae (271), Comet tails (274), Convolutional neural networks (1938)

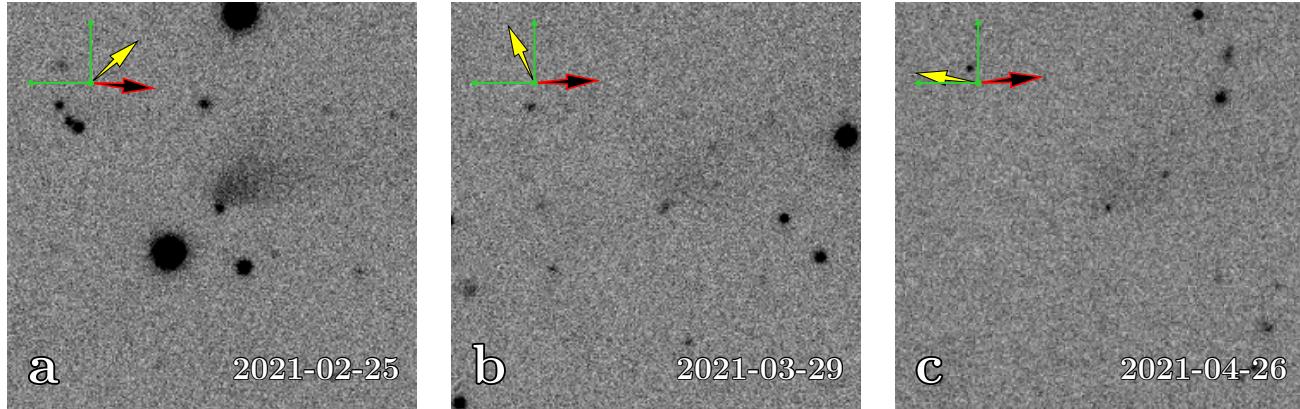
1. INTRODUCTION

Jupiter-family comets (JFCs) are minor planets that show comet-like traits (e.g. coma, tail). JFCs have a Tisserand parameter relative to Jupiter in the range of $2 < T_J < 3$, short orbital periods (< 20 years), and low inclinations relative to the ecliptic ($i < 30^\circ$) (Levison 1996). 2011 UG₁₀₄ ($T_J = 2.695$, $i = 29.58^\circ$), first discovered on 2012 April 7th¹, falls under this category. JFCs originate from the Kuiper belt, having been redirected into the inner solar system by the gravitational influence of Neptune (Lowry et al. 2008). Since JFCs originate from the outer solar system they

Corresponding author: Jarod A. DeSpain
 jad729@nau.edu

¹ <http://www.aerith.net/comet/catalog/2011UG104/2020.html>

provide a unique opportunity to understand the composition and distribution of volatiles within the solar system (Cheng et al. 2015).


2. METHODS

To assist in the search for active objects, we collaborate with volunteer Citizen Scientists via our NASA Partner program, *Active Asteroids*². We upload batches of archival Dark Energy Camera (DECam) images to the Citizen Science website *Zooniverse* for volunteers to classify, seeking signs of activity (Chandler et al. 2024a). When a volunteer identifies potential activity they classify it as active, and if a sufficient number of people report the object is active, it is flagged for further investigation. We then confirm the object's activity through follow-up observations using ground-based telescopes and cross-referencing astronomical image archives for additional data.

The project has engaged over 10,000 volunteers who have completed more than 8.5 million classifications to date, but this is only a fraction of the amount of data that still needs classification. So, to further aid in our screening process of image data and enhance volunteer experience we employ the help of an Artificial Intelligence (AI) assistant: TailNet, a Convolutional Neural Network (CNN) (Chandler et al. 2024b; Sedaghat et al. 2024).

3. RESULTS

TailNet first identified DECam images of 2011 UG₁₀₄ (semi-major axis $a = 3.992$ au, eccentricity $e = 0.407$, inclination $i = 29.6^\circ$, perihelion distance $q = 7.978$ au, aphelion distance $Q = 5.619$ au) as potentially active. With further investigation into archival DECam image data we uncovered three separate observations (Figure 1) in which the object exhibits activity. In all images of activity the tail is broad and spans the anti-motion and anti-solar directions.

Figure 1. 2011 UG₁₀₄ (center in each image) is shown in these archival DECam images. The field of view is $63'' \times 63''$, with north up and east left. The anti-motion (red arrow) and anti-solar (yellow arrow) directions are marked. (a) UT 2021 February 25, 90 s *i*-band (Prop. ID 2019A-0305, PI Drlica-Wagner, observers J. Carballo, D. James). A prominent tail is pointed primarily in the anti-solar direction. (b) UT 2021 March 29, 150 s *Y*-band (Prop. ID 2021A-0149, PI Zenteno, observer A. Zenteno). (c) UT 2021 April 26, 67 s *Y*-band (Prop. ID 2021A-0149, PI Zenteno, observer A. Zenteno).

Because 2011 UG₁₀₄ has both a Tisserand parameter in respect to Jupiter of $T_J = 2.695$ and cometary activity, we classify 2011 UG₁₀₄ as a Jupiter-family comet. 2011 UG₁₀₄ has just passed aphelion ($f = 182.9^\circ$ on UT 2024 May 16) and is inbound for its next perihelion passage on UT 2028 March 18.

² <https://activeasteroids.net/>

ACKNOWLEDGEMENTS

Many thanks to Arthur and Jeanie Chandler for their ongoing support.

We thank Elizabeth Baeten (Belgium) for moderating the Active Asteroids forums. A special thanks to the *Active Asteroids* Superclassifiers: Angelina A. Reese (Sequim, USA), Antonio Pasqua (Catanzaro, Italy), Carl L. King (Ithaca, USA), Dan Crowson (Dardenne Prairie, USA), @EEZuidema (Driezum, Netherlands), Eric Fabrigat (Velaux, France), @graham_d (Hemel Hempstead, UK), Henryk Krawczyk (Czeladź, Poland), Marvin W. Huddleston (Mesquite, USA), Robert Zach Moseley (Worcester, USA), Thorsten Eschweiler (Übach-Palenberg, Germany), and Washington Kryzanowski (Montevideo, Uruguay). Thanks to Cliff Johnson (Zooniverse), Chris Lintott (Oxford), and Marc Kuchner (NASA) for ongoing Citizen Science guidance.

This material is based upon work supported by the NSF Graduate Research Fellowship Program under grant No. 2018258765 and grant No. 2020303693. C.O.C., H.H.H., and C.A.T. acknowledge support from the NASA Solar System Observations program (grant 80NSSC19K0869). W.J.O. acknowledges support from NASA grant 80NSSC21K0114. This work was supported in part by NSF award 1950901. This research received support through Schmidt Sciences. Chandler and Sedaghat acknowledge support from the DiRAC Institute in the Department of Astronomy at the University of Washington. The DiRAC Institute is supported through generous gifts from the Charles and Lisa Simonyi Fund for Arts and Sciences, and the Washington Research Foundation.

Computational analyses were run on Northern Arizona University's Monsoon computing cluster, funded by Arizona's Technology and Research Initiative Fund.

This project used data obtained with the Dark Energy Camera (DECam), which was constructed by the Dark Energy Survey (DES) collaboration. This research uses services or data provided by the Astro Data Archive at NSF's NOIRLab. Based on observations at Cerro Tololo Inter-American Observatory, NSF's NOIRLab (NOIRLab Prop. ID 2014B-0404, PI: D. Schlegel; Prop. ID 2019A-0305, PI Drlica-Wagner).

Facilities: CTIO:4m (DECam)

Software: astropy (Robitaille et al. 2013), `astrometry.net` (Lang et al. 2010), PyTorch (Paszke et al. 2019),

REFERENCES

Chandler, C. O., Trujillo, C. A., Oldroyd, W. J., et al. 2024a, The Astronomical Journal, 167, 156, doi: [10.3847/1538-3881/ad1de2](https://doi.org/10.3847/1538-3881/ad1de2)

Chandler, C. O., Sedaghat, N., Oldroyd, W. J., et al. 2024b, Research Notes of the AAS, 8, 50, doi: [10.3847/2515-5172/ad2b67](https://doi.org/10.3847/2515-5172/ad2b67)

Cheng, Y.-C., Wing, W.-H., Hsieh, H., & Lin, H.-W. 2015, in EGU General Assembly Conference Abstracts, EGU General Assembly Conference Abstracts, 6323

Lang, D., Hogg, D. W., Mierle, K., Blanton, M., & Roweis, S. 2010, Astronomical Journal, 139, 1782, doi: [10.1088/0004-6256/139/5/1782](https://doi.org/10.1088/0004-6256/139/5/1782)

Levison, H. F. 1996, in Astronomical Society of the Pacific Conference Series, Vol. 107, Completing the Inventory of the Solar System, ed. T. Rettig & J. M. Hahn, 173–191

Lowry, S., Fitzsimmons, A., Lamy, P., & Weissman, P. 2008, in The Solar System Beyond Neptune, ed. M. A. Barucci, H. Boehnhardt, D. P. Cruikshank, A. Morbidelli, & R. Dotson, 397–410

Paszke, A., Gross, S., Massa, F., et al. 2019, in Advances in Neural Information Processing Systems, Vol. 32 (Curran Associates, Inc.)

Robitaille, T. P., Tollerud, E. J., Greenfield, P., et al. 2013, Astronomy & Astrophysics, 558, A33, doi: [10/gfvntd](https://doi.org/10/gfvntd)

Sedaghat, N., Chandler, C. O., Oldroyd, W. J., et al. 2024, Research Notes of the AAS, 8, 51, doi: [10.3847/2515-5172/ad2b66](https://doi.org/10.3847/2515-5172/ad2b66)