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Abstract—Deep learning (DL) has attracted interest in health-
care for disease diagnosis systems in medical imaging analysis
(MedIA) and is especially applicable in Big Data environments
like federated learning (FL) and edge computing. However, there
is little research into mitigating the vulnerabilities and robustness
of such systems against adversarial attacks, which can force
DL models to misclassify, leading to concerns about diagnosis
accuracy. This paper aims to evaluate the robustness and scala-
bility of DL models for MedIA applications against adversarial
attacks while ensuring their applicability in FL settings with Big
Data. We fine-tune three state-of-the-art transfer learning models,
DenseNet121, MobileNet-V2, and ResNet50, on several MedIA
datasets of varying sizes and show that they are effective at
disease diagnosis. We then apply the Fast Gradient Sign Method
(FGSM) to attack the models and utilize adversarial training
(AT) and knowledge distillation to defend them. We provide a
performance comparison of the original transfer learning models
and the defended models on the clean and perturbed data.
The experimental results show that the defensive techniques can
improve the robustness of the models to the FGSM attack and
be scaled for Big Data as well as utilized for edge computing
environments.

Index Terms—Deep Learning, Adversarial Attack, Knowledge
Distillation, Medical Image Analysis, Big Data

I. INTRODUCTION

Advances in deep learning (DL) are ushering forward Ar-
tificial Intelligence (AI)-driven solutions in industries such as
manufacturing, finance and healthcare. Deep neural networks
(DNNs) are favored over traditional machine learning (ML)
approaches in data-intensive tasks due to their ability to more
accurately learn complex patterns from vast amounts of raw
data [1]. Thus, DL techniques are widely used in applications
with large quantities of high-dimensional data, such as natural
language processing, robotics, and computer vision. One of
the most impactful applications of DL, specifically computer
vision, is medical image analysis (MedIA) where disease
diagnosis accuracy in tasks such as X-ray analysis and tumor
detection is critical.

It has been shown that DL models can achieve similar or
even greater performance than expert analysts in many MedIA
applications such as retinopathy [2], radiology [3], and pathol-
ogy [4]. The success of convolutional neural network (CNN)
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models, which are DNN models created for image analysis [5],
in diagnosis and classification tasks due to their ability to learn
complex patterns from raw data creates opportunities for DL
technologies to automate certain medical tasks [6].

DL models and CNNs are particularly applicable when
working with “Big Data” in MedIA [7] [8] since they can
learn high-level features across large amounts of data leading
to more accurate results—a vital metric in disease diagnosis.
One important consideration for DL systems is the privacy of
the confidential and sensitive patient data used to train such
models. Due to the security risks that come with aggregating
all data into one centralized dataset, privacy-preserving Big
Data systems for Al-automated MedIA can be created through
a federated learning system on an edge computing architecture
which would allow local models on local client devices to train
on their own data and send the weights back to a centralized
server for aggregation to the global model [9] [10]. Edge
computing [11] is a distributed computing system that runs
computations and data storage closer to the sources of data, or
the “edge” of the network, instead of on a centralized server.
Federated learning (FL) [12] is an extension of ML on the
edge where local models are trained on local data sources and
their parameters are aggregated on a centralized global server
without the necessity for centralized data storage. Together,
FL and edge computing can lay the foundation of privacy
preserving DL systems for MedIA on Big Data.

However, the largest threat to developing such systems is the
existence of adversarial attacks. DL models, especially CNNss,
have been shown to be extremely vulnerable to adversarial
attacks in the form of subtle, carefully engineered perturba-
tions, or calculated ‘noise’, added to the input data during
model training or predictions [13]. Such perturbed data, termed
“adversarial samples” or “adversarial examples”, can cause
misclassification by the target model leading to a significant
overall decrease in model accuracy [14]. An example of a
perturbed chest X-ray scan for increasing perturbation strength
and its resulting effect on the model’s classification is shown in
Fig. 1. The model correctly classifies the clean image (top left)
as showing signs of pneumonia with a 98% accuracy. However,
when the image is perturbed with increasing perturbation
strength, shown by increasing values of the scale factor e, the
model’s classification accuracy decreases until it incorrectly



classifies the chest X-ray as ’normal’ with a confidence of
91% (bottom right).

Furthermore, while FL on edge computing systems pre-
serves the privacy of local data by training on the edge, its
local models are still susceptible to adversarial perturbations
which can poison the overarching global model, in turn
affecting all other local models [15]. Adversarial attacks pose
a significant threat to DL systems in MedIA since the high
standardization and quality control of medical image data
leads to a higher susceptibility to perturbations [16]. Thus,
even small adversarial perturbations on clean images can
significantly distort model performance and cause catastrophic
misdiagnosis [17].
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Fig. 1. Adversarial perturbation on chest X-ray scan

This study is an effort to improve on the robustness of
DL models against adversarial attacks in the MedIA field and
the usability and scalability of defenses against such attacks
in FL edge computing systems using Big Data. Our salient
contributions are listed as follows.

o First, we utilize transfer learning by training three
well-known state-of-the-art pre-trained CNNs such as
DenseNet121, MobileNet-V2, and ResNet50 on several
MedIA and disease diagnosis datasets of different sizes
and evaluate our models’ accuracies and robustness
against the Fast Gradient Sign Method (FGSM) adver-
sarial attack [14].

« Second, we apply the adversarial training and defensive
distillation techniques to improve the robustness of these
models and show how they can be used for edge com-
puting and scaled for MedIA with Big Data.

The goal of this research is to advance the field by enabling
more secure, accurate, and scalable Al-powered disease diag-
nosis systems.

The rest of the paper is organized as follows. In Section
II, we summarize previously proposed adversarial attacks and
defenses. In Section III, we outline the transfer learning mod-
els, adversarial attack, and defensive techniques we utilize and
evaluate. In Section IV, we detail the evaluation performance
of our models and defenses and draw conclusive remarks in
Section V.

II. RELATED WORK

In this section, we summarize the previous research relevant
to this study done in adversarial attacks and defenses in the
fields of DL, FL, and MedIA. In Section II-A, we explore
the taxonomy of adversarial attacks and describe several
previously established perturbation generation techniques. In
Section II-B, we outline the taxonomy of adversarial defenses
and summarize established defensive techniques.

A. Adversarial Attacks

We define two categories of adversarial attacks based on
adversarial capabilities: black-box attacks, where an adver-
sary assumes no knowledge about the model, and white-
box attacks, where the adversary possesses full knowledge
about the model’s architecture and parameters [18]. There are
three broad types of adversarial attacks scenarios: evasion,
poisoning, and exploratory attacks. Evasion attacks occur
when an adversary has white-box access to the model and
attempts to force the model to misclassify an input by crafting
adversarial samples during the prediction phase. On the other
hand, poisoning attacks are orchestrated during the training
phase when an adversary with white-box access attempts to
inject adversarial samples to contaminate the training data and
compromise the training process, poisoning the model. As
opposed to evasion and poisoning attacks where an adversary
has information about the model’s architecture and weights,
exploratory attacks are black-box attacks where an adversary
creates surrogate models to approximate and exploit as much
knowledge as possible from the target model and its training
data.

While FL is susceptible to the same types of adversarial
attacks as traditional DL, FL models face different threats
at each phase of its execution: Data and Behavior Auditing,
Training, and Prediction [15]. In the Data and Behavior
Auditing phase, where local workers on the edge send their
data to their corresponding local model, FL is vulnerable to
poisoning attacks where a local client’s data or behavior is
compromised, affecting the subsequent training of that model.
In the Training phase, where local models are trained on local
data and the weights are then aggregated server-side for the
global model, a malicious or compromised local client could
manipulate their training data or model parameters, corrupting
the global training process and poisoning the global model.
Finally, in the Prediction phase where the trained global model
with the aggregated weights updates each local model, the
local models are highly susceptible to evasion attacks.

To carry out evasion or poisoning attacks, adversarial exam-
ples must be generated. There are many previously established



techniques and algorithms to generate perturbations that have
been proven to cause DNNs and CNNs to misclassify. Szegedy
et al. [13] first showed the existence of small perturbations that
could fool DL models to misclassify by defining the generation
of small but effective perturbations as a minimization prob-
lem and using a box-constrained Limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) optimization algorithm
to approximate a solution. To solve the computationally ex-
pensive requirements of the L-BFGS approach, Goodfellow
et al. [14] developed a faster method to efficiently compute
an adversarial perturbation for an image using the gradient
of the model’s loss function which was termed the Fast
Gradient Sign Method (FGSM). Their work was expanded on
by Kurakin et al. [19] to create two variants of the FGSM,
the Target Class Method which makes the model misclassify
to a specific class, and the Basic Iterative Method, sometimes
referred to as Projected Gradient Descent (PGD), that directly
extends the FGSM to generate adversarial examples iteratively
instead of in a one-shot manner. Interestingly, Papernot et al.
[20] created the Jacobian-Based Saliency Map Attack (JSMA)
which, by computing a saliency map using the gradients of the
DNN layer outputs, iteratively perturbs the one most effective
pixel at a time until the model is successfully fooled instead
of perturbing the entire image. In a similar vein, Su et al.
[21] proposed only perturbing a single pixel in the image
by using an evolutionary strategy to find the last surviving
‘child’ perturbation and using it to alter the most effective
pixel. Moosavi-Dezfooli et al. devised DeepFool [22], another
iterative approach to adversarial attacks that accumulates small
perturbations added to the image each iteration to compute the
final perturbation once the perturbation sum is enough for the
model to misclassify. DeepFool was shown to compute per-
turbations that are smaller than the ones computed by FGSM
while having a similar effectiveness. In the wake of stronger
defenses created against formerly proposed adversarial attacks,
Carlini and Wagner [23] introduced a set of three stronger
optimization-based adversarial attacks. Finally, whereas the
previously discussed attacks compute perturbations to force
a model to misclassify on a single image, the ‘universal’
adversarial perturbations computed by Moosavi-Dezfooli et al.
[24] were shown to be able to fool a network on almost any
image.

There have been several studies that have explored the im-
pact such adversarial attacks can have on MedIA diagnosis and
classification systems. Adversarial attacks have been shown to
force DL systems to misclassify in both black-box and white-
box scenarios for MedIA data modalities including retinopathy
[16] [25] [26], chest X-rays [16] [25] [27], dermoscopy [16]
[25] [26] [28], and brain MRI scans [28]. In particular,
Taghanaki et al. [27] showed the extreme vulnerability of two
state-of-the-art CNNs, Inception-ResNet-v2 and Nasnet-Large,
to adversarial attacks in chest X-ray image classification. The
gradient-based attacks they implemented, FGSM, PGD, Deep-
Fool, BIM, and L-BFGS, were almost completely successful
in fooling both networks in both white-box and black-box
scenarios. The prior research conducted on the vulnerability

of CNNs to adversarial attacks in general, as well as of that
applied to MedIA data, highlights the importance of adequate
defense measures to combat such attacks.

B. Defensive Techniques

There are three approaches to defending against adversarial
attacks as defined in the literature: using a modified training
procedure or modified input during prediction, modifying the
network architecture, and using external models as network
add-ons [29]. The defensive techniques under these three
approaches can be further divided into complete defenses,
where the objective is to have the network classify the per-
turbed image correctly, and detection-only defenses, where the
objective is to detect and reject adversarial examples. Since the
goal of this study is to improve on the robustness and accuracy
of the models under adversarial attacks on their data, we will
limit our discussion of related works to the complete defenses.
Further, it must be noted that since FL. models are vulnerable
to the same attacks as DL models—just at different phases
in the FL process—the defenses proposed against DNNs will
also work in a FL setting on an edge computing system
when modifying the training process, data input, or model
architecture.

The most commonly proposed and utilized first line of
defense against adversarial attacks is adversarial training (AT)
[13], where adversarial samples are included in the model’s
training set. AT results in the regularization of the model to
reduce overfitting which improves the model’s robustness to
adversarial perturbations. However, it should be noted that
Moosavi-Dezfooli et al. [24] showed that effective adversarial
perturbations could be generated again for networks that
underwent AT. A prominent modified-input defense is when
Dziugaite et al. [30] demonstrated that JPG compression could
reverse the drop in classification accuracy due to perturbations
generated by the FGSM, which was further supported by
studies around using JPG compression to combat the effec-
tiveness of perturbations [31] and counter attacks by FGSM
and DeepFool [32].

Gu and Rigazio [33] introduced Deep Contractive Networks
and demonstrated that the use of autoencoders improved the
robustness of DL models against the L-BFGS attack. Another
modified-network defense is gradient regularization or gradient
masking in which large variations in the output of a DNN with
respect to small changes in its input were penalized, which,
when used with adversarial training, was shown to be effective
against improving robustness against the L-BFGS, FGSM, and
JSMA [34] [35]. The most popular modified-network defense,
however, is employing knowledge distillation [36] to use the
knowledge of the network, in the form of class probability
vectors for the training data, to train itself, improving its
robustness to adversarial perturbations [37] [38].

Finally, there are two primary complete network add-on
defenses proposed in the literature. Akhtar et al. [39] proposed
the adding of pre-input layers, termed Perturbation Rectifying
Network, trained to correct an image modified by universal
adversarial perturbations [24] so that the model’s classification



on the adversarial sample is the same as that on the clean
image. Lee et al. [40] used a Generative Adversarial Network
(GAN) to train a model that is robust to FGSM-like attacks
by generating perturbations for that model while the model
tries to correctly classify both clean and perturbed images. In
another GAN-based defense, the generator network was used
to correct a perturbed image [41].

While there is substantial literature on defending DNNs
from adversarial attacks on natural images, research on the
effectiveness of proposed complete defenses on MedIA data
is limited since due to the challenges for adversarial defenses
in MedIA, recent works have focused primarily on detecting
and rejecting adversarial samples rather than classifying them
correctly [16]. This study aims to contribute to making DL
systems for MedIlA more robust to adversarial attacks and
perturbations rather than just using detection-only approaches.

III. METHODS

This study thoroughly assessed the effectiveness of CNN
models that have already been trained applied to MedIA.
DenseNet121, MobileNet-V2, and ResNet50 were among the
three pre-trained models used for transfer learning. Four estab-
lished MedIA datasets from the MedMNIST2D collection [42]
[43] including BreastMNIST [44], PneumoniaMNIST [45],
DermaMNIST [46] [47], and OCTMNIST [45] were used in
this study. Each dataset was then split into train, validation,
and testing sets and preprocessed. Then, all three CNNs were
trained on each of the four datasets and evaluated by accuracy
on clean and adversarially perturbed testing data. Finally, the
models were defended using AT and knowledge distillation
and once again evaluated on the clean and perturbed data.
To implement the experiment, the study uses Python 3 with
the TensorFlow and Keras libraries for training, attacking,
and defending the DL models on a local Jupyter notebook
environment, along with a Core i7 processor, 16 GB of RAM,
and Iris Xe Graphics.

A. Transfer Learning

The ML technique of transfer learning involves using a pre-
trained model’s knowledge from a prior task and adapting
it for an unfamiliar but still related task to avoid starting
from scratch [48]. CNNs process images by relying on their
convolutional layers to extract high-level features that are
used for classification by applying filters, such as edge and
corner detectors, to produce convolved copies and feature
maps of the original images [49]. Thus, fine-tuning a pre-
trained CNN involves first using the general features extracted
by the model’s initial layers and then optimizing the last layers
for the new task [50]. This study used three pre-trained models
including MobileNet-V2 [51], a smaller model created for
mobile and low-resource environments such as those in FL
and edge computing systems, as well as two larger models,
DenseNet121 [52] and ResNet50 [53], for their ability to
handle and learn patterns from Big Data.

1) DenseNet121: DenseNetl21 [52] utilizes a dense layer
connectivity pattern where each layer in the network is directly
connected to all following layers, creating dense ‘blocks’ of
connections that allow for feature reuse and propagation across
layers. Its architecture is made up of 121 layers divided into
four dense blocks with transition layers in between them to
reduce the dimensionality of features before passing them
through to the next block. Each dense block contains multiple
1x1 and 3 x 3 convolutional layers, where the 1x1 layer serves
as a ‘bottleneck’ layer to decrease computational complexity
by reducing the number of input features to the more expensive
3 x 3 convolutions and only preserving important features.
The entire network begins with a larger, 7 x 7 convolution
layer and a max pooling layer to extract important preliminary
features and ends with a global average pooling layer and a
fully connected layer to simplify and produce a classification
output from the final feature maps. Since each layer receives
feature maps from all prior layers, this enables deep super-
vision throughout the network. DenseNet121’s unique dense
connectivity pattern results in it only having eight million
parameters despite its large depth, making it an effective and
memory-efficient CNN.

2) MobileNet-V2: MobileNet-V2 [51] is a CNN archi-
tecture designed for mobile and computational-resource-
constrained settings. It uses inverted residual blocks and linear
bottlenecks to improve model performance while maintaining
a low resource cost. It consists of a beginning convolutional
layer with 32 filters, followed by 19 residual bottleneck layers.
Each inverted residual block contains a 1 X 1 convolutional
expansion layer to increase the number of dimensions and
features, a 3 x 3 depthwise convolutional layer to efficiently
filter significant features, and a 1 X 1 projection convolutional
layer to project the filtered features back down to a lower
dimension to linearly bottleneck complexity. The network
ends with a 1 x 1 convolution, global average pooling, and
a fully connected layer to simplify the extracted features and
generate a classification output. MobileNet-V2’s unique use
of linear bottlenecks instead of ReLU helps retain important
information in fewer dimensions.

3) ResNet50: The usage of residual learning was intro-
duced in ResNet50 [53], whose architecture has 50 layers,
including 48 convolutional layers organized into 4 stages.
Each stage of convolutional layers contains multiple residual
blocks, where each block has a skip connection that allows the
network to learn what features to extract at each layer from that
layer’s inputs. The network starts with a large 7 x 7 convolution
and a max pooling layer and ends with a global average
pooling layer and a fully connected layer for simplifying and
using the extracted features to produce a classification output.
ResNet’s residual connections make it easier to optimize larger
and deeper networks since it is easier for the network to learn
small changes at a time.

B. Adversarial Attacks

Evasion attacks are the most common type of adversarial
attack and are the easiest for an adversary to implement as



they do not require access to the training data like poisoning
attacks do [18]. Additionally, white-box attacks, in which an
adversary has complete access to the model’s architecture
and parameters, are the most effective types of attacks on
DL models as they have been proven to cause complete
misdiagnosis in MedIA [27]. Thus, this study will limit its
scope to defending against white-box evasion attacks. Specif-
ically, it will utilize the FGSM [14] to generate adversarial
perturbations since it is the easiest method for an adversary
to implement, is computationally fast due to its one-shot
approach, and has been shown to be very effective against
both DL and MedIA networks [27]. The FGSM can efficiently
compute an adversarial perturbation for a given image using
the following formula:

adv_x =z + € -sign(V, J (0, 2,y)), (D

where V,J calculates the gradient of the loss function J
evaluated at the current value of the model parameters,
0, x,and y, sign() is the sign function, and ¢ is the scale
factor, a small scalar value that controls the strength and
perceptibility of the perturbation. In this study, a range of
values for the scale factor from 0.001-0.005 was used to
evaluate the networks’ robustness against both weaker and
stronger adversarial perturbations.

C. Adversarial Defenses

To defend against the FGSM attack, the two chosen de-
fenses for this study were Adversarial Training (AT) [13] and
Knowledge Distillation [37]. These defenses where chosen due
to their variety in defensive approach, as AT is a modified-
training defense while Knowledge Distillation modifies the
network, and their proven effectiveness in defending against
the FGSM attack on DL models trained on natural images [13]
[38].

AT includes the incorporation of adversarial samples into
the network’s training data to regularize it and reduce its
overfitting on clean data, which helps the model generalize
to classify adversarial samples correctly. The FGSM was used
with a scale factor of ¢ = 0.001 to generate weaker adversarial
samples for AT. This defense was implemented by further
training the transfer learning CNNs on adversarially perturbed
data to improve their robustness.

Knowledge Distillation transfers the knowledge of a larger,
more complex ‘teacher’ network to a smaller ‘student’ network
[36]. When using distillation as a defense, the knowledge of
the teacher network is extracted as class probability vectors
of the model’s training data and is fed back to train the
student model. To implement this, the DenseNet121 models
trained for multi-class classification on the DermaMNIST and
OCTMNIST datasets were used as the teacher models and a
new, smaller custom model was used as the student model
and was trained using distillation with a Kullback-Leibler
Divergence loss function.

After the networks were defended using AT and Knowledge
Distillation, their robustness was once again evaluated against
adversarial perturbations generated by the FGSM.

IV. EXPERIMENTAL RESULTS

In this section, we present and analyze our evaluation results
of the performance of the three transfer learning CNNs on
clean and FGSM-perturbed data for all four datasets, as well
as the effectiveness of AT and Knowledge Distillation as
defensive techniques.

A. Data and Preprocessing

The MedMNIST collection [42] [43] consists of 10 stan-
dardized datasets from various medical data modalities in-
cluding X-ray, OCT, ultrasounds, and CT scans. Its datasets
vary in scale, from datasets with a few hundred or thousand
samples to those with over 200,000. Furthermore, all datasets
are already standardized by the authors by pre-processing and
splitting the data into training-validation-testing subsets, using
the data split from the source datasets if provided, or using a
7:1:2 (train:val:test) split otherwise. In this study we utilized
both small and large datasets to demonstrate the scalability of
adversarial defenses in MedIA with Big Data.

1) BreastMNIST: BreastMNIST, the smallest dataset used
in this study, is based on a dataset [44] of 780 breast ultrasound
images initially divided into 3 classes of normal, benign, and
malignant but modified by the authors to be suited for binary
classification between ‘normal/benign’ and ‘malignant’. It uses
a 7:1:2 split ratio for training, validation, and testing sets and
contains images resized to 1 x 28 x 28.

2) PneumoniaMNIST: PneumoniaMNIST is based on a
prior dataset [45] of 5,856 pediatric chest X-ray scans divided
into 2 classes of ‘pneumonia’ and ‘normal’ for binary classi-
fication. The original training set was split into a 9:1 ratio for
training and validation and the source validation set was used
as the testing set. The images are single-channel and were
resized by the authors to 1 x 28 x 28.

3) DermaMNIST: DermaMNIST is based on the
HAMI10000 dataset [46] which contains 10,015 dermatoscope
images of common pigmented skin lesions. The images are
labeled into 7 classes representing 7 different skin diseases,
lending itself to a multi-class classification task. The dataset
uses a 7:1:2 training-validation-testing split and the original
images were resized by the authors to 3 x 28 x 28.

4) OCTMNIST: OCTMNIST, the largest dataset used in
this study, is based on a dataset [45] of 109,309 optical
coherence topography (OCT) scans for retinal diseases. The
images are labeled into 4 types of retinal diseases, lending the
dataset to a multi-class classification task. The source training
set was split into a 9:1 ratio for training and validation sets
and the source validation set was used as the testing set. The
images are single-channel and were resized by the authors to
1 x 28 x 28.

For all the datasets used in this study, the MedMNIST-
proposed train-validation-test split was used. However, the
datasets underwent preprocessing before transfer learning with
pre-trained CNNs. The datasets containing single-channel im-
ages, namely BreastMNIST, PneumoniaMNIST, and OCTM-
NIST, had their images’ dimensions expanded and channels
replicated to transform them from dimensions of 1 x 28 x 28 to



3-channel images of dimensions 3 x 28 x 28 to fit the require-
ments of the CNNs used for transfer learning. Furthermore,
all datasets were normalized by scaling their images’ pixels
down by a factor of 255 to the range of 0 to 1 and resizing
the images from 3 x 28 x 28 to 3 x 32 x 32 to be valid inputs
for the pre-trained CNNs.

B. Transfer Learning Performance

After all datasets were preprocessed, each network was
trained over each dataset for 5 epochs with a batch size
of 32, using the Adam optimization method and either the
Binary Cross entropy loss function or Sparse Categorical Cross
entropy loss function, depending on whether the task was
binary or multi-class classification. Then, the networks were
evaluated for accuracy on the testing datasets. The evaluation
results are shown in Table L.

TABLE I

TRANSFER LEARNING EVALUATION RESULTS
Evaluation Accuracy Model
Dataset DenseNet121 | MobileNetV2 | ResNet50
BreastMNIST 83.97% 78.85% N/A*
PneumoniaMNIST 88.62% 84.29% 86.70%
DermaMNIST 72.82% 68.08% 71.77%
OCTMNIST 77.78% 69.25% 75.56%

*ResNet50 evaluation results on BreastMNIST excluded

When training ResNet50 on the BreastMNIST dataset, it
yielded an extremely low evaluation accuracy of a mere
25%. We diagnosed this phenomenon to be a result of the
mismatch between ResNet50’s large number of parameters
and the BreastMNIST dataset’s small number of only 780
samples, which was not suitable for such a large model.
This mismatch led to the model completely overfitting to the
training dataset resulting in a poor generalization to the testing
set. Furthermore, we found the BreastMNIST dataset to be
highly unbalanced, as out of the 546 samples in the training
set, 399 were ‘normal/benign’ whereas only 147 samples were
‘malignant’. To attempt to fix the small sample size issue, we
attempted to upsample the dataset using data augmentation
techniques including rotations, shifts, shears, flips, and zooms
of the images to synthesize more data for training. Addi-
tionally, we undersampled the abundant class to attempt to
balance the dataset. However, our synthetic images were not
realistic-enough variations and did not improve ResNet50’s
performance on the data. This raises an important insight
when choosing network architectures for smaller tasks since
the model size and complexity must match the difficulty of
the task and size of the dataset. Since ResNet50 was chosen
to show the scalability of CNN classifiers for Big Data not
smaller datasets, and it had a consistently poor performance
on the BreastMNIST dataset, the results of training ResNet50
on BreastMNIST were excluded from this study and it was
not further attacked or defended to maintain the reliability and
validity of this study’s results.

With ResNet50 on BreastMNIST being the only exception,
all the models trained in this study achieved an evaluation

accuracy close to the official MedMNIST benchmarking ac-
curacy [42]. It was discovered that detecting pneumonia from
the PneumoniaMNIST dataset was one of the easier tasks
that could be done with a higher accuracy of around 85%,
while classifying skin diseases from the DermaMNIST dataset
was a much harder task, having a lower benchmark and
evaluation accuracy around 70%. DenseNetl21 was shown
to consistently outperform MobileNet-V2 and ResNet50 on
all the datasets, highlighting the effectiveness of its densely
connected structure in providing deep supervision throughout
the network during the learning process. ResNet50 was close
behind, its large number of parameters and residual block
learning architecture allowing it to pick up on complex patterns
from the data. DenseNetl21’s depth and ResNet50’s high
number of parameters makes these models highly applicable
to MedIA scenarios with Big Data, shown by their outstanding
performance for the large OCTMNIST dataset that aligns with
the dataset’s benchmark [42]. Finally, MobileNet-V2 slightly
underperformed the other networks on all datasets due to
its much smaller depth and number of parameters. However,
its good performance despite its small size and number of
parameters makes it an effective and cost-efficient choice for
FL scenarios on mobile devices on the edge.

C. Adversarial Attack Evaluation

After the transfer learning models were trained and evalu-
ated on all the datasets, perturbed testing sets were generated
for each dataset and model pair and the models were evaluated
on those perturbed test sets. The adversarial examples were
generated using the FGSM attack and 5 perturbed test sets
were generated for each model ranging from weaker perturba-
tions of € = 0.001 to stronger perturbations of ¢ = 0.005. The
transfer learning models were evaluated on these 5 perturbed
test datasets and their evaluation results are shown in Table II.

All models experienced decreases in performance and ac-
curacy as a result of the FGSM attack, and the accuracy drops
were larger for stronger perturbations notated by increasing
scale factors e. Across the datasets, ResNet50 usually had
a higher inbuilt robustness to the FGSM perturbations and
experienced a smaller drop in performance than DenseNet121
and MobileNetV2 likely due to its residual block architecture
which allowed the network to learn feature transformations
in smaller steps at each layer. Surprisingly, ResNet50 kept
an evaluation accuracy of greater than 70% on the Pneumo-
niaMNIST data even when perturbed with a scale factor of
€ = 0.005. On the other hand, due to DenseNetl21’s and
MobileNetV2’s smaller size and number of parameters they
were more susceptible to the perturbations leading to larger
drops in accuracy. These results show the devastating effect
the FGSM attack can have on DL systems for MedIA since
DenseNet121’s earlier superior performance to the other mod-
els on all data and applicability when dealing with Big Data
was replaced by its inferior performance on the adversarially
perturbed data. Additionally, MobileNet-V2, the most usable
model for FL systems due to its high performance despite
its small size, also experienced a significant degradation in



TABLE II
MODEL PERFORMANCE ON CLEAN AND ADVERSARIALLY PERTURBED DATA

Dataset Model Clean | € = 0.001 | e =0.002 | ¢ =0.003 | ¢ = 0.004 | « = 0.005
BreasMNIST DenseNet121 | 83.97% | 71.15% 56.41% 50.00% 43.59% 38.46%
MobileNetV2 | 78.85% 62.82% 57.05% 54.49% 48.72% 44.87%
DenseNet121 | 88.62% 80.61% 71.96% 66.51% 59.29% 54.01%
PneumoniaMNIST | MobileNetV2 | 84.29% 67.95% 58.65% 54.01% 51.60% 50.64%
ResNet50 86.70% | 82.69% 79.33% 76.76% 72.92% 70.83%
DenseNet121 | 72.82% 65.64% 60.25% 56.41% 33.67% 51.07%
DermaMNIST MobileNetV2 | 68.08% 62.29% 60.15% 58.50% 57.91% 58.00%
ResNet50 7177% |  68.33% 65.39% 62.04% 59.20% 57.11%
DenseNet121 | 77.78% 65.52% 3521% 46.39% 39.49% 34.40%
OCTMNIST MobileNetV2 | 69.25% 52.21% 42.16% 36.26% 32.27% 29.54%
ResNet50 75.56% |  69.55% 62.61% 55.96% 48.74% 41.74%
TABLE 111
COMPARISON OF ORIGINAL, ADVERSARIALLY TRAINED (AT), AND KNOWLEDGE DISTILLATION (KD) MODEL PERFORMANCE
Dataset Model Defense Clean e = 0.001 e = 0.002 e = 0.003 | €e =0.004 | € = 0.005
Original | 83.97% | 71.15% 56.41% 50.00% 13.59% 38.46%
DenseNet121
BreastMNIST AT | 7885% | 7500% 71.15% 67.31% 61.54% 58.97%
MomileNervy | Ofiginal | 7885% | 62.82% 57.05% 54.49% 872% 1287%
AT | 7179% | 73.08% 75.00% 75.00% 74.36% 74.36%
DensoNotlal | Otiginal | 88.62% | 80.61% 71.96% 6651% 59.29% 54.01%
AT | 86.86% | 8141% 77.88% 71.96% 67.63% 64.10%
. ) Original | 84.29% | 67.95% 58.65% S4.01% ST.60% 50.64%
PneumoniaMNIST | MobileNetV2 | ™ | 27000, | 74.68% 70.67% 67.79% 65.06% 62.02%
et Original | 86.70% | 82.69% 79.33% 76.76% T2.92% 70.83%
AT | 8494% | 83.01% 80.77% 78.85% 76.44% 74.84%
Original | 72.82% | 65.64% 60.25% 5641% 53.61% 51.07%
DenseNetl2l | AT | 7292% | 70.02% 68.78% 67.58% 65.59% 63.44%
KD | 68.98% | 68.98% 68.93% 68.83% 68.83% 68.73%
DermaMNIST MomileNervy | Ofigimal | 68.08% | 6229% 60.15% 58.50% 57.91% 58.00%
AT | 6554% | 67.03% 66.98% 67.13% 66.78% 66.33%
eSO Original | 71.77% | 68.33% 65.39% 62.04% 59.20% 57.11%
AT | 7097% | 7012% 69.58% 69.03% 68.53% 67.83%
Original | 77.78% | 65.52% 5521% 16.39% 39.49% 32.40%
DenseNet12l | AT | 7529% | 71.79% 68.45% 64.98% 61.84% 58.07%
KD | 78.69% | 78.36% 78.16% 77.81% 77.46% 77.13%
OCTMNIST MonileNervy | Ofiginal | 69.25% | 5221% 12.16% 36.26% 32.07% 29.54%
AT | 6179% | 61.48% 58.87% 55.00% 51.37% 48.50%
n Original | 75.56% | 69.55% 62.61% 55.96% 18.74% A1.74%
esNet50 AT B B B B N N

performance. The evaluation results of the models under the
FGSM perturbations underscore the importance and necessity
of defensive measures to improve the networks’ robustness to
adversarial attacks.

D. Defense Performance Evaluation

Once the transfer learning models were evaluated against the
FGSM perturbations, we employed adversarial training and
trained knowledge distillation models to defend against the
adversarial attack. The adversarially-trained and knowledge
distillation models were then evaluated on the clean and per-
turbed data and their evaluation results are shown in Table III.

Adversarial training was an effective defense measure as it
improved all models’ robustness across all the datasets and
reversed drops in accuracy due to the perturbed data. AT

had a more prominent effect against stronger perturbations
with higher values of e. One negative side effect of AT was
that it led to a small decrease in the adversarially-trained
model’s accuracy on the clean data since training it to classify
adversarial examples correctly shifts the class boundaries in
the network’s latent space, causing it to occasionally classify a
clean image incorrectly. However, considering the significant
improvement in accuracy on the perturbed data, this small
drop in accuracy on the clean data is a justifiable trade-
off. Furthermore, while MobileNet-V2 had the lowest inbuilt
robustness due to its smaller size and number of parameters,
it showed the greatest improvement under AT especially for
the BreastMNIST and DermaMNIST datasets. While AT was
very effective in improving the networks’ accuracies on the
perturbed data for the smaller datasets, it did not have as



prominent of an effect on the larger dataset, OCTMNIST.
Furthermore, due to the hardware limitations of this study, we
were unable to adversarially-train ResNet50 on OCTMNIST
due to its complexity and large number of parameters.

Since multi-class classification is a more complex task than
binary classification and is more common in the field of Me-
dIA, we only tested the knowledge distillation defense against
perturbations on the DermaMNIST and OCTMNIST datasets.
Additionally, due to the computationally heavy requirements
of AT for large datasets like OCTMNIST and Big Data in
general, knowledge distillation was tested with DenseNet121
as its deep connectivity structure and large depth but small
number of parameters can handle large amounts of data.
However, the hardware limitations and resource constraints of
this study prevented knowledge distillation from being used
with MobileNet-V2 and ResNet50. For DermaMNIST, knowl-
edge distillation with DenseNet121 outperformed both the
DenseNet121 teacher model and all AT models for the stronger
perturbations but slightly underperformed for the clean data
and weaker perturbations. For OCTMNIST, however, the dis-
tilled model achieved greater results and significantly higher
accuracies than all other models tested on OCTMNIST for
the clean data and all perturbed test data. This outcome
demonstrates that using knowledge distillation as a defense is
more effective for larger datasets and Big Data, especially in
FL scenarios, since a model like DenseNet121 can effectively
teach a smaller CNN to extract and learn complex features
from vast amounts of data, and the smaller network can be
used on devices on the edge.

V. CONCLUSION

The main objective of this study was to improve on the
robustness of DL models against adversarial attacks in the
MedIA field while ensuring scalability for Big Data applica-
tions in FL and edge computing systems. Three pre-trained
transfer learning models of varying depths and parameter
counts, DenseNetl21, MobileNet-V2, and ResNet50, were
fine-tuned on four MedIA datasets of varying sizes, BreastM-
NIST, PneumoniaMNIST, DermaMNIST, and OCTMNIST,
and evaluated for accuracy. All three models achieved high
accuracy corresponding to the benchmark for each dataset,
even able to handle large datasets like OCTMNIST, with
DenseNet121 outperformance of its counterparts making it a
prime candidate for large-scale applications.

When adversarially attacked with the FGSM, however, all
three models showcased an extreme vulnerability to the gen-
erated perturbations leading to significant drops in accuracy,
with ResNet50 showing the highest inbuilt robustness and
DenseNet121 showing one of the lowest. Using AT to defend
the models against the FGSM attack proved effective in
improving model robustness against the perturbations across
all the datasets, especially for the smaller ones, although it
came with a slight tradeoff in model performance on the clean
data. Knowledge distillation was shown to be highly effective
in reversing accuracy drops due to perturbations on large

datasets like OCTMNIST, offering a more scalable solution
for Big Data scenarios in FL and edge computing.

Robust and scalable solutions are essential for accurate
disease diagnosis DL systems, especially when working with
Big Data and privacy-preserving architectures. While adver-
sarial attacks remain a significant threat to such systems, the
application of defensive techniques such as AT and knowledge
distillation can mitigate security risks. Future research should
build on the results of this study by testing the application of
other pre-trained CNNs or customized architectures to deter-
mine whether they can enhance classification performance on
MedIA data. Furthermore, the usage of stronger adversarial
attacks and the evaluation and construction of more advanced
defensive techniques should be applied to the MedIA field.
Finally, future work should focus on deploying these models
and defensive strategies within a FL and edge computing
environment to assess the robustness and security of such
environments at scale.

REFERENCES

[1] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan,
O. Al-Shamma, J. Santamaria, M. A. Fadhel, M. Al-Amidie, and
L. Farhan, “Review of deep learning: concepts, cnn architectures,
challenges, applications, future directions,” Journal of Big Data, vol. 8,
no. 1, Mar. 2021. [Online]. Available: http://dx.doi.org/10.1186/s40537-
021-00444-8

[2] V. Gulshan, L. Peng, M. Coram, M. C. Stumpe, D. Wu,
A. Narayanaswamy, S. Venugopalan, K. Widner, T. Madams,
J. Cuadros, R. Kim, R. Raman, P. C. Nelson, J. L. Mega, and D. R.
Webster, “Development and validation of a deep learning algorithm
for detection of diabetic retinopathy in retinal fundus photographs,”
JAMA, vol. 316, no. 22, p. 2402, Dec. 2016. [Online]. Available:
http://dx.doi.org/10.1001/jama.2016.17216

[3] K. Murphy, S. S. Habib, S. M. A. Zaidi, S. Khowaja, A. Khan,
J. Melendez, E. T. Scholten, F. Amad, S. Schalekamp, M. Verhagen,
R. H. H. M. Philipsen, A. Meijers, and B. van Ginneken, “Computer
aided detection of tuberculosis on chest radiographs: An evaluation of
the cad4tb v6 system,” Scientific Reports, vol. 10, no. 1, Mar. 2020.
[Online]. Available: http://dx.doi.org/10.1038/s41598-020-62148-y

[4] R. Aggarwal, V. Sounderajah, G. Martin, D. S. W. Ting,
A. Karthikesalingam, D. King, H. Ashrafian, and A. Darzi, “Diagnostic
accuracy of deep learning in medical imaging: a systematic review and
meta-analysis,” npj Digital Medicine, vol. 4, no. 1, Apr. 2021. [Online].
Available: http://dx.doi.org/10.1038/s41746-021-00438-z

[5] A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems, F. Pereira, C. Burges, L. Bottou, and
K. Weinberger, Eds., vol. 25. Curran Associates, Inc., 2012.

[6] M. D. Abramoff, P. T. Lavin, M. Birch, N. Shah, and J. C.
Folk, “Pivotal trial of an autonomous ai-based diagnostic system
for detection of diabetic retinopathy in primary care offices,” npj
Digital Medicine, vol. 1, no. 1, Aug. 2018. [Online]. Available:
http://dx.doi.org/10.1038/s41746-018-0040-6

[7]1 A. Tahmassebi, A. Ehtemami, B. Mohebali, A. H. Gandomi, K. Pinker,
and A. Meyer-Baese, “Big data analytics in medical imaging using
deep learning,” in Big Data: Learning, Analytics, and Applications,
F. Ahmad, Ed. SPIE, May 2019, p. 13. [Online]. Available:
http://dx.doi.org/10.1117/12.2516014

[8] S. Bagga, S. Gupta, and D. K. Sharma, Big Data analytics in
medical imaging. Elsevier, 2021, p. 113-136. [Online]. Available:
http://dx.doi.org/10.1016/B978-0-12-820203-6.00006-0

[9] P. Pace, G. Aloi, R. Gravina, G. Caliciuri, G. Fortino, and A. Liotta,
“An edge-based architecture to support efficient applications for
healthcare industry 4.0,” IEEE Transactions on Industrial Informatics,
vol. 15, no. 1, p. 481489, Jan. 2019. [Online]. Available:
http://dx.doi.org/10.1109/T11.2018.2843169



[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

H. Guan, P-T. Yap, A. Bozoki, and M. Liu, “Federated learning
for medical image analysis: A survey,” 2023. [Online]. Available:
https://arxiv.org/abs/2306.05980

K. Cao, Y. Liu, G. Meng, and Q. Sun, “An overview on edge
computing research,” IEEE Access, vol. 8, p. 85714-85728, 2020.
[Online]. Available: http://dx.doi.org/10.1109/ACCESS.2020.2991734
H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A.y. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” 2016. [Online]. Available: https://arxiv.org/abs/1602.05629

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. Goodfellow, and R. Fergus, “Intriguing properties of neural
networks,” 2014. [Online]. Available: https://arxiv.org/abs/1312.6199

I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining
and harnessing adversarial examples,” 2015. [Online]. Available:
https://arxiv.org/abs/1412.6572

P. Liu, X. Xu, and W. Wang, “Threats, attacks and defenses to federated
learning: issues, taxonomy and perspectives,” Cybersecurity, vol. 5,
no. 1, Feb. 2022. [Online]. Available: http://dx.doi.org/10.1186/s42400-
021-00105-6

X. Ma, Y. Niu, L. Gu, Y. Wang, Y. Zhao, J. Bailey,
and F  Lu, “Understanding adversarial attacks on deep
learning based medical image analysis systems,” Pattern

Recognition, vol. 110, p. 107332, Feb. 2021. [Online]. Available:
http://dx.doi.org/10.1016/j.patcog.2020.107332

G. Bortsova, C. Gonzalez-Gonzalo, S. C. Wetstein, F. Dubost,
I. Katramados, L. Hogeweg, B. Liefers, B. van Ginneken, J. P. Pluim,
M. Veta, C. 1. Sanchez, and M. de Bruijne, “Adversarial attack
vulnerability of medical image analysis systems: Unexplored factors,”
Medical Image Analysis, vol. 73, p. 102141, Oct. 2021. [Online].
Available: http://dx.doi.org/10.1016/j.media.2021.102141

N. Papernot, P. McDaniel, A. Sinha, and M. Wellman, “Towards the
science of security and privacy in machine learning,” 2016. [Online].
Available: https://arxiv.org/abs/1611.03814

A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial machine learning
at scale,” 2017. [Online]. Available: https://arxiv.org/abs/1611.01236
N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
2015. [Online]. Available: https://arxiv.org/abs/1511.07528

J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for
fooling deep neural networks,” IEEE Transactions on Evolutionary
Computation, vol. 23, no. 5, p. 828-841, Oct. 2019. [Online]. Available:
http://dx.doi.org/10.1109/TEVC.2019.2890858

S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a
simple and accurate method to fool deep neural networks,” 2016.
[Online]. Available: https://arxiv.org/abs/1511.04599

N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” 2017. [Online]. Available: https://arxiv.org/abs/1608.04644
S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard,
“Universal adversarial perturbations,” 2017. [Online]. Available:
https://arxiv.org/abs/1610.08401

S. G. Finlayson, H. W. Chung, I. S. Kohane, and A. L. Beam,
“Adversarial attacks against medical deep learning systems,” 2019.
[Online]. Available: https://arxiv.org/abs/1804.05296

U. Ozbulak, A. Van Messem, and W. De Neve, Impact of Adversarial
Examples on Deep Learning Models for Biomedical Image Segmenta-
tion. Springer International Publishing, 2019, p. 300-308.

S. A. Taghanaki, A. Das, and G. Hamarneh, “Vulnerability analysis
of chest x-ray image classification against adversarial attacks,” 2018.
[Online]. Available: https://arxiv.org/abs/1807.02905

M. Paschali, S. Conjeti, F. Navarro, and N. Navab, “Generalizability vs.
robustness: Adversarial examples for medical imaging,” 2018. [Online].
Available: https://arxiv.org/abs/1804.00504

N. Akhtar and A. Mian, “Threat of adversarial attacks on deep learning
in computer vision: A survey,” IEEE Access, vol. 6, pp. 14410-14 430,
2018.

G. K. Dziugaite, Z. Ghahramani, and D. M. Roy, “A study of the effect
of jpg compression on adversarial images,” 2016. [Online]. Available:
https://arxiv.org/abs/1608.00853

C. Guo, M. Rana, M. Cisse, and L. van der Maaten, “Countering
adversarial images using input transformations,” 2018. [Online].
Available: https://arxiv.org/abs/1711.00117

N. Das, M. Shanbhogue, S.-T. Chen, F. Hohman, L. Chen, M. E.
Kounavis, and D. H. Chau, “Keeping the bad guys out: Protecting

(33]

(34]

(35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

and vaccinating deep learning with jpeg compression,” 2017. [Online].
Available: https://arxiv.org/abs/1705.02900

S. Gu and L. Rigazio, “Towards deep neural network architectures
robust to adversarial examples,” 2015. [Online]. Available:
https://arxiv.org/abs/1412.5068

A. S. Ross and F. Doshi-Velez, “Improving the adversarial robustness
and interpretability of deep neural networks by regularizing their input
gradients,” 2017. [Online]. Available: https://arxiv.org/abs/1711.09404
C. Lyu, K. Huang, and H.-N. Liang, “A unified gradient
regularization family for adversarial examples,” 2015. [Online].
Available: https://arxiv.org/abs/1511.06385

G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” 2015. [Online]. Available: https://arxiv.org/abs/1503.02531
N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation
as a defense to adversarial perturbations against deep neural networks,”
2016. [Online]. Available: https://arxiv.org/abs/1511.04508

N. Papernot and P. McDaniel, “On the effectiveness of defensive
distillation,” 2016. [Online]. Available: https://arxiv.org/abs/1607.05113
N. Akhtar, J. Liu, and A. Mian, “Defense against
universal adversarial perturbations,” 2018. [Online]. Available:
https://arxiv.org/abs/1711.05929

H. Lee, S. Han, and J. Lee, “Generative adversarial trainer: Defense
to adversarial perturbations with gan,” 2023. [Online]. Available:
https://arxiv.org/abs/1705.03387

S. Shen, G. Jin, K. Gao, and Y. Zhang, “Ape-gan: Adversarial
perturbation elimination with gan,” 2017. [Online]. Available:
https://arxiv.org/abs/1707.05474

J. Yang, R. Shi, and B. Ni, “Medmnist classification decathlon: A
lightweight automl benchmark for medical image analysis,” in /EEE
18th International Symposium on Biomedical Imaging (ISBI), 2021, pp.
191-195.

J. Yang, R. Shi, D. Wei, Z. Liu, L. Zhao, B. Ke, H. Pfister, and
B. Ni, “Medmnist v2-a large-scale lightweight benchmark for 2d and 3d
biomedical image classification,” Scientific Data, vol. 10, no. 1, p. 41,
2023.

W. Al-Dhabyani, M. Gomaa, H. Khaled, and A. Fahmy, “Dataset of
breast ultrasound images,” Data Brief, vol. 28, no. 104863, p. 104863,
Feb. 2020.

D. S. Kermany, M. Goldbaum, W. Cai, C. C. S. Valentim, H. Liang,
S. L. Baxter, A. McKeown, G. Yang, X. Wu, F. Yan, J. Dong, M. K.
Prasadha, J. Pei, M. Y. L. Ting, J. Zhu, C. Li, S. Hewett, J. Dong,
I. Ziyar, A. Shi, R. Zhang, L. Zheng, R. Hou, W. Shi, X. Fu, Y. Duan,
V. A. N. Huu, C. Wen, E. D. Zhang, C. L. Zhang, O. Li, X. Wang, M. A.
Singer, X. Sun, J. Xu, A. Tafreshi, M. A. Lewis, H. Xia, and K. Zhang,
“Identifying medical diagnoses and treatable diseases by image-based
deep learning,” Cell, vol. 172, no. 5, pp. 1122-1131.e9, Feb. 2018.

P. Tschandl, C. Rosendahl, and H. Kittler, “The HAM10000 dataset,
a large collection of multi-source dermatoscopic images of common
pigmented skin lesions,” Sci. Data, vol. 5, no. 1, p. 180161, Aug. 2018.
N. Codella, V. Rotemberg, P. Tschandl, M. E. Celebi, S. Dusza,
D. Gutman, B. Helba, A. Kalloo, K. Liopyris, M. Marchetti, H. Kittler,
and A. Halpern, “Skin lesion analysis toward melanoma detection 2018:
A challenge hosted by the international skin imaging collaboration
(isic),” 2019. [Online]. Available: https://arxiv.org/abs/1902.03368

R. Kaur, R. Kumar, and M. Gupta, “Review on transfer learning for
convolutional neural network,” in 2021 3rd International Conference
on Advances in Computing, Communication Control and Networking
(ICAC3N). IEEE, Dec. 2021.

K. O’Shea and R. Nash, “An introduction to convolutional neural
networks,” 2015. [Online]. Available: https://arxiv.org/abs/1511.08458
C. Iorga and V.-E. Neagoe, “A deep CNN approach with transfer
learning for image recognition,” in 2019 11th International Conference
on Electronics, Computers and Artificial Intelligence (ECAI). 1EEE,
Jun. 2019.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” 2019. [Online].
Available: https://arxiv.org/abs/1801.04381

G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” 2018. [Online]. Available:
https://arxiv.org/abs/1608.06993

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015. [Online]. Available: https://arxiv.org/abs/1512.03385



