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Abstract. Angiogenesis is a biological process that plays an important 
role in tumor growth and metastasis. Many mathematical models have 
been used to study cancer cell invasion through numerical computation 
of PDEs (partial differential equations). In this proceeding, we study a 
Parabolic-Hyperbolic Keller-Segel (PHKS) system in one and two space 
dimensions. The model arises in the angiogenesis literature. To compute 
solutions to the PHKS system, we develop a stochastic interacting particle-
field (SIPF) method where the PDE solutions are approximated as empir-
ical measures of particles coupled with a smoother field (concentration of 
chemo-attractant) variable approximated by the classical spline interpola-
tion method. We describe an algorithm for updating the stochastic particle 
positions and chemical concentration (field). We present analytical form 
and numerical simulations o f self-similar solutions, and discuss challenges
to be addressed with machine learning approaches. The numerical exper-
iments show diffusive spreading behavior of the system from a Gaussian
shaped initial data and zero flux boundary conditions. Finally, we pro-
vide preliminary results of a neural interpolator based on a deep convo-
lutional network and discuss its potential in SIPF for computing higher
dimensional solutions to the system.

Keywords: Parabolic-hyperbolic chemotaxis · stochastic particle field 
method · pattern generation · self-similar solutions · neural
interpolation

1 Introduction 

It is widely known that cancer is currently the s econd leading cause of death glob-
ally [1] and has raised a variety of clinical concerns in the modern age. Although 
the disease has been documented since long ago since the ancient Egyptians, 
attention to treatments did not start until 1775. Ho wever, it wasn’t until the
1970s that mathematical models were developed to study different phases of
solid tumor growth [2]. The incorporation of empirical data by biologists gave 
rise to study cancer through growth laws such as Gompertzian, logistic, and
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exponential growth [3]. Naturally as the digital age arose, so did e mphasis on
computational research for cancer.

Mathematical models are powerful tools to study a wide range of physical and 
biological phenomena. The field of cancer modeling includes various approaches 
from mechanistic models that e xplore the detailed biochemical mechanisms of
diseases to the data-driven models that facilitate clinical decision-making [4]. 
Angiogenesis is the biological process of the formation of new blood vessels and 
provides a way for tumors to m etastasize. This phenomenon has been widely
studied by both clinical and computational scientists [17]. Keller and Segel (KS) 
first introduced the chemotaxis system of partial differential equations (PDEs) 
to model the movement of bacteria to a food source (chemoattractant) [5]. Since 
then, many PDE models have been used to study tumor growth models and
their associated biological processes.

Many numerical methods have been proposed for KS chemotaxis systems. 
While traditional numerical methods such as finite difference (FDM) or finite 
volume apply to fully parabolic systems, newer models have emerged in recent 
times to address higher dimensional problems. Models employing stochastic dif-
ferential equations (SDE) ha ve been formulated to capture the stochastic behav-
iors of cancer cell migration and invasion, specifically addressing the variability
in diffusion processes [6,18]. See also [7– 9] for a particle method and a reinforced 
random walk analysis in the context of fully parabolic chemotaxis. In [10,11], a 
random particle blob method is shown to converge for the parabolic-elliptic KS
(PEKS) system. In [12], a deep-learning study of chemotaxis and aggregation in 
3D laminar and chaotic flows is initiated based on an interacting particle method 
with a kernel regularization technique for PEKS systems in a fluid environment.

In this paper, in the spirit of [14,15] for fully parabolic chemotaxis and related 
haptotaxis systems, we introduce a stochastic interacting particle-field (SIPF) 
algorithm for a parabolic-hyperoblic KS (PHKS) system motivated by angio-
genesis [13]. Our method takes into account the coupled stochastic particle and 
field dynamics, where the field is the chemoattractant concentration. In our 
SIPF algorithm, we approximate the density of active particles by a sum of 
delta functions centered at the particle positions. The non-smoothness of par-
ticle representation goes into the field due to hyperbolicity. An interpolation 
is necessary from particle representation to compute the gradient of the field
that drives the particle evolution. Our method is mesh free, easy to implement,
and able to capture the diffusive behavior from the system as shown by a FDM
comparison and self-similar solutions.

The rest of the paper is organized as follows: In Sect. 2, we review the PHKS 
system of equations analyzed in [13]. In Sect. 3, we describe the main SIPF 
algorithm that utilizes the theoretical SDE formulation of particle density as well 
as the need of a numerical interpolator to evolve the gradient of concentration
field and particle positions. In Sect. 4, we show numerical results of the algorithm 
with a Gaussian shaped initial condition for density. Lastly, in Sect. 5 we discuss 
initial ideas of incorporating neural interpolation for future research on PHKS
dynamics in higher dimensions.
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2 Parabolic-Hyperbolic Keller Segel (PHKS) System 

The PHKS system is given below: 

ρt = ∇  · (μ∇ρ − χρ∇c) (1) 
ct = −cρ (2) 

where ρ is the density of the bacteria and c is the concentration of the chemoat-
tractant. The bacteria diffuse with mobility μ and drift in the direction of ∇c 
with velocity χ∇ c, where χ is called chemo-sensitivity. Theoretical analysis of
well-posedness of this system is in [13] with the existence of a family of self-similar 
solutions for the 2D case. We will show a self-similar solution for comparing with
numerical solutions in 1D later in Sect. 4. 

3 SIPF Algorithm for PHKS 

In this section we present the algorithm to solve the PHKS system with a 
stochastic interacting particle-field method. We consider a finite spatial domain 
Ω =  [0,  L]d for d =  1, 2 and assume Neumann boundary conditions for ρ and c. 
As a discrete time algorithm, we discretize a time domain [0,  T  ] p artitioned by
{tn}0:nT

where t0 = 0 and tnT
= T . We approximate the density ρ by particles

given by

ρt ≈ M0

P

P∑

j=1

δ(x − Xp
t ) (3) 

where P � 1 is the number of particles and M0 is the conserved mass of the 
system. At t0 = 0, we sample P particles from the initial condition ρ0.  To  present  
the algorithm, we rewrite the particle approximation by ρn = M 0

P

∑P
j=1 δ(x −

Xp
n). At a given time step, our algorithm consists of two sub-steps: updating c

and ρ.

Updating Chemical Concentration c:  Let  δt = tn+1 − tn > 0 be the time step. 
We update c by the e xplicit Euler scheme:

cn+1 = cn − δt cn ρn. (4) 

Updating Density ρ: update the particle positions {Xp 
n}p=1:P using an Euler-

Maruyama scheme of the SDE: 

Xp 
n+1 = Xp 

n + χ ∇xc(Xp
n, tn) δt +

√
2μδt Np

n (5) 

where N p 
n’s are i.i.d. standard normal distributions with respect to Bro wnian

paths in the SDE formulation.
Computing the spatial gradient ∇xc(x, tn) proves to be difficult by finite dif-

ference as the gradient may not be available at certain locations since ρn−1 is



A Computational Study on a Parabolic-Hyperbolic Chemotaxis System 67

coarsely defined through a histogram of particle positions. To circumvent this, 
we apply a spline interpolation of cn to obtain a differentiable function defined 
everywhere in the spatial domain, then take gradien t on the spline function as
an approximation. We formulate the algorithm for any dimension below:

4 Numerical Experiments 

In this section, we present numerical findings of the particle method in the 
1D case. For simplicity, we take χ = μ = 1, the conserved mass M0 =  1,  
and a Gaussian initial condition for c. The initial condition for density ρ0 is 
the normalized Gaussian function with mean 5 centered at x = 50 with 100 
spatial bins. The computational domain is Ω =  [0, 100]. We then compute the
density ρ via Algorithm 1 until time T = 20.0 with P = 50000. A numerical
interpolator is necessary to solve for the spatial gradient of c. We use SciPy’s
PChipInterpolator in the 1D case and RectBivariateSpline in the 2D case [20]. 
To the best of our knowledge, these packages are the only SciPy interpolators 
that provide a function handle with the option to compute partial derivatives. 
Other interpolators do not have this attribute, making it difficult to compute 
the gradient accurately. H aving such an object is crucial to maintain smoothness
of the field variable. A comparison of the FDM and SIPF plots can be found in
Fig. 1. 

4.1 Self-similar Solutions 

We present computation of self-similar solutions to the 1D system with similar 
spreading bahavior as the solutions of t he initial boundary value problem from
Gaussian shaped initial data (in Fig. 1). In 1D, the system (1)–(2) becomes: 

ρt =  (ρx − ρcx)x (6) 
ct = −cρ (7)
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To derive self-similar solutions we assume that the self-similar variable is of the 
form z = x 

tγ . We seek self-similar solutions of the form 

ρ (t, x) = t−αρ̄(z), c(t, x) = t−β c̄(z).

Fig. 1. FDM vs. SIPF at T =  20.0,  δ  t = 0.01, P = 50000.

Taking the time derivative of ρ for the LHS (left hand side), we have 

ρt = ∂ 
∂t 

(t−α ̄ρ(z)) = −αt−(α+1)ρ̄(z) + t−αρ̄′(z)
∂z

∂t
(8) 

= −αt−(α+1) ρ̄(z) − γzt−(α+1) ρ̄′(z) (9) 

Likewise, ct = −βt−(β+1)c̄(z)  +  γzt−(β+1)c̄′(z). Then computing the expression 
on the RHS (right hand side), we have 

(ρx − ρcx)x = t−(α+2γ)n̄′′(z) − t−(α+β+2γ) ρ̄′(z)¯ c′(z) − t−(α+β+2γ)c̄′′(z)ρ̄(z)
(10) 

From the ct equation we have 

ct = −βt−(β+1)c̄(z) − γzt−(β+1)c̄′(z) (11) 
= −t−(α+β) ρ̄(z)c̄(z) (12) 

Balancing powers of t in this equation yield that α = 1. Plugging this into the 
ρt equation yield that β =  0,  γ  =  1/2 so the self-similar solution in 1D is of the 
form ρ(t, x)  =  1 t ρ̄( x√

t )  and c(t, x) = c̄( x√
t
). Then rewriting the original system

in terms of the self-similar variable z, we obtain the system of ODEs:
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−ρ̄(z) − z 
2 
ρ̄′(z)  =  ̄ρ′′(z) − ρ̄′(z)c̄′(z) − c̄′′(z)ρ̄(z) (13) 

z 
2 
c̄′(z)  =  ̄ρ(z)c̄(z) (14) 

which simplifies to 

ρ̄′′(z) − (c̄′(z) − z 
2 
)ρ̄′(z) − (c̄′′(z) − 1)ρ̄(z) = 0 (15) 

z 
2 
c̄′(z)  =  ̄ρ(z)c̄(z) (16) 

From Eq. (16), we can solve for c̄(z)  to  be  

c̄(z)  = e
∫
2

ρ̄(z)
z dz (17) 

The self-similar solutions can be computed by numerically solving an ODE 
system derived from self-similar variable, see Fig. 2 showing diffusive behavior 
similar to Fig. 1. 

Fig. 2. Self-similar solutions for the 1D PHKS s ystem at certain time-steps.

4.2 Discussion 

In this subsection, we discuss the above results as well as some challenges that 
arise with the SIPF algorithm when the dimension increases. In the 2D case, 
the same initial data for density centered at (50, 50) and 1002 spatial bins. A
comparison of time steps between FDM and SIPF solutions in the 2D case can be
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found in Fig. 4. First, the SIPF result presents many fluctuations as a result of the 
stochastic nature of the method. We can resolve these fluctuations by increasing 
the number of particles. A plot sho wcasing the smoothing of the solutions with
increased number of particles can be found in Fig. 3. This also true in the 2D 
case as shown in Fig. 6. 

To demonstrate the efficacy of SIPF in 2D, we calculate the mean square error 
(MSE) when comparing to the FDM solution. Plots for different number of par-
ticles are shown in Fig. 5. While the error fluctuates across time, increasing the 
number of particles decreases the magnitude of the loss. However, because t he
algorithm recursively interpolates the field variable (concentration), this becomes

Fig. 3. SIPF with different number of particles at T =  20.0, δt = 0.01.
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computationally costly with classical interpolation methods. The FDM simula-
tion takes around 60.62 s to complete while for small N , SIPF performs faster, 
taking around 24.70 s. The time it takes to complete the same simulation com-
pounds as N grows large. For example, for N = 10000, the algorithm takes
around 214.35 s to complete. While increasing the particles may smooth the
numerical solution, the interpolation step slows down the algorithm significantly.

5 Neural Interpolation 

In this section, we aim to address the interpolation issue. To do so, we consider 
neural interpolators. These int erpolators arose in the context of image genera-
tion such as in [16] and [17]. The former explores a spatial interpolator using 
neural networks for geospatial data where data maybe sparse whereas the latter 
uses a combination of a convolutional neural network (CNN) and spatial trans-
former network (STN) to interpolate images. However, when using FunkNN [17], 

Fig. 4. Comparison of time steps of FDM and SIPF for the 2D PHKS system, T =
5.0, δt = 0.1, P = 20000.
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Fig. 5. MSE over time across different numbe r of particles.

Fig. 6. Comparison of last time steps of SIPF for the 2D PHKS system with different 
num ber of particles, T =  5.0, δt = 0.1.
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a generative model is necessary to provide the network with training data. Such a 
generative model creates target data for the FunkNN module t o interpolate. Suc-
cessfully implementing an interpolator like FunkNN [17] remains to be explored 
when looking to simulate the PHKS system in higher dimensions.

As a proof of concept, we use high resolution FDM solution as target in lieu 
of a generative model as required by FunkNN. We interpolate the concentration 
field by a CNN architecture consisting of seven convolution layers. The mean 
squares error (MSE) b etween the neural interpolation and FDM solution is min-
imized at each epoch with Adam optimizer updating the CNN weights for 100
epochs. Figure 7 compares FDM, SIPF with classical and neural interpolations. 
The training performance (decay of MSE) of the CNN is in Fig. 8. In future 
work, we plan to train this CNN on synthetic data or self-similar solutions and
apply it to SIPF and PHKS system.

Fig. 7. Solution at last time step by FDM, SIPF w. classical/neural interpolations.
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Fig. 8. Loss vs. epoch numbers i n CNN training.

6 Concluding Remarks and Future Work 

We have introduced a SIPF algorithm and showed preliminary results to solve 
the PHKS system. Given the comparative ease of implementation and its capa-
bility to capture the diffusive nature of the system, we conclude that the SIPF 
algorithm has the potential for future applications in angiogenic tumor growth 
studies. We aim to develop a neural interpolator in 2D and 3D by training a 
CNN on synthetic image data and self-similar solutions as both are low cost. 
Finally, a future goal is to develop a convergence theory for the SIPF method.
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