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Abstract
Motivation: The mapping from codon to amino acid is surjective due to codon degeneracy, suggesting that codon space might harbor higher in
formation content. Embeddings from the codon language model have recently demonstrated success in various protein downstream tasks. 
However, predictive models for residue-level tasks such as phosphorylation sites, arguably the most studied Post-Translational Modification 
(PTM), and PTM sites prediction in general, have predominantly relied on representations in amino acid space.
Results: We introduce a novel approach for predicting phosphorylation sites by utilizing codon-level information through embeddings from the 
codon adaptation language model (CaLM), trained on protein-coding DNA sequences. Protein sequences are first reverse-translated into reliable 
coding sequences by mapping UniProt sequences to their corresponding NCBI reference sequences and extracting the exact coding sequences 
from their GenBank format using a dynamic programming-based global pairwise alignment. The resulting coding sequences are encoded using 
the CaLM encoder to generate codon-aware embeddings, which are subsequently integrated with amino acid-aware embeddings obtained 
from a protein language model, through an early fusion strategy. Next, a window-level representation of the site of interest, retaining the full 
sequence context, is constructed from the fused embeddings. A ConvBiGRU network extracts feature maps that capture spatiotemporal corre
lations between proximal residues within the window. This is followed by a prediction head based on a Kolmogorov-Arnold network (KAN) using 
the derivative of gaussian wavelet transform to generate the inference for the site. The overall model, dubbed CaLMPhosKAN, performs better 
than the existing approaches across multiple datasets.
Availability and implementation: CaLMPhosKAN is publicly available at https://github.com/KCLabMTU/CaLMPhosKAN.

1 Introduction
Protein phosphorylation is a well-studied post-translational 
modification (PTM) and involves the covalent addition of a 
phosphate group to the side chain of specific amino acids, typi
cally mediated by kinase enzymes (Que et al. 2010). This modi
fication is most commonly observed on the residues of Serine 
(S), Threonine (T), and Tyrosine (Y), though it also occurs on 
Aspartic acid, Arginine, Cysteine, and Histidine (Lapek et al. 
2015, Leijten et al. 2022). Phosphorylation serves as a funda
mental regulatory mechanism in various cellular processes, in
cluding subcellular localization, cell growth and division, 
protein stability, and signal transduction (Johnson 2009). 
Dysregulation of phosphorylation, potentially induced by natu
ral toxins or pathogens, can lead to severe diseases such as can
cer, Alzheimer’s disease, and heart disease, among others 
(Ardito et al. 2017). Consequently, the identification and 

understanding of phosphorylation sites are critical for develop
ing new therapeutic strategies and insights into drug design 
(Nalepa et al. 2006, Gyawali et al. 2024).

In recent years, there has been a noticeable shift from tradi
tional machine learning-based models to more advanced deep 
learning-based models for PTM prediction. Machine learning 
methods such as RFPhos (Ismail et al. 2016), NetPhosK 
(Hjerrild et al. 2004), KinasePhos (Ma et al. 2023), and GPS 
(Zhou et al. 2004) relied on manually extracted features. While 
these models provided acceptable prediction capabilities, they 
were generally outperformed by the more sophisticated deep 
learning (DL) approaches. DL methods in this field typically uti
lize learned embeddings or leverage pre-trained language models 
to enhance prediction accuracy. One of the pioneering deep 
learning models, Musite (Wang et al. 2020), introduced the use 
of attention-based mechanisms to improve the prediction of 
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phosphorylation sites. Building on this, the same research group 
developed CapsNet (Wang et al. 2022), which used a capsule 
network architecture. This model not only marginally improved 
upon its predecessor but also enhanced the interpretability of 
the predictions through the use of capsules. However, a major 
limitation of both models was their reliance on isolated protein 
fragments (peptides) for modeling, which restricted their ability 
to capture the global context influencing phosphorylation sites. 
DeepPSP (Guo et al. 2021) sought to address this limitation by 
combining representations from a sequence of 2000 residues 
(referred to as the global information module) with peptide- 
level information (the local information module). Most recently, 
LMPhosSite (Pakhrin et al. 2023) further advanced the field by 
incorporating full-sequence context using a protein language 
model (pLM) and predicting phosphorylation sites with residue- 
level embeddings. A detailed literature review of these tools is 
available in the Supplementary Section S1. Despite these 
advancements, there remains scope for improving predictive 
performance. Many of these tools have relied on local peptide- 
based encoding, and while LMPhosSite used full-sequence con
text, it was limited to residue-level embeddings. Moreover, all 
these tools, whether for phosphorylation sites prediction or 
other PTMs, have primarily used representations derived from 
amino acid sequences. However, Outeiral and Deane (2024) re
cently introduced codon adaptation language model (CaLM), a 
pLM trained on protein-coding DNA sequences, asserting the 
probable presence of higher information in codon space. Their 
claim was supported by empirical evidence showing that CaLM 
outperformed amino acid-based state-of-the-art pLMs, such as 
ESM (Lin et al. 2022), ProtT5(Elnaggar et al. 2022), and 
ProtBERT (Elnaggar et al. 2022), in variety of protein-level 
downstream tasks including melting point prediction, solubility 
prediction, subcellular localization classification, and func
tion prediction.

In this study, we explore the potential of codon-aware 
embeddings for general phosphorylation sites prediction, an im
portant residue-level task. We expand the contemporary 
approaches that rely on amino acid-aware pLMs by integrating 
embeddings from CaLM, which aims to capture potentially 
higher information content inherent in the codon space. 
Specifically, we combine these codon-aware embeddings from 
CaLM with amino acid-aware embeddings from the ProtTrans 
encoder to create a bimodal representation of the full sequence. 
A window-level representation is then constructed around each 
target site to extract spatiotemporal features of the surrounding 
residues, which are subsequently learned by a wavelet-based 
Kolmogorov–Arnold network (Wav-KAN). Our model, termed 
CaLMPhosKAN, outperforms existing state-of-the-art predic
tors, demonstrating that integrating codon-based embeddings 
can enhance general phosphosites prediction. Additionally, we 
present the robustness of our model in predicting phosphoryla
tion sites within disordered regions of proteins. To the best of 
our knowledge, this is the first work to utilize codon-aware 
embeddings in the PTM prediction problem and residue-level 
task in general.

2 Materials and methods
2.1 Datasets construction
2.1.1 Phosphosite datasets
The primary dataset used to build the CaLMPhosKAN model 
was curated by the DeepPSP group (Guo et al. 2021) com
prising experimentally identified phosphorylated sites on 

serine (S), threonine (T), and tyrosine (Y) residues. The 
sequences were subjected to homology reduction using CD- 
HIT with a similarity cut-off of 0.5, following the original 
study. Additionally, we conducted ablation experiments us
ing cut-offs ranging from 0.3 to 0.5 (in increments of 0.1) 
and found 0.5 to be optimal, corroborating the value used in 
DeepPSP. The corresponding results are presented in 
Supplementary Section S2. For labeling, experimentally anno
tated S, T, and Y residues were designated as phosphorylated 
sites (P-sites), whereas the remaining unannotated S, T, and 
Y residues within the same sequences were considered non- 
phosphorylated (NP-sites). Following this, the dataset was 
randomly partitioned into training and test sets in a 9:1 ratio 
based on protein IDs instead of sites, ensuring no overlap of 
sequences between the sets.

To further assess the generalizability of the CaLMPhosKAN 
model, we tested its performance on two additional datasets. 
The first was a test set curated from human A549 cells infected 
with the SARS-CoV-2 virus, derived from the literature (Lv 
et al. 2021), consisting of experimentally identified P-sites on S 
and T residues. The second consisted of training and test data
sets for S and T residues from the organism Chlamydomonas 
reinhardtii (C. reinhardtii), adopted from the literature (Thapa 
et al. 2021). The preprocessing steps of these additional datasets 
are detailed in Supplementary Section S3.

Given the structural and functional similarities between 
serine and threonine residues, we combined their datasets 
(Swingle and Honkanen 2019, Pakhrin et al. 2023). In con
trast, tyrosine residues are subject to phosphorylation 
through distinct enzymatic processes (Gutzler and Perepichka 
2013, Pakhrin et al. 2023) and hence, we maintained a sepa
rate dataset for Y sites, distinct from the combined S/T (or 
SþT) dataset.

2.1.2 Reverse translation procedure
The subsequent step involved “reverse translation,” where 
the protein sequences were translated to their corresponding 
coding DNA sequences, a process characterized by non- 
injective mapping (or surjective mapping if considered in the 
reverse direction, see Fig. 1b). We initiated this by generating 
protein-coding sequences through the mapping of UniProt 
identifiers to NCBI nucleotide reference sequences (RefSeq). 
These RefSeqs are curated to be non-redundant and reliable 
representations of nucleotide sequences. We used the acces
sion numbers of the identified RefSeqs to retrieve their corre
sponding candidate coding sequences from the NCBI 
Nucleotide database (Benson et al. 2013) (timestamp: May 
2024), specifically in GenBank format. This format provides 
comprehensive details, including the coding sequences and 
the translated protein product. To ensure the accuracy of the 
coding sequences as the correct coding sequence for each 
mapped UniProt protein, we performed a pairwise global 
alignment using the Needleman–Wunsch (NW) algorithm 
(Needleman and Wunsch 1970) between the translated pro
tein sequence from the GenBank format and the original 
UniProt sequence. The NW algorithm uses dynamic pro
gramming to find the optimal global alignment of the two 
sequences by iteratively dividing the entire alignment process 
into sub-alignments. The identity percent score for each 
alignment was computed. For inclusion in our dataset, we se
lected only those coding sequences where the alignment dem
onstrated 100% identity with the UniProt protein sequence. 
Moreover, proteins without corresponding RefSeqs were 
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discarded. Details of the changes in the number of sites before 
and after the translation process of the DeepPSP dataset can 
be found in Supplementary Section S4. Finally, the termina
tion codons (stop codons) TAA (Ochre), TAG (Amber), and 
TGA (Opal/Umber) were removed from each coding se
quence, resulting in the coding DNA sequence length being 
exactly three times the length of the corresponding protein se
quence, aligning with the triplet nature of the genetic code. 
The high-level overview of the whole procedure is depicted in  
Fig. 1a. Table 1 summarizes the final processed data (follow
ing reverse translation but before balancing) for the three 
datasets, including information about the count of P-sites and 
NP-sites, the CD-HIT threshold applied, and the NP to 
P ratio.

In the final step, the training sets of primary (SþT and Y) 
and C. reinhardtii were balanced using random undersam
pling of the negative set to avoid biased modeling. 
Additionally, the independent test set of C. reinhardtii were 
also balanced to match the preprocessing done by the source 

literature (Thapa et al. 2021) and ensure a fair comparison. 
Reflecting on many works in phosphorylation prediction 
(Hjerrild et al. 2004, Zhou et al. 2004, Wang et al. 2020, 
Guo et al. 2021, Ma et al. 2023, Pakhrin et al. 2023) (also re
fer to Supplementary Section S5), we developed two distinct 
models: one for the combined SþT residues and another spe
cifically for Y residues.

2.2 Protein embeddings
The highly degenerate nature of codons leads to a surjective 
mapping from multiple codons to a single amino acid, with 
most amino acids being encoded by up to six different codons 
(see Fig. 1b). This indicates that a sequence represented at the 
codon level might contain as much, if not more, information 
than the same sequence at the amino acid level. Furthermore, it 
is known that codon usage influences synthesis rates and protein 
folding (Bahiri-Elitzur and Tuller 2021, Moss et al. 2024). This, 
in turn, affects the accessibility of residues to kinases and phos
phatases for phosphorylation, and also shapes the structural 

Figure 1. (a) A high-level overview of the dataset preparation and the mapping procedure for obtaining protein-coding DNAs. (b) Illustrating the nature of 
codon alphabets mapping to amino acid alphabets, showing a surjective mapping. For instance, the amino acid Methionine (Met, M) is mapped by a 
single codon AUG, while Threonine (Thr, T) can be mapped by at most four codons: ACU, ACC, ACA, and ACG. (c) The architecture of CaLMPhosKAN 
depicting the three modules—(1) Embedding Extraction and Fusion (EEF) Module, (2) Spatiotemporal Feature Extraction (SFE) Module, and (3) Wav-KAN 
Module. The site of interrogation in the protein sequence is “S” (at index i) or “TCA” (at index 3i) in the corresponding coding DNA, and is highlighted in 
bold red. The input is the full-length protein sequence containing the site, provided to the Embedding Extraction and Fusion Module, and the output is the 
logit of the target site (S/TCA) received from the Wav-KAN Module.
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context of proteins, determining the spatial arrangement of 
P-sites, which can impact how phosphorylation affects protein 
function (Swingle and Honkanen 2019).

To harness the potential of codon space, we adopt a bi
modal representation of input sequences, combining amino 
acid-level with codon-level informational modes. This ap
proach generates a richer sequence representation by combin
ing contextualized embeddings from both domains, each 
produced by protein language models (pLMs) pre-trained on 
their respective modalities. Codon-level embeddings, derived 
from a pLM trained on coding DNA sequences, are designed 
to capture the codon usage patterns and synonymous codon 
preferences that influence translation efficiency and accuracy. 
Conversely, amino acid-level embeddings, obtained from a 
pLM trained on protein sequences, primarily reflect the func
tional potentials of proteins based on their amino acid com
position. A detailed explanation of these embeddings is 
provided below.

2.2.1 Codon-aware embeddings
The coding DNA sequences are encoded using a specialized 
codon-aware pLM called CaLM (Outeiral and Deane 2024). 
Built on the Evolutionary Sequence Modeling (ESM) frame
work, CaLM utilizes an architecture comprising 12 encoder 
layers (each with 12 attention heads) and a prediction head, 
amounting to 86 million parameters in total. This model 
undergoes pretraining using a masked language modeling 
denoising objective on a dataset of approximately nine mil
lion non-redundant coding sequences derived from whole- 
genome sequencing.

Prior to encoding input coding sequences, the sequences 
are tokenized into integer tokens that map to the 64 possible 
codons “words”, along with special tokens. The special 
tokens <CLS> (classification) and <EOS> (end-of-sequence) 
are added at the start and end of the sequence, respectively. 
The tokenized sequence can be expressed as T ¼ f<CLS> ;

t1; t2; . . . ; tN; <EOS>g, where ti represents the codon token 
for position i in the sequence. The vectorized tokens are then 
fed into the encoder, and the last hidden state (also called 
embeddings) is extracted. For an input coding sequence of 
length 3N, corresponding to a protein sequence of length N, 
the last hidden state produced by the model is an embedding 
matrix of dimension H 2 RðNþ2Þ×L, where L¼ 768 is the em
bedding dimension. After removing the embeddings corre
sponding to the <CLS> and <EOS> tokens, the final 
representation is given by E 2 RN×L. It is noteworthy that, 
despite the input coding sequence being three times the length 
of the corresponding protein sequence, the resulting embed
ding matrix is aligned with the length of the protein sequence. 

This matrix, E 2 RN×L, serves as input representation for the 
codon space for downstream learning.

2.2.2 Amino acid-aware embeddings
Amino acid-aware embeddings are derived from a pLM trained 
on a large corpus of protein sequences. In this work, we utilize a 
ProtTrans family model called ProtT5 (Elnaggar et al. 2022), a 
prominent pLM established for its high performance in various 
protein downstream tasks (Chandra et al. 2023), including 
PTM prediction (Pakhrin et al. 2023, Pokharel et al. 2023, 
Pratyush et al. 2024). To ensure a comprehensive evaluation, 
we also explored an alternative competitive pLM, ESM-2 
(esm2_t36_3B_UR50D), and conducted a comparative analy
sis, which can be found in Supplementary Section S6. The 
results indicate that ESM-2 performs on par with ProtT5, con
sistent with the findings of Jahn et al. (2024), which suggest 
that the choice of pLM for a particular modality is not a deci
sive factor in overall performance.

ProtT5 is built on the T5 (Text-to-Text Transfer 
Transformer) (Raffel et al. 2020) architecture and has been 
trained using an MLM denoising objective on the UniRef50 
(UniProt Reference Clusters, encompassing 45 million protein 
sequences) database. The model comprises a 24-layer encoder- 
decoder architecture (each with 32 attention heads) and con
tains approximately 2.8 billion learnable parameters. For this 
work, we used the pre-trained encoder component of ProtT5 to 
extract embeddings from the input protein sequences.

For a given protein sequence of length N, each amino acid is 
converted into integer tokens that map to a vocabulary of 21 ca
nonical amino acids plus a special <EOS> token. Non- 
canonical/rare amino acids such as “U,” “Z,” “O,” and “B” 
are mapped to a pseudo-amino acid represented as “X.” The 
tokenized sequence can be expressed as T ¼ ft1; t2; . . . ; tN;

<EOS>g, where ti represents the token for position i in the se
quence. The sequence is then processed through the encoder’s 
attention stack of the ProtT5 model. From this, we extract the 
last hidden state, H 2 RðNþ1Þ×L, where L¼ 1024. As a result, 
with an input protein sequence of length N, ProtT5 produces 
amino-acid context-aware embeddings with dimensions 
ðNþ1Þ×1024. The embedding vector corresponding to the 
<EOS> token is discarded, leaving a final representation of 
E 2 RN×1024, which is used for downstream learning.

2.3 CaLMPhosKAN architecture
The complete schematic of CaLMPhosKAN is depicted in  
Fig. 1c. We can see that the architecture of CaLMPhosKAN 
is structured into three interconnected modules. The 
“Embedding Extraction and Fusion (EEF) Module” gener
ates and integrates codon-aware and amino acid-aware win
dow-level embeddings from the pLMs. The “Spatiotemporal 

Table 1. Distribution of train and independent test sets for the three datasets and target residues (prior to balancing).

Set Target  
residue

Train Independent test CD-HIT  
threshold

No. of  
P-sites

No. of  
NP-sites

Ratio  
(NP:P)

No. of  
P-sites

No. of  
NP-sites

Ratio  
(NP:P)

Primarya SþT 154 220 800 329 5.19:1 16 964 85 057 5.01:1 0.5
Y 27 077 123 918 4.57:1 3054 13 347 4.37:1 0.5

Chlamydomonas reinhardtii SþT 17 345 460 015 26.52:1 4338 115 005 26.51:1 N/A
A549 SþT N/A N/A N/A 1144 1049 0.92:1 0.3

a The adopted DeepPSP dataset, after reverse translation, is referred to as the primary dataset. The number of sites in both the SþT and Y sets in this 
dataset differs from those reported in the DeepPSP paper due to the loss of some sequences during the translation process.
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Feature Extraction (SFE) Module” then extracts feature 
maps that capture spatiotemporal correlations within local 
windows around the site-of-interest. Finally, the “Wav-KAN 
Module” uses a wavelet-induced KAN model to classify these 
features into P-sites and NP-sites. Note that while the overall 
architecture remains consistent for SþT and Y datasets, the 
model implementation differs only in the Wav-KAN configu
ration, a detail that will be discussed later. An elaborated ex
planation of these three modules is presented below.

2.3.1 Embedding extraction and fusion (EEF) module
The EEF module integrates multiple components: encoders, a 
mapper, an early fusion mechanism, and a window-level em
bedding extractor. Initially, the full protein sequence of 
length N is processed using the ProtTrans encoder, which 
transforms the sequence into an embedding matrix of dimen
sion N×L1, where L1 ¼ 1024. Concurrently, the mapper 
reverse-translates the N-length protein sequence into its cor
responding 3N-length coding DNA sequence (via procedure 
detailed in Section 2.1.2). The translated coding sequence is 
then embedded using the CaLM encoder, resulting in an em
bedding matrix of size N×L2, where L2 ¼ 768. For the fu
sion step, the embedding matrix from the ProtTrans encoder 
EProtTrans 2 RN×L1 and the embedding matrix from the CaLM 
encoder ECaLM 2 RN×L2 are concatenated horizontally. This 
early fusion can be expressed as EFusion ¼ ðEProtTransjECaLM), 
resulting in an embedding matrix of size N× ðL1þL2Þ, where 
L1þL2 ¼ 1792.

To represent a site-of-interest k, where k2 fS; T;Yg within 
the sequence, we define a window frame of size W 
(¼ 2nþ1; n≥0; andW≤N) centered around the token corre
sponding to k. This window includes the range [k-θ, kþθ], 
where θ¼ bW2 c represents the number of upstream and down
stream residues, with the site-of-interest k positioned at 
bW2 cþ1. The embeddings EFusion confined to residues within 
this window frame, constituting a W×1792-dimensional ma
trix, constitute the window-level representation of site-of- 
interest k. Based on cross-validation experiments and computa
tional efficiency, the optimal value of W was determined to be 9 
(i.e. four residues flanking on each side with the fifth residue at 
the center as the site-of-interest). Notably, all previous predic
tors compared in this study typically used larger windows (>9) 
and often relied on isolated sequence fragments to build their 
models. A key limitation of such an approach is that it may fail 
to capture the global context influencing the target site. In con
trast, we use window-level embeddings attended to residues 
within the defined window frame, however, each per-residue 
embedding within this window is generated with awareness of 
the full sequence context, allowing for global information reten
tion. This ensures that even while focusing on a localized region 
around the target site, the model preserves and incorporates 
global sequence-level information, leading to more contextually 
informed predictions.

2.3.2 Spatiotemporal feature extraction (SFE) module
Kinases, which catalyze the phosphorylation process, often rec
ognize specific sequences or motifs near the phosphorylation 
sites. Additionally, the neighboring residues can induce confor
mational changes that either expose or hide potential phosphor
ylation sites, impacting their accessibility (Subhadarshini et al. 
2024). To capture these intricate interactions, we use window- 
level feature extraction in this module to leverage correlations 

among neighboring residues within a specified window frame 
around the site-of-interest.

To extract spatial correlations, we utilize a 2D-convolutional 
layer. The input to this layer is a W× ðL1þL2Þ dimensional 
matrix from the EEF module, where W ¼ 9 and 
L1þL2 ¼ 1792. The layer applies 16 kernels of size 5×5, each 
operating on a single channel, producing 16 feature maps of di
mension 5×1788, corresponding to the window frame. The 
convolution operation used in this layer can be summarized as 
F¼ σðK �XþbÞ, where F is the output feature maps, K is the 
kernel, X is the input matrix comprising window embeddings, b 
is the bias, and σð�Þ is the ReLU activation function. Following 
the spatial feature extraction, a Bidirectional Gated Recurrent 
Unit (BiGRU) layer is used with eight units to capture the se
quential context within the window frame. The BiGRU pro
cesses the feature maps obtained from 2D-CNN bidirectionally, 
with the forward and backward hidden states given by h

!
t ¼

GRUðFt; h
!

t − 1Þ and h
 

t ¼GRUðFt; h
 

tþ1Þ, respectively. Here, 
Ft represents the feature vector at time t. The final output is a 
concatenation of these hidden states, Ht ¼ h

!
tj h
 

t, which enco
des bidirectional information, enabling the model to learn de
pendencies from both upstream and downstream residues 
relative to the target site. The feature maps output by the overall 
ConvBiGRU layer has a dimension of 5×16, which serves as 
an input to the classification module (Wav-KAN), described in 
Section 2.3.3.

2.3.3 Wav-KAN module
The Wav-KAN module incorporates a prediction head based 
on the Wav-KAN (Wavelet Kolmogorov Arnold Network) 
(Bozorgasl and Chen 2024) tasked with rendering the final 
classification inference. The input to this module is feature 
maps of 5×16 dimension obtained from the ConvBiGRU 
network of the SFE module, which is flattened into an 80×1 
vector before being passed to the Wav-KAN network. Two 
distinct Wav-KAN models are tailored for the target residue- 
specific datasets: one for the SþT and another for the Y data
sets. The model designed for the SþT dataset comprises two 
hidden layers, with 128 and 32 nodes, respectively. In con
trast, the model for the Y dataset is relatively simpler, utiliz
ing a single hidden layer with 24 nodes. A batch 
normalization layer precedes each hidden layer in both SþT 
and Y models.

Unlike traditional Multi-Layer Perceptrons (MLPs) that 
use fixed activation functions and linear weights at nodes, the 
KAN architecture utilizes learnable univariate functions on 
each edge, which are then aggregated across the nodes of sub
sequent layers. Refer to Supplementary Section S7 for empiri
cal comparison between MLP and KAN using 10-fold cross- 
validation. Furthermore, the implemented Wav-KAN in this 
work is a variation of KAN (Liu et al. 2024), chosen for its 
ability to enhance performance and reduce training time by 
incorporating wavelet transformation functions as adaptive 
activation functions. These wavelets transform input from 
each node along the model’s edges through a defined parame
terized function called the “mother wavelet.” Wav-KAN sup
ports multiple mother wavelet functions, including both 
Continuous Wavelet Transform (CWT) and Discrete Wavelet 
Transform (DWT). For this work, we selected the Derivative 
of Gaussian (dubbed “DoG”) wavelet function based on its 
performance in 10-fold cross-validation (refer to Section 3.1). 
The DoG wavelet can be defined by Equation 1. 
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ψðtÞ ¼ −
d
dt
ðe − t2=2Þ ¼ t � e − t2=2; (1) 

where ψðtÞ represents the wavelet function dependent on the 
time variable t, derived as the first-order derivative of the 
gaussian function e− t2=2. This function is further trainable, as 
given in Equation (2) below: 

ψ exp ðtÞ ¼ ω � ψðtÞ; (2) 

where ω serves as a learnable coefficient for the mother wave
let function, enabling fine-tuning of the wavelet shape during 
backpropagation.

Following the hidden layers, the output passes through a 
single neuron equipped with a sigmoid activation function, 
which converts the logit (z) into a probability (p) using the 
formula p¼ 1

1þ e− z, where p 2 ½0; 1�. The probability value is 
used to make the prediction inference, determining whether 
the target residue (marked as “S” in the protein sequence and 
“TCA” codon in the corresponding coding DNA sequence in  
Fig. 1) belongs to a P or NP site. A detailed architectural de
scription of the ConvBiGRU with Wav-KAN integration is 
provided in Supplementary Section S8, while an ablation 
study evaluating alternative network architectures can be 
found in Supplementary Section S6.

2.4 Model training and evaluation protocol
In the proposed architecture, the pLM encoders CaLM and 
ProtTrans are frozen during training, while the downstream 
models, ConvBiGRU and KAN, are optimized to minimize 
the binary-cross entropy with logits (BCEwithLogits) loss 
function using the Adam optimizer. Training is conducted in 
a mixed precision floating point (utilizing both 16-bit and 
32-bit operations) to improve computational efficiency and 
reduce memory usage. The loss is dynamically scaled during 
backpropagation using Pytorch’s GradScaler to ensure the 
gradients are sufficiently large to avoid underflow when using 
16-bit precision. An adaptive learning rate of 9e� 4 is chosen 
with decay rates of 0.9 for the first moment and 0.999 for the 
second moment, and a batch size of 1024 (Guo et al. 2021). 
The optimization of hyperparameters is performed using 
stratified 10-fold cross-validation on the training set, ensur
ing that proteins in each training fold are mutually exclusive 
with those in the corresponding validation set. Early stopping 
is used to avoid overfitting, and accuracy/loss curves (see 
sample curves in Supplementary Section S9) are carefully 
monitored in each fold. All models are implemented in a 
PyTorch environment using an NVIDIA A100-SXM4- 
80GB GPU.

Model evaluation is conducted using five performance met
rics consistent with existing works: Matthews Correlation 
Coefficient (MCC), Precision (PRE), Recall (REC) or 
Sensitivity (SN), F1, and Area Under Curve (AUC). Due to 
the high degree of imbalance in the primary independent test 
sets, we use the weighted F1-score, i.e. F1weighted (F1wt), and 
the Area Under the Precision-Recall Curve (AUPR) instead of 
the Area Under the Receiver Operating Characteristic 
(AUROC) (Saito and Rehmsmeier 2015, Harbecke et al. 
2022). However, for C. reinhardtii, we also report Specificity 
(SP) and AUROC to enable direct comparison with existing 
predictors for this dataset. Detailed descriptions of all men
tioned metrics are provided in Supplementary Section S10.

3 Results
In this section, we first present a cross-validation analysis of the 
training set of the primary dataset using various embeddings 
and wavelet functions. We then compare our proposed model, 
CaLMPhosKAN, against existing state-of-the-art methods on 
the primary independent test sets, as well as the other two addi
tional datasets (A549 and C. reinhardtii). Furthermore, we as
sess the predictive performance of CaLMPhosKAN on 
Intrinsically Disordered Regions (IDRs) and non-Intrinsically 
Disordered Regions (non-IDRs) of proteins. The results for IDR 
performance are provided in Supplementary Section S15, while 
the remaining findings are reported below.

3.1 Embeddings and wavlet transforms
We aim to assess the contribution of codon-aware embeddings 
to the final predictive performance of CaLMPhosKAN. To this 
end, we conducted 10-fold cross-validation (see Table 2) inde
pendently on CaLM embeddings (codon-aware), ProtTrans 
embeddings (amino acid-aware), and the fused representation 
(CaLM þ ProtTrans). On the primary SþT set, CaLM embed
dings produced a mean MCC, mean F1wt, and mean AUPR of 
0:44±0:01, 0:71±0:01, and 0:80±0:01, respectively, which is 
lower than ProtTrans embeddings, which produced a mean 
MCC, mean F1wt, and mean AUPR of 0:46±0:01, 0:72±0:01, 
and 0:81±0:01, respectively. However, upon combining the 
two sets of embeddings via early fusion, as implemented in 
CaLMPhosKAN, we observed an improvement across all per
formance metrics, with a mean MCC, mean F1wt, and mean 
AUPR of 0:48±0:01, 0:74±0:01, and 0:83±0:01. Similarly, 
on the primary Y set, CaLM embeddings alone did not outper
form ProtTrans embeddings. Yet, the combination of the two 
through early fusion resulted in better performance metrics than 
when either of the pLMs was used independently. These find
ings were further corroborated by evaluations on the primary 
independent SþT and Y test sets (see Supplementary Section 
S11), which confirmed the improvements observed during 
cross-validation. This improvement upon integration suggests 
that codon-aware embeddings contribute complementary infor
mation that enhances the overall model performance. 
Interestingly, on both the primary SþT and Y sets, CaLM did 
not independently surpass ProtTrans, which in fact deviates 
from the findings reported in the original CaLM paper 
(Outeiral and Deane 2024), where it significantly outperformed 
ProtTrans and other amino acid-aware embeddings in several 
protein-level tasks. Nonetheless, the performance differences 
were not substantial. This is particularly notable given that 
CaLM operates with roughly 33 times fewer parameters, 
highlighting its ability to deliver considerable predictive value 
with substantially reduced model complexity.

Table 2. Ten-fold cross-validation performance on primary SþT and 
Y sets.a

Set Embeddings MCC PRE REC F1wt AUPR

SþT CaLM 0.44 0.74 0.68 0.71 0.80
ProtTrans 0.46 0.75 0.69 0.72 0.81
CaLMPhosKAN 0.48 0.76 0.70 0.74 0.83

Y CaLM 0.32 0.67 0.60 0.65 0.69
ProtTrans 0.33 0.67 0.62 0.66 0.70
CaLMPhosKAN 0.34 0.68 0.63 0.67 0.71

a The highest values are bolded in each column. Note that the maximum 
standard deviation observed was 0.02.
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To better understand the observed improvement when in
tegrating codon-aware and amino acid-aware embeddings, 
we analyzed the attention weights from both the CaLM and 
ProtTrans pLMs. Figure 2a and b illustrate heatmaps gener
ated from the final layer of the encoder stacks in ProtTrans 
and CaLM respectively, averaged across all attention heads 
for a full input protein sequence (UniProt: P30047), consist
ing of 86 tokens excluding special tokens. Additionally, the 
head-wise heatmaps (32 per layer in ProtTrans and 12 per 
layer in CaLM) from the final encoder are also provided. The 
head-wise heatmaps for ProtTrans can be found in 
Supplementary Section S12, while those for CaLM are pre
sented in Fig. 2c. It is important to note that, since the pLM 
encoders (CaLM and ProtTrans) are frozen during the train
ing phase, the attention weights represent relationships 
learned during the pretraining process rather than patterns 
specific to phosphorylation sites prediction. As such, the at
tention maps reveal general token associations inherent to the 
pretraining data, which highlight the intrinsic relationships 
between residues. The heatmaps in Fig.2a and b illustrate 
this, showing a strong association between neighboring resi
dues in both pLM encoders, thereby reinforcing the impor
tance of window-level embeddings. Moreover, the heatmap 

from the ProtTrans encoder (see Fig. 2a) reveals strong asso
ciations with distant residues as well (for instance, token 7, 
denoted in green dot, shows high associativity with tokens 59 
and 63), suggesting its ability to capture global sequence de
pendencies more effectively. In contrast, the attention distri
bution in the CaLM encoder is primarily skewed toward 
neighboring residues (see Fig. 2b), which might explain its 
relatively poorer performance when used independently. 
However, when examining the individual attention heads in 
the CaLM encoder (see Fig. 2c), some heads, such as head 6 
and head 8, manage to capture associations with some distant 
residues, potentially adding useful information for prediction. 
Given that the attention heads across each pLM exhibit some 
varied patterns in their distribution of weights, the regions 
attended to by CaLM might differ from those attended to by 
ProtTrans, and this diversity likely contributes to the en
hanced predictive performance observed when the embed
dings from both models are combined.

Additionally, we examined the impact of varying the wave
let transform function used in the Wav-KAN module on the 
performance of CaLMPhosKAN. Using 10-fold cross- 
validation, we evaluated five distinct mother wavelet func
tions: Morlet, Meyer, Mexican Hat (or, Ricker), Shannon, 

Figure 2. Heatmaps of averaged attention weights over the heads of the last encoder layer of (a) ProtTrans and (b) CaLM with protein P30047 as an input 
(86 tokens excluding <CLS> and <EOS>). The heatmaps in (c) display the individual attention heads from the last encoder layer of CaLM. The green dot 
in each denotes an experimentally annotated P-site (index: 7).
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and Derivative of Gaussian (DoG). Radar plots (with normal
ized metrics) for both the primary SþT and Y sets visually il
lustrate the comparative performance of each wavelet 
function (see Fig. 3). In these plots, the Morlet and Meyer 
wavelets showed limited coverage, indicating suboptimal per
formance. Conversely, the Mexican Hat and Shannon showed 
greater robustness in performance metrics with considerable 
coverage. In the primary SþT set, Shannon slightly led in 
AUPR, while in the primary Y set, its performance was on par 
with Mexican Hat (see Supplementary Section S13 for results in 
tabulated form). Most notably, the DoG wavelet covered the 
most expansive coverage on the plots (represented in purple), 
outperforming the others across all evaluated metrics. 
Consequently, the DoG wavelet was selected for integration 
into the Wav-KAN module of the CaLMPhosKAN.

3.2 Benchmarking with existing tools
The performance of CaLMPhosKAN was benchmarked on the 
primary SþT and Y independent test sets against five existing 
predictors: LMPhosSite (Pakhrin et al. 2023), DeepPSP (Guo 
et al. 2021), CapsNet (Wang et al. 2022), Musite (Wang et al. 
2020), and MusiteDeep (Wang et al. 2020). Notably, 
LMPhosSite and DeepPSP are the most recent predictors. For 
DeepPSP, prediction results were extracted from their GitHub 
repository, and performance was computed on the subset of 
samples corresponding to our test sets (aka primary test sets). 
Meanwhile, LMPhosSite was re-implemented by training and 
testing on our primary train and test datasets, respectively. For 
the remaining predictors, performance metrics were directly 
adopted from DeepPSP’s literature (Guo et al. 2021), as our test 
set is a subset of their test set with a similar number of sites.  

Figure 3. Radar plots comparing five wavelet functions across various performance metrics using 10-fold cross-validation. Each metric is normalized 
between 0 and 1 using max scaling (i.e. each value x in a feature column is divided by the maximum value of that column, x 0 ¼ x

max) to facilitate direct 
comparisons across wavelets. Plot (a) on the left shows results for the primary SþT set, and Plot (b) on the right shows results for the primary Y set.

Table 3. Performance comparison on primary independent test sets and A549 test set.a

Set Predictor MCC PRE REC F1 F1wt AUPR

SþT (Primary) CapsNet 0.27 0.24 0.88 0.38 N/A 0.31
Musite 0.20 0.22 0.76 0.35 N/A 0.33
MusiteDeep 0.33 0.32 0.70 0.44 N/A 0.46
DeepPSP 0.38 0.39 0.69 0.48 0.79 0.51
LMPhosSite 0.39 0.35 0.79 0.49 0.75 0.31
CaLMPhosKAN 0.41 0.47 0.57 0.51 0.83 0.53

Y (Primary) CapsNet 0.20 0.23 0.88 0.37 N/A 0.19
Musite 0.14 0.24 0.68 0.35 N/A 0.28
MusiteDeep 0.20 0.35 0.35 0.35 N/A 0.33
DeepPSP 0.26 0.32 0.66 0.42 0.70 0.39
LMPhosSite 0.28 0.33 0.63 0.44 0.72 0.28
CaLMPhosKAN 0.30 0.41 0.46 0.44 0.78 0.42

SþT (A549) DeepPSP 0.45 0.54 0.85 0.66 0.69 0.65
LMPhosSite 0.47 0.83 0.58 0.68 0.71 0.70
CaLMPhosKAN 0.48 0.73 0.76 0.75 0.73 0.79

a The highest values are bolded in each column.
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Table 3 summarizes the comparative performance of 
CaLMPhosKAN and the five existing predictors based on six 
measures: MCC, PRE, REC, F1, F1wt, and AUPR (see 
Supplementary Section S14 for PR curves). On the primary 
SþT set, CaLMPhosKAN achieved an MCC of 0.41, F1wt of 
0.51, and an AUPR of 0.53, demonstrating improvements 
across these three key metrics over the current best performing 
predictors, LMPhosSite and DeepPSP. A similar trend was ob
served on the primary Y set, where CaLMPhosKAN achieved 
an MCC of 0.30, F1wt of 0.78, and an AUPR of 0.42, surpass
ing LMPhosSite and DeepPSP on these metrics.

Subsequently, we evaluated the generalizability of 
CaLMPhosKAN using the A549 and C. reinhardtii datasets. 
On the A549 SþT test set, we benchmarked the 
CaLMPhosKAN model, trained on the primary SþT train set, 
against LMPhosSite and DeepPSP (refer to last three rows of  
Table 3). CaLMPhosKAN demonstrated superior performance, 
achieving the highest MCC, F1wt, and AUPR values among the 
compared models. Next, we evaluated CaLMPhosKAN on the 
C. reinhardtii dataset, which includes SþT training and inde
pendent test sets. Here, CaLMPhosKAN was trained on the C. 
reinhardtii SþT training set and tested on its corresponding 
test set. Performance metrics for existing C. reinhardtii-specific 
predictors (DeepPhos, Chlamy-MwPhosSite, and Chlamy- 
EnPhosSite) were obtained from the same source literature 
(Thapa et al. 2021), from which our dataset was derived. Note 
that these metrics are different from the previous results tables 
(i.e. Tables 2 and 3) to facilitate a fair comparison with existing 
predictors. As reported in Table 4, CaLMPhosKAN outper
formed these predictors, underlining its adaptability and effec
tiveness in phosphorylation sites prediction across organisms 
beyond humans. It is also worth noting that for balanced or 
nearly balanced test sets (A549 and C. reinhardtii), 
CaLMPhosKAN exhibited the best balance between PRE and 
REC in A549 and between SP and SN in C. reinhardtii.

4 Conclusion
The codon language model has shown impressive perfor
mance in various protein-level tasks (Outeiral and Deane 
2024). In this work, we applied it to phosphorylation sites 
prediction, a well-studied residue-level task. We developed a 
framework that translates amino acid sequences into reliable 
coding sequences using a dynamic programming-based proce
dure and acquired codon-aware embeddings via the codon 
language model (i.e. CaLM). The target sites were repre
sented at the window levels, preserving global context to cap
ture both proximal residue associations and full sequence 
dependencies. Our analysis revealed that CaLMPhosKAN ef
fectively captures information complementary to amino acid- 
level embeddings by incorporating codon-level embeddings. 
This bimodal representation improved predictive perfor
mance and highlighted potential roles for codon usage in 

phosphorylation, such as its influence on translational effi
ciency and kinase accessibility. Attention weight analysis fur
ther indicated associations between residues and their 
neighbors, offering insights into local interactions. Moreover, 
the improved performance in intrinsically disordered regions 
further suggests that codon-level information aids in model
ing flexibility and disorder, contributing to the understanding 
of phosphorylation regulation in signaling and regula
tory functions.

Our framework, CaLMPhosKAN, outperformed existing 
approaches across multiple datasets. This approach of inte
grating codon-level information can be extended to other 
residue-level prediction tasks, with potential enhancements 
through the incorporation of additional modalities such as 
structure-aware embeddings. In future work, we plan to ex
plore and validate the insights gained from this study further 
by using experimentally derived datasets, kinase-specific sub
strates, and motif enrichment analysis to bridge computa
tional predictions with biological interpretation.
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