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Abstract

Motivation: The mapping from codon to amino acid is surjective due to codon degeneracy, suggesting that codon space might harbor higher in-
formation content. Embeddings from the codon language model have recently demonstrated success in various protein downstream tasks.
However, predictive models for residue-level tasks such as phosphorylation sites, arguably the most studied Post-Translational Modification
(PTM), and PTM sites prediction in general, have predominantly relied on representations in amino acid space.

Results: We introduce a novel approach for predicting phosphorylation sites by utilizing codon-level information through embeddings from the
codon adaptation language model (CaLM), trained on protein-coding DNA sequences. Protein sequences are first reverse-translated into reliable
coding sequences by mapping UniProt sequences to their corresponding NCBI reference sequences and extracting the exact coding sequences
from their GenBank format using a dynamic programming-based global pairwise alignment. The resulting coding sequences are encoded using
the CaLM encoder to generate codon-aware embeddings, which are subsequently integrated with amino acid-aware embeddings obtained
from a protein language model, through an early fusion strategy. Next, a window-level representation of the site of interest, retaining the full
sequence context, is constructed from the fused embeddings. A ConvBiGRU network extracts feature maps that capture spatiotemporal corre-
lations between proximal residues within the window. This is followed by a prediction head based on a Kolmogorov-Arnold network (KAN) using
the derivative of gaussian wavelet transform to generate the inference for the site. The overall model, dubbed CaLMPhosKAN, performs better
than the existing approaches across multiple datasets.

Availability and implementation: CaLMPhosKAN is publicly available at https://github.com/KCLabMTU/CaLMPhosKAN.

understanding of phosphorylation sites are critical for develop-
ing new therapeutic strategies and insights into drug design
(Nalepa et al. 2006, Gyawali et al. 2024).

In recent years, there has been a noticeable shift from tradi-
tional machine learning-based models to more advanced deep
learning-based models for PTM prediction. Machine learning
methods such as RFPhos (Ismail et al. 2016), NetPhosK
(Hjerrild et al. 2004), KinasePhos (Ma et al. 2023), and GPS

1 Introduction

Protein phosphorylation is a well-studied post-translational
modification (PTM) and involves the covalent addition of a
phosphate group to the side chain of specific amino acids, typi-
cally mediated by kinase enzymes (Que et al. 2010). This modi-
fication is most commonly observed on the residues of Serine
(S), Threonine (T), and Tyrosine (Y), though it also occurs on
Aspartic acid, Arginine, Cysteine, and Histidine (Lapek et al.

2015, Leijten et al. 2022). Phosphorylation serves as a funda-
mental regulatory mechanism in various cellular processes, in-
cluding subcellular localization, cell growth and division,
protein stability, and signal transduction (Johnson 2009).
Dysregulation of phosphorylation, potentially induced by natu-
ral toxins or pathogens, can lead to severe diseases such as can-
cer, Alzheimer’s disease, and heart disease, among others
(Ardito et al. 2017). Consequently, the identification and

(Zhou et al. 2004) relied on manually extracted features. While
these models provided acceptable prediction capabilities, they
were generally outperformed by the more sophisticated deep
learning (DL) approaches. DL methods in this field typically uti-
lize learned embeddings or leverage pre-trained language models
to enhance prediction accuracy. One of the pioneering deep
learning models, Musite (Wang et al. 2020), introduced the use
of attention-based mechanisms to improve the prediction of
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phosphorylation sites. Building on this, the same research group
developed CapsNet (Wang et al. 2022), which used a capsule
network architecture. This model not only marginally improved
upon its predecessor but also enhanced the interpretability of
the predictions through the use of capsules. However, a major
limitation of both models was their reliance on isolated protein
fragments (peptides) for modeling, which restricted their ability
to capture the global context influencing phosphorylation sites.
DeepPSP (Guo et al. 2021) sought to address this limitation by
combining representations from a sequence of 2000 residues
(referred to as the global information module) with peptide-
level information (the local information module). Most recently,
LMPhosSite (Pakhrin et al. 2023) further advanced the field by
incorporating full-sequence context using a protein language
model (pLM) and predicting phosphorylation sites with residue-
level embeddings. A detailed literature review of these tools is
available in the Supplementary Section S1. Despite these
advancements, there remains scope for improving predictive
performance. Many of these tools have relied on local peptide-
based encoding, and while LMPhosSite used full-sequence con-
text, it was limited to residue-level embeddings. Moreover, all
these tools, whether for phosphorylation sites prediction or
other PTMs, have primarily used representations derived from
amino acid sequences. However, Outeiral and Deane (2024) re-
cently introduced codon adaptation language model (CaLM), a
pLM trained on protein-coding DNA sequences, asserting the
probable presence of higher information in codon space. Their
claim was supported by empirical evidence showing that CaLM
outperformed amino acid-based state-of-the-art pLMs, such as
ESM (Lin et al. 2022), ProtT5(Elnaggar et al. 2022), and
ProtBERT (Elnaggar et al. 2022), in variety of protein-level
downstream tasks including melting point prediction, solubility
prediction, subcellular localization classification, and func-
tion prediction.

In this study, we explore the potential of codon-aware
embeddings for general phosphorylation sites prediction, an im-
portant residue-level task. We expand the contemporary
approaches that rely on amino acid-aware pLMs by integrating
embeddings from CalLM, which aims to capture potentially
higher information content inherent in the codon space.
Specifically, we combine these codon-aware embeddings from
CalM with amino acid-aware embeddings from the ProtTrans
encoder to create a bimodal representation of the full sequence.
A window-level representation is then constructed around each
target site to extract spatiotemporal features of the surrounding
residues, which are subsequently learned by a wavelet-based
Kolmogorov—Arnold network (Wav-KAN). Our model, termed
CaLMPhosKAN, outperforms existing state-of-the-art predic-
tors, demonstrating that integrating codon-based embeddings
can enhance general phosphosites prediction. Additionally, we
present the robustness of our model in predicting phosphoryla-
tion sites within disordered regions of proteins. To the best of
our knowledge, this is the first work to utilize codon-aware
embeddings in the PTM prediction problem and residue-level
task in general.

2 Materials and methods

2.1 Datasets construction

2.1.1 Phosphosite datasets

The primary dataset used to build the CaLMPhosKAN model
was curated by the DeepPSP group (Guo et al. 2021) com-
prising experimentally identified phosphorylated sites on
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serine (S), threonine (T), and tyrosine (Y) residues. The
sequences were subjected to homology reduction using CD-
HIT with a similarity cut-off of 0.5, following the original
study. Additionally, we conducted ablation experiments us-
ing cut-offs ranging from 0.3 to 0.5 (in increments of 0.1)
and found 0.5 to be optimal, corroborating the value used in
DeepPSP. The corresponding results are presented in
Supplementary Section S2. For labeling, experimentally anno-
tated S, T, and Y residues were designated as phosphorylated
sites (P-sites), whereas the remaining unannotated S, T, and
Y residues within the same sequences were considered non-
phosphorylated (NP-sites). Following this, the dataset was
randomly partitioned into training and test sets in a 9:1 ratio
based on protein IDs instead of sites, ensuring no overlap of
sequences between the sets.

To further assess the generalizability of the CaLMPhosKAN
model, we tested its performance on two additional datasets.
The first was a test set curated from human A549 cells infected
with the SARS-CoV-2 virus, derived from the literature (Lv
et al. 2021), consisting of experimentally identified P-sites on S
and T residues. The second consisted of training and test data-
sets for S and T residues from the organism Chlamydomonas
reinbardtii (C. reinbardtii), adopted from the literature (Thapa
et al. 2021). The preprocessing steps of these additional datasets
are detailed in Supplementary Section S3.

Given the structural and functional similarities between
serine and threonine residues, we combined their datasets
(Swingle and Honkanen 2019, Pakhrin ez al. 2023). In con-
trast, tyrosine residues are subject to phosphorylation
through distinct enzymatic processes (Gutzler and Perepichka
2013, Pakhrin ef al. 2023) and hence, we maintained a sepa-
rate dataset for Y sites, distinct from the combined S/T (or
S+ T) dataset.

2.1.2 Reverse translation procedure

The subsequent step involved “reverse translation,” where
the protein sequences were translated to their corresponding
coding DNA sequences, a process characterized by non-
injective mapping (or surjective mapping if considered in the
reverse direction, see Fig. 1b). We initiated this by generating
protein-coding sequences through the mapping of UniProt
identifiers to NCBI nucleotide reference sequences (RefSeq).
These RefSeqs are curated to be non-redundant and reliable
representations of nucleotide sequences. We used the acces-
sion numbers of the identified RefSegs to retrieve their corre-
sponding candidate coding sequences from the NCBI
Nucleotide database (Benson et al. 2013) (timestamp: May
2024), specifically in GenBank format. This format provides
comprehensive details, including the coding sequences and
the translated protein product. To ensure the accuracy of the
coding sequences as the correct coding sequence for each
mapped UniProt protein, we performed a pairwise global
alignment using the Needleman—-Wunsch (NW) algorithm
(Needleman and Wunsch 1970) between the translated pro-
tein sequence from the GenBank format and the original
UniProt sequence. The NW algorithm uses dynamic pro-
gramming to find the optimal global alignment of the two
sequences by iteratively dividing the entire alignment process
into sub-alignments. The identity percent score for each
alignment was computed. For inclusion in our dataset, we se-
lected only those coding sequences where the alignment dem-
onstrated 100% identity with the UniProt protein sequence.
Moreover, proteins without corresponding RefSeqs were
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Figure 1. (a) A high-level overview of the dataset preparation and the mapping procedure for obtaining protein-coding DNAs. (b) lllustrating the nature of
codon alphabets mapping to amino acid alphabets, showing a surjective mapping. For instance, the amino acid Methionine (Met, M) is mapped by a
single codon AUG, while Threonine (Thr, T) can be mapped by at most four codons: ACU, ACC, ACA, and ACG. (c) The architecture of CaLMPhosKAN
depicting the three modules—(1) Embedding Extraction and Fusion (EEF) Module, (2) Spatiotemporal Feature Extraction (SFE) Module, and (3) Wav-KAN
Module. The site of interrogation in the protein sequence is “S” (atindex ) or “TCA" (at index 3)) in the corresponding coding DNA, and is highlighted in
bold red. The input is the full-length protein sequence containing the site, provided to the Embedding Extraction and Fusion Module, and the output is the

logit of the target site (S/TCA) received from the Wav-KAN Module.

discarded. Details of the changes in the number of sites before
and after the translation process of the DeepPSP dataset can
be found in Supplementary Section S4. Finally, the termina-
tion codons (stop codons) TAA (Ochre), TAG (Amber), and
TGA (Opal/Umber) were removed from each coding se-
quence, resulting in the coding DNA sequence length being
exactly three times the length of the corresponding protein se-
quence, aligning with the triplet nature of the genetic code.
The high-level overview of the whole procedure is depicted in
Fig. 1a. Table 1 summarizes the final processed data (follow-
ing reverse translation but before balancing) for the three
datasets, including information about the count of P-sites and
NP-sites, the CD-HIT threshold applied, and the NP to
P ratio.

In the final step, the training sets of primary (S+ T and Y)
and C. reinhardtii were balanced using random undersam-
pling of the negative set to avoid biased modeling.
Additionally, the independent test set of C. reinhardtii were
also balanced to match the preprocessing done by the source

literature (Thapa ef al. 2021) and ensure a fair comparison.
Reflecting on many works in phosphorylation prediction
(Hjerrild et al. 2004, Zhou et al. 2004, Wang et al. 2020,
Guo et al. 2021, Ma et al. 2023, Pakhrin et al. 2023) (also re-
fer to Supplementary Section S5), we developed two distinct
models: one for the combined S + T residues and another spe-
cifically for Y residues.

2.2 Protein embeddings

The highly degenerate nature of codons leads to a surjective
mapping from multiple codons to a single amino acid, with
most amino acids being encoded by up to six different codons
(see Fig. 1b). This indicates that a sequence represented at the
codon level might contain as much, if not more, information
than the same sequence at the amino acid level. Furthermore, it
is known that codon usage influences synthesis rates and protein
folding (Bahiri-Elitzur and Tuller 2021, Moss et al. 2024). This,
in turn, affects the accessibility of residues to kinases and phos-
phatases for phosphorylation, and also shapes the structural
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Table 1. Distribution of train and independent test sets for the three datasets and target residues (prior to balancing).

Set Target Train Independent test CD-HIT
residue threshold
No. of No. of Ratio No. of No. of Ratio
P-sites NP-sites (NP:P) P-sites NP-sites (NP:P)
Primary? S+T 154 220 800 329 5.19:1 16 964 85057 5.01:1 0.5
Y 27077 123918 4.57:1 3054 13 347 4.37:1 0.5
Chlamydomonas reinbardtii S+T 17 345 460 015 26.52:1 4338 115 005 26.51:1 N/A
A549 S+T N/A N/A N/A 1144 1049 0.92:1 0.3

% The adopted DeepPSP dataset, after reverse translation, is referred to as the primary dataset. The number of sites in both the S+ T and Y sets in this
dataset differs from those reported in the DeepPSP paper due to the loss of some sequences during the translation process.

context of proteins, determining the spatial arrangement of
P-sites, which can impact how phosphorylation affects protein
function (Swingle and Honkanen 2019).

To harness the potential of codon space, we adopt a bi-
modal representation of input sequences, combining amino
acid-level with codon-level informational modes. This ap-
proach generates a richer sequence representation by combin-
ing contextualized embeddings from both domains, each
produced by protein language models (pLMs) pre-trained on
their respective modalities. Codon-level embeddings, derived
from a pLM trained on coding DNA sequences, are designed
to capture the codon usage patterns and synonymous codon
preferences that influence translation efficiency and accuracy.
Conversely, amino acid-level embeddings, obtained from a
pLM trained on protein sequences, primarily reflect the func-
tional potentials of proteins based on their amino acid com-
position. A detailed explanation of these embeddings is
provided below.

2.2.1 Codon-aware embeddings

The coding DNA sequences are encoded using a specialized
codon-aware pLM called CaLM (Outeiral and Deane 2024).
Built on the Evolutionary Sequence Modeling (ESM) frame-
work, CaLM utilizes an architecture comprising 12 encoder
layers (each with 12 attention heads) and a prediction head,
amounting to 86 million parameters in total. This model
undergoes pretraining using a masked language modeling
denoising objective on a dataset of approximately nine mil-
lion non-redundant coding sequences derived from whole-
genome sequencing.

Prior to encoding input coding sequences, the sequences
are tokenized into integer tokens that map to the 64 possible
codons “words”, along with special tokens. The special
tokens <CLS> (classification) and <EOS> (end-of-sequence)
are added at the start and end of the sequence, respectively.
The tokenized sequence can be expressed as T ={<CLS>,
t,t2,...,tN, <EOS >}, where #; represents the codon token
for position 7 in the sequence. The vectorized tokens are then
fed into the encoder, and the last hidden state (also called
embeddings) is extracted. For an input coding sequence of
length 3 N, corresponding to a protein sequence of length N,
the last hidden state produced by the model is an embedding
matrix of dimension H € RN*2*L where L = 768 is the em-
bedding dimension. After removing the embeddings corre-
sponding to the <CLS> and <EOS> tokens, the final
representation is given by E € RNXL, Tt is noteworthy that,
despite the input coding sequence being three times the length
of the corresponding protein sequence, the resulting embed-
ding matrix is aligned with the length of the protein sequence.

This matrix, E € RN*E| serves as input representation for the
codon space for downstream learning.

2.2.2 Amino acid-aware embeddings

Amino acid-aware embeddings are derived from a pLM trained
on a large corpus of protein sequences. In this work, we utilize a
ProtTrans family model called ProtTS5 (Elnaggar et al. 2022), a
prominent pLM established for its high performance in various
protein downstream tasks (Chandra et al. 2023), including
PTM prediction (Pakhrin et al. 2023, Pokharel et al. 2023,
Pratyush et al. 2024). To ensure a comprehensive evaluation,
we also explored an alternative competitive pLM, ESM-2
(esm2_t36 3B URS50D), and conducted a comparative analy-
sis, which can be found in Supplementary Section S6. The
results indicate that ESM-2 performs on par with ProtT$5, con-
sistent with the findings of Jahn et al. (2024), which suggest
that the choice of pLM for a particular modality is not a deci-
sive factor in overall performance.

ProtT5 is built on the TS5 (Text-to-Text Transfer
Transformer) (Raffel et al. 2020) architecture and has been
trained using an MLM denoising objective on the UniRef50
(UniProt Reference Clusters, encompassing 45 million protein
sequences) database. The model comprises a 24-layer encoder-
decoder architecture (each with 32 attention heads) and con-
tains approximately 2.8 billion learnable parameters. For this
work, we used the pre-trained encoder component of ProtT5 to
extract embeddings from the input protein sequences.

For a given protein sequence of length N, each amino acid is
converted into integer tokens that map to a vocabulary of 21 ca-
nonical amino acids plus a special <EOS> token. Non-
canonical/rare amino acids such as “U,” “Z,” “O,” and “B”
are mapped to a pseudo-amino acid represented as “X.” The
tokenized sequence can be expressed as T ={t1,t2,...,IN,
< EOS > }, where ¢, represents the token for position i in the se-
quence. The sequence is then processed through the encoder’s
attention stack of the ProtT5 model. From this, we extract the
last hidden state, H € RN*DXL \where L = 1024. As a result,
with an input protein sequence of length N, ProtTS5 produces
amino-acid context-aware embeddings with dimensions
(N+1)x1024. The embedding vector corresponding to the
<EO0S> token is discarded, leaving a final representation of
E € RNX1924 ‘wwhich is used for downstream learning.

2.3 CaLMPhosKAN architecture

The complete schematic of CaLMPhosKAN is depicted in
Fig. 1c. We can see that the architecture of CaLMPhosKAN
is structured into three interconnected modules. The
“Embedding Extraction and Fusion (EEF) Module” gener-
ates and integrates codon-aware and amino acid-aware win-
dow-level embeddings from the pLMs. The “Spatiotemporal
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Feature Extraction (SFE) Module” then extracts feature
maps that capture spatiotemporal correlations within local
windows around the site-of-interest. Finally, the “Wav-KAN
Module” uses a wavelet-induced KAN model to classify these
features into P-sites and NP-sites. Note that while the overall
architecture remains consistent for S+ T and Y datasets, the
model implementation differs only in the Wav-KAN configu-
ration, a detail that will be discussed later. An elaborated ex-
planation of these three modules is presented below.

2.3.1 Embedding extraction and fusion (EEF) module

The EEF module integrates multiple components: encoders, a
mapper, an early fusion mechanism, and a window-level em-
bedding extractor. Initially, the full protein sequence of
length N is processed using the ProtTrans encoder, which
transforms the sequence into an embedding matrix of dimen-
sion NxLj, where L; =1024. Concurrently, the mapper
reverse-translates the N-length protein sequence into its cor-
responding 3 N-length coding DNA sequence (via procedure
detailed in Section 2.1.2). The translated coding sequence is
then embedded using the CalLM encoder, resulting in an em-
bedding matrix of size N x L,, where L, = 768. For the fu-
sion step, the embedding matrix from the ProtTrans encoder
Eprorrrans € RNV and the embedding matrix from the CaLM
encoder Ec.m € RN*2 are concatenated horizontally. This
early fusion can be expressed as Epusion = (EprotTrans| ECaLM)s
resulting in an embedding matrix of size N x (Ly + L, ), where
Li+L,=1792.

To represent a site-of-interest k, where k€ {S, T, Y} within
the sequence, we define a window frame of size W
(=2n+1,7>0,andW < N) centered around the token corre-
sponding to k. This window includes the range [k-0, k+0)],
where 6 = [¥| represents the number of upstream and down-
stream residues, with the site-of-interest k positioned at
L%j +1. The embeddings Epysion confined to residues within
this window frame, constituting a W x 1792-dimensional ma-
trix, constitute the window-level representation of site-of-
interest k. Based on cross-validation experiments and computa-
tional efficiency, the optimal value of W was determined to be 9
(i-e. four residues flanking on each side with the fifth residue at
the center as the site-of-interest). Notably, all previous predic-
tors compared in this study typically used larger windows (>9)
and often relied on isolated sequence fragments to build their
models. A key limitation of such an approach is that it may fail
to capture the global context influencing the target site. In con-
trast, we use window-level embeddings attended to residues
within the defined window frame, however, each per-residue
embedding within this window is generated with awareness of
the full sequence context, allowing for global information reten-
tion. This ensures that even while focusing on a localized region
around the target site, the model preserves and incorporates
global sequence-level information, leading to more contextually
informed predictions.

2.3.2 Spatiotemporal feature extraction (SFE) module

Kinases, which catalyze the phosphorylation process, often rec-
ognize specific sequences or motifs near the phosphorylation
sites. Additionally, the neighboring residues can induce confor-
mational changes that either expose or hide potential phosphor-
ylation sites, impacting their accessibility (Subhadarshini et al.
2024). To capture these intricate interactions, we use window-
level feature extraction in this module to leverage correlations

among neighboring residues within a specified window frame
around the site-of-interest.

To extract spatial correlations, we utilize a 2D-convolutional
layer. The input to this layer is a W x (L{+ L;) dimensional
matrix from the EEF module, where W=9 and
L1+ Ly =1792. The layer applies 16 kernels of size 5 x 5, each
operating on a single channel, producing 16 feature maps of di-
mension 5 X 1788, corresponding to the window frame. The
convolution operation used in this layer can be summarized as
F=0(K+X+Db), where F is the output feature maps, K is the
kernel, X is the input matrix comprising window embeddings, b
is the bias, and o(-) is the ReLU activation function. Following
the spatial feature extraction, a Bidirectional Gated Recurrent
Unit (BiGRU) layer is used with eight units to capture the se-
quential context within the window frame. The BiGRU pro-
cesses the feature maps obtained from 2D-CNN bidirectionally,
with the forward and backward hidden states given by b P =
GRU(F;, b 1) and n + = GRU(F,, W t+1), respectively. Here,
F, represents the feature vector at time z. The final output is a
concatenation of these hidden states, H;, = b ;| b ;,, which enco-
des bidirectional information, enabling the model to learn de-
pendencies from both upstream and downstream residues
relative to the target site. The feature maps output by the overall
ConvBiGRU layer has a dimension of 5 X 16, which serves as
an input to the classification module (Wav-KAN), described in
Section 2.3.3.

2.3.3 Wav-KAN module

The Wav-KAN module incorporates a prediction head based
on the Wav-KAN (Wavelet Kolmogorov Arnold Network)
(Bozorgasl and Chen 2024) tasked with rendering the final
classification inference. The input to this module is feature
maps of 5x16 dimension obtained from the ConvBiGRU
network of the SFE module, which is flattened into an 80 x 1
vector before being passed to the Wav-KAN network. Two
distinct Wav-KAN models are tailored for the target residue-
specific datasets: one for the S+ T and another for the Y data-
sets. The model designed for the S+ T dataset comprises two
hidden layers, with 128 and 32 nodes, respectively. In con-
trast, the model for the Y dataset is relatively simpler, utiliz-
ing a single hidden layer with 24 nodes. A batch
normalization layer precedes each hidden layer in both S+ T
and Y models.

Unlike traditional Multi-Layer Perceptrons (MLPs) that
use fixed activation functions and linear weights at nodes, the
KAN architecture utilizes learnable univariate functions on
each edge, which are then aggregated across the nodes of sub-
sequent layers. Refer to Supplementary Section S7 for empiri-
cal comparison between MLP and KAN using 10-fold cross-
validation. Furthermore, the implemented Wav-KAN in this
work is a variation of KAN (Liu et al. 2024), chosen for its
ability to enhance performance and reduce training time by
incorporating wavelet transformation functions as adaptive
activation functions. These wavelets transform input from
each node along the model’s edges through a defined parame-
terized function called the “mother wavelet.” Wav-KAN sup-
ports multiple mother wavelet functions, including both
Continuous Wavelet Transform (CWT) and Discrete Wavelet
Transform (DWT). For this work, we selected the Derivative
of Gaussian (dubbed “DoG”) wavelet function based on its
performance in 10-fold cross-validation (refer to Section 3.1).
The DoG wavelet can be defined by Equation 1.
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where y(t) represents the wavelet function dependent on the
time variable ¢, derived as the first-order derivative of the

. . _ tZ /2 N . . .
gaussian function e . This function is further trainable, as
given in Equation (2) below:

l//exp (t) =w- l//(t)a (2)

where w serves as a learnable coefficient for the mother wave-
let function, enabling fine-tuning of the wavelet shape during
backpropagation.

Following the hidden layers, the output passes through a
single neuron equipped with a sigmoid activation function,
which converts the logit (z) into a probability (p) using the
formula p = L=, where p € [0,1]. The probability value is
used to make the prediction inference, determining whether
the target residue (marked as “S” in the protein sequence and
“TCA” codon in the corresponding coding DNA sequence in
Fig. 1) belongs to a P or NP site. A detailed architectural de-
scription of the ConvBiGRU with Wav-KAN integration is
provided in Supplementary Section S8, while an ablation
study evaluating alternative network architectures can be
found in Supplementary Section S6.

2.4 Model training and evaluation protocol

In the proposed architecture, the pLM encoders CaLM and
ProtTrans are frozen during training, while the downstream
models, ConvBiGRU and KAN, are optimized to minimize
the binary-cross entropy with logits (BCEwithLogits) loss
function using the Adam optimizer. Training is conducted in
a mixed precision floating point (utilizing both 16-bit and
32-bit operations) to improve computational efficiency and
reduce memory usage. The loss is dynamically scaled during
backpropagation using Pytorch’s GradScaler to ensure the
gradients are sufficiently large to avoid underflow when using
16-bit precision. An adaptive learning rate of 9¢ — 4 is chosen
with decay rates of 0.9 for the first moment and 0.999 for the
second moment, and a batch size of 1024 (Guo et al. 2021).
The optimization of hyperparameters is performed using
stratified 10-fold cross-validation on the training set, ensur-
ing that proteins in each training fold are mutually exclusive
with those in the corresponding validation set. Early stopping
is used to avoid overfitting, and accuracy/loss curves (see
sample curves in Supplementary Section S9) are carefully
monitored in each fold. All models are implemented in a
PyTorch environment using an NVIDIA A100-SXM4-
80GB GPU.

Model evaluation is conducted using five performance met-
rics consistent with existing works: Matthews Correlation
Coefficient (MCC), Precision (PRE), Recall (REC) or
Sensitivity (SN), F1, and Area Under Curve (AUC). Due to
the high degree of imbalance in the primary independent test
sets, we use the weighted Fl-score, i.e. Flyeighted (Flwe), and
the Area Under the Precision-Recall Curve (AUPR) instead of
the Area Under the Receiver Operating Characteristic
(AUROC) (Saito and Rehmsmeier 2015, Harbecke et al.
2022). However, for C. reinhardtii, we also report Specificity
(SP) and AUROC to enable direct comparison with existing
predictors for this dataset. Detailed descriptions of all men-
tioned metrics are provided in Supplementary Section S10.
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3 Results

In this section, we first present a cross-validation analysis of the
training set of the primary dataset using various embeddings
and wavelet functions. We then compare our proposed model,
CaLMPhosKAN, against existing state-of-the-art methods on
the primary independent test sets, as well as the other two addi-
tional datasets (A549 and C. reinhardtii). Furthermore, we as-
sess the predictive performance of CalLMPhosKAN on
Intrinsically Disordered Regions (IDRs) and non-Intrinsically
Disordered Regions (non-IDRs) of proteins. The results for IDR
performance are provided in Supplementary Section S15, while
the remaining findings are reported below.

3.1 Embeddings and wavlet transforms

We aim to assess the contribution of codon-aware embeddings
to the final predictive performance of CaLMPhosKAN. To this
end, we conducted 10-fold cross-validation (see Table 2) inde-
pendently on CaLM embeddings (codon-aware), ProtTrans
embeddings (amino acid-aware), and the fused representation
(CaLM + ProtTrans). On the primary S+ T set, CaLM embed-
dings produced a mean MCC, mean F1,,, and mean AUPR of
0.44+0.01, 0.71%0.01, and 0.80%0.01, respectively, which is
lower than ProtTrans embeddings, which produced a mean
MCC, mean F1,,,, and mean AUPR of 0.46+0.01, 0.72+0.01,
and 0.81%0.01, respectively. However, upon combining the
two sets of embeddings via early fusion, as implemented in
CaLMPhosKAN, we observed an improvement across all per-
formance metrics, with a mean MCC, mean F1,, and mean
AUPR of 0.48+0.01, 0.74%0.01, and 0.83+0.01. Similarly,
on the primary Y set, CaLM embeddings alone did not outper-
form ProtTrans embeddings. Yet, the combination of the two
through early fusion resulted in better performance metrics than
when either of the pLMs was used independently. These find-
ings were further corroborated by evaluations on the primary
independent S+ T and Y test sets (see Supplementary Section
S11), which confirmed the improvements observed during
cross-validation. This improvement upon integration suggests
that codon-aware embeddings contribute complementary infor-
mation that enhances the overall model performance.
Interestingly, on both the primary S+ T and Y sets, CaLM did
not independently surpass ProtTrans, which in fact deviates
from the findings reported in the original CalLM paper
(Outeiral and Deane 2024), where it significantly outperformed
ProtTrans and other amino acid-aware embeddings in several
protein-level tasks. Nonetheless, the performance differences
were not substantial. This is particularly notable given that
CalM operates with roughly 33 times fewer parameters,
highlighting its ability to deliver considerable predictive value
with substantially reduced model complexity.

Table 2. Ten-fold cross-validation performance on primary S+ Tand
Y sets.?

Set Embeddings MCC PRE REC F1,, AUPR

S+T CalM 0.44 0.74  0.68 0.71 0.80
ProtTrans 0.46 0.75 0.69 0.72 0.81
CaLMPhosKAN 0.48 0.76 0.70 0.74 0.83

Y CalLM 0.32 0.67 0.60 0.65 0.69
ProtTrans 0.33 0.67 0.62 0.66 0.70

CaLMPhosKAN 0.34 0.68 0.63 0.67 0.71

? The highest values are bolded in each column. Note that the maximum
standard deviation observed was 0.02.
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Figure 2. Heatmaps of averaged attention weights over the heads of the last encoder layer of (a) ProtTrans and (b) CaLM with protein P30047 as an input
(86 tokens excluding <CLS> and <EOS>). The heatmaps in (c) display the individual attention heads from the last encoder layer of CaLM. The green dot

in each denotes an experimentally annotated P-site (index: 7).

To better understand the observed improvement when in-
tegrating codon-aware and amino acid-aware embeddings,
we analyzed the attention weights from both the CaLM and
ProtTrans pLMs. Figure 2a and b illustrate heatmaps gener-
ated from the final layer of the encoder stacks in ProtTrans
and Cal.M respectively, averaged across all attention heads
for a full input protein sequence (UniProt: P30047), consist-
ing of 86 tokens excluding special tokens. Additionally, the
head-wise heatmaps (32 per layer in ProtTrans and 12 per
layer in CaLM) from the final encoder are also provided. The
head-wise heatmaps for ProtTrans can be found in
Supplementary Section S12, while those for CaLM are pre-
sented in Fig. 2c. It is important to note that, since the pLM
encoders (CaLM and ProtTrans) are frozen during the train-
ing phase, the attention weights represent relationships
learned during the pretraining process rather than patterns
specific to phosphorylation sites prediction. As such, the at-
tention maps reveal general token associations inherent to the
pretraining data, which highlight the intrinsic relationships
between residues. The heatmaps in Fig.2a and b illustrate
this, showing a strong association between neighboring resi-
dues in both pLM encoders, thereby reinforcing the impor-
tance of window-level embeddings. Moreover, the heatmap

from the ProtTrans encoder (see Fig. 2a) reveals strong asso-
ciations with distant residues as well (for instance, token 7,
denoted in green dot, shows high associativity with tokens 59
and 63), suggesting its ability to capture global sequence de-
pendencies more effectively. In contrast, the attention distri-
bution in the CaLM encoder is primarily skewed toward
neighboring residues (see Fig. 2b), which might explain its
relatively poorer performance when used independently.
However, when examining the individual attention heads in
the CaLM encoder (see Fig. 2c), some heads, such as head 6
and head 8, manage to capture associations with some distant
residues, potentially adding useful information for prediction.
Given that the attention heads across each pLM exhibit some
varied patterns in their distribution of weights, the regions
attended to by CaLM might differ from those attended to by
ProtTrans, and this diversity likely contributes to the en-
hanced predictive performance observed when the embed-
dings from both models are combined.

Additionally, we examined the impact of varying the wave-
let transform function used in the Wav-KAN module on the
performance of CaLMPhosKAN. Using 10-fold cross-
validation, we evaluated five distinct mother wavelet func-
tions: Morlet, Meyer, Mexican Hat (or, Ricker), Shannon,
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Figure 3. Radar plots comparing five wavelet functions across various performance metrics using 10-fold cross-validation. Each metric is normalized
between 0 and 1 using max scaling (i.e. each value xin a feature column is divided by the maximum value of that column, x’ = =%X) to facilitate direct

max

comparisons across wavelets. Plot (a) on the left shows results for the primary S+ T set, and Plot (b) on the right shows results for the primary Y set.

Table 3. Performance comparison on primary independent test sets and A549 test set.?

Set Predictor MCC PRE REC F1 F1,, AUPR
S+ T (Primary) CapsNet 0.27 0.24 0.88 0.38 N/A 0.31
Musite 0.20 0.22 0.76 0.35 N/A 0.33
MusiteDeep 0.33 0.32 0.70 0.44 N/A 0.46
DeepPSP 0.38 0.39 0.69 0.48 0.79 0.51
LMPhosSite 0.39 0.35 0.79 0.49 0.75 0.31
CaLMPhosKAN 0.41 0.47 0.57 0.51 0.83 0.53
Y (Primary) CapsNet 0.20 0.23 0.88 0.37 N/A 0.19
Musite 0.14 0.24 0.68 0.35 N/A 0.28
MusiteDeep 0.20 0.35 0.35 0.35 N/A 0.33
DeepPSP 0.26 0.32 0.66 0.42 0.70 0.39
LMPhosSite 0.28 0.33 0.63 0.44 0.72 0.28
CaLMPhosKAN 0.30 0.41 0.46 0.44 0.78 0.42
S+ T (A549) DeepPSP 0.45 0.54 0.85 0.66 0.69 0.65
LMPhosSite 0.47 0.83 0.58 0.68 0.71 0.70
CaLMPhosKAN 0.48 0.73 0.76 0.75 0.73 0.79

? The highest values are bolded in each column.

and Derivative of Gaussian (DoG). Radar plots (with normal-
ized metrics) for both the primary S+ T and Y sets visually il-
lustrate the comparative performance of each wavelet
function (see Fig. 3). In these plots, the Morlet and Meyer
wavelets showed limited coverage, indicating suboptimal per-
formance. Conversely, the Mexican Hat and Shannon showed
greater robustness in performance metrics with considerable
coverage. In the primary S+ T set, Shannon slightly led in
AUPR, while in the primary Y set, its performance was on par
with Mexican Hat (see Supplementary Section S13 for results in
tabulated form). Most notably, the DoG wavelet covered the
most expansive coverage on the plots (represented in purple),
outperforming the others across all evaluated metrics.
Consequently, the DoG wavelet was selected for integration
into the Wav-KAN module of the CaLMPhosKAN.

3.2 Benchmarking with existing tools

The performance of CaLMPhosKAN was benchmarked on the
primary S+ T and Y independent test sets against five existing
predictors: LMPhosSite (Pakhrin et al. 2023), DeepPSP (Guo
et al. 2021), CapsNet (Wang et al. 2022), Musite (Wang et al.
2020), and MusiteDeep (Wang et al. 2020). Notably,
LMPhosSite and DeepPSP are the most recent predictors. For
DeepPSP, prediction results were extracted from their GitHub
repository, and performance was computed on the subset of
samples corresponding to our test sets (aka primary test sets).
Meanwhile, LMPhosSite was re-implemented by training and
testing on our primary train and test datasets, respectively. For
the remaining predictors, performance metrics were directly
adopted from DeepPSP’s literature (Guo et al. 2021), as our test
set is a subset of their test set with a similar number of sites.
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Table 4. Performance comparison on C. reinhardtii S+ Tindependent
test set.?

Predictor MCC SP SN (REC) AUROC
DeepPhos 0.61 0.77 0.83 0.88
Chlamy-MwPhosSite 0.64 0.78 0.86 0.90
Chlamy-EnPhosSite 0.64 0.73 0.90 0.90
CaLMPhosKAN 0.67 0.84 0.83 0.92

? The highest values are bolded in each column.

Table 3 summarizes the comparative performance of
CaLMPhosKAN and the five existing predictors based on six
measures: MCC, PRE, REC, F1, Fl,, and AUPR (see
Supplementary Section S14 for PR curves). On the primary
S+ T set, CaLMPhosKAN achieved an MCC of 0.41, F1,,, of
0.51, and an AUPR of 0.53, demonstrating improvements
across these three key metrics over the current best performing
predictors, LMPhosSite and DeepPSP. A similar trend was ob-
served on the primary Y set, where CaLMPhosKAN achieved
an MCC of 0.30, F1,, of 0.78, and an AUPR of 0.42, surpass-
ing LMPhosSite and DeepPSP on these metrics.

Subsequently, we evaluated the generalizability of
CaLMPhosKAN using the A549 and C. reinbardtii datasets.
On the A549 S+ T test set, we benchmarked the
CaLMPhosKAN model, trained on the primary S+ T train set,
against LMPhosSite and DeepPSP (refer to last three rows of
Table 3). CaLMPhosKAN demonstrated superior performance,
achieving the highest MCC, F1,,,, and AUPR values among the
compared models. Next, we evaluated CaLMPhosKAN on the
C. reinbardtii dataset, which includes S+ T training and inde-
pendent test sets. Here, CaLMPhosKAN was trained on the C.
reinbardtii S+ T training set and tested on its corresponding
test set. Performance metrics for existing C. reinbardtii-specific
predictors (DeepPhos, Chlamy-MwPhosSite, and Chlamy-
EnPhosSite) were obtained from the same source literature
(Thapa et al. 2021), from which our dataset was derived. Note
that these metrics are different from the previous results tables
(i.e. Tables 2 and 3) to facilitate a fair comparison with existing
predictors. As reported in Table 4, CaLMPhosKAN outper-
formed these predictors, underlining its adaptability and effec-
tiveness in phosphorylation sites prediction across organisms
beyond humans. It is also worth noting that for balanced or
nearly balanced test sets (A549 and C. reinbardtii),
CaLMPhosKAN exhibited the best balance between PRE and
REC in A549 and between SP and SN in C. reinhardtii.

4 Conclusion

The codon language model has shown impressive perfor-
mance in various protein-level tasks (Outeiral and Deane
2024). In this work, we applied it to phosphorylation sites
prediction, a well-studied residue-level task. We developed a
framework that translates amino acid sequences into reliable
coding sequences using a dynamic programming-based proce-
dure and acquired codon-aware embeddings via the codon
language model (i.e. CaLM). The target sites were repre-
sented at the window levels, preserving global context to cap-
ture both proximal residue associations and full sequence
dependencies. Our analysis revealed that CaLMPhosKAN ef-
fectively captures information complementary to amino acid-
level embeddings by incorporating codon-level embeddings.
This bimodal representation improved predictive perfor-
mance and highlighted potential roles for codon usage in

phosphorylation, such as its influence on translational effi-
ciency and kinase accessibility. Attention weight analysis fur-
ther indicated associations between residues and their
neighbors, offering insights into local interactions. Moreover,
the improved performance in intrinsically disordered regions
further suggests that codon-level information aids in model-
ing flexibility and disorder, contributing to the understanding
of phosphorylation regulation in signaling and regula-
tory functions.

Our framework, CaLMPhosKAN, outperformed existing
approaches across multiple datasets. This approach of inte-
grating codon-level information can be extended to other
residue-level prediction tasks, with potential enhancements
through the incorporation of additional modalities such as
structure-aware embeddings. In future work, we plan to ex-
plore and validate the insights gained from this study further
by using experimentally derived datasets, kinase-specific sub-
strates, and motif enrichment analysis to bridge computa-
tional predictions with biological interpretation.
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