Check for
updates

LMPTMSite: A Platform for PTM Site Prediction in Proteins
Leveraging Transformer-Based Protein Language Models

Pawel Pratyush, Suresh Pokharel, Hamid D. Ismail, Soufia Bahmani,
and Dukka B. KC

Abstract

Protein post-translational modifications (PTMs) introduce new functionalities and play a critical role in the
regulation of protein functions. Characterizing these modifications, especially PTM sites, is essential for
unraveling complex biological systems. However, traditional experimental approaches, such as mass spec-
trometry, are time-consuming and expensive. Machine learning and deep learning techniques offer
promising alternatives for predicting PTM sites. In this chapter, we introduce our LMPTMSite (language
model-based post-translational modification site predictor) platform, which emphasizes two transformer-
based protein language model (pLM) approaches: pLMSNOSite and LMSuccSite, for the prediction of
S-nitrosylation sites and succinylation sites in proteins, respectively. We highlight the various methods of
using pLM-based sequence encoding, explain the underlying deep learning architectures, and discuss the
superior efficacy of these tools compared to other state-of-the-art tools. Subsequently, we present an
analysis of runtime and memory usage for pLMSNOSite, with a focus on CPU and RAM usage as the
input sequence length is scaled up. Finally, we showcase a case study predicting succinylation sites in
proteins active within the tricarboxylic acid (TCA) cycle pathway using LMSuccSite, demonstrating its
potential utility and efficiency in real-world biological contexts. The LMPTMSite platform, inclusive of
pLMSNOSite and LMSuccSite, is freely available both as a web server (http://kcdukkalab.org/
pLMSNOSite/ and http://kcdukkalab.org/LMSuccSite /) and as standalone packages (https://github.
com/KCLabMTU /pLMSNOSite and https://github.com/KCLabMTU /LMSuccSite), providing valu-
able tools for researchers in the field.

Key words Post-translational modification (PTM), Protein language models, Transformer, Natural
language processing, Deep learning, CPU runtime, RAM usage, Succinylation, S-nitrosylation, Tri-
carboxylic acid (TCA) cycle

1 Introduction

Proteins, one of the most critical organic compounds produced
within living organisms’ cells, are manufactured when specific
genes are first transcribed into mRNA and then later translated
into chains of amino acids through the process called as translation.

Andrzej Kloczkowski et al. (eds.), Prediction of Protein Secondary Structure, Methods in Molecular Biology, vol. 2867,
https://doi.org/10.1007/978-1-0716-4196-5_16,
© The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2025

261


http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-4196-5_16&domain=pdf
http://kcdukkalab.org/pLMSNOSite/
http://kcdukkalab.org/pLMSNOSite/
http://kcdukkalab.org/LMSuccSite/
https://github.com/KCLabMTU/pLMSNOSite
https://github.com/KCLabMTU/pLMSNOSite
https://github.com/KCLabMTU/LMSuccSite
https://doi.org/10.1007/978-1-0716-4196-5_16#DOI

262

Pawel Pratyush et al.

The translation process occurs within ribosomes and results in the
assembly of proteins from amino acids. Post these stages, proteins
may undergo various biochemical modifications to expand their
functional roles within biological activities. These modifications,
known as post-translational modifications (PTMs), involve the sev-
erance of bonds between specific amino acids in proteins and the
subsequent addition of functional biochemical groups such as
methyl, phosphoryl, acetyl, glycosyl, nitrosyl, succinyl, or ubiqui-
tin. Once synthesized, most proteins are transported to the endo-
plasmic reticulum (ER), where PTMs activate them. These well-
folded and functional proteins are then moved to the Golgi body
and eventually secreted through exocytosis, performing critical
roles as secretory or plasma membrane proteins. Other proteins,
such as histones found in the cytosol and nucleus, may also undergo
PTMs to maintain cellular functions.

PTMs were initially studied for their role in the enzymatic
activity of kinases. However, they are now known to be involved
in nearly all cellular activities, including gene regulation, localiza-
tion, signal transduction, and interaction with other biochemical
molecules such as proteins, nucleic acids, and lipids. Consequently,
PTMs are implicated in the pathogenesis of numerous diseases,
including cancers and cardiovascular diseases, and in a wide range
of cellular-level biological activities. Research into PTMs and the
identification of modification sites is a burgeoning field, with both
biologists and computational scientists working in tandem to iden-
tify these sites. Although around 400 PTMs exist [1]; some of the
well-studied PTMs include phosphorylation, succinylation,
S-nitrosylation, acetylation, ubiquitination, methylation, glycosyla-
tion, and SUMOylation. Owing to their roles in virtually all cellular
biological activities, both normal and abnormal, PTMs are a heavily
researched field in biology. The advent of immunoprecipitation,
mass spectrometry, and high-throughput sequencing technologies
has facilitated large-scale detection of PTMs and data collection.
This data is stored in databases for experimentally validated PTM
sites, such as Swiss-Prot [2], PhosphoELM [3], O-GLYCBASE
[4], dbPTM [5], PTMcode [6], PTMCuration [1], PhosphoSite-
Plus [7], etc. The dbPTM [5] database alone has amassed more
than two million experimentally validated PTM substrate sites.

This ever-increasing accumulation of PTM data has spurred the
development of computational methods, both in terms of algo-
rithms and tools, to handle and analyze this wealth of information
[8]. Laboratory detection of PTM sites via mass spectrometry is not
only costly but also labor-intensive and time-consuming. Compu-
tational methods have consistently proven their efficacy in detecting
various types of PTM sites and their functional significance,
enabling researchers to prioritize targets for functional validation.
Machine learning tools for PTM site detection rely on features
extracted from the targeted protein sequences. The first generation



pLM-based LMPTMSite Platform for PTM Site Prediction 263

of computational tools in this domain focused on deriving physico-
chemical and structural properties of amino acids from protein
sequences and applying shallow machine learning algorithms such
as support vector machines (SVM) and random forest [9]. These
properties may encompass a broad spectrum of information,
including physicochemical, evolutionary, structural, autocorrela-
tional, and compositional data, all contributing to patterns that
distinguish between positive sites (where modifications occur) and
negative sites (where modifications do not occur). These features
may include amino acid composition (AAC); pseudo-amino acid
composition (PseAAC); composition, transition, and distribution
(CTD); solvent accessibility of amino acids; evolutionary features
based on entropy and position-specific scoring matrix (PSSM);
and more.

One of the significant challenges in PTM site prediction is the
site-specific nature of modifications. For instance, phosphorylation
only affects serine (S), threonine (T), and tyrosine (Y). However,
not all occurrences of these three amino acid residues in a protein
sequence are always affected, but only at specific positions, which
complicates prediction. This challenge also extends to other PTM
sites, making their prediction difficult. Machine learning-based
approaches typically face numerous challenges centered around
feature extraction that provides sufficient discriminatory informa-
tion and the algorithms that synthesize this information for knowl-
edge learning and prediction. The probabilistic nature of machine
learning prediction sparks debate regarding the efficacy of the
prediction method. Nevertheless, researchers strive to minimize
false discovery errors by using a large number of experimentally
verified instances, eliminating biases, applying validation metrics of
varying interpretations, and leveraging powerful algorithms.

Recently, the field of PTM site prediction has evolved with the
advent of emerging variants of deep learning and language models
[8], including transformer-based models. Additionally, the field of
natural language processing (NLP) has seen remarkable advance-
ments with sequential models such as recurrent neural network
(RNN) [10], long short-term memory (LSTM) [11], and convolu-
tional neural network (CNN) [12]. These advanced algorithms
have revolutionized the ability of machines to understand and
generate human language. RNNs and LSTMs are adept at captur-
ing temporal dependencies, enabling tasks like language modeling
and sentiment analysis. CNNs, originally designed for computer
vision, have demonstrated success in analyzing sequential data,
particularly for text classification and sentiment analysis. Transfor-
mers, with their attention mechanisms, have reshaped the NLP
landscape, bringing about breakthroughs in language understand-
ing, question answering, and text classification.



264

Pawel Pratyush et al.

The application of natural language processing (NLP) to the
life sciences has garnered significant attention and recognition
within the scientific community. Given the sequential nature com-
mon to nucleotide sequences and natural languages, extensive
efforts have been put into developing frameworks that utilize
shared mechanisms between these domains. As a result, substantial
advancements have been made in developing NLP-based encoding
techniques for representing protein sequences. The use of sequence
encoding techniques derived from natural language processing,
such as one-hot encoding, embedding (including Word2Vec [13]
and GloVe [14], BERT [15]), and other generative models, has
increased for protein sequences. These methods offer potential
solutions for a wide range of downstream protein tasks by capturing
semantic relationships and contextual information. Whether repre-
senting amino acids as binary vectors, mapping them to continuous
vector spaces, or leveraging transformer architectures, these tech-
niques enable protein analysis and understanding, with implications
for drug discovery, protein engineering, and systems biology
research. Please refer to Pokharel et al. [ 16] for the in-depth details
of various NLP-based encoding techniques of protein sequences
for the PTM site prediction.

The applications of these emerging NLP technologies for PTM
site prediction are elevated by the resemblance of biological
sequences to text. Since the first transformer model [17], various
families of transformer-based model have been developed. More
recently, language models like GPT (Generative Pre-trained Trans-
former) [18], BERT (Bidirectional Encoder Representations from
Transformers [15], and T5 (Text-to-Text Transfer Transformer)
[19] are examples of transformer-based models that have attained
state-of-the-art performance in various NLP tasks. These models
are pre-trained on large text corpora, allowing them to learn gen-
eral language representations, which can then be fine-tuned for
specific tasks. The principles behind attention mechanisms and
transformers have been applied to the field of protein language
modeling to predict and analyze protein sequences, structures,
and functions. Analogous to how natural language models learn
the grammar and context of human language, protein language
models aim to learn the “grammar” of amino acid sequences that
form proteins, capturing patterns and relationships within these
sequences. These models work by applying techniques from natural
language processing and deep learning to learn the underlying
patterns and relationships within protein sequences. These models
are trained on large databases of protein sequences, treating amino
acids as analogous to words in human language. By employing
techniques such as positional embeddings, multi-head attention
mechanisms, and masked language modelling (MLM), protein
language models can effectively capture both local and global



pLM-based LMPTMSite Platform for PTM Site Prediction 265

sequence features that contribute to the structure and function of
proteins.

Building on this foundation, pre-trained protein language
models can be fine-tuned to predict post-translational modifica-
tions (PTMs) in protein sequences by leveraging transfer learning.
The general knowledge of protein sequences acquired during
pre-training enables these models to capture the context and pat-
terns of amino acid sequences surrounding the modification sites.
This ability to recognize local and global sequence features, along
with the use of task-specific loss functions, aids in the identification
of PTM sites with higher accuracy.

The recent emergence of these large protein language models
and the potential of these models to distill information from the
sequences unleash various opportunities to use them as feature
extractors in subsequent downstream prediction tasks. Motivated
by the development of these language models and their ability to
distill global contextual information, we developed various tools
[20-23] for predicting different types of PTM sites. We refer to this
platform of various PTM site prediction tools as LMPTMsite (lan-
guage model-based PTM site predictor). This chapter primarily
focuses on two tools within the LMPTMSite platform: pLMSNO-
Site [20] and LMSuccSite [21], tools that have demonstrated
superior performance in predicting S-nitrosylation and succinyla-
tion sites, respectively. We discuss these tools in depth, focusing on
the following aspects: the benchmark datasets used (Subheading
2.2), sequence encoding based on language models (Subheading
2.3), the underlying deep learning (DL) architectures (Subheading
2.4), and the protocols for model evaluation and training (Sub-
headings 2.5 and 2.6). Subsequently, we recap the comparative
performance results from the tools’ literature, emphasizing the
comparison of different DL architectures, various pLMs, and
other widely available tools (Subheading 3.1). We also provide
comprehensive instructions for using the web servers and standa-
lone programs, as well as interpreting their outputs (Subheadings
3.2 and 3.3). In addition, we conduct a new study in this chapter,
reporting on the tools’ resource utilization, including CPU and
RAM usage as a function of protein sequence length (Subheading
3.4). We conclude with a case study where LMSuccSite is used to
predict succinylation sites in the tricarboxylic acid (TCA) cycle
pathway (Subheading 3.5) and a discussion on the limitations of
our study and potential future work (Subheading 3.6). Accompa-
nying the detailed methodology, we provide helpful notes to guide
readers in developing their own machine learning-based
approaches for bioinformatics problems.



266 Pawel Pratyush et al.

2 Materials and Methods

2.1 S-nitrosylation
and Succinylation

+
SH
B R
\,
H

Cysteine(C) Residue
(Unmaodified)

In this section, we describe our recently developed two tools within
the LMPTMSite platform: pLMSNOSite [20] and LMSuccSite
[21], designed for the prediction of S-nitrosylation and succinyla-
tion sites, respectively. We delve into the particulars of the bench-
mark dataset used, the process of sequence encoding (also referred
to as feature extraction), the underlying deep learning architec-
tures, the intricacies of model training, as well as the evaluation
strategy and metrics employed.

S-nitrosylation (SNO) and succinylation are some of the vital pro-
tein post-translational modifications (PTMs) that have profound
regulatory effects on cellular functions. SNO is characterized by the
covalent attachment of a nitric oxide (NO) group to the thiol side
chain of cysteine (C) residues within proteins (Fig. 1a). This PTM is
of great biological significance as it modulates protein function and
plays a significant role in cellular signal transduction. Recently, it
has been discovered that the protein SNO can contribute to protein
misfolding events that are typically observed in neurodegenerative
diseases. Consequently, abnormality in SNO has been linked to
numerous neurodegenerative diseases, including Alzheimer’s dis-
ease and Parkinson’s disease, where abnormal protein folding pat-
terns are a common hallmark. This highlights the critical need for
continued research into SNO, as it can not only enhance our
understanding of the molecular mechanisms underlying these dis-
eases but also aid in the development of potential therapeutic
strategies [24].

B - -Succinyl group
: COOH

NH,
_—>
HoN HoN
COOH COOH
Cysm'{,::ég)ﬁ:;s'due Lysine(K) Residue Lysine(K) Residue
(Unmaodified) (Modified)

Fig. 1 (a) lllustration depicting S-nitrosylation modification on a cysteine (C) residue, (b) illustration depicting
succinylation modification on a lysine (K) residue



2.2 Creation of
Benchmark Datasets

pLM-based LMPTMSite Platform for PTM Site Prediction 267

On the other hand, succinylation involves the modification of
lysine (K) residues in a protein by attaching a succinyl group
(-CO-CH,-CH,-CO,H) (Fig. 1b). This PTM has garnered signif-
icant attention due to its integral roles in enzyme function and
metabolic pathways. Recent research has illustrated that succinyla-
tion can fundamentally alter the enzymatic rates of proteins and
influence the pathways they operate in. Predominantly, succinyla-
tion targets the mitochondrial metabolic pathways, making it an
essential mechanism for the regulation of metabolism and signaling
pathways. Additionally, these alterations have implications that
extend beyond normal cellular function. Dysregulation in succiny-
lation has been associated with a variety of health conditions and
diseases, including, but not limited to, tumors, cardiometabolic
diseases, liver metabolic disorders, and various nervous system dis-
eases. Therefore, understanding succinylation and its implications
can aid in developing therapeutic strategies for these diseases [25].

Given the crucial role these PTMs play in cellular function and
disease, predicting SNO and succinylation sites using computa-
tional methods can be immensely beneficial. Such prediction tools
can expedite the identification of modification sites, thus accelerat-
ing our understanding of their functional implications. Moreover,
computational prediction can streamline experimental designs and
help prioritize targets for experimental validation, making it a cost-
effective strategy. These advantages have the potential to signifi-
cantly speed up both basic research and the development of novel
therapeutic strategies targeting aberrant PTMs in a range of
diseases.

Several computational tools have been developed for predicting
these sites (see Note 1). Below, we provide a brief summary of these
existing approaches, with a focus on the feature encoding approach
and computational method utilized in each case (see Table 1).

The quality and diversity of datasets are of paramount importance
in ensuring the reliable performance of machine learning and deep
learning models. Thus, it is crucial to have high-quality datasets
that accurately represent the problem space, encompassing a wide
array of patterns and variations within the dataset. For the creation
of a robust dataset geared toward PTM site prediction, robust
preprocessing steps should be executed before proceeding to the
modeling stage.

The datasets used for building our tools are carefully curated
from sources that have been used by several state-of-the-art tools.
These datasets have undergone rigorous preprocessing, following
the steps outlined in the notes (see Notes 2-5), to ensure their
quality and reliability. Subsequently, homologous sequences have
been removed using the CD-HIT algorithm [26], which is a greedy
incremental clustering algorithm that groups sequences based on a
predetermined sequence identity threshold. This helps to reduce



268 Pawel Pratyush et al.

Table 1

Summary of existing tools for the prediction of S-nitrosylation and succinylation sites

Published Computational
Existing tools PTM type year Encoding method method
GPS-SNO [40]  S-nitrosylation 2010 BLOSUMG62 GPS2.0 algorithm
iSNO-PsecAAC (SNO) 2013 PseAAC Conditional random
[41] field (CRF)
algorithm
SNOSite [42] 2011 Physicochemical properties, SVM
positional weighted matrix
DeepNitro [28] 2018 One-hot encoding, PSSM, ANN
SAC, PFR
PreSNO [27] 2019 CPA, SAC, PSSM, SVM
physicochemical properties
DeepSuccinylSite  Succinylation 2018 Word embedding CNN
[43]
GPSuc [35] 2018 AAindex, AAC, PSSM, RF, logistic regression
pCKSAAP
SuccineSite2.0 2017 pbCKSAAP, orthogonal SVM
[29] binary features
pSuc-FFSEA [44] 2022 EBGW, One-Hot, CBOW,  SVM, BLS,
CGR, and AAF_DWT LightGBM, LR

2.2.1 S-nitrosylation
Dataset

biases during model training. Duplicate or contradicting sites and
overlapping sequences between the training and independent test-
ing sets have been removed to maintain the distinctness of each set.
Lastly, to handle data imbalance, random undersampling (RUS) of
the training set is performed, which helps preserve the distribution
between the training and testing sets. It is important to note that
pLMSNOSite [20] and LMSuccSite [21] also underwent imbal-
ance learning via cost-sensitive (CS) learning (see Note 6). How-
ever, the results were suboptimal, potentially attributable to the
presence of false negatives when considering the entire negative set.
Please refer to the supplementary materials of the literature of the
respective tools for details about the cost-sensitive learning.

The SNO dataset has been sourced from PreSNO [27], which is
derived from the original DeepNitro [28] dataset, a dataset com-
piled through a rigorous literature search for experimentally vali-
dated SNO sites. This includes 4762 sites that have been confirmed
experimentally across 3113 protein sequences. The CD-HIT algo-
rithm [26] was employed to eliminate homology, with a similarity
cut-off of 30%, resulting in 3734 positive sites. The remaining
cysteine (C) residues from the same protein sequences not anno-
tated as positive were designated as negative SNO sites, with a total
of 20,548 negative sites (see Note 7). A further refinement was
conducted by removing any negative sites that matched a window



2.2.2 Succinylation
Dataset

2.3 Sequence
Encoding aka Feature
Extraction

pLM-based LMPTMSite Platform for PTM Site Prediction 269

sequence in the positive set, resulting in 20,333 negative sites. An
independent test set was then created by randomly selecting 20% of
the total sites, with the remaining data utilized to create the training
set. The training set consisted of 3383 SNO sites and 17,165
non-SNO sites, while the independent test set consisted of
351 SNO sites and 3168 non-SNO sites. Given the imbalance
between positive and negative sites in the training set, random
undersampling (RUS) of non-redundant negative sites was
employed to mitigate modeling bias, while the independent test
was left as it is to mimic the distribution of positive and negative
sites in the real-world scenario.

This dataset was constructed from experimentally verified succiny-
lation sites provided by Hasan et al. [29], which were acquired from
the UniProtKB /Swiss-Prot database [30] and the NCBI protein
sequence database. Initially, the sequences were subjected to
homology removal using a CD-hit algorithm [26] with a similarity
cut-off of 30%, resulting in 5009 succinylated sites from 2322
protein sequences. Thereafter, the sequences were randomly parti-
tioned into a training set (2192 protein sequences) and a testing set
(124 proteins), containing 4755 and 254 succinylation sites,
respectively. Negative sites were subsequently derived from the
same protein sequences, with all lysine residues (K) from the same
protein sequences that were not annotated as succinylated sites (see
Note 7). This resulted in 50,565 negative succinylation sites in the
training set and 2977 negative succinylation sites in the test set. To
address the imbalanced training set, Random Under Sampling
(RUS) was used on the negative training set to obtain an equal
number of negative sites as the positive sites in the training set. To
evaluate the performance of the model in a real-world scenario, the
independent test set was left as it is obtained from 124 proteins
resulting imbalance in the number of positive and negative sites.
The two datasets are summarized in Table 2.

The process of converting amino acid sequences into numerical
space representations presents a significant challenge when devel-
oping deep learning-based predictors for PTM sites. An effective
vector space encoding should capture crucial sequence features
while minimizing noise and redundancy. The predictive models’
performance and generalizability are directly influenced by the
quality of encoding, particularly its capacity to handle variations in
sequence length and context. Various techniques for encoding
protein sequences have been devised and employed in numerous
downstream prediction tasks, including PTM prediction. As dis-
cussed in the introduction, traditional manual feature extraction
methods, typically based on physicochemical properties, require a
significant amount of manual labor and expertise. It is a time-
consuming and complex task to select an optimal set of



270 Pawel Pratyush et al.

Table 2
Description of the training and independent test datasets

PTM Dataset type Site status #Proteins #Sites Total sites
S-nitrosylation Train Positive (SNO) 1962 3383 20546 (after
(SNO) Negative (non-SNO) 340 17165 (after balancing:6766)
balancing:
3383)
Independent Positive (SNO) 267 351 3519
test Negative (non-SNO) 231 3168
Succinylation  Train Positive (succinylated) 2192 4750 55315 (after
Negative 50565 (after balancing: 9500)
(non-Succinylated) balancing:
4750)
Independent Positive (succinylated) 124 254 3231
test Negative 2977

(non-succinylated)

physicochemical features that can effectively represent the proper-
ties and behaviors of amino acids in protein sequences. Addition-
ally, existing tools have relied mainly on peptide sequences, which
restrict the feature extraction to only local information, hence
potentially missing out on crucial global information that might
be embedded in the larger protein sequence context. To overcome
these limitations, we adopted two types of embedding techniques
for our tools, each addressing different levels of sequence context:
the first technique involves employing unsupervised transformer-
based protein language models (pLMs) to embed dynamic global
contextual information influencing the site of interest, while on the
other hand, we utilize a supervised word embedding layer trained
on peptide sequences to emphasize the local context of the site of
interest. By combining these two encoding techniques, we can
capture a wide range of sequence dependencies, from local to
global, without the need for manual feature extraction. This hybrid
approach enhances the representation of the protein sequences,
leading to improved prediction performance as evidenced by the
results achieved by our tools, pPLMSNOSite and LMSuccSite. The
details of these encoding techniques are described below.

2.3.1 Embeddings from As discussed in the Introduction section, language models (LMs)
Protein Language Models have transformed the landscape of natural language processing
(pLMs) (NLP) by learning embeddings directly from expansive, unlabeled

datasets of natural language. Unlike traditional uncontextualized
word embeddings, which allocate a fixed embedding for a word
regardless of its surrounding context, embeddings generated by
LMs offer contextualized understanding, adjusting based on the
words adjacent to them. This breakthrough in NLP has now found
its way into the realm of proteins through the development of
protein language models (pLMs).



pLM-based LMPTMSite Platform for PTM Site Prediction 271

In pLMs, each amino acid is mapped to a vector of fixed length
via an embedding layer. The model also applies position embedding
to encode the relative positions of each amino acid within its
respective protein sequence. A third type of embedding, segment
embedding, is used to differentiate between distinct protein
sequences. The integrated use of token (amino acid), position,
and segment embeddings allows pLMs to provide more than just
a non-contextual mapping of amino acids to the vector space. It
also captures the dependencies of amino acids within each protein
sequence and the contextual relationships between different pro-
tein sequences.

The pLMs have demonstrated remarkable success in various
downstream bioinformatics prediction tasks. The wealth of infor-
mation learned by these models can be transferred to other tasks by
generating embeddings from them and subsequently using them as
inputs to predict other properties of proteins. This has opened up a
whole new avenue of research in the field of bioinformatics, as
researchers can now leverage the power of pLLMs for a wide range
of applications. In our work, we employed three prominent protein
language models (pLMs)—ProtT5, ESM-1b, and ProtBert. These
pLMs have demonstrated significant success in various downstream
tasks, such as protein—protein interaction prediction, protein func-
tion prediction, and subcellular localization prediction. The follow-
ing subsections provide a brief introduction to each of these pLMs.

(a) ProtT5-XL-UniRef50

ProtT5-XL-UniRef50 (also ProT5-XL-U50) [31]
(referred to as ProtT5 onwards) has been pre-trained by Ros-
tlab in a self-supervised fashion, utilizing Google’s T5 (t5-3b
version) transformer architecture. Its operational premise
involves the prediction of masked or absent amino acids
using a vast collection of protein sequences for training. The
Uniref50 dataset, employed for training ProtT5, encompasses
45 million protein sequences, which are composed of 15 bil-
lion amino acids. This enormous corpus allows the model to
implicitly grasp the structural and functional interconnections
among various protein types.

The attention mechanism of ProtT5 is built on a stack of
24 transformer layers. Each of these layer houses 32 attention
heads and has a final hidden layer size of 1024 units (thus
producing feature vector of size 1024) (see Note 8). This
stacked arrangement allows for each layer to operate sequen-
tially on the output generated by the layer that precedes it. By
iteratively blending word embeddings in this way, ProtT5
succeeds in generating rich representations as the input travels
through the model’s deepest layers.



272 Pawel Pratyush et al.

2.3.2 \Various
Approaches for Extracting
Embeddings from pLMs

(b) ESM-1b

Evolutionary Scale Modeling (ESM) [32] is another
example of a pre-trained language model for proteins, released
by Meta. Among its different versions and variants, ESM-1b
utilizes a transformer architecture with 33 layers, featuring
650 million trainable parameters, underscoring its potential
for complex pattern recognition. Like ProtT5, ESM-1Db is also
trained using the UniRet50 dataset, thus inheriting the wide
scope of 45 million protein sequences represented therein.
Operating on an input of protein sequences, ESM-1b gener-
ates feature vectors of 1280 dimensions for each individual
amino acid (se¢ Note 8).

(¢) ProtBERT-UniRefl100
ProtBERT-UniRef100 [31] is a protein language model
based on the BERT architecture, trained by Rostlab using a
self-supervised approach on the expansive Uniref100 dataset,
which includes 217 million protein sequences. Its architecture
comprises 24 attention layers that generate an output embed-
ding of 1024 dimensions from the final layer (se¢ Note 8).

We summarize these three pLMs based on the architecture,
number of layers, number of attention heads, training strategy,
etc. in Table 3.

As mentioned earlier, these language models take a protein
sequence (or peptide) as input and provide contextual per residue
embeddings. Depending upon the input to these language models
and/or whether only the embeddings of the particular residue or
windows of residues is considered, the approaches can be divided
into various categories. Based on the input to the pLM, the
approaches for extracting embedding can be broadly classified
into three categories (Fig. 2): (a) full-sequence-based, (b) window
sequence-based, and (c) multiple windows of varying length.

(a) Full Sequence-Based Embeddings
This class of approaches leverages the entire protein
sequence as input to the pLM to extract features. These
approaches can be further divided into two types based on
whether the output features are generated for the site of
interest only or the window around the site of interest.

(i) Full Sequence-Based Per-Residue Embeddings (FSPE)

In this method, for each amino acid residue, the input
to the pLLM is the entire protein sequence. Subsequently,
the feature vector corresponding to only the residue of
interest (target residue) is extracted for constructing clas-
sifiers. If the feature vector generated from pLM has a size
of L, then the feature-length for each instance (or site) will
be represented as 1x L. This approach incorporates global



273

pLM-based LMPTMSite Platform for PTM Site Prediction

[1¢]

20T x T WIIN 91 0¢ 00Ty U W 0C¥ INHI TIA9301d
[cel

08CI x 1 TN I €¢ 0G21Iu) N 059 ELdHIOd 9I-INSH
2a122(q0 (INTIN) [te]

$COT x T SUPPON dFensue pasey (43 ¥ 0SIuN qae SI.  SI30ig

(7xL) anpisai Abajens Huluies) speay siafely Bfuiuen-aid siajoweleds aimoajyaie w1d

Jad uoisuawip Buippaquy

uonuay# lo} jasejeq Jaunojsuel) paseg

Apn)s siyy ui pazin (sy1d) siepow abenbue| uisjoad aalyy ay Jo Alewwng
€ alqel



274 Pawel Pratyush et al.

Embedding
Extractions from

Y

[Full Sequence-Based J

A

ENindow Sequence-Based}

A 4

(e ) [

]

\ 4 A 4
[ WSPE ] WSWE MWVL

Fig. 2 Various approaches for extracting features from pLMs

contextual information from the protein sequence while
focusing on specific sites of interest.

Full Sequence-Based Window Embeddings (FSWE)

This approach bears similarity to FSPE; however, it
incorporates a key distinction. Instead of focusing solely
on the embedding of the site of interest, a fixed-length
window centered around this site is employed. The fea-
ture vectors of all residues within this window are
extracted (either by concatenation or averaging) for clas-
sifier construction. Consequently, the feature-length for
each instance (or site) is represented as WxL, where
W denotes the window size. The integration of local
context information around the site of interest potentially
improves the model’s performance in capturing residue
interactions.

(b) Window Sequence-Based Embedding

(1)

This class of approaches diverges from considering the

entire protein sequence by focusing on the window sequence
fragment centered around the site of interest as input to
the pLM.

Window Sequence-Based Per Residue Embeddings (WSPE)

Once the fragment is isolated by taking a fixed-size
window around the target residue, feature vectors are
extracted for each of the residues within it. However,
only the feature vector of the site of interest (the central
residue) is used for modeling purposes. As a result, the
feature-length for each instance remains 1xL. This
approach emphasizes local context information, which
can be beneficial in capturing residue interactions within
the immediate vicinity of the site of interest.



2.3.3 Word Embedding

pLM-based LMPTMSite Platform for PTM Site Prediction 275

(ii) Window Sequence-Based Window Embeddings (WSWE)
In this approach, the focus is on the window sequence
fragment centered around the site of interest, similar to
WSPE. However, instead of only considering the feature
vector of the central residue, the feature vectors for all
residues within the fragment are taken into account.
These feature vectors collectively represent the local con-
text and interactions around the site of interest. Conse-
quently, the feature length for each instance (or site)
becomes WxL, where W denotes the window size.

(¢) Multiple Windows of Varying Length (MWVL)

The multiple windows of varying length (MWVL) tech-
nique provides a versatile method for PTM prediction by
accommodating diverse protein sequences and residue inter-
actions through its adaptability to different scales. Essentially,
this approach employs multiple windows of varying lengths
centered around the site of interest to capture information at
different scales. For each window length, embeddings for all
residues within the window are generated and aggregated to
create a single representation. The aggregated embeddings
from all window sizes are then concatenated to form the final
feature vector for the site of interest. The feature-length of
each instance (or site) is represented as the total aggregated
size of all window embeddings (e.g., W;xL + WoxL + --- +
W, x L, where W;is the size of the sth window and L is the size
of the individual residue embeddings).

In both pLMNOSite and LMSuccSite, we utilize the
encoder part of the pLMs to extract FSPE-based features
(use the entire protein sequence as an input and extract the
embeddings only for the site of interest). As a result, each site
of'interest, whether it is a cysteine (C) in case of SNO or lysine
(K) in case of succinylation, is represented using a feature
vector of dimension 1xL (ProtT5, L = 1024; ESM-1, L =
1280; ProtBERT, L = 1024) where L is the length of embed-
ding per residue for each of these pLMs.

In the architecture of various deep learning models, particularly
when dealing with sequential data such as text or, in our case,
protein sequences, the Keras embedding layer can be utilized to
extract word embedding. In the context of PTM prediction tasks,
n-mer window sequences are extracted centered around the site of
interest, ensuring an equal number of flanking residues exist on
both sides. If there are insufficient residues to form a window,
virtual amino acids (X) are padded to maintain sequence length.
Each unique amino acid in these n-mer window sequences is
represented by a unique integer in a process known as integer
encoding. This integer-encoded representation then serves as the



276 Pawel Pratyush et al.

2.4 Deep Learning
Architectures

input to the embedding layer. The crux of the embedding layer’s
functionality lies in its ability to transtorm these positive integers
(indexes) into fixed-size dense vectors. Each unique index is
thereby mapped to a distinct vector, facilitating the encoding of
amino acids into a format suitable for ML /DL models.

The initial state of the embedding layer consists of random
weights. During the training process, the network adjusts these
weights through backpropagation, which aims to minimize the
loss function. The outcome is that semantically similar inputs
(amino acids in our case) are mapped to proximal points in the
high-dimensional vector space. Over time, this process results in a
learned dense representation of the input data, where the semantic
relationships between different amino acids are encoded in the
spatial relationships between their corresponding vectors.

The layer is defined by three salient parameters: input_dim,
output_dim, and input_length.

o input_dim: This is the size of the vocabulary, essentially the
number of unique amino acids (including canonical,
non-canonical, and virtual amino acids) in the input dataset.

* output_dim: This is the size of the dense vector space into which
the inputs are embedded. The optimal value for output_dim can
vary and is typically determined through methods like %-fold
cross-validation. Larger values can capture more detailed repre-
sentations at the cost of increased computational complexity.

» input_length: This is the maximum permissible length of input
sequences, in our case the n-mer window size centered around
the site of interest in the protein sequence. Again, the optimal
value for input_length is determined empirically.

The output of the embedding layer is a 2D vector of dimension
WxD, where W represents the sequence (window size) and the
second dimension D is the learned dense vector (embedding
dimension) representing each unique amino acid for the particular
task (see Note 9). The optimal values of vocabulary size (input_-
dim), embedding dimension (output_dim), and Window size
(input_length) obtained from k-fold cross-validation (coupled
with exhaustive grid search) in pLMNOSite and LMSuccSite are
provided below in Table 4.

Given that only window sequences are fed into the word embed-
ding layer, it may primarily capture the local contextual information
surrounding the site of interest. Leveraging the representation
obtained by pLMs seems logical as they consider the entire protein
sequence to generate embeddings, thereby possessing the capacity
to convey the global contextual information that influences the
function of the sites of interest. Consequently, the proposed archi-
tecture of our tools (pLMNSNOSite and LMSuccSite) is rooted in



Table 4

pLM-based LMPTMSite Platform for PTM Site Prediction 277

Various parameters of the word embedding layer selected for pLMSNOSite and LMSuccSite

Tool

pLMSNOSite 2D-CNN

LMSuccSite

Embedding Embedding N-mer window Output dimension of
module Vocabulary dimension sequence length the embedding layer
architecture size (V) (D) W) (W < D)

23 4 37 37 x 4
2D-CNN 21 21 33 33 x21

an ensemble approach (via stacking). It is designed to integrate the
representational capabilities of the protein language model pLM
and the supervised word embedding layer, thereby merging both
local and global contextual information related to the site of
interest.

The overall architecture can be divided into three modules,
with each module aiming to learn a specific representation. The
first module, known as the Embedding Layer Module (ELM), takes
in an n-mer window sequence around the site of interest (followed
by integer encoding of the window sequence). The deep learning
model underlying this module learns the embeddings each of size
W x D, where Wis the size of the window and D is the embedding
dimension, generated by the supervised word embedding layer, the
details of which are discussed in Subheading 2.3.3. Since we are
considering a window sequence, we establish a spatial correlation
between proximal amino acids surrounding the site of interest
within the window. To capture this local interaction of amino
acids (spatial correlation), we utilize a two-dimensional convolu-
tional neural network (2D-CNN). There are two key reasons for
choosing the CNN architecture over other sequence-based models
such as RNN, LSTM, BiLSTM (bidirectional LSTM), etc. Firstly,
the computational efficiency of CNN models surpasses that of
sequence-based models. Secondly, experiments from /%-fold cross-
validation showed superior performance of the CNN model com-
pared to ANN, LSTM, BiLSTM, and ConvLSTM (convolutional
LSTM). The convolution layer in the CNN extracts feature maps
from the spatial interaction of the amino acids, while the
max-pooling layer captures the most prominent features from
these maps, reducing their dimensionality with minimal informa-
tion loss. Finally, the fully connected (FC) layer employs a feed-
forward network to produce a classification inference for the site of
interest.

The second module, known as the pLM Module (PLM), pro-
cesses FSPE-based feature vectors of the site of interest (“C” in the
case of pLMSNOSite and “K” in the case of LMSuccSite) obtained
from the encoder side of the pre-trained ProtT5 in half-precision
mode (see Note 10). These features have a dimension of 1xL,



278

Pawel Pratyush et al.

where L is 1024 (the length of the feature vector per residue
produced by ProtT5). As only the embeddings of the site of interest
are considered, a simple artificial neural network (ANN) is utilized
to learn these contextualized embeddings. This approach aligns
with the findings presented by Villegas-Morcillo et al. [33], which
suggest that learning embeddings from pLLMs may not necessitate
complex architectural designs.

The third and final module, known as the Stacked Generaliza-
tion Module (SGM), consists of a meta-classifier that performs a
stacking ensemble of the embedding layer and ProtT5 modules. A
stacking ensemble can be implemented either through intermedi-
ate fusion or decision-level fusion (also known as late fusion). In
our tools, we utilize an intermediate fusion-based stacking to learn
the marginal (or shared) representation of the other two modules.
Detailed discussions on various fusion strategies and their draw-
backs are described in the Notes (see Notes 11-14). To train the
meta-classifier, designed on an ANN architecture, we freeze the
2D-CNN model within the ELM and the ANN model in the PLM.
This effectively locks the internal parameters of these models and
prevents them from updating during the training of the meta-
classifier. Subsequently, predictions are extracted from the final
hidden layer of each model. In the case of pLMSNOSite, this
amounts to a 4x1 feature vector from the PLM and a 16x1 feature
vector from the ELM. Similarly, for LMSuccSite, the
corresponding feature vectors are of length 128x1 from the PLM
and 16x1 from the ELM. These extracted predictions are then
concatenated together to form a unified feature representation.
These intermediate predictions, or what we refer to as learned
representations, are then utilized to train the meta-classifier. There-
fore, the input to the meta-classifier is of length 20x1 in pLMSNO-
Site and 144x1 in LMSuccSite.

The determination of the optimal architecture for each module
was achieved through the utilization of k-fold cross-validation in
conjunction with grid search. For detailed information regarding
the hyperparameter space and the optimal architecture of various
models, please refer to the supplementary materials provided in the
individual literature of pLMSNOSite and LMSuccSite. Table 5
provides a comprehensive breakdown of the final architecture spe-
cifics, including the type of layers, dimensions of each layer, and the
employed activation functions in ELM, PLM, and SGM modules of
pLMSNOSite and LMSuccSite.

It should be noted that pLMSNOSite and LMSuccSite utilize
intermediate fusion for two primary reasons: (i) we are employing
two distinct representations, namely, ProtT5 pLM, which utilizes
the entire sequence context (global sequence context), and the
embedding layer, which operates on the n-mer window sequence
(local sequence context). Early fusion might struggle to capture the
differing characteristics of these two modalities. (ii) Merging at the
score level may be insufficient in effectively capturing the correla-
tion between these two representations.



Table 5

pLM-based LMPTMSite Platform for PTM Site Prediction 279

Architectural details of different modules in pLMSNOSite and LMSuccSite

Module Architecture Tool

Input

shape Description Activation function

ELM  2D-CNN

PLM  ANN

SGM ANN

pLMSNOSite 37x4

LMSuccSite

LMSuccSite

pLMSNOSite 20x1
LMSuccSite

Rectified Linear Unit
(ReLU) activation
function across all
hidden layers and
sigmoid activation in
output layers

Embedding (37x4) -
Convolution (64x19x1)
- Dropout (0.3) - Max
Pooling (5%2) - Flatten
(384) - Dense (16) -
Output (1)

Embedding (33x21) -
Convolution (32x17x3)
- Dropout (0.2) - Max
Pooling (2%2) - Flatten
(2304) - Dense (16) -
Dropout (0.2) - Output
(1)

33x21

pLMSNOSite 1024x1 Dense (128) - Dropout

(0.4) - Dense (16) -
Dropout (0.2) - Dense
(4) - Output (1)

Dense (256) - Dropout
(0.2) - Dense (128) -
Dropout (0.2) - Output
(1)

Dense (8) - Output (1)
Dense (16) - Dense (4) -
Output (1)

144x1

The symbol “-” denotes the sequence of layers or operations in the model, and values inside the brackets represent the
dimensions or shape of specific layers

2.5 Model Evaluation
and Performance
Measures

2.5.1 Dealing with Class
Imbalance

A stratified k-fold cross-validation (pLMSNOSite 2 = 5 and
LMSuccSite 2 = 10) coupled with a grid-search strategy was imple-
mented for the optimal selection of models and hyperparameters
(see Note 15). Additionally, independent testing was conducted to
assess the models on unseen data and benchmark them against
other existing methodologies. Performance metrics used for evalu-
ating the accuracy of model predictions against ground truth labels
are outlined in Table 6.

The data distribution in PTM prediction tasks is often skewed
toward the negative class, potentially biasing performance estimates
toward the negative set. As such, metrics like ACC, SN, FPR, FNR|
and AUROC may be significantly impacted and should not be
solely relied upon. In our case, the training sets in pLMSNOSite



280 Pawel Pratyush et al.

Table 6

Various performance metrics used for evaluating pLMSNOSite and LMSuccSite

Metric name

Definition Range?

True positive (TP)
True negative (TN)

False positive (FP)

False negative (FN)

Accuracy (ACC)

Count of correctly predicted PTM sites [0, +00)
Count of correctly predicted
non-PTM sites
Count of incorrectly predicted PTM
sites
Count of incorrectly predicted
non-PTM sites

— TP+T
ACC= mromviir N [0, 1]

Sensitivity (SN)/recall /true positive rate (TPR) TPR = 2

TP+EN

Specificity (SP)/true negative rate (TNR) TNR = N

FP4+TN

Fall-out/false alarm rate /type I error /false positive FPR = L

rate (FPR)

FP+TN

Miss rate /type II error/false negative rate (FNR) FNR = N

TP+EN

g-mean gmean = v/SN x SP
Matthews correlation coefficient (MCC) MCC = (TPxTN) — (FPxEN) [-1,1]
/(TP+EP)(TP+EN) (IN+FP)(TP+EN)
Area under receiver operating characteristic Area under the curve of sensitivity (TPR) [0, 1]
curve (AUROC) plotted
against 1 - specificity (FPR) at various
decision

threshold cut-offs (range, 0.0-1.0)

Area under precision—recall curve (AUPR/PrAUC) Area under the curve of precision

plotted against

recall (SN) at various decision
thresholds

cut-offs (range, 0.0-1.0)

"Note: The ranges provided within brackets are general guidelines, but they may vary depending on the specific
implementation and context of the metrics

2.5.2 Dealing with
Varying Decision Threshold

and LMSuccSite were balanced using random undersampling, miti-
gating the potential effects of class imbalance on cross-validation
evaluations. However, the independent test datasets employed in
both these tasks were considerably imbalanced (majority-to-minor-
ity ratios, ~9 for pLMSNOSite, ~12 for LMSuccSite). Conse-
quently, we focused on performance measures less affected by
class imbalance, such as MCC, g-mean, and AUPR. We considered
all these metrics in conjunction to gain a comprehensive view of our
model’s performance on the independent test set.

In binary classification tasks, a critical process involves determining
an appropriate decision threshold cut-oft. This threshold trans-
forms the model’s raw probability outputs into definitive categori-
cal labels. Depending on the selected threshold cut-oft, the value of



2.5.3 Dealing with Data
Leakage

2.6 Deep Learning
Model Training

pLM-based LMPTMSite Platform for PTM Site Prediction 281

computed metrics can vary significantly. The decision of selecting
an optimal cut-off value typically relies on the specific use case. In
the context of pLMSNOSite and LMSuccSite, we consistently
utilized a widely adopted cut-off value of 0.5. However, we empha-
sized on threshold-independent metrics like AUROC and AUPR
when evaluating our models. These metrics are particularly handy
in situations where the optimal cut-off point is not known a priori.
In addition, our web servers give users the flexibility to select a
desired cut-oftf value within a range of 0.1-0.9 (refer to Subheading
3.3). Similarly, in our standalone version, we have facilitated an easy
process to modify the cut-off value prior to running the prediction
(see Subheading 3.2).

In order to address the issue of potential target information leakage
from base models to the meta-classifier in stacked generalization
(see Note 16), which can result in overestimated cross-validation
performance, we have implemented Wolpert’s stacking algorithm
with %-fold cross-validation [34]. This strategy starts with random
partitioning of the total training data into % folds. Then the base
models are trained on k-1 of these folds and validated on the
remaining one fold. This procedure is performed % times, rotating
the validation fold each time, and the predictions from base models
are gathered as new features. The gathered predictions from each
base model train the higher-level meta-classifier, ensuring it is
trained on a non-overlapping dataset, thus effectively preventing
data leakage and preserving the model selection process’ integrity.

All deep learning models in pLMSNOSite and LMSuccSite were
trained with the objective of minimizing the binary cross-entropy
loss, also known as log loss, represented by the following equation:

~ LS Dogs+ (1-y)log(1-y)]] ()

In Eq. (1), ¥; and ¥, denote the actual and predicted probabil-
ities for the sth instance out of N instances, respectively.

To minimize this loss function, the Adam stochastic optimiza-
tion method was utilized. In addition, an early stopping mechanism
was implemented with a patience value of Py, (range, 0—total num-
ber of epochs) halting the training process if there’s no loss
improvement detected after Py consecutive epochs. This helps
avoid unnecessary computational expenditure and overfitting.
The progress of training was continuously scrutinized by monitor-
ing the accuracy/loss curves to further prevent overfitting. The
values of major parameters chosen for the Adam optimizer in
pLMSNOSite and LMSuccSite are detailed in Table 7 below. This
includes learning rate, decay rates, number of epochs, batch size,
and patience (Pp) for early stopping, all optimized via a %-fold cross-
validation strategy with grid search for maximum model
performance.



282 Pawel Pratyush et al.

Table 7

Various model training parameters chosen for pLMSNOSite and LMSuccSite

AMSgrad
Tool variant?

pLMSNOSite Yes
LMSuccSite  No

Decay rate
Adaptive First Second Batch No. of Patience
learning rate  moment moment size epochs (P)
0.001 0.900 0.999 128 200 5
0.001 0.900 0.999 256 100 7

3 Results

3.1 k-Fold Cross-
validation and
Independent Testing
Summary

In the subsequent sections, we present the results for our recently
developed SNO site predictor, pPLMSNOSite [20], and succinyla-
tion site predictor, LMSuccSite [21]. In Subheading 3.1, we sum-
marize the %-fold cross-validation and independent testing results
from the published works [20] [21] on these predictors. In Sub-
headings 3.2 and 3.3, we provide a comprehensive guide to using
the standalone and web server versions of the tools, respectively. In
Subheading 3.4, we describe an additional experiments performed
in this chapter, where we evaluated the runtime and memory usage
of pLMSNOSite as a function of the input sequence length. Finally,
in Subheading 3.5, we outline a case study showcasing the applica-
tion of LMSuccSite in identifying succinylated sites within proteins
participating in the TCA pathway.

The predictive performance of our approach was assessed in greater
details in the original manuscripts [20, 21]. Here, we briefly sum-
marize the results of the k-fold cross-validation experiment, as
detailed in the published literature for pLMSNOSite [20] and
LMSuccSite [21]. This encompasses all modules (ELM, PLM,
and SGM) for both tools, with & = 5 for pLMSNOSite and
k = 10 for LMSuccSite, as shown in Table 8. In the ELM module
of both tools, the 2D-CNN emerged as the optimal model,
providing a mean MCC of 0.382 + 0.03 for pLMSNOSite and
0.43 + 0.02 for LMSuccSite, outshining other architectures such as
ANN, LSTM, BiLSTM, and ConvLSTM. In the PLM module, the
ANN proved to be the optimal model for both tools, delivering a
mean MCC of 0.42 + 0.03 for pPLMSNOSite and 0.47 + 0.02 for
LMSuccSite, outperforming other architectures like 1D-CNN,
SVM (support vector machine), RF (random forest), XGBoost
(extreme gradient boosting), and AdaBoost (adaptive boosting).
As for the SGM module, ANN again surfaced as the optimal model,
demonstrating a mean MCC of 0.46 + 0.03 for pLMSNOSite and
0.56 + 0.02 for LMSuccSite, superior to architectures like LR
(logistic regression), SVM, RF, and XGBoost.



Table 8

pLM-based LMPTMSite Platform for PTM Site Prediction 283

k-fold cross-validation comparison of various machine learning/deep learning architectures in the
modules of the architecture

Optimal ROA
Module Tool architecture ACC MCC SN SP UC Compared against®
Embedding pLMSNOSite 2D-CNN  0.69 0.38 0.76 0.62 0.73 ANN, LSTM,
Layer LMSuccSite 0.73 047 0.76 0.70 0.79 BiLSTM, ConvLST
(ELM)
ProtT5 pLMSNOSite ANN 0.71 042 0.75 0.67 0.73 1D-CNN, SVM, RF,
(PLM) LMSuccSite 0.74 0.47 0.76 0.71 0.80 XGBoost,
AdaBoost
Stacked pLMSNOSite ANN 0.73 0.46 0.77 0.69 0.80 LR,SVM, RF,
Generalization LMSuccSite 0.77 0.56 0.80 0.76 0.85 XGBoost
(SGM)

Adopted from pLMSNOSite [20] and LMSuccSite [21]
*For detailed architectural specifics of each model, please refer to the supplementary materials in the literature
corresponding to each respective tool

Table 9
Independent test comparison of various protein language models (pLMs)
on the pLMSNOSite dataset

pLM MCC Sensitivity Specificity g-mean ROAUC
ProtBERT[31] 0.20 0.48 0.80 0.62 0.64
ESM-1 [33] 0.25 0.56 0.79 0.67 0.69
ProtT5[31] 0.29 0.60 0.81 0.70 0.71

Adopted from pLMSNOSite [20]

Next, we summarize the comparative study from the original
manuscripts [20, 21] where three protein language models
(pLMs), ProtBERT, ESM-1, and ProtT5 were used to extract the
features. These findings indicated that ProtT5 consistently outper-
formed the other two pLMs in both pLMSNOSite and LMSucc-
Site, leading to its choice as a feature extractor in both instances.
Table 9 demonstrates the performance differences among these
three pLMs in pLMSNOSite on the independent test set. A similar
trend was observed in the case of LMSuccSite, with ProtT5 sur-
passing the other pLMs in performance.

Additionally, we also summarize from the original manuscripts
[20, 21] the comparison of pLMSNOSite and LMSuccSite against
other existing tools, and these results are presented in Table 10. It
can be seen from the table that both these tools perform quite well
in comparison to current state-of-the-art tools. Notably,
pLMSNOSite demonstrated an impressive 35.0% increase in
MCC and a 10.6% improvement in g-mean compared to its closest



284 Pawel Pratyush et al.

Table 10
Comparison of pLMSNOSite and LMSuccSite against other existing tools

PTM Predictor AGC MCC SN SP g-mean

S-nitrosylation GPS-SNO [40] 0.693 0.014 0.281 0.739 0.455
iSNO-PseAAC [41] 0.710 0.031 0.287 0.757 0.466
SNOSite [42] 0.469 0.069 0.668 0.447 0.546
DeepNitro [28] 0.737 0.222 0.578 0.737 0.653
pLMSNOSite [20] 0.769 0.340 0.735 0.773 0.754

Succinylation SuccineSite2.0 [29] 0.85 0.26 0.40 0.88 0.63
GPSuc [35] 0.85 0.30 0.50 0.88 0.66
PSuccE [45] 0.85 0.20 0.38 0.89 0.58
DeepSuccinylSite [43] 0.70 0.27 0.79 0.69 0.74
LMSuccSite [21] 0.79 0.36 0.79 0.79 0.79

Adopted from pLMSNOSite [20] and LMSuccSite [21]

competitor, PreSNO [27]. Importantly, the pLM-based model
alone was able to outperform PreSNO, showing a significant
16.3% increase in MCC. It is worth highlighting that the
pLM-based model alone was able to outperform PreSNO with an
approximately 16.3% increment in MCC. This underlines the capa-
bility of pLM-based embeddings in predicting PTM sites. In a
similar vein, LMSuccSite exhibited a 20.0% improvement in MCC
and approximately a 19.7% increase in g-mean when compared to
GPSuc [35], the next best predictor. These results affirm that our
novel approach, which combines global contextual information
using pLM and local contextual information using a word embed-
ding layer, is indeed a robust predictor of PTM sites such as

S-nitrosylation and succinylation.

3.2 pLMSNOSite and  The standalone version of pLMSNOSite is provided on GitHub
LMSuccsSite: and can be accessed freely via this link: http://kcdukkalab.org/
Standalone Version pLMSNOSite/. The source code and all its dependencies fall under

the open-source Apache-2.0 license, providing the freedom to

modify and distribute the software.

In the repository, a requirements.txt file is provided which
details all the necessary libraries with their appropriate versions
required to run pPLMSNOSite (see Notes 17 and 18). The instruc-
tions for executing pPLMSNOSite are outlined below.

Use the following commands to install the libraries and

dependencies:

1. pip install -v vequivements.txt

2. pip install -q SentencePiece transformers


http://kcdukkalab.org/pLMSNOSite/
http://kcdukkalab.org/pLMSNOSite/

3.3 pLMSNOSite and
LMSuccSite: Web
Server

pLM-based LMPTMSite Platform for PTM Site Prediction 285

After installing all dependencies, one can evaluate the pro-
posed model on the independent test set or run your own
predictions. To evaluate the model on the independent
test set:

1. Navigate to the data/test/folder where the test
sequences and corresponding ProtT5 features are
placed.

2. Run the command python3 evaluate_model.py.
To predict using your own sequence:

1. Place the FASTA file, which should contain the protein
sequence data, in the directory input/sequence.fosta.

2. Run the script for generating predictions with the
command python3 predict.py.

3. Once the prediction process is complete, the results
will be stored in the output/ folder. The output file will
provide predictions for each cysteine (C) residues pres-
ent in the input sequence.

The screenshot of pLMSNOSite repository on GitHub with its
command line interface (CLI) is shown in Fig. 3. LMSuccSite’s
setup process on a local system shares a similar set of procedures to
those necessary for establishing pLMSNOSite. To begin with, one
should clone the LMSuccSite repository from GitHub (https://
github.com/KCLabMTU _/LMSuccSite) and ensure that one is
covered under the Apache-2.0 license. Then, one needs to adhere
to the instructions similarly outlined in the pLMSNOSite setup and
its implementation steps.

Itis important to highlight that pLMSNOSite and LMSuccSite
were developed using Python 3.9.7, TensorFlow 2.9.1, Keras
2.9.0, PyTorch 1.11.0, and Transformers 4.18.0. Consequently,
to ensure seamless operation, your system should be equipped with
corresponding compatible versions (se¢ Note 18).

The pLMSNOSite and LMSuccSite web servers within the
LMPTMSite platform were developed using the Python framework
and served through the Apache web service. These tools operate
entirely on the server side, with client queries sent via an Internet
browser. The web user interfaces for pPLMSNOSite and LMSucc-
Site are accessible at http://kcdukkalab.org/pLMSNOSite/ and
http: //kecdukkalab.org/LMSuccSite /, respectively. The screenshot
of web server of pPLMSNOSite is shown in Fig. 4.

Users have the option to upload a FASTA file containing pro-
tein sequences along with their respective accession IDs. An exam-
ple FASTA file is readily available for download via a link on the


https://github.com/KCLabMTU/LMSuccSite
https://github.com/KCLabMTU/LMSuccSite
http://kcdukkalab.org/pLMSNOSite/
http://kcdukkalab.org/LMSuccSite/

286 Pawel Pratyush et al.

pPLMSNOSite v

Use Transformer-based Protein Language Model (pLM) for prediction of S-nitrosylation(SNO) modification sites in
protein sequences ¢”

pawel@COC-15169-L: ~/Desktop

$ python3 predict.py

/N \ /g

|
)
\ I/ i | e

|
I —
/1

Number of input sequences: 5

Total number of cysteine(C) residues: 28
Processing the input fasta file...
Generating ProtT5 features...

Python 3.9.7 | TensorFlow |25 Keras [2.9:0 | Transformers [488I0M PyTorch [#:11:0)] Bio [1:5:2 ] scikit learn | 1.2.0 | matplotiib | 3.5.1

seaborn [0 tqdm | 4.63.0 | xgboost 1.5.0 § last commit last sunday
license Apache-2.0 [ pull requests | 0 open

Fig. 3 Screenshot of standalone version of pLMSNOSite along with its CLI hosted at GitHub

pLMSNOSite

pPLMSNOSite: an ensemble-based approach for predicting protein S-nitrosylation sites by integrating supervised word embedding and
embedding from pre-trained protein language model

Enter your query sequences

Upload the fasta file for your protein sequences. The sequences must have unique IDs. You can dowload this example fasta file: Click
to download the example fasta file.

Browse to your fasta file

Fasta:| Choose file | examples (1).fasta

Optional settings:
Select: \Both v| (Select the sites to be displayed on the report)

Cutoff: \0,5 v|(Select a probability threshold that determines prediction)

| Submit \ ‘ Clear l

Fig. 4 Screenshot displaying the homepage of the pLMSNQOSite web server



pLM-based LMPTMSite Platform for PTM Site Prediction 287

webpage (Click to download the example fasta file). Additionally,
using optional settings, users can further customize their output by
selecting whether they prefer to display the results of only positive
sites or only negative sites or both. Along with it, users can set their
desired decision threshold cut-off, ranging from 0.1 to 0.9, to
convert raw probability scores into crisp labels (positive or nega-
tive). Please note that the default cut-off for the tools is set at 0.5, as
this was the value utilized during the analytical phase of these tools.

Input Once a valid FASTA file is uploaded and the Submit button
is pressed, the user’s request will be sent to the server using an
encrypted POST method. The processing time required to display
the output will depend on the sequence length, the size of the
FASTA file, and the current server load. The uploaded FASTA file
will undergo a validity check; if the file is valid, the sequences will be
pre-processed and fed into the model for feature extraction and site
prediction, as detailed in the Materials and Methods section. An
example output from the pLMSNOSite web server is shown in
Fig. 5.

The selected probability cuttoff: 0.5

Total number of sites: 5

The number of positive sites: 3

The number of negative sites: 2

The display setting: Both positive and negative

Output file download

Use the following links to download your input file and prediction results. This link will be valid for a week. The prediction is based on the
probability cutoff chosen by the user upon query submission.

Prediction file (download) Your input file (download)

Prediction report

mm st

sp|POA901 0.6608795 Positive
2 sp|POA901 131 c 0.34284467 | O Negative
8 sp|P09030 177 c 0.44460586 | O Negative
4 sp|P09030 240 c 0.69272876 1 Positive
5 sp|P09030 241 c 0.65235084 | 1 Positive

Fig. 5 Screenshot displaying an example output page of the pLMSNOSite web server



288 Pawel Pratyush et al.

3.4 Runtime and
Memory Usage
Analysis

3.5 Investigating
TCA Pathway Proteins:
A Case Study

Output Upon successful processing of the input FASTA file, users
will be directed to the results page, which displays various details
such as the selected cut-off threshold, the total count of identified
potential sites, and the chosen display setting (whether it is positive
only, negative only, or both). The “Download” section provides
links to export the results as a csy (comma-separated values) file. In
addition to this, a “Prediction Report” section displays the predic-
tion results, which include the probability scores and the predicted
labels for each site. The results will be retained on the server for
1 week before deletion.

Additionally, for this book chapter, we conducted an analysis of
CPU runtime and RAM memory usage by computing the time
(in seconds) and memory (in megabytes) required for the
pLMSNOSite tool to generate predictions across the input
sequence (see Note 19). This process was examined as the length
of the sequence was progressively scaled up, ranging from
100 to 4000. To account for variability, these experiments were
repeated for ten runs for each length scale, and the results were
averaged out. Furthermore, we separately analyzed the average
time and average memory usage for the following components:
Environment setup (which involves importing transformer and
other libraries, loading models, defining devices (CPU or GPU),
etc.), ProtT5 encoding (Embedding Generation), Prediction, and
Encoding+Prediction.

As the length of the sequence was scaled up (see Fig. 6a), we
observed a quadratic increase in the average runtime of Encoding
+Prediction (blue curve), which is mainly due to the quadratic
nature of generating embeddings from the ProtT5 encoder
(green curve). In terms of memory usage (see Fig. 6b), a loosely
linear trend was observed for Encoding+Prediction (blue curve).
Interestingly, ProtT5 encoding (green curve) did not contribute
significantly to this trend—it was primarily the Prediction (red
curve) process that demanded the majority of the memory.

It is important to highlight that LMSuccSite is expected to
show similar trends regarding time and memory usage, considering
it is based on a similar approach to pLMSNOSite. Both these tools
rely on extracting feature vectors from protein sequences using
ProtT5 and the same underlying architecture for predictions;
hence their computational resource consumption would follow a
similar pattern. This investigation provides valuable insights into
the computational efficiency of our tools and highlights the balance
between predictive performance and computational resources.

We also performed a case study to demonstrate the utility of our
tools pLMSNOSite [20] and LMSuccSite [21]. In this case study,
we selected five functional protein sequences originating from the
Homo sapiens, all significantly involved in the citric acid cycle (also



pLM-based LMPTMSite Platform for PTM Site Prediction 289

A
80 —e— Encoding+Prediction
—®— ProtT5 Encoding
70 —@— Prediction
Environment Setup
60
B
» 50
E
kol
£ 40
c
>
o
g, 30
<
10
0
100 500 1000 1500 2000 2500 3000 3500 4000
Sequence Length
B —8— Encoding+Prediction
12 =@ ProtT5 Encoding
—&— Prediction
Environment Setup
10
)
=
E
~ 8
)
(@]
]
[%2])
-
> 6
o)
E
(O]
=
gs 4
<
2
0  ——eo———0———— 9

100 500 1000 1500 2000 2500 3000 3500 4000
Sequence Length

Fig. 6 (a) Relationship between average runtime (in seconds/sec) and sequence length and (b) average
memory usage (in megabytes/MB) and sequence length for pLMSNOSite



290 Pawel Pratyush et al.

3.6 Limitation and
Future Work

Table 11

known as the tricarboxylic acid cycle or TCA cycle). The TCA cycle
is a sequence of chemical reactions that take place in both prokary-
otic and eukaryotic cells, generating energy via the oxidation of
acetyl-CoA, derived from carbohydrates, fats, and proteins. It is a
central metabolic hub and plays a fundamental role in both the
generation of energy and the provision of building blocks for the
biosynthesis of complex molecules. The regulation of the TCA
cycle is driven by a variety of genes that facilitate the process of
carbohydrate metabolism. It has been found that proteins pro-
duced by these TCA pathway genes are primarily affected by succi-
nylation [36]. For the purposes of our case study, we downloaded
the canonical FASTA sequences of the proteins generated by these
TCA cycle genes from KEGG pathway database [37]. Detailed
information about these sequences along with their location in
the eukaryotic cells and their function is reported in Table 11.
Utilizing the web server (or the standalone version) of
LMSuccSite [21], we successfully identified 18 out of the
25 known succinylated lysine sites (sourced from the “experimental
and putative” site collections in the dbPTM database [5]). This
resulted in a TPR (sensitivity) of 72% and a FNR (type II error) of
28%. The substantial proportion of TPR over FNR, as illustrated in
Fig. 7, underscores the effectiveness of our tool in predicting sites

in sequences that actively participate in vital biological pathways like
the TCA cycle.

Despite the promising results demonstrated by LMSuccSite and
pLMSNOSite tools in predicting PTM sites—achieved by merging
the global contextual information from pLLMs and the local contex-
tual information using word embedding layer—there remain

Protein sequences from the tricarboxylic acid (TCA) pathway with their associated information

Accession ID Gene

(protein name) name Location Function

075390 CS Mitochondrial Catalyzes the reaction of acetyl-CoA and oxaloacetate
(CISY_HUMAN) to form citrate and CoA in the citric acid cycle
P08559 PDHA1l Mitochondrial Part of the pyruvate dehydrogenase complex that

(ODPA_HUMAN)

P40925
(MDHC_HUMAN)

Q02218
(ODO1_HUMAN)

Q99798
(ACON_HUMAN)

catalyzes the overall conversion of pyruvate to acetyl-
CoA and CO,

MDHI1 Cytoplasmic  Reversibly converts malate into oxaloacetate using

NAD+/NADH in the citric acid cycle

OGDH Mitochondrial Part of the 2-oxoglutarate dehydrogenase complex

which converts 2-oxoglutarate to succinyl-CoA and
CO; in the TCA cycle

ACO2 Mitochondrial Catalyzes the isomerization of citrate to isocitrate via

cis-aconitate in the TCA cycle




pLM-based LMPTMSite Platform for PTM Site Prediction 291

I TPR
B FNR

Fig. 7 Donut chart illustrating the distribution of true positive rate (TPR) and false
positive rate (FPR) for the prediction of known succinylated sites within proteins
involved in the tricarboxylic acid (TCA) cycle pathways, using LMSuccSite

certain limitations and opportunities for enhancement. One limita-
tion is the lack of utilization of structural information. Incorporat-
ing structural information can potentially enhance the accuracy and
robustness of the predictions, as it provides valuable insights into
the spatial arrangement and interactions of amino acids. Further-
more, future work could explore the new pLMs, such as Ankh [38]
or ESM-2 [39], which may have improved performance and cap-
ture additional contextual information. Additionally, there are
alternative methods for obtaining features from pLLMs that were
not explored in our current approaches. Techniques like FSWE,
WSPE, WSWE, and MWVL could be investigated to capture dif-
ferent aspects of protein sequences and potentially improve the
predictive performance. Another aspect for future work is the
consideration of fine-tuning. While we performed soft fine-tun-
ing (feature-based approach), where we added fully connected
layers on top of the pre-trained transformer encoder, hard fine-
tuning, which involves jointly training the pLMs and the prediction
models, was not explored. Incorporating hard fine-tuning may lead
to further improvements in the model’s performance. Moreover, an
important area of future work includes integrating prediction tools
for other types of PTM sites into the LMPTMSite platform.

4 Notes

1. Most existing predictors for S-nitrosylation (SNO) and Succi-
nylation rely on manual or handcrafted feature extraction.
Additionally, these predictors operate solely on window
sequences, which restricts the computational model to captur-
ing only the local contextual information of the site of interest.
In contrast, our approach aims to eliminate these drawbacks
while also obtaining the most robust results.



292

Pawel Pratyush et al.

2.

It is crucial that positive sites in the dataset are curated from
experimentally verified sites to ensure their validity. Redundant
sites, which can add noise and cause overfitting, should be
eliminated using homology removal algorithms to maintain
the uniqueness of the data. Duplicate sites (positive or nega-
tive) sharing same protein accession ID must be removed from
the training set to avoid potential overfitting and to ensure
diverse training set.

. The dataset should be thoroughly examined for duplicate or

contradicting sites. Such inconsistencies can occur when a site
is labeled as both positive and negative simultaneously in the
training or testing set or if a site’s label differs between the
training and testing sets. These duplicate or contradictory sites
should be identified and removed to maintain the integrity of
the dataset.

. There should be no overlapping sequences between the train-

ing and testing sets, i.e., the split between these sets should be
based on protein accession IDs. Alternatively, overlapping
sequences can be removed from the training set. This is crucial
because, especially when using protein language models for
feature extraction, similar sequences in the training and testing
sets could lead to feature information leakage, thereby inflating
performance metrics.

. Often, the negative set significantly outnumbers the positive

set. This imbalance arises because all the sites within the same
protein sequences that have not been experimentally verified as
positive sites are consequently treated as negative sites. In such
cases, data balancing methods should be applied to prevent the
model from being biased toward the majority class. However,
while addressing imbalance issues, care should be taken to
ensure the distributions in the training and testing sets remain
consistent and are not distorted, as such changes could inad-
vertently introduce biases. Furthermore, some sites labeled as
negative may be false negatives, meaning they are yet to be
experimentally identified as positive sites. This misclassification
can result in inaccurate predictions, particularly in situations
involving imbalanced learning, such as cost-sensitive learning.

. In the context of learning from imbalanced datasets, we employ

a cost-sensitive (CS) learning approach called class weighting.
The strategy counteracts the bias toward the majority class by
assigning different weights to each class. These weights serve as
a “penalty factor” and aim to influence the learner’s decisions.
Misclassification of samples of a class with a higher weight will
incur a greater penalty, compelling the model to pay more
attention to such instances during the learning process. Weight
of class 7, W, is calculated according to the following formula:



10.

11.

12.

pLM-based LMPTMSite Platform for PTM Site Prediction 293

n

Wi=—"—

T X Mg
where:

n, refers to the total number of samples

n, is the total number of unique classes (=2 in binary
classification)

n, denotes the number of samples that belong to a specific class

Please note that the above formula is a common practice
and there are variations to it that can also be employed based on
the specific requirements of the problem.

. In the context of post-translational modifications (PTMs), we

designate “negative sites” as all potential sites for a given PTM
which have not been experimentally annotated as positive. This
may appear as a crude approximation, given that it might
introduce a degree of false negatives—sites yet to be experi-
mentally confirmed as positive. Although random undersam-
pling could inadvertently eliminate some of these false
negatives, it remains an area that requires careful consideration.

. ESM-1 can accept input sequence length no longer than 1024.

In contrast, ProtT5 and ProtBERT do not have this limitation
and can handle protein sequences of arbitrary length. This
flexibility allows for the analysis of longer protein sequences
without the need for truncation or other preprocessing steps.

. It is worth noting that the learned embeddings from Keras

embedding layer are problem-specific. They capture the rela-
tionships between amino acids that are relevant to the specific
task the model is trained on and may not necessarily be gener-
alizable to other tasks or datasets.

We used only the encoder part of ProtT5 in our work, as our
experiments showed that the embeddings from the encoder
surpassed those from the decoder in performance. To expedite
the generation of embeddings, we operated in half-precision
mode. Notably, the developers observed no performance deg-
radation in any of their experiments when running in
this mode.

Within ML /deep learning architectures, three common fusion
strategies are employed: early fusion, intermediate fusion, and
late fusion. These strategies differ in how they combine input
features (or modalities) before inputting them into the final
inference model.

Early fusion, also known as feature-level fusion, merges input
features (or features from the input layer of deep learning
architectures) obtained from various representations before
inputting them into the final inference model. This method



294

Pawel Pratyush et al.

13.

14.

15.

l6.

17.

18.

allows the model to learn joint representations at the input
feature level, potentially capturing correlations between differ-
ent modalities. However, this strategy might be less effective
when input features from modalities have differing scales or
difficult-to-align characteristics.

Intermediate fusion: This strategy involves input features from
representations being initially learned by specific layers within
their deep learning architectures independently. The resulting
learned marginal representations at the intermediate level are
combined through concatenation or addition. This method
enables the model to learn individual representations for each
input source or modality before merging them, which can be
advantageous when the inputs possess distinct characteristics
that necessitate separate processing.

Late fusion, also referred to as score-level fusion, integrates the
outputs of models trained on their particular input representa-
tions. Each model generates its prediction, and these predic-
tions are combined using methods such as weighted average,
voting, or other aggregation techniques to produce the final
inference. The limitation of this strategy is that it may not
effectively capture correlations between different sources or
modalities as well as early or intermediate fusion.

In the process of cross-validation, it is crucial to ensure that
each fold is constructed in such a way that the training and
validation sets do not contain common proteins. This precau-
tion helps prevent any data leakage from the training set into
the validation set, thus maintaining the integrity of the evalua-
tion process.

In stacked generalization, or stacking, information leakage
from base models to the meta-classifier can occur when the
same dataset is used for training both. This can lead to over-
fitting, overly optimistic performance estimates, and potential
biases in the final model prediction. To mitigate these issues,
strategies like implementing Wolpert’s stacking algorithm,
using nested cross-validation, utilizing diverse base models,
or separating training data for base models and meta-classifiers
can be employed.

Both pLMSNOSite and LMSuccSite use a standard probability
threshold cut-oft of 0.5. The user can easily tailor the cut-off
value according to their specific preference by following the
steps outlined in the Readme.md file of the tool’s respective
repository.

The version of the dependencies includes Bio 1.5.2, Keras
2.9.0, Matplotlib 3.5.1, NumPy 1.23.5, Pandas 1.5.0,
Requests 2.27.1, scikit-learn 1.2.0, Seaborn 0.11.2, Tensor-
Flow 2.9.1, Torch 1.11.0, tqdm 4.63.0, transformers 4.18.0,
and XGBoost 1.5.0.



pLM-based LMPTMSite Platform for PTM Site Prediction

205

19. We conducted the runtime and memory usage analysis on a
system equipped with an Intel Core i9-10900X processor fea-
turing ten cores, each running at 3.70 GHz (x86_64 architec-
ture), and 128 GB of RAM. This system was operating on
Ubuntu 22.04.2 LTS 64-bit. It is crucial to note that runtime
and memory usage can significantly vary across different sys-
tems. Therefore, when interpreting our results, the specific
hardware and software specifications we used should be taken

into consideration.

Acknowledgments

This work was partly supported by the National Science Founda-
tion grants number 2210356, 1901793 and MI-SAPPHIRE grant.

References

1.

Khoury GA, Baliban RC, Floudas CA (2011)
Proteome-wide post-translational modification
statistics: frequency analysis and curation of the
swiss-prot database. Sci Rep 1:90. https: //doi.
org,/10.1038 /srep00090

. Boeckmann B, Bairoch A, Apweiler R et al

(2003) The SWISS-PROT protein knowledge-
base and its supplement TrEMBL in 2003.
Nucleic Acids Res 31:365-370. https://doi.
org/10.1093 /nar/gkg095

. Dinkel H, Chica C, Via A et al (2011) Phos-

pho.ELM: a database of phosphorylation
sites—update 2011. Nucleic Acids Res 39:
D261-D267. https://doi.org,/10.1093 /nar/
gkql104

. O-GLYCBASE version 4.0: a revised database

of O-glycosylated proteins | Nucleic Acids Res |
Oxford Academic. https://academic.oup.
com/nar/article/27/1,/370,/1241788.
Accessed 1 July 2023

.dbPTM in 2022: an updated database for

exploring regulatory networks and functional
associations of protein post-translational mod-
ifications | Nucleic Acids Research | Oxford
Academic. https://academic.oup.com/nar/
article/50/D1,/D471/6426061.  Accessed
1 July 2023

. Minguez P, Letunic I, Parca L, Bork P (2013)

PTMcode: a database of known and predicted
functional  associations  between  post-
translational modifications in proteins. Nucleic
Acids Res 41:D306-D311. https://doi.org/
10.1093/nar/gks1230

. Hornbeck PV, Kornhauser JM, Tkachev S et al

(2012) PhosphoSitePlus: a comprehensive
resource for investigating the structure and

10.

11.

12.

13.

14.

15.

function of experimentally determined post-
translational modifications in man and mouse.
Nucleic Acids Res 40:D261-D270. https://
doi.org,/10.1093 /nar/gkr1122

. Pakhrin SC, Pokharel S, Saigo H, KC DB

(2022) Deep learning—based advances in pro-
tein posttranslational modification site and
protein cleavage prediction. In: KC DB
(ed) Computational methods for predicting
post-translational modification sites. Springer
US, New York, pp 285-322

. Ismail HD, Jones A, Kim JH et al (2016)

RE-Phos: a novel general phosphorylation site
prediction tool based on random forest.
BioMed Res Int 2016:3281590. https://doi.
org/10.1155,/2016,/3281590

Larry RM, Jain LC (2001) Recurrent neural
networks. Des Appl

Hochreiter S, Jiirgen S (1997) Long short-
term memory. Neural Comput 9:1735-1780
Yamashita R, Nishio M, Do RKG, Togashi K
(2018) Convolutional neural networks: an
overview and application in radiology. Insights
Imaging 9:611-629. https://doi.org/10.
1007 /513244-018-0639-9

Goldberg Y, Levy O (2014) word2vec
explained: deriving Mikolov et al.’s negative-
sampling word-embedding method
Pennington J, Socher R, Manning CD (2014)
Glove: global vectors for word representation.
Accessed 1 July 2023

Devlin J, Chang M-W, Lee K, Toutanova K
(2019) BERT: pre-training of deep bidirec-
tional transformers for language understanding


https://doi.org/10.1038/srep00090
https://doi.org/10.1038/srep00090
https://doi.org/10.1093/nar/gkg095
https://doi.org/10.1093/nar/gkg095
https://doi.org/10.1093/nar/gkq1104
https://doi.org/10.1093/nar/gkq1104
https://academic.oup.com/nar/article/27/1/370/1241788
https://academic.oup.com/nar/article/27/1/370/1241788
https://academic.oup.com/nar/article/50/D1/D471/6426061
https://academic.oup.com/nar/article/50/D1/D471/6426061
https://doi.org/10.1093/nar/gks1230
https://doi.org/10.1093/nar/gks1230
https://doi.org/10.1093/nar/gkr1122
https://doi.org/10.1093/nar/gkr1122
https://doi.org/10.1155/2016/3281590
https://doi.org/10.1155/2016/3281590
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1007/s13244-018-0639-9

296

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Pawel Pratyush et al.

Pokharel S, Sidorov E, Caragea D, B K¢ D
(2022) NLP-based encoding techniques for
prediction of post-translational modification
sites and protein functions. In: Machine
learning in  bioinformatics of protein
sequences. World Scientific, pp 81-127

Vaswani A, Shazeer N, Parmar N et al (2017)
Attention is all you need. In: Advances in neu-
ral information processing systems. Curran
Associates, Inc.

Radford A, Narasimhan K, Salimans T, Sutsk-
ever I (2018) Improving language understand-
ing by generative pre-training

Exploring the limits of transfer learning with a
unified text-to-text transformer | J Machine
Learn Res. https://dl.acm.org/doi/abs/10.
5555,/3455716.3455856. Accessed
1 July 2023

Pratyush P, Pokharel S, Saigo H, Kc DB (2023)
pLMSNOSite: an ensemble-based approach
for predicting protein S-nitrosylation sites by
integrating supervised word embedding and
embedding from pre-trained protein language
model. BMC Bioinformatics 24:41. https://
doi.org,/10.1186,/512859-023-05164-9

Pokharel S, Pratyush P, Heinzinger M et al
(2022) Improving protein succinylation sites
prediction using embeddings from protein lan-
guage model. Sci Rep 12:16933. https: //doi.
org/10.1038 /541598-022-21366-2

Pakhrin SC, Pokharel S, Aoki-Kinoshita KF
et al (2023) LMNglyPred: prediction of
human N-linked glycosylation sites using
embeddings from a pre-trained protein lan-
guage model. Glycobiology 33:411-422.
https://doi.org,/10.1093 /glycob/cwad033

Pakhrin S, Pokharel S, Pratyush P et al (2023)
LMPhosSite: A deep learning-based approach
for general protein phosphorylation site predic-
tion using embeddings from local window
sequence and pre-trained Protein Language
Model. J Proteome Res

Stomberski CT, Hess DT, Stamler JS (2019)
Protein S-nitrosylation: determinants of speci-
ficity and enzymatic regulation of S-
nitrosothiol-based signaling. Antioxid Redox
Signal 30:1331-1351. https://doi.org/10.
1089 /ars.2017.7403

Dai X, Zhou Y, Han F, Li J (2022) Succinyla-
tion and redox status in cancer cells. Front
Oncol 12

Cd-hit: a fast program for clustering and com-
paring large sets of protein or nucleotide
sequences | Bioinformatics | Oxford Academic.
https: //academic.oup.com /bioinformatics/
article/22/13/1658,/194225. Accessed
28 June 2023

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Hasan MM, Manavalan B, Khatun MS, Kurata
H (2019) Prediction of S-nitrosylation sites by
integrating support vector machines and ran-
dom forest. Mol Omics 15:451-458. https://
doi.org,/10.1039/COMO00098D

DeepNitro: prediction of protein nitration and
nitrosylation sites by deep learning — Science-
Direct. https://www.sciencedirect.com/sci
ence/article /pii/S1672022918303474.
Accessed 28 June 2023

Hasan MM, Khatun MS, Mollah MNH et al
(2017) A systematic identification of species-
specific protein succinylation sites using joint
element features information. Int ] Nanomedi-
cine 12:6303-6315. https://doi.org/10.
2147 /1JN.S140875

The UniProt Consortium (2015) UniProt: a
hub for protein information. Nucleic Acids Res
43:D204-D212. https://doi.org,/10.1093/
nar/gku989

Elnaggar A, Heinzinger M, Dallago C et al
(2021) ProtTrans: towards cracking the lan-
guage of Lifes code through self-supervised
deep learning and high performance comput-
ing. IEEE Trans Pattern Anal Mach Intell
PP. https://doi.org,/10.1109 /TPAMI.2021.
3095381

Rao R, Meier J, Sercu T, et al (2020) Trans-
former protein language models are unsuper-
vised structure learners. 2020.12.15.422761

Villegas-Morcillo A, Makrodimitris S, van Ham
RCHJ et al (2021) Unsupervised protein
embeddings outperform hand-crafted
sequence and structure features at predicting
molecular function. Bioinformatics 37:162—
170. https://doi.org,/10.1093 /bioinformat
ics/btaa701

Wolpert DH (1992) Stacked generalization.
Neural Netw 5:241-259. https: //doi.org/10.
1016,/50893-6080(05)80023-1

Hasan MM, Kurata H (2018) GPSuc: global
prediction of generic and species-specific succi-
nylation sites by aggregating multiple sequence
features. PLOS One 13:¢0200283. https://
doi.org,/10.1371 /journal.pone.0200283
Yang Y, Gibson GE (2019) Succinylation links
metabolism to protein functions. Neurochem
Res 44:2346-2359. https://doi.org/10.
1007 ,/s11064-019-02780-x

Kanehisa M (2002) The KEGG database. In:
‘In Silico’ simulation of biological processes.
Wiley, pp 91-103

Elnaggar A, Essam H, Salah-Eldin W, et al
(2023) Ankh : optimized protein language
model unlocks general-purpose modelling.
2023.01.16.524265


https://dl.acm.org/doi/abs/10.5555/3455716.3455856
https://dl.acm.org/doi/abs/10.5555/3455716.3455856
https://doi.org/10.1186/s12859-023-05164-9
https://doi.org/10.1186/s12859-023-05164-9
https://doi.org/10.1038/s41598-022-21366-2
https://doi.org/10.1038/s41598-022-21366-2
https://doi.org/10.1093/glycob/cwad033
https://doi.org/10.1089/ars.2017.7403
https://doi.org/10.1089/ars.2017.7403
https://academic.oup.com/bioinformatics/article/22/13/1658/194225
https://academic.oup.com/bioinformatics/article/22/13/1658/194225
https://doi.org/10.1039/C9MO00098D
https://doi.org/10.1039/C9MO00098D
https://www.sciencedirect.com/science/article/pii/S1672022918303474
https://www.sciencedirect.com/science/article/pii/S1672022918303474
https://doi.org/10.2147/IJN.S140875
https://doi.org/10.2147/IJN.S140875
https://doi.org/10.1093/nar/gku989
https://doi.org/10.1093/nar/gku989
https://doi.org/10.1109/TPAMI.2021.3095381
https://doi.org/10.1109/TPAMI.2021.3095381
https://doi.org/10.1093/bioinformatics/btaa701
https://doi.org/10.1093/bioinformatics/btaa701
https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.1371/journal.pone.0200283
https://doi.org/10.1371/journal.pone.0200283
https://doi.org/10.1007/s11064-019-02780-x
https://doi.org/10.1007/s11064-019-02780-x

39.

40.

41.

42.

pLM-based LMPTMSite Platform for PTM Site Prediction

Lin Z, Akin H, Rao R, et al (2022) Language
models of protein sequences at the scale of
evolution enable accurate structure prediction.
2022.07.20.500902

Xue Y, Liu Z, Gao X et al (2010) GPS-SNO:
Computational ~ Prediction  of  Protein
S-Nitrosylation Sites with a Modified GPS
Algorithm. PLOS One 5:¢11290. https://doi.
org/10.1371 /journal.pone.0011290

Xu Y, Ding J, Wu L-Y, Chou K-C (2013)
iISNO-PseAAC: predict cysteine
S-nitrosylation sites in proteins by incorporat-
ing position specific amino acid propensity into
pseudo amino acid composition. PloS One 8:
e55844. https://doi.org/10.1371 /journal.
pone.0055844

SNOSite: exploiting maximal dependence
decomposition to identify cysteine
S-nitrosylation with substrate site specificity |

43.

44.

45.

297

PLOS One. https://journals.plos.org/
plosone/article?id=10.1371 /journal.
pone.0021849. Accessed 28 June 2023

Thapa N, Chaudhari M, McManus S et al
(2020) DeepSuccinylSite: a deep learning
based approach for protein succinylation site
prediction. BMC Bioinformatics 21:63.
https://doi.org/10.1186,/s12859-020-
3342-z

pSuc-FESEA: predicting lysine succinylation
sites in proteins based on feature fusion and
stacking ensemble algorithm - PubMed.
https: //pubmed.ncbi.nlm.nih.gov,/356860
53/. Accessed 28 Jun 2023

Ning Q, Zhao X, Bao L et al (2018) Detecting
succinylation sites from protein sequences
using ensemble support vector machine. BMC
Bioinformatics 19:237. https://doi.org/10.
1186,/512859-018-2249-4


https://doi.org/10.1371/journal.pone.0011290
https://doi.org/10.1371/journal.pone.0011290
https://doi.org/10.1371/journal.pone.0055844
https://doi.org/10.1371/journal.pone.0055844
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0021849
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0021849
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0021849
https://doi.org/10.1186/s12859-020-3342-z
https://doi.org/10.1186/s12859-020-3342-z
https://pubmed.ncbi.nlm.nih.gov/35686053/
https://pubmed.ncbi.nlm.nih.gov/35686053/
https://doi.org/10.1186/s12859-018-2249-4
https://doi.org/10.1186/s12859-018-2249-4

	Chapter 16: LMPTMSite: A Platform for PTM Site Prediction in Proteins Leveraging Transformer-Based Protein Language Models
	1 Introduction
	2 Materials and Methods
	2.1 S-nitrosylation and Succinylation
	2.2 Creation of Benchmark Datasets
	2.2.1 S-nitrosylation Dataset
	2.2.2 Succinylation Dataset

	2.3 Sequence Encoding aka Feature Extraction
	2.3.1 Embeddings from Protein Language Models (pLMs)
	2.3.2 Various Approaches for Extracting Embeddings from pLMs
	2.3.3 Word Embedding

	2.4 Deep Learning Architectures
	2.5 Model Evaluation and Performance Measures
	2.5.1 Dealing with Class Imbalance
	2.5.2 Dealing with Varying Decision Threshold
	2.5.3 Dealing with Data Leakage

	2.6 Deep Learning Model Training

	3 Results
	3.1 k-Fold Cross-validation and Independent Testing Summary
	3.2 pLMSNOSite and LMSuccSite: Standalone Version
	3.3 pLMSNOSite and LMSuccSite: Web Server
	3.4 Runtime and Memory Usage Analysis
	3.5 Investigating TCA Pathway Proteins: A Case Study
	3.6 Limitation and Future Work

	4 Notes
	References


