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Abstract. The Controller Area Network (CAN) is widely used in the
automotive industry for its ability to create inexpensive and fast net-
works. However, it lacks an authentication scheme, making vehicles vul-
nerable to spoofing attacks. Evidence shows that attackers can remotely
control vehicles, posing serious risks to passengers and pedestrians. Sev-
eral strategies have been proposed to ensure CAN data integrity by iden-
tifying senders based on physical layer characteristics, but high compu-
tational costs limit their practical use. This paper presents a framework
to efficiently identify CAN bus system senders by fingerprinting them.
By modeling the CAN sender identification problem as an image classi-
fication task, the need for expensive handcrafted feature engineering is
eliminated, improving accuracy using deep neural networks. Experimen-
tal results show the proposed methodology achieves a maximum iden-
tification accuracy of 98.34%, surpassing the state-of-the-art method’s
97.13%. The approach also significantly reduces computational costs,
cutting data processing time by a factor of 27, making it feasible for
real-time application in vehicles. When tested on an actual vehicle, the
proposed methodology achieved a no-attack detection rate of 97.78%
and an attack detection rate of 100%, resulting in a combined accu-
racy of 98.89%. These results highlight the framework’s potential to en-
hance vehicle cybersecurity by reliably and efficiently identifying CAN
bus senders.

Keywords: CAN, Deep leaning, Transfer learning, MobileNetV2, Effi-
cientNet.

1 Introduction

One of the most popular in-vehicle networking protocol is called the controller
area network (CAN) through which vehicle computing devices communicate with
each other. The famous protocol was first introduced by Robert GmBH in 1983
and became a defacto for in-vehicle communication due to two specific reasons.
1) by design the protocol is applicable for hard real-time environments that
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guarantees communication with minimal time latency. 2) it reduced the wiring
problem of a vehicle and was able to reduce the cost of vehicle manufacturing
[1]. That is why the CAN bus protocol is used in all modern vehicles as the
backbone of in-vehicle network communication.

By default, the CAN protocol is broadcasting in nature which means mes-
sages that are sent to the bus are accessible by all the entities connected to the
network. It brings simplicity in terms of design but on the other hand the sim-
plistic design can be leveraged by hackers [2, 3], as it lacks a basic security feature
i.e. implementation of a message authentication mechanism which makes it vul-
nerable to a variety of spoofing attacks [4, 5]. In a single CAN message packet,
a field that contains information of the source is absent. Because of the absence
of the sender information, any electronic control unit (ECU) on the network can
impersonate other ECUs in the network. An adversary can leverage that vul-
nerability of this protocol to launch various attacks leading to malfunctioning of
the vehicle.

For example, in 2015 Charlie Miller and Chris Valasek remotely took control
of a vehicle by injecting CAN data in the network. Surprisingly, the vehicle could
not differentiate the impersonating CAN message and moved into a ditch [2].
Another demonstration was shown by the Keen Security Lab of Tencent team
in 2016 where researchers remotely controlled a Tesla Model S. The researchers
have gained entrance remotely by using Wi-Fi/Cellular as backdoor and was able
to compromise many in-vehicle systems like IC, CID, and Gateway. Moreover,
the team injected malicious CAN message into the network [3]. In December
2019, a gray-hat hacker created an android application that used an arduino
microcontroller in order to inject CAN message to a Mercedes vehicle. The basic
functionality of the application was to add features such as locking and un-
locking doors, display custom text in instrument cluster, control hazard light
etc. [4]. These evidences clearly indicate that the researchers took advantage of
a known weakness of CAN protocol to spoof the network, i.e. the absence of
source identification field.

To solve the above-mentioned security vulnerability, different approaches
have been implemented by the security researchers [6, 7]. These solutions can
be broadly categorized into two categories. (1) cryptography based solutions [8,
9], [10], (2) intrusion detection system based solution [11–13]. The traditional
cryptography based solutions can provide some degree of security but they are
computationally expensive and uses the network bandwidth which is critical for
CAN based vehicle networks [14]. Moreover, these cryptography based solutions
are vulnerable to replay attack [11]. Recently, researchers have proposed intru-
sion detection system based solutions for detecting CAN cyberattacks by imple-
menting the famous physical layer identification [15] techniques [5],[14],[16].The
fundamental idea of this approach is, the analog signal behaviors of data trans-
mitters has slight variations which are introduced in the design, fabrication and
manufacturing process. Researchers show that even manufactured in the same
production lot, two same digital devices has unique artifacts in their signal-
ing behavior which is difficult to control and duplicate [17]. Avatefipour et al.



DL based Physical fingerprinting for CAN 3

was able to extract those unique artifacts and proposed a framework based on
neural network for CAN sender identification by utilizing the extracted distor-
tions [5]. Likewise, in the last 5 years researchers [14, 18, 46] have proposed a lot
of frameworks that are effective in CAN transmitter identification. While, the
frameworks offer high percentage of accuracy, but the core architecture of these
methods depend on handcrafted feature engineering. As the approaches rely on
neural network based methods, the feature engineering remains an essential step
in testing phase of the framework. In some cases, the feature engineering becomes
computationally so expensive, that the real time sender identification remains
a challenge. So, here is the research question in this paper, ”Is it possible to
identify the source of CAN message sender using an in-expensive approach that
leverages deep neural network”?

In order to integrate a transmitter identification strategy to the existing CAN
protocol, this paper proposes a framework that is based on the intersection be-
tween physical layer identification [15] and computer vision technique. To finger-
print, the proposed framework first extracts distortions from the analog signals
sent by the ECUs. Then the distortions are converted into visual representa-
tion (images) by using recurrence plot technique [36] which are are distinctive
in human eyes. To automate the process of ECU identification, the images are
fed into deep neural networks (Mobilenetv2 [23] and EfficientNet [39]) to learn
patterns of the signals from those generated images. Finally, the trained model
is tested to evaluate the performance of the proposed framework. According to
the evaluation, it achieves better accuracy in identifying the CAN senders and
is lightweight in terms of computational cost.

The main contribution of the paper is as follows:

– To the best of our knowledge, this is the first CAN sender identification
framework that utilizes the concept of deep learning based computer vision
task and transfer learning.

– The framework takes advantage of recurrence plot to visualize the dynamics
of the senders to fingerprint ECUs.

– Based on the experimental settings with 8 ECUs, the framework identifies
senders with an accuracy of 98.34% where 0.05 ms is needed to process a
feature of a single observation for identification.

– The framework does not change the underlying architecture of basic CAN
protocol, thus making it applicable to all CAN protocol based vehicles.

The rest of the paper is organized as follows. section 2 provides the back-
ground of CAN, then the state-of-the-art of CAN cybersecurity is presented in
section 3. The methodology of our framework is presented in section 4. Section
5 describes the experimental result of the framework and finally, the paper is
concluded with the conclusion / future work section that is followed by acknowl-
edgement section.
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2 Background

2.1 Controller Area Network (CAN)

In this subsection, the background of controller area network (CAN) is presented.
To highlight the overview of CAN protocol, the protocol characteristics and
its representation in terms of OSI model [22] is described here. Moreover, the
security issues originated from the basic architectural design of the protocol is
described at the end of the subsection.

By design the controller area network (CAN) is a broadcasting protocol where
ECUs communicate with each other using a single wire. This enables the system
manufacturer to reduce complex wiring design of many point to point connec-
tions between ECUs and make the system easily maintainable [20]. While con-
nected to a standard CAN network, an ECU can send 0-8 bytes of data with an
eleven bit identifier. The identifier maintains the priority scheme of CAN pro-
tocol which is, message with lower arbitration ID has high priority while going
through the bus [17]. On the other hand, any entity connected to the bus can
listen to all the traffic in the network for its broadcasting nature.

The CAN protocol is specified in ISO 11898 and and is defined in the physical
layer and data link layer of Open Systems Interconnection model (OSI model)
[22]. In the CAN physical layer, the data is handled as binary bits and the core
functionality of this layer is to ensure bit encoding/decoding, bit synchronization
and indicate physical wire orientation and on the other hand, CAN data link layer
handles CAN data as frames and performs complex tasks like data encapsulation,
frame encoding, frame error detection [22]. Physically, the CAN bus is actually
a twisted pair wire, terminated with 120 ohm. The twisted pair is called the
CAN high (CAN-H) and the CAN low (CAN-L) and provides protection against
electromagnetic interference. In terms of physical layer orientation of OSI model,
CAN protocol follows differential signaling (shown in figure 1) where the final
voltage of a single bit data is extracted by subtraction between CAN-H and
CAN-L. When there is a 0 bit in the bus (dominant bit), CAN-H pulls 3.5 volt
where CAN-L contains 1.5 volt. In terms of a bit with value 1 (recessive), CAN-H
and CAN-L both set the voltage to 2.5.

In data link layer, a CAN protocol handles data as frames. By default a
standard CAN packet has 108 bits in total as shown in Table 1. It starts with
a single bit of data called start of frame (SOF) field. Then it is followed by
11 bit arbitration ID (AID), 1 bit remote transmission request (RTR), 6 bit
control field, 0-64 bits of data field, 16 bits cyclic redundancy check (CRC), 2
bits acknowledgment (ACK) field, 7 bits of end of frame (EOF) field [1]. While
connected in a network, an ECU can send CAN packet to the traffic by sending
a CAN data frame by putting dominant bit in the RTR field and an ECU
can request data from another ECU by sending a CAN remote frame with a
recessive bit in the RTR field. Although there is an AID field presented in a
CAN packet, but there is not a single field available that indicates the source
address. There is CRC field in a CAN packet which only protects the data field.
So, the absence of source field and the broadcasting nature of the protocol clearly
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Fig. 1. CAN differential signaling

indicates that the CAN protocol lacks one of the concepts of the famous CIA
triad (confidentiality, integrity and availability) i.e. integrity. The work proposes
a framework to identify senders thus ensuring integrity to make CAN network
security proven.

Table 1. A standard CAN data packet

Field name Number of bits

Start of frame 1

Arbitration ID 11

Remote transmission request 1

Control fields 6

Data field 0 - 64

Cyclic redundancy check 16

Acknowledgement 2

End of frame 7

Total 108

3 Sender identification: state-of-the-art

To ensure integrity in the CAN bus one approach is to implement message au-
thentication scheme [42] by including a message authentication code (MAC)
inside CAN frame. While it makes the CAN bus secure but according to the
standards, the least size of the MAC is 64 bit to prevent collisions [14]. So, the
challenge of implementing the MAC based approaches is to add 64 bit MAC
along with the data that needs to be transported to the network where the data
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Table 2. Computational complexity of common state-of-the-art statistical features

Feature name Equation Time complexity

Minimum min = min(xi) Θ(n)

Maximum max = max(xi) Θ(n)

Mean x =

∑
n

i=1
xi

n
= x1+x2+...+xn

n
Θ(n)

Variance s
2 =

∑
n

i=1
(xi−x)2

n−1
=

∑
n

i=1
x2

i
−nx2

n−1
Θ(n2)

Skewness skewness =

∑
n

i=1
(xi−x)3

(n−1)∗σ3 Θ(n2)

Kurtosis kurt = µ4

σ4 Θ(n2)

field can only hold up to 64 bits of data 1. To overcome the approach, researchers
proposed two kind of MAC implementations. one is instead of using 64 bit MAC,
they were using a truncated MAC to include integrity to CAN protocol [26, 27,
42] and the other approach is to use CAN+ protocol, an improvement of the
existing CAN [29, 30] where additional data can be sent in time intervals to au-
thenticate CAN messages. For example, researchers in crafted a 4 byte MAC
and put it into the data field of the CAN packet to authenticate CAN message.
The disadvantage of truncating CAN data field to include MAC [26, 27] is, it
limits the size of data payload to be transmitted in a CAN packet and restrict
the CAN protocol to transmit 8 bytes data payload. The proposed works in [29]
sends two CAN messages where one contains the data payload the other one
contains the MAC address. The approach resolves the issues originated by the
truncated MAC approaches but it uses the limited traffic bandwidth of CAN
network (1 Mbit/s) [5] as it needs to send two packets of data to securely send
a single CAN data payload.

Apart from the CAN message authentication techniques, researchers have
considered to fingerprint CAN senders by using physical unclonable character-
istics such as clock skews [31] and voltage [5, 14, 18]. The main idea of this
approach is to identify the source of CAN transmitters. The concept is adopted
from the famous physical layer identification (PLI) [15] technique where the
unique characteristics of transmitters are extracted to link the physical signals
to the senders. The techniques for CAN PLI can be classified into two categories.

Clock skew based fingerprinting The quartz crystal clock determines the
different clock frequencies on an ECU, resulting in random clock drifts which
can be used to uniquely identify an ECU. Cho and Shin proposed a Clock-based
IDS (CIDS) [31] which exploits the intervals of periodic message to estimate
the clock skews as the fingerprint of the transmitter ECU. The idea was used
to estimate clock behaviors of ECUs to detect the intrusion and identify the
source of the message. However, this method is effective in a temperature-stable
environment[32].
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Voltage based fingerprinting Authenticating the CAN message transmitter
based on the unique and immutable physical characteristics such as the voltage,
is termed as physical fingerprinting. This area of research has gained popular-
ity now a days where utilizing the voltage characteristics is the core idea. For
example, Kneib et al. [32] used voltages for fingerprinting ECUs, utilizing rising
edge, falling edge of the dominant bits. The framework achieved an accuracy
of 99.85% in identifying ECUs by using statistical features like mean, stan-
dard deviation, variance, skewness, kurtosis, root mean square, maximum and
energy etc. Researchers in [5] extracted time domain and frequency domain sta-
tistical features using voltages captured from the ECUs and proposed a neural
network based ECU classifier. They achieved an accuracy of 98.3% on an exper-
imental setup using microcontrollers. Authors in [14] proposed an edge based
identification method using voltage collected using picoscope (software defined
oscilloscope) and a naive bayes classifier. As a feature they used statistical time
domain features such as mean, variance, skewness, kurtosis, radio max plateau,
plateau, overshoot height, irregularity, centroid, flatness, power and maximum.
Similar work has been proposed in [33] that uses 10 time domain features and
10 frequency domain features and achieved an accuracy of 98.94 % accuracy at
maximum while voltage data is collected using an oscilloscope at a sampling rate
of 2 GS/s. Bellaire et al. [18] proposed a machine learning based ECU finger-
printing framework by handcrafting signal processing features on voltage data
such as transient response length, maximum transient voltage, energy of the
transient period, average dominant bit steady-state value, peak noise frequency
and average noise. Similar kind of approaches are also proposed in [34, 35].

The research works described above achieved high accuracy in identifying
CAN signal senders, but the feature extraction is highly expensive in terms of
computational complexity. Table 2 represents the common statistical features
and their corresponding computational cost. To overcome this, this paper pro-
posed a novel framework that eliminates the necessity of extracting highly com-
putational statistical features described above by utilizing images generated from
the uniqueness presented in the voltage data to identify CAN signal transmit-
ter. The image is generated using recurrence plot method whose computational
complexity is Θ(n2) whereas the computational complexity of any framework
that uses feature shown in table 2, is 3 ∗ (Θ(n2) + Θ(n)). Experimental result
shows that the proposed framework processes features to identify ECUs with a
lower computational time than the state-of-the-art work.

4 Methodology

In this section the proposed framework for identifying CAN message senders is
described. The phases of this methodology is described in a bottom up fash-
ion, where the core idea of physical layer identification in the subsection A is
presented first. Then the technique of image generation using the physical char-
acteristics is describes in subsection B and finally in subsection C, the entire
proposed framework is explained.
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4.1 Linking CAN signal to the transmitter

Physical layer identification is a popular concept for identification of senders in
connected networks for so many years [15, 37]. The fundamental idea of this ap-
proach is, the behavior of senders in terms of analog signal has slight variations.
The differences are introduced in the design, fabrication and manufacturing pro-
cess, even two identical digital devices that are manufactured in the same pro-
duction lot, have unique artifacts which is difficult to control and duplicate [5, 14,
32]. In a practical world, although it can be reproduced by reverse-engineering,
but the process is difficult if not impossible for a determined attacker. Fig. 2
illustrates the amount of inherent variation between two different CAN trans-
mitters.

Data points
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2.5

3.0

3.5
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4.5

5.0

ECU 1 ECU 2

Fig. 2. Analog signal difference of two ECUs

The paper uses the above mentioned inherent variation of the CAN trans-
mitter and uses them to fingerprint the transmitter as it is unique. The Figure 3
shows how a CAN signal stays in an idea condition and how it distorts in prac-
tical world. The spikes from the idea line is considered as the impurity of each
CAN transmitter which is identical to it. The proposed work uses it to create a
unique signal characteristics profiling for transmitters.

Again the question remains how to extract the tiny variations? Which is
called distortions of the analog voltage. Lets assume, V is a collection of analog
voltage signal captured from the CAN-H wire where,

V = (V1, V2, V3....Vn) (1)

Ideally, Vi should be 3.5 when it is a dominant bit and 2.5 when it is a
recessive bit. In real world, the unique artifacts add noise to the ideal value
and creates spikes (see 3). In order to extract the unique variations, the spiking
points needs to be subtracted from 3.5 or 2.5 depending on it is a dominant or
recessive bit. So, the unique artifacts (Distortions, Di) of an ECU is,
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Fig. 3. CAN-H signals with unique artifacts

Di = (Vi − Tj) (2)

where Tj is either 3.5 or 2.5 depending on if the bit is dominant or recessive.

4.2 Representing signal profiling by recurrence plots

In this phase of the proposed method, the extracted unique slight variations of
CAN senders are used to create images for each transmitter. The variations are
turned into images via the recurrence plot (RP) [36] technique where each image
represents the pattern of a sender. The initial purpose of recurrence plots was
to create a visualisation of the recurrences of a system’s states in a phase-space
(with dimension n) within a small deviation ϵ. That means, a recurrence of a
state at time i and at a different time j is marked within a two-dimensional
squared matrix with ones and zeros (black and white points in a plot), where
both axis represent time. The RP can be formally expressed by the following
matrix in equation 3 [36].

Rij = Θ(ϵ− |
−→
Di −

−→
Dj |) i, j = 1....n (3)

Where Di and Dj is the distortions extracted in equation 2. The matrix can
be used to create an image which is actually a correlation plot. The image is the
representation of a CAN transmitter as it is created form the unique physical
characteristics. The proposed work uses the images in identifying the source of
CAN signals by considering it as an image classification problem.

4.3 Source identification of ECUs

Finally, the paper proposes a framework that uses the above mentioned steps
to identify the source of CAN ECUs. Figure 4 shows overall architecture of
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our source identification framework. The proposed architecture first extracts the
unique artifacts of the CAN transmitters. Then the recurrence plots are created
from the extracted distortions which are a representation of uniqueness of CAN
transmitters. Finally, the recurrence plots are used to train and test a deep
learning model. In the figure 4 the green line shows the training phase and the
red line represents the testing phase of the system. The data processing needed
for the framework is to extract the unique artifacts and the creation of recurrence
plot, which is same for both the training and testing phase. For the selection of
deep learning architecture, we have chosen two popular network MobileNetV2
[38] and EfficientNet [39] for the experiment.

  

+

Deep 
Learning

ith ECU

Linking Received 
Packet

Distortion 
Extraction

 Recurrence Plot

PhyF unit

Fingerprint 
Model

Fig. 4. Source identification of CAN message senders

5 Experimental result

In this section the effectiveness of the proposed methodology is evaluated by
conducting experiments in the laboratory where subsection 5.1 presents the
experimental setup. It is followed by subsection 5.2, 5.3 i.e. the generation of
recurrence plot of CAN senders and the performance of the proposed framework
consecutively. Then the effect of environmental factors over the proposed frame-
work is discussed in subsection 5.4 and effect of information aware downsampling
is presented in subsection 5.5. Finally, the performance of spoof detection in a
vehicle test bench and the comparison with the state-of-the-art is presented in
subsection 5.6 and 5.7 respectively to conclude the section.
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5.1 Experimental setup

To verify the effectiveness of the proposed framework, an experiment is designed
(Figure 5) on a CAN protocol based test bed that has total 8 ECU built by
Arduino Uno microcontrollers connected to CAN transceivers where each ECU
has 1 meter channel length. Physical signal for each ECU is captured using a
DSO1012A oscilloscope with a sampling rate of 2GS/s, 100MHz bandwidth, and
8-bit vertical resolution. The data was collected in a laboratory environment from
the CAN-H pin which ideally ranges from 3.5v to 2.5v. Multiple programming
languages are used in this experiment as the microcontrollers are programmed
using C programming language and Python is used for training & testing deep
learning models and result analysis. The experimental testbed is set up in a plug
and play mode, because some of the experiments were done using 4 ECUs and
some of the experiments were conducted using 8 ECUs. To check the performance
of the proposed framework on a real vehicle, an experiment is designed on a
vehicle test bench that is based on the GM Sierra 2020 model for spoof detection
also (elaborated extensively in subsection 5.6 ).

Fig. 5. Experimental settings

5.2 Generation of recurrence plot of CAN senders

The goal of this subsection was to create recurrence plot by using distortions
captured from the CAN transmitters and visualize them in human eyes. To
perform that experiment we collected analog signals from 4 ECUs using the
testbed described in subsection 5.1 and extracted the distortions of the ECUs.
The distortions are mapped to create recurrence plot and saved as images for
visualization. Each image was generated from 96 voltage data points (length of
CAN-H dominant bit) started from the peak of the voltage signals. Figure 6
shows the generated plots of 4 ECUs where each row has images for each ECU.
It indicates that, the images has their own patterns and they are different to
each other visually.
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Fig. 6. Recurrence plot representing 4 ECUs

Visually RPs provide some useful insights about the sender ECUs. But the
question arises how much information the RPs contain to distinguish the CAN
transmitters. In order to do so, an experiment was deigned to quantify the RPs
generated from the CAN ECU signals. To achieve that, a recurrence quantifi-
cation analysis was performed to quantify the RPs by extracting recurrence
properties from the generated RPs. We used recurrence parameters [45] such as
recurrence rate, entropy diagonal lines, longest diagonal line length, laminarity,
divergence, additional diagonal line length to perform data analysis. To do so,
a Python program is written to generate RPs from CAN high analog voltages
collected from 8 ECUs and then the images are used to perform recurrence quan-
tification analysis (RQA) in an Apple M1 chip computer with 8 GB RAM. For
RQA, the images are fed into python library PyRQA [43] and the parameters
are extracted for rigorous analysis. To see the feature differences of the ECUs in
terms of RQ parameters the data is plotted in a box plot shown in Figure 7. The
figure shows that the 8 ECUs have notable variations when compared against
the 6 recurrence parameters.

5.3 Performance of the proposed framework

This experiment evaluates the accuracy of sender identification in a CAN net-
work using the proposed framework. The main goal of this subsection is to
demonstrate the applicability of image classification via deep learning models in
CAN physical fingerprinting. To achieve this, the proposed framework is vali-
dated against deep learning networks using (Mobilenetv2 [23] and EfficientNet
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Fig. 7. Feature differences of recurrence quantification parameters

[39]) architecture. First the data from 8 ECUs are collected from the testbed
described in subsection A, then data processing which involves extraction of dis-
tortion & image generation is done in an Apple M1 computer with 8 GB RAM
and finally, the training and testing of deep learning architecture is performed in
a Google-Colab environment. The code for the data processing, model training
and model testing is written in Python programming language.

Table 3. CAN sender identification using Deep learning models

Algorithm Accuracy(%) Feature processing time (ms)

efficientnet 95.04 0.07

Mobilenetv2 97.52 0.07

To conduct the experiment 131,760 analog voltage data points are gathered
in total and 1098 images were created as described in subsection B where each
ECU has 250 images and each image has a dimension of 192X192 pixels. To han-
dle the smaller number of images we used transfer learning [41], where a trained
model is tuned to solve a problem which is unknown to the trained model. In
order to do so, a pre-trained MobileNetV2, trained with a public dataset (im-
agenet [40]) with 1,700,505 parameters is selected and it’s weights are used to
retrain the model to solve the CAN sender identification problem. For retraining
the model, 70% data was used, while the retrained model is tested with 15% and
validated with remaining 15% data. Table 3 shows the result of the simulation.
It indicates, Mobilenetv2 architecture achieves a maximum validation accuracy
of 97.52%. To check the performance of the proposed methodology while using
a different deep learning algorithm, the same experiment was repeated using an



14 RUD. Refat et al.

EfficientNet model pre-trained on imagenet dataset [40] with 5,338,572 param-
eters. It was re-trained using 70% data and tested using 15% data where the
image dimension was 224X224 pixels. Finally, the performance of the method-
ology was measured by validating the trained model with 15% remaining data.
The experimental result shows that the EfficientNet achieves a validation accu-
racy of 95.04%. While using both MobileNetv2 and EfficientNet it takes 0.07 ms
per image on average for data processing task which involves noise extraction
and image creation.

5.4 Effect of Environmental factors on the proposed IDS

This subsection represents the analysis of the effect of environmental conditions
on the performance of the proposed framework. It is important because, the
foundation of the proposed methodology is image classification where the im-
ages are created from the distortions present in electrical signals and the signal
characteristics are sensitive to environmental factors like temperature, amount
of moisture contamination, aging, etc. [21]. These factors, if not accounted for,
could lead to incorrect identification of the senders in real-world scenarios. In or-
der to verify their effect, data is collected from a setup testbed with 8 ECUs and
then analysis is performed to measure performance of the proposed framework
under the presence of noise that may be produced by environmental factors. To
add the noise, a simulation is created by adding Additive White Gaussian Noise
(AWGN) [44] of different percentage of the voltage distortions (1%, 2%, 3%, 4%,
5% & 10%) to the voltage signals. The overall experiment is divided into two
different steps, first one is adding AWGN to the electrical signals and creating
the images by using the noisy distortions. Figure 8 shows the distorted images
that are generated from different level of noisy voltages. in the subfigure (a)
represents an image generated without AWGN, while subfigure b,c,d,e,f,g repre-
sents images with 1%, 2%, 3%, 4%, 5% & 10% added AWGN. The noiseless and
noisy figures clearly indicates that the noises caused by environmental factors
has significant effect on the images generated by the voltage distortions while
there is deviation from the original image increases with the addition of level of
noises to the voltages.

In the second step of the experiment, a deep learning model is trained using
the noiseless original noise, while the images with noise is tested against the
trained model and the model performance is evaluated in terms of sender identi-
fication accuracy (shown in Table 4). While introducing 1% noise in the testing
data the performance of the proposed framework degrades by a 30.23% so the
proposed model is sensitive to environmental noise. To check the performance
of the proposed approach when the model is retrained, again the trained model
is retrained by adding images with 1% AWGN and tested against noisy images.
Later the trained model was retrained with 2% noise and model performance
against noisy images was evaluated again. The experimental result is summa-
rized and shown in Table 4. According to it, when the generated images with
1% AWGN are introduced during the model training with noiseless images, test-
ing accuracy improves significantly for noisy images (1%, 2%, 3%, 4%, 5% and
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a) Noiseless image b) Noise level 1% c) Noise level 2%

e) Noise level 4% f) Noise level 5% g) Noise level 10%d) Noise level 3%

Fig. 8. Images generated from voltages under different environmental conditions

10% GN). Although the training data had only noisy images with low AWGN
(1%), the trained model was able to classify noisy images with an improvement
of maximum 34.47% and minimum 19.37%. Again, when the model was again
retrained by introducing noisy images with 2% AWGN and the model can iden-
tify senders with an maximum upgrade of 9.2% in terms of accuracy. So, it can
be concluded that, the proposed framework is performs better if the model is
retrained with noisy images.

5.5 Effect of selective (information aware down sampling) sampling
on the proposed framework

Since, the amount of data to be processed for generating each image has a
larger influence on the required computing power, a major goal is to reduce the
required amount of sampling points. To reduce the sampling points considered
to create the image, an experiment with rigorous analysis is conducted. If we
look carefully, the backbone of the methodology is the images which are created
from the distortions of the ECUs. Again, the distortions are created from analog
voltage signal of the CAN signals. Figure 9 shows the plot of analog signal
captured form an ECU and it is clearly visible that, the signals has spikes at the
beginning and gradually it settles down in terms of voltage. From that we can
infer that, the distortions which is extracted from the overshoot portion of analog
signals (marked as a red box in Figure 9) holds significant unique information
which is vital in sender identification. and after that we have data points that
are less informative. Based on that observation, an experiment was conducted
where images were generated by varying the informative and uninformative data
points. Then the images are fed into a MobileNetV2 model for evaluation. So, in
order to verify that an simulation is designed where images generated by three
approaches are tested against MobileNetV2 model and the validation accuracy
are evaluated. They are,

– Truncated sampling: images generated using all the informative points .
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Table 4. Effect of environmental factors over the proposed framework

Training Testing Model
images images performance

Noiseless 1% AWGN 2% AWGN AWGN (%) Accuracy (%)

Yes No No 0 98.34

Yes No No 1 68.11

Yes No No 2 61.09

Yes No No 3 55.81

Yes No No 4 51.05

Yes No No 5 47.00

Yes No No 10 33.47

Yes Yes No 1 94.77

Yes Yes No 2 95.56

Yes Yes No 3 92.31

Yes Yes No 4 85.45

Yes Yes No 5 80.94

Yes Yes No 10 52.84

Yes Yes Yes 2 96.82

Yes Yes Yes 3 95.99

Yes Yes Yes 4 94.65

Yes Yes Yes 5 89.13

Yes Yes Yes 10 61.52

– Custom odd sampling: images generated using all informative points and
the odd sampling points of uninformative portions aka .

– 5th sequence sampling: images generated using all the informative points
and the (0,5,10, 15 ...nth) sampling points in uninformative portions.

Table 5. Performance analysis on information aware down sampling

Sampling method Accuracy(%) Processing time (ms)

Truncated sampling 94.21 0.04

Custom odd sampling 95.05 0.06

5th sequence sampling 98.34 0.05

To conduct the above mentioned experiments, analog voltage samples for 8
ECUs are collected using the experimental setup described in subsection A and
images are generated using the truncated sampling, the custom odd sampling
and the 5th sequence sampling methods. The images are then trained, tested and
validated with the MobileNetV2 deep learning architecture and evaluated based
on validation accuracy that is shown in Table 5. According to the analysis, 5th
sequence sampling achieved a validation accuracy of 98.34% which is better than
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Informative data points

Signal overshoot

Fig. 9. Information aware down sampling technique

the accuracy achieved while using truncated sampling and custom odd sampling.
Where the truncated sampling is faster than the other two approaches in data
processing by at least .01 ms.

5.6 Spoof detection on actual vehicle test bench

To evaluate the performance on an actual vehicle test bench, an experiment
is conducted where the goal is to detect spoofing attack using the proposed
methodology. First an experiment is setup on a laboratory vehicle test bench
(Model: GM Sierra, Year: 2020) shown as Figure 10 to perform spoofing attack
by changing the vehicle gear from park to drive mode using a raspberry pi 4
model B, where analog voltage data is captured using a picoscope 2205 A with a
sampling rate of 25 MS/s. After that, analog voltage data is captured again with
the same sampling rate of 25 MS/s when the vehicle is put to drive mode from
park mode using the vehicle gearshift. Although the attacker ECU was sending
the same data we can see form Figure 11 the data send by the attacker has
different analog voltage profile than the authorized ECU. The Figure 11 shows
that the two sets of benign CAN-H signal data from authorized ECU, marked in
blue & orange and captured at different times, differ from the two sets of CAN-
H data from the attacker, marked in green & purple and captured at different
times. However, when sent from the same CAN ECU, the data from both the
authorized ECU and the attacker appear almost identical. It is clear form the
figure that, the ECUs has their own fingerprint in their CAN-H dominant bit
analog data which is different from 3.5v (marked as red in Figure 11).

The analog voltages then prepossessed in a computer with 8 GM RAM and
416 images are generated from the distortions for both ECUs using Python
programming language, where 240 were from authorized ECU and 176 were from
attacker ECU. As the dataset is comparatively small we did data augmentation
technique to flip each images from left to right and prepared a data size of 832
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Fig. 10. Spoofing attack on vehicle test bench

images. The images are then retrained using a pre-trained MobileNetV2 deep
learning architecture where 70% data are used as training, 15% for tuning the
model and 15% for testing the trained model. The performance of the proposed
methodology is evaluated against metrics such as (1) attack detection accuracy,
precision, recall, f1-score and (2) benign data detection accuracy, precision, recall
and f1-score. The simulation result is summarized in Table 6 and it shows that
the proposed methodology detects spoofing attack with 100% accuracy while
it achieves a precision of 96.72%, recall of 100% and f1-score of 98.33%. On
the other hand, it detects benign data with an accuracy of 97.78%, precision
of 100%, recall of 100% and f1-score of 98.33%. So, finally, it can be concluded
that, the proposed methodology is efficient and applicable to today’s vehicles
as it achieved an combined accuracy of 98.89% in detecting spoofed and benign
data in the vehicle test bench.

Table 6. Performance under spoofing attack on laboratory vehicle bench

Data Sample Accuracy(%) Precision(%) Recall(%) F1 score(%)

No attack 97.78 100 97.78 98.87

Spoofing attack 100 96.72 100 98.33

Combined (spoof attack + no attack) 98.89 98.36 98.89 98.60
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Fig. 11. Analog voltage data for an authorized ECU and an attacker ECU

Table 7. Comparison with the state-of-the-art

Approach Accuracy(%) Precision (%)) Recall(%) F1 (%)) time (ms)

[5] 97.13 97.00 97.00 95.75 1.35

[14] 89.24 89.63 89.63 89.38 0.95

KNN 94.97 95.00 95.38 95.13 238

SVM 95.82 95.75 96.13 95.75 238

Proposed IDS 98.34 98.63 98.25 98.38 0.05

5.7 Comparison with the state-of-the-art

Finally the proposed methodology is compared against the state-of-the-art sender
identification methods [5] and [14] where [5] trains a Neural Network and [14]
builds a Support Vector Machine (SVM) model using statistical features. In
order to do so, the state-of-the-art [5] methodology extracts the distortion of
the ECUs at first and handcrafts 11 statistical analysis based features includ-
ing 6 time domain features i.e. maximum, minimum, mean, variance, skewness,
kurtosis and 5 frequency domain features i.e. spectral standard deviation, spec-
tral kurtosis, spectral skewness, spectral centroid, irregularity k to feed into an
artificial neural network to evaluate the performance of their approach. While
simulating their approach with data gathered from 8 ECU using the experimen-
tal setup described in subsection A, an validation accuracy of 97.13% as achieved
while the proposed framework achieved 98.34%. But in terms of data processing
(feature engineering), the state-of-the-art takes 27 times more than the proposed
framework. The proposed methodology creates the a single recurrence plot for
testing the model in 0.05 ms time using the 5th sequence information aware
down sampling while, the state-of-the-art [5] generates 11 statistical features in
1.35 ms for identifying a single CAN sender which is computationally more ex-
pensive (see Table 7). Again the proposed approach is compared against [14]
where the authors use signal characteristics by extracting 12 features such as
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maximum, mean, variance, skewness, kurtosis, centroid, flatness, power, irregu-
larity, plateau, max plateau ratio and overshoot height to train machine learning
model. While training & testing a SVM model, the state-of-the-art degrades by
9.1% in terms of sender identification accuracy than the proposed methodology
and needs 0.95 ms to process features which is 19 times slower than the pro-
posed approach. In addition to that, the proposed approach is compared with
traditional machine learning based approaches i.e. K-Nearest Neighbors(KNN)
and SVM where recurrence quantification parameters are used as features to
fit machine learning models. Based on the data collected form 8 CAN ECUs,
KNN achieved an accuracy of 94.97% and SVM achieved an accuracy of 95.82%
while the feature generation took around 238 ms. It clearly shows that the pro-
posed methodology is better both in terms of accuracy of identifying senders
and feature processing time.

6 Conclusion and Future Work

The paper proposed a physical fingerprinting framework for solving the CAN
protocol’s inability to identify the sender by modeling the problem as an image
classification problem. It introduces a novel approach for creating images utiliz-
ing uniqueness of the analog signal of CAN senders and it classifies the images
using deep learning model to identify CAN ECUs. As, the proposed method
only requires to generate an image for the identification of ECUs, it can put
an end to the trend of handcrafted feature engineering process in CAN physi-
cal fingerprinting. As per contributing to the state-of-the-art, to the best of our
knowledge the proposed methodology is the first ever work that utilizes the con-
cept of computer vision in CAN sender identification problem. The experimental
result shows that it is effective as it achieved an accuracy of 98.34% and efficient
as it only requires an image to identify sender. In the future, we will investigate
the effect of environmental factors like aging, temperature etc. on the proposed
methodology as analog signals change by time and varying temperature.
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