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18.1 Introduction

Numerical models provide a tool for synthesizing the impacts of dissolved organic matter
(DOM) cycling on large-scale processes such as ecosystem dynamics and carbon cycling and
for developing hypotheses that can be further tested experimentally. This chapter outlinesways
inwhichDOMcyclinghasbeen incorporated intonumericalmodels,key findings thathavebeen
elucidated through DOMmodeling efforts, and future promising directions for DOMmodels.
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Here we focus on DOM models aimed at capturing ecosystem- to global-scale dynamics.
Specifically, we cover two broad classes of large-scale DOM models: mechanistic biogeo-
chemical models and empirical data-constrained models. Both models provide key, but
different, insights into DOM modeling. Biogeochemical models provide insight into mecha-
nisms and can provide predictions as to how the systemwill respond to perturbations such as
shifts in climate. Data-constrained models provide our current best estimates for standing
stocks and fluxes in the current ocean.

Another class of models focuses more on the molecular scale and provides critical insight
into the chemical diversity of DOM and rates of DOM transformations. For more on these
models, we refer the reader to Chapter 13: Reasons Behind the Long-Term Stability of
Dissolved Organic Matter by Dittmar and Lennartz. Finally, many of the exciting new ad-
vances related to DOM production and consumption (as described in other chapters of this
book) have not yet been incorporated intoDOMmodels and so are not covered in this chapter,
although we do highlight some key areas for future model development.

18.2 Modeling carbon and energy flows

18.2.1 The beginning: Food web models and biogeochemical models

Numerical models have long been a key ecological tool for integrating observations and
theory dating back to the pioneering marine food web models of Riley (Riley, 1946; Riley
and Bumpus, 1946; Riley, 1947). These early predator-prey models were focused on the
growth of phytoplankton and zooplankton and tracked the flow of material and energy
throughmarine ecosystems. The relatively narrow focus of these early models was expanded
following the influential paper of Pomeroy (1974), which argued that our view ofmarine food
webs needed to encompass energy flows through DOM and bacteria (Fig. 18.1A). At the time,
it was estimated that microbes accounted for 50%–90% of ecosystem respiration. Thus,
Pomeroy argued that, given the large fluxes through these pools, understanding these
“unseen strands in the foodweb”was crucial both for understanding the ecology of the ocean
and for better fisheries management.

In the early 1980s, several researchers began incorporating DOMdynamics into planktonic
food web models (e.g., Williams, 1981; Pace et al., 1984). For example, the model by Pace et al.
(1984) included 14 biotic pools, including a DOMpool, two detritus pools, and free-living and
particle-attached bacteria pools. In contrast with previous models, which assumed that all
primary production was grazed by zooplankton, the Pace model routed 50% of primary pro-
ductivity through DOM, implicitly simulating viral and bacterial decomposition of primary
production. This model investigated ecological efficiency in different continental shelf envi-
ronments. Pace and colleagues showed that DOM and POM production and cycling could
play a critical role in energy flows and result in variable ecosystem efficiency (defined as
the fraction of ingested carbon converted to biomass at each trophic level) from 1% to 73%.

Biogeochemical models trace their roots back to the same food web modeling studies from
the 1940s and 1950s (e.g., Riley, 1946). The key divergence between biogeochemical and food
web models arose in the late 1970s when biogeochemical models focused more explicitly on
resolving nutrient cycling and primary productivity and neglected higher trophic levels.
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These models began to study the underlying mechanisms behind variations in primary pro-
ductivity, including environmental drivers (e.g., Kiefer and Kremer, 1981) and inorganic nu-
trient cycling—for example, the difference between primary production driven by nitrate
(new production) and ammonium (regenerated production) (Jamart et al., 1977; V!ezina
and Platt, 1987). At around the same time that ecologists were starting to incorporate DOM
cycling into food web models, the chemical oceanographic community began to call for the
incorporation of DOM into biogeochemical models to evaluate the role that DOMplays in car-
bon and nutrient cycling and phytoplankton growth (e.g., Williams et al., 1988).

The seminal study of Fasham et al. (1990) investigated the role of DOM in the cycling of
nitrogen through the marine food web. This model included dissolved organic nitrogen
(DON) production through phytoplankton exudation, detritus decomposition, and “sloppy
feeding” by zooplankton. In turn, DON was consumed by a bacterial pool that released
ammonium. The authors concluded that “detrital material behaves like a capacitor, allowing
higher regeneration rates and greater production.” Around the same time, Najjar et al. (1992)
published aphosphorus-basedmodel that includeddissolved andparticulate pools of organic

FIG. 18.1 Early ocean food web modeling perspective (A) compared to present-day state-of-the-art biogeochem-
ical models (B). Pomeroy proposed expanding the classic view of the ocean food web (inside the dashed circle) to in-
clude fluxes of organic matter (A). Biogeochemical models today typically resolve the fluxes of multiple nutrients
(e.g., carbon, nitrogen, phosphorus, iron, and silica) and include multiple pools of phytoplankton and zooplankton,
such as small phytoplankton (SP), large phytoplankton (LP), diazotrophs (Diazo), small zooplankton (SZ), medium
zooplankton (MZ), and large zooplankton (LZ) (B). These models also include dynamic organic matter cycling with
multiple organic matter pools, including labile DOM (LDOM), semilabile DOM (SLDOM), semirefractory DOM
(SRDOM), and particulate organic matter (POM). Most biogeochemical models do not explicitly resolve refractory
DOM (RDOM), but we include it here for completeness. Cycling of DOM is shown with black arrows, uptake of
inorganic nutrients and consumption/loss/mortality are shownwith blue arrows, and remineralization is shownwith
teal arrows. (A) Redrawn from Pomeroy (1974), Fig. 1. (B) Redrawn from Stock et al. (2020), Fig. 1.
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phosphorus. This study showed that when dissolved organic pools were omitted from the
model, nutrients became trapped in the surface ocean below the euphotic zone resulting in
concentrations greater than observations. When these waters were upwelled, this generated
greater surface concentrations of phosphorus and higher rates of primary productivity than
observations. IncludingDOPand longer timescales for particle remineralization alleviated the
“nutrient trapping” (Najjar et al., 1992) observed in previous models. These studies high-
lighted the significance of organic matter pools in capturing nutrient concentrations,
regenerated production, and the timescales of phytoplankton dynamics. This was a crucial
step toward including DOM in biogeochemical models.

The next generation of biogeochemical models, often called Nutrient-Phytoplankton-
Zooplankton-Detritus (NPZD) models, was developed in the late 1990s and early 2000s.
Similar to Fasham et al. (1990), NPZD models explicitly tracked the flow of carbon and nu-
trients through broadly defined detrital fractions (e.g., Doney et al., 1996). The NPZD
models also began to explicitly represent the cycling of multiple nutrients independently
(e.g., Moore et al., 2002). For example, the Biogeochemistry Elemental Cycle (BEC) model
incorporated carbon, nitrogen, phosphorus, and iron cycling, and the resulting multiple nu-
trient limitation on primary productivity into a marine ecosystem model (Moore et al.,
2002). The BEC model represented two detritus classes, one sinking and one nonsinking
(i.e., DOM plus small POM), and used fixed elemental stoichiometries for the ecosystem
components. Nitrogen fixation was also included in this model and was shown to be an im-
portant source of DON. This was one of the first models to represent all the organic and
inorganic carbon and nutrient pools that are now considered standard in ocean biogeo-
chemical models (Fig. 18.1B).

The first models to include multiple nonliving OM pools differentiated these pools based
on size (e.g., sinking vs nonsinking as described before). This differentiation is consistent
with operationally defined observations of organic matter concentrations into dissolved
and particulate fractions (Benner and Amon, 2015) and remains an important framework
for capturing carbon export flux through sinking OM (e.g., Omand et al., 2020). While size
remains the primary way in which POM is differentiated from DOM in models and obser-
vations, as biogeochemical models have increased in complexity, they have begun to incor-
porate the cycling of multiple DOM pools. Typically, these different DOM groups are
defined along a lability spectrum based on turnover rates from labile DOM (LDOM in
Fig. 18.1B) to semilabile (SLDOM) to semirefractory (SRDOM) to refractory (RDOM) (see
Chapter 5 for further discussion). These different lability pools and how they are modeled
are discussed in greater detail later (Section 18.3). First, we present an overview of the basic
formulation of modern ocean biogeochemical models.

18.2.2 Basic formulation of modern ocean biogeochemical models

While each biogeochemical model is slightly different in terms of the processes that are
included and the formulation of the dynamics, these models all follow the same basic formu-
lation. Specifically, the models use a set of coupled differential equations to express the pro-
duction and loss terms of each component of the ecosystem. As described in Section 18.2.1
and illustrated in Fig. 18.1B, these models track some combination of inorganic nutrients
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(e.g., nitrate, ammonium, phosphate), one tomultiple phytoplankton groups, often a predator
of phytoplankton (nominally a zooplankton), and one tomultiple detrital pools. Here, we out-
line the generic equations that are used in these models, including those for DOM cycling.
Ocean circulation and mixing play an important role in biogeochemical cycling (e.g., by pro-
viding nutrients through upwelling), and so for completeness, we include this term on the
left-hand side of the equations (circulation), but here we will focus on the biological drivers
of changes in the model state variables.

Changes in inorganic nutrients (N) are modeled generally as follows:

dN

dt
+ circulation ¼ "

X

i

uptake +
X

j

production (18.1)

where uptake is summed over i phytoplankton groups. There is also production of nutrients
by some subset j of the ecosystem, for example the production of ammonium or phosphate
through the consumption of organic matter. This last term is thus often linked to the decom-
position of DOM. Many models also include external sources and sinks of nutrients from
rivers, atmospheric deposition, or sedimentary exchanges (Fig. 18.1B). These sources would
be added as additional terms in Eq. (18.1).

Phytoplankton dynamics are represented using some form of the equation:

dPi

dt
+ circulation ¼ ¿i³

N
i ³

T
i ³

L
i Pi "miPi "

X

j

gi,jPiZj " agg (18.2)

where the first term on the right-hand side (RHS) defines the gross phytoplankton biomass
growth, which is related to the inorganic nutrient uptake rate (first term RHS in Eq. 18.1). Spe-
cifically, ¿i is the phytoplankton group-specific growth rate, ³i

N is the nutrient limitation of
phytoplankton group i, ³i

T is the temperature limitation of group i, and ³i
L is the light limitation

of group i. Phytoplankton loss occurs through a linear density-dependent loss term (second
term RHS in Eq. 18.2) and/or through explicit grazing (third term RHS in Eq. 18.2) where gi, j
is the grazing rate of zooplankton group j on phytoplankton group i. Many models also
include an additional loss term for phytoplankton (agg) which represents the formation of
aggregates or particles.

For models that include the excretion of DOM by phytoplankton, this is typically
encompassed within the linear, density-dependent mortality term (miPi), which represents
all nongrazing biomass loss. Specifically, a fraction of this mortality term is added as a source
of DOM (see Eq. 18.4). Sometimes this term is broken out explicitly to represent exudation and
viral lysis separately, but even then, these processes are typically represented using the same
linear form (e.g., Stock et al., 2014).

Zooplankton dynamics are described by

dZj

dt
+ circulation ¼

X

i

³ ggi,jPiZj "mjZj " aZn
j (18.3)

where the first term represents the ingestion of phytoplankton by zooplankton group j. Only a
fraction (³g) of ingested prey (gi, jPiZj) is converted to biomasswhile the remainder (1" ³g) rep-
resents the fraction lost to egestion, “sloppy feeding,” and respiration. Some of this (1" ³g)
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fraction is routed to DOM, some to POM, and the rest to inorganic nutrients. Zooplankton loss
terms include a linear mortality (mj) and/or a “quadradic” mortality aZj

n (we use the notation
n as various models use different exponents, though n¼2 or 1.5 are typical values).

The change in the DOM pool is represented as follows:

dDOMk

dt
+ circulation ¼

X

i

fex,kmiPi +
X

j

fg,kgi,jPiZj + fpom,k»pomPOM" »k³
*DOMk (18.4)

where the first three terms on the RHS represent the three primary DOM sources: (1) direct
release from phytoplankton either through exudation or nongrazing mortality, (2) “sloppy
feeding” by zooplankton on phytoplankton or zooplankton egestion, and (3) release of
DOM as a by-product of POM degradation which proceeds at rate »pom. Specifically, fex,k is
the fraction of phytoplankton mortality that is routed through DOM (source 1), fg,k is the frac-
tion of grazed phytoplankton biomass that is released to DOM (source 2), and fpom,k is the frac-
tion of POM degradation that is released as DOM (source 3). These models typically assume
that the loss rate of DOM follows first-order kinetics, whereby the loss rate is proportional to
the concentration of the substrate. The DOM loss rate constant (»k) is often scaled by environ-
mental factors (³*) such as temperature and/or light. For models that explicitly incorporate
bacterial dynamics, » is a function of bacterial biomass.

Biogeochemical models typically include between one (k¼1) and four DOM (k¼4) pools
where the production terms and degradation rates vary for each group.Models that represent
multiple lability classes (e.g., LDOM, SLDOM, SRDOM, and RDOM) often transfer DOM se-
quentially from the most labile to the most recalcitrant pools (Fig. 18.1B). This formulation is
inspired by the concept of the “microbial carbon pump” inwhichmicrobial degradation pref-
erentially removes labile dissolved organic carbon (DOC) molecules or transforms DOCmol-
ecules to recalcitrant forms that accumulate in the ocean (Jiao et al., 2010). To incorporate this
transfer between DOM pools, an additional term(s) similar to POM degradation term would
be added to the RHS of Eq. (18.4).

18.2.3 Current state of DOM modeling in earth system models

Since the early 2000s, the biogeochemical models described in Section 18.2.2 have been em-
bedded into state-of-the-art Earth SystemModels (ESMs). ESMs combine ocean, atmosphere,
land, and sea-icemodels to investigate feedbacks in energy and carbon flowswithin the Earth
system. These are the models that are used for future climate predictions, for example, for the
International Panel on Climate Change (IPCC) assessments. In association with each IPCC
report, the biogeochemical modeling community conducts intercomparisons (Carbon Model
Intercomparison Project). The CMIP6 model assessment was used for the IPCC Sixth Assess-
ment. One of themajor advances betweenCMIP5 and CMIP6was the increased complexity of
organic matter cycling and how it is represented in these models (S!ef!erian et al., 2020).

All ESMs represent at least one organic matter pool, and many have multiple DOM pools
(S!ef!erian et al., 2020). Typically these DOMpools are operationally defined based on the turn-
over timescales, with the SLDOM pool turning over on seasonal to annual timescales, the
SRDOMpool turning over onmultiannual to decadal timescales, and the RDOMpool turning
over on millennial timescales (e.g., Long et al., 2021; Stock et al., 2020; Aumont et al., 2015).
These models typically represent the production of DOM driven by phytoplankton
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exudation, mortality of phytoplankton and zooplankton, and “sloppy feeding” by zooplank-
ton on phytoplankton, as described before (Eq. 18.4). Inmost ESMs, the consumption of DOM
is represented as a loss rate which is sometimes temperature dependent (e.g., Stock et al.,
2020), light dependent (e.g., Long et al., 2021), and/or oxygen dependent (e.g., Aumont
et al., 2015). In these models, heterotrophic bacteria are typically implicit, and their metabo-
lism of OM is represented by a single rate constant. A few ESMs explicitly represent a bac-
terial group that consumes LDOM (e.g., Stock et al., 2020). As all of these models couple
biology, chemistry, and physics, they also capture DOM export out of the surface ocean
due to mixing and subduction, which has been shown to be an important loss process for
DOM in the surface ocean (Resplandy et al., 2019; Copin-Mont!egut and Avril, 1993; Carlson
et al., 1994; Hansell and Carlson, 2001; Dall’Olmo et al., 2016; Boyd et al., 2019; Le Moigne,
2019). Of note, most of these models do not represent RDOM that cycles on millennial time-
scales. As a result, thesemodels struggle to capture observedDOMpools (see following sections
for further discussion).

Some widely used biogeochemical models include PISCES-v2 (Aumont et al., 2015) that is
implemented in several Earth System Models, including the IPSL and CNRM models, and
represents one pool of SLDOM; the COBALT-v2 model that is implemented in the GFDL
Earth System Model, and represents three DOM pools (LDOM, SLDOM, RDOM) (Stock
et al., 2020); and theMARBL-BECmodel that is implemented in the Community Earth System
Model and represents SLDOM and RDOMpools (Long et al., 2021). A review of these models
can be found in S!ef!erian et al. (2020).

18.3 Modeling more complex organic matter dynamics

Models of organic matter cycling represent only a small fraction of the existing chemical
diversity in the DOM pool. Simplifying DOM into bulk pools based on differences in turn-
over rates (e.g., SLDOM, RDOM) provides a good first-order approximation when consid-
ering energy and carbon flows through an ecosystem. Specifically, incorporating these
broad DOM classes into biogeochemical and ecosystem models allows these models to bet-
ter capture observed turnover rates for nutrient pools and the timing and magnitude of
phytoplankton population shifts (see Section 18.2.1). However, this simplification does
not allow for varying microbial DOM consumers to impact rates of DOM cycling. The rep-
resentation of DOM in most numerical biogeochemical models assumes that the turnover
rate of the organic matter compounds is inherent to the compound and independent of the
microbial community. Both modeling (Zakem et al., 2021; Nguyen et al., 2022) and exper-
imental work (e.g., Carlson et al., 2004; Liu et al., 2020) have demonstrated that this is not
always true. Specifically, turnover rates for DOM can be ecosystem dependent such that the
biological-chemical interactions become important for determining degradation rates.
These dynamics are not incorporated into most models of OM cycling (DOM and POM)
in part due to a limited understanding of the underlying mechanisms driving these
processes.

While the impact of a diverse OM pool has not been included in most models of OM
cycling, significant progress has been made on modeling differential rates of DON, DOP,
and DOC cycling. In practice, this means breaking up Eq. (18.4) to represent multiple types
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of DOM and separately track DOC, DON, and DOP. These studies have shown that variable
organic matter stoichiometry can substantially impact biogeochemical cycling and ecosystem
processes.

Letscher et al. (Letscher andMoore, 2015; Letscher et al., 2015) incorporated variable DOM
stoichiometry into a biogeochemical model. Like previous models, DOM is produced as a
fraction of primary productivity. However, the turnover rates of the DOM pool differ such
that DOP is turned over more quickly than DOC, due to the preferential consumption of
phosphorous-containing compounds by marine microbes. The differential cycling of DOC
and DOP resulted in a modest but significant impact on primary productivity (8% increase
globally) and carbon export (9% increase), with the majority of this increase due to DOP up-
take by phytoplankton. These dynamics had the largest impact on nitrogen fixation, increas-
ing rates by 25%. Lateral transport of surplus DON and DOP from more productive regions
toward the oligotrophic oceanwas shown to be an important process for retaining nutrients in
the upper ocean that would otherwise be exported vertically, helping to supply a significant
fraction of subtropical gyre nutrient budgets (Letscher et al., 2016).

Many models of OM cycling use a black-box representation of microbial dynamics in
which details of microbial processes are lacking. Work by Zakem and Levine (2019) used a
model to suggest mechanisms behind the preferential remineralization of DOP and DON ob-
served by Letscher (Letscher and Moore, 2015; Letscher et al., 2015) and parameterized in
some ESMs (e.g., Long et al., 2021). Using a quota model to investigate preferential uptake
patterns by heterotrophic bacteria, Zakem and Levine (2019) were able to capture observed
patterns of DOC and DON with depth. This modeling work suggested that shifts in the stoi-
chiometry of DOM produced by phytoplankton can have large effects on the recycling of nu-
trients in the surface ocean and, thus, rates of primary production and carbon export.
Specifically, because LDOM does not show preferential remineralization, the relative
amounts of recalcitrant DOM production versus LDOM production impacts not only carbon
cycling but also nitrogen and phosphorus cycling.

DOM cycling is also important for iron cycling and ecosystem dynamics (see Chapter 10 for
further discussion about metal binding ligands). In many regions of the ocean, iron limits primary
productivity, and organic ligands play a key role in regulating the bioavailability of iron.
However, most biogeochemicalmodels do not represent this process. Biogeochemical models
that incorporate iron-binding ligands have shown that the distribution of bioavailable iron is
significantly impacted by how iron-binding ligands are represented in themodel and that this
has important implications for primary productivity (e.g., Tagliabue et al., 2016; V¬olker and
Tagliabue, 2015). These models typically explicitly incorporate iron-binding ligands by
linking ligand production to the DOM pool.

18.4 Data-constrained models of DOC cycling

Most of the mechanistic biogeochemical models implemented in ESMs and described in
Section 18.2 represent the cycling of short-lived LDOM to SLDOM (Fig. 18.1B). While these
shorter-lived DOMpools play an important role in ecosystem dynamics and nutrient cycling,
they represent only a fraction of the total DOM inventory, most of which turns over on much
longer timescales (Hansell, 2013). It is challenging for biogeochemical models to resolve the
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long-lived RDOM pools because lengthy simulations are required to “spin-up” the model so
that the DOM cycle comes to equilibrium—this timescale is at least 10,000years for the most
refractory pools. These factors and biases in the deep ocean overturning of these models can
lead to errors in their simulated DOM distribution (e.g., Long et al., 2021). Thus a different
class of model is needed to assess the global distributions and cycling of the entire DOMpool.

Several approaches have been developed to address the challenge of accurately simulating
the global distribution of DOM, with a focus on DOC. All of the models described in this sec-
tion give a global view of DOC concentrations and production rates that are consistent with
(and constrained by) DOC observations. Given the sparsity of oceanographic measurements,
these models provide a means for gap-filling sparse data and generating global-scale assess-
ments of DOC concentrations and inventories. Furthermore, the models can assess biogeo-
chemical rates and turnover times that are not apparent from observations of standing
stocks alone.

Onemodeling approachuses transportmatrix (TM)models that represent ocean circulation
and mixing as a sparse matrix transport operator (e.g., Primeau, 2005; Khatiwala et al., 2005).
The TM can be used as the circulation component of ocean biogeochemical models (see Eqs.
18.1–18.4). The advantage of TM-based models is that they are amenable to fast spin-up
methods, greatly reducing the simulation times necessary to achieve an equilibriumDOM cy-
cle. One of the earliest TM-based models of DOC cycling is that of Hansell et al. (2009, 2012).
Their studies consist of a simple DOC cyclingmodel embedded in the data-constrained circu-
lation model of Schlitzer (2007). The model represents three different DOC pools—SLDOC,
SRDOC, and RDOC—with lifetimes of 1.5–3years, 10–20years, and 15,000–16,000years, re-
spectively (exact lifetimes depending on themodel configuration). DOCproduction in the eu-
photic zone is proportional to the square root of the satellite-derived primary production (PP),
and the production rates of each fraction are adjusted to achieve the best match to DOC obser-
vations. Hereafter we will refer to this as the DOC TM model.

Another TM-based model is the data-constrained ocean biogeochemical model of DeVries
and Weber (2017). This biogeochemical model is coupled to a TM from an ocean circulation
inversemodel (OCIM) (DeVries, 2014). TheOCIMis adata-assimilatedmodelwhose circulation
is optimized to match the distribution of physical tracers such as temperature, salinity, and
CFCs. The biogeochemicalmodel represents fourDOCpools (labile, semilabile, semirefractory,
refractory) with lifetimes of #10days, #2years, #200years, and #50,000years, respectively.
DOC in this model is produced in the euphotic zone as a fraction of satellite-derived PP rates.
The rate ofDOCproductionvaries byplankton type (large or small), as does the fractionofDOC
production allocated to different DOC pools. These parameters, aswell as degradation rates for
the four DOC pools, are adjusted to match DOC observations. A later update to this model by
Nowicki et al. (2022) added an explicit ecosystem model and updated the parameters to main-
tain a goodmatch to observed DOC. Hereafter we will refer to these models (either version) as
the biogeochemical TM model.

An alternative approach utilized by Roshan and DeVries (2017) modeled total DOC con-
centrations using an Artificial Neural Network (ANN). The ANN model predicts the total
DOC concentration in the ocean using climatologies of nutrients, temperature, salinity,
and other oceanographic observations as inputs. Roshan and DeVries (2017) used the
ANN-predicted DOC concentrations to estimate net DOC production and export rates. They
did this by using the OCIM to calculate the circulation-induced transport of DOC in Eq. (18.4),
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and then estimating the net production (production—loss, i.e. the right-hand side of Eq. 18.4)
of DOC in the euphotic zone by restoring the modeled DOC to the ANN-predicted DOC con-
centrations (Roshan and DeVries, 2017). Hereafter we will refer to this model, including the
diagnosed net source of DOC, as the ANN model.

In Sections 18.5 and 18.6, we discuss results of these data-constrained models with a focus
on the global cycling and budgets of DOC. Other components of DOM such as DON andDOP
have only recently been simulated with these types of models (e.g., Letscher et al., 2022), and
their budgets are not discussed here.

18.5 Global distribution, inventories, and production rates of DOC

The distributions of DOC predicted by the three different data-constrained models
described in Section 18.4 are shown in Fig. 18.2 for the surface ocean (roughly the upper
30m) and the deep ocean at 2000m. The models all predict that DOC concentrations are
highest in the surface ocean, with concentrations reaching up to 70–80¿molkg"1 in the trop-
ical and subtropical oceans. In the polar and subpolar surface oceans, DOC concentrations are
generally less than 50¿molkg"1. In the DOC TM and biogeochemical TM models, the high
DOC concentrations in the tropical and subtropical surface waters are caused by the produc-
tion and buildup of SLDOC in these regions. The ANN model does not simulate the mech-
anisms responsible for the geographic variations of DOC, but exhibits similar patterns to the
TMmodelswith highDOC concentrations in the tropics and subtropics, and lowest DOC con-
centrations in the subpolar North Pacific and Southern Ocean, consistent with large-scale pat-
terns seen in the surface observations (Hansell et al., 2009; Letscher et al., 2015). Beyond these
broad similarities, there are some differences in the surface DOC distributions simulated by
these data-constrained models. The biogeochemical TM model has larger DOC concentra-
tions near the coasts and slightly lower concentrations in the tropical Pacific than the DOC
TMmodel, while the ANNmodel has higher DOC concentrations in the western tropical Pa-
cific than either of the other models.

In the deep ocean, DOC is dominated by the refractory component, with a small contribu-
tion fromSRDOC. Both theDOCTMmodel and the biogeochemical TMmodel display a grad-
ual decrease inDOC from theNorthAtlantic to theNorth Pacific (Fig. 18.2), consistentwith the
slow removal of RDOC as water masses age along the deep-ocean conveyor circulation
(Carlson et al., 2010; Hansell and Carlson, 1998; Hansell et al., 2009). This deep-ocean turnover
is the sole means of refractory DOC removal in these models. The ANN model shows more
small-scale structure and variability in the deep-ocean DOC concentration, withmore DOC in
the Indian Ocean and the western Pacific than is found in the DOC TM and biogeochemical
TMmodels (Fig. 18.2). This is consistent with localized sources and sinks of refractory DOC in
the deep ocean, which have been shown to be associatedwith hydrothermal vents and crustal
aquifers (Hawkes et al., 2015; McCarthy et al., 2011; Shah Walter et al., 2018) or marine sed-
iments (Hwang et al., 2010; Pohlman et al., 2011). These localized deep-ocean sources and
sinks of DOC are not represented in the DOC or biogeochemical TM models.

The global inventory of DOC ranges from 647GtC in the biogeochemical TM model of
Nowicki et al. (2022) to 670GtC in the ANN model of Roshan and DeVries (2017)
(Table 18.1). The vast majority of this DOC is in the refractory pool, which comprises
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628–642GtC in themodels consideredhere (Table 18.1). Production rates of RDOC range from
0.011 to 0.054GtCyear"1, for amean lifetime of#12,000–57,000years. SRDOC is the next most
prominent pool in these models, with an inventory of 9–26GtC, a production rate of
0.13–0.34GtCyear"1, and a mean lifetime of 30–200years. It is probable that the wide range
of lifetimes and production rates obtained for the SRDOC and RDOC results from the
models approximating a continuum of DOC reactivities (Amon and Benner, 1996) within
discrete pools. SLDOC is the smallest pool of DOC that accumulates to measurable
concentrations in the ocean and amounts to 6–7GtC globally, with a global production rate
of 3.4–4.6GtCyear"1. Semilabile DOC’s inventory and production rate is fairly similar
across all these data-constrained models, leading to a fairly well-constrained lifetime of
#1.5–2years.

FIG. 18.2 Surface (upper 30m) and deep-ocean (#2000m) concentrations of DOC from (A–B) the DOC TMmodel
(Hansell et al., 2009), (C–D) the biogeochemical TMmodel (DeVries andWeber, 2017), and (E–F) the Artificial Neural
Network (ANN) model (Roshan and DeVries, 2017).
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18.6 Carbon export and sequestration by DOC

The formation of long-lived DOC fractions mediated by the microbial carbon pump (Jiao
et al., 2010) results in 628–642GtC that is sequestered as RDOC with an extremely long
(>10,000year) turnover time (Table 18.1). The shorter-lived fractions of DOC have global in-
ventories of <#30GtC (Table 18.1), but they can still contribute to carbon sequestration
through their role in the biological carbon pump, specifically the so-called mixing pump
(Resplandy et al., 2019; Boyd et al., 2019; Le Moigne, 2019). The role of DOC in the biological
pump is mitigated predominantly by SLDOC, which is formed in the surface ocean, and
exported to the deeper layers by seasonal deepening and shoaling of the mixed layer
(Hansell and Carlson, 2001; Dall’Olmo et al., 2016; Carlson et al., 1994), by eddy subduction
(Omand et al., 2015), and by the large-scale overturning and subduction of water masses
(Carlson et al., 2010; Hansell et al., 2009). Once transported to depth, SLDOC is remineralized
back to DIC, contributing to the sequestration of biogenic DIC in the deep ocean (Siegel
et al., 2023).

The data-constrained models considered here estimate a DOC export of around
1.6–2.3GtCyear"1, which depends somewhat on the depth horizon at which DOC export
is calculated (Table 18.2). This is #15%–20% of the approximately 10–12GtCyear"1 total
export by the biological carbon pump (Hansell et al., 2009). The geographic distribution of
carbon export from the biogeochemical TM model (DeVries and Weber, 2017) is illustrated
in Fig. 18.3. DOC export is concentrated in three main regions: the northern subtropics, the
southern subtropics, and the Southern Ocean north of the polar frontal region. The subtropics
are regions in which DOC is subducted in the wind-driven subtropical gyre circulation.
A substantial portion of the DOC that is exported in the subtropical gyres originates from
DOC produced in the tropical oceans and advected into the subtropical gyres by equatorial
current systems (Nowicki et al., 2022; Roshan and DeVries, 2017). The proportion of total car-
bon export due to DOC varies significantly by latitude (Fig. 18.3). It is lowest along the equa-
tor, where diverging surface currents transport DOC to higher latitudes before being
exported. It is highest in the subtropical gyres and the sub-Antarctic region where DOC is
exported with subducting water masses. The biogeochemical TM model of DeVries and
Weber suggests that DOC export is #20%–25% of the total export in subtropical latitudes

TABLE 18.1 Ocean DOC inventory and production rates.

Model

Semilabile

DOC

Semirefractory

DOC

Refractory

DOC

Total

DOC

Hansell et al. (2012) 6

3.4
14

0.34
642

0.043
662

DeVries and Weber (2017) 7

3.8
26

0.13
628

0.011
662

Roshan and DeVries (2017) – – – 670

Nowicki et al. (2022) 7

4.6
9

0.30
630

0.054
647

Inventories in bold (GtC) and production rates in italics (GtCyear"1).
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TABLE 18.2 DOC export and sequestration by the biological carbon pump.

Model

DOC export

(GtCyear21)

Sequestration of

biogenic DIC (GtC)

Sequestration

time (year)

Hansell et al. (2009) 1.8a – –

DeVries and Weber (2017) 1.6b 81 51

Roshan and DeVries (2017) 2.3$0.6c – –

Nowicki et al. (2022) 1.9$0.3b 102 54

a At 100m.
b At base of euphotic zone.
c At 75m.

FIG. 18.3 (A) DOC export at the base of the euphotic zone, (B) the ratio of DOC export to total export as a function
of latitude, (C) the total amount of biogenic DIC sequestration due to DOC export and remineralization, and (D) the
ratio of the DOC-driven DIC sequestration to total biogenic DIC sequestration. All results are from the biogeochem-
ical TM model (DeVries and Weber, 2017).
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(Fig. 18.3), while the ANN-derived diagnostic model of Roshan and DeVries (2017) predicts
that the proportion of DOC to particulate organic carbon (POC) export in the subtropical
gyres can reach up to 70%.

The models considered here (Fig. 18.3 and Table 18.2) resolve only the large-scale ocean
circulation, and do not resolve small-scale processes such as eddy subduction, which has
been hypothesized to export large amounts of suspended and dissolved organic carbon.
These small-scale processes might increase the proportion of DOC export in the ocean above
these model predictions (Resplandy et al., 2019).

Once DOC is exported and remineralized in the interior ocean, the resulting biogenic DIC
contributes to carbon sequestration by the biological carbon pump (Boyd et al., 2019; Nowicki
et al., 2022). The biogeochemical TM models (DeVries and Weber, 2017; Nowicki et al., 2022)
estimate that DOC sequesters around 80–100GtC in the interior ocean as biogenic DIC
(Table 18.2) or #6%–8% of the total biogenic carbon sequestration of roughly 1300GtC
(Nowicki et al., 2022; Carter et al., 2021). The sequestration time for biogenic DIC derived from
DOC export is around 50years, representing the mean time that biogenic DIC derived from
exported SLDOC is sequestered in the interior ocean before being reexposed at the sea sur-
face. By contributing to biogenic carbon sequestration, SLDOC exerts a climatic control that is
greater than its relatively small inventory would suggest.

18.7 Areas for future advancement in DOM modeling

The current state-of-the-art biogeochemical models can capture carbon and energy flows
through marine ecosystems and standing stocks of DOM, while data-constrained models
have been able to illuminate the global cycling and budgets of DOC. Despite these advances,
there are several key areas where further model development is necessary.

Mechanistic biogeochemical models have primarily focused on carbon and energy fluxes.
Thus these models typically do not represent the RDOC pool which turns over on millennial
timescales, as it is not believed to play a significant role in short-term ecosystem dynamics.
However, this refractory pool makes up the bulk of the total DOC and so plays an important
role in long-term carbon cycle dynamics. Data-constrained models are able to represent this
pool but lack the full ecological and biogeochemical dynamics of mechanistic models. A key
future advancement will be incorporating these refractory pools in mechanistic biogeochem-
ical models by using new computational methods to shorten spin-up times (Lindsay, 2017).

While early models used fixed (typically Redfield) stoichiometries for DOM, state-of-the-
art models incorporate variable DOM stoichiometries (e.g., Letscher et al., 2015; Letscher and
Moore, 2015). These studies have demonstrated the importance of this biologically driven
variability for determining primary production and carbon export. Developing models that
make the link between variable phytoplankton and zooplankton stoichiometries and that of
the DOM pools will help to advance our understanding of nutrient cycling in the ocean and
the role that DOM plays in global biogeochemical cycles.

Nearly all DOM models represent only a handful of OM pools, while in reality, we know
that DOM is incredibly complex and composed of thousands of different compounds. Some
models focused specifically on the complexity of DOM have included thousands of DOM
pools (e.g., Zakem et al., 2021; Mentges et al., 2019) (see Chapter 13 for a detailed discussion of
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these models). These models have shown that representing the complex dynamics of diverse
DOM compounds can provide insight into DOM standing stocks andmechanistic insight into
variable rates of DOM turnover. Reconciling these two different extremes (a few vs thou-
sands) of DOM pools to allow models to capture the first-order dynamics associated with
DOM cycling is an important challenge that needs to be overcome.

Incorporating more realistic DOM cycling within models will also rely on an improved
understanding of both production and loss mechanisms. Specifically, DOM production in
models is currently vaguely defined and linked (typically linearly) to rates of primary pro-
duction and mortality. More work is needed to understand how DOM production rates vary
as a function of different releasemechanisms, for example, “sloppy feeding” versus viral lysis
versus exudation. Similarly, experimental work is needed to understand how variations in
heterotrophic microbial community compositions impact rates of DOM cycling and how
the chemical structure of DOM changes through this process. DOMmodels then have the po-
tential to provide critical insight by integrating new biological knowledge of these processes
with the new chemical understanding of chemical complexity and rates of transformation
and/or degradation.

Finally, the majority of large-scale DOM models focus on marine sources and sinks of
DOM, with most production occurring through ecosystem processes in the euphotic zone
and most removal due to bacterial consumption throughout the water column (see discussion
in Section 18.2). However, the cycling of DOM is considerably more complex with multiple
external sources and sinks of DOM to the ocean (as discussed in Chapters 6, 7, and 14). Specif-
ically, rivers (Medeiros et al., 2016), hydrothermal vent systems (McCarthy et al., 2011), and
sediments (Holcombe et al., 2001) all act as DOM sources and are typically missing from
large-scale DOMmodels, aside from riverine sources which are implemented in somemodels
(e.g., Long et al., 2021). External sinks of DOM include photooxidation (Mopper et al., 1991)
(see Chapter 11), marine aerosols (Kieber et al., 2016), and hydrothermal circulation (Hawkes
et al., 2016). These external sources and sinks may be particularly important for the aged
RDOC pools that comprise the vast majority of the DOC inventory. Thus, representing these
processes and their dynamics in models should be a priority for future model development.
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